mm, page_alloc: set alloc_flags only once in slowpath
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_core.c
blobdb3958b3f09454c662fdbdcb4b3592d2f8cd9cb3
1 /*
2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
45 #include "remoteproc_internal.h"
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
58 static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
69 return "unknown";
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags, void *token)
83 struct rproc *rproc = token;
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
90 * Let the iommu core know we're not really handling this fault;
91 * we just used it as a recovery trigger.
93 return -ENOSYS;
96 static int rproc_enable_iommu(struct rproc *rproc)
98 struct iommu_domain *domain;
99 struct device *dev = rproc->dev.parent;
100 int ret;
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
104 return 0;
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
121 rproc->domain = domain;
123 return 0;
125 free_domain:
126 iommu_domain_free(domain);
127 return ret;
130 static void rproc_disable_iommu(struct rproc *rproc)
132 struct iommu_domain *domain = rproc->domain;
133 struct device *dev = rproc->dev.parent;
135 if (!domain)
136 return;
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
164 * The function returns a valid kernel address on success or NULL on failure.
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
193 ptr = carveout->va + offset;
195 break;
198 out:
199 return ptr;
201 EXPORT_SYMBOL(rproc_da_to_va);
203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
205 struct rproc *rproc = rvdev->rproc;
206 struct device *dev = &rproc->dev;
207 struct rproc_vring *rvring = &rvdev->vring[i];
208 struct fw_rsc_vdev *rsc;
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
213 /* actual size of vring (in bytes) */
214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221 if (!va) {
222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 return -EINVAL;
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
229 * TODO: support predefined notifyids (via resource table)
231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232 if (ret < 0) {
233 dev_err(dev, "idr_alloc failed: %d\n", ret);
234 dma_free_coherent(dev->parent, size, va, dma);
235 return ret;
237 notifyid = ret;
239 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
240 (unsigned long long)dma, size, notifyid);
242 rvring->va = va;
243 rvring->dma = dma;
244 rvring->notifyid = notifyid;
247 * Let the rproc know the notifyid and da of this vring.
248 * Not all platforms use dma_alloc_coherent to automatically
249 * set up the iommu. In this case the device address (da) will
250 * hold the physical address and not the device address.
252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 rsc->vring[i].da = dma;
254 rsc->vring[i].notifyid = notifyid;
255 return 0;
258 static int
259 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
261 struct rproc *rproc = rvdev->rproc;
262 struct device *dev = &rproc->dev;
263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 struct rproc_vring *rvring = &rvdev->vring[i];
266 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
267 i, vring->da, vring->num, vring->align);
269 /* make sure reserved bytes are zeroes */
270 if (vring->reserved) {
271 dev_err(dev, "vring rsc has non zero reserved bytes\n");
272 return -EINVAL;
275 /* verify queue size and vring alignment are sane */
276 if (!vring->num || !vring->align) {
277 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
278 vring->num, vring->align);
279 return -EINVAL;
282 rvring->len = vring->num;
283 rvring->align = vring->align;
284 rvring->rvdev = rvdev;
286 return 0;
289 void rproc_free_vring(struct rproc_vring *rvring)
291 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
292 struct rproc *rproc = rvring->rvdev->rproc;
293 int idx = rvring->rvdev->vring - rvring;
294 struct fw_rsc_vdev *rsc;
296 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
297 idr_remove(&rproc->notifyids, rvring->notifyid);
299 /* reset resource entry info */
300 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
301 rsc->vring[idx].da = 0;
302 rsc->vring[idx].notifyid = -1;
306 * rproc_handle_vdev() - handle a vdev fw resource
307 * @rproc: the remote processor
308 * @rsc: the vring resource descriptor
309 * @avail: size of available data (for sanity checking the image)
311 * This resource entry requests the host to statically register a virtio
312 * device (vdev), and setup everything needed to support it. It contains
313 * everything needed to make it possible: the virtio device id, virtio
314 * device features, vrings information, virtio config space, etc...
