Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[linux/fpc-iii.git] / arch / powerpc / kernel / process.c
blobbe99774d3f44ac9ecc83d5e637a7bb4b4f460d80
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
68 extern unsigned long _get_SP(void);
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
93 giveup_fpu(tsk);
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
111 giveup_altivec(tsk);
114 #else
115 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
119 #ifdef CONFIG_PPC_FPU
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
124 void flush_fp_to_thread(struct task_struct *tsk)
126 if (tsk->thread.regs) {
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
145 BUG_ON(tsk != current);
146 #endif
147 giveup_fpu_maybe_transactional(tsk);
149 preempt_enable();
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
155 void enable_kernel_fp(void)
157 WARN_ON(preemptible());
159 #ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 giveup_fpu_maybe_transactional(current);
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164 #else
165 giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
168 EXPORT_SYMBOL(enable_kernel_fp);
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
173 WARN_ON(preemptible());
175 #ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 giveup_altivec_maybe_transactional(current);
178 else
179 giveup_altivec_notask();
180 #else
181 giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
184 EXPORT_SYMBOL(enable_kernel_altivec);
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
190 void flush_altivec_to_thread(struct task_struct *tsk)
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197 #endif
198 giveup_altivec_maybe_transactional(tsk);
200 preempt_enable();
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
206 #ifdef CONFIG_VSX
207 #if 0
208 /* not currently used, but some crazy RAID module might want to later */
209 void enable_kernel_vsx(void)
211 WARN_ON(preemptible());
213 #ifdef CONFIG_SMP
214 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215 giveup_vsx(current);
216 else
217 giveup_vsx(NULL); /* just enable vsx for kernel - force */
218 #else
219 giveup_vsx(last_task_used_vsx);
220 #endif /* CONFIG_SMP */
222 EXPORT_SYMBOL(enable_kernel_vsx);
223 #endif
225 void giveup_vsx(struct task_struct *tsk)
227 giveup_fpu_maybe_transactional(tsk);
228 giveup_altivec_maybe_transactional(tsk);
229 __giveup_vsx(tsk);
232 void flush_vsx_to_thread(struct task_struct *tsk)
234 if (tsk->thread.regs) {
235 preempt_disable();
236 if (tsk->thread.regs->msr & MSR_VSX) {
237 #ifdef CONFIG_SMP
238 BUG_ON(tsk != current);
239 #endif
240 giveup_vsx(tsk);
242 preempt_enable();
245 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
246 #endif /* CONFIG_VSX */
248 #ifdef CONFIG_SPE
250 void enable_kernel_spe(void)
252 WARN_ON(preemptible());
254 #ifdef CONFIG_SMP
255 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
256 giveup_spe(current);
257 else
258 giveup_spe(NULL); /* just enable SPE for kernel - force */
259 #else
260 giveup_spe(last_task_used_spe);
261 #endif /* __SMP __ */
263 EXPORT_SYMBOL(enable_kernel_spe);
265 void flush_spe_to_thread(struct task_struct *tsk)
267 if (tsk->thread.regs) {
268 preempt_disable();
269 if (tsk->thread.regs->msr & MSR_SPE) {
270 #ifdef CONFIG_SMP
271 BUG_ON(tsk != current);
272 #endif
273 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
274 giveup_spe(tsk);
276 preempt_enable();
279 #endif /* CONFIG_SPE */
281 #ifndef CONFIG_SMP
283 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284 * and the current task has some state, discard it.
286 void discard_lazy_cpu_state(void)
288 preempt_disable();
289 if (last_task_used_math == current)
290 last_task_used_math = NULL;
291 #ifdef CONFIG_ALTIVEC
292 if (last_task_used_altivec == current)
293 last_task_used_altivec = NULL;
294 #endif /* CONFIG_ALTIVEC */
295 #ifdef CONFIG_VSX
296 if (last_task_used_vsx == current)
297 last_task_used_vsx = NULL;
298 #endif /* CONFIG_VSX */
299 #ifdef CONFIG_SPE
300 if (last_task_used_spe == current)
301 last_task_used_spe = NULL;
302 #endif
303 preempt_enable();
305 #endif /* CONFIG_SMP */
307 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
308 void do_send_trap(struct pt_regs *regs, unsigned long address,
309 unsigned long error_code, int signal_code, int breakpt)
311 siginfo_t info;
313 current->thread.trap_nr = signal_code;
314 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315 11, SIGSEGV) == NOTIFY_STOP)
316 return;
318 /* Deliver the signal to userspace */
319 info.si_signo = SIGTRAP;
320 info.si_errno = breakpt; /* breakpoint or watchpoint id */
321 info.si_code = signal_code;
322 info.si_addr = (void __user *)address;
323 force_sig_info(SIGTRAP, &info, current);
325 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
326 void do_break (struct pt_regs *regs, unsigned long address,
327 unsigned long error_code)
329 siginfo_t info;
331 current->thread.trap_nr = TRAP_HWBKPT;
332 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333 11, SIGSEGV) == NOTIFY_STOP)
334 return;
336 if (debugger_break_match(regs))
337 return;
339 /* Clear the breakpoint */
340 hw_breakpoint_disable();
342 /* Deliver the signal to userspace */
343 info.si_signo = SIGTRAP;
344 info.si_errno = 0;
345 info.si_code = TRAP_HWBKPT;
346 info.si_addr = (void __user *)address;
347 force_sig_info(SIGTRAP, &info, current);
349 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
351 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
353 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
355 * Set the debug registers back to their default "safe" values.
