2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events
{
36 struct perf_event
*event
[MAX_HWEVENTS
];
37 u64 events
[MAX_HWEVENTS
];
38 unsigned int flags
[MAX_HWEVENTS
];
39 unsigned long mmcr
[3];
40 struct perf_event
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
41 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
42 u64 alternatives
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
43 unsigned long amasks
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
44 unsigned long avalues
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
46 unsigned int group_flag
;
50 u64 bhrb_filter
; /* BHRB HW branch filter */
53 struct perf_branch_stack bhrb_stack
;
54 struct perf_branch_entry bhrb_entries
[BHRB_MAX_ENTRIES
];
57 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
59 struct power_pmu
*ppmu
;
62 * Normally, to ignore kernel events we set the FCS (freeze counters
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
68 static unsigned int freeze_events_kernel
= MMCR0_FCS
;
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
77 #define MMCR0_PMCjCE MMCR0_PMCnCE
83 #define MMCR0_PMCC_U6 0
85 #define SPRN_MMCRA SPRN_MMCR2
86 #define MMCRA_SAMPLE_ENABLE 0
88 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
92 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
) { }
93 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
97 static inline void perf_read_regs(struct pt_regs
*regs
)
101 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
106 static inline int siar_valid(struct pt_regs
*regs
)
111 static bool is_ebb_event(struct perf_event
*event
) { return false; }
112 static int ebb_event_check(struct perf_event
*event
) { return 0; }
113 static void ebb_event_add(struct perf_event
*event
) { }
114 static void ebb_switch_out(unsigned long mmcr0
) { }
115 static unsigned long ebb_switch_in(bool ebb
, unsigned long mmcr0
)
120 static inline void power_pmu_bhrb_enable(struct perf_event
*event
) {}
121 static inline void power_pmu_bhrb_disable(struct perf_event
*event
) {}
122 void power_pmu_flush_branch_stack(void) {}
123 static inline void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
) {}
124 static void pmao_restore_workaround(bool ebb
) { }
125 #endif /* CONFIG_PPC32 */
127 static bool regs_use_siar(struct pt_regs
*regs
)
129 return !!regs
->result
;
133 * Things that are specific to 64-bit implementations.
137 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
139 unsigned long mmcra
= regs
->dsisr
;
141 if ((ppmu
->flags
& PPMU_HAS_SSLOT
) && (mmcra
& MMCRA_SAMPLE_ENABLE
)) {
142 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
144 return 4 * (slot
- 1);
151 * The user wants a data address recorded.
152 * If we're not doing instruction sampling, give them the SDAR
153 * (sampled data address). If we are doing instruction sampling, then
154 * only give them the SDAR if it corresponds to the instruction
155 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
156 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
158 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
)
160 unsigned long mmcra
= regs
->dsisr
;
163 if (ppmu
->flags
& PPMU_HAS_SIER
)
164 sdar_valid
= regs
->dar
& SIER_SDAR_VALID
;
166 unsigned long sdsync
;
168 if (ppmu
->flags
& PPMU_SIAR_VALID
)
169 sdsync
= POWER7P_MMCRA_SDAR_VALID
;
170 else if (ppmu
->flags
& PPMU_ALT_SIPR
)
171 sdsync
= POWER6_MMCRA_SDSYNC
;
173 sdsync
= MMCRA_SDSYNC
;
175 sdar_valid
= mmcra
& sdsync
;
178 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || sdar_valid
)
179 *addrp
= mfspr(SPRN_SDAR
);
182 static bool regs_sihv(struct pt_regs
*regs
)
184 unsigned long sihv
= MMCRA_SIHV
;
186 if (ppmu
->flags
& PPMU_HAS_SIER
)
187 return !!(regs
->dar
& SIER_SIHV
);
189 if (ppmu
->flags
& PPMU_ALT_SIPR
)
190 sihv
= POWER6_MMCRA_SIHV
;
192 return !!(regs
->dsisr
& sihv
);
195 static bool regs_sipr(struct pt_regs
*regs
)
197 unsigned long sipr
= MMCRA_SIPR
;
199 if (ppmu
->flags
& PPMU_HAS_SIER
)
200 return !!(regs
->dar
& SIER_SIPR
);
202 if (ppmu
->flags
& PPMU_ALT_SIPR
)
203 sipr
= POWER6_MMCRA_SIPR
;
205 return !!(regs
->dsisr
& sipr
);
208 static inline u32
perf_flags_from_msr(struct pt_regs
*regs
)
210 if (regs
->msr
& MSR_PR
)
211 return PERF_RECORD_MISC_USER
;
212 if ((regs
->msr
& MSR_HV
) && freeze_events_kernel
!= MMCR0_FCHV
)
213 return PERF_RECORD_MISC_HYPERVISOR
;
214 return PERF_RECORD_MISC_KERNEL
;
217 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
219 bool use_siar
= regs_use_siar(regs
);
222 return perf_flags_from_msr(regs
);
225 * If we don't have flags in MMCRA, rather than using
226 * the MSR, we intuit the flags from the address in
227 * SIAR which should give slightly more reliable
230 if (ppmu
->flags
& PPMU_NO_SIPR
) {
231 unsigned long siar
= mfspr(SPRN_SIAR
);
232 if (siar
>= PAGE_OFFSET
)
233 return PERF_RECORD_MISC_KERNEL
;
234 return PERF_RECORD_MISC_USER
;
237 /* PR has priority over HV, so order below is important */
239 return PERF_RECORD_MISC_USER
;
241 if (regs_sihv(regs
) && (freeze_events_kernel
!= MMCR0_FCHV
))
242 return PERF_RECORD_MISC_HYPERVISOR
;
244 return PERF_RECORD_MISC_KERNEL
;
248 * Overload regs->dsisr to store MMCRA so we only need to read it once
250 * Overload regs->dar to store SIER if we have it.
251 * Overload regs->result to specify whether we should use the MSR (result
252 * is zero) or the SIAR (result is non zero).
254 static inline void perf_read_regs(struct pt_regs
*regs
)
256 unsigned long mmcra
= mfspr(SPRN_MMCRA
);
257 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
262 if (ppmu
->flags
& PPMU_HAS_SIER
)
263 regs
->dar
= mfspr(SPRN_SIER
);
266 * If this isn't a PMU exception (eg a software event) the SIAR is
267 * not valid. Use pt_regs.
269 * If it is a marked event use the SIAR.
271 * If the PMU doesn't update the SIAR for non marked events use
274 * If the PMU has HV/PR flags then check to see if they
275 * place the exception in userspace. If so, use pt_regs. In
276 * continuous sampling mode the SIAR and the PMU exception are
277 * not synchronised, so they may be many instructions apart.
278 * This can result in confusing backtraces. We still want
279 * hypervisor samples as well as samples in the kernel with
280 * interrupts off hence the userspace check.
