2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node
);
75 EXPORT_PER_CPU_SYMBOL(numa_node
);
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
85 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 * Array of node states.
92 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
93 [N_POSSIBLE
] = NODE_MASK_ALL
,
94 [N_ONLINE
] = { { [0] = 1UL } },
96 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
98 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY
] = { { [0] = 1UL } },
103 [N_CPU
] = { { [0] = 1UL } },
106 EXPORT_SYMBOL(node_states
);
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock
);
111 unsigned long totalram_pages __read_mostly
;
112 unsigned long totalreserve_pages __read_mostly
;
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
119 unsigned long dirty_balance_reserve __read_mostly
;
121 int percpu_pagelist_fraction
;
122 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
124 #ifdef CONFIG_PM_SLEEP
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
134 static gfp_t saved_gfp_mask
;
136 void pm_restore_gfp_mask(void)
138 WARN_ON(!mutex_is_locked(&pm_mutex
));
139 if (saved_gfp_mask
) {
140 gfp_allowed_mask
= saved_gfp_mask
;
145 void pm_restrict_gfp_mask(void)
147 WARN_ON(!mutex_is_locked(&pm_mutex
));
148 WARN_ON(saved_gfp_mask
);
149 saved_gfp_mask
= gfp_allowed_mask
;
150 gfp_allowed_mask
&= ~GFP_IOFS
;
153 bool pm_suspended_storage(void)
155 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
159 #endif /* CONFIG_PM_SLEEP */
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly
;
165 static void __free_pages_ok(struct page
*page
, unsigned int order
);
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
178 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
179 #ifdef CONFIG_ZONE_DMA
182 #ifdef CONFIG_ZONE_DMA32
185 #ifdef CONFIG_HIGHMEM
191 EXPORT_SYMBOL(totalram_pages
);
193 static char * const zone_names
[MAX_NR_ZONES
] = {
194 #ifdef CONFIG_ZONE_DMA
197 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 int min_free_kbytes
= 1024;
208 int user_min_free_kbytes
= -1;
210 static unsigned long __meminitdata nr_kernel_pages
;
211 static unsigned long __meminitdata nr_all_pages
;
212 static unsigned long __meminitdata dma_reserve
;
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
217 static unsigned long __initdata required_kernelcore
;
218 static unsigned long __initdata required_movablecore
;
219 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 EXPORT_SYMBOL(movable_zone
);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
228 int nr_online_nodes __read_mostly
= 1;
229 EXPORT_SYMBOL(nr_node_ids
);
230 EXPORT_SYMBOL(nr_online_nodes
);
233 int page_group_by_mobility_disabled __read_mostly
;
235 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
237 if (unlikely(page_group_by_mobility_disabled
&&
238 migratetype
< MIGRATE_PCPTYPES
))
239 migratetype
= MIGRATE_UNMOVABLE
;
241 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
242 PB_migrate
, PB_migrate_end
);
245 bool oom_killer_disabled __read_mostly
;
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
252 unsigned long pfn
= page_to_pfn(page
);
253 unsigned long sp
, start_pfn
;
256 seq
= zone_span_seqbegin(zone
);
257 start_pfn
= zone
->zone_start_pfn
;
258 sp
= zone
->spanned_pages
;
259 if (!zone_spans_pfn(zone
, pfn
))
261 } while (zone_span_seqretry(zone
, seq
));
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn
, zone_to_nid(zone
), zone
->name
,
266 start_pfn
, start_pfn
+ sp
);
271 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
273 if (!pfn_valid_within(page_to_pfn(page
)))
275 if (zone
!= page_zone(page
))
281 * Temporary debugging check for pages not lying within a given zone.
283 static int bad_range(struct zone
*zone
, struct page
*page
)
285 if (page_outside_zone_boundaries(zone
, page
))
287 if (!page_is_consistent(zone
, page
))
293 static inline int bad_range(struct zone
*zone
, struct page
*page
)
299 static void bad_page(struct page
*page
, const char *reason
,
300 unsigned long bad_flags
)
302 static unsigned long resume
;
303 static unsigned long nr_shown
;
304 static unsigned long nr_unshown
;
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page
)) {
308 page_mapcount_reset(page
); /* remove PageBuddy */
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
316 if (nr_shown
== 60) {
317 if (time_before(jiffies
, resume
)) {
323 "BUG: Bad page state: %lu messages suppressed\n",
330 resume
= jiffies
+ 60 * HZ
;
332 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
333 current
->comm
, page_to_pfn(page
));
334 dump_page_badflags(page
, reason
, bad_flags
);
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page
); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
345 * Higher-order pages are called "compound pages". They are structured thusly:
347 * The first PAGE_SIZE page is called the "head page".
349 * The remaining PAGE_SIZE pages are called "tail pages".
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
359 static void free_compound_page(struct page
*page
)
361 __free_pages_ok(page
, compound_order(page
));
364 void prep_compound_page(struct page
*page
, unsigned long order
)
367 int nr_pages
= 1 << order
;
369 set_compound_page_dtor(page
, free_compound_page
);
370 set_compound_order(page
, order
);
372 for (i
= 1; i
< nr_pages
; i
++) {
373 struct page
*p
= page
+ i
;
374 set_page_count(p
, 0);
375 p
->first_page
= page
;
376 /* Make sure p->first_page is always valid for PageTail() */
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page
*page
, unsigned long order
)
386 int nr_pages
= 1 << order
;
389 if (unlikely(compound_order(page
) != order
)) {
390 bad_page(page
, "wrong compound order", 0);
394 __ClearPageHead(page
);
396 for (i
= 1; i
< nr_pages
; i
++) {
397 struct page
*p
= page
+ i
;
399 if (unlikely(!PageTail(p
))) {
400 bad_page(page
, "PageTail not set", 0);
402 } else if (unlikely(p
->first_page
!= page
)) {
403 bad_page(page
, "first_page not consistent", 0);
412 static inline void prep_zero_page(struct page
*page
, unsigned int order
,
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
422 for (i
= 0; i
< (1 << order
); i
++)
423 clear_highpage(page
+ i
);
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder
;
429 static int __init
debug_guardpage_minorder_setup(char *buf
)
433 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
434 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
437 _debug_guardpage_minorder
= res
;
438 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
443 static inline void set_page_guard_flag(struct page
*page
)
445 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
448 static inline void clear_page_guard_flag(struct page
*page
)
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
453 static inline void set_page_guard_flag(struct page
*page
) { }
454 static inline void clear_page_guard_flag(struct page
*page
) { }
457 static inline void set_page_order(struct page
*page
, unsigned int order
)
459 set_page_private(page
, order
);
460 __SetPageBuddy(page
);
463 static inline void rmv_page_order(struct page
*page
)
465 __ClearPageBuddy(page
);
466 set_page_private(page
, 0);
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
476 * For example, if the starting buddy (buddy2) is #8 its order
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
489 return page_idx
^ (1 << order
);
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
495 * (a) the buddy is not in a hole &&
496 * (b) the buddy is in the buddy system &&
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
505 * For recording page's order, we use page_private(page).
507 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
510 if (!pfn_valid_within(page_to_pfn(buddy
)))
513 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
514 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
516 if (page_zone_id(page
) != page_zone_id(buddy
))
522 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
523 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
530 if (page_zone_id(page
) != page_zone_id(buddy
))
539 * Freeing function for a buddy system allocator.
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554 * So when we are allocating or freeing one, we can derive the state of the
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
557 * If a block is freed, and its buddy is also free, then this
558 * triggers coalescing into a block of larger size.
563 static inline void __free_one_page(struct page
*page
,
565 struct zone
*zone
, unsigned int order
,
568 unsigned long page_idx
;
569 unsigned long combined_idx
;
570 unsigned long uninitialized_var(buddy_idx
);
573 VM_BUG_ON(!zone_is_initialized(zone
));
575 if (unlikely(PageCompound(page
)))
576 if (unlikely(destroy_compound_page(page
, order
)))
579 VM_BUG_ON(migratetype
== -1);
581 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
583 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
584 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
586 while (order
< MAX_ORDER
-1) {
587 buddy_idx
= __find_buddy_index(page_idx
, order
);
588 buddy
= page
+ (buddy_idx
- page_idx
);
589 if (!page_is_buddy(page
, buddy
, order
))
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
595 if (page_is_guard(buddy
)) {
596 clear_page_guard_flag(buddy
);
597 set_page_private(page
, 0);
598 __mod_zone_freepage_state(zone
, 1 << order
,
601 list_del(&buddy
->lru
);
602 zone
->free_area
[order
].nr_free
--;
603 rmv_page_order(buddy
);
605 combined_idx
= buddy_idx
& page_idx
;
606 page
= page
+ (combined_idx
- page_idx
);
607 page_idx
= combined_idx
;
610 set_page_order(page
, order
);
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
620 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
621 struct page
*higher_page
, *higher_buddy
;
622 combined_idx
= buddy_idx
& page_idx
;
623 higher_page
= page
+ (combined_idx
- page_idx
);
624 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
625 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
626 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
627 list_add_tail(&page
->lru
,
628 &zone
->free_area
[order
].free_list
[migratetype
]);
633 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
635 zone
->free_area
[order
].nr_free
++;
638 static inline int free_pages_check(struct page
*page
)
640 const char *bad_reason
= NULL
;
641 unsigned long bad_flags
= 0;
643 if (unlikely(page_mapcount(page
)))
644 bad_reason
= "nonzero mapcount";
645 if (unlikely(page
->mapping
!= NULL
))
646 bad_reason
= "non-NULL mapping";
647 if (unlikely(atomic_read(&page
->_count
) != 0))
648 bad_reason
= "nonzero _count";
649 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
650 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
653 if (unlikely(mem_cgroup_bad_page_check(page
)))
654 bad_reason
= "cgroup check failed";
655 if (unlikely(bad_reason
)) {
656 bad_page(page
, bad_reason
, bad_flags
);
659 page_cpupid_reset_last(page
);
660 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
661 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
666 * Frees a number of pages from the PCP lists
667 * Assumes all pages on list are in same zone, and of same order.
668 * count is the number of pages to free.
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
676 static void free_pcppages_bulk(struct zone
*zone
, int count
,
677 struct per_cpu_pages
*pcp
)
683 spin_lock(&zone
->lock
);
684 zone
->pages_scanned
= 0;
688 struct list_head
*list
;
691 * Remove pages from lists in a round-robin fashion. A
692 * batch_free count is maintained that is incremented when an
693 * empty list is encountered. This is so more pages are freed
694 * off fuller lists instead of spinning excessively around empty
699 if (++migratetype
== MIGRATE_PCPTYPES
)
701 list
= &pcp
->lists
[migratetype
];
702 } while (list_empty(list
));
704 /* This is the only non-empty list. Free them all. */
705 if (batch_free
== MIGRATE_PCPTYPES
)
706 batch_free
= to_free
;
709 int mt
; /* migratetype of the to-be-freed page */
711 page
= list_entry(list
->prev
, struct page
, lru
);
712 /* must delete as __free_one_page list manipulates */
713 list_del(&page
->lru
);
714 mt
= get_freepage_migratetype(page
);
715 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
716 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
717 trace_mm_page_pcpu_drain(page
, 0, mt
);
718 if (likely(!is_migrate_isolate_page(page
))) {
719 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
720 if (is_migrate_cma(mt
))
721 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
723 } while (--to_free
&& --batch_free
&& !list_empty(list
));
725 spin_unlock(&zone
->lock
);
728 static void free_one_page(struct zone
*zone
,
729 struct page
*page
, unsigned long pfn
,
733 spin_lock(&zone
->lock
);
734 zone
->pages_scanned
= 0;
736 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
737 if (unlikely(!is_migrate_isolate(migratetype
)))
738 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
739 spin_unlock(&zone
->lock
);
742 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
747 trace_mm_page_free(page
, order
);
748 kmemcheck_free_shadow(page
, order
);
751 page
->mapping
= NULL
;
752 for (i
= 0; i
< (1 << order
); i
++)
753 bad
+= free_pages_check(page
+ i
);
757 if (!PageHighMem(page
)) {
758 debug_check_no_locks_freed(page_address(page
),
760 debug_check_no_obj_freed(page_address(page
),
763 arch_free_page(page
, order
);
764 kernel_map_pages(page
, 1 << order
, 0);
769 static void __free_pages_ok(struct page
*page
, unsigned int order
)
773 unsigned long pfn
= page_to_pfn(page
);
775 if (!free_pages_prepare(page
, order
))
778 migratetype
= get_pfnblock_migratetype(page
, pfn
);
779 local_irq_save(flags
);
780 __count_vm_events(PGFREE
, 1 << order
);
781 set_freepage_migratetype(page
, migratetype
);
782 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
783 local_irq_restore(flags
);
786 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
788 unsigned int nr_pages
= 1 << order
;
789 struct page
*p
= page
;
793 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
795 __ClearPageReserved(p
);
796 set_page_count(p
, 0);
798 __ClearPageReserved(p
);
799 set_page_count(p
, 0);
801 page_zone(page
)->managed_pages
+= nr_pages
;
802 set_page_refcounted(page
);
803 __free_pages(page
, order
);
807 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
808 void __init
init_cma_reserved_pageblock(struct page
*page
)
810 unsigned i
= pageblock_nr_pages
;
811 struct page
*p
= page
;
814 __ClearPageReserved(p
);
815 set_page_count(p
, 0);
818 set_page_refcounted(page
);
819 set_pageblock_migratetype(page
, MIGRATE_CMA
);
820 __free_pages(page
, pageblock_order
);
821 adjust_managed_page_count(page
, pageblock_nr_pages
);
826 * The order of subdivision here is critical for the IO subsystem.
827 * Please do not alter this order without good reasons and regression
828 * testing. Specifically, as large blocks of memory are subdivided,
829 * the order in which smaller blocks are delivered depends on the order
830 * they're subdivided in this function. This is the primary factor
831 * influencing the order in which pages are delivered to the IO
832 * subsystem according to empirical testing, and this is also justified
833 * by considering the behavior of a buddy system containing a single
834 * large block of memory acted on by a series of small allocations.
835 * This behavior is a critical factor in sglist merging's success.
839 static inline void expand(struct zone
*zone
, struct page
*page
,
840 int low
, int high
, struct free_area
*area
,
843 unsigned long size
= 1 << high
;
849 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
851 #ifdef CONFIG_DEBUG_PAGEALLOC
852 if (high
< debug_guardpage_minorder()) {
854 * Mark as guard pages (or page), that will allow to
855 * merge back to allocator when buddy will be freed.
856 * Corresponding page table entries will not be touched,
857 * pages will stay not present in virtual address space
859 INIT_LIST_HEAD(&page
[size
].lru
);
860 set_page_guard_flag(&page
[size
]);
861 set_page_private(&page
[size
], high
);
862 /* Guard pages are not available for any usage */
863 __mod_zone_freepage_state(zone
, -(1 << high
),
868 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
870 set_page_order(&page
[size
], high
);
875 * This page is about to be returned from the page allocator
877 static inline int check_new_page(struct page
*page
)
879 const char *bad_reason
= NULL
;
880 unsigned long bad_flags
= 0;
882 if (unlikely(page_mapcount(page
)))
883 bad_reason
= "nonzero mapcount";
884 if (unlikely(page
->mapping
!= NULL
))
885 bad_reason
= "non-NULL mapping";
886 if (unlikely(atomic_read(&page
->_count
) != 0))
887 bad_reason
= "nonzero _count";
888 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
889 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
890 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
892 if (unlikely(mem_cgroup_bad_page_check(page
)))
893 bad_reason
= "cgroup check failed";
894 if (unlikely(bad_reason
)) {
895 bad_page(page
, bad_reason
, bad_flags
);
901 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
)
905 for (i
= 0; i
< (1 << order
); i
++) {
906 struct page
*p
= page
+ i
;
907 if (unlikely(check_new_page(p
)))
911 set_page_private(page
, 0);
912 set_page_refcounted(page
);
914 arch_alloc_page(page
, order
);
915 kernel_map_pages(page
, 1 << order
, 1);
917 if (gfp_flags
& __GFP_ZERO
)
918 prep_zero_page(page
, order
, gfp_flags
);
920 if (order
&& (gfp_flags
& __GFP_COMP
))
921 prep_compound_page(page
, order
);
927 * Go through the free lists for the given migratetype and remove
928 * the smallest available page from the freelists
931 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
934 unsigned int current_order
;
935 struct free_area
*area
;
938 /* Find a page of the appropriate size in the preferred list */
939 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
940 area
= &(zone
->free_area
[current_order
]);
941 if (list_empty(&area
->free_list
[migratetype
]))
944 page
= list_entry(area
->free_list
[migratetype
].next
,
946 list_del(&page
->lru
);
947 rmv_page_order(page
);
949 expand(zone
, page
, order
, current_order
, area
, migratetype
);
950 set_freepage_migratetype(page
, migratetype
);
959 * This array describes the order lists are fallen back to when
960 * the free lists for the desirable migrate type are depleted
962 static int fallbacks
[MIGRATE_TYPES
][4] = {
963 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
964 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
966 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
967 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
969 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
971 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
972 #ifdef CONFIG_MEMORY_ISOLATION
973 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
978 * Move the free pages in a range to the free lists of the requested type.
979 * Note that start_page and end_pages are not aligned on a pageblock
980 * boundary. If alignment is required, use move_freepages_block()
982 int move_freepages(struct zone
*zone
,
983 struct page
*start_page
, struct page
*end_page
,
990 #ifndef CONFIG_HOLES_IN_ZONE
992 * page_zone is not safe to call in this context when
993 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
994 * anyway as we check zone boundaries in move_freepages_block().