357 static void set_debug_reg_defaults(struct thread_struct *thread)
359 thread->debug.iac1 = thread->debug.iac2 = 0;
360 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
361 thread->debug.iac3 = thread->debug.iac4 = 0;
362 #endif
363 thread->debug.dac1 = thread->debug.dac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
365 thread->debug.dvc1 = thread->debug.dvc2 = 0;
366 #endif
367 thread->debug.dbcr0 = 0;
368 #ifdef CONFIG_BOOKE
370 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
372 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
373 DBCR1_IAC3US | DBCR1_IAC4US;
375 * Force Data Address Compare User/Supervisor bits to be User-only
376 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
378 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
379 #else
380 thread->debug.dbcr1 = 0;
381 #endif
384 static void prime_debug_regs(struct debug_reg *debug)
387 * We could have inherited MSR_DE from userspace, since
388 * it doesn't get cleared on exception entry. Make sure
389 * MSR_DE is clear before we enable any debug events.
391 mtmsr(mfmsr() & ~MSR_DE);
393 mtspr(SPRN_IAC1, debug->iac1);
394 mtspr(SPRN_IAC2, debug->iac2);
395 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
396 mtspr(SPRN_IAC3, debug->iac3);
397 mtspr(SPRN_IAC4, debug->iac4);
398 #endif
399 mtspr(SPRN_DAC1, debug->dac1);
400 mtspr(SPRN_DAC2, debug->dac2);
401 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
402 mtspr(SPRN_DVC1, debug->dvc1);
403 mtspr(SPRN_DVC2, debug->dvc2);
404 #endif
405 mtspr(SPRN_DBCR0, debug->dbcr0);
406 mtspr(SPRN_DBCR1, debug->dbcr1);
407 #ifdef CONFIG_BOOKE
408 mtspr(SPRN_DBCR2, debug->dbcr2);
409 #endif
412 * Unless neither the old or new thread are making use of the
413 * debug registers, set the debug registers from the values
414 * stored in the new thread.
416 void switch_booke_debug_regs(struct debug_reg *new_debug)
418 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
419 || (new_debug->dbcr0 & DBCR0_IDM))
420 prime_debug_regs(new_debug);
422 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
423 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
424 #ifndef CONFIG_HAVE_HW_BREAKPOINT
425 static void set_debug_reg_defaults(struct thread_struct *thread)
427 thread->hw_brk.address = 0;
428 thread->hw_brk.type = 0;
429 set_breakpoint(&thread->hw_brk);
431 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
432 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
434 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
435 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
437 mtspr(SPRN_DAC1, dabr);
438 #ifdef CONFIG_PPC_47x
439 isync();
440 #endif
441 return 0;
443 #elif defined(CONFIG_PPC_BOOK3S)
444 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
446 mtspr(SPRN_DABR, dabr);
447 if (cpu_has_feature(CPU_FTR_DABRX))
448 mtspr(SPRN_DABRX, dabrx);
449 return 0;
451 #else
452 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
454 return -EINVAL;
456 #endif
458 static inline int set_dabr(struct arch_hw_breakpoint *brk)
460 unsigned long dabr, dabrx;
462 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463 dabrx = ((brk->type >> 3) & 0x7);
465 if (ppc_md.set_dabr)
466 return ppc_md.set_dabr(dabr, dabrx);
468 return __set_dabr(dabr, dabrx);
471 static inline int set_dawr(struct arch_hw_breakpoint *brk)
473 unsigned long dawr, dawrx, mrd;
475 dawr = brk->address;
477 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478 << (63 - 58); //* read/write bits */
479 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480 << (63 - 59); //* translate */
481 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482 >> 3; //* PRIM bits */
483 /* dawr length is stored in field MDR bits 48:53. Matches range in
484 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485 0b111111=64DW.
486 brk->len is in bytes.
487 This aligns up to double word size, shifts and does the bias.
489 mrd = ((brk->len + 7) >> 3) - 1;
490 dawrx |= (mrd & 0x3f) << (63 - 53);
492 if (ppc_md.set_dawr)
493 return ppc_md.set_dawr(dawr, dawrx);
494 mtspr(SPRN_DAWR, dawr);
495 mtspr(SPRN_DAWRX, dawrx);
496 return 0;
499 void __set_breakpoint(struct arch_hw_breakpoint *brk)
501 __get_cpu_var(current_brk) = *brk;
503 if (cpu_has_feature(CPU_FTR_DAWR))
504 set_dawr(brk);
505 else
506 set_dabr(brk);
509 void set_breakpoint(struct arch_hw_breakpoint *brk)
511 preempt_disable();
512 __set_breakpoint(brk);
513 preempt_enable();
516 #ifdef CONFIG_PPC64
517 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
518 #endif
520 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
521 struct arch_hw_breakpoint *b)
523 if (a->address != b->address)
524 return false;
525 if (a->type != b->type)
526 return false;
527 if (a->len != b->len)
528 return false;
529 return true;
532 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
533 static void tm_reclaim_thread(struct thread_struct *thr,
534 struct thread_info *ti, uint8_t cause)
536 unsigned long msr_diff = 0;
539 * If FP/VSX registers have been already saved to the
540 * thread_struct, move them to the transact_fp array.
541 * We clear the TIF_RESTORE_TM bit since after the reclaim
542 * the thread will no longer be transactional.