316 * Before registering the vdev, the vrings are allocated from non-cacheable
317 * physically contiguous memory. Currently we only support two vrings per
318 * remote processor (temporary limitation). We might also want to consider
319 * doing the vring allocation only later when ->find_vqs() is invoked, and
320 * then release them upon ->del_vqs().
322 * Note: @da is currently not really handled correctly: we dynamically
323 * allocate it using the DMA API, ignoring requested hard coded addresses,
324 * and we don't take care of any required IOMMU programming. This is all
325 * going to be taken care of when the generic iommu-based DMA API will be
326 * merged. Meanwhile, statically-addressed iommu-based firmware images should
327 * use RSC_DEVMEM resource entries to map their required @da to the physical
328 * address of their base CMA region (ouch, hacky!).
330 * Returns 0 on success, or an appropriate error code otherwise
332 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
333 int offset, int avail)
335 struct device *dev = &rproc->dev;
336 struct rproc_vdev *rvdev;
337 int i, ret;
339 /* make sure resource isn't truncated */
340 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
341 + rsc->config_len > avail) {
342 dev_err(dev, "vdev rsc is truncated\n");
343 return -EINVAL;
346 /* make sure reserved bytes are zeroes */
347 if (rsc->reserved[0] || rsc->reserved[1]) {
348 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
349 return -EINVAL;
352 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
353 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
355 /* we currently support only two vrings per rvdev */
356 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
357 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
358 return -EINVAL;
361 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
362 if (!rvdev)
363 return -ENOMEM;
365 rvdev->rproc = rproc;
367 /* parse the vrings */
368 for (i = 0; i < rsc->num_of_vrings; i++) {
369 ret = rproc_parse_vring(rvdev, rsc, i);
370 if (ret)
371 goto free_rvdev;
374 /* remember the resource offset*/
375 rvdev->rsc_offset = offset;
377 list_add_tail(&rvdev->node, &rproc->rvdevs);
379 /* it is now safe to add the virtio device */
380 ret = rproc_add_virtio_dev(rvdev, rsc->id);
381 if (ret)
382 goto remove_rvdev;
384 return 0;
386 remove_rvdev:
387 list_del(&rvdev->node);
388 free_rvdev:
389 kfree(rvdev);
390 return ret;
394 * rproc_handle_trace() - handle a shared trace buffer resource
395 * @rproc: the remote processor
396 * @rsc: the trace resource descriptor
397 * @avail: size of available data (for sanity checking the image)
399 * In case the remote processor dumps trace logs into memory,
400 * export it via debugfs.
402 * Currently, the 'da' member of @rsc should contain the device address
403 * where the remote processor is dumping the traces. Later we could also
404 * support dynamically allocating this address using the generic
405 * DMA API (but currently there isn't a use case for that).
407 * Returns 0 on success, or an appropriate error code otherwise
409 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
410 int offset, int avail)
412 struct rproc_mem_entry *trace;
413 struct device *dev = &rproc->dev;
414 void *ptr;
415 char name[15];
417 if (sizeof(*rsc) > avail) {
418 dev_err(dev, "trace rsc is truncated\n");
419 return -EINVAL;
422 /* make sure reserved bytes are zeroes */
423 if (rsc->reserved) {
424 dev_err(dev, "trace rsc has non zero reserved bytes\n");
425 return -EINVAL;
428 /* what's the kernel address of this resource ? */
429 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
430 if (!ptr) {
431 dev_err(dev, "erroneous trace resource entry\n");
432 return -EINVAL;
435 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
436 if (!trace)
437 return -ENOMEM;
439 /* set the trace buffer dma properties */
440 trace->len = rsc->len;
441 trace->va = ptr;
443 /* make sure snprintf always null terminates, even if truncating */
444 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
446 /* create the debugfs entry */
447 trace->priv = rproc_create_trace_file(name, rproc, trace);
448 if (!trace->priv) {
449 trace->va = NULL;
450 kfree(trace);
451 return -EINVAL;
454 list_add_tail(&trace->node, &rproc->traces);
456 rproc->num_traces++;
458 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
459 rsc->da, rsc->len);
461 return 0;
465 * rproc_handle_devmem() - handle devmem resource entry
466 * @rproc: remote processor handle
467 * @rsc: the devmem resource entry
468 * @avail: size of available data (for sanity checking the image)
470 * Remote processors commonly need to access certain on-chip peripherals.
