2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
10 int sched_rr_timeslice
= RR_TIMESLICE
;
12 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
14 struct rt_bandwidth def_rt_bandwidth
;
16 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
18 struct rt_bandwidth
*rt_b
=
19 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
25 now
= hrtimer_cb_get_time(timer
);
26 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
31 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
34 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
37 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
39 rt_b
->rt_period
= ns_to_ktime(period
);
40 rt_b
->rt_runtime
= runtime
;
42 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
44 hrtimer_init(&rt_b
->rt_period_timer
,
45 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
46 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
49 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
51 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
54 if (hrtimer_active(&rt_b
->rt_period_timer
))
57 raw_spin_lock(&rt_b
->rt_runtime_lock
);
58 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
59 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
62 void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
64 struct rt_prio_array
*array
;
67 array
= &rt_rq
->active
;
68 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
69 INIT_LIST_HEAD(array
->queue
+ i
);
70 __clear_bit(i
, array
->bitmap
);
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
75 #if defined CONFIG_SMP
76 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
77 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
78 rt_rq
->rt_nr_migratory
= 0;
79 rt_rq
->overloaded
= 0;
80 plist_head_init(&rt_rq
->pushable_tasks
);
82 /* We start is dequeued state, because no RT tasks are queued */
86 rt_rq
->rt_throttled
= 0;
87 rt_rq
->rt_runtime
= 0;
88 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
94 hrtimer_cancel(&rt_b
->rt_period_timer
);
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
99 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
101 #ifdef CONFIG_SCHED_DEBUG
102 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
104 return container_of(rt_se
, struct task_struct
, rt
);
107 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
112 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
117 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
119 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
124 void free_rt_sched_group(struct task_group
*tg
)
129 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
131 for_each_possible_cpu(i
) {
142 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
143 struct sched_rt_entity
*rt_se
, int cpu
,
144 struct sched_rt_entity
*parent
)
146 struct rq
*rq
= cpu_rq(cpu
);
148 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
149 rt_rq
->rt_nr_boosted
= 0;
153 tg
->rt_rq
[cpu
] = rt_rq
;
154 tg
->rt_se
[cpu
] = rt_se
;
160 rt_se
->rt_rq
= &rq
->rt
;
162 rt_se
->rt_rq
= parent
->my_q
;
165 rt_se
->parent
= parent
;
166 INIT_LIST_HEAD(&rt_se
->run_list
);
169 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
172 struct sched_rt_entity
*rt_se
;
175 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
178 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
182 init_rt_bandwidth(&tg
->rt_bandwidth
,
183 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
185 for_each_possible_cpu(i
) {
186 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
187 GFP_KERNEL
, cpu_to_node(i
));
191 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
192 GFP_KERNEL
, cpu_to_node(i
));
196 init_rt_rq(rt_rq
, cpu_rq(i
));
197 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
198 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
209 #else /* CONFIG_RT_GROUP_SCHED */
211 #define rt_entity_is_task(rt_se) (1)
213 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
215 return container_of(rt_se
, struct task_struct
, rt
);
218 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
220 return container_of(rt_rq
, struct rq
, rt
);
223 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
225 struct task_struct
*p
= rt_task_of(rt_se
);
230 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
232 struct rq
*rq
= rq_of_rt_se(rt_se
);
237 void free_rt_sched_group(struct task_group
*tg
) { }
239 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
243 #endif /* CONFIG_RT_GROUP_SCHED */
247 static int pull_rt_task(struct rq
*this_rq
);
249 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
251 /* Try to pull RT tasks here if we lower this rq's prio */
252 return rq
->rt
.highest_prio
.curr
> prev
->prio
;
255 static inline int rt_overloaded(struct rq
*rq
)
257 return atomic_read(&rq
->rd
->rto_count
);
260 static inline void rt_set_overload(struct rq
*rq
)
265 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
267 * Make sure the mask is visible before we set
268 * the overload count. That is checked to determine
269 * if we should look at the mask. It would be a shame
270 * if we looked at the mask, but the mask was not
273 * Matched by the barrier in pull_rt_task().