282 if (TRAP(regs
) != 0xf00)
286 else if ((ppmu
->flags
& PPMU_NO_CONT_SAMPLING
))
288 else if (!(ppmu
->flags
& PPMU_NO_SIPR
) && regs_sipr(regs
))
293 regs
->result
= use_siar
;
297 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
300 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
306 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
307 * must be sampled only if the SIAR-valid bit is set.
309 * For unmarked instructions and for processors that don't have the SIAR-Valid
310 * bit, assume that SIAR is valid.
312 static inline int siar_valid(struct pt_regs
*regs
)
314 unsigned long mmcra
= regs
->dsisr
;
315 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
318 if (ppmu
->flags
& PPMU_HAS_SIER
)
319 return regs
->dar
& SIER_SIAR_VALID
;
321 if (ppmu
->flags
& PPMU_SIAR_VALID
)
322 return mmcra
& POWER7P_MMCRA_SIAR_VALID
;
329 /* Reset all possible BHRB entries */
330 static void power_pmu_bhrb_reset(void)
332 asm volatile(PPC_CLRBHRB
);
335 static void power_pmu_bhrb_enable(struct perf_event
*event
)
337 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
342 /* Clear BHRB if we changed task context to avoid data leaks */
343 if (event
->ctx
->task
&& cpuhw
->bhrb_context
!= event
->ctx
) {
344 power_pmu_bhrb_reset();
345 cpuhw
->bhrb_context
= event
->ctx
;
350 static void power_pmu_bhrb_disable(struct perf_event
*event
)
352 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
358 WARN_ON_ONCE(cpuhw
->bhrb_users
< 0);
360 if (!cpuhw
->disabled
&& !cpuhw
->bhrb_users
) {
361 /* BHRB cannot be turned off when other
362 * events are active on the PMU.
365 /* avoid stale pointer */
366 cpuhw
->bhrb_context
= NULL
;
370 /* Called from ctxsw to prevent one process's branch entries to
371 * mingle with the other process's entries during context switch.
373 void power_pmu_flush_branch_stack(void)
376 power_pmu_bhrb_reset();
378 /* Calculate the to address for a branch */
379 static __u64
power_pmu_bhrb_to(u64 addr
)
385 if (is_kernel_addr(addr
))
386 return branch_target((unsigned int *)addr
);
388 /* Userspace: need copy instruction here then translate it */
390 ret
= __get_user_inatomic(instr
, (unsigned int __user
*)addr
);
397 target
= branch_target(&instr
);
398 if ((!target
) || (instr
& BRANCH_ABSOLUTE
))
401 /* Translate relative branch target from kernel to user address */
402 return target
- (unsigned long)&instr
+ addr
;
405 /* Processing BHRB entries */
406 void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
)
410 int r_index
, u_index
, pred
;
414 while (r_index
< ppmu
->bhrb_nr
) {
415 /* Assembly read function */
416 val
= read_bhrb(r_index
++);
418 /* Terminal marker: End of valid BHRB entries */
421 addr
= val
& BHRB_EA
;
422 pred
= val
& BHRB_PREDICTION
;
428 /* Branches are read most recent first (ie. mfbhrb 0 is
429 * the most recent branch).
430 * There are two types of valid entries:
431 * 1) a target entry which is the to address of a
432 * computed goto like a blr,bctr,btar. The next
433 * entry read from the bhrb will be branch
434 * corresponding to this target (ie. the actual
435 * blr/bctr/btar instruction).
436 * 2) a from address which is an actual branch. If a
437 * target entry proceeds this, then this is the
438 * matching branch for that target. If this is not
439 * following a target entry, then this is a branch
440 * where the target is given as an immediate field
441 * in the instruction (ie. an i or b form branch).
442 * In this case we need to read the instruction from
443 * memory to determine the target/to address.
446 if (val
& BHRB_TARGET
) {
447 /* Target branches use two entries
448 * (ie. computed gotos/XL form)
450 cpuhw
->bhrb_entries
[u_index
].to
= addr
;
451 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
452 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
454 /* Get from address in next entry */
455 val
= read_bhrb(r_index
++);
456 addr
= val
& BHRB_EA
;
457 if (val
& BHRB_TARGET
) {
458 /* Shouldn't have two targets in a
459 row.. Reset index and try again */
463 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
465 /* Branches to immediate field
467 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
468 cpuhw
->bhrb_entries
[u_index
].to
=
469 power_pmu_bhrb_to(addr
);
470 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
471 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
477 cpuhw
->bhrb_stack
.nr
= u_index
;
481 static bool is_ebb_event(struct perf_event
*event
)
484 * This could be a per-PMU callback, but we'd rather avoid the cost. We
485 * check that the PMU supports EBB, meaning those that don't can still
486 * use bit 63 of the event code for something else if they wish.
488 return (ppmu
->flags
& PPMU_EBB
) &&
489 ((event
->attr
.config
>> PERF_EVENT_CONFIG_EBB_SHIFT
) & 1);
492 static int ebb_event_check(struct perf_event
*event
)
494 struct perf_event
*leader
= event
->group_leader
;
496 /* Event and group leader must agree on EBB */
497 if (is_ebb_event(leader
) != is_ebb_event(event
))
500 if (is_ebb_event(event
)) {
501 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
504 if (!leader
->attr
.pinned
|| !leader
->attr
.exclusive
)
507 if (event
->attr
.freq
||
508 event
->attr
.inherit
||
509 event
->attr
.sample_type
||
510 event
->attr
.sample_period
||
511 event
->attr
.enable_on_exec
)
518 static void ebb_event_add(struct perf_event
*event
)
520 if (!is_ebb_event(event
) || current
->thread
.used_ebb
)
524 * IFF this is the first time we've added an EBB event, set
525 * PMXE in the user MMCR0 so we can detect when it's cleared by
526 * userspace. We need this so that we can context switch while
527 * userspace is in the EBB handler (where PMXE is 0).
529 current
->thread
.used_ebb
= 1;
530 current
->thread
.mmcr0
|= MMCR0_PMXE
;
533 static void ebb_switch_out(unsigned long mmcr0
)
535 if (!(mmcr0
& MMCR0_EBE
))
538 current
->thread
.siar
= mfspr(SPRN_SIAR
);
539 current
->thread
.sier
= mfspr(SPRN_SIER
);
540 current
->thread
.sdar
= mfspr(SPRN_SDAR
);
541 current
->thread
.mmcr0
= mmcr0
& MMCR0_USER_MASK
;
542 current
->thread
.mmcr2
= mfspr(SPRN_MMCR2
) & MMCR2_USER_MASK
;
545 static unsigned long ebb_switch_in(bool ebb
, unsigned long mmcr0
)
550 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
551 mmcr0
|= MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC_U6
;
554 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
555 * with pmao_restore_workaround() because we may add PMAO but we never
558 mmcr0
|= current
->thread
.mmcr0
;
561 * Be careful not to set PMXE if userspace had it cleared. This is also
562 * compatible with pmao_restore_workaround() because it has already
563 * cleared PMXE and we leave PMAO alone.