995 * Remove at a later date when no bug reports exist related to
996 * grouping pages by mobility
998 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1001 for (page
= start_page
; page
<= end_page
;) {
1002 /* Make sure we are not inadvertently changing nodes */
1003 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1005 if (!pfn_valid_within(page_to_pfn(page
))) {
1010 if (!PageBuddy(page
)) {
1015 order
= page_order(page
);
1016 list_move(&page
->lru
,
1017 &zone
->free_area
[order
].free_list
[migratetype
]);
1018 set_freepage_migratetype(page
, migratetype
);
1020 pages_moved
+= 1 << order
;
1026 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1029 unsigned long start_pfn
, end_pfn
;
1030 struct page
*start_page
, *end_page
;
1032 start_pfn
= page_to_pfn(page
);
1033 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1034 start_page
= pfn_to_page(start_pfn
);
1035 end_page
= start_page
+ pageblock_nr_pages
- 1;
1036 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1038 /* Do not cross zone boundaries */
1039 if (!zone_spans_pfn(zone
, start_pfn
))
1041 if (!zone_spans_pfn(zone
, end_pfn
))
1044 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1047 static void change_pageblock_range(struct page
*pageblock_page
,
1048 int start_order
, int migratetype
)
1050 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1052 while (nr_pageblocks
--) {
1053 set_pageblock_migratetype(pageblock_page
, migratetype
);
1054 pageblock_page
+= pageblock_nr_pages
;
1059 * If breaking a large block of pages, move all free pages to the preferred
1060 * allocation list. If falling back for a reclaimable kernel allocation, be
1061 * more aggressive about taking ownership of free pages.
1063 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1064 * nor move CMA pages to different free lists. We don't want unmovable pages
1065 * to be allocated from MIGRATE_CMA areas.
1067 * Returns the new migratetype of the pageblock (or the same old migratetype
1068 * if it was unchanged).
1070 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1071 int start_type
, int fallback_type
)
1073 int current_order
= page_order(page
);
1076 * When borrowing from MIGRATE_CMA, we need to release the excess
1077 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1078 * is set to CMA so it is returned to the correct freelist in case
1079 * the page ends up being not actually allocated from the pcp lists.
1081 if (is_migrate_cma(fallback_type
))
1082 return fallback_type
;
1084 /* Take ownership for orders >= pageblock_order */
1085 if (current_order
>= pageblock_order
) {
1086 change_pageblock_range(page
, current_order
, start_type
);
1090 if (current_order
>= pageblock_order
/ 2 ||
1091 start_type
== MIGRATE_RECLAIMABLE
||
1092 page_group_by_mobility_disabled
) {
1095 pages
= move_freepages_block(zone
, page
, start_type
);
1097 /* Claim the whole block if over half of it is free */
1098 if (pages
>= (1 << (pageblock_order
-1)) ||
1099 page_group_by_mobility_disabled
) {
1101 set_pageblock_migratetype(page
, start_type
);
1107 return fallback_type
;
1110 /* Remove an element from the buddy allocator from the fallback list */
1111 static inline struct page
*
1112 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1114 struct free_area
*area
;
1115 unsigned int current_order
;
1117 int migratetype
, new_type
, i
;
1119 /* Find the largest possible block of pages in the other list */
1120 for (current_order
= MAX_ORDER
-1;
1121 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1124 migratetype
= fallbacks
[start_migratetype
][i
];
1126 /* MIGRATE_RESERVE handled later if necessary */
1127 if (migratetype
== MIGRATE_RESERVE
)
1130 area
= &(zone
->free_area
[current_order
]);
1131 if (list_empty(&area
->free_list
[migratetype
]))
1134 page
= list_entry(area
->free_list
[migratetype
].next
,
1138 new_type
= try_to_steal_freepages(zone
, page
,
1142 /* Remove the page from the freelists */
1143 list_del(&page
->lru
);
1144 rmv_page_order(page
);
1146 expand(zone
, page
, order
, current_order
, area
,
1148 /* The freepage_migratetype may differ from pageblock's
1149 * migratetype depending on the decisions in
1150 * try_to_steal_freepages. This is OK as long as it does
1151 * not differ for MIGRATE_CMA type.
1153 set_freepage_migratetype(page
, new_type
);
1155 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1156 start_migratetype
, migratetype
, new_type
);
1166 * Do the hard work of removing an element from the buddy allocator.
1167 * Call me with the zone->lock already held.
1169 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1175 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1177 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1178 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1181 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1182 * is used because __rmqueue_smallest is an inline function
1183 * and we want just one call site
1186 migratetype
= MIGRATE_RESERVE
;
1191 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1196 * Obtain a specified number of elements from the buddy allocator, all under
1197 * a single hold of the lock, for efficiency. Add them to the supplied list.
1198 * Returns the number of new pages which were placed at *list.
1200 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1201 unsigned long count
, struct list_head
*list
,
1202 int migratetype
, bool cold
)
1206 spin_lock(&zone
->lock
);
1207 for (i
= 0; i
< count
; ++i
) {
1208 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1209 if (unlikely(page
== NULL
))
1213 * Split buddy pages returned by expand() are received here
1214 * in physical page order. The page is added to the callers and
1215 * list and the list head then moves forward. From the callers
1216 * perspective, the linked list is ordered by page number in
1217 * some conditions. This is useful for IO devices that can
1218 * merge IO requests if the physical pages are ordered
1222 list_add(&page
->lru
, list
);
1224 list_add_tail(&page
->lru
, list
);
1226 if (is_migrate_cma(get_freepage_migratetype(page
)))
1227 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1230 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1231 spin_unlock(&zone
->lock
);
1237 * Called from the vmstat counter updater to drain pagesets of this
1238 * currently executing processor on remote nodes after they have
1241 * Note that this function must be called with the thread pinned to
1242 * a single processor.
1244 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1246 unsigned long flags
;
1248 unsigned long batch
;
1250 local_irq_save(flags
);
1251 batch
= ACCESS_ONCE(pcp
->batch
);
1252 if (pcp
->count
>= batch
)
1255 to_drain
= pcp
->count
;
1257 free_pcppages_bulk(zone
, to_drain
, pcp
);
1258 pcp
->count
-= to_drain
;
1260 local_irq_restore(flags
);
1265 * Drain pages of the indicated processor.
1267 * The processor must either be the current processor and the
1268 * thread pinned to the current processor or a processor that
1271 static void drain_pages(unsigned int cpu
)
1273 unsigned long flags
;
1276 for_each_populated_zone(zone
) {
1277 struct per_cpu_pageset
*pset
;
1278 struct per_cpu_pages
*pcp
;
1280 local_irq_save(flags
);
1281 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1285 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1288 local_irq_restore(flags
);
1293 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1295 void drain_local_pages(void *arg
)
1297 drain_pages(smp_processor_id());
1301 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1303 * Note that this code is protected against sending an IPI to an offline
1304 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1305 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1306 * nothing keeps CPUs from showing up after we populated the cpumask and
1307 * before the call to on_each_cpu_mask().
1309 void drain_all_pages(void)
1312 struct per_cpu_pageset
*pcp
;
1316 * Allocate in the BSS so we wont require allocation in
1317 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1319 static cpumask_t cpus_with_pcps
;
1322 * We don't care about racing with CPU hotplug event
1323 * as offline notification will cause the notified
1324 * cpu to drain that CPU pcps and on_each_cpu_mask
1325 * disables preemption as part of its processing
1327 for_each_online_cpu(cpu
) {
1328 bool has_pcps
= false;
1329 for_each_populated_zone(zone
) {
1330 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1331 if (pcp
->pcp
.count
) {
1337 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1339 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1341 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1344 #ifdef CONFIG_HIBERNATION
1346 void mark_free_pages(struct zone
*zone
)
1348 unsigned long pfn
, max_zone_pfn
;
1349 unsigned long flags
;
1350 unsigned int order
, t
;
1351 struct list_head
*curr
;
1353 if (zone_is_empty(zone
))
1356 spin_lock_irqsave(&zone
->lock
, flags
);
1358 max_zone_pfn
= zone_end_pfn(zone
);
1359 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1360 if (pfn_valid(pfn
)) {
1361 struct page
*page
= pfn_to_page(pfn
);
1363 if (!swsusp_page_is_forbidden(page
))
1364 swsusp_unset_page_free(page
);
1367 for_each_migratetype_order(order
, t
) {
1368 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1371 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1372 for (i
= 0; i
< (1UL << order
); i
++)
1373 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1376 spin_unlock_irqrestore(&zone
->lock
, flags
);
1378 #endif /* CONFIG_PM */
1381 * Free a 0-order page
1382 * cold == true ? free a cold page : free a hot page
1384 void free_hot_cold_page(struct page
*page
, bool cold
)
1386 struct zone
*zone
= page_zone(page
);
1387 struct per_cpu_pages
*pcp
;
1388 unsigned long flags
;
1389 unsigned long pfn
= page_to_pfn(page
);
1392 if (!free_pages_prepare(page
, 0))
1395 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1396 set_freepage_migratetype(page
, migratetype
);
1397 local_irq_save(flags
);
1398 __count_vm_event(PGFREE
);
1401 * We only track unmovable, reclaimable and movable on pcp lists.
1402 * Free ISOLATE pages back to the allocator because they are being
1403 * offlined but treat RESERVE as movable pages so we can get those
1404 * areas back if necessary. Otherwise, we may have to free
1405 * excessively into the page allocator
1407 if (migratetype
>= MIGRATE_PCPTYPES
) {
1408 if (unlikely(is_migrate_isolate(migratetype
))) {
1409 free_one_page(zone
, page
, pfn
, 0, migratetype
);
1412 migratetype
= MIGRATE_MOVABLE
;
1415 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1417 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1419 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1421 if (pcp
->count
>= pcp
->high
) {
1422 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1423 free_pcppages_bulk(zone
, batch
, pcp
);
1424 pcp
->count
-= batch
;
1428 local_irq_restore(flags
);
1432 * Free a list of 0-order pages
1434 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
1436 struct page
*page
, *next
;
1438 list_for_each_entry_safe(page
, next
, list
, lru
) {
1439 trace_mm_page_free_batched(page
, cold
);
1440 free_hot_cold_page(page
, cold
);
1445 * split_page takes a non-compound higher-order page, and splits it into
1446 * n (1<<order) sub-pages: page[0..n]
1447 * Each sub-page must be freed individually.
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1452 void split_page(struct page
*page
, unsigned int order
)
1456 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1457 VM_BUG_ON_PAGE(!page_count(page
), page
);
1459 #ifdef CONFIG_KMEMCHECK
1461 * Split shadow pages too, because free(page[0]) would
1462 * otherwise free the whole shadow.
1464 if (kmemcheck_page_is_tracked(page
))
1465 split_page(virt_to_page(page
[0].shadow
), order
);
1468 for (i
= 1; i
< (1 << order
); i
++)
1469 set_page_refcounted(page
+ i
);
1471 EXPORT_SYMBOL_GPL(split_page
);
1473 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1475 unsigned long watermark
;
1479 BUG_ON(!PageBuddy(page
));
1481 zone
= page_zone(page
);
1482 mt
= get_pageblock_migratetype(page
);
1484 if (!is_migrate_isolate(mt
)) {
1485 /* Obey watermarks as if the page was being allocated */
1486 watermark
= low_wmark_pages(zone
) + (1 << order
);
1487 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1490 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1493 /* Remove page from free list */
1494 list_del(&page
->lru
);
1495 zone
->free_area
[order
].nr_free
--;
1496 rmv_page_order(page
);
1498 /* Set the pageblock if the isolated page is at least a pageblock */
1499 if (order
>= pageblock_order
- 1) {
1500 struct page
*endpage
= page
+ (1 << order
) - 1;
1501 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1502 int mt
= get_pageblock_migratetype(page
);
1503 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1504 set_pageblock_migratetype(page
,
1509 return 1UL << order
;
1513 * Similar to split_page except the page is already free. As this is only
1514 * being used for migration, the migratetype of the block also changes.
1515 * As this is called with interrupts disabled, the caller is responsible
1516 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1519 * Note: this is probably too low level an operation for use in drivers.
1520 * Please consult with lkml before using this in your driver.
1522 int split_free_page(struct page
*page
)
1527 order
= page_order(page
);
1529 nr_pages
= __isolate_free_page(page
, order
);
1533 /* Split into individual pages */
1534 set_page_refcounted(page
);
1535 split_page(page
, order
);
1540 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1541 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1545 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1546 struct zone
*zone
, unsigned int order
,
1547 gfp_t gfp_flags
, int migratetype
)
1549 unsigned long flags
;
1551 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
1554 if (likely(order
== 0)) {
1555 struct per_cpu_pages
*pcp
;
1556 struct list_head
*list
;
1558 local_irq_save(flags
);
1559 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1560 list
= &pcp
->lists
[migratetype
];
1561 if (list_empty(list
)) {
1562 pcp
->count
+= rmqueue_bulk(zone
, 0,
1565 if (unlikely(list_empty(list
)))
1570 page
= list_entry(list
->prev
, struct page
, lru
);
1572 page
= list_entry(list
->next
, struct page
, lru
);
1574 list_del(&page
->lru
);
1577 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1579 * __GFP_NOFAIL is not to be used in new code.
1581 * All __GFP_NOFAIL callers should be fixed so that they
1582 * properly detect and handle allocation failures.
1584 * We most definitely don't want callers attempting to
1585 * allocate greater than order-1 page units with
1588 WARN_ON_ONCE(order
> 1);
1590 spin_lock_irqsave(&zone
->lock
, flags
);
1591 page
= __rmqueue(zone
, order
, migratetype
);
1592 spin_unlock(&zone
->lock
);
1595 __mod_zone_freepage_state(zone
, -(1 << order
),
1596 get_freepage_migratetype(page
));
1599 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1601 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1602 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1603 local_irq_restore(flags
);
1605 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1606 if (prep_new_page(page
, order
, gfp_flags
))
1611 local_irq_restore(flags
);
1615 #ifdef CONFIG_FAIL_PAGE_ALLOC
1618 struct fault_attr attr
;
1620 u32 ignore_gfp_highmem
;
1621 u32 ignore_gfp_wait
;
1623 } fail_page_alloc
= {
1624 .attr
= FAULT_ATTR_INITIALIZER
,
1625 .ignore_gfp_wait
= 1,
1626 .ignore_gfp_highmem
= 1,
1630 static int __init
setup_fail_page_alloc(char *str
)
1632 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1634 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1636 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1638 if (order
< fail_page_alloc
.min_order
)
1640 if (gfp_mask
& __GFP_NOFAIL
)
1642 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1644 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1647 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1650 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1652 static int __init
fail_page_alloc_debugfs(void)
1654 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1657 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1658 &fail_page_alloc
.attr
);
1660 return PTR_ERR(dir
);
1662 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1663 &fail_page_alloc
.ignore_gfp_wait
))
1665 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1666 &fail_page_alloc
.ignore_gfp_highmem
))
1668 if (!debugfs_create_u32("min-order", mode
, dir
,
1669 &fail_page_alloc
.min_order
))
1674 debugfs_remove_recursive(dir
);
1679 late_initcall(fail_page_alloc_debugfs
);
1681 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1683 #else /* CONFIG_FAIL_PAGE_ALLOC */
1685 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1690 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1693 * Return true if free pages are above 'mark'. This takes into account the order
1694 * of the allocation.
1696 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
1697 unsigned long mark
, int classzone_idx
, int alloc_flags
,
1700 /* free_pages my go negative - that's OK */
1702 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1706 free_pages
-= (1 << order
) - 1;
1707 if (alloc_flags
& ALLOC_HIGH
)
1709 if (alloc_flags
& ALLOC_HARDER
)
1712 /* If allocation can't use CMA areas don't use free CMA pages */
1713 if (!(alloc_flags
& ALLOC_CMA
))
1714 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1717 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1719 for (o
= 0; o
< order
; o
++) {
1720 /* At the next order, this order's pages become unavailable */
1721 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1723 /* Require fewer higher order pages to be free */
1726 if (free_pages
<= min
)
1732 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
1733 int classzone_idx
, int alloc_flags
)
1735 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1736 zone_page_state(z
, NR_FREE_PAGES
));
1739 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
1740 unsigned long mark
, int classzone_idx
, int alloc_flags
)
1742 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1744 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1745 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1747 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1753 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1754 * skip over zones that are not allowed by the cpuset, or that have
1755 * been recently (in last second) found to be nearly full. See further
1756 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1757 * that have to skip over a lot of full or unallowed zones.
1759 * If the zonelist cache is present in the passed zonelist, then
1760 * returns a pointer to the allowed node mask (either the current
1761 * tasks mems_allowed, or node_states[N_MEMORY].)
1763 * If the zonelist cache is not available for this zonelist, does
1764 * nothing and returns NULL.
1766 * If the fullzones BITMAP in the zonelist cache is stale (more than
1767 * a second since last zap'd) then we zap it out (clear its bits.)
1769 * We hold off even calling zlc_setup, until after we've checked the
1770 * first zone in the zonelist, on the theory that most allocations will
1771 * be satisfied from that first zone, so best to examine that zone as
1772 * quickly as we can.
1774 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1776 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1777 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1779 zlc
= zonelist
->zlcache_ptr
;
1783 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1784 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1785 zlc
->last_full_zap
= jiffies
;
1788 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1789 &cpuset_current_mems_allowed
:
1790 &node_states
[N_MEMORY
];
1791 return allowednodes
;
1795 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1796 * if it is worth looking at further for free memory:
1797 * 1) Check that the zone isn't thought to be full (doesn't have its
1798 * bit set in the zonelist_cache fullzones BITMAP).
1799 * 2) Check that the zones node (obtained from the zonelist_cache
1800 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1801 * Return true (non-zero) if zone is worth looking at further, or
1802 * else return false (zero) if it is not.
1804 * This check -ignores- the distinction between various watermarks,
1805 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1806 * found to be full for any variation of these watermarks, it will
1807 * be considered full for up to one second by all requests, unless
1808 * we are so low on memory on all allowed nodes that we are forced
1809 * into the second scan of the zonelist.
1811 * In the second scan we ignore this zonelist cache and exactly
1812 * apply the watermarks to all zones, even it is slower to do so.
1813 * We are low on memory in the second scan, and should leave no stone
1814 * unturned looking for a free page.
1816 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1817 nodemask_t
*allowednodes
)
1819 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1820 int i
; /* index of *z in zonelist zones */
1821 int n
; /* node that zone *z is on */
1823 zlc
= zonelist
->zlcache_ptr
;
1827 i
= z
- zonelist
->_zonerefs
;
1830 /* This zone is worth trying if it is allowed but not full */
1831 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1835 * Given 'z' scanning a zonelist, set the corresponding bit in
1836 * zlc->fullzones, so that subsequent attempts to allocate a page
1837 * from that zone don't waste time re-examining it.