276 atomic_inc(&rq
->rd
->rto_count
);
279 static inline void rt_clear_overload(struct rq
*rq
)
284 /* the order here really doesn't matter */
285 atomic_dec(&rq
->rd
->rto_count
);
286 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
289 static void update_rt_migration(struct rt_rq
*rt_rq
)
291 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
292 if (!rt_rq
->overloaded
) {
293 rt_set_overload(rq_of_rt_rq(rt_rq
));
294 rt_rq
->overloaded
= 1;
296 } else if (rt_rq
->overloaded
) {
297 rt_clear_overload(rq_of_rt_rq(rt_rq
));
298 rt_rq
->overloaded
= 0;
302 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
304 struct task_struct
*p
;
306 if (!rt_entity_is_task(rt_se
))
309 p
= rt_task_of(rt_se
);
310 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
312 rt_rq
->rt_nr_total
++;
313 if (p
->nr_cpus_allowed
> 1)
314 rt_rq
->rt_nr_migratory
++;
316 update_rt_migration(rt_rq
);
319 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
321 struct task_struct
*p
;
323 if (!rt_entity_is_task(rt_se
))
326 p
= rt_task_of(rt_se
);
327 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
329 rt_rq
->rt_nr_total
--;
330 if (p
->nr_cpus_allowed
> 1)
331 rt_rq
->rt_nr_migratory
--;
333 update_rt_migration(rt_rq
);
336 static inline int has_pushable_tasks(struct rq
*rq
)
338 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
341 static inline void set_post_schedule(struct rq
*rq
)
344 * We detect this state here so that we can avoid taking the RQ
345 * lock again later if there is no need to push
347 rq
->post_schedule
= has_pushable_tasks(rq
);
350 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
352 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
353 plist_node_init(&p
->pushable_tasks
, p
->prio
);
354 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
356 /* Update the highest prio pushable task */
357 if (p
->prio
< rq
->rt
.highest_prio
.next
)
358 rq
->rt
.highest_prio
.next
= p
->prio
;
361 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
363 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
365 /* Update the new highest prio pushable task */
366 if (has_pushable_tasks(rq
)) {
367 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
368 struct task_struct
, pushable_tasks
);
369 rq
->rt
.highest_prio
.next
= p
->prio
;
371 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
376 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
380 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
385 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
390 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
394 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
399 static inline int pull_rt_task(struct rq
*this_rq
)
404 static inline void set_post_schedule(struct rq
*rq
)
407 #endif /* CONFIG_SMP */
409 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
410 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
412 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
414 return !list_empty(&rt_se
->run_list
);
417 #ifdef CONFIG_RT_GROUP_SCHED
419 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
424 return rt_rq
->rt_runtime
;
427 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
429 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
432 typedef struct task_group
*rt_rq_iter_t
;
434 static inline struct task_group
*next_task_group(struct task_group
*tg
)
437 tg
= list_entry_rcu(tg
->list
.next
,
438 typeof(struct task_group
), list
);
439 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
441 if (&tg
->list
== &task_groups
)
447 #define for_each_rt_rq(rt_rq, iter, rq) \
448 for (iter = container_of(&task_groups, typeof(*iter), list); \
449 (iter = next_task_group(iter)) && \
450 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
452 #define for_each_sched_rt_entity(rt_se) \
453 for (; rt_se; rt_se = rt_se->parent)
455 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
460 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
461 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
463 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
465 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
466 struct sched_rt_entity
*rt_se
;
468 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
470 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
472 if (rt_rq
->rt_nr_running
) {
474 enqueue_top_rt_rq(rt_rq
);
475 else if (!on_rt_rq(rt_se
))
476 enqueue_rt_entity(rt_se
, false);
478 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
483 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
485 struct sched_rt_entity
*rt_se
;
486 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
488 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
491 dequeue_top_rt_rq(rt_rq
);
492 else if (on_rt_rq(rt_se
))
493 dequeue_rt_entity(rt_se
);
496 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
498 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
501 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
503 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
504 struct task_struct
*p
;
507 return !!rt_rq
->rt_nr_boosted
;
509 p
= rt_task_of(rt_se
);
510 return p
->prio
!= p
->normal_prio
;
514 static inline const struct cpumask
*sched_rt_period_mask(void)
516 return this_rq()->rd
->span
;
519 static inline const struct cpumask
*sched_rt_period_mask(void)
521 return cpu_online_mask
;
526 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
528 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
531 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
533 return &rt_rq
->tg
->rt_bandwidth
;
536 #else /* !CONFIG_RT_GROUP_SCHED */
538 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
540 return rt_rq
->rt_runtime
;
543 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
545 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
548 typedef struct rt_rq
*rt_rq_iter_t
;
550 #define for_each_rt_rq(rt_rq, iter, rq) \
551 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
553 #define for_each_sched_rt_entity(rt_se) \
554 for (; rt_se; rt_se = NULL)
556 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
561 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
563 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
565 if (!rt_rq
->rt_nr_running
)
568 enqueue_top_rt_rq(rt_rq
);
569 resched_task(rq
->curr
);
572 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
574 dequeue_top_rt_rq(rt_rq
);
577 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
579 return rt_rq
->rt_throttled
;
582 static inline const struct cpumask
*sched_rt_period_mask(void)
584 return cpu_online_mask
;
588 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
590 return &cpu_rq(cpu
)->rt
;
593 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
595 return &def_rt_bandwidth
;
598 #endif /* CONFIG_RT_GROUP_SCHED */
600 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
602 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
604 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
605 rt_rq
->rt_time
< rt_b
->rt_runtime
);
610 * We ran out of runtime, see if we can borrow some from our neighbours.
612 static int do_balance_runtime(struct rt_rq
*rt_rq
)
614 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
615 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
616 int i
, weight
, more
= 0;
619 weight
= cpumask_weight(rd
->span
);
621 raw_spin_lock(&rt_b
->rt_runtime_lock
);
622 rt_period
= ktime_to_ns(rt_b
->rt_period
);
623 for_each_cpu(i
, rd
->span
) {
624 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
630 raw_spin_lock(&iter
->rt_runtime_lock
);
632 * Either all rqs have inf runtime and there's nothing to steal
633 * or __disable_runtime() below sets a specific rq to inf to
634 * indicate its been disabled and disalow stealing.
636 if (iter
->rt_runtime
== RUNTIME_INF
)
640 * From runqueues with spare time, take 1/n part of their
641 * spare time, but no more than our period.