544 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
545 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
546 if (msr_diff & MSR_FP)
547 memcpy(&thr->transact_fp, &thr->fp_state,
548 sizeof(struct thread_fp_state));
549 if (msr_diff & MSR_VEC)
550 memcpy(&thr->transact_vr, &thr->vr_state,
551 sizeof(struct thread_vr_state));
552 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
553 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
556 tm_reclaim(thr, thr->regs->msr, cause);
558 /* Having done the reclaim, we now have the checkpointed
559 * FP/VSX values in the registers. These might be valid
560 * even if we have previously called enable_kernel_fp() or
561 * flush_fp_to_thread(), so update thr->regs->msr to
562 * indicate their current validity.
564 thr->regs->msr |= msr_diff;
567 void tm_reclaim_current(uint8_t cause)
569 tm_enable();
570 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
573 static inline void tm_reclaim_task(struct task_struct *tsk)
575 /* We have to work out if we're switching from/to a task that's in the
576 * middle of a transaction.
578 * In switching we need to maintain a 2nd register state as
579 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
580 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
581 * (current) FPRs into oldtask->thread.transact_fpr[].
583 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
585 struct thread_struct *thr = &tsk->thread;
587 if (!thr->regs)
588 return;
590 if (!MSR_TM_ACTIVE(thr->regs->msr))
591 goto out_and_saveregs;
593 /* Stash the original thread MSR, as giveup_fpu et al will
594 * modify it. We hold onto it to see whether the task used
595 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
596 * tm_orig_msr is already set.
598 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
599 thr->tm_orig_msr = thr->regs->msr;
601 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
602 "ccr=%lx, msr=%lx, trap=%lx)\n",
603 tsk->pid, thr->regs->nip,
604 thr->regs->ccr, thr->regs->msr,
605 thr->regs->trap);
607 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
609 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
610 tsk->pid);
612 out_and_saveregs:
613 /* Always save the regs here, even if a transaction's not active.
614 * This context-switches a thread's TM info SPRs. We do it here to
615 * be consistent with the restore path (in recheckpoint) which
616 * cannot happen later in _switch().
618 tm_save_sprs(thr);
621 extern void __tm_recheckpoint(struct thread_struct *thread,
622 unsigned long orig_msr);
624 void tm_recheckpoint(struct thread_struct *thread,
625 unsigned long orig_msr)
627 unsigned long flags;
629 /* We really can't be interrupted here as the TEXASR registers can't
630 * change and later in the trecheckpoint code, we have a userspace R1.
631 * So let's hard disable over this region.
633 local_irq_save(flags);
634 hard_irq_disable();
636 /* The TM SPRs are restored here, so that TEXASR.FS can be set
637 * before the trecheckpoint and no explosion occurs.
639 tm_restore_sprs(thread);
641 __tm_recheckpoint(thread, orig_msr);
643 local_irq_restore(flags);
646 static inline void tm_recheckpoint_new_task(struct task_struct *new)
648 unsigned long msr;
650 if (!cpu_has_feature(CPU_FTR_TM))
651 return;
653 /* Recheckpoint the registers of the thread we're about to switch to.
655 * If the task was using FP, we non-lazily reload both the original and
656 * the speculative FP register states. This is because the kernel
657 * doesn't see if/when a TM rollback occurs, so if we take an FP
658 * unavoidable later, we are unable to determine which set of FP regs
659 * need to be restored.
661 if (!new->thread.regs)
662 return;
664 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
665 tm_restore_sprs(&new->thread);
666 return;
668 msr = new->thread.tm_orig_msr;
669 /* Recheckpoint to restore original checkpointed register state. */
670 TM_DEBUG("*** tm_recheckpoint of pid %d "
671 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
672 new->pid, new->thread.regs->msr, msr);
674 /* This loads the checkpointed FP/VEC state, if used */
675 tm_recheckpoint(&new->thread, msr);
677 /* This loads the speculative FP/VEC state, if used */
678 if (msr & MSR_FP) {
679 do_load_up_transact_fpu(&new->thread);
680 new->thread.regs->msr |=
681 (MSR_FP | new->thread.fpexc_mode);
683 #ifdef CONFIG_ALTIVEC
684 if (msr & MSR_VEC) {
685 do_load_up_transact_altivec(&new->thread);
686 new->thread.regs->msr |= MSR_VEC;
688 #endif
689 /* We may as well turn on VSX too since all the state is restored now */
690 if (msr & MSR_VSX)
691 new->thread.regs->msr |= MSR_VSX;
693 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
694 "(kernel msr 0x%lx)\n",
695 new->pid, mfmsr());
698 static inline void __switch_to_tm(struct task_struct *prev)
700 if (cpu_has_feature(CPU_FTR_TM)) {
701 tm_enable();
702 tm_reclaim_task(prev);
707 * This is called if we are on the way out to userspace and the
708 * TIF_RESTORE_TM flag is set. It checks if we need to reload
709 * FP and/or vector state and does so if necessary.
710 * If userspace is inside a transaction (whether active or
711 * suspended) and FP/VMX/VSX instructions have ever been enabled
712 * inside that transaction, then we have to keep them enabled
713 * and keep the FP/VMX/VSX state loaded while ever the transaction
714 * continues. The reason is that if we didn't, and subsequently
715 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
716 * we don't know whether it's the same transaction, and thus we
717 * don't know which of the checkpointed state and the transactional
718 * state to use.