472 * Some of these remote processors access memory via an iommu device,
473 * and might require us to configure their iommu before they can access
474 * the on-chip peripherals they need.
476 * This resource entry is a request to map such a peripheral device.
478 * These devmem entries will contain the physical address of the device in
479 * the 'pa' member. If a specific device address is expected, then 'da' will
480 * contain it (currently this is the only use case supported). 'len' will
481 * contain the size of the physical region we need to map.
483 * Currently we just "trust" those devmem entries to contain valid physical
484 * addresses, but this is going to change: we want the implementations to
485 * tell us ranges of physical addresses the firmware is allowed to request,
486 * and not allow firmwares to request access to physical addresses that
487 * are outside those ranges.
489 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
490 int offset, int avail)
492 struct rproc_mem_entry *mapping;
493 struct device *dev = &rproc->dev;
494 int ret;
496 /* no point in handling this resource without a valid iommu domain */
497 if (!rproc->domain)
498 return -EINVAL;
500 if (sizeof(*rsc) > avail) {
501 dev_err(dev, "devmem rsc is truncated\n");
502 return -EINVAL;
505 /* make sure reserved bytes are zeroes */
506 if (rsc->reserved) {
507 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
508 return -EINVAL;
511 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
512 if (!mapping)
513 return -ENOMEM;
515 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
516 if (ret) {
517 dev_err(dev, "failed to map devmem: %d\n", ret);
518 goto out;
522 * We'll need this info later when we'll want to unmap everything
523 * (e.g. on shutdown).
525 * We can't trust the remote processor not to change the resource
526 * table, so we must maintain this info independently.
528 mapping->da = rsc->da;
529 mapping->len = rsc->len;
530 list_add_tail(&mapping->node, &rproc->mappings);
532 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
533 rsc->pa, rsc->da, rsc->len);
535 return 0;
537 out:
538 kfree(mapping);
539 return ret;
543 * rproc_handle_carveout() - handle phys contig memory allocation requests
544 * @rproc: rproc handle
545 * @rsc: the resource entry
546 * @avail: size of available data (for image validation)
548 * This function will handle firmware requests for allocation of physically
549 * contiguous memory regions.
551 * These request entries should come first in the firmware's resource table,
552 * as other firmware entries might request placing other data objects inside
553 * these memory regions (e.g. data/code segments, trace resource entries, ...).
555 * Allocating memory this way helps utilizing the reserved physical memory
556 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
557 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
558 * pressure is important; it may have a substantial impact on performance.
560 static int rproc_handle_carveout(struct rproc *rproc,
561 struct fw_rsc_carveout *rsc,
562 int offset, int avail)
565 struct rproc_mem_entry *carveout, *mapping;
566 struct device *dev = &rproc->dev;
567 dma_addr_t dma;
568 void *va;
569 int ret;
571 if (sizeof(*rsc) > avail) {
572 dev_err(dev, "carveout rsc is truncated\n");
573 return -EINVAL;
576 /* make sure reserved bytes are zeroes */
577 if (rsc->reserved) {
578 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
579 return -EINVAL;
582 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
583 rsc->da, rsc->pa, rsc->len, rsc->flags);
585 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
586 if (!carveout)
587 return -ENOMEM;
589 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
590 if (!va) {
591 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
592 ret = -ENOMEM;
593 goto free_carv;
596 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
597 (unsigned long long)dma, rsc->len);
600 * Ok, this is non-standard.
602 * Sometimes we can't rely on the generic iommu-based DMA API
603 * to dynamically allocate the device address and then set the IOMMU
604 * tables accordingly, because some remote processors might
605 * _require_ us to use hard coded device addresses that their
606 * firmware was compiled with.
608 * In this case, we must use the IOMMU API directly and map
609 * the memory to the device address as expected by the remote
610 * processor.
612 * Obviously such remote processor devices should not be configured
613 * to use the iommu-based DMA API: we expect 'dma' to contain the
614 * physical address in this case.