643 diff
= iter
->rt_runtime
- iter
->rt_time
;
645 diff
= div_u64((u64
)diff
, weight
);
646 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
647 diff
= rt_period
- rt_rq
->rt_runtime
;
648 iter
->rt_runtime
-= diff
;
649 rt_rq
->rt_runtime
+= diff
;
651 if (rt_rq
->rt_runtime
== rt_period
) {
652 raw_spin_unlock(&iter
->rt_runtime_lock
);
657 raw_spin_unlock(&iter
->rt_runtime_lock
);
659 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
665 * Ensure this RQ takes back all the runtime it lend to its neighbours.
667 static void __disable_runtime(struct rq
*rq
)
669 struct root_domain
*rd
= rq
->rd
;
673 if (unlikely(!scheduler_running
))
676 for_each_rt_rq(rt_rq
, iter
, rq
) {
677 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
681 raw_spin_lock(&rt_b
->rt_runtime_lock
);
682 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
684 * Either we're all inf and nobody needs to borrow, or we're
685 * already disabled and thus have nothing to do, or we have
686 * exactly the right amount of runtime to take out.
688 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
689 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
691 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
694 * Calculate the difference between what we started out with
695 * and what we current have, that's the amount of runtime
696 * we lend and now have to reclaim.
698 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
701 * Greedy reclaim, take back as much as we can.
703 for_each_cpu(i
, rd
->span
) {
704 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
708 * Can't reclaim from ourselves or disabled runqueues.
710 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
713 raw_spin_lock(&iter
->rt_runtime_lock
);
715 diff
= min_t(s64
, iter
->rt_runtime
, want
);
716 iter
->rt_runtime
-= diff
;
719 iter
->rt_runtime
-= want
;
722 raw_spin_unlock(&iter
->rt_runtime_lock
);
728 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
730 * We cannot be left wanting - that would mean some runtime
731 * leaked out of the system.
736 * Disable all the borrow logic by pretending we have inf
737 * runtime - in which case borrowing doesn't make sense.
739 rt_rq
->rt_runtime
= RUNTIME_INF
;
740 rt_rq
->rt_throttled
= 0;
741 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
742 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
746 static void __enable_runtime(struct rq
*rq
)
751 if (unlikely(!scheduler_running
))
755 * Reset each runqueue's bandwidth settings
757 for_each_rt_rq(rt_rq
, iter
, rq
) {
758 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
760 raw_spin_lock(&rt_b
->rt_runtime_lock
);
761 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
762 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
764 rt_rq
->rt_throttled
= 0;
765 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
766 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
770 static int balance_runtime(struct rt_rq
*rt_rq
)
774 if (!sched_feat(RT_RUNTIME_SHARE
))
777 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
778 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
779 more
= do_balance_runtime(rt_rq
);
780 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
785 #else /* !CONFIG_SMP */
786 static inline int balance_runtime(struct rt_rq
*rt_rq
)
790 #endif /* CONFIG_SMP */
792 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
794 int i
, idle
= 1, throttled
= 0;
795 const struct cpumask
*span
;
797 span
= sched_rt_period_mask();
798 #ifdef CONFIG_RT_GROUP_SCHED
800 * FIXME: isolated CPUs should really leave the root task group,
801 * whether they are isolcpus or were isolated via cpusets, lest
802 * the timer run on a CPU which does not service all runqueues,
803 * potentially leaving other CPUs indefinitely throttled. If
804 * isolation is really required, the user will turn the throttle
805 * off to kill the perturbations it causes anyway. Meanwhile,
806 * this maintains functionality for boot and/or troubleshooting.
808 if (rt_b
== &root_task_group
.rt_bandwidth
)
809 span
= cpu_online_mask
;
811 for_each_cpu(i
, span
) {
813 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
814 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
816 raw_spin_lock(&rq
->lock
);
817 if (rt_rq
->rt_time
) {
820 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
821 if (rt_rq
->rt_throttled
)
822 balance_runtime(rt_rq
);
823 runtime
= rt_rq
->rt_runtime
;
824 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
825 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
826 rt_rq
->rt_throttled
= 0;
830 * Force a clock update if the CPU was idle,
831 * lest wakeup -> unthrottle time accumulate.
833 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
834 rq
->skip_clock_update
= -1;
836 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
838 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
839 } else if (rt_rq
->rt_nr_running
) {
841 if (!rt_rq_throttled(rt_rq
))
844 if (rt_rq
->rt_throttled
)
848 sched_rt_rq_enqueue(rt_rq
);
849 raw_spin_unlock(&rq
->lock
);
852 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
858 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
860 #ifdef CONFIG_RT_GROUP_SCHED
861 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
864 return rt_rq
->highest_prio
.curr
;
867 return rt_task_of(rt_se
)->prio
;
870 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
872 u64 runtime
= sched_rt_runtime(rt_rq
);
874 if (rt_rq
->rt_throttled
)
875 return rt_rq_throttled(rt_rq
);
877 if (runtime
>= sched_rt_period(rt_rq
))
880 balance_runtime(rt_rq
);
881 runtime
= sched_rt_runtime(rt_rq
);
882 if (runtime
== RUNTIME_INF
)
885 if (rt_rq
->rt_time
> runtime
) {
886 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
889 * Don't actually throttle groups that have no runtime assigned
890 * but accrue some time due to boosting.