720 void restore_tm_state(struct pt_regs *regs)
722 unsigned long msr_diff;
724 clear_thread_flag(TIF_RESTORE_TM);
725 if (!MSR_TM_ACTIVE(regs->msr))
726 return;
728 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
729 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
730 if (msr_diff & MSR_FP) {
731 fp_enable();
732 load_fp_state(&current->thread.fp_state);
733 regs->msr |= current->thread.fpexc_mode;
735 if (msr_diff & MSR_VEC) {
736 vec_enable();
737 load_vr_state(&current->thread.vr_state);
739 regs->msr |= msr_diff;
742 #else
743 #define tm_recheckpoint_new_task(new)
744 #define __switch_to_tm(prev)
745 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
747 struct task_struct *__switch_to(struct task_struct *prev,
748 struct task_struct *new)
750 struct thread_struct *new_thread, *old_thread;
751 struct task_struct *last;
752 #ifdef CONFIG_PPC_BOOK3S_64
753 struct ppc64_tlb_batch *batch;
754 #endif
756 WARN_ON(!irqs_disabled());
758 /* Back up the TAR and DSCR across context switches.
759 * Note that the TAR is not available for use in the kernel. (To
760 * provide this, the TAR should be backed up/restored on exception
761 * entry/exit instead, and be in pt_regs. FIXME, this should be in
762 * pt_regs anyway (for debug).)
763 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
764 * these will change them.
766 save_early_sprs(&prev->thread);
768 __switch_to_tm(prev);
770 #ifdef CONFIG_SMP
771 /* avoid complexity of lazy save/restore of fpu
772 * by just saving it every time we switch out if
773 * this task used the fpu during the last quantum.
775 * If it tries to use the fpu again, it'll trap and
776 * reload its fp regs. So we don't have to do a restore
777 * every switch, just a save.
778 * -- Cort
780 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
781 giveup_fpu(prev);
782 #ifdef CONFIG_ALTIVEC
784 * If the previous thread used altivec in the last quantum
785 * (thus changing altivec regs) then save them.
786 * We used to check the VRSAVE register but not all apps
787 * set it, so we don't rely on it now (and in fact we need
788 * to save & restore VSCR even if VRSAVE == 0). -- paulus
790 * On SMP we always save/restore altivec regs just to avoid the
791 * complexity of changing processors.
792 * -- Cort
794 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
795 giveup_altivec(prev);
796 #endif /* CONFIG_ALTIVEC */
797 #ifdef CONFIG_VSX
798 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
799 /* VMX and FPU registers are already save here */
800 __giveup_vsx(prev);
801 #endif /* CONFIG_VSX */
802 #ifdef CONFIG_SPE
804 * If the previous thread used spe in the last quantum
805 * (thus changing spe regs) then save them.
807 * On SMP we always save/restore spe regs just to avoid the
808 * complexity of changing processors.
810 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
811 giveup_spe(prev);
812 #endif /* CONFIG_SPE */
814 #else /* CONFIG_SMP */
815 #ifdef CONFIG_ALTIVEC
816 /* Avoid the trap. On smp this this never happens since
817 * we don't set last_task_used_altivec -- Cort
819 if (new->thread.regs && last_task_used_altivec == new)
820 new->thread.regs->msr |= MSR_VEC;
821 #endif /* CONFIG_ALTIVEC */
822 #ifdef CONFIG_VSX
823 if (new->thread.regs && last_task_used_vsx == new)
824 new->thread.regs->msr |= MSR_VSX;
825 #endif /* CONFIG_VSX */
826 #ifdef CONFIG_SPE
827 /* Avoid the trap. On smp this this never happens since
828 * we don't set last_task_used_spe
830 if (new->thread.regs && last_task_used_spe == new)
831 new->thread.regs->msr |= MSR_SPE;
832 #endif /* CONFIG_SPE */
834 #endif /* CONFIG_SMP */
836 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
837 switch_booke_debug_regs(&new->thread.debug);
838 #else
840 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
841 * schedule DABR
843 #ifndef CONFIG_HAVE_HW_BREAKPOINT
844 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
845 __set_breakpoint(&new->thread.hw_brk);
846 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
847 #endif
850 new_thread = &new->thread;
851 old_thread = &current->thread;
853 #ifdef CONFIG_PPC64
855 * Collect processor utilization data per process
857 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
858 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
859 long unsigned start_tb, current_tb;
860 start_tb = old_thread->start_tb;
861 cu->current_tb = current_tb = mfspr(SPRN_PURR);
862 old_thread->accum_tb += (current_tb - start_tb);
863 new_thread->start_tb = current_tb;
865 #endif /* CONFIG_PPC64 */
867 #ifdef CONFIG_PPC_BOOK3S_64
868 batch = &__get_cpu_var(ppc64_tlb_batch);
869 if (batch->active) {
870 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
871 if (batch->index)
872 __flush_tlb_pending(batch);
873 batch->active = 0;
875 #endif /* CONFIG_PPC_BOOK3S_64 */
878 * We can't take a PMU exception inside _switch() since there is a
879 * window where the kernel stack SLB and the kernel stack are out
880 * of sync. Hard disable here.
882 hard_irq_disable();
884 tm_recheckpoint_new_task(new);
886 last = _switch(old_thread, new_thread);
888 #ifdef CONFIG_PPC_BOOK3S_64
889 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
890 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
891 batch = &__get_cpu_var(ppc64_tlb_batch);
892 batch->active = 1;
894 #endif /* CONFIG_PPC_BOOK3S_64 */
896 return last;
899 static int instructions_to_print = 16;
901 static void show_instructions(struct pt_regs *regs)
903 int i;
904 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
905 sizeof(int));
907 printk("Instruction dump:");
909 for (i = 0; i < instructions_to_print; i++) {
910 int instr;
912 if (!(i % 8))
913 printk("\n");
915 #if !defined(CONFIG_BOOKE)
916 /* If executing with the IMMU off, adjust pc rather
917 * than print XXXXXXXX.