565 if (!(current
->thread
.mmcr0
& MMCR0_PMXE
))
566 mmcr0
&= ~MMCR0_PMXE
;
568 mtspr(SPRN_SIAR
, current
->thread
.siar
);
569 mtspr(SPRN_SIER
, current
->thread
.sier
);
570 mtspr(SPRN_SDAR
, current
->thread
.sdar
);
571 mtspr(SPRN_MMCR2
, current
->thread
.mmcr2
);
576 static void pmao_restore_workaround(bool ebb
)
580 if (!cpu_has_feature(CPU_FTR_PMAO_BUG
))
584 * On POWER8E there is a hardware defect which affects the PMU context
585 * switch logic, ie. power_pmu_disable/enable().
587 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
588 * by the hardware. Sometime later the actual PMU exception is
591 * If we context switch, or simply disable/enable, the PMU prior to the
592 * exception arriving, the exception will be lost when we clear PMAO.
594 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
595 * set, and this _should_ generate an exception. However because of the
596 * defect no exception is generated when we write PMAO, and we get
597 * stuck with no counters counting but no exception delivered.
599 * The workaround is to detect this case and tweak the hardware to
600 * create another pending PMU exception.
602 * We do that by setting up PMC6 (cycles) for an imminent overflow and
603 * enabling the PMU. That causes a new exception to be generated in the
604 * chip, but we don't take it yet because we have interrupts hard
605 * disabled. We then write back the PMU state as we want it to be seen
606 * by the exception handler. When we reenable interrupts the exception
607 * handler will be called and see the correct state.
609 * The logic is the same for EBB, except that the exception is gated by
610 * us having interrupts hard disabled as well as the fact that we are
611 * not in userspace. The exception is finally delivered when we return
615 /* Only if PMAO is set and PMAO_SYNC is clear */
616 if ((current
->thread
.mmcr0
& (MMCR0_PMAO
| MMCR0_PMAO_SYNC
)) != MMCR0_PMAO
)
619 /* If we're doing EBB, only if BESCR[GE] is set */
620 if (ebb
&& !(current
->thread
.bescr
& BESCR_GE
))
624 * We are already soft-disabled in power_pmu_enable(). We need to hard
625 * enable to actually prevent the PMU exception from firing.
630 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
631 * Using read/write_pmc() in a for loop adds 12 function calls and
632 * almost doubles our code size.
634 pmcs
[0] = mfspr(SPRN_PMC1
);
635 pmcs
[1] = mfspr(SPRN_PMC2
);
636 pmcs
[2] = mfspr(SPRN_PMC3
);
637 pmcs
[3] = mfspr(SPRN_PMC4
);
638 pmcs
[4] = mfspr(SPRN_PMC5
);
639 pmcs
[5] = mfspr(SPRN_PMC6
);
641 /* Ensure all freeze bits are unset */
642 mtspr(SPRN_MMCR2
, 0);
644 /* Set up PMC6 to overflow in one cycle */
645 mtspr(SPRN_PMC6
, 0x7FFFFFFE);
647 /* Enable exceptions and unfreeze PMC6 */
648 mtspr(SPRN_MMCR0
, MMCR0_PMXE
| MMCR0_PMCjCE
| MMCR0_PMAO
);
650 /* Now we need to refreeze and restore the PMCs */
651 mtspr(SPRN_MMCR0
, MMCR0_FC
| MMCR0_PMAO
);
653 mtspr(SPRN_PMC1
, pmcs
[0]);
654 mtspr(SPRN_PMC2
, pmcs
[1]);
655 mtspr(SPRN_PMC3
, pmcs
[2]);
656 mtspr(SPRN_PMC4
, pmcs
[3]);
657 mtspr(SPRN_PMC5
, pmcs
[4]);
658 mtspr(SPRN_PMC6
, pmcs
[5]);
660 #endif /* CONFIG_PPC64 */
662 static void perf_event_interrupt(struct pt_regs
*regs
);
665 * Read one performance monitor counter (PMC).
667 static unsigned long read_pmc(int idx
)
673 val
= mfspr(SPRN_PMC1
);
676 val
= mfspr(SPRN_PMC2
);
679 val
= mfspr(SPRN_PMC3
);
682 val
= mfspr(SPRN_PMC4
);
685 val
= mfspr(SPRN_PMC5
);
688 val
= mfspr(SPRN_PMC6
);
692 val
= mfspr(SPRN_PMC7
);
695 val
= mfspr(SPRN_PMC8
);
697 #endif /* CONFIG_PPC64 */
699 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
708 static void write_pmc(int idx
, unsigned long val
)
712 mtspr(SPRN_PMC1
, val
);
715 mtspr(SPRN_PMC2
, val
);
718 mtspr(SPRN_PMC3
, val
);
721 mtspr(SPRN_PMC4
, val
);
724 mtspr(SPRN_PMC5
, val
);
727 mtspr(SPRN_PMC6
, val
);
731 mtspr(SPRN_PMC7
, val
);
734 mtspr(SPRN_PMC8
, val
);
736 #endif /* CONFIG_PPC64 */
738 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
742 /* Called from sysrq_handle_showregs() */
743 void perf_event_print_debug(void)
745 unsigned long sdar
, sier
, flags
;
746 u32 pmcs
[MAX_HWEVENTS
];
749 if (!ppmu
->n_counter
)
752 local_irq_save(flags
);
754 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
755 smp_processor_id(), ppmu
->name
, ppmu
->n_counter
);
757 for (i
= 0; i
< ppmu
->n_counter
; i
++)
758 pmcs
[i
] = read_pmc(i
+ 1);
760 for (; i
< MAX_HWEVENTS
; i
++)
761 pmcs
[i
] = 0xdeadbeef;
763 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
764 pmcs
[0], pmcs
[1], pmcs
[2], pmcs
[3]);
766 if (ppmu
->n_counter
> 4)
767 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
768 pmcs
[4], pmcs
[5], pmcs
[6], pmcs
[7]);
770 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
771 mfspr(SPRN_MMCR0
), mfspr(SPRN_MMCR1
), mfspr(SPRN_MMCRA
));
775 sdar
= mfspr(SPRN_SDAR
);
777 if (ppmu
->flags
& PPMU_HAS_SIER
)
778 sier
= mfspr(SPRN_SIER
);
780 if (ppmu
->flags
& PPMU_EBB
) {
781 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
782 mfspr(SPRN_MMCR2
), mfspr(SPRN_EBBHR
));
783 pr_info("EBBRR: %016lx BESCR: %016lx\n",
784 mfspr(SPRN_EBBRR
), mfspr(SPRN_BESCR
));
787 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
788 mfspr(SPRN_SIAR
), sdar
, sier
);
790 local_irq_restore(flags
);
794 * Check if a set of events can all go on the PMU at once.