892 if (likely(rt_b
->rt_runtime
)) {
893 rt_rq
->rt_throttled
= 1;
894 printk_deferred_once("sched: RT throttling activated\n");
897 * In case we did anyway, make it go away,
898 * replenishment is a joke, since it will replenish us
904 if (rt_rq_throttled(rt_rq
)) {
905 sched_rt_rq_dequeue(rt_rq
);
914 * Update the current task's runtime statistics. Skip current tasks that
915 * are not in our scheduling class.
917 static void update_curr_rt(struct rq
*rq
)
919 struct task_struct
*curr
= rq
->curr
;
920 struct sched_rt_entity
*rt_se
= &curr
->rt
;
923 if (curr
->sched_class
!= &rt_sched_class
)
926 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
927 if (unlikely((s64
)delta_exec
<= 0))
930 schedstat_set(curr
->se
.statistics
.exec_max
,
931 max(curr
->se
.statistics
.exec_max
, delta_exec
));
933 curr
->se
.sum_exec_runtime
+= delta_exec
;
934 account_group_exec_runtime(curr
, delta_exec
);
936 curr
->se
.exec_start
= rq_clock_task(rq
);
937 cpuacct_charge(curr
, delta_exec
);
939 sched_rt_avg_update(rq
, delta_exec
);
941 if (!rt_bandwidth_enabled())
944 for_each_sched_rt_entity(rt_se
) {
945 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
947 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
948 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
949 rt_rq
->rt_time
+= delta_exec
;
950 if (sched_rt_runtime_exceeded(rt_rq
))
952 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
958 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
960 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
962 BUG_ON(&rq
->rt
!= rt_rq
);
964 if (!rt_rq
->rt_queued
)
967 BUG_ON(!rq
->nr_running
);
969 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
970 rt_rq
->rt_queued
= 0;
974 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
976 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
978 BUG_ON(&rq
->rt
!= rt_rq
);
980 if (rt_rq
->rt_queued
)
982 if (rt_rq_throttled(rt_rq
) || !rt_rq
->rt_nr_running
)
985 add_nr_running(rq
, rt_rq
->rt_nr_running
);
986 rt_rq
->rt_queued
= 1;
989 #if defined CONFIG_SMP
992 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
994 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
996 #ifdef CONFIG_RT_GROUP_SCHED
998 * Change rq's cpupri only if rt_rq is the top queue.
1000 if (&rq
->rt
!= rt_rq
)
1003 if (rq
->online
&& prio
< prev_prio
)
1004 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1008 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1010 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1012 #ifdef CONFIG_RT_GROUP_SCHED
1014 * Change rq's cpupri only if rt_rq is the top queue.
1016 if (&rq
->rt
!= rt_rq
)
1019 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1020 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1023 #else /* CONFIG_SMP */
1026 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1028 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1030 #endif /* CONFIG_SMP */
1032 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1034 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1036 int prev_prio
= rt_rq
->highest_prio
.curr
;
1038 if (prio
< prev_prio
)
1039 rt_rq
->highest_prio
.curr
= prio
;
1041 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1045 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1047 int prev_prio
= rt_rq
->highest_prio
.curr
;
1049 if (rt_rq
->rt_nr_running
) {
1051 WARN_ON(prio
< prev_prio
);
1054 * This may have been our highest task, and therefore
1055 * we may have some recomputation to do
1057 if (prio
== prev_prio
) {
1058 struct rt_prio_array
*array
= &rt_rq
->active
;
1060 rt_rq
->highest_prio
.curr
=
1061 sched_find_first_bit(array
->bitmap
);
1065 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1067 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1072 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1073 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1075 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1077 #ifdef CONFIG_RT_GROUP_SCHED
1080 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1082 if (rt_se_boosted(rt_se
))
1083 rt_rq
->rt_nr_boosted
++;
1086 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1090 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1092 if (rt_se_boosted(rt_se
))
1093 rt_rq
->rt_nr_boosted
--;
1095 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1098 #else /* CONFIG_RT_GROUP_SCHED */
1101 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1103 start_rt_bandwidth(&def_rt_bandwidth
);
1107 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1109 #endif /* CONFIG_RT_GROUP_SCHED */
1112 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1114 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1117 return group_rq
->rt_nr_running
;
1123 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1125 int prio
= rt_se_prio(rt_se
);
1127 WARN_ON(!rt_prio(prio
));
1128 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1130 inc_rt_prio(rt_rq
, prio
);
1131 inc_rt_migration(rt_se
, rt_rq
);
1132 inc_rt_group(rt_se
, rt_rq
);
1136 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1138 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1139 WARN_ON(!rt_rq
->rt_nr_running
);
1140 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1142 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1143 dec_rt_migration(rt_se
, rt_rq
);
1144 dec_rt_group(rt_se
, rt_rq
);
1147 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1149 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1150 struct rt_prio_array
*array
= &rt_rq
->active
;
1151 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1152 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1155 * Don't enqueue the group if its throttled, or when empty.
1156 * The latter is a consequence of the former when a child group
1157 * get throttled and the current group doesn't have any other
1160 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
1164 list_add(&rt_se
->run_list
, queue
);
1166 list_add_tail(&rt_se
->run_list
, queue
);
1167 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1169 inc_rt_tasks(rt_se
, rt_rq
);
1172 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1174 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1175 struct rt_prio_array
*array
= &rt_rq
->active
;
1177 list_del_init(&rt_se
->run_list
);
1178 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1179 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1181 dec_rt_tasks(rt_se
, rt_rq
);
1185 * Because the prio of an upper entry depends on the lower
1186 * entries, we must remove entries top - down.