919 if (!(regs->msr & MSR_IR))
920 pc = (unsigned long)phys_to_virt(pc);
921 #endif
923 /* We use __get_user here *only* to avoid an OOPS on a
924 * bad address because the pc *should* only be a
925 * kernel address.
927 if (!__kernel_text_address(pc) ||
928 __get_user(instr, (unsigned int __user *)pc)) {
929 printk(KERN_CONT "XXXXXXXX ");
930 } else {
931 if (regs->nip == pc)
932 printk(KERN_CONT "<%08x> ", instr);
933 else
934 printk(KERN_CONT "%08x ", instr);
937 pc += sizeof(int);
940 printk("\n");
943 static struct regbit {
944 unsigned long bit;
945 const char *name;
946 } msr_bits[] = {
947 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
948 {MSR_SF, "SF"},
949 {MSR_HV, "HV"},
950 #endif
951 {MSR_VEC, "VEC"},
952 {MSR_VSX, "VSX"},
953 #ifdef CONFIG_BOOKE
954 {MSR_CE, "CE"},
955 #endif
956 {MSR_EE, "EE"},
957 {MSR_PR, "PR"},
958 {MSR_FP, "FP"},
959 {MSR_ME, "ME"},
960 #ifdef CONFIG_BOOKE
961 {MSR_DE, "DE"},
962 #else
963 {MSR_SE, "SE"},
964 {MSR_BE, "BE"},
965 #endif
966 {MSR_IR, "IR"},
967 {MSR_DR, "DR"},
968 {MSR_PMM, "PMM"},
969 #ifndef CONFIG_BOOKE
970 {MSR_RI, "RI"},
971 {MSR_LE, "LE"},
972 #endif
973 {0, NULL}
976 static void printbits(unsigned long val, struct regbit *bits)
978 const char *sep = "";
980 printk("<");
981 for (; bits->bit; ++bits)
982 if (val & bits->bit) {
983 printk("%s%s", sep, bits->name);
984 sep = ",";
986 printk(">");
989 #ifdef CONFIG_PPC64
990 #define REG "%016lx"
991 #define REGS_PER_LINE 4
992 #define LAST_VOLATILE 13
993 #else
994 #define REG "%08lx"
995 #define REGS_PER_LINE 8
996 #define LAST_VOLATILE 12
997 #endif
999 void show_regs(struct pt_regs * regs)
1001 int i, trap;
1003 show_regs_print_info(KERN_DEFAULT);
1005 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1006 regs->nip, regs->link, regs->ctr);
1007 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1008 regs, regs->trap, print_tainted(), init_utsname()->release);
1009 printk("MSR: "REG" ", regs->msr);
1010 printbits(regs->msr, msr_bits);
1011 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1012 trap = TRAP(regs);
1013 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1014 printk("CFAR: "REG" ", regs->orig_gpr3);
1015 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1016 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1017 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1018 #else
1019 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1020 #endif
1021 #ifdef CONFIG_PPC64
1022 printk("SOFTE: %ld ", regs->softe);
1023 #endif
1024 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1025 if (MSR_TM_ACTIVE(regs->msr))
1026 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1027 #endif
1029 for (i = 0; i < 32; i++) {
1030 if ((i % REGS_PER_LINE) == 0)
1031 printk("\nGPR%02d: ", i);
1032 printk(REG " ", regs->gpr[i]);
1033 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1034 break;
1036 printk("\n");
1037 #ifdef CONFIG_KALLSYMS
1039 * Lookup NIP late so we have the best change of getting the
1040 * above info out without failing
1042 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1043 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1044 #endif
1045 show_stack(current, (unsigned long *) regs->gpr[1]);
1046 if (!user_mode(regs))
1047 show_instructions(regs);
1050 void exit_thread(void)
1052 discard_lazy_cpu_state();
1055 void flush_thread(void)
1057 discard_lazy_cpu_state();
1059 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1060 flush_ptrace_hw_breakpoint(current);
1061 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1062 set_debug_reg_defaults(&current->thread);
1063 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1066 void
1067 release_thread(struct task_struct *t)
1072 * this gets called so that we can store coprocessor state into memory and
1073 * copy the current task into the new thread.
1075 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1077 flush_fp_to_thread(src);
1078 flush_altivec_to_thread(src);
1079 flush_vsx_to_thread(src);
1080 flush_spe_to_thread(src);
1082 * Flush TM state out so we can copy it. __switch_to_tm() does this
1083 * flush but it removes the checkpointed state from the current CPU and
1084 * transitions the CPU out of TM mode. Hence we need to call
1085 * tm_recheckpoint_new_task() (on the same task) to restore the
1086 * checkpointed state back and the TM mode.
1088 __switch_to_tm(src);
1089 tm_recheckpoint_new_task(src);
1091 *dst = *src;
1093 clear_task_ebb(dst);
1095 return 0;
1099 * Copy a thread..