616 if (rproc->domain) {
617 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
618 if (!mapping) {
619 dev_err(dev, "kzalloc mapping failed\n");
620 ret = -ENOMEM;
621 goto dma_free;
624 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
625 rsc->flags);
626 if (ret) {
627 dev_err(dev, "iommu_map failed: %d\n", ret);
628 goto free_mapping;
632 * We'll need this info later when we'll want to unmap
633 * everything (e.g. on shutdown).
635 * We can't trust the remote processor not to change the
636 * resource table, so we must maintain this info independently.
638 mapping->da = rsc->da;
639 mapping->len = rsc->len;
640 list_add_tail(&mapping->node, &rproc->mappings);
642 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
643 rsc->da, (unsigned long long)dma);
647 * Some remote processors might need to know the pa
648 * even though they are behind an IOMMU. E.g., OMAP4's
649 * remote M3 processor needs this so it can control
650 * on-chip hardware accelerators that are not behind
651 * the IOMMU, and therefor must know the pa.
653 * Generally we don't want to expose physical addresses
654 * if we don't have to (remote processors are generally
655 * _not_ trusted), so we might want to do this only for
656 * remote processor that _must_ have this (e.g. OMAP4's
657 * dual M3 subsystem).
659 * Non-IOMMU processors might also want to have this info.
660 * In this case, the device address and the physical address
661 * are the same.
663 rsc->pa = dma;
665 carveout->va = va;
666 carveout->len = rsc->len;
667 carveout->dma = dma;
668 carveout->da = rsc->da;
670 list_add_tail(&carveout->node, &rproc->carveouts);
672 return 0;
674 free_mapping:
675 kfree(mapping);
676 dma_free:
677 dma_free_coherent(dev->parent, rsc->len, va, dma);
678 free_carv:
679 kfree(carveout);
680 return ret;
683 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
684 int offset, int avail)
686 /* Summarize the number of notification IDs */
687 rproc->max_notifyid += rsc->num_of_vrings;
689 return 0;
693 * A lookup table for resource handlers. The indices are defined in
694 * enum fw_resource_type.
696 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
697 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
698 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
699 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
700 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
703 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
704 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
707 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
708 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
711 /* handle firmware resource entries before booting the remote processor */
712 static int rproc_handle_resources(struct rproc *rproc, int len,
713 rproc_handle_resource_t handlers[RSC_LAST])
715 struct device *dev = &rproc->dev;
716 rproc_handle_resource_t handler;
717 int ret = 0, i;
719 for (i = 0; i < rproc->table_ptr->num; i++) {
720 int offset = rproc->table_ptr->offset[i];
721 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
722 int avail = len - offset - sizeof(*hdr);
723 void *rsc = (void *)hdr + sizeof(*hdr);
725 /* make sure table isn't truncated */
726 if (avail < 0) {
727 dev_err(dev, "rsc table is truncated\n");
728 return -EINVAL;
731 dev_dbg(dev, "rsc: type %d\n", hdr->type);
733 if (hdr->type >= RSC_LAST) {
734 dev_warn(dev, "unsupported resource %d\n", hdr->type);
735 continue;
738 handler = handlers[hdr->type];
739 if (!handler)
740 continue;
742 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
743 if (ret)
744 break;
747 return ret;
751 * rproc_resource_cleanup() - clean up and free all acquired resources
752 * @rproc: rproc handle
754 * This function will free all resources acquired for @rproc, and it
755 * is called whenever @rproc either shuts down or fails to boot.
757 static void rproc_resource_cleanup(struct rproc *rproc)
759 struct rproc_mem_entry *entry, *tmp;
760 struct device *dev = &rproc->dev;
762 /* clean up debugfs trace entries */
763 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
764 rproc_remove_trace_file(entry->priv);
765 rproc->num_traces--;
766 list_del(&entry->node);
767 kfree(entry);
770 /* clean up iommu mapping entries */
771 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
772 size_t unmapped;
774 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
775 if (unmapped != entry->len) {
776 /* nothing much to do besides complaining */
777 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
778 unmapped);
781 list_del(&entry->node);
782 kfree(entry);
785 /* clean up carveout allocations */
786 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
787 dma_free_coherent(dev->parent, entry->len, entry->va,
788 entry->dma);
789 list_del(&entry->node);
790 kfree(entry);
795 * take a firmware and boot a remote processor with it.