795 * If they can't, this will look at alternative codes for the events
796 * and see if any combination of alternative codes is feasible.
797 * The feasible set is returned in event_id[].
799 static int power_check_constraints(struct cpu_hw_events
*cpuhw
,
800 u64 event_id
[], unsigned int cflags
[],
803 unsigned long mask
, value
, nv
;
804 unsigned long smasks
[MAX_HWEVENTS
], svalues
[MAX_HWEVENTS
];
805 int n_alt
[MAX_HWEVENTS
], choice
[MAX_HWEVENTS
];
807 unsigned long addf
= ppmu
->add_fields
;
808 unsigned long tadd
= ppmu
->test_adder
;
810 if (n_ev
> ppmu
->n_counter
)
813 /* First see if the events will go on as-is */
814 for (i
= 0; i
< n_ev
; ++i
) {
815 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
816 && !ppmu
->limited_pmc_event(event_id
[i
])) {
817 ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
818 cpuhw
->alternatives
[i
]);
819 event_id
[i
] = cpuhw
->alternatives
[i
][0];
821 if (ppmu
->get_constraint(event_id
[i
], &cpuhw
->amasks
[i
][0],
822 &cpuhw
->avalues
[i
][0]))
826 for (i
= 0; i
< n_ev
; ++i
) {
827 nv
= (value
| cpuhw
->avalues
[i
][0]) +
828 (value
& cpuhw
->avalues
[i
][0] & addf
);
829 if ((((nv
+ tadd
) ^ value
) & mask
) != 0 ||
830 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][0]) &
831 cpuhw
->amasks
[i
][0]) != 0)
834 mask
|= cpuhw
->amasks
[i
][0];
837 return 0; /* all OK */
839 /* doesn't work, gather alternatives... */
840 if (!ppmu
->get_alternatives
)
842 for (i
= 0; i
< n_ev
; ++i
) {
844 n_alt
[i
] = ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
845 cpuhw
->alternatives
[i
]);
846 for (j
= 1; j
< n_alt
[i
]; ++j
)
847 ppmu
->get_constraint(cpuhw
->alternatives
[i
][j
],
848 &cpuhw
->amasks
[i
][j
],
849 &cpuhw
->avalues
[i
][j
]);
852 /* enumerate all possibilities and see if any will work */
855 value
= mask
= nv
= 0;
858 /* we're backtracking, restore context */
864 * See if any alternative k for event_id i,
865 * where k > j, will satisfy the constraints.
867 while (++j
< n_alt
[i
]) {
868 nv
= (value
| cpuhw
->avalues
[i
][j
]) +
869 (value
& cpuhw
->avalues
[i
][j
] & addf
);
870 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
871 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][j
])
872 & cpuhw
->amasks
[i
][j
]) == 0)
877 * No feasible alternative, backtrack
878 * to event_id i-1 and continue enumerating its
879 * alternatives from where we got up to.
885 * Found a feasible alternative for event_id i,
886 * remember where we got up to with this event_id,
887 * go on to the next event_id, and start with
888 * the first alternative for it.
894 mask
|= cpuhw
->amasks
[i
][j
];
900 /* OK, we have a feasible combination, tell the caller the solution */
901 for (i
= 0; i
< n_ev
; ++i
)
902 event_id
[i
] = cpuhw
->alternatives
[i
][choice
[i
]];
907 * Check if newly-added events have consistent settings for
908 * exclude_{user,kernel,hv} with each other and any previously
911 static int check_excludes(struct perf_event
**ctrs
, unsigned int cflags
[],
912 int n_prev
, int n_new
)
914 int eu
= 0, ek
= 0, eh
= 0;
916 struct perf_event
*event
;
923 for (i
= 0; i
< n
; ++i
) {
924 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
925 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
930 eu
= event
->attr
.exclude_user
;
931 ek
= event
->attr
.exclude_kernel
;
932 eh
= event
->attr
.exclude_hv
;
934 } else if (event
->attr
.exclude_user
!= eu
||
935 event
->attr
.exclude_kernel
!= ek
||
936 event
->attr
.exclude_hv
!= eh
) {
942 for (i
= 0; i
< n
; ++i
)
943 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
944 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
949 static u64
check_and_compute_delta(u64 prev
, u64 val
)
951 u64 delta
= (val
- prev
) & 0xfffffffful
;
954 * POWER7 can roll back counter values, if the new value is smaller
955 * than the previous value it will cause the delta and the counter to
956 * have bogus values unless we rolled a counter over. If a coutner is
957 * rolled back, it will be smaller, but within 256, which is the maximum
958 * number of events to rollback at once. If we dectect a rollback
959 * return 0. This can lead to a small lack of precision in the
962 if (prev
> val
&& (prev
- val
) < 256)
968 static void power_pmu_read(struct perf_event
*event
)
970 s64 val
, delta
, prev
;
972 if (event
->hw
.state
& PERF_HES_STOPPED
)
978 if (is_ebb_event(event
)) {
979 val
= read_pmc(event
->hw
.idx
);
980 local64_set(&event
->hw
.prev_count
, val
);
985 * Performance monitor interrupts come even when interrupts
986 * are soft-disabled, as long as interrupts are hard-enabled.
987 * Therefore we treat them like NMIs.
990 prev
= local64_read(&event
->hw
.prev_count
);
992 val
= read_pmc(event
->hw
.idx
);
993 delta
= check_and_compute_delta(prev
, val
);
996 } while (local64_cmpxchg(&event
->hw
.prev_count
, prev
, val
) != prev
);
998 local64_add(delta
, &event
->count
);
999 local64_sub(delta
, &event
->hw
.period_left
);
1003 * On some machines, PMC5 and PMC6 can't be written, don't respect
1004 * the freeze conditions, and don't generate interrupts. This tells
1005 * us if `event' is using such a PMC.
1007 static int is_limited_pmc(int pmcnum
)
1009 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
1010 && (pmcnum
== 5 || pmcnum
== 6);
1013 static void freeze_limited_counters(struct cpu_hw_events
*cpuhw
,
1014 unsigned long pmc5
, unsigned long pmc6
)
1016 struct perf_event
*event
;
1017 u64 val
, prev
, delta
;
1020 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1021 event
= cpuhw
->limited_counter
[i
];
1024 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1025 prev
= local64_read(&event
->hw
.prev_count
);
1027 delta
= check_and_compute_delta(prev
, val
);
1029 local64_add(delta
, &event
->count
);
1033 static void thaw_limited_counters(struct cpu_hw_events
*cpuhw
,
1034 unsigned long pmc5
, unsigned long pmc6
)
1036 struct perf_event
*event
;
1040 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1041 event
= cpuhw
->limited_counter
[i
];
1042 event
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
1043 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1044 prev
= local64_read(&event
->hw
.prev_count
);
1045 if (check_and_compute_delta(prev
, val
))
1046 local64_set(&event
->hw
.prev_count
, val
);
1047 perf_event_update_userpage(event
);
1052 * Since limited events don't respect the freeze conditions, we
1053 * have to read them immediately after freezing or unfreezing the
1054 * other events. We try to keep the values from the limited
1055 * events as consistent as possible by keeping the delay (in
1056 * cycles and instructions) between freezing/unfreezing and reading
1057 * the limited events as small and consistent as possible.