1839 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1841 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1842 int i
; /* index of *z in zonelist zones */
1844 zlc
= zonelist
->zlcache_ptr
;
1848 i
= z
- zonelist
->_zonerefs
;
1850 set_bit(i
, zlc
->fullzones
);
1854 * clear all zones full, called after direct reclaim makes progress so that
1855 * a zone that was recently full is not skipped over for up to a second
1857 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1859 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1861 zlc
= zonelist
->zlcache_ptr
;
1865 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1868 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1870 return local_zone
->node
== zone
->node
;
1873 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1875 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
1879 #else /* CONFIG_NUMA */
1881 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1886 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1887 nodemask_t
*allowednodes
)
1892 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1896 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1900 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1905 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1910 #endif /* CONFIG_NUMA */
1913 * get_page_from_freelist goes through the zonelist trying to allocate
1916 static struct page
*
1917 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1918 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1919 struct zone
*preferred_zone
, int classzone_idx
, int migratetype
)
1922 struct page
*page
= NULL
;
1924 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1925 int zlc_active
= 0; /* set if using zonelist_cache */
1926 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1927 bool consider_zone_dirty
= (alloc_flags
& ALLOC_WMARK_LOW
) &&
1928 (gfp_mask
& __GFP_WRITE
);
1932 * Scan zonelist, looking for a zone with enough free.
1933 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1935 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1936 high_zoneidx
, nodemask
) {
1939 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1940 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1942 if (cpusets_enabled() &&
1943 (alloc_flags
& ALLOC_CPUSET
) &&
1944 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1947 * Distribute pages in proportion to the individual
1948 * zone size to ensure fair page aging. The zone a
1949 * page was allocated in should have no effect on the
1950 * time the page has in memory before being reclaimed.
1952 if (alloc_flags
& ALLOC_FAIR
) {
1953 if (!zone_local(preferred_zone
, zone
))
1955 if (zone_page_state(zone
, NR_ALLOC_BATCH
) <= 0)
1959 * When allocating a page cache page for writing, we
1960 * want to get it from a zone that is within its dirty
1961 * limit, such that no single zone holds more than its
1962 * proportional share of globally allowed dirty pages.
1963 * The dirty limits take into account the zone's
1964 * lowmem reserves and high watermark so that kswapd
1965 * should be able to balance it without having to
1966 * write pages from its LRU list.
1968 * This may look like it could increase pressure on
1969 * lower zones by failing allocations in higher zones
1970 * before they are full. But the pages that do spill
1971 * over are limited as the lower zones are protected
1972 * by this very same mechanism. It should not become
1973 * a practical burden to them.
1975 * XXX: For now, allow allocations to potentially
1976 * exceed the per-zone dirty limit in the slowpath
1977 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1978 * which is important when on a NUMA setup the allowed
1979 * zones are together not big enough to reach the
1980 * global limit. The proper fix for these situations
1981 * will require awareness of zones in the
1982 * dirty-throttling and the flusher threads.
1984 if (consider_zone_dirty
&& !zone_dirty_ok(zone
))
1987 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1988 if (!zone_watermark_ok(zone
, order
, mark
,
1989 classzone_idx
, alloc_flags
)) {
1992 /* Checked here to keep the fast path fast */
1993 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1994 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1997 if (IS_ENABLED(CONFIG_NUMA
) &&
1998 !did_zlc_setup
&& nr_online_nodes
> 1) {
2000 * we do zlc_setup if there are multiple nodes
2001 * and before considering the first zone allowed
2004 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2009 if (zone_reclaim_mode
== 0 ||
2010 !zone_allows_reclaim(preferred_zone
, zone
))
2011 goto this_zone_full
;
2014 * As we may have just activated ZLC, check if the first
2015 * eligible zone has failed zone_reclaim recently.
2017 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2018 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2021 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2023 case ZONE_RECLAIM_NOSCAN
:
2026 case ZONE_RECLAIM_FULL
:
2027 /* scanned but unreclaimable */
2030 /* did we reclaim enough */
2031 if (zone_watermark_ok(zone
, order
, mark
,
2032 classzone_idx
, alloc_flags
))
2036 * Failed to reclaim enough to meet watermark.
2037 * Only mark the zone full if checking the min
2038 * watermark or if we failed to reclaim just
2039 * 1<<order pages or else the page allocator
2040 * fastpath will prematurely mark zones full
2041 * when the watermark is between the low and
2044 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2045 ret
== ZONE_RECLAIM_SOME
)
2046 goto this_zone_full
;
2053 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2054 gfp_mask
, migratetype
);
2058 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
)
2059 zlc_mark_zone_full(zonelist
, z
);
2062 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
2063 /* Disable zlc cache for second zonelist scan */
2070 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2071 * necessary to allocate the page. The expectation is
2072 * that the caller is taking steps that will free more
2073 * memory. The caller should avoid the page being used
2074 * for !PFMEMALLOC purposes.
2076 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2082 * Large machines with many possible nodes should not always dump per-node
2083 * meminfo in irq context.
2085 static inline bool should_suppress_show_mem(void)
2090 ret
= in_interrupt();
2095 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2096 DEFAULT_RATELIMIT_INTERVAL
,
2097 DEFAULT_RATELIMIT_BURST
);
2099 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2101 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2103 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2104 debug_guardpage_minorder() > 0)
2108 * This documents exceptions given to allocations in certain
2109 * contexts that are allowed to allocate outside current's set
2112 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2113 if (test_thread_flag(TIF_MEMDIE
) ||
2114 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2115 filter
&= ~SHOW_MEM_FILTER_NODES
;
2116 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2117 filter
&= ~SHOW_MEM_FILTER_NODES
;
2120 struct va_format vaf
;
2123 va_start(args
, fmt
);
2128 pr_warn("%pV", &vaf
);
2133 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2134 current
->comm
, order
, gfp_mask
);
2137 if (!should_suppress_show_mem())
2142 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2143 unsigned long did_some_progress
,
2144 unsigned long pages_reclaimed
)
2146 /* Do not loop if specifically requested */
2147 if (gfp_mask
& __GFP_NORETRY
)
2150 /* Always retry if specifically requested */
2151 if (gfp_mask
& __GFP_NOFAIL
)
2155 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2156 * making forward progress without invoking OOM. Suspend also disables
2157 * storage devices so kswapd will not help. Bail if we are suspending.
2159 if (!did_some_progress
&& pm_suspended_storage())
2163 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2164 * means __GFP_NOFAIL, but that may not be true in other
2167 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2171 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2172 * specified, then we retry until we no longer reclaim any pages
2173 * (above), or we've reclaimed an order of pages at least as
2174 * large as the allocation's order. In both cases, if the
2175 * allocation still fails, we stop retrying.
2177 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2183 static inline struct page
*
2184 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2185 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2186 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2187 int classzone_idx
, int migratetype
)
2191 /* Acquire the OOM killer lock for the zones in zonelist */
2192 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2193 schedule_timeout_uninterruptible(1);
2198 * Go through the zonelist yet one more time, keep very high watermark
2199 * here, this is only to catch a parallel oom killing, we must fail if
2200 * we're still under heavy pressure.
2202 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2203 order
, zonelist
, high_zoneidx
,
2204 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2205 preferred_zone
, classzone_idx
, migratetype
);
2209 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2210 /* The OOM killer will not help higher order allocs */
2211 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2213 /* The OOM killer does not needlessly kill tasks for lowmem */
2214 if (high_zoneidx
< ZONE_NORMAL
)
2217 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2218 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2219 * The caller should handle page allocation failure by itself if
2220 * it specifies __GFP_THISNODE.
2221 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2223 if (gfp_mask
& __GFP_THISNODE
)
2226 /* Exhausted what can be done so it's blamo time */
2227 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2230 clear_zonelist_oom(zonelist
, gfp_mask
);
2234 #ifdef CONFIG_COMPACTION
2235 /* Try memory compaction for high-order allocations before reclaim */
2236 static struct page
*
2237 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2238 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2239 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2240 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2241 bool *contended_compaction
, bool *deferred_compaction
,
2242 unsigned long *did_some_progress
)
2247 if (compaction_deferred(preferred_zone
, order
)) {
2248 *deferred_compaction
= true;
2252 current
->flags
|= PF_MEMALLOC
;
2253 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2255 contended_compaction
);
2256 current
->flags
&= ~PF_MEMALLOC
;
2258 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2261 /* Page migration frees to the PCP lists but we want merging */
2262 drain_pages(get_cpu());
2265 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2266 order
, zonelist
, high_zoneidx
,
2267 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2268 preferred_zone
, classzone_idx
, migratetype
);
2270 preferred_zone
->compact_blockskip_flush
= false;
2271 compaction_defer_reset(preferred_zone
, order
, true);
2272 count_vm_event(COMPACTSUCCESS
);
2277 * It's bad if compaction run occurs and fails.
2278 * The most likely reason is that pages exist,
2279 * but not enough to satisfy watermarks.
2281 count_vm_event(COMPACTFAIL
);
2284 * As async compaction considers a subset of pageblocks, only
2285 * defer if the failure was a sync compaction failure.
2287 if (mode
!= MIGRATE_ASYNC
)
2288 defer_compaction(preferred_zone
, order
);
2296 static inline struct page
*
2297 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2298 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2299 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2300 int classzone_idx
, int migratetype
,
2301 enum migrate_mode mode
, bool *contended_compaction
,
2302 bool *deferred_compaction
, unsigned long *did_some_progress
)
2306 #endif /* CONFIG_COMPACTION */
2308 /* Perform direct synchronous page reclaim */
2310 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2311 nodemask_t
*nodemask
)
2313 struct reclaim_state reclaim_state
;
2318 /* We now go into synchronous reclaim */
2319 cpuset_memory_pressure_bump();
2320 current
->flags
|= PF_MEMALLOC
;
2321 lockdep_set_current_reclaim_state(gfp_mask
);
2322 reclaim_state
.reclaimed_slab
= 0;
2323 current
->reclaim_state
= &reclaim_state
;
2325 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2327 current
->reclaim_state
= NULL
;
2328 lockdep_clear_current_reclaim_state();
2329 current
->flags
&= ~PF_MEMALLOC
;
2336 /* The really slow allocator path where we enter direct reclaim */
2337 static inline struct page
*
2338 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2339 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2340 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2341 int classzone_idx
, int migratetype
, unsigned long *did_some_progress
)
2343 struct page
*page
= NULL
;
2344 bool drained
= false;
2346 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2348 if (unlikely(!(*did_some_progress
)))
2351 /* After successful reclaim, reconsider all zones for allocation */
2352 if (IS_ENABLED(CONFIG_NUMA
))
2353 zlc_clear_zones_full(zonelist
);
2356 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2357 zonelist
, high_zoneidx
,
2358 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2359 preferred_zone
, classzone_idx
,
2363 * If an allocation failed after direct reclaim, it could be because
2364 * pages are pinned on the per-cpu lists. Drain them and try again
2366 if (!page
&& !drained
) {
2376 * This is called in the allocator slow-path if the allocation request is of
2377 * sufficient urgency to ignore watermarks and take other desperate measures
2379 static inline struct page
*
2380 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2381 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2382 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2383 int classzone_idx
, int migratetype
)
2388 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2389 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2390 preferred_zone
, classzone_idx
, migratetype
);
2392 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2393 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2394 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2399 static void reset_alloc_batches(struct zonelist
*zonelist
,
2400 enum zone_type high_zoneidx
,
2401 struct zone
*preferred_zone
)
2406 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
2408 * Only reset the batches of zones that were actually
2409 * considered in the fairness pass, we don't want to
2410 * trash fairness information for zones that are not
2411 * actually part of this zonelist's round-robin cycle.
2413 if (!zone_local(preferred_zone
, zone
))
2415 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2416 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2417 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2421 static void wake_all_kswapds(unsigned int order
,
2422 struct zonelist
*zonelist
,
2423 enum zone_type high_zoneidx
,
2424 struct zone
*preferred_zone
)
2429 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2430 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2434 gfp_to_alloc_flags(gfp_t gfp_mask
)
2436 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2437 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2439 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2440 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2443 * The caller may dip into page reserves a bit more if the caller
2444 * cannot run direct reclaim, or if the caller has realtime scheduling
2445 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2446 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2448 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2452 * Not worth trying to allocate harder for
2453 * __GFP_NOMEMALLOC even if it can't schedule.
2455 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2456 alloc_flags
|= ALLOC_HARDER
;
2458 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2459 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2461 alloc_flags
&= ~ALLOC_CPUSET
;
2462 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2463 alloc_flags
|= ALLOC_HARDER
;
2465 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2466 if (gfp_mask
& __GFP_MEMALLOC
)
2467 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2468 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2469 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2470 else if (!in_interrupt() &&
2471 ((current
->flags
& PF_MEMALLOC
) ||
2472 unlikely(test_thread_flag(TIF_MEMDIE
))))
2473 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2476 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2477 alloc_flags
|= ALLOC_CMA
;
2482 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2484 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2487 static inline struct page
*
2488 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2489 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2490 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2491 int classzone_idx
, int migratetype
)
2493 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2494 struct page
*page
= NULL
;
2496 unsigned long pages_reclaimed
= 0;
2497 unsigned long did_some_progress
;
2498 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2499 bool deferred_compaction
= false;
2500 bool contended_compaction
= false;
2503 * In the slowpath, we sanity check order to avoid ever trying to
2504 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2505 * be using allocators in order of preference for an area that is
2508 if (order
>= MAX_ORDER
) {
2509 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2514 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2515 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2516 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2517 * using a larger set of nodes after it has established that the
2518 * allowed per node queues are empty and that nodes are
2521 if (IS_ENABLED(CONFIG_NUMA
) &&
2522 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2526 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2527 wake_all_kswapds(order
, zonelist
, high_zoneidx
, preferred_zone
);
2530 * OK, we're below the kswapd watermark and have kicked background
2531 * reclaim. Now things get more complex, so set up alloc_flags according
2532 * to how we want to proceed.
2534 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2537 * Find the true preferred zone if the allocation is unconstrained by
2540 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
) {
2541 struct zoneref
*preferred_zoneref
;
2542 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2543 NULL
, &preferred_zone
);
2544 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2548 /* This is the last chance, in general, before the goto nopage. */
2549 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2550 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2551 preferred_zone
, classzone_idx
, migratetype
);
2555 /* Allocate without watermarks if the context allows */
2556 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2558 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2559 * the allocation is high priority and these type of
2560 * allocations are system rather than user orientated
2562 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2564 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2565 zonelist
, high_zoneidx
, nodemask
,
2566 preferred_zone
, classzone_idx
, migratetype
);
2572 /* Atomic allocations - we can't balance anything */
2575 * All existing users of the deprecated __GFP_NOFAIL are
2576 * blockable, so warn of any new users that actually allow this
2577 * type of allocation to fail.
2579 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
2583 /* Avoid recursion of direct reclaim */
2584 if (current
->flags
& PF_MEMALLOC
)
2587 /* Avoid allocations with no watermarks from looping endlessly */
2588 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2592 * Try direct compaction. The first pass is asynchronous. Subsequent
2593 * attempts after direct reclaim are synchronous
2595 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2596 high_zoneidx
, nodemask
, alloc_flags
,
2598 classzone_idx
, migratetype
,
2599 migration_mode
, &contended_compaction
,
2600 &deferred_compaction
,
2601 &did_some_progress
);
2606 * It can become very expensive to allocate transparent hugepages at
2607 * fault, so use asynchronous memory compaction for THP unless it is
2608 * khugepaged trying to collapse.
2610 if (!(gfp_mask
& __GFP_NO_KSWAPD
) || (current
->flags
& PF_KTHREAD
))
2611 migration_mode
= MIGRATE_SYNC_LIGHT
;
2614 * If compaction is deferred for high-order allocations, it is because
2615 * sync compaction recently failed. In this is the case and the caller
2616 * requested a movable allocation that does not heavily disrupt the
2617 * system then fail the allocation instead of entering direct reclaim.
2619 if ((deferred_compaction
|| contended_compaction
) &&
2620 (gfp_mask
& __GFP_NO_KSWAPD
))
2623 /* Try direct reclaim and then allocating */
2624 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2625 zonelist
, high_zoneidx
,
2627 alloc_flags
, preferred_zone
,
2628 classzone_idx
, migratetype
,
2629 &did_some_progress
);
2634 * If we failed to make any progress reclaiming, then we are
2635 * running out of options and have to consider going OOM
2637 if (!did_some_progress
) {
2638 if (oom_gfp_allowed(gfp_mask
)) {
2639 if (oom_killer_disabled
)
2641 /* Coredumps can quickly deplete all memory reserves */
2642 if ((current
->flags
& PF_DUMPCORE
) &&
2643 !(gfp_mask
& __GFP_NOFAIL
))
2645 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2646 zonelist
, high_zoneidx
,
2647 nodemask
, preferred_zone
,
2648 classzone_idx
, migratetype
);
2652 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2654 * The oom killer is not called for high-order
2655 * allocations that may fail, so if no progress
2656 * is being made, there are no other options and
2657 * retrying is unlikely to help.
2659 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2662 * The oom killer is not called for lowmem
2663 * allocations to prevent needlessly killing
2666 if (high_zoneidx
< ZONE_NORMAL
)
2674 /* Check if we should retry the allocation */
2675 pages_reclaimed
+= did_some_progress
;
2676 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2678 /* Wait for some write requests to complete then retry */
2679 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2683 * High-order allocations do not necessarily loop after
2684 * direct reclaim and reclaim/compaction depends on compaction
2685 * being called after reclaim so call directly if necessary
2687 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2688 high_zoneidx
, nodemask
, alloc_flags
,
2690 classzone_idx
, migratetype
,
2691 migration_mode
, &contended_compaction
,
2692 &deferred_compaction
,
2693 &did_some_progress
);
2699 warn_alloc_failed(gfp_mask
, order
, NULL
);
2702 if (kmemcheck_enabled
)
2703 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2709 * This is the 'heart' of the zoned buddy allocator.