1101 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1103 int copy_thread(unsigned long clone_flags, unsigned long usp,
1104 unsigned long arg, struct task_struct *p)
1106 struct pt_regs *childregs, *kregs;
1107 extern void ret_from_fork(void);
1108 extern void ret_from_kernel_thread(void);
1109 void (*f)(void);
1110 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1112 /* Copy registers */
1113 sp -= sizeof(struct pt_regs);
1114 childregs = (struct pt_regs *) sp;
1115 if (unlikely(p->flags & PF_KTHREAD)) {
1116 struct thread_info *ti = (void *)task_stack_page(p);
1117 memset(childregs, 0, sizeof(struct pt_regs));
1118 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1119 /* function */
1120 if (usp)
1121 childregs->gpr[14] = ppc_function_entry((void *)usp);
1122 #ifdef CONFIG_PPC64
1123 clear_tsk_thread_flag(p, TIF_32BIT);
1124 childregs->softe = 1;
1125 #endif
1126 childregs->gpr[15] = arg;
1127 p->thread.regs = NULL; /* no user register state */
1128 ti->flags |= _TIF_RESTOREALL;
1129 f = ret_from_kernel_thread;
1130 } else {
1131 struct pt_regs *regs = current_pt_regs();
1132 CHECK_FULL_REGS(regs);
1133 *childregs = *regs;
1134 if (usp)
1135 childregs->gpr[1] = usp;
1136 p->thread.regs = childregs;
1137 childregs->gpr[3] = 0; /* Result from fork() */
1138 if (clone_flags & CLONE_SETTLS) {
1139 #ifdef CONFIG_PPC64
1140 if (!is_32bit_task())
1141 childregs->gpr[13] = childregs->gpr[6];
1142 else
1143 #endif
1144 childregs->gpr[2] = childregs->gpr[6];
1147 f = ret_from_fork;
1149 sp -= STACK_FRAME_OVERHEAD;
1152 * The way this works is that at some point in the future
1153 * some task will call _switch to switch to the new task.
1154 * That will pop off the stack frame created below and start
1155 * the new task running at ret_from_fork. The new task will
1156 * do some house keeping and then return from the fork or clone
1157 * system call, using the stack frame created above.
1159 ((unsigned long *)sp)[0] = 0;
1160 sp -= sizeof(struct pt_regs);
1161 kregs = (struct pt_regs *) sp;
1162 sp -= STACK_FRAME_OVERHEAD;
1163 p->thread.ksp = sp;
1164 #ifdef CONFIG_PPC32
1165 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1166 _ALIGN_UP(sizeof(struct thread_info), 16);
1167 #endif
1168 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1169 p->thread.ptrace_bps[0] = NULL;
1170 #endif
1172 p->thread.fp_save_area = NULL;
1173 #ifdef CONFIG_ALTIVEC
1174 p->thread.vr_save_area = NULL;
1175 #endif
1177 #ifdef CONFIG_PPC_STD_MMU_64
1178 if (mmu_has_feature(MMU_FTR_SLB)) {
1179 unsigned long sp_vsid;
1180 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1182 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1183 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1184 << SLB_VSID_SHIFT_1T;
1185 else
1186 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1187 << SLB_VSID_SHIFT;
1188 sp_vsid |= SLB_VSID_KERNEL | llp;
1189 p->thread.ksp_vsid = sp_vsid;
1191 #endif /* CONFIG_PPC_STD_MMU_64 */
1192 #ifdef CONFIG_PPC64
1193 if (cpu_has_feature(CPU_FTR_DSCR)) {
1194 p->thread.dscr_inherit = current->thread.dscr_inherit;
1195 p->thread.dscr = current->thread.dscr;
1197 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1198 p->thread.ppr = INIT_PPR;
1199 #endif
1200 kregs->nip = ppc_function_entry(f);
1201 return 0;
1205 * Set up a thread for executing a new program
1207 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1209 #ifdef CONFIG_PPC64
1210 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1211 #endif
1214 * If we exec out of a kernel thread then thread.regs will not be
1215 * set. Do it now.
1217 if (!current->thread.regs) {
1218 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1219 current->thread.regs = regs - 1;
1222 memset(regs->gpr, 0, sizeof(regs->gpr));
1223 regs->ctr = 0;
1224 regs->link = 0;
1225 regs->xer = 0;
1226 regs->ccr = 0;
1227 regs->gpr[1] = sp;
1230 * We have just cleared all the nonvolatile GPRs, so make
1231 * FULL_REGS(regs) return true. This is necessary to allow
1232 * ptrace to examine the thread immediately after exec.
1234 regs->trap &= ~1UL;
1236 #ifdef CONFIG_PPC32
1237 regs->mq = 0;
1238 regs->nip = start;
1239 regs->msr = MSR_USER;
1240 #else
1241 if (!is_32bit_task()) {
1242 unsigned long entry;
1244 if (is_elf2_task()) {
1245 /* Look ma, no function descriptors! */
1246 entry = start;
1249 * Ulrich says:
1250 * The latest iteration of the ABI requires that when
1251 * calling a function (at its global entry point),
1252 * the caller must ensure r12 holds the entry point
1253 * address (so that the function can quickly
1254 * establish addressability).
1256 regs->gpr[12] = start;
1257 /* Make sure that's restored on entry to userspace. */
1258 set_thread_flag(TIF_RESTOREALL);
1259 } else {
1260 unsigned long toc;
1262 /* start is a relocated pointer to the function
1263 * descriptor for the elf _start routine. The first
1264 * entry in the function descriptor is the entry
1265 * address of _start and the second entry is the TOC
1266 * value we need to use.
1268 __get_user(entry, (unsigned long __user *)start);
1269 __get_user(toc, (unsigned long __user *)start+1);
1271 /* Check whether the e_entry function descriptor entries
1272 * need to be relocated before we can use them.