1058 * Therefore, if any limited events are in use, we read them
1059 * both, and always in the same order, to minimize variability,
1060 * and do it inside the same asm that writes MMCR0.
1062 static void write_mmcr0(struct cpu_hw_events
*cpuhw
, unsigned long mmcr0
)
1064 unsigned long pmc5
, pmc6
;
1066 if (!cpuhw
->n_limited
) {
1067 mtspr(SPRN_MMCR0
, mmcr0
);
1072 * Write MMCR0, then read PMC5 and PMC6 immediately.
1073 * To ensure we don't get a performance monitor interrupt
1074 * between writing MMCR0 and freezing/thawing the limited
1075 * events, we first write MMCR0 with the event overflow
1076 * interrupt enable bits turned off.
1078 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1079 : "=&r" (pmc5
), "=&r" (pmc6
)
1080 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
1082 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
1084 if (mmcr0
& MMCR0_FC
)
1085 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
1087 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
1090 * Write the full MMCR0 including the event overflow interrupt
1091 * enable bits, if necessary.
1093 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1094 mtspr(SPRN_MMCR0
, mmcr0
);
1098 * Disable all events to prevent PMU interrupts and to allow
1099 * events to be added or removed.
1101 static void power_pmu_disable(struct pmu
*pmu
)
1103 struct cpu_hw_events
*cpuhw
;
1104 unsigned long flags
, mmcr0
, val
;
1108 local_irq_save(flags
);
1109 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1111 if (!cpuhw
->disabled
) {
1113 * Check if we ever enabled the PMU on this cpu.
1115 if (!cpuhw
->pmcs_enabled
) {
1117 cpuhw
->pmcs_enabled
= 1;
1121 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1123 val
= mmcr0
= mfspr(SPRN_MMCR0
);
1125 val
&= ~(MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC
| MMCR0_PMAO
|
1129 * The barrier is to make sure the mtspr has been
1130 * executed and the PMU has frozen the events etc.
1133 write_mmcr0(cpuhw
, val
);
1137 * Disable instruction sampling if it was enabled
1139 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1141 cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1145 cpuhw
->disabled
= 1;
1148 ebb_switch_out(mmcr0
);
1151 local_irq_restore(flags
);
1155 * Re-enable all events if disable == 0.
1156 * If we were previously disabled and events were added, then
1157 * put the new config on the PMU.
1159 static void power_pmu_enable(struct pmu
*pmu
)
1161 struct perf_event
*event
;
1162 struct cpu_hw_events
*cpuhw
;
1163 unsigned long flags
;
1165 unsigned long val
, mmcr0
;
1167 unsigned int hwc_index
[MAX_HWEVENTS
];
1174 local_irq_save(flags
);
1176 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1177 if (!cpuhw
->disabled
)
1180 if (cpuhw
->n_events
== 0) {
1181 ppc_set_pmu_inuse(0);
1185 cpuhw
->disabled
= 0;
1188 * EBB requires an exclusive group and all events must have the EBB
1189 * flag set, or not set, so we can just check a single event. Also we
1190 * know we have at least one event.
1192 ebb
= is_ebb_event(cpuhw
->event
[0]);
1195 * If we didn't change anything, or only removed events,
1196 * no need to recalculate MMCR* settings and reset the PMCs.
1197 * Just reenable the PMU with the current MMCR* settings
1198 * (possibly updated for removal of events).
1200 if (!cpuhw
->n_added
) {
1201 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1202 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1207 * Compute MMCR* values for the new set of events
1209 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_events
, hwc_index
,
1211 /* shouldn't ever get here */
1212 printk(KERN_ERR
"oops compute_mmcr failed\n");
1217 * Add in MMCR0 freeze bits corresponding to the
1218 * attr.exclude_* bits for the first event.
1219 * We have already checked that all events have the
1220 * same values for these bits as the first event.
1222 event
= cpuhw
->event
[0];
1223 if (event
->attr
.exclude_user
)
1224 cpuhw
->mmcr
[0] |= MMCR0_FCP
;
1225 if (event
->attr
.exclude_kernel
)
1226 cpuhw
->mmcr
[0] |= freeze_events_kernel
;
1227 if (event
->attr
.exclude_hv
)
1228 cpuhw
->mmcr
[0] |= MMCR0_FCHV
;
1231 * Write the new configuration to MMCR* with the freeze
1232 * bit set and set the hardware events to their initial values.
1233 * Then unfreeze the events.
1235 ppc_set_pmu_inuse(1);
1236 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1237 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1238 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
[0] & ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1242 * Read off any pre-existing events that need to move
1245 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1246 event
= cpuhw
->event
[i
];
1247 if (event
->hw
.idx
&& event
->hw
.idx
!= hwc_index
[i
] + 1) {
1248 power_pmu_read(event
);
1249 write_pmc(event
->hw
.idx
, 0);
1255 * Initialize the PMCs for all the new and moved events.
1257 cpuhw
->n_limited
= n_lim
= 0;
1258 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1259 event
= cpuhw
->event
[i
];
1262 idx
= hwc_index
[i
] + 1;
1263 if (is_limited_pmc(idx
)) {
1264 cpuhw
->limited_counter
[n_lim
] = event
;
1265 cpuhw
->limited_hwidx
[n_lim
] = idx
;
1271 val
= local64_read(&event
->hw
.prev_count
);
1274 if (event
->hw
.sample_period
) {
1275 left
= local64_read(&event
->hw
.period_left
);
1276 if (left
< 0x80000000L
)
1277 val
= 0x80000000L
- left
;
1279 local64_set(&event
->hw
.prev_count
, val
);
1282 event
->hw
.idx
= idx
;
1283 if (event
->hw
.state
& PERF_HES_STOPPED
)
1285 write_pmc(idx
, val
);
1287 perf_event_update_userpage(event
);
1289 cpuhw
->n_limited
= n_lim
;
1290 cpuhw
->mmcr
[0] |= MMCR0_PMXE
| MMCR0_FCECE
;
1293 pmao_restore_workaround(ebb
);
1295 mmcr0
= ebb_switch_in(ebb
, cpuhw
->mmcr
[0]);
1298 if (cpuhw
->bhrb_users
)
1299 ppmu
->config_bhrb(cpuhw
->bhrb_filter
);
1301 write_mmcr0(cpuhw
, mmcr0
);
1304 * Enable instruction sampling if necessary
1306 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1308 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2]);
1313 local_irq_restore(flags
);
1316 static int collect_events(struct perf_event
*group
, int max_count
,
1317 struct perf_event
*ctrs
[], u64
*events
,
1318 unsigned int *flags
)
1321 struct perf_event
*event
;
1323 if (!is_software_event(group
)) {
1327 flags
[n
] = group
->hw
.event_base
;
1328 events
[n
++] = group
->hw
.config
;
1330 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1331 if (!is_software_event(event
) &&
1332 event
->state
!= PERF_EVENT_STATE_OFF
) {
1336 flags
[n
] = event
->hw
.event_base
;
1337 events
[n
++] = event
->hw
.config
;
1344 * Add a event to the PMU.