1188 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
1190 struct sched_rt_entity
*back
= NULL
;
1192 for_each_sched_rt_entity(rt_se
) {
1197 dequeue_top_rt_rq(rt_rq_of_se(back
));
1199 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1200 if (on_rt_rq(rt_se
))
1201 __dequeue_rt_entity(rt_se
);
1205 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1207 struct rq
*rq
= rq_of_rt_se(rt_se
);
1209 dequeue_rt_stack(rt_se
);
1210 for_each_sched_rt_entity(rt_se
)
1211 __enqueue_rt_entity(rt_se
, head
);
1212 enqueue_top_rt_rq(&rq
->rt
);
1215 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1217 struct rq
*rq
= rq_of_rt_se(rt_se
);
1219 dequeue_rt_stack(rt_se
);
1221 for_each_sched_rt_entity(rt_se
) {
1222 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1224 if (rt_rq
&& rt_rq
->rt_nr_running
)
1225 __enqueue_rt_entity(rt_se
, false);
1227 enqueue_top_rt_rq(&rq
->rt
);
1231 * Adding/removing a task to/from a priority array:
1234 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1236 struct sched_rt_entity
*rt_se
= &p
->rt
;
1238 if (flags
& ENQUEUE_WAKEUP
)
1241 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
1243 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1244 enqueue_pushable_task(rq
, p
);
1247 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1249 struct sched_rt_entity
*rt_se
= &p
->rt
;
1252 dequeue_rt_entity(rt_se
);
1254 dequeue_pushable_task(rq
, p
);
1258 * Put task to the head or the end of the run list without the overhead of
1259 * dequeue followed by enqueue.
1262 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1264 if (on_rt_rq(rt_se
)) {
1265 struct rt_prio_array
*array
= &rt_rq
->active
;
1266 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1269 list_move(&rt_se
->run_list
, queue
);
1271 list_move_tail(&rt_se
->run_list
, queue
);
1275 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1277 struct sched_rt_entity
*rt_se
= &p
->rt
;
1278 struct rt_rq
*rt_rq
;
1280 for_each_sched_rt_entity(rt_se
) {
1281 rt_rq
= rt_rq_of_se(rt_se
);
1282 requeue_rt_entity(rt_rq
, rt_se
, head
);
1286 static void yield_task_rt(struct rq
*rq
)
1288 requeue_task_rt(rq
, rq
->curr
, 0);
1292 static int find_lowest_rq(struct task_struct
*task
);
1295 select_task_rq_rt(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1297 struct task_struct
*curr
;
1300 if (p
->nr_cpus_allowed
== 1)
1303 /* For anything but wake ups, just return the task_cpu */
1304 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1310 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1313 * If the current task on @p's runqueue is an RT task, then
1314 * try to see if we can wake this RT task up on another
1315 * runqueue. Otherwise simply start this RT task
1316 * on its current runqueue.
1318 * We want to avoid overloading runqueues. If the woken
1319 * task is a higher priority, then it will stay on this CPU
1320 * and the lower prio task should be moved to another CPU.
1321 * Even though this will probably make the lower prio task
1322 * lose its cache, we do not want to bounce a higher task
1323 * around just because it gave up its CPU, perhaps for a
1326 * For equal prio tasks, we just let the scheduler sort it out.
1328 * Otherwise, just let it ride on the affined RQ and the
1329 * post-schedule router will push the preempted task away
1331 * This test is optimistic, if we get it wrong the load-balancer
1332 * will have to sort it out.
1334 if (curr
&& unlikely(rt_task(curr
)) &&
1335 (curr
->nr_cpus_allowed
< 2 ||
1336 curr
->prio
<= p
->prio
)) {
1337 int target
= find_lowest_rq(p
);
1348 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1350 if (rq
->curr
->nr_cpus_allowed
== 1)
1353 if (p
->nr_cpus_allowed
!= 1
1354 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1357 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1361 * There appears to be other cpus that can accept
1362 * current and none to run 'p', so lets reschedule
1363 * to try and push current away:
1365 requeue_task_rt(rq
, p
, 1);
1366 resched_task(rq
->curr
);
1369 #endif /* CONFIG_SMP */
1372 * Preempt the current task with a newly woken task if needed:
1374 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1376 if (p
->prio
< rq
->curr
->prio
) {
1377 resched_task(rq
->curr
);
1385 * - the newly woken task is of equal priority to the current task
1386 * - the newly woken task is non-migratable while current is migratable
1387 * - current will be preempted on the next reschedule
1389 * we should check to see if current can readily move to a different
1390 * cpu. If so, we will reschedule to allow the push logic to try
1391 * to move current somewhere else, making room for our non-migratable
1394 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1395 check_preempt_equal_prio(rq
, p
);
1399 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1400 struct rt_rq
*rt_rq
)
1402 struct rt_prio_array
*array
= &rt_rq
->active
;
1403 struct sched_rt_entity
*next
= NULL
;
1404 struct list_head
*queue
;
1407 idx
= sched_find_first_bit(array
->bitmap
);
1408 BUG_ON(idx
>= MAX_RT_PRIO
);
1410 queue
= array
->queue
+ idx
;
1411 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1416 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1418 struct sched_rt_entity
*rt_se
;
1419 struct task_struct
*p
;
1420 struct rt_rq
*rt_rq
= &rq
->rt
;
1423 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1425 rt_rq
= group_rt_rq(rt_se
);
1428 p
= rt_task_of(rt_se
);
1429 p
->se
.exec_start
= rq_clock_task(rq
);
1434 static struct task_struct
*
1435 pick_next_task_rt(struct rq
*rq
, struct task_struct
*prev
)
1437 struct task_struct
*p
;
1438 struct rt_rq
*rt_rq
= &rq
->rt
;
1440 if (need_pull_rt_task(rq
, prev
)) {
1443 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1444 * means a dl or stop task can slip in, in which case we need
1445 * to re-start task selection.