797 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
799 struct device *dev = &rproc->dev;
800 const char *name = rproc->firmware;
801 struct resource_table *table, *loaded_table;
802 int ret, tablesz;
804 if (!rproc->table_ptr)
805 return -ENOMEM;
807 ret = rproc_fw_sanity_check(rproc, fw);
808 if (ret)
809 return ret;
811 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
814 * if enabling an IOMMU isn't relevant for this rproc, this is
815 * just a nop
817 ret = rproc_enable_iommu(rproc);
818 if (ret) {
819 dev_err(dev, "can't enable iommu: %d\n", ret);
820 return ret;
823 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
824 ret = -EINVAL;
826 /* look for the resource table */
827 table = rproc_find_rsc_table(rproc, fw, &tablesz);
828 if (!table) {
829 dev_err(dev, "Failed to find resource table\n");
830 goto clean_up;
833 /* Verify that resource table in loaded fw is unchanged */
834 if (rproc->table_csum != crc32(0, table, tablesz)) {
835 dev_err(dev, "resource checksum failed, fw changed?\n");
836 goto clean_up;
839 /* handle fw resources which are required to boot rproc */
840 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
841 if (ret) {
842 dev_err(dev, "Failed to process resources: %d\n", ret);
843 goto clean_up;
846 /* load the ELF segments to memory */
847 ret = rproc_load_segments(rproc, fw);
848 if (ret) {
849 dev_err(dev, "Failed to load program segments: %d\n", ret);
850 goto clean_up;
854 * The starting device has been given the rproc->cached_table as the
855 * resource table. The address of the vring along with the other
856 * allocated resources (carveouts etc) is stored in cached_table.
857 * In order to pass this information to the remote device we must
858 * copy this information to device memory.
860 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
861 if (loaded_table)
862 memcpy(loaded_table, rproc->cached_table, tablesz);
864 /* power up the remote processor */
865 ret = rproc->ops->start(rproc);
866 if (ret) {
867 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
868 goto clean_up;
872 * Update table_ptr so that all subsequent vring allocations and
873 * virtio fields manipulation update the actual loaded resource table
874 * in device memory.
876 rproc->table_ptr = loaded_table;
878 rproc->state = RPROC_RUNNING;
880 dev_info(dev, "remote processor %s is now up\n", rproc->name);
882 return 0;
884 clean_up:
885 rproc_resource_cleanup(rproc);
886 rproc_disable_iommu(rproc);
887 return ret;
891 * take a firmware and look for virtio devices to register.
893 * Note: this function is called asynchronously upon registration of the
894 * remote processor (so we must wait until it completes before we try
895 * to unregister the device. one other option is just to use kref here,
896 * that might be cleaner).
898 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
900 struct rproc *rproc = context;
901 struct resource_table *table;
902 int ret, tablesz;
904 if (rproc_fw_sanity_check(rproc, fw) < 0)
905 goto out;
907 /* look for the resource table */
908 table = rproc_find_rsc_table(rproc, fw, &tablesz);
909 if (!table)
910 goto out;
912 rproc->table_csum = crc32(0, table, tablesz);
915 * Create a copy of the resource table. When a virtio device starts
916 * and calls vring_new_virtqueue() the address of the allocated vring
917 * will be stored in the cached_table. Before the device is started,
918 * cached_table will be copied into devic memory.
920 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
921 if (!rproc->cached_table)
922 goto out;
924 rproc->table_ptr = rproc->cached_table;
926 /* count the number of notify-ids */
927 rproc->max_notifyid = -1;
928 ret = rproc_handle_resources(rproc, tablesz,
929 rproc_count_vrings_handler);
930 if (ret)
931 goto out;
933 /* look for virtio devices and register them */
934 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
936 out:
937 release_firmware(fw);
938 /* allow rproc_del() contexts, if any, to proceed */
939 complete_all(&rproc->firmware_loading_complete);
942 static int rproc_add_virtio_devices(struct rproc *rproc)
944 int ret;
946 /* rproc_del() calls must wait until async loader completes */
947 init_completion(&rproc->firmware_loading_complete);
950 * We must retrieve early virtio configuration info from
951 * the firmware (e.g. whether to register a virtio device,
952 * what virtio features does it support, ...).