1345 * If all events are not already frozen, then we disable and
1346 * re-enable the PMU in order to get hw_perf_enable to do the
1347 * actual work of reconfiguring the PMU.
1349 static int power_pmu_add(struct perf_event
*event
, int ef_flags
)
1351 struct cpu_hw_events
*cpuhw
;
1352 unsigned long flags
;
1356 local_irq_save(flags
);
1357 perf_pmu_disable(event
->pmu
);
1360 * Add the event to the list (if there is room)
1361 * and check whether the total set is still feasible.
1363 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1364 n0
= cpuhw
->n_events
;
1365 if (n0
>= ppmu
->n_counter
)
1367 cpuhw
->event
[n0
] = event
;
1368 cpuhw
->events
[n0
] = event
->hw
.config
;
1369 cpuhw
->flags
[n0
] = event
->hw
.event_base
;
1372 * This event may have been disabled/stopped in record_and_restart()
1373 * because we exceeded the ->event_limit. If re-starting the event,
1374 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1375 * notification is re-enabled.
1377 if (!(ef_flags
& PERF_EF_START
))
1378 event
->hw
.state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1380 event
->hw
.state
= 0;
1383 * If group events scheduling transaction was started,
1384 * skip the schedulability test here, it will be performed
1385 * at commit time(->commit_txn) as a whole
1387 if (cpuhw
->group_flag
& PERF_EVENT_TXN
)
1390 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, n0
, 1))
1392 if (power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
1394 event
->hw
.config
= cpuhw
->events
[n0
];
1397 ebb_event_add(event
);
1404 if (has_branch_stack(event
)) {
1405 power_pmu_bhrb_enable(event
);
1406 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1407 event
->attr
.branch_sample_type
);
1410 perf_pmu_enable(event
->pmu
);
1411 local_irq_restore(flags
);
1416 * Remove a event from the PMU.
1418 static void power_pmu_del(struct perf_event
*event
, int ef_flags
)
1420 struct cpu_hw_events
*cpuhw
;
1422 unsigned long flags
;
1424 local_irq_save(flags
);
1425 perf_pmu_disable(event
->pmu
);
1427 power_pmu_read(event
);
1429 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1430 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1431 if (event
== cpuhw
->event
[i
]) {
1432 while (++i
< cpuhw
->n_events
) {
1433 cpuhw
->event
[i
-1] = cpuhw
->event
[i
];
1434 cpuhw
->events
[i
-1] = cpuhw
->events
[i
];
1435 cpuhw
->flags
[i
-1] = cpuhw
->flags
[i
];
1438 ppmu
->disable_pmc(event
->hw
.idx
- 1, cpuhw
->mmcr
);
1439 if (event
->hw
.idx
) {
1440 write_pmc(event
->hw
.idx
, 0);
1443 perf_event_update_userpage(event
);
1447 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
1448 if (event
== cpuhw
->limited_counter
[i
])
1450 if (i
< cpuhw
->n_limited
) {
1451 while (++i
< cpuhw
->n_limited
) {
1452 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
1453 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
1457 if (cpuhw
->n_events
== 0) {
1458 /* disable exceptions if no events are running */
1459 cpuhw
->mmcr
[0] &= ~(MMCR0_PMXE
| MMCR0_FCECE
);
1462 if (has_branch_stack(event
))
1463 power_pmu_bhrb_disable(event
);
1465 perf_pmu_enable(event
->pmu
);
1466 local_irq_restore(flags
);
1470 * POWER-PMU does not support disabling individual counters, hence
1471 * program their cycle counter to their max value and ignore the interrupts.
1474 static void power_pmu_start(struct perf_event
*event
, int ef_flags
)
1476 unsigned long flags
;
1480 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1483 if (!(event
->hw
.state
& PERF_HES_STOPPED
))
1486 if (ef_flags
& PERF_EF_RELOAD
)
1487 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1489 local_irq_save(flags
);
1490 perf_pmu_disable(event
->pmu
);
1492 event
->hw
.state
= 0;
1493 left
= local64_read(&event
->hw
.period_left
);
1496 if (left
< 0x80000000L
)
1497 val
= 0x80000000L
- left
;
1499 write_pmc(event
->hw
.idx
, val
);
1501 perf_event_update_userpage(event
);
1502 perf_pmu_enable(event
->pmu
);
1503 local_irq_restore(flags
);
1506 static void power_pmu_stop(struct perf_event
*event
, int ef_flags
)
1508 unsigned long flags
;
1510 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1513 if (event
->hw
.state
& PERF_HES_STOPPED
)
1516 local_irq_save(flags
);
1517 perf_pmu_disable(event
->pmu
);
1519 power_pmu_read(event
);
1520 event
->hw
.state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1521 write_pmc(event
->hw
.idx
, 0);
1523 perf_event_update_userpage(event
);
1524 perf_pmu_enable(event
->pmu
);
1525 local_irq_restore(flags
);
1529 * Start group events scheduling transaction
1530 * Set the flag to make pmu::enable() not perform the
1531 * schedulability test, it will be performed at commit time
1533 void power_pmu_start_txn(struct pmu
*pmu
)
1535 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1537 perf_pmu_disable(pmu
);
1538 cpuhw
->group_flag
|= PERF_EVENT_TXN
;
1539 cpuhw
->n_txn_start
= cpuhw
->n_events
;
1543 * Stop group events scheduling transaction
1544 * Clear the flag and pmu::enable() will perform the
1545 * schedulability test.
1547 void power_pmu_cancel_txn(struct pmu
*pmu
)
1549 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1551 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1552 perf_pmu_enable(pmu
);
1556 * Commit group events scheduling transaction
1557 * Perform the group schedulability test as a whole
1558 * Return 0 if success
1560 int power_pmu_commit_txn(struct pmu
*pmu
)
1562 struct cpu_hw_events
*cpuhw
;
1567 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1568 n
= cpuhw
->n_events
;
1569 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, 0, n
))
1571 i
= power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n
);
1575 for (i
= cpuhw
->n_txn_start
; i
< n
; ++i
)
1576 cpuhw
->event
[i
]->hw
.config
= cpuhw
->events
[i
];
1578 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1579 perf_pmu_enable(pmu
);
1584 * Return 1 if we might be able to put event on a limited PMC,
1586 * A event can only go on a limited PMC if it counts something
1587 * that a limited PMC can count, doesn't require interrupts, and
1588 * doesn't exclude any processor mode.