1447 if (unlikely((rq
->stop
&& rq
->stop
->on_rq
) ||
1448 rq
->dl
.dl_nr_running
))
1453 * We may dequeue prev's rt_rq in put_prev_task().
1454 * So, we update time before rt_nr_running check.
1456 if (prev
->sched_class
== &rt_sched_class
)
1459 if (!rt_rq
->rt_queued
)
1462 put_prev_task(rq
, prev
);
1464 p
= _pick_next_task_rt(rq
);
1466 /* The running task is never eligible for pushing */
1468 dequeue_pushable_task(rq
, p
);
1470 set_post_schedule(rq
);
1475 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1480 * The previous task needs to be made eligible for pushing
1481 * if it is still active
1483 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1484 enqueue_pushable_task(rq
, p
);
1489 /* Only try algorithms three times */
1490 #define RT_MAX_TRIES 3
1492 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1494 if (!task_running(rq
, p
) &&
1495 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1501 * Return the highest pushable rq's task, which is suitable to be executed
1502 * on the cpu, NULL otherwise
1504 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1506 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1507 struct task_struct
*p
;
1509 if (!has_pushable_tasks(rq
))
1512 plist_for_each_entry(p
, head
, pushable_tasks
) {
1513 if (pick_rt_task(rq
, p
, cpu
))
1520 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1522 static int find_lowest_rq(struct task_struct
*task
)
1524 struct sched_domain
*sd
;
1525 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1526 int this_cpu
= smp_processor_id();
1527 int cpu
= task_cpu(task
);
1529 /* Make sure the mask is initialized first */
1530 if (unlikely(!lowest_mask
))
1533 if (task
->nr_cpus_allowed
== 1)
1534 return -1; /* No other targets possible */
1536 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1537 return -1; /* No targets found */
1540 * At this point we have built a mask of cpus representing the
1541 * lowest priority tasks in the system. Now we want to elect
1542 * the best one based on our affinity and topology.
1544 * We prioritize the last cpu that the task executed on since
1545 * it is most likely cache-hot in that location.
1547 if (cpumask_test_cpu(cpu
, lowest_mask
))
1551 * Otherwise, we consult the sched_domains span maps to figure
1552 * out which cpu is logically closest to our hot cache data.
1554 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1555 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1558 for_each_domain(cpu
, sd
) {
1559 if (sd
->flags
& SD_WAKE_AFFINE
) {
1563 * "this_cpu" is cheaper to preempt than a
1566 if (this_cpu
!= -1 &&
1567 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1572 best_cpu
= cpumask_first_and(lowest_mask
,
1573 sched_domain_span(sd
));
1574 if (best_cpu
< nr_cpu_ids
) {
1583 * And finally, if there were no matches within the domains
1584 * just give the caller *something* to work with from the compatible
1590 cpu
= cpumask_any(lowest_mask
);
1591 if (cpu
< nr_cpu_ids
)
1596 /* Will lock the rq it finds */
1597 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1599 struct rq
*lowest_rq
= NULL
;
1603 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1604 cpu
= find_lowest_rq(task
);
1606 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1609 lowest_rq
= cpu_rq(cpu
);
1611 /* if the prio of this runqueue changed, try again */
1612 if (double_lock_balance(rq
, lowest_rq
)) {
1614 * We had to unlock the run queue. In
1615 * the mean time, task could have
1616 * migrated already or had its affinity changed.
1617 * Also make sure that it wasn't scheduled on its rq.
1619 if (unlikely(task_rq(task
) != rq
||
1620 !cpumask_test_cpu(lowest_rq
->cpu
,
1621 tsk_cpus_allowed(task
)) ||
1622 task_running(rq
, task
) ||
1625 double_unlock_balance(rq
, lowest_rq
);
1631 /* If this rq is still suitable use it. */
1632 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1636 double_unlock_balance(rq
, lowest_rq
);
1643 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1645 struct task_struct
*p
;
1647 if (!has_pushable_tasks(rq
))
1650 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1651 struct task_struct
, pushable_tasks
);
1653 BUG_ON(rq
->cpu
!= task_cpu(p
));
1654 BUG_ON(task_current(rq
, p
));
1655 BUG_ON(p
->nr_cpus_allowed
<= 1);
1658 BUG_ON(!rt_task(p
));
1664 * If the current CPU has more than one RT task, see if the non
1665 * running task can migrate over to a CPU that is running a task
1666 * of lesser priority.