954 * We're initiating an asynchronous firmware loading, so we can
955 * be built-in kernel code, without hanging the boot process.
957 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
958 rproc->firmware, &rproc->dev, GFP_KERNEL,
959 rproc, rproc_fw_config_virtio);
960 if (ret < 0) {
961 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
962 complete_all(&rproc->firmware_loading_complete);
965 return ret;
969 * rproc_trigger_recovery() - recover a remoteproc
970 * @rproc: the remote processor
972 * The recovery is done by reseting all the virtio devices, that way all the
973 * rpmsg drivers will be reseted along with the remote processor making the
974 * remoteproc functional again.
976 * This function can sleep, so it cannot be called from atomic context.
978 int rproc_trigger_recovery(struct rproc *rproc)
980 struct rproc_vdev *rvdev, *rvtmp;
982 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
984 init_completion(&rproc->crash_comp);
986 /* clean up remote vdev entries */
987 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
988 rproc_remove_virtio_dev(rvdev);
990 /* wait until there is no more rproc users */
991 wait_for_completion(&rproc->crash_comp);
993 /* Free the copy of the resource table */
994 kfree(rproc->cached_table);
996 return rproc_add_virtio_devices(rproc);
1000 * rproc_crash_handler_work() - handle a crash
1002 * This function needs to handle everything related to a crash, like cpu
1003 * registers and stack dump, information to help to debug the fatal error, etc.
1005 static void rproc_crash_handler_work(struct work_struct *work)
1007 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1008 struct device *dev = &rproc->dev;
1010 dev_dbg(dev, "enter %s\n", __func__);
1012 mutex_lock(&rproc->lock);
1014 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1015 /* handle only the first crash detected */
1016 mutex_unlock(&rproc->lock);
1017 return;
1020 rproc->state = RPROC_CRASHED;
1021 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1022 rproc->name);
1024 mutex_unlock(&rproc->lock);
1026 if (!rproc->recovery_disabled)
1027 rproc_trigger_recovery(rproc);
1031 * __rproc_boot() - boot a remote processor
1032 * @rproc: handle of a remote processor
1033 * @wait: wait for rproc registration completion
1035 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1037 * If the remote processor is already powered on, this function immediately
1038 * returns (successfully).
1040 * Returns 0 on success, and an appropriate error value otherwise.
1042 static int __rproc_boot(struct rproc *rproc, bool wait)
1044 const struct firmware *firmware_p;
1045 struct device *dev;
1046 int ret;
1048 if (!rproc) {
1049 pr_err("invalid rproc handle\n");
1050 return -EINVAL;
1053 dev = &rproc->dev;
1055 ret = mutex_lock_interruptible(&rproc->lock);
1056 if (ret) {
1057 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1058 return ret;
1061 /* loading a firmware is required */
1062 if (!rproc->firmware) {
1063 dev_err(dev, "%s: no firmware to load\n", __func__);
1064 ret = -EINVAL;
1065 goto unlock_mutex;
1068 /* prevent underlying implementation from being removed */
1069 if (!try_module_get(dev->parent->driver->owner)) {
1070 dev_err(dev, "%s: can't get owner\n", __func__);
1071 ret = -EINVAL;
1072 goto unlock_mutex;
1075 /* skip the boot process if rproc is already powered up */
1076 if (atomic_inc_return(&rproc->power) > 1) {
1077 ret = 0;
1078 goto unlock_mutex;
1081 dev_info(dev, "powering up %s\n", rproc->name);
1083 /* load firmware */
1084 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1085 if (ret < 0) {
1086 dev_err(dev, "request_firmware failed: %d\n", ret);
1087 goto downref_rproc;
1090 /* if rproc virtio is not yet configured, wait */
1091 if (wait)
1092 wait_for_completion(&rproc->firmware_loading_complete);
1094 ret = rproc_fw_boot(rproc, firmware_p);
1096 release_firmware(firmware_p);
1098 downref_rproc:
1099 if (ret) {
1100 module_put(dev->parent->driver->owner);
1101 atomic_dec(&rproc->power);
1103 unlock_mutex:
1104 mutex_unlock(&rproc->lock);
1105 return ret;
1109 * rproc_boot() - boot a remote processor
1110 * @rproc: handle of a remote processor
1112 int rproc_boot(struct rproc *rproc)
1114 return __rproc_boot(rproc, true);
1116 EXPORT_SYMBOL(rproc_boot);
1119 * rproc_boot_nowait() - boot a remote processor
1120 * @rproc: handle of a remote processor
1122 * Same as rproc_boot() but don't wait for rproc registration completion
1124 int rproc_boot_nowait(struct rproc *rproc)
1126 return __rproc_boot(rproc, false);
1130 * rproc_shutdown() - power off the remote processor
1131 * @rproc: the remote processor
1133 * Power off a remote processor (previously booted with rproc_boot()).