2712 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2713 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2715 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2716 struct zone
*preferred_zone
;
2717 struct zoneref
*preferred_zoneref
;
2718 struct page
*page
= NULL
;
2719 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2720 unsigned int cpuset_mems_cookie
;
2721 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2724 gfp_mask
&= gfp_allowed_mask
;
2726 lockdep_trace_alloc(gfp_mask
);
2728 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2730 if (should_fail_alloc_page(gfp_mask
, order
))
2734 * Check the zones suitable for the gfp_mask contain at least one
2735 * valid zone. It's possible to have an empty zonelist as a result
2736 * of GFP_THISNODE and a memoryless node
2738 if (unlikely(!zonelist
->_zonerefs
->zone
))
2742 cpuset_mems_cookie
= read_mems_allowed_begin();
2744 /* The preferred zone is used for statistics later */
2745 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2746 nodemask
? : &cpuset_current_mems_allowed
,
2748 if (!preferred_zone
)
2750 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2753 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2754 alloc_flags
|= ALLOC_CMA
;
2757 /* First allocation attempt */
2758 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2759 zonelist
, high_zoneidx
, alloc_flags
,
2760 preferred_zone
, classzone_idx
, migratetype
);
2761 if (unlikely(!page
)) {
2763 * The first pass makes sure allocations are spread
2764 * fairly within the local node. However, the local
2765 * node might have free pages left after the fairness
2766 * batches are exhausted, and remote zones haven't
2767 * even been considered yet. Try once more without
2768 * fairness, and include remote zones now, before
2769 * entering the slowpath and waking kswapd: prefer
2770 * spilling to a remote zone over swapping locally.
2772 if (alloc_flags
& ALLOC_FAIR
) {
2773 reset_alloc_batches(zonelist
, high_zoneidx
,
2775 alloc_flags
&= ~ALLOC_FAIR
;
2779 * Runtime PM, block IO and its error handling path
2780 * can deadlock because I/O on the device might not
2783 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2784 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2785 zonelist
, high_zoneidx
, nodemask
,
2786 preferred_zone
, classzone_idx
, migratetype
);
2789 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2793 * When updating a task's mems_allowed, it is possible to race with
2794 * parallel threads in such a way that an allocation can fail while
2795 * the mask is being updated. If a page allocation is about to fail,
2796 * check if the cpuset changed during allocation and if so, retry.
2798 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2803 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2806 * Common helper functions.
2808 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2813 * __get_free_pages() returns a 32-bit address, which cannot represent
2816 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2818 page
= alloc_pages(gfp_mask
, order
);
2821 return (unsigned long) page_address(page
);
2823 EXPORT_SYMBOL(__get_free_pages
);
2825 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2827 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2829 EXPORT_SYMBOL(get_zeroed_page
);
2831 void __free_pages(struct page
*page
, unsigned int order
)
2833 if (put_page_testzero(page
)) {
2835 free_hot_cold_page(page
, false);
2837 __free_pages_ok(page
, order
);
2841 EXPORT_SYMBOL(__free_pages
);
2843 void free_pages(unsigned long addr
, unsigned int order
)
2846 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2847 __free_pages(virt_to_page((void *)addr
), order
);
2851 EXPORT_SYMBOL(free_pages
);
2854 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2855 * of the current memory cgroup.
2857 * It should be used when the caller would like to use kmalloc, but since the
2858 * allocation is large, it has to fall back to the page allocator.
2860 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
2863 struct mem_cgroup
*memcg
= NULL
;
2865 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2867 page
= alloc_pages(gfp_mask
, order
);
2868 memcg_kmem_commit_charge(page
, memcg
, order
);
2872 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
2875 struct mem_cgroup
*memcg
= NULL
;
2877 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2879 page
= alloc_pages_node(nid
, gfp_mask
, order
);
2880 memcg_kmem_commit_charge(page
, memcg
, order
);
2885 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2888 void __free_kmem_pages(struct page
*page
, unsigned int order
)
2890 memcg_kmem_uncharge_pages(page
, order
);
2891 __free_pages(page
, order
);
2894 void free_kmem_pages(unsigned long addr
, unsigned int order
)
2897 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2898 __free_kmem_pages(virt_to_page((void *)addr
), order
);
2902 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2905 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2906 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2908 split_page(virt_to_page((void *)addr
), order
);
2909 while (used
< alloc_end
) {
2914 return (void *)addr
;
2918 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2919 * @size: the number of bytes to allocate
2920 * @gfp_mask: GFP flags for the allocation
2922 * This function is similar to alloc_pages(), except that it allocates the
2923 * minimum number of pages to satisfy the request. alloc_pages() can only
2924 * allocate memory in power-of-two pages.
2926 * This function is also limited by MAX_ORDER.
2928 * Memory allocated by this function must be released by free_pages_exact().
2930 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2932 unsigned int order
= get_order(size
);
2935 addr
= __get_free_pages(gfp_mask
, order
);
2936 return make_alloc_exact(addr
, order
, size
);
2938 EXPORT_SYMBOL(alloc_pages_exact
);
2941 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2943 * @nid: the preferred node ID where memory should be allocated
2944 * @size: the number of bytes to allocate
2945 * @gfp_mask: GFP flags for the allocation
2947 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2949 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2952 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2954 unsigned order
= get_order(size
);
2955 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2958 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2960 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2963 * free_pages_exact - release memory allocated via alloc_pages_exact()
2964 * @virt: the value returned by alloc_pages_exact.
2965 * @size: size of allocation, same value as passed to alloc_pages_exact().
2967 * Release the memory allocated by a previous call to alloc_pages_exact.
2969 void free_pages_exact(void *virt
, size_t size
)
2971 unsigned long addr
= (unsigned long)virt
;
2972 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2974 while (addr
< end
) {
2979 EXPORT_SYMBOL(free_pages_exact
);
2982 * nr_free_zone_pages - count number of pages beyond high watermark
2983 * @offset: The zone index of the highest zone
2985 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2986 * high watermark within all zones at or below a given zone index. For each
2987 * zone, the number of pages is calculated as:
2988 * managed_pages - high_pages
2990 static unsigned long nr_free_zone_pages(int offset
)
2995 /* Just pick one node, since fallback list is circular */
2996 unsigned long sum
= 0;
2998 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3000 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3001 unsigned long size
= zone
->managed_pages
;
3002 unsigned long high
= high_wmark_pages(zone
);
3011 * nr_free_buffer_pages - count number of pages beyond high watermark
3013 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3014 * watermark within ZONE_DMA and ZONE_NORMAL.
3016 unsigned long nr_free_buffer_pages(void)
3018 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3020 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3023 * nr_free_pagecache_pages - count number of pages beyond high watermark
3025 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3026 * high watermark within all zones.
3028 unsigned long nr_free_pagecache_pages(void)
3030 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3033 static inline void show_node(struct zone
*zone
)
3035 if (IS_ENABLED(CONFIG_NUMA
))
3036 printk("Node %d ", zone_to_nid(zone
));
3039 void si_meminfo(struct sysinfo
*val
)
3041 val
->totalram
= totalram_pages
;
3043 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3044 val
->bufferram
= nr_blockdev_pages();
3045 val
->totalhigh
= totalhigh_pages
;
3046 val
->freehigh
= nr_free_highpages();
3047 val
->mem_unit
= PAGE_SIZE
;
3050 EXPORT_SYMBOL(si_meminfo
);
3053 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3055 int zone_type
; /* needs to be signed */
3056 unsigned long managed_pages
= 0;
3057 pg_data_t
*pgdat
= NODE_DATA(nid
);
3059 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3060 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3061 val
->totalram
= managed_pages
;
3062 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3063 #ifdef CONFIG_HIGHMEM
3064 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3065 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3071 val
->mem_unit
= PAGE_SIZE
;
3076 * Determine whether the node should be displayed or not, depending on whether
3077 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3079 bool skip_free_areas_node(unsigned int flags
, int nid
)
3082 unsigned int cpuset_mems_cookie
;
3084 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3088 cpuset_mems_cookie
= read_mems_allowed_begin();
3089 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3090 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3095 #define K(x) ((x) << (PAGE_SHIFT-10))
3097 static void show_migration_types(unsigned char type
)
3099 static const char types
[MIGRATE_TYPES
] = {
3100 [MIGRATE_UNMOVABLE
] = 'U',
3101 [MIGRATE_RECLAIMABLE
] = 'E',
3102 [MIGRATE_MOVABLE
] = 'M',
3103 [MIGRATE_RESERVE
] = 'R',
3105 [MIGRATE_CMA
] = 'C',
3107 #ifdef CONFIG_MEMORY_ISOLATION
3108 [MIGRATE_ISOLATE
] = 'I',
3111 char tmp
[MIGRATE_TYPES
+ 1];
3115 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3116 if (type
& (1 << i
))
3121 printk("(%s) ", tmp
);
3125 * Show free area list (used inside shift_scroll-lock stuff)
3126 * We also calculate the percentage fragmentation. We do this by counting the
3127 * memory on each free list with the exception of the first item on the list.
3128 * Suppresses nodes that are not allowed by current's cpuset if
3129 * SHOW_MEM_FILTER_NODES is passed.
3131 void show_free_areas(unsigned int filter
)
3136 for_each_populated_zone(zone
) {
3137 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3140 printk("%s per-cpu:\n", zone
->name
);
3142 for_each_online_cpu(cpu
) {
3143 struct per_cpu_pageset
*pageset
;
3145 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3147 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3148 cpu
, pageset
->pcp
.high
,
3149 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3153 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3154 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3156 " dirty:%lu writeback:%lu unstable:%lu\n"
3157 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3158 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3160 global_page_state(NR_ACTIVE_ANON
),
3161 global_page_state(NR_INACTIVE_ANON
),
3162 global_page_state(NR_ISOLATED_ANON
),
3163 global_page_state(NR_ACTIVE_FILE
),
3164 global_page_state(NR_INACTIVE_FILE
),
3165 global_page_state(NR_ISOLATED_FILE
),
3166 global_page_state(NR_UNEVICTABLE
),
3167 global_page_state(NR_FILE_DIRTY
),
3168 global_page_state(NR_WRITEBACK
),
3169 global_page_state(NR_UNSTABLE_NFS
),
3170 global_page_state(NR_FREE_PAGES
),
3171 global_page_state(NR_SLAB_RECLAIMABLE
),
3172 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3173 global_page_state(NR_FILE_MAPPED
),
3174 global_page_state(NR_SHMEM
),
3175 global_page_state(NR_PAGETABLE
),
3176 global_page_state(NR_BOUNCE
),
3177 global_page_state(NR_FREE_CMA_PAGES
));
3179 for_each_populated_zone(zone
) {
3182 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3190 " active_anon:%lukB"
3191 " inactive_anon:%lukB"
3192 " active_file:%lukB"
3193 " inactive_file:%lukB"
3194 " unevictable:%lukB"
3195 " isolated(anon):%lukB"
3196 " isolated(file):%lukB"
3204 " slab_reclaimable:%lukB"
3205 " slab_unreclaimable:%lukB"
3206 " kernel_stack:%lukB"
3211 " writeback_tmp:%lukB"
3212 " pages_scanned:%lu"
3213 " all_unreclaimable? %s"
3216 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3217 K(min_wmark_pages(zone
)),
3218 K(low_wmark_pages(zone
)),
3219 K(high_wmark_pages(zone
)),
3220 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3221 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3222 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3223 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3224 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3225 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3226 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3227 K(zone
->present_pages
),
3228 K(zone
->managed_pages
),
3229 K(zone_page_state(zone
, NR_MLOCK
)),
3230 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3231 K(zone_page_state(zone
, NR_WRITEBACK
)),
3232 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3233 K(zone_page_state(zone
, NR_SHMEM
)),
3234 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3235 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3236 zone_page_state(zone
, NR_KERNEL_STACK
) *
3238 K(zone_page_state(zone
, NR_PAGETABLE
)),
3239 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3240 K(zone_page_state(zone
, NR_BOUNCE
)),
3241 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3242 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3243 zone
->pages_scanned
,
3244 (!zone_reclaimable(zone
) ? "yes" : "no")
3246 printk("lowmem_reserve[]:");
3247 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3248 printk(" %lu", zone
->lowmem_reserve
[i
]);
3252 for_each_populated_zone(zone
) {
3253 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3254 unsigned char types
[MAX_ORDER
];
3256 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3259 printk("%s: ", zone
->name
);
3261 spin_lock_irqsave(&zone
->lock
, flags
);
3262 for (order
= 0; order
< MAX_ORDER
; order
++) {
3263 struct free_area
*area
= &zone
->free_area
[order
];
3266 nr
[order
] = area
->nr_free
;
3267 total
+= nr
[order
] << order
;
3270 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3271 if (!list_empty(&area
->free_list
[type
]))
3272 types
[order
] |= 1 << type
;
3275 spin_unlock_irqrestore(&zone
->lock
, flags
);
3276 for (order
= 0; order
< MAX_ORDER
; order
++) {
3277 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3279 show_migration_types(types
[order
]);
3281 printk("= %lukB\n", K(total
));
3284 hugetlb_show_meminfo();
3286 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3288 show_swap_cache_info();
3291 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3293 zoneref
->zone
= zone
;
3294 zoneref
->zone_idx
= zone_idx(zone
);
3298 * Builds allocation fallback zone lists.
3300 * Add all populated zones of a node to the zonelist.
3302 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3306 enum zone_type zone_type
= MAX_NR_ZONES
;
3310 zone
= pgdat
->node_zones
+ zone_type
;
3311 if (populated_zone(zone
)) {
3312 zoneref_set_zone(zone
,
3313 &zonelist
->_zonerefs
[nr_zones
++]);
3314 check_highest_zone(zone_type
);
3316 } while (zone_type
);
3324 * 0 = automatic detection of better ordering.
3325 * 1 = order by ([node] distance, -zonetype)
3326 * 2 = order by (-zonetype, [node] distance)
3328 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3329 * the same zonelist. So only NUMA can configure this param.
3331 #define ZONELIST_ORDER_DEFAULT 0
3332 #define ZONELIST_ORDER_NODE 1
3333 #define ZONELIST_ORDER_ZONE 2
3335 /* zonelist order in the kernel.
3336 * set_zonelist_order() will set this to NODE or ZONE.
3338 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3339 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3343 /* The value user specified ....changed by config */
3344 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3345 /* string for sysctl */
3346 #define NUMA_ZONELIST_ORDER_LEN 16
3347 char numa_zonelist_order
[16] = "default";
3350 * interface for configure zonelist ordering.
3351 * command line option "numa_zonelist_order"
3352 * = "[dD]efault - default, automatic configuration.
3353 * = "[nN]ode - order by node locality, then by zone within node
3354 * = "[zZ]one - order by zone, then by locality within zone
3357 static int __parse_numa_zonelist_order(char *s
)
3359 if (*s
== 'd' || *s
== 'D') {
3360 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3361 } else if (*s
== 'n' || *s
== 'N') {
3362 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3363 } else if (*s
== 'z' || *s
== 'Z') {
3364 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3367 "Ignoring invalid numa_zonelist_order value: "
3374 static __init
int setup_numa_zonelist_order(char *s
)
3381 ret
= __parse_numa_zonelist_order(s
);
3383 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3387 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3390 * sysctl handler for numa_zonelist_order
3392 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
3393 void __user
*buffer
, size_t *length
,
3396 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3398 static DEFINE_MUTEX(zl_order_mutex
);
3400 mutex_lock(&zl_order_mutex
);
3402 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3406 strcpy(saved_string
, (char *)table
->data
);
3408 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3412 int oldval
= user_zonelist_order
;
3414 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3417 * bogus value. restore saved string
3419 strncpy((char *)table
->data
, saved_string
,
3420 NUMA_ZONELIST_ORDER_LEN
);
3421 user_zonelist_order
= oldval
;
3422 } else if (oldval
!= user_zonelist_order
) {
3423 mutex_lock(&zonelists_mutex
);
3424 build_all_zonelists(NULL
, NULL
);
3425 mutex_unlock(&zonelists_mutex
);
3429 mutex_unlock(&zl_order_mutex
);
3434 #define MAX_NODE_LOAD (nr_online_nodes)
3435 static int node_load
[MAX_NUMNODES
];
3438 * find_next_best_node - find the next node that should appear in a given node's fallback list
3439 * @node: node whose fallback list we're appending
3440 * @used_node_mask: nodemask_t of already used nodes
3442 * We use a number of factors to determine which is the next node that should
3443 * appear on a given node's fallback list. The node should not have appeared
3444 * already in @node's fallback list, and it should be the next closest node
3445 * according to the distance array (which contains arbitrary distance values
3446 * from each node to each node in the system), and should also prefer nodes
3447 * with no CPUs, since presumably they'll have very little allocation pressure
3448 * on them otherwise.
3449 * It returns -1 if no node is found.
3451 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3454 int min_val
= INT_MAX
;
3455 int best_node
= NUMA_NO_NODE
;
3456 const struct cpumask
*tmp
= cpumask_of_node(0);
3458 /* Use the local node if we haven't already */
3459 if (!node_isset(node
, *used_node_mask
)) {
3460 node_set(node
, *used_node_mask
);
3464 for_each_node_state(n
, N_MEMORY
) {
3466 /* Don't want a node to appear more than once */
3467 if (node_isset(n
, *used_node_mask
))
3470 /* Use the distance array to find the distance */
3471 val
= node_distance(node
, n
);
3473 /* Penalize nodes under us ("prefer the next node") */
3476 /* Give preference to headless and unused nodes */
3477 tmp
= cpumask_of_node(n
);
3478 if (!cpumask_empty(tmp
))
3479 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3481 /* Slight preference for less loaded node */
3482 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3483 val
+= node_load
[n
];
3485 if (val
< min_val
) {
3492 node_set(best_node
, *used_node_mask
);
3499 * Build zonelists ordered by node and zones within node.
3500 * This results in maximum locality--normal zone overflows into local
3501 * DMA zone, if any--but risks exhausting DMA zone.
3503 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3506 struct zonelist
*zonelist
;
3508 zonelist
= &pgdat
->node_zonelists
[0];
3509 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3511 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3512 zonelist
->_zonerefs
[j
].zone
= NULL
;
3513 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3517 * Build gfp_thisnode zonelists
3519 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3522 struct zonelist
*zonelist
;
3524 zonelist
= &pgdat
->node_zonelists
[1];
3525 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3526 zonelist
->_zonerefs
[j
].zone
= NULL
;
3527 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3531 * Build zonelists ordered by zone and nodes within zones.