1668 static int push_rt_task(struct rq
*rq
)
1670 struct task_struct
*next_task
;
1671 struct rq
*lowest_rq
;
1674 if (!rq
->rt
.overloaded
)
1677 next_task
= pick_next_pushable_task(rq
);
1682 if (unlikely(next_task
== rq
->curr
)) {
1688 * It's possible that the next_task slipped in of
1689 * higher priority than current. If that's the case
1690 * just reschedule current.
1692 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1693 resched_task(rq
->curr
);
1697 /* We might release rq lock */
1698 get_task_struct(next_task
);
1700 /* find_lock_lowest_rq locks the rq if found */
1701 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1703 struct task_struct
*task
;
1705 * find_lock_lowest_rq releases rq->lock
1706 * so it is possible that next_task has migrated.
1708 * We need to make sure that the task is still on the same
1709 * run-queue and is also still the next task eligible for
1712 task
= pick_next_pushable_task(rq
);
1713 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1715 * The task hasn't migrated, and is still the next
1716 * eligible task, but we failed to find a run-queue
1717 * to push it to. Do not retry in this case, since
1718 * other cpus will pull from us when ready.
1724 /* No more tasks, just exit */
1728 * Something has shifted, try again.
1730 put_task_struct(next_task
);
1735 deactivate_task(rq
, next_task
, 0);
1736 set_task_cpu(next_task
, lowest_rq
->cpu
);
1737 activate_task(lowest_rq
, next_task
, 0);
1740 resched_task(lowest_rq
->curr
);
1742 double_unlock_balance(rq
, lowest_rq
);
1745 put_task_struct(next_task
);
1750 static void push_rt_tasks(struct rq
*rq
)
1752 /* push_rt_task will return true if it moved an RT */
1753 while (push_rt_task(rq
))
1757 static int pull_rt_task(struct rq
*this_rq
)
1759 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1760 struct task_struct
*p
;
1763 if (likely(!rt_overloaded(this_rq
)))
1767 * Match the barrier from rt_set_overloaded; this guarantees that if we
1768 * see overloaded we must also see the rto_mask bit.
1772 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1773 if (this_cpu
== cpu
)
1776 src_rq
= cpu_rq(cpu
);
1779 * Don't bother taking the src_rq->lock if the next highest
1780 * task is known to be lower-priority than our current task.
1781 * This may look racy, but if this value is about to go
1782 * logically higher, the src_rq will push this task away.
1783 * And if its going logically lower, we do not care
1785 if (src_rq
->rt
.highest_prio
.next
>=
1786 this_rq
->rt
.highest_prio
.curr
)
1790 * We can potentially drop this_rq's lock in
1791 * double_lock_balance, and another CPU could
1794 double_lock_balance(this_rq
, src_rq
);
1797 * We can pull only a task, which is pushable
1798 * on its rq, and no others.
1800 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
1803 * Do we have an RT task that preempts
1804 * the to-be-scheduled task?
1806 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1807 WARN_ON(p
== src_rq
->curr
);
1811 * There's a chance that p is higher in priority
1812 * than what's currently running on its cpu.
1813 * This is just that p is wakeing up and hasn't
1814 * had a chance to schedule. We only pull
1815 * p if it is lower in priority than the
1816 * current task on the run queue
1818 if (p
->prio
< src_rq
->curr
->prio
)
1823 deactivate_task(src_rq
, p
, 0);
1824 set_task_cpu(p
, this_cpu
);
1825 activate_task(this_rq
, p
, 0);
1827 * We continue with the search, just in
1828 * case there's an even higher prio task
1829 * in another runqueue. (low likelihood
1834 double_unlock_balance(this_rq
, src_rq
);
1840 static void post_schedule_rt(struct rq
*rq
)
1846 * If we are not running and we are not going to reschedule soon, we should
1847 * try to push tasks away now
1849 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1851 if (!task_running(rq
, p
) &&
1852 !test_tsk_need_resched(rq
->curr
) &&
1853 has_pushable_tasks(rq
) &&
1854 p
->nr_cpus_allowed
> 1 &&
1855 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
1856 (rq
->curr
->nr_cpus_allowed
< 2 ||
1857 rq
->curr
->prio
<= p
->prio
))
1861 static void set_cpus_allowed_rt(struct task_struct
*p
,
1862 const struct cpumask
*new_mask
)
1867 BUG_ON(!rt_task(p
));
1872 weight
= cpumask_weight(new_mask
);
1875 * Only update if the process changes its state from whether it
1876 * can migrate or not.
1878 if ((p
->nr_cpus_allowed
> 1) == (weight
> 1))
1884 * The process used to be able to migrate OR it can now migrate
1887 if (!task_current(rq
, p
))
1888 dequeue_pushable_task(rq
, p
);
1889 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1890 rq
->rt
.rt_nr_migratory
--;
1892 if (!task_current(rq
, p
))
1893 enqueue_pushable_task(rq
, p
);
1894 rq
->rt
.rt_nr_migratory
++;
1897 update_rt_migration(&rq
->rt
);
1900 /* Assumes rq->lock is held */
1901 static void rq_online_rt(struct rq
*rq
)
1903 if (rq
->rt
.overloaded
)
1904 rt_set_overload(rq
);
1906 __enable_runtime(rq
);
1908 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1911 /* Assumes rq->lock is held */
1912 static void rq_offline_rt(struct rq
*rq
)
1914 if (rq
->rt
.overloaded
)
1915 rt_clear_overload(rq
);
1917 __disable_runtime(rq
);
1919 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1923 * When switch from the rt queue, we bring ourselves to a position
1924 * that we might want to pull RT tasks from other runqueues.