1590 static int can_go_on_limited_pmc(struct perf_event
*event
, u64 ev
,
1594 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1596 if (event
->attr
.exclude_user
1597 || event
->attr
.exclude_kernel
1598 || event
->attr
.exclude_hv
1599 || event
->attr
.sample_period
)
1602 if (ppmu
->limited_pmc_event(ev
))
1606 * The requested event_id isn't on a limited PMC already;
1607 * see if any alternative code goes on a limited PMC.
1609 if (!ppmu
->get_alternatives
)
1612 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
1613 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1619 * Find an alternative event_id that goes on a normal PMC, if possible,
1620 * and return the event_id code, or 0 if there is no such alternative.
1621 * (Note: event_id code 0 is "don't count" on all machines.)
1623 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
1625 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1628 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
1629 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1635 /* Number of perf_events counting hardware events */
1636 static atomic_t num_events
;
1637 /* Used to avoid races in calling reserve/release_pmc_hardware */
1638 static DEFINE_MUTEX(pmc_reserve_mutex
);
1641 * Release the PMU if this is the last perf_event.
1643 static void hw_perf_event_destroy(struct perf_event
*event
)
1645 if (!atomic_add_unless(&num_events
, -1, 1)) {
1646 mutex_lock(&pmc_reserve_mutex
);
1647 if (atomic_dec_return(&num_events
) == 0)
1648 release_pmc_hardware();
1649 mutex_unlock(&pmc_reserve_mutex
);
1654 * Translate a generic cache event_id config to a raw event_id code.
1656 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
1658 unsigned long type
, op
, result
;
1661 if (!ppmu
->cache_events
)
1665 type
= config
& 0xff;
1666 op
= (config
>> 8) & 0xff;
1667 result
= (config
>> 16) & 0xff;
1669 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
1670 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
1671 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1674 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1683 static int power_pmu_event_init(struct perf_event
*event
)
1686 unsigned long flags
;
1687 struct perf_event
*ctrs
[MAX_HWEVENTS
];
1688 u64 events
[MAX_HWEVENTS
];
1689 unsigned int cflags
[MAX_HWEVENTS
];
1692 struct cpu_hw_events
*cpuhw
;
1697 if (has_branch_stack(event
)) {
1698 /* PMU has BHRB enabled */
1699 if (!(ppmu
->flags
& PPMU_BHRB
))
1703 switch (event
->attr
.type
) {
1704 case PERF_TYPE_HARDWARE
:
1705 ev
= event
->attr
.config
;
1706 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1708 ev
= ppmu
->generic_events
[ev
];
1710 case PERF_TYPE_HW_CACHE
:
1711 err
= hw_perf_cache_event(event
->attr
.config
, &ev
);
1716 ev
= event
->attr
.config
;
1722 event
->hw
.config_base
= ev
;
1726 * If we are not running on a hypervisor, force the
1727 * exclude_hv bit to 0 so that we don't care what
1728 * the user set it to.
1730 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1731 event
->attr
.exclude_hv
= 0;
1734 * If this is a per-task event, then we can use
1735 * PM_RUN_* events interchangeably with their non RUN_*
1736 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1737 * XXX we should check if the task is an idle task.
1740 if (event
->attach_state
& PERF_ATTACH_TASK
)
1741 flags
|= PPMU_ONLY_COUNT_RUN
;
1744 * If this machine has limited events, check whether this
1745 * event_id could go on a limited event.
1747 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1748 if (can_go_on_limited_pmc(event
, ev
, flags
)) {
1749 flags
|= PPMU_LIMITED_PMC_OK
;
1750 } else if (ppmu
->limited_pmc_event(ev
)) {
1752 * The requested event_id is on a limited PMC,
1753 * but we can't use a limited PMC; see if any
1754 * alternative goes on a normal PMC.
1756 ev
= normal_pmc_alternative(ev
, flags
);
1762 /* Extra checks for EBB */
1763 err
= ebb_event_check(event
);
1768 * If this is in a group, check if it can go on with all the
1769 * other hardware events in the group. We assume the event
1770 * hasn't been linked into its leader's sibling list at this point.
1773 if (event
->group_leader
!= event
) {
1774 n
= collect_events(event
->group_leader
, ppmu
->n_counter
- 1,
1775 ctrs
, events
, cflags
);
1782 if (check_excludes(ctrs
, cflags
, n
, 1))
1785 cpuhw
= &get_cpu_var(cpu_hw_events
);
1786 err
= power_check_constraints(cpuhw
, events
, cflags
, n
+ 1);
1788 if (has_branch_stack(event
)) {
1789 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1790 event
->attr
.branch_sample_type
);
1792 if(cpuhw
->bhrb_filter
== -1)
1796 put_cpu_var(cpu_hw_events
);
1800 event
->hw
.config
= events
[n
];
1801 event
->hw
.event_base
= cflags
[n
];
1802 event
->hw
.last_period
= event
->hw
.sample_period
;
1803 local64_set(&event
->hw
.period_left
, event
->hw
.last_period
);
1806 * For EBB events we just context switch the PMC value, we don't do any
1807 * of the sample_period logic. We use hw.prev_count for this.
1809 if (is_ebb_event(event
))
1810 local64_set(&event
->hw
.prev_count
, 0);
1813 * See if we need to reserve the PMU.
1814 * If no events are currently in use, then we have to take a
1815 * mutex to ensure that we don't race with another task doing
1816 * reserve_pmc_hardware or release_pmc_hardware.
1819 if (!atomic_inc_not_zero(&num_events
)) {
1820 mutex_lock(&pmc_reserve_mutex
);
1821 if (atomic_read(&num_events
) == 0 &&
1822 reserve_pmc_hardware(perf_event_interrupt
))
1825 atomic_inc(&num_events
);
1826 mutex_unlock(&pmc_reserve_mutex
);
1828 event
->destroy
= hw_perf_event_destroy
;
1833 static int power_pmu_event_idx(struct perf_event
*event
)
1835 return event
->hw
.idx
;
1838 ssize_t
power_events_sysfs_show(struct device
*dev
,
1839 struct device_attribute
*attr
, char *page
)
1841 struct perf_pmu_events_attr
*pmu_attr
;
1843 pmu_attr
= container_of(attr
, struct perf_pmu_events_attr
, attr
);
1845 return sprintf(page
, "event=0x%02llx\n", pmu_attr
->id
);
1848 struct pmu power_pmu
= {
1849 .pmu_enable
= power_pmu_enable
,
1850 .pmu_disable
= power_pmu_disable
,
1851 .event_init
= power_pmu_event_init
,
1852 .add
= power_pmu_add
,
1853 .del
= power_pmu_del
,
1854 .start
= power_pmu_start
,
1855 .stop
= power_pmu_stop
,
1856 .read
= power_pmu_read
,
1857 .start_txn
= power_pmu_start_txn
,
1858 .cancel_txn
= power_pmu_cancel_txn
,
1859 .commit_txn
= power_pmu_commit_txn
,
1860 .event_idx
= power_pmu_event_idx
,
1861 .flush_branch_stack
= power_pmu_flush_branch_stack
,
1865 * A counter has overflowed; update its count and record
1866 * things if requested. Note that interrupts are hard-disabled
1867 * here so there is no possibility of being interrupted.