3532 * This results in conserving DMA zone[s] until all Normal memory is
3533 * exhausted, but results in overflowing to remote node while memory
3534 * may still exist in local DMA zone.
3536 static int node_order
[MAX_NUMNODES
];
3538 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3541 int zone_type
; /* needs to be signed */
3543 struct zonelist
*zonelist
;
3545 zonelist
= &pgdat
->node_zonelists
[0];
3547 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3548 for (j
= 0; j
< nr_nodes
; j
++) {
3549 node
= node_order
[j
];
3550 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3551 if (populated_zone(z
)) {
3553 &zonelist
->_zonerefs
[pos
++]);
3554 check_highest_zone(zone_type
);
3558 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3559 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3562 static int default_zonelist_order(void)
3565 unsigned long low_kmem_size
, total_size
;
3569 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3570 * If they are really small and used heavily, the system can fall
3571 * into OOM very easily.
3572 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3574 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3577 for_each_online_node(nid
) {
3578 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3579 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3580 if (populated_zone(z
)) {
3581 if (zone_type
< ZONE_NORMAL
)
3582 low_kmem_size
+= z
->managed_pages
;
3583 total_size
+= z
->managed_pages
;
3584 } else if (zone_type
== ZONE_NORMAL
) {
3586 * If any node has only lowmem, then node order
3587 * is preferred to allow kernel allocations
3588 * locally; otherwise, they can easily infringe
3589 * on other nodes when there is an abundance of
3590 * lowmem available to allocate from.
3592 return ZONELIST_ORDER_NODE
;
3596 if (!low_kmem_size
|| /* there are no DMA area. */
3597 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3598 return ZONELIST_ORDER_NODE
;
3600 * look into each node's config.
3601 * If there is a node whose DMA/DMA32 memory is very big area on
3602 * local memory, NODE_ORDER may be suitable.
3604 average_size
= total_size
/
3605 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3606 for_each_online_node(nid
) {
3609 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3610 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3611 if (populated_zone(z
)) {
3612 if (zone_type
< ZONE_NORMAL
)
3613 low_kmem_size
+= z
->present_pages
;
3614 total_size
+= z
->present_pages
;
3617 if (low_kmem_size
&&
3618 total_size
> average_size
&& /* ignore small node */
3619 low_kmem_size
> total_size
* 70/100)
3620 return ZONELIST_ORDER_NODE
;
3622 return ZONELIST_ORDER_ZONE
;
3625 static void set_zonelist_order(void)
3627 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3628 current_zonelist_order
= default_zonelist_order();
3630 current_zonelist_order
= user_zonelist_order
;
3633 static void build_zonelists(pg_data_t
*pgdat
)
3637 nodemask_t used_mask
;
3638 int local_node
, prev_node
;
3639 struct zonelist
*zonelist
;
3640 int order
= current_zonelist_order
;
3642 /* initialize zonelists */
3643 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3644 zonelist
= pgdat
->node_zonelists
+ i
;
3645 zonelist
->_zonerefs
[0].zone
= NULL
;
3646 zonelist
->_zonerefs
[0].zone_idx
= 0;
3649 /* NUMA-aware ordering of nodes */
3650 local_node
= pgdat
->node_id
;
3651 load
= nr_online_nodes
;
3652 prev_node
= local_node
;
3653 nodes_clear(used_mask
);
3655 memset(node_order
, 0, sizeof(node_order
));
3658 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3660 * We don't want to pressure a particular node.
3661 * So adding penalty to the first node in same
3662 * distance group to make it round-robin.
3664 if (node_distance(local_node
, node
) !=
3665 node_distance(local_node
, prev_node
))
3666 node_load
[node
] = load
;
3670 if (order
== ZONELIST_ORDER_NODE
)
3671 build_zonelists_in_node_order(pgdat
, node
);
3673 node_order
[j
++] = node
; /* remember order */
3676 if (order
== ZONELIST_ORDER_ZONE
) {
3677 /* calculate node order -- i.e., DMA last! */
3678 build_zonelists_in_zone_order(pgdat
, j
);
3681 build_thisnode_zonelists(pgdat
);
3684 /* Construct the zonelist performance cache - see further mmzone.h */
3685 static void build_zonelist_cache(pg_data_t
*pgdat
)
3687 struct zonelist
*zonelist
;
3688 struct zonelist_cache
*zlc
;
3691 zonelist
= &pgdat
->node_zonelists
[0];
3692 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3693 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3694 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3695 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3698 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3700 * Return node id of node used for "local" allocations.
3701 * I.e., first node id of first zone in arg node's generic zonelist.
3702 * Used for initializing percpu 'numa_mem', which is used primarily
3703 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3705 int local_memory_node(int node
)
3709 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3710 gfp_zone(GFP_KERNEL
),
3717 #else /* CONFIG_NUMA */
3719 static void set_zonelist_order(void)
3721 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3724 static void build_zonelists(pg_data_t
*pgdat
)
3726 int node
, local_node
;
3728 struct zonelist
*zonelist
;
3730 local_node
= pgdat
->node_id
;
3732 zonelist
= &pgdat
->node_zonelists
[0];
3733 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3736 * Now we build the zonelist so that it contains the zones
3737 * of all the other nodes.
3738 * We don't want to pressure a particular node, so when
3739 * building the zones for node N, we make sure that the
3740 * zones coming right after the local ones are those from
3741 * node N+1 (modulo N)
3743 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3744 if (!node_online(node
))
3746 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3748 for (node
= 0; node
< local_node
; node
++) {
3749 if (!node_online(node
))
3751 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3754 zonelist
->_zonerefs
[j
].zone
= NULL
;
3755 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3758 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3759 static void build_zonelist_cache(pg_data_t
*pgdat
)
3761 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3764 #endif /* CONFIG_NUMA */
3767 * Boot pageset table. One per cpu which is going to be used for all
3768 * zones and all nodes. The parameters will be set in such a way
3769 * that an item put on a list will immediately be handed over to
3770 * the buddy list. This is safe since pageset manipulation is done
3771 * with interrupts disabled.
3773 * The boot_pagesets must be kept even after bootup is complete for
3774 * unused processors and/or zones. They do play a role for bootstrapping
3775 * hotplugged processors.
3777 * zoneinfo_show() and maybe other functions do
3778 * not check if the processor is online before following the pageset pointer.
3779 * Other parts of the kernel may not check if the zone is available.
3781 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3782 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3783 static void setup_zone_pageset(struct zone
*zone
);
3786 * Global mutex to protect against size modification of zonelists
3787 * as well as to serialize pageset setup for the new populated zone.
3789 DEFINE_MUTEX(zonelists_mutex
);
3791 /* return values int ....just for stop_machine() */
3792 static int __build_all_zonelists(void *data
)
3796 pg_data_t
*self
= data
;
3799 memset(node_load
, 0, sizeof(node_load
));
3802 if (self
&& !node_online(self
->node_id
)) {
3803 build_zonelists(self
);
3804 build_zonelist_cache(self
);
3807 for_each_online_node(nid
) {
3808 pg_data_t
*pgdat
= NODE_DATA(nid
);
3810 build_zonelists(pgdat
);
3811 build_zonelist_cache(pgdat
);
3815 * Initialize the boot_pagesets that are going to be used
3816 * for bootstrapping processors. The real pagesets for
3817 * each zone will be allocated later when the per cpu
3818 * allocator is available.
3820 * boot_pagesets are used also for bootstrapping offline
3821 * cpus if the system is already booted because the pagesets
3822 * are needed to initialize allocators on a specific cpu too.
3823 * F.e. the percpu allocator needs the page allocator which
3824 * needs the percpu allocator in order to allocate its pagesets
3825 * (a chicken-egg dilemma).
3827 for_each_possible_cpu(cpu
) {
3828 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3830 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3832 * We now know the "local memory node" for each node--
3833 * i.e., the node of the first zone in the generic zonelist.
3834 * Set up numa_mem percpu variable for on-line cpus. During
3835 * boot, only the boot cpu should be on-line; we'll init the
3836 * secondary cpus' numa_mem as they come on-line. During
3837 * node/memory hotplug, we'll fixup all on-line cpus.
3839 if (cpu_online(cpu
))
3840 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3848 * Called with zonelists_mutex held always
3849 * unless system_state == SYSTEM_BOOTING.
3851 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3853 set_zonelist_order();
3855 if (system_state
== SYSTEM_BOOTING
) {
3856 __build_all_zonelists(NULL
);
3857 mminit_verify_zonelist();
3858 cpuset_init_current_mems_allowed();
3860 #ifdef CONFIG_MEMORY_HOTPLUG
3862 setup_zone_pageset(zone
);
3864 /* we have to stop all cpus to guarantee there is no user
3866 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3867 /* cpuset refresh routine should be here */
3869 vm_total_pages
= nr_free_pagecache_pages();
3871 * Disable grouping by mobility if the number of pages in the
3872 * system is too low to allow the mechanism to work. It would be
3873 * more accurate, but expensive to check per-zone. This check is
3874 * made on memory-hotadd so a system can start with mobility
3875 * disabled and enable it later
3877 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3878 page_group_by_mobility_disabled
= 1;
3880 page_group_by_mobility_disabled
= 0;
3882 printk("Built %i zonelists in %s order, mobility grouping %s. "
3883 "Total pages: %ld\n",
3885 zonelist_order_name
[current_zonelist_order
],
3886 page_group_by_mobility_disabled
? "off" : "on",
3889 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3894 * Helper functions to size the waitqueue hash table.
3895 * Essentially these want to choose hash table sizes sufficiently
3896 * large so that collisions trying to wait on pages are rare.
3897 * But in fact, the number of active page waitqueues on typical
3898 * systems is ridiculously low, less than 200. So this is even
3899 * conservative, even though it seems large.
3901 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3902 * waitqueues, i.e. the size of the waitq table given the number of pages.
3904 #define PAGES_PER_WAITQUEUE 256
3906 #ifndef CONFIG_MEMORY_HOTPLUG
3907 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3909 unsigned long size
= 1;
3911 pages
/= PAGES_PER_WAITQUEUE
;
3913 while (size
< pages
)
3917 * Once we have dozens or even hundreds of threads sleeping
3918 * on IO we've got bigger problems than wait queue collision.
3919 * Limit the size of the wait table to a reasonable size.
3921 size
= min(size
, 4096UL);
3923 return max(size
, 4UL);
3927 * A zone's size might be changed by hot-add, so it is not possible to determine
3928 * a suitable size for its wait_table. So we use the maximum size now.
3930 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3932 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3933 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3934 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3936 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3937 * or more by the traditional way. (See above). It equals:
3939 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3940 * ia64(16K page size) : = ( 8G + 4M)byte.
3941 * powerpc (64K page size) : = (32G +16M)byte.
3943 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3950 * This is an integer logarithm so that shifts can be used later
3951 * to extract the more random high bits from the multiplicative
3952 * hash function before the remainder is taken.
3954 static inline unsigned long wait_table_bits(unsigned long size
)
3960 * Check if a pageblock contains reserved pages
3962 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3966 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3967 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3974 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3975 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3976 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3977 * higher will lead to a bigger reserve which will get freed as contiguous
3978 * blocks as reclaim kicks in
3980 static void setup_zone_migrate_reserve(struct zone
*zone
)
3982 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3984 unsigned long block_migratetype
;
3989 * Get the start pfn, end pfn and the number of blocks to reserve
3990 * We have to be careful to be aligned to pageblock_nr_pages to
3991 * make sure that we always check pfn_valid for the first page in
3994 start_pfn
= zone
->zone_start_pfn
;
3995 end_pfn
= zone_end_pfn(zone
);
3996 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3997 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
4001 * Reserve blocks are generally in place to help high-order atomic
4002 * allocations that are short-lived. A min_free_kbytes value that
4003 * would result in more than 2 reserve blocks for atomic allocations
4004 * is assumed to be in place to help anti-fragmentation for the
4005 * future allocation of hugepages at runtime.
4007 reserve
= min(2, reserve
);
4008 old_reserve
= zone
->nr_migrate_reserve_block
;
4010 /* When memory hot-add, we almost always need to do nothing */
4011 if (reserve
== old_reserve
)
4013 zone
->nr_migrate_reserve_block
= reserve
;
4015 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
4016 if (!pfn_valid(pfn
))
4018 page
= pfn_to_page(pfn
);
4020 /* Watch out for overlapping nodes */
4021 if (page_to_nid(page
) != zone_to_nid(zone
))
4024 block_migratetype
= get_pageblock_migratetype(page
);
4026 /* Only test what is necessary when the reserves are not met */
4029 * Blocks with reserved pages will never free, skip
4032 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
4033 if (pageblock_is_reserved(pfn
, block_end_pfn
))
4036 /* If this block is reserved, account for it */
4037 if (block_migratetype
== MIGRATE_RESERVE
) {
4042 /* Suitable for reserving if this block is movable */
4043 if (block_migratetype
== MIGRATE_MOVABLE
) {
4044 set_pageblock_migratetype(page
,
4046 move_freepages_block(zone
, page
,
4051 } else if (!old_reserve
) {
4053 * At boot time we don't need to scan the whole zone
4054 * for turning off MIGRATE_RESERVE.
4060 * If the reserve is met and this is a previous reserved block,
4063 if (block_migratetype
== MIGRATE_RESERVE
) {
4064 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4065 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4071 * Initially all pages are reserved - free ones are freed
4072 * up by free_all_bootmem() once the early boot process is
4073 * done. Non-atomic initialization, single-pass.
4075 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4076 unsigned long start_pfn
, enum memmap_context context
)
4079 unsigned long end_pfn
= start_pfn
+ size
;
4083 if (highest_memmap_pfn
< end_pfn
- 1)
4084 highest_memmap_pfn
= end_pfn
- 1;
4086 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4087 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4089 * There can be holes in boot-time mem_map[]s
4090 * handed to this function. They do not
4091 * exist on hotplugged memory.
4093 if (context
== MEMMAP_EARLY
) {
4094 if (!early_pfn_valid(pfn
))
4096 if (!early_pfn_in_nid(pfn
, nid
))
4099 page
= pfn_to_page(pfn
);
4100 set_page_links(page
, zone
, nid
, pfn
);
4101 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4102 init_page_count(page
);
4103 page_mapcount_reset(page
);
4104 page_cpupid_reset_last(page
);
4105 SetPageReserved(page
);
4107 * Mark the block movable so that blocks are reserved for
4108 * movable at startup. This will force kernel allocations
4109 * to reserve their blocks rather than leaking throughout
4110 * the address space during boot when many long-lived
4111 * kernel allocations are made. Later some blocks near
4112 * the start are marked MIGRATE_RESERVE by
4113 * setup_zone_migrate_reserve()
4115 * bitmap is created for zone's valid pfn range. but memmap
4116 * can be created for invalid pages (for alignment)
4117 * check here not to call set_pageblock_migratetype() against
4120 if ((z
->zone_start_pfn
<= pfn
)
4121 && (pfn
< zone_end_pfn(z
))
4122 && !(pfn
& (pageblock_nr_pages
- 1)))
4123 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4125 INIT_LIST_HEAD(&page
->lru
);
4126 #ifdef WANT_PAGE_VIRTUAL
4127 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4128 if (!is_highmem_idx(zone
))
4129 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4134 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4136 unsigned int order
, t
;
4137 for_each_migratetype_order(order
, t
) {
4138 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4139 zone
->free_area
[order
].nr_free
= 0;
4143 #ifndef __HAVE_ARCH_MEMMAP_INIT
4144 #define memmap_init(size, nid, zone, start_pfn) \
4145 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4148 static int __meminit
zone_batchsize(struct zone
*zone
)
4154 * The per-cpu-pages pools are set to around 1000th of the
4155 * size of the zone. But no more than 1/2 of a meg.
4157 * OK, so we don't know how big the cache is. So guess.
4159 batch
= zone
->managed_pages
/ 1024;
4160 if (batch
* PAGE_SIZE
> 512 * 1024)
4161 batch
= (512 * 1024) / PAGE_SIZE
;
4162 batch
/= 4; /* We effectively *= 4 below */
4167 * Clamp the batch to a 2^n - 1 value. Having a power
4168 * of 2 value was found to be more likely to have
4169 * suboptimal cache aliasing properties in some cases.
4171 * For example if 2 tasks are alternately allocating
4172 * batches of pages, one task can end up with a lot
4173 * of pages of one half of the possible page colors
4174 * and the other with pages of the other colors.
4176 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4181 /* The deferral and batching of frees should be suppressed under NOMMU
4184 * The problem is that NOMMU needs to be able to allocate large chunks
4185 * of contiguous memory as there's no hardware page translation to
4186 * assemble apparent contiguous memory from discontiguous pages.
4188 * Queueing large contiguous runs of pages for batching, however,
4189 * causes the pages to actually be freed in smaller chunks. As there
4190 * can be a significant delay between the individual batches being
4191 * recycled, this leads to the once large chunks of space being
4192 * fragmented and becoming unavailable for high-order allocations.
4199 * pcp->high and pcp->batch values are related and dependent on one another:
4200 * ->batch must never be higher then ->high.
4201 * The following function updates them in a safe manner without read side
4204 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4205 * those fields changing asynchronously (acording the the above rule).
4207 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4208 * outside of boot time (or some other assurance that no concurrent updaters
4211 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4212 unsigned long batch
)
4214 /* start with a fail safe value for batch */
4218 /* Update high, then batch, in order */
4225 /* a companion to pageset_set_high() */
4226 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4228 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4231 static void pageset_init(struct per_cpu_pageset
*p
)
4233 struct per_cpu_pages
*pcp
;
4236 memset(p
, 0, sizeof(*p
));
4240 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4241 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4244 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4247 pageset_set_batch(p
, batch
);
4251 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4252 * to the value high for the pageset p.
4254 static void pageset_set_high(struct per_cpu_pageset
*p
,
4257 unsigned long batch
= max(1UL, high
/ 4);
4258 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4259 batch
= PAGE_SHIFT
* 8;
4261 pageset_update(&p
->pcp
, high
, batch
);
4264 static void __meminit
pageset_set_high_and_batch(struct zone
*zone
,
4265 struct per_cpu_pageset
*pcp
)
4267 if (percpu_pagelist_fraction
)
4268 pageset_set_high(pcp
,
4269 (zone
->managed_pages
/
4270 percpu_pagelist_fraction
));
4272 pageset_set_batch(pcp
, zone_batchsize(zone
));
4275 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4277 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4280 pageset_set_high_and_batch(zone
, pcp
);
4283 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4286 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4287 for_each_possible_cpu(cpu
)
4288 zone_pageset_init(zone
, cpu
);
4292 * Allocate per cpu pagesets and initialize them.
