Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[linux/fpc-iii.git] / kernel / time / sched_clock.c
blob445106d2c72901bae00d52e3aacfbc6387bd3205
1 /*
2 * sched_clock.c: support for extending counters to full 64-bit ns counter
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8 #include <linux/clocksource.h>
9 #include <linux/init.h>
10 #include <linux/jiffies.h>
11 #include <linux/ktime.h>
12 #include <linux/kernel.h>
13 #include <linux/moduleparam.h>
14 #include <linux/sched.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
21 struct clock_data {
22 ktime_t wrap_kt;
23 u64 epoch_ns;
24 u64 epoch_cyc;
25 seqcount_t seq;
26 unsigned long rate;
27 u32 mult;
28 u32 shift;
29 bool suspended;
32 static struct hrtimer sched_clock_timer;
33 static int irqtime = -1;
35 core_param(irqtime, irqtime, int, 0400);
37 static struct clock_data cd = {
38 .mult = NSEC_PER_SEC / HZ,
41 static u64 __read_mostly sched_clock_mask;
43 static u64 notrace jiffy_sched_clock_read(void)
46 * We don't need to use get_jiffies_64 on 32-bit arches here
47 * because we register with BITS_PER_LONG
49 return (u64)(jiffies - INITIAL_JIFFIES);
52 static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
54 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
56 return (cyc * mult) >> shift;
59 unsigned long long notrace sched_clock(void)
61 u64 epoch_ns;
62 u64 epoch_cyc;
63 u64 cyc;
64 unsigned long seq;
66 if (cd.suspended)
67 return cd.epoch_ns;
69 do {
70 seq = raw_read_seqcount_begin(&cd.seq);
71 epoch_cyc = cd.epoch_cyc;
72 epoch_ns = cd.epoch_ns;
73 } while (read_seqcount_retry(&cd.seq, seq));
75 cyc = read_sched_clock();
76 cyc = (cyc - epoch_cyc) & sched_clock_mask;
77 return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
81 * Atomically update the sched_clock epoch.
83 static void notrace update_sched_clock(void)
85 unsigned long flags;
86 u64 cyc;
87 u64 ns;
89 cyc = read_sched_clock();
90 ns = cd.epoch_ns +
91 cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
92 cd.mult, cd.shift);
94 raw_local_irq_save(flags);
95 raw_write_seqcount_begin(&cd.seq);
96 cd.epoch_ns = ns;
97 cd.epoch_cyc = cyc;
98 raw_write_seqcount_end(&cd.seq);
99 raw_local_irq_restore(flags);
102 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
104 update_sched_clock();
105 hrtimer_forward_now(hrt, cd.wrap_kt);
106 return HRTIMER_RESTART;
109 void __init sched_clock_register(u64 (*read)(void), int bits,
110 unsigned long rate)
112 u64 res, wrap, new_mask, new_epoch, cyc, ns;
113 u32 new_mult, new_shift;
114 ktime_t new_wrap_kt;
115 unsigned long r;
116 char r_unit;
118 if (cd.rate > rate)
119 return;
121 WARN_ON(!irqs_disabled());
123 /* calculate the mult/shift to convert counter ticks to ns. */
124 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
126 new_mask = CLOCKSOURCE_MASK(bits);
128 /* calculate how many ns until we wrap */
129 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
130 new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
132 /* update epoch for new counter and update epoch_ns from old counter*/
133 new_epoch = read();
134 cyc = read_sched_clock();
135 ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
136 cd.mult, cd.shift);
138 raw_write_seqcount_begin(&cd.seq);
139 read_sched_clock = read;
140 sched_clock_mask = new_mask;
141 cd.rate = rate;
142 cd.wrap_kt = new_wrap_kt;
143 cd.mult = new_mult;
144 cd.shift = new_shift;
145 cd.epoch_cyc = new_epoch;
146 cd.epoch_ns = ns;
147 raw_write_seqcount_end(&cd.seq);
149 r = rate;
150 if (r >= 4000000) {
151 r /= 1000000;
152 r_unit = 'M';
153 } else if (r >= 1000) {
154 r /= 1000;
155 r_unit = 'k';
156 } else
157 r_unit = ' ';
159 /* calculate the ns resolution of this counter */
160 res = cyc_to_ns(1ULL, new_mult, new_shift);
162 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
163 bits, r, r_unit, res, wrap);
165 /* Enable IRQ time accounting if we have a fast enough sched_clock */
166 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
167 enable_sched_clock_irqtime();
169 pr_debug("Registered %pF as sched_clock source\n", read);
172 void __init sched_clock_postinit(void)
175 * If no sched_clock function has been provided at that point,
176 * make it the final one one.
178 if (read_sched_clock == jiffy_sched_clock_read)
179 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
181 update_sched_clock();
184 * Start the timer to keep sched_clock() properly updated and
185 * sets the initial epoch.
187 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 sched_clock_timer.function = sched_clock_poll;
189 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
192 static int sched_clock_suspend(void)
194 sched_clock_poll(&sched_clock_timer);
195 cd.suspended = true;
196 return 0;
199 static void sched_clock_resume(void)
201 cd.epoch_cyc = read_sched_clock();
202 cd.suspended = false;
205 static struct syscore_ops sched_clock_ops = {
206 .suspend = sched_clock_suspend,
207 .resume = sched_clock_resume,
210 static int __init sched_clock_syscore_init(void)
212 register_syscore_ops(&sched_clock_ops);
213 return 0;
215 device_initcall(sched_clock_syscore_init);