1135 * In case @rproc is still being used by an additional user(s), then
1136 * this function will just decrement the power refcount and exit,
1137 * without really powering off the device.
1139 * Every call to rproc_boot() must (eventually) be accompanied by a call
1140 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1142 * Notes:
1143 * - we're not decrementing the rproc's refcount, only the power refcount.
1144 * which means that the @rproc handle stays valid even after rproc_shutdown()
1145 * returns, and users can still use it with a subsequent rproc_boot(), if
1146 * needed.
1148 void rproc_shutdown(struct rproc *rproc)
1150 struct device *dev = &rproc->dev;
1151 int ret;
1153 ret = mutex_lock_interruptible(&rproc->lock);
1154 if (ret) {
1155 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1156 return;
1159 /* if the remote proc is still needed, bail out */
1160 if (!atomic_dec_and_test(&rproc->power))
1161 goto out;
1163 /* power off the remote processor */
1164 ret = rproc->ops->stop(rproc);
1165 if (ret) {
1166 atomic_inc(&rproc->power);
1167 dev_err(dev, "can't stop rproc: %d\n", ret);
1168 goto out;
1171 /* clean up all acquired resources */
1172 rproc_resource_cleanup(rproc);
1174 rproc_disable_iommu(rproc);
1176 /* Give the next start a clean resource table */
1177 rproc->table_ptr = rproc->cached_table;
1179 /* if in crash state, unlock crash handler */
1180 if (rproc->state == RPROC_CRASHED)
1181 complete_all(&rproc->crash_comp);
1183 rproc->state = RPROC_OFFLINE;
1185 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1187 out:
1188 mutex_unlock(&rproc->lock);
1189 if (!ret)
1190 module_put(dev->parent->driver->owner);
1192 EXPORT_SYMBOL(rproc_shutdown);
1195 * rproc_get_by_phandle() - find a remote processor by phandle
1196 * @phandle: phandle to the rproc
1198 * Finds an rproc handle using the remote processor's phandle, and then
1199 * return a handle to the rproc.
1201 * This function increments the remote processor's refcount, so always
1202 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1204 * Returns the rproc handle on success, and NULL on failure.
1206 #ifdef CONFIG_OF
1207 struct rproc *rproc_get_by_phandle(phandle phandle)
1209 struct rproc *rproc = NULL, *r;
1210 struct device_node *np;
1212 np = of_find_node_by_phandle(phandle);
1213 if (!np)
1214 return NULL;
1216 mutex_lock(&rproc_list_mutex);
1217 list_for_each_entry(r, &rproc_list, node) {
1218 if (r->dev.parent && r->dev.parent->of_node == np) {
1219 rproc = r;
1220 get_device(&rproc->dev);
1221 break;
1224 mutex_unlock(&rproc_list_mutex);
1226 of_node_put(np);
1228 return rproc;
1230 #else
1231 struct rproc *rproc_get_by_phandle(phandle phandle)
1233 return NULL;
1235 #endif
1236 EXPORT_SYMBOL(rproc_get_by_phandle);
1239 * rproc_add() - register a remote processor
1240 * @rproc: the remote processor handle to register
1242 * Registers @rproc with the remoteproc framework, after it has been
1243 * allocated with rproc_alloc().