4293 * Before this call only boot pagesets were available.
4295 void __init
setup_per_cpu_pageset(void)
4299 for_each_populated_zone(zone
)
4300 setup_zone_pageset(zone
);
4303 static noinline __init_refok
4304 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4310 * The per-page waitqueue mechanism uses hashed waitqueues
4313 zone
->wait_table_hash_nr_entries
=
4314 wait_table_hash_nr_entries(zone_size_pages
);
4315 zone
->wait_table_bits
=
4316 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4317 alloc_size
= zone
->wait_table_hash_nr_entries
4318 * sizeof(wait_queue_head_t
);
4320 if (!slab_is_available()) {
4321 zone
->wait_table
= (wait_queue_head_t
*)
4322 memblock_virt_alloc_node_nopanic(
4323 alloc_size
, zone
->zone_pgdat
->node_id
);
4326 * This case means that a zone whose size was 0 gets new memory
4327 * via memory hot-add.
4328 * But it may be the case that a new node was hot-added. In
4329 * this case vmalloc() will not be able to use this new node's
4330 * memory - this wait_table must be initialized to use this new
4331 * node itself as well.
4332 * To use this new node's memory, further consideration will be
4335 zone
->wait_table
= vmalloc(alloc_size
);
4337 if (!zone
->wait_table
)
4340 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4341 init_waitqueue_head(zone
->wait_table
+ i
);
4346 static __meminit
void zone_pcp_init(struct zone
*zone
)
4349 * per cpu subsystem is not up at this point. The following code
4350 * relies on the ability of the linker to provide the
4351 * offset of a (static) per cpu variable into the per cpu area.
4353 zone
->pageset
= &boot_pageset
;
4355 if (populated_zone(zone
))
4356 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4357 zone
->name
, zone
->present_pages
,
4358 zone_batchsize(zone
));
4361 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4362 unsigned long zone_start_pfn
,
4364 enum memmap_context context
)
4366 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4368 ret
= zone_wait_table_init(zone
, size
);
4371 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4373 zone
->zone_start_pfn
= zone_start_pfn
;
4375 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4376 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4378 (unsigned long)zone_idx(zone
),
4379 zone_start_pfn
, (zone_start_pfn
+ size
));
4381 zone_init_free_lists(zone
);
4386 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4387 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4389 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4391 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4393 unsigned long start_pfn
, end_pfn
;
4396 * NOTE: The following SMP-unsafe globals are only used early in boot
4397 * when the kernel is running single-threaded.
4399 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4400 static int __meminitdata last_nid
;
4402 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4405 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4407 last_start_pfn
= start_pfn
;
4408 last_end_pfn
= end_pfn
;
4414 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4416 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4420 nid
= __early_pfn_to_nid(pfn
);
4423 /* just returns 0 */
4427 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4428 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4432 nid
= __early_pfn_to_nid(pfn
);
4433 if (nid
>= 0 && nid
!= node
)
4440 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4441 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4442 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4444 * If an architecture guarantees that all ranges registered contain no holes
4445 * and may be freed, this this function may be used instead of calling
4446 * memblock_free_early_nid() manually.
4448 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4450 unsigned long start_pfn
, end_pfn
;
4453 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4454 start_pfn
= min(start_pfn
, max_low_pfn
);
4455 end_pfn
= min(end_pfn
, max_low_pfn
);
4457 if (start_pfn
< end_pfn
)
4458 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4459 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4465 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4466 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4468 * If an architecture guarantees that all ranges registered contain no holes and may
4469 * be freed, this function may be used instead of calling memory_present() manually.
4471 void __init
sparse_memory_present_with_active_regions(int nid
)
4473 unsigned long start_pfn
, end_pfn
;
4476 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4477 memory_present(this_nid
, start_pfn
, end_pfn
);
4481 * get_pfn_range_for_nid - Return the start and end page frames for a node
4482 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4483 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4484 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4486 * It returns the start and end page frame of a node based on information
4487 * provided by memblock_set_node(). If called for a node
4488 * with no available memory, a warning is printed and the start and end
4491 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4492 unsigned long *start_pfn
, unsigned long *end_pfn
)
4494 unsigned long this_start_pfn
, this_end_pfn
;
4500 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4501 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4502 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4505 if (*start_pfn
== -1UL)
4510 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4511 * assumption is made that zones within a node are ordered in monotonic
4512 * increasing memory addresses so that the "highest" populated zone is used
4514 static void __init
find_usable_zone_for_movable(void)
4517 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4518 if (zone_index
== ZONE_MOVABLE
)
4521 if (arch_zone_highest_possible_pfn
[zone_index
] >
4522 arch_zone_lowest_possible_pfn
[zone_index
])
4526 VM_BUG_ON(zone_index
== -1);
4527 movable_zone
= zone_index
;
4531 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4532 * because it is sized independent of architecture. Unlike the other zones,
4533 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4534 * in each node depending on the size of each node and how evenly kernelcore
4535 * is distributed. This helper function adjusts the zone ranges
4536 * provided by the architecture for a given node by using the end of the
4537 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4538 * zones within a node are in order of monotonic increases memory addresses
4540 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4541 unsigned long zone_type
,
4542 unsigned long node_start_pfn
,
4543 unsigned long node_end_pfn
,
4544 unsigned long *zone_start_pfn
,
4545 unsigned long *zone_end_pfn
)
4547 /* Only adjust if ZONE_MOVABLE is on this node */
4548 if (zone_movable_pfn
[nid
]) {
4549 /* Size ZONE_MOVABLE */
4550 if (zone_type
== ZONE_MOVABLE
) {
4551 *zone_start_pfn
= zone_movable_pfn
[nid
];
4552 *zone_end_pfn
= min(node_end_pfn
,
4553 arch_zone_highest_possible_pfn
[movable_zone
]);
4555 /* Adjust for ZONE_MOVABLE starting within this range */
4556 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4557 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4558 *zone_end_pfn
= zone_movable_pfn
[nid
];
4560 /* Check if this whole range is within ZONE_MOVABLE */
4561 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4562 *zone_start_pfn
= *zone_end_pfn
;
4567 * Return the number of pages a zone spans in a node, including holes
4568 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4570 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4571 unsigned long zone_type
,
4572 unsigned long node_start_pfn
,
4573 unsigned long node_end_pfn
,
4574 unsigned long *ignored
)
4576 unsigned long zone_start_pfn
, zone_end_pfn
;
4578 /* Get the start and end of the zone */
4579 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4580 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4581 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4582 node_start_pfn
, node_end_pfn
,
4583 &zone_start_pfn
, &zone_end_pfn
);
4585 /* Check that this node has pages within the zone's required range */
4586 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4589 /* Move the zone boundaries inside the node if necessary */
4590 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4591 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4593 /* Return the spanned pages */
4594 return zone_end_pfn
- zone_start_pfn
;
4598 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4599 * then all holes in the requested range will be accounted for.
4601 unsigned long __meminit
__absent_pages_in_range(int nid
,
4602 unsigned long range_start_pfn
,
4603 unsigned long range_end_pfn
)
4605 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4606 unsigned long start_pfn
, end_pfn
;
4609 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4610 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4611 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4612 nr_absent
-= end_pfn
- start_pfn
;
4618 * absent_pages_in_range - Return number of page frames in holes within a range
4619 * @start_pfn: The start PFN to start searching for holes
4620 * @end_pfn: The end PFN to stop searching for holes
4622 * It returns the number of pages frames in memory holes within a range.
4624 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4625 unsigned long end_pfn
)
4627 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4630 /* Return the number of page frames in holes in a zone on a node */
4631 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4632 unsigned long zone_type
,
4633 unsigned long node_start_pfn
,
4634 unsigned long node_end_pfn
,
4635 unsigned long *ignored
)
4637 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4638 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4639 unsigned long zone_start_pfn
, zone_end_pfn
;
4641 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4642 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4644 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4645 node_start_pfn
, node_end_pfn
,
4646 &zone_start_pfn
, &zone_end_pfn
);
4647 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4650 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4651 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4652 unsigned long zone_type
,
4653 unsigned long node_start_pfn
,
4654 unsigned long node_end_pfn
,
4655 unsigned long *zones_size
)
4657 return zones_size
[zone_type
];
4660 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4661 unsigned long zone_type
,
4662 unsigned long node_start_pfn
,
4663 unsigned long node_end_pfn
,
4664 unsigned long *zholes_size
)
4669 return zholes_size
[zone_type
];
4672 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4674 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4675 unsigned long node_start_pfn
,
4676 unsigned long node_end_pfn
,
4677 unsigned long *zones_size
,
4678 unsigned long *zholes_size
)
4680 unsigned long realtotalpages
, totalpages
= 0;
4683 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4684 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4688 pgdat
->node_spanned_pages
= totalpages
;
4690 realtotalpages
= totalpages
;
4691 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4693 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4694 node_start_pfn
, node_end_pfn
,
4696 pgdat
->node_present_pages
= realtotalpages
;
4697 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4701 #ifndef CONFIG_SPARSEMEM
4703 * Calculate the size of the zone->blockflags rounded to an unsigned long
4704 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4705 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4706 * round what is now in bits to nearest long in bits, then return it in
4709 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4711 unsigned long usemapsize
;
4713 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4714 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4715 usemapsize
= usemapsize
>> pageblock_order
;
4716 usemapsize
*= NR_PAGEBLOCK_BITS
;
4717 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4719 return usemapsize
/ 8;
4722 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4724 unsigned long zone_start_pfn
,
4725 unsigned long zonesize
)
4727 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4728 zone
->pageblock_flags
= NULL
;
4730 zone
->pageblock_flags
=
4731 memblock_virt_alloc_node_nopanic(usemapsize
,
4735 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4736 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4737 #endif /* CONFIG_SPARSEMEM */
4739 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4742 void __paginginit
set_pageblock_order(void)
4746 /* Check that pageblock_nr_pages has not already been setup */
4747 if (pageblock_order
)
4750 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4751 order
= HUGETLB_PAGE_ORDER
;
4753 order
= MAX_ORDER
- 1;
4756 * Assume the largest contiguous order of interest is a huge page.
4757 * This value may be variable depending on boot parameters on IA64 and
4760 pageblock_order
= order
;
4762 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4765 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4766 * is unused as pageblock_order is set at compile-time. See
4767 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4770 void __paginginit
set_pageblock_order(void)
4774 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4776 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4777 unsigned long present_pages
)
4779 unsigned long pages
= spanned_pages
;
4782 * Provide a more accurate estimation if there are holes within
4783 * the zone and SPARSEMEM is in use. If there are holes within the
4784 * zone, each populated memory region may cost us one or two extra
4785 * memmap pages due to alignment because memmap pages for each
4786 * populated regions may not naturally algined on page boundary.
4787 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4789 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4790 IS_ENABLED(CONFIG_SPARSEMEM
))
4791 pages
= present_pages
;
4793 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4797 * Set up the zone data structures:
4798 * - mark all pages reserved
4799 * - mark all memory queues empty
4800 * - clear the memory bitmaps
4802 * NOTE: pgdat should get zeroed by caller.
4804 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4805 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4806 unsigned long *zones_size
, unsigned long *zholes_size
)
4809 int nid
= pgdat
->node_id
;
4810 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4813 pgdat_resize_init(pgdat
);
4814 #ifdef CONFIG_NUMA_BALANCING
4815 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4816 pgdat
->numabalancing_migrate_nr_pages
= 0;
4817 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4819 init_waitqueue_head(&pgdat
->kswapd_wait
);
4820 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4821 pgdat_page_cgroup_init(pgdat
);
4823 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4824 struct zone
*zone
= pgdat
->node_zones
+ j
;
4825 unsigned long size
, realsize
, freesize
, memmap_pages
;
4827 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4828 node_end_pfn
, zones_size
);
4829 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4835 * Adjust freesize so that it accounts for how much memory
4836 * is used by this zone for memmap. This affects the watermark
4837 * and per-cpu initialisations
4839 memmap_pages
= calc_memmap_size(size
, realsize
);
4840 if (freesize
>= memmap_pages
) {
4841 freesize
-= memmap_pages
;
4844 " %s zone: %lu pages used for memmap\n",
4845 zone_names
[j
], memmap_pages
);
4848 " %s zone: %lu pages exceeds freesize %lu\n",
4849 zone_names
[j
], memmap_pages
, freesize
);
4851 /* Account for reserved pages */
4852 if (j
== 0 && freesize
> dma_reserve
) {
4853 freesize
-= dma_reserve
;
4854 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4855 zone_names
[0], dma_reserve
);
4858 if (!is_highmem_idx(j
))
4859 nr_kernel_pages
+= freesize
;
4860 /* Charge for highmem memmap if there are enough kernel pages */
4861 else if (nr_kernel_pages
> memmap_pages
* 2)
4862 nr_kernel_pages
-= memmap_pages
;
4863 nr_all_pages
+= freesize
;
4865 zone
->spanned_pages
= size
;
4866 zone
->present_pages
= realsize
;
4868 * Set an approximate value for lowmem here, it will be adjusted
4869 * when the bootmem allocator frees pages into the buddy system.
4870 * And all highmem pages will be managed by the buddy system.
4872 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4875 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4877 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4879 zone
->name
= zone_names
[j
];
4880 spin_lock_init(&zone
->lock
);
4881 spin_lock_init(&zone
->lru_lock
);
4882 zone_seqlock_init(zone
);
4883 zone
->zone_pgdat
= pgdat
;
4884 zone_pcp_init(zone
);
4886 /* For bootup, initialized properly in watermark setup */
4887 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4889 lruvec_init(&zone
->lruvec
);
4893 set_pageblock_order();
4894 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4895 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4896 size
, MEMMAP_EARLY
);
4898 memmap_init(size
, nid
, j
, zone_start_pfn
);
4899 zone_start_pfn
+= size
;
4903 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4905 /* Skip empty nodes */
4906 if (!pgdat
->node_spanned_pages
)
4909 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4910 /* ia64 gets its own node_mem_map, before this, without bootmem */
4911 if (!pgdat
->node_mem_map
) {
4912 unsigned long size
, start
, end
;
4916 * The zone's endpoints aren't required to be MAX_ORDER
4917 * aligned but the node_mem_map endpoints must be in order
4918 * for the buddy allocator to function correctly.
4920 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4921 end
= pgdat_end_pfn(pgdat
);
4922 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4923 size
= (end
- start
) * sizeof(struct page
);
4924 map
= alloc_remap(pgdat
->node_id
, size
);
4926 map
= memblock_virt_alloc_node_nopanic(size
,
4928 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4930 #ifndef CONFIG_NEED_MULTIPLE_NODES
4932 * With no DISCONTIG, the global mem_map is just set as node 0's
4934 if (pgdat
== NODE_DATA(0)) {
4935 mem_map
= NODE_DATA(0)->node_mem_map
;
4936 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4937 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4938 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4939 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4942 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4945 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4946 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4948 pg_data_t
*pgdat
= NODE_DATA(nid
);
4949 unsigned long start_pfn
= 0;
4950 unsigned long end_pfn
= 0;
4952 /* pg_data_t should be reset to zero when it's allocated */
4953 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4955 pgdat
->node_id
= nid
;
4956 pgdat
->node_start_pfn
= node_start_pfn
;
4957 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4958 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4960 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4961 zones_size
, zholes_size
);
4963 alloc_node_mem_map(pgdat
);
4964 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4965 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4966 nid
, (unsigned long)pgdat
,
4967 (unsigned long)pgdat
->node_mem_map
);
4970 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4971 zones_size
, zholes_size
);
4974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4976 #if MAX_NUMNODES > 1
4978 * Figure out the number of possible node ids.
4980 void __init
setup_nr_node_ids(void)
4983 unsigned int highest
= 0;
4985 for_each_node_mask(node
, node_possible_map
)
4987 nr_node_ids
= highest
+ 1;
4992 * node_map_pfn_alignment - determine the maximum internode alignment
4994 * This function should be called after node map is populated and sorted.
4995 * It calculates the maximum power of two alignment which can distinguish
4998 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4999 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5000 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5001 * shifted, 1GiB is enough and this function will indicate so.
5003 * This is used to test whether pfn -> nid mapping of the chosen memory
5004 * model has fine enough granularity to avoid incorrect mapping for the
5005 * populated node map.
5007 * Returns the determined alignment in pfn's. 0 if there is no alignment
5008 * requirement (single node).
5010 unsigned long __init
node_map_pfn_alignment(void)
5012 unsigned long accl_mask
= 0, last_end
= 0;
5013 unsigned long start
, end
, mask
;
5017 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5018 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5025 * Start with a mask granular enough to pin-point to the
5026 * start pfn and tick off bits one-by-one until it becomes
5027 * too coarse to separate the current node from the last.
5029 mask
= ~((1 << __ffs(start
)) - 1);
5030 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5033 /* accumulate all internode masks */
5037 /* convert mask to number of pages */
5038 return ~accl_mask
+ 1;
5041 /* Find the lowest pfn for a node */
5042 static unsigned long __init
find_min_pfn_for_node(int nid
)
5044 unsigned long min_pfn
= ULONG_MAX
;
5045 unsigned long start_pfn
;
5048 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5049 min_pfn
= min(min_pfn
, start_pfn
);
5051 if (min_pfn
== ULONG_MAX
) {
5053 "Could not find start_pfn for node %d\n", nid
);
5061 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5063 * It returns the minimum PFN based on information provided via
5064 * memblock_set_node().
5066 unsigned long __init
find_min_pfn_with_active_regions(void)
5068 return find_min_pfn_for_node(MAX_NUMNODES
);
5072 * early_calculate_totalpages()
5073 * Sum pages in active regions for movable zone.
5074 * Populate N_MEMORY for calculating usable_nodes.