1274 if (load_addr != 0) {
1275 entry += load_addr;
1276 toc += load_addr;
1278 regs->gpr[2] = toc;
1280 regs->nip = entry;
1281 regs->msr = MSR_USER64;
1282 } else {
1283 regs->nip = start;
1284 regs->gpr[2] = 0;
1285 regs->msr = MSR_USER32;
1287 #endif
1288 discard_lazy_cpu_state();
1289 #ifdef CONFIG_VSX
1290 current->thread.used_vsr = 0;
1291 #endif
1292 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1293 current->thread.fp_save_area = NULL;
1294 #ifdef CONFIG_ALTIVEC
1295 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1296 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1297 current->thread.vr_save_area = NULL;
1298 current->thread.vrsave = 0;
1299 current->thread.used_vr = 0;
1300 #endif /* CONFIG_ALTIVEC */
1301 #ifdef CONFIG_SPE
1302 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1303 current->thread.acc = 0;
1304 current->thread.spefscr = 0;
1305 current->thread.used_spe = 0;
1306 #endif /* CONFIG_SPE */
1307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308 if (cpu_has_feature(CPU_FTR_TM))
1309 regs->msr |= MSR_TM;
1310 current->thread.tm_tfhar = 0;
1311 current->thread.tm_texasr = 0;
1312 current->thread.tm_tfiar = 0;
1313 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1316 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1317 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1319 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1321 struct pt_regs *regs = tsk->thread.regs;
1323 /* This is a bit hairy. If we are an SPE enabled processor
1324 * (have embedded fp) we store the IEEE exception enable flags in
1325 * fpexc_mode. fpexc_mode is also used for setting FP exception
1326 * mode (asyn, precise, disabled) for 'Classic' FP. */
1327 if (val & PR_FP_EXC_SW_ENABLE) {
1328 #ifdef CONFIG_SPE
1329 if (cpu_has_feature(CPU_FTR_SPE)) {
1331 * When the sticky exception bits are set
1332 * directly by userspace, it must call prctl
1333 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1334 * in the existing prctl settings) or
1335 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1336 * the bits being set). <fenv.h> functions
1337 * saving and restoring the whole
1338 * floating-point environment need to do so
1339 * anyway to restore the prctl settings from
1340 * the saved environment.
1342 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1343 tsk->thread.fpexc_mode = val &
1344 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1345 return 0;
1346 } else {
1347 return -EINVAL;
1349 #else
1350 return -EINVAL;
1351 #endif
1354 /* on a CONFIG_SPE this does not hurt us. The bits that
1355 * __pack_fe01 use do not overlap with bits used for
1356 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1357 * on CONFIG_SPE implementations are reserved so writing to
1358 * them does not change anything */
1359 if (val > PR_FP_EXC_PRECISE)
1360 return -EINVAL;
1361 tsk->thread.fpexc_mode = __pack_fe01(val);
1362 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1363 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1364 | tsk->thread.fpexc_mode;
1365 return 0;
1368 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1370 unsigned int val;
1372 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1373 #ifdef CONFIG_SPE
1374 if (cpu_has_feature(CPU_FTR_SPE)) {
1376 * When the sticky exception bits are set
1377 * directly by userspace, it must call prctl
1378 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1379 * in the existing prctl settings) or
1380 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1381 * the bits being set). <fenv.h> functions
1382 * saving and restoring the whole
1383 * floating-point environment need to do so
1384 * anyway to restore the prctl settings from
1385 * the saved environment.
1387 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1388 val = tsk->thread.fpexc_mode;
1389 } else
1390 return -EINVAL;
1391 #else
1392 return -EINVAL;
1393 #endif
1394 else
1395 val = __unpack_fe01(tsk->thread.fpexc_mode);
1396 return put_user(val, (unsigned int __user *) adr);
1399 int set_endian(struct task_struct *tsk, unsigned int val)
1401 struct pt_regs *regs = tsk->thread.regs;
1403 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1404 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1405 return -EINVAL;
1407 if (regs == NULL)
1408 return -EINVAL;
1410 if (val == PR_ENDIAN_BIG)
1411 regs->msr &= ~MSR_LE;
1412 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1413 regs->msr |= MSR_LE;
1414 else
1415 return -EINVAL;
1417 return 0;
1420 int get_endian(struct task_struct *tsk, unsigned long adr)
1422 struct pt_regs *regs = tsk->thread.regs;
1423 unsigned int val;
1425 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1426 !cpu_has_feature(CPU_FTR_REAL_LE))
1427 return -EINVAL;
1429 if (regs == NULL)
1430 return -EINVAL;
1432 if (regs->msr & MSR_LE) {
1433 if (cpu_has_feature(CPU_FTR_REAL_LE))
1434 val = PR_ENDIAN_LITTLE;
1435 else
1436 val = PR_ENDIAN_PPC_LITTLE;
1437 } else
1438 val = PR_ENDIAN_BIG;
1440 return put_user(val, (unsigned int __user *)adr);
1443 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1445 tsk->thread.align_ctl = val;
1446 return 0;
1449 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1451 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1454 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1455 unsigned long nbytes)
1457 unsigned long stack_page;
1458 unsigned long cpu = task_cpu(p);
1461 * Avoid crashing if the stack has overflowed and corrupted
1462 * task_cpu(p), which is in the thread_info struct.