1869 static void record_and_restart(struct perf_event
*event
, unsigned long val
,
1870 struct pt_regs
*regs
)
1872 u64 period
= event
->hw
.sample_period
;
1873 s64 prev
, delta
, left
;
1876 if (event
->hw
.state
& PERF_HES_STOPPED
) {
1877 write_pmc(event
->hw
.idx
, 0);
1881 /* we don't have to worry about interrupts here */
1882 prev
= local64_read(&event
->hw
.prev_count
);
1883 delta
= check_and_compute_delta(prev
, val
);
1884 local64_add(delta
, &event
->count
);
1887 * See if the total period for this event has expired,
1888 * and update for the next period.
1891 left
= local64_read(&event
->hw
.period_left
) - delta
;
1899 record
= siar_valid(regs
);
1900 event
->hw
.last_period
= event
->hw
.sample_period
;
1902 if (left
< 0x80000000LL
)
1903 val
= 0x80000000LL
- left
;
1906 write_pmc(event
->hw
.idx
, val
);
1907 local64_set(&event
->hw
.prev_count
, val
);
1908 local64_set(&event
->hw
.period_left
, left
);
1909 perf_event_update_userpage(event
);
1912 * Finally record data if requested.
1915 struct perf_sample_data data
;
1917 perf_sample_data_init(&data
, ~0ULL, event
->hw
.last_period
);
1919 if (event
->attr
.sample_type
& PERF_SAMPLE_ADDR
)
1920 perf_get_data_addr(regs
, &data
.addr
);
1922 if (event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
1923 struct cpu_hw_events
*cpuhw
;
1924 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1925 power_pmu_bhrb_read(cpuhw
);
1926 data
.br_stack
= &cpuhw
->bhrb_stack
;
1929 if (perf_event_overflow(event
, &data
, regs
))
1930 power_pmu_stop(event
, 0);
1935 * Called from generic code to get the misc flags (i.e. processor mode)
1938 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1940 u32 flags
= perf_get_misc_flags(regs
);
1944 return user_mode(regs
) ? PERF_RECORD_MISC_USER
:
1945 PERF_RECORD_MISC_KERNEL
;
1949 * Called from generic code to get the instruction pointer
1952 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1954 bool use_siar
= regs_use_siar(regs
);
1956 if (use_siar
&& siar_valid(regs
))
1957 return mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
1959 return 0; // no valid instruction pointer
1964 static bool pmc_overflow_power7(unsigned long val
)
1967 * Events on POWER7 can roll back if a speculative event doesn't
1968 * eventually complete. Unfortunately in some rare cases they will
1969 * raise a performance monitor exception. We need to catch this to
1970 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1971 * cycles from overflow.
1973 * We only do this if the first pass fails to find any overflowing
1974 * PMCs because a user might set a period of less than 256 and we
1975 * don't want to mistakenly reset them.
1977 if ((0x80000000 - val
) <= 256)
1983 static bool pmc_overflow(unsigned long val
)
1992 * Performance monitor interrupt stuff
1994 static void perf_event_interrupt(struct pt_regs
*regs
)
1997 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1998 struct perf_event
*event
;
1999 unsigned long val
[8];
2003 if (cpuhw
->n_limited
)
2004 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
2007 perf_read_regs(regs
);
2009 nmi
= perf_intr_is_nmi(regs
);
2015 /* Read all the PMCs since we'll need them a bunch of times */
2016 for (i
= 0; i
< ppmu
->n_counter
; ++i
)
2017 val
[i
] = read_pmc(i
+ 1);
2019 /* Try to find what caused the IRQ */
2021 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
2022 if (!pmc_overflow(val
[i
]))
2024 if (is_limited_pmc(i
+ 1))
2025 continue; /* these won't generate IRQs */
2027 * We've found one that's overflowed. For active
2028 * counters we need to log this. For inactive
2029 * counters, we need to reset it anyway
2033 for (j
= 0; j
< cpuhw
->n_events
; ++j
) {
2034 event
= cpuhw
->event
[j
];
2035 if (event
->hw
.idx
== (i
+ 1)) {
2037 record_and_restart(event
, val
[i
], regs
);
2042 /* reset non active counters that have overflowed */
2043 write_pmc(i
+ 1, 0);
2045 if (!found
&& pvr_version_is(PVR_POWER7
)) {
2046 /* check active counters for special buggy p7 overflow */
2047 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
2048 event
= cpuhw
->event
[i
];
2049 if (!event
->hw
.idx
|| is_limited_pmc(event
->hw
.idx
))
2051 if (pmc_overflow_power7(val
[event
->hw
.idx
- 1])) {
2052 /* event has overflowed in a buggy way*/
2054 record_and_restart(event
,
2055 val
[event
->hw
.idx
- 1],
2060 if (!found
&& !nmi
&& printk_ratelimit())
2061 printk(KERN_WARNING
"Can't find PMC that caused IRQ\n");
2064 * Reset MMCR0 to its normal value. This will set PMXE and
2065 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2066 * and thus allow interrupts to occur again.
2067 * XXX might want to use MSR.PM to keep the events frozen until
2068 * we get back out of this interrupt.
2070 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
2078 static void power_pmu_setup(int cpu
)
2080 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
2084 memset(cpuhw
, 0, sizeof(*cpuhw
));
2085 cpuhw
->mmcr
[0] = MMCR0_FC
;
2089 power_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
2091 unsigned int cpu
= (long)hcpu
;
2093 switch (action
& ~CPU_TASKS_FROZEN
) {
2094 case CPU_UP_PREPARE
:
2095 power_pmu_setup(cpu
);
2105 int register_power_pmu(struct power_pmu
*pmu
)
2108 return -EBUSY
; /* something's already registered */
2111 pr_info("%s performance monitor hardware support registered\n",
2114 power_pmu
.attr_groups
= ppmu
->attr_groups
;
2118 * Use FCHV to ignore kernel events if MSR.HV is set.
2120 if (mfmsr() & MSR_HV
)
2121 freeze_events_kernel
= MMCR0_FCHV
;
2122 #endif /* CONFIG_PPC64 */
2124 perf_pmu_register(&power_pmu
, "cpu", PERF_TYPE_RAW
);
2125 perf_cpu_notifier(power_pmu_notifier
);