5076 static unsigned long __init
early_calculate_totalpages(void)
5078 unsigned long totalpages
= 0;
5079 unsigned long start_pfn
, end_pfn
;
5082 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5083 unsigned long pages
= end_pfn
- start_pfn
;
5085 totalpages
+= pages
;
5087 node_set_state(nid
, N_MEMORY
);
5093 * Find the PFN the Movable zone begins in each node. Kernel memory
5094 * is spread evenly between nodes as long as the nodes have enough
5095 * memory. When they don't, some nodes will have more kernelcore than
5098 static void __init
find_zone_movable_pfns_for_nodes(void)
5101 unsigned long usable_startpfn
;
5102 unsigned long kernelcore_node
, kernelcore_remaining
;
5103 /* save the state before borrow the nodemask */
5104 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5105 unsigned long totalpages
= early_calculate_totalpages();
5106 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5107 struct memblock_region
*r
;
5109 /* Need to find movable_zone earlier when movable_node is specified. */
5110 find_usable_zone_for_movable();
5113 * If movable_node is specified, ignore kernelcore and movablecore
5116 if (movable_node_is_enabled()) {
5117 for_each_memblock(memory
, r
) {
5118 if (!memblock_is_hotpluggable(r
))
5123 usable_startpfn
= PFN_DOWN(r
->base
);
5124 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5125 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5133 * If movablecore=nn[KMG] was specified, calculate what size of
5134 * kernelcore that corresponds so that memory usable for
5135 * any allocation type is evenly spread. If both kernelcore
5136 * and movablecore are specified, then the value of kernelcore
5137 * will be used for required_kernelcore if it's greater than
5138 * what movablecore would have allowed.
5140 if (required_movablecore
) {
5141 unsigned long corepages
;
5144 * Round-up so that ZONE_MOVABLE is at least as large as what
5145 * was requested by the user
5147 required_movablecore
=
5148 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5149 corepages
= totalpages
- required_movablecore
;
5151 required_kernelcore
= max(required_kernelcore
, corepages
);
5154 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5155 if (!required_kernelcore
)
5158 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5159 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5162 /* Spread kernelcore memory as evenly as possible throughout nodes */
5163 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5164 for_each_node_state(nid
, N_MEMORY
) {
5165 unsigned long start_pfn
, end_pfn
;
5168 * Recalculate kernelcore_node if the division per node
5169 * now exceeds what is necessary to satisfy the requested
5170 * amount of memory for the kernel
5172 if (required_kernelcore
< kernelcore_node
)
5173 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5176 * As the map is walked, we track how much memory is usable
5177 * by the kernel using kernelcore_remaining. When it is
5178 * 0, the rest of the node is usable by ZONE_MOVABLE
5180 kernelcore_remaining
= kernelcore_node
;
5182 /* Go through each range of PFNs within this node */
5183 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5184 unsigned long size_pages
;
5186 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5187 if (start_pfn
>= end_pfn
)
5190 /* Account for what is only usable for kernelcore */
5191 if (start_pfn
< usable_startpfn
) {
5192 unsigned long kernel_pages
;
5193 kernel_pages
= min(end_pfn
, usable_startpfn
)
5196 kernelcore_remaining
-= min(kernel_pages
,
5197 kernelcore_remaining
);
5198 required_kernelcore
-= min(kernel_pages
,
5199 required_kernelcore
);
5201 /* Continue if range is now fully accounted */
5202 if (end_pfn
<= usable_startpfn
) {
5205 * Push zone_movable_pfn to the end so
5206 * that if we have to rebalance
5207 * kernelcore across nodes, we will
5208 * not double account here
5210 zone_movable_pfn
[nid
] = end_pfn
;
5213 start_pfn
= usable_startpfn
;
5217 * The usable PFN range for ZONE_MOVABLE is from
5218 * start_pfn->end_pfn. Calculate size_pages as the
5219 * number of pages used as kernelcore
5221 size_pages
= end_pfn
- start_pfn
;
5222 if (size_pages
> kernelcore_remaining
)
5223 size_pages
= kernelcore_remaining
;
5224 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5227 * Some kernelcore has been met, update counts and
5228 * break if the kernelcore for this node has been
5231 required_kernelcore
-= min(required_kernelcore
,
5233 kernelcore_remaining
-= size_pages
;
5234 if (!kernelcore_remaining
)
5240 * If there is still required_kernelcore, we do another pass with one
5241 * less node in the count. This will push zone_movable_pfn[nid] further
5242 * along on the nodes that still have memory until kernelcore is
5246 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5250 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5251 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5252 zone_movable_pfn
[nid
] =
5253 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5256 /* restore the node_state */
5257 node_states
[N_MEMORY
] = saved_node_state
;
5260 /* Any regular or high memory on that node ? */
5261 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5263 enum zone_type zone_type
;
5265 if (N_MEMORY
== N_NORMAL_MEMORY
)
5268 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5269 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5270 if (populated_zone(zone
)) {
5271 node_set_state(nid
, N_HIGH_MEMORY
);
5272 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5273 zone_type
<= ZONE_NORMAL
)
5274 node_set_state(nid
, N_NORMAL_MEMORY
);
5281 * free_area_init_nodes - Initialise all pg_data_t and zone data
5282 * @max_zone_pfn: an array of max PFNs for each zone
5284 * This will call free_area_init_node() for each active node in the system.
5285 * Using the page ranges provided by memblock_set_node(), the size of each
5286 * zone in each node and their holes is calculated. If the maximum PFN
5287 * between two adjacent zones match, it is assumed that the zone is empty.
5288 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5289 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5290 * starts where the previous one ended. For example, ZONE_DMA32 starts
5291 * at arch_max_dma_pfn.
5293 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5295 unsigned long start_pfn
, end_pfn
;
5298 /* Record where the zone boundaries are */
5299 memset(arch_zone_lowest_possible_pfn
, 0,
5300 sizeof(arch_zone_lowest_possible_pfn
));
5301 memset(arch_zone_highest_possible_pfn
, 0,
5302 sizeof(arch_zone_highest_possible_pfn
));
5303 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5304 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5305 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5306 if (i
== ZONE_MOVABLE
)
5308 arch_zone_lowest_possible_pfn
[i
] =
5309 arch_zone_highest_possible_pfn
[i
-1];
5310 arch_zone_highest_possible_pfn
[i
] =
5311 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5313 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5314 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5316 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5317 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5318 find_zone_movable_pfns_for_nodes();
5320 /* Print out the zone ranges */
5321 printk("Zone ranges:\n");
5322 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5323 if (i
== ZONE_MOVABLE
)
5325 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5326 if (arch_zone_lowest_possible_pfn
[i
] ==
5327 arch_zone_highest_possible_pfn
[i
])
5328 printk(KERN_CONT
"empty\n");
5330 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5331 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5332 (arch_zone_highest_possible_pfn
[i
]
5333 << PAGE_SHIFT
) - 1);
5336 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5337 printk("Movable zone start for each node\n");
5338 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5339 if (zone_movable_pfn
[i
])
5340 printk(" Node %d: %#010lx\n", i
,
5341 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5344 /* Print out the early node map */
5345 printk("Early memory node ranges\n");
5346 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5347 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5348 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5350 /* Initialise every node */
5351 mminit_verify_pageflags_layout();
5352 setup_nr_node_ids();
5353 for_each_online_node(nid
) {
5354 pg_data_t
*pgdat
= NODE_DATA(nid
);
5355 free_area_init_node(nid
, NULL
,
5356 find_min_pfn_for_node(nid
), NULL
);
5358 /* Any memory on that node */
5359 if (pgdat
->node_present_pages
)
5360 node_set_state(nid
, N_MEMORY
);
5361 check_for_memory(pgdat
, nid
);
5365 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5367 unsigned long long coremem
;
5371 coremem
= memparse(p
, &p
);
5372 *core
= coremem
>> PAGE_SHIFT
;
5374 /* Paranoid check that UL is enough for the coremem value */
5375 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5381 * kernelcore=size sets the amount of memory for use for allocations that
5382 * cannot be reclaimed or migrated.
5384 static int __init
cmdline_parse_kernelcore(char *p
)
5386 return cmdline_parse_core(p
, &required_kernelcore
);
5390 * movablecore=size sets the amount of memory for use for allocations that
5391 * can be reclaimed or migrated.
5393 static int __init
cmdline_parse_movablecore(char *p
)
5395 return cmdline_parse_core(p
, &required_movablecore
);
5398 early_param("kernelcore", cmdline_parse_kernelcore
);
5399 early_param("movablecore", cmdline_parse_movablecore
);
5401 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5403 void adjust_managed_page_count(struct page
*page
, long count
)
5405 spin_lock(&managed_page_count_lock
);
5406 page_zone(page
)->managed_pages
+= count
;
5407 totalram_pages
+= count
;
5408 #ifdef CONFIG_HIGHMEM
5409 if (PageHighMem(page
))
5410 totalhigh_pages
+= count
;
5412 spin_unlock(&managed_page_count_lock
);
5414 EXPORT_SYMBOL(adjust_managed_page_count
);
5416 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5419 unsigned long pages
= 0;
5421 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5422 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5423 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5424 if ((unsigned int)poison
<= 0xFF)
5425 memset(pos
, poison
, PAGE_SIZE
);
5426 free_reserved_page(virt_to_page(pos
));
5430 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5431 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5435 EXPORT_SYMBOL(free_reserved_area
);
5437 #ifdef CONFIG_HIGHMEM
5438 void free_highmem_page(struct page
*page
)
5440 __free_reserved_page(page
);
5442 page_zone(page
)->managed_pages
++;
5448 void __init
mem_init_print_info(const char *str
)
5450 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5451 unsigned long init_code_size
, init_data_size
;
5453 physpages
= get_num_physpages();
5454 codesize
= _etext
- _stext
;
5455 datasize
= _edata
- _sdata
;
5456 rosize
= __end_rodata
- __start_rodata
;
5457 bss_size
= __bss_stop
- __bss_start
;
5458 init_data_size
= __init_end
- __init_begin
;
5459 init_code_size
= _einittext
- _sinittext
;
5462 * Detect special cases and adjust section sizes accordingly:
5463 * 1) .init.* may be embedded into .data sections
5464 * 2) .init.text.* may be out of [__init_begin, __init_end],
5465 * please refer to arch/tile/kernel/vmlinux.lds.S.
5466 * 3) .rodata.* may be embedded into .text or .data sections.
5468 #define adj_init_size(start, end, size, pos, adj) \
5470 if (start <= pos && pos < end && size > adj) \
5474 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5475 _sinittext
, init_code_size
);
5476 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5477 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5478 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5479 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5481 #undef adj_init_size
5483 printk("Memory: %luK/%luK available "
5484 "(%luK kernel code, %luK rwdata, %luK rodata, "
5485 "%luK init, %luK bss, %luK reserved"
5486 #ifdef CONFIG_HIGHMEM
5490 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5491 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5492 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5493 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5494 #ifdef CONFIG_HIGHMEM
5495 totalhigh_pages
<< (PAGE_SHIFT
-10),
5497 str
? ", " : "", str
? str
: "");
5501 * set_dma_reserve - set the specified number of pages reserved in the first zone
5502 * @new_dma_reserve: The number of pages to mark reserved
5504 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5505 * In the DMA zone, a significant percentage may be consumed by kernel image
5506 * and other unfreeable allocations which can skew the watermarks badly. This
5507 * function may optionally be used to account for unfreeable pages in the
5508 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5509 * smaller per-cpu batchsize.
5511 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5513 dma_reserve
= new_dma_reserve
;
5516 void __init
free_area_init(unsigned long *zones_size
)
5518 free_area_init_node(0, zones_size
,
5519 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5522 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5523 unsigned long action
, void *hcpu
)
5525 int cpu
= (unsigned long)hcpu
;
5527 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5528 lru_add_drain_cpu(cpu
);
5532 * Spill the event counters of the dead processor
5533 * into the current processors event counters.
5534 * This artificially elevates the count of the current
5537 vm_events_fold_cpu(cpu
);
5540 * Zero the differential counters of the dead processor
5541 * so that the vm statistics are consistent.
5543 * This is only okay since the processor is dead and cannot
5544 * race with what we are doing.
5546 cpu_vm_stats_fold(cpu
);
5551 void __init
page_alloc_init(void)
5553 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5557 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5558 * or min_free_kbytes changes.
5560 static void calculate_totalreserve_pages(void)
5562 struct pglist_data
*pgdat
;
5563 unsigned long reserve_pages
= 0;
5564 enum zone_type i
, j
;
5566 for_each_online_pgdat(pgdat
) {
5567 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5568 struct zone
*zone
= pgdat
->node_zones
+ i
;
5569 unsigned long max
= 0;
5571 /* Find valid and maximum lowmem_reserve in the zone */
5572 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5573 if (zone
->lowmem_reserve
[j
] > max
)
5574 max
= zone
->lowmem_reserve
[j
];
5577 /* we treat the high watermark as reserved pages. */
5578 max
+= high_wmark_pages(zone
);
5580 if (max
> zone
->managed_pages
)
5581 max
= zone
->managed_pages
;
5582 reserve_pages
+= max
;
5584 * Lowmem reserves are not available to
5585 * GFP_HIGHUSER page cache allocations and
5586 * kswapd tries to balance zones to their high
5587 * watermark. As a result, neither should be
5588 * regarded as dirtyable memory, to prevent a
5589 * situation where reclaim has to clean pages
5590 * in order to balance the zones.
5592 zone
->dirty_balance_reserve
= max
;
5595 dirty_balance_reserve
= reserve_pages
;
5596 totalreserve_pages
= reserve_pages
;
5600 * setup_per_zone_lowmem_reserve - called whenever
5601 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5602 * has a correct pages reserved value, so an adequate number of
5603 * pages are left in the zone after a successful __alloc_pages().
5605 static void setup_per_zone_lowmem_reserve(void)
5607 struct pglist_data
*pgdat
;
5608 enum zone_type j
, idx
;
5610 for_each_online_pgdat(pgdat
) {
5611 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5612 struct zone
*zone
= pgdat
->node_zones
+ j
;
5613 unsigned long managed_pages
= zone
->managed_pages
;
5615 zone
->lowmem_reserve
[j
] = 0;
5619 struct zone
*lower_zone
;
5623 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5624 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5626 lower_zone
= pgdat
->node_zones
+ idx
;
5627 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5628 sysctl_lowmem_reserve_ratio
[idx
];
5629 managed_pages
+= lower_zone
->managed_pages
;
5634 /* update totalreserve_pages */
5635 calculate_totalreserve_pages();
5638 static void __setup_per_zone_wmarks(void)
5640 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5641 unsigned long lowmem_pages
= 0;
5643 unsigned long flags
;
5645 /* Calculate total number of !ZONE_HIGHMEM pages */
5646 for_each_zone(zone
) {
5647 if (!is_highmem(zone
))
5648 lowmem_pages
+= zone
->managed_pages
;
5651 for_each_zone(zone
) {
5654 spin_lock_irqsave(&zone
->lock
, flags
);
5655 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5656 do_div(tmp
, lowmem_pages
);
5657 if (is_highmem(zone
)) {
5659 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5660 * need highmem pages, so cap pages_min to a small
5663 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5664 * deltas controls asynch page reclaim, and so should
5665 * not be capped for highmem.
5667 unsigned long min_pages
;
5669 min_pages
= zone
->managed_pages
/ 1024;
5670 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5671 zone
->watermark
[WMARK_MIN
] = min_pages
;
5674 * If it's a lowmem zone, reserve a number of pages
5675 * proportionate to the zone's size.
5677 zone
->watermark
[WMARK_MIN
] = tmp
;
5680 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5681 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5683 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5684 high_wmark_pages(zone
) -
5685 low_wmark_pages(zone
) -
5686 zone_page_state(zone
, NR_ALLOC_BATCH
));
5688 setup_zone_migrate_reserve(zone
);
5689 spin_unlock_irqrestore(&zone
->lock
, flags
);
5692 /* update totalreserve_pages */
5693 calculate_totalreserve_pages();
5697 * setup_per_zone_wmarks - called when min_free_kbytes changes
5698 * or when memory is hot-{added|removed}
5700 * Ensures that the watermark[min,low,high] values for each zone are set
5701 * correctly with respect to min_free_kbytes.
5703 void setup_per_zone_wmarks(void)
5705 mutex_lock(&zonelists_mutex
);
5706 __setup_per_zone_wmarks();
5707 mutex_unlock(&zonelists_mutex
);
5711 * The inactive anon list should be small enough that the VM never has to
5712 * do too much work, but large enough that each inactive page has a chance
5713 * to be referenced again before it is swapped out.
5715 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5716 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5717 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5718 * the anonymous pages are kept on the inactive list.
5721 * memory ratio inactive anon
5722 * -------------------------------------
5731 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5733 unsigned int gb
, ratio
;
5735 /* Zone size in gigabytes */
5736 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5738 ratio
= int_sqrt(10 * gb
);
5742 zone
->inactive_ratio
= ratio
;
5745 static void __meminit
setup_per_zone_inactive_ratio(void)
5750 calculate_zone_inactive_ratio(zone
);
5754 * Initialise min_free_kbytes.
5756 * For small machines we want it small (128k min). For large machines
5757 * we want it large (64MB max). But it is not linear, because network
5758 * bandwidth does not increase linearly with machine size. We use
5760 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5761 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5777 int __meminit
init_per_zone_wmark_min(void)
5779 unsigned long lowmem_kbytes
;
5780 int new_min_free_kbytes
;
5782 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5783 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5785 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5786 min_free_kbytes
= new_min_free_kbytes
;
5787 if (min_free_kbytes
< 128)
5788 min_free_kbytes
= 128;
5789 if (min_free_kbytes
> 65536)
5790 min_free_kbytes
= 65536;
5792 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5793 new_min_free_kbytes
, user_min_free_kbytes
);
5795 setup_per_zone_wmarks();
5796 refresh_zone_stat_thresholds();
5797 setup_per_zone_lowmem_reserve();
5798 setup_per_zone_inactive_ratio();
5801 module_init(init_per_zone_wmark_min
)
5804 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5805 * that we can call two helper functions whenever min_free_kbytes
5808 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
5809 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5813 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5818 user_min_free_kbytes
= min_free_kbytes
;
5819 setup_per_zone_wmarks();
5825 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5826 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5831 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5836 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5837 sysctl_min_unmapped_ratio
) / 100;
5841 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5842 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5847 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5852 zone
->min_slab_pages
= (zone
->managed_pages
*
5853 sysctl_min_slab_ratio
) / 100;
5859 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5860 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5861 * whenever sysctl_lowmem_reserve_ratio changes.