1464 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1465 stack_page = (unsigned long) hardirq_ctx[cpu];
1466 if (sp >= stack_page + sizeof(struct thread_struct)
1467 && sp <= stack_page + THREAD_SIZE - nbytes)
1468 return 1;
1470 stack_page = (unsigned long) softirq_ctx[cpu];
1471 if (sp >= stack_page + sizeof(struct thread_struct)
1472 && sp <= stack_page + THREAD_SIZE - nbytes)
1473 return 1;
1475 return 0;
1478 int validate_sp(unsigned long sp, struct task_struct *p,
1479 unsigned long nbytes)
1481 unsigned long stack_page = (unsigned long)task_stack_page(p);
1483 if (sp >= stack_page + sizeof(struct thread_struct)
1484 && sp <= stack_page + THREAD_SIZE - nbytes)
1485 return 1;
1487 return valid_irq_stack(sp, p, nbytes);
1490 EXPORT_SYMBOL(validate_sp);
1492 unsigned long get_wchan(struct task_struct *p)
1494 unsigned long ip, sp;
1495 int count = 0;
1497 if (!p || p == current || p->state == TASK_RUNNING)
1498 return 0;
1500 sp = p->thread.ksp;
1501 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1502 return 0;
1504 do {
1505 sp = *(unsigned long *)sp;
1506 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1507 return 0;
1508 if (count > 0) {
1509 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1510 if (!in_sched_functions(ip))
1511 return ip;
1513 } while (count++ < 16);
1514 return 0;
1517 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1519 void show_stack(struct task_struct *tsk, unsigned long *stack)
1521 unsigned long sp, ip, lr, newsp;
1522 int count = 0;
1523 int firstframe = 1;
1524 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1525 int curr_frame = current->curr_ret_stack;
1526 extern void return_to_handler(void);
1527 unsigned long rth = (unsigned long)return_to_handler;
1528 unsigned long mrth = -1;
1529 #ifdef CONFIG_PPC64
1530 extern void mod_return_to_handler(void);
1531 rth = *(unsigned long *)rth;
1532 mrth = (unsigned long)mod_return_to_handler;
1533 mrth = *(unsigned long *)mrth;
1534 #endif
1535 #endif
1537 sp = (unsigned long) stack;
1538 if (tsk == NULL)
1539 tsk = current;
1540 if (sp == 0) {
1541 if (tsk == current)
1542 asm("mr %0,1" : "=r" (sp));
1543 else
1544 sp = tsk->thread.ksp;
1547 lr = 0;
1548 printk("Call Trace:\n");
1549 do {
1550 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1551 return;
1553 stack = (unsigned long *) sp;
1554 newsp = stack[0];
1555 ip = stack[STACK_FRAME_LR_SAVE];
1556 if (!firstframe || ip != lr) {
1557 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1558 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1559 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1560 printk(" (%pS)",
1561 (void *)current->ret_stack[curr_frame].ret);
1562 curr_frame--;
1564 #endif
1565 if (firstframe)
1566 printk(" (unreliable)");
1567 printk("\n");
1569 firstframe = 0;
1572 * See if this is an exception frame.
1573 * We look for the "regshere" marker in the current frame.
1575 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1576 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1577 struct pt_regs *regs = (struct pt_regs *)
1578 (sp + STACK_FRAME_OVERHEAD);
1579 lr = regs->link;
1580 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1581 regs->trap, (void *)regs->nip, (void *)lr);
1582 firstframe = 1;
1585 sp = newsp;
1586 } while (count++ < kstack_depth_to_print);
1589 #ifdef CONFIG_PPC64
1590 /* Called with hard IRQs off */
1591 void notrace __ppc64_runlatch_on(void)
1593 struct thread_info *ti = current_thread_info();
1594 unsigned long ctrl;
1596 ctrl = mfspr(SPRN_CTRLF);
1597 ctrl |= CTRL_RUNLATCH;
1598 mtspr(SPRN_CTRLT, ctrl);
1600 ti->local_flags |= _TLF_RUNLATCH;
1603 /* Called with hard IRQs off */
1604 void notrace __ppc64_runlatch_off(void)
1606 struct thread_info *ti = current_thread_info();
1607 unsigned long ctrl;
1609 ti->local_flags &= ~_TLF_RUNLATCH;
1611 ctrl = mfspr(SPRN_CTRLF);
1612 ctrl &= ~CTRL_RUNLATCH;
1613 mtspr(SPRN_CTRLT, ctrl);
1615 #endif /* CONFIG_PPC64 */
1617 unsigned long arch_align_stack(unsigned long sp)
1619 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1620 sp -= get_random_int() & ~PAGE_MASK;
1621 return sp & ~0xf;
1624 static inline unsigned long brk_rnd(void)
1626 unsigned long rnd = 0;
1628 /* 8MB for 32bit, 1GB for 64bit */
1629 if (is_32bit_task())
1630 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1631 else
1632 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1634 return rnd << PAGE_SHIFT;
1637 unsigned long arch_randomize_brk(struct mm_struct *mm)
1639 unsigned long base = mm->brk;
1640 unsigned long ret;
1642 #ifdef CONFIG_PPC_STD_MMU_64
1644 * If we are using 1TB segments and we are allowed to randomise
1645 * the heap, we can put it above 1TB so it is backed by a 1TB
1646 * segment. Otherwise the heap will be in the bottom 1TB
1647 * which always uses 256MB segments and this may result in a
1648 * performance penalty.
1650 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1651 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1652 #endif
1654 ret = PAGE_ALIGN(base + brk_rnd());
1656 if (ret < mm->brk)
1657 return mm->brk;
1659 return ret;
1662 unsigned long randomize_et_dyn(unsigned long base)
1664 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1666 if (ret < base)
1667 return base;
1669 return ret;