1926 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1929 * If there are other RT tasks then we will reschedule
1930 * and the scheduling of the other RT tasks will handle
1931 * the balancing. But if we are the last RT task
1932 * we may need to handle the pulling of RT tasks
1935 if (!p
->on_rq
|| rq
->rt
.rt_nr_running
)
1938 if (pull_rt_task(rq
))
1939 resched_task(rq
->curr
);
1942 void __init
init_sched_rt_class(void)
1946 for_each_possible_cpu(i
) {
1947 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1948 GFP_KERNEL
, cpu_to_node(i
));
1951 #endif /* CONFIG_SMP */
1954 * When switching a task to RT, we may overload the runqueue
1955 * with RT tasks. In this case we try to push them off to
1958 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1960 int check_resched
= 1;
1963 * If we are already running, then there's nothing
1964 * that needs to be done. But if we are not running
1965 * we may need to preempt the current running task.
1966 * If that current running task is also an RT task
1967 * then see if we can move to another run queue.
1969 if (p
->on_rq
&& rq
->curr
!= p
) {
1971 if (p
->nr_cpus_allowed
> 1 && rq
->rt
.overloaded
&&
1972 /* Don't resched if we changed runqueues */
1973 push_rt_task(rq
) && rq
!= task_rq(p
))
1975 #endif /* CONFIG_SMP */
1976 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1977 resched_task(rq
->curr
);
1982 * Priority of the task has changed. This may cause
1983 * us to initiate a push or pull.
1986 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1991 if (rq
->curr
== p
) {
1994 * If our priority decreases while running, we
1995 * may need to pull tasks to this runqueue.
1997 if (oldprio
< p
->prio
)
2000 * If there's a higher priority task waiting to run
2001 * then reschedule. Note, the above pull_rt_task
2002 * can release the rq lock and p could migrate.
2003 * Only reschedule if p is still on the same runqueue.
2005 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
2008 /* For UP simply resched on drop of prio */
2009 if (oldprio
< p
->prio
)
2011 #endif /* CONFIG_SMP */
2014 * This task is not running, but if it is
2015 * greater than the current running task
2018 if (p
->prio
< rq
->curr
->prio
)
2019 resched_task(rq
->curr
);
2023 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2025 unsigned long soft
, hard
;
2027 /* max may change after cur was read, this will be fixed next tick */
2028 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2029 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2031 if (soft
!= RLIM_INFINITY
) {
2034 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2036 p
->rt
.watchdog_stamp
= jiffies
;
2039 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2040 if (p
->rt
.timeout
> next
)
2041 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
2045 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2047 struct sched_rt_entity
*rt_se
= &p
->rt
;
2054 * RR tasks need a special form of timeslice management.
2055 * FIFO tasks have no timeslices.
2057 if (p
->policy
!= SCHED_RR
)
2060 if (--p
->rt
.time_slice
)
2063 p
->rt
.time_slice
= sched_rr_timeslice
;
2066 * Requeue to the end of queue if we (and all of our ancestors) are not
2067 * the only element on the queue
2069 for_each_sched_rt_entity(rt_se
) {
2070 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2071 requeue_task_rt(rq
, p
, 0);
2072 set_tsk_need_resched(p
);
2078 static void set_curr_task_rt(struct rq
*rq
)
2080 struct task_struct
*p
= rq
->curr
;
2082 p
->se
.exec_start
= rq_clock_task(rq
);
2084 /* The running task is never eligible for pushing */
2085 dequeue_pushable_task(rq
, p
);
2088 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2091 * Time slice is 0 for SCHED_FIFO tasks
2093 if (task
->policy
== SCHED_RR
)
2094 return sched_rr_timeslice
;
2099 const struct sched_class rt_sched_class
= {
2100 .next
= &fair_sched_class
,
2101 .enqueue_task
= enqueue_task_rt
,
2102 .dequeue_task
= dequeue_task_rt
,
2103 .yield_task
= yield_task_rt
,
2105 .check_preempt_curr
= check_preempt_curr_rt
,
2107 .pick_next_task
= pick_next_task_rt
,
2108 .put_prev_task
= put_prev_task_rt
,
2111 .select_task_rq
= select_task_rq_rt
,
2113 .set_cpus_allowed
= set_cpus_allowed_rt
,
2114 .rq_online
= rq_online_rt
,
2115 .rq_offline
= rq_offline_rt
,
2116 .post_schedule
= post_schedule_rt
,
2117 .task_woken
= task_woken_rt
,
2118 .switched_from
= switched_from_rt
,
2121 .set_curr_task
= set_curr_task_rt
,
2122 .task_tick
= task_tick_rt
,
2124 .get_rr_interval
= get_rr_interval_rt
,
2126 .prio_changed
= prio_changed_rt
,
2127 .switched_to
= switched_to_rt
,
2130 #ifdef CONFIG_SCHED_DEBUG
2131 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2133 void print_rt_stats(struct seq_file
*m
, int cpu
)
2136 struct rt_rq
*rt_rq
;
2139 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2140 print_rt_rq(m
, cpu
, rt_rq
);
2143 #endif /* CONFIG_SCHED_DEBUG */