5863 * The reserve ratio obviously has absolutely no relation with the
5864 * minimum watermarks. The lowmem reserve ratio can only make sense
5865 * if in function of the boot time zone sizes.
5867 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5868 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5870 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5871 setup_per_zone_lowmem_reserve();
5876 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5877 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5878 * pagelist can have before it gets flushed back to buddy allocator.
5880 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
5881 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5887 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5888 if (!write
|| (ret
< 0))
5891 mutex_lock(&pcp_batch_high_lock
);
5892 for_each_populated_zone(zone
) {
5894 high
= zone
->managed_pages
/ percpu_pagelist_fraction
;
5895 for_each_possible_cpu(cpu
)
5896 pageset_set_high(per_cpu_ptr(zone
->pageset
, cpu
),
5899 mutex_unlock(&pcp_batch_high_lock
);
5903 int hashdist
= HASHDIST_DEFAULT
;
5906 static int __init
set_hashdist(char *str
)
5910 hashdist
= simple_strtoul(str
, &str
, 0);
5913 __setup("hashdist=", set_hashdist
);
5917 * allocate a large system hash table from bootmem
5918 * - it is assumed that the hash table must contain an exact power-of-2
5919 * quantity of entries
5920 * - limit is the number of hash buckets, not the total allocation size
5922 void *__init
alloc_large_system_hash(const char *tablename
,
5923 unsigned long bucketsize
,
5924 unsigned long numentries
,
5927 unsigned int *_hash_shift
,
5928 unsigned int *_hash_mask
,
5929 unsigned long low_limit
,
5930 unsigned long high_limit
)
5932 unsigned long long max
= high_limit
;
5933 unsigned long log2qty
, size
;
5936 /* allow the kernel cmdline to have a say */
5938 /* round applicable memory size up to nearest megabyte */
5939 numentries
= nr_kernel_pages
;
5941 /* It isn't necessary when PAGE_SIZE >= 1MB */
5942 if (PAGE_SHIFT
< 20)
5943 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
5945 /* limit to 1 bucket per 2^scale bytes of low memory */
5946 if (scale
> PAGE_SHIFT
)
5947 numentries
>>= (scale
- PAGE_SHIFT
);
5949 numentries
<<= (PAGE_SHIFT
- scale
);
5951 /* Make sure we've got at least a 0-order allocation.. */
5952 if (unlikely(flags
& HASH_SMALL
)) {
5953 /* Makes no sense without HASH_EARLY */
5954 WARN_ON(!(flags
& HASH_EARLY
));
5955 if (!(numentries
>> *_hash_shift
)) {
5956 numentries
= 1UL << *_hash_shift
;
5957 BUG_ON(!numentries
);
5959 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5960 numentries
= PAGE_SIZE
/ bucketsize
;
5962 numentries
= roundup_pow_of_two(numentries
);
5964 /* limit allocation size to 1/16 total memory by default */
5966 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5967 do_div(max
, bucketsize
);
5969 max
= min(max
, 0x80000000ULL
);
5971 if (numentries
< low_limit
)
5972 numentries
= low_limit
;
5973 if (numentries
> max
)
5976 log2qty
= ilog2(numentries
);
5979 size
= bucketsize
<< log2qty
;
5980 if (flags
& HASH_EARLY
)
5981 table
= memblock_virt_alloc_nopanic(size
, 0);
5983 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5986 * If bucketsize is not a power-of-two, we may free
5987 * some pages at the end of hash table which
5988 * alloc_pages_exact() automatically does
5990 if (get_order(size
) < MAX_ORDER
) {
5991 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5992 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5995 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5998 panic("Failed to allocate %s hash table\n", tablename
);
6000 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6003 ilog2(size
) - PAGE_SHIFT
,
6007 *_hash_shift
= log2qty
;
6009 *_hash_mask
= (1 << log2qty
) - 1;
6014 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6015 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6018 #ifdef CONFIG_SPARSEMEM
6019 return __pfn_to_section(pfn
)->pageblock_flags
;
6021 return zone
->pageblock_flags
;
6022 #endif /* CONFIG_SPARSEMEM */
6025 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6027 #ifdef CONFIG_SPARSEMEM
6028 pfn
&= (PAGES_PER_SECTION
-1);
6029 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6031 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6032 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6033 #endif /* CONFIG_SPARSEMEM */
6037 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6038 * @page: The page within the block of interest
6039 * @start_bitidx: The first bit of interest to retrieve
6040 * @end_bitidx: The last bit of interest
6041 * returns pageblock_bits flags
6043 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6044 unsigned long end_bitidx
,
6048 unsigned long *bitmap
;
6049 unsigned long bitidx
, word_bitidx
;
6052 zone
= page_zone(page
);
6053 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6054 bitidx
= pfn_to_bitidx(zone
, pfn
);
6055 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6056 bitidx
&= (BITS_PER_LONG
-1);
6058 word
= bitmap
[word_bitidx
];
6059 bitidx
+= end_bitidx
;
6060 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6064 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6065 * @page: The page within the block of interest
6066 * @start_bitidx: The first bit of interest
6067 * @end_bitidx: The last bit of interest
6068 * @flags: The flags to set
6070 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6072 unsigned long end_bitidx
,
6076 unsigned long *bitmap
;
6077 unsigned long bitidx
, word_bitidx
;
6078 unsigned long old_word
, word
;
6080 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6082 zone
= page_zone(page
);
6083 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6084 bitidx
= pfn_to_bitidx(zone
, pfn
);
6085 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6086 bitidx
&= (BITS_PER_LONG
-1);
6088 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6090 bitidx
+= end_bitidx
;
6091 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6092 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6094 word
= ACCESS_ONCE(bitmap
[word_bitidx
]);
6096 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6097 if (word
== old_word
)
6104 * This function checks whether pageblock includes unmovable pages or not.
6105 * If @count is not zero, it is okay to include less @count unmovable pages
6107 * PageLRU check without isolation or lru_lock could race so that
6108 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6109 * expect this function should be exact.
6111 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6112 bool skip_hwpoisoned_pages
)
6114 unsigned long pfn
, iter
, found
;
6118 * For avoiding noise data, lru_add_drain_all() should be called
6119 * If ZONE_MOVABLE, the zone never contains unmovable pages
6121 if (zone_idx(zone
) == ZONE_MOVABLE
)
6123 mt
= get_pageblock_migratetype(page
);
6124 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6127 pfn
= page_to_pfn(page
);
6128 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6129 unsigned long check
= pfn
+ iter
;
6131 if (!pfn_valid_within(check
))
6134 page
= pfn_to_page(check
);
6137 * Hugepages are not in LRU lists, but they're movable.
6138 * We need not scan over tail pages bacause we don't
6139 * handle each tail page individually in migration.
6141 if (PageHuge(page
)) {
6142 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6147 * We can't use page_count without pin a page
6148 * because another CPU can free compound page.
6149 * This check already skips compound tails of THP
6150 * because their page->_count is zero at all time.
6152 if (!atomic_read(&page
->_count
)) {
6153 if (PageBuddy(page
))
6154 iter
+= (1 << page_order(page
)) - 1;
6159 * The HWPoisoned page may be not in buddy system, and
6160 * page_count() is not 0.
6162 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6168 * If there are RECLAIMABLE pages, we need to check it.
6169 * But now, memory offline itself doesn't call shrink_slab()
6170 * and it still to be fixed.
6173 * If the page is not RAM, page_count()should be 0.
6174 * we don't need more check. This is an _used_ not-movable page.
6176 * The problematic thing here is PG_reserved pages. PG_reserved
6177 * is set to both of a memory hole page and a _used_ kernel
6186 bool is_pageblock_removable_nolock(struct page
*page
)
6192 * We have to be careful here because we are iterating over memory
6193 * sections which are not zone aware so we might end up outside of
6194 * the zone but still within the section.
6195 * We have to take care about the node as well. If the node is offline
6196 * its NODE_DATA will be NULL - see page_zone.
6198 if (!node_online(page_to_nid(page
)))
6201 zone
= page_zone(page
);
6202 pfn
= page_to_pfn(page
);
6203 if (!zone_spans_pfn(zone
, pfn
))
6206 return !has_unmovable_pages(zone
, page
, 0, true);
6211 static unsigned long pfn_max_align_down(unsigned long pfn
)
6213 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6214 pageblock_nr_pages
) - 1);
6217 static unsigned long pfn_max_align_up(unsigned long pfn
)
6219 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6220 pageblock_nr_pages
));
6223 /* [start, end) must belong to a single zone. */
6224 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6225 unsigned long start
, unsigned long end
)
6227 /* This function is based on compact_zone() from compaction.c. */
6228 unsigned long nr_reclaimed
;
6229 unsigned long pfn
= start
;
6230 unsigned int tries
= 0;
6235 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6236 if (fatal_signal_pending(current
)) {
6241 if (list_empty(&cc
->migratepages
)) {
6242 cc
->nr_migratepages
= 0;
6243 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6250 } else if (++tries
== 5) {
6251 ret
= ret
< 0 ? ret
: -EBUSY
;
6255 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6257 cc
->nr_migratepages
-= nr_reclaimed
;
6259 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6260 NULL
, 0, cc
->mode
, MR_CMA
);
6263 putback_movable_pages(&cc
->migratepages
);
6270 * alloc_contig_range() -- tries to allocate given range of pages
6271 * @start: start PFN to allocate
6272 * @end: one-past-the-last PFN to allocate
6273 * @migratetype: migratetype of the underlaying pageblocks (either
6274 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6275 * in range must have the same migratetype and it must
6276 * be either of the two.
6278 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6279 * aligned, however it's the caller's responsibility to guarantee that
6280 * we are the only thread that changes migrate type of pageblocks the
6283 * The PFN range must belong to a single zone.
6285 * Returns zero on success or negative error code. On success all
6286 * pages which PFN is in [start, end) are allocated for the caller and
6287 * need to be freed with free_contig_range().
6289 int alloc_contig_range(unsigned long start
, unsigned long end
,
6290 unsigned migratetype
)
6292 unsigned long outer_start
, outer_end
;
6295 struct compact_control cc
= {
6296 .nr_migratepages
= 0,
6298 .zone
= page_zone(pfn_to_page(start
)),
6299 .mode
= MIGRATE_SYNC
,
6300 .ignore_skip_hint
= true,
6302 INIT_LIST_HEAD(&cc
.migratepages
);
6305 * What we do here is we mark all pageblocks in range as
6306 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6307 * have different sizes, and due to the way page allocator
6308 * work, we align the range to biggest of the two pages so
6309 * that page allocator won't try to merge buddies from
6310 * different pageblocks and change MIGRATE_ISOLATE to some
6311 * other migration type.
6313 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6314 * migrate the pages from an unaligned range (ie. pages that
6315 * we are interested in). This will put all the pages in
6316 * range back to page allocator as MIGRATE_ISOLATE.
6318 * When this is done, we take the pages in range from page
6319 * allocator removing them from the buddy system. This way
6320 * page allocator will never consider using them.
6322 * This lets us mark the pageblocks back as
6323 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6324 * aligned range but not in the unaligned, original range are
6325 * put back to page allocator so that buddy can use them.
6328 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6329 pfn_max_align_up(end
), migratetype
,
6334 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6339 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6340 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6341 * more, all pages in [start, end) are free in page allocator.
6342 * What we are going to do is to allocate all pages from
6343 * [start, end) (that is remove them from page allocator).
6345 * The only problem is that pages at the beginning and at the
6346 * end of interesting range may be not aligned with pages that
6347 * page allocator holds, ie. they can be part of higher order
6348 * pages. Because of this, we reserve the bigger range and
6349 * once this is done free the pages we are not interested in.
6351 * We don't have to hold zone->lock here because the pages are
6352 * isolated thus they won't get removed from buddy.
6355 lru_add_drain_all();
6359 outer_start
= start
;
6360 while (!PageBuddy(pfn_to_page(outer_start
))) {
6361 if (++order
>= MAX_ORDER
) {
6365 outer_start
&= ~0UL << order
;
6368 /* Make sure the range is really isolated. */
6369 if (test_pages_isolated(outer_start
, end
, false)) {
6370 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6377 /* Grab isolated pages from freelists. */
6378 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6384 /* Free head and tail (if any) */
6385 if (start
!= outer_start
)
6386 free_contig_range(outer_start
, start
- outer_start
);
6387 if (end
!= outer_end
)
6388 free_contig_range(end
, outer_end
- end
);
6391 undo_isolate_page_range(pfn_max_align_down(start
),
6392 pfn_max_align_up(end
), migratetype
);
6396 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6398 unsigned int count
= 0;
6400 for (; nr_pages
--; pfn
++) {
6401 struct page
*page
= pfn_to_page(pfn
);
6403 count
+= page_count(page
) != 1;
6406 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6410 #ifdef CONFIG_MEMORY_HOTPLUG
6412 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6413 * page high values need to be recalulated.
6415 void __meminit
zone_pcp_update(struct zone
*zone
)
6418 mutex_lock(&pcp_batch_high_lock
);
6419 for_each_possible_cpu(cpu
)
6420 pageset_set_high_and_batch(zone
,
6421 per_cpu_ptr(zone
->pageset
, cpu
));
6422 mutex_unlock(&pcp_batch_high_lock
);
6426 void zone_pcp_reset(struct zone
*zone
)
6428 unsigned long flags
;
6430 struct per_cpu_pageset
*pset
;
6432 /* avoid races with drain_pages() */
6433 local_irq_save(flags
);
6434 if (zone
->pageset
!= &boot_pageset
) {
6435 for_each_online_cpu(cpu
) {
6436 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6437 drain_zonestat(zone
, pset
);
6439 free_percpu(zone
->pageset
);
6440 zone
->pageset
= &boot_pageset
;
6442 local_irq_restore(flags
);
6445 #ifdef CONFIG_MEMORY_HOTREMOVE
6447 * All pages in the range must be isolated before calling this.
6450 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6454 unsigned int order
, i
;
6456 unsigned long flags
;
6457 /* find the first valid pfn */
6458 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6463 zone
= page_zone(pfn_to_page(pfn
));
6464 spin_lock_irqsave(&zone
->lock
, flags
);
6466 while (pfn
< end_pfn
) {
6467 if (!pfn_valid(pfn
)) {
6471 page
= pfn_to_page(pfn
);
6473 * The HWPoisoned page may be not in buddy system, and
6474 * page_count() is not 0.
6476 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6478 SetPageReserved(page
);
6482 BUG_ON(page_count(page
));
6483 BUG_ON(!PageBuddy(page
));
6484 order
= page_order(page
);
6485 #ifdef CONFIG_DEBUG_VM
6486 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6487 pfn
, 1 << order
, end_pfn
);
6489 list_del(&page
->lru
);
6490 rmv_page_order(page
);
6491 zone
->free_area
[order
].nr_free
--;
6492 for (i
= 0; i
< (1 << order
); i
++)
6493 SetPageReserved((page
+i
));
6494 pfn
+= (1 << order
);
6496 spin_unlock_irqrestore(&zone
->lock
, flags
);
6500 #ifdef CONFIG_MEMORY_FAILURE
6501 bool is_free_buddy_page(struct page
*page
)
6503 struct zone
*zone
= page_zone(page
);
6504 unsigned long pfn
= page_to_pfn(page
);
6505 unsigned long flags
;
6508 spin_lock_irqsave(&zone
->lock
, flags
);
6509 for (order
= 0; order
< MAX_ORDER
; order
++) {
6510 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6512 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6515 spin_unlock_irqrestore(&zone
->lock
, flags
);
6517 return order
< MAX_ORDER
;
6521 static const struct trace_print_flags pageflag_names
[] = {
6522 {1UL << PG_locked
, "locked" },
6523 {1UL << PG_error
, "error" },
6524 {1UL << PG_referenced
, "referenced" },
6525 {1UL << PG_uptodate
, "uptodate" },
6526 {1UL << PG_dirty
, "dirty" },
6527 {1UL << PG_lru
, "lru" },
6528 {1UL << PG_active
, "active" },
6529 {1UL << PG_slab
, "slab" },
6530 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6531 {1UL << PG_arch_1
, "arch_1" },
6532 {1UL << PG_reserved
, "reserved" },
6533 {1UL << PG_private
, "private" },
6534 {1UL << PG_private_2
, "private_2" },
6535 {1UL << PG_writeback
, "writeback" },
6536 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6537 {1UL << PG_head
, "head" },
6538 {1UL << PG_tail
, "tail" },
6540 {1UL << PG_compound
, "compound" },
6542 {1UL << PG_swapcache
, "swapcache" },
6543 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6544 {1UL << PG_reclaim
, "reclaim" },
6545 {1UL << PG_swapbacked
, "swapbacked" },
6546 {1UL << PG_unevictable
, "unevictable" },
6548 {1UL << PG_mlocked
, "mlocked" },
6550 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6551 {1UL << PG_uncached
, "uncached" },
6553 #ifdef CONFIG_MEMORY_FAILURE
6554 {1UL << PG_hwpoison
, "hwpoison" },
6556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6557 {1UL << PG_compound_lock
, "compound_lock" },
6561 static void dump_page_flags(unsigned long flags
)
6563 const char *delim
= "";
6567 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6569 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6571 /* remove zone id */
6572 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6574 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6576 mask
= pageflag_names
[i
].mask
;
6577 if ((flags
& mask
) != mask
)
6581 printk("%s%s", delim
, pageflag_names
[i
].name
);
6585 /* check for left over flags */
6587 printk("%s%#lx", delim
, flags
);
6592 void dump_page_badflags(struct page
*page
, const char *reason
,
6593 unsigned long badflags
)
6596 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6597 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6598 page
->mapping
, page
->index
);
6599 dump_page_flags(page
->flags
);
6601 pr_alert("page dumped because: %s\n", reason
);
6602 if (page
->flags
& badflags
) {
6603 pr_alert("bad because of flags:\n");
6604 dump_page_flags(page
->flags
& badflags
);
6606 mem_cgroup_print_bad_page(page
);
6609 void dump_page(struct page
*page
, const char *reason
)
6611 dump_page_badflags(page
, reason
, 0);
6613 EXPORT_SYMBOL(dump_page
);