1245 * This is called by the platform-specific rproc implementation, whenever
1246 * a new remote processor device is probed.
1248 * Returns 0 on success and an appropriate error code otherwise.
1250 * Note: this function initiates an asynchronous firmware loading
1251 * context, which will look for virtio devices supported by the rproc's
1252 * firmware.
1254 * If found, those virtio devices will be created and added, so as a result
1255 * of registering this remote processor, additional virtio drivers might be
1256 * probed.
1258 int rproc_add(struct rproc *rproc)
1260 struct device *dev = &rproc->dev;
1261 int ret;
1263 ret = device_add(dev);
1264 if (ret < 0)
1265 return ret;
1267 /* expose to rproc_get_by_phandle users */
1268 mutex_lock(&rproc_list_mutex);
1269 list_add(&rproc->node, &rproc_list);
1270 mutex_unlock(&rproc_list_mutex);
1272 dev_info(dev, "%s is available\n", rproc->name);
1274 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1275 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1277 /* create debugfs entries */
1278 rproc_create_debug_dir(rproc);
1280 return rproc_add_virtio_devices(rproc);
1282 EXPORT_SYMBOL(rproc_add);
1285 * rproc_type_release() - release a remote processor instance
1286 * @dev: the rproc's device
1288 * This function should _never_ be called directly.
1290 * It will be called by the driver core when no one holds a valid pointer
1291 * to @dev anymore.
1293 static void rproc_type_release(struct device *dev)
1295 struct rproc *rproc = container_of(dev, struct rproc, dev);
1297 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1299 rproc_delete_debug_dir(rproc);
1301 idr_destroy(&rproc->notifyids);
1303 if (rproc->index >= 0)
1304 ida_simple_remove(&rproc_dev_index, rproc->index);
1306 kfree(rproc);
1309 static struct device_type rproc_type = {
1310 .name = "remoteproc",
1311 .release = rproc_type_release,
1315 * rproc_alloc() - allocate a remote processor handle
1316 * @dev: the underlying device
1317 * @name: name of this remote processor
1318 * @ops: platform-specific handlers (mainly start/stop)
1319 * @firmware: name of firmware file to load, can be NULL
1320 * @len: length of private data needed by the rproc driver (in bytes)
1322 * Allocates a new remote processor handle, but does not register
1323 * it yet. if @firmware is NULL, a default name is used.
1325 * This function should be used by rproc implementations during initialization
1326 * of the remote processor.
1328 * After creating an rproc handle using this function, and when ready,
1329 * implementations should then call rproc_add() to complete
1330 * the registration of the remote processor.
1332 * On success the new rproc is returned, and on failure, NULL.
1334 * Note: _never_ directly deallocate @rproc, even if it was not registered
1335 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1337 struct rproc *rproc_alloc(struct device *dev, const char *name,
1338 const struct rproc_ops *ops,
1339 const char *firmware, int len)
1341 struct rproc *rproc;
1342 char *p, *template = "rproc-%s-fw";
1343 int name_len = 0;
1345 if (!dev || !name || !ops)
1346 return NULL;
1348 if (!firmware)
1350 * Make room for default firmware name (minus %s plus '\0').
1351 * If the caller didn't pass in a firmware name then
1352 * construct a default name. We're already glomming 'len'
1353 * bytes onto the end of the struct rproc allocation, so do
1354 * a few more for the default firmware name (but only if
1355 * the caller doesn't pass one).
1357 name_len = strlen(name) + strlen(template) - 2 + 1;
1359 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1360 if (!rproc)
1361 return NULL;
1363 if (!firmware) {
1364 p = (char *)rproc + sizeof(struct rproc) + len;
1365 snprintf(p, name_len, template, name);
1366 } else {
1367 p = (char *)firmware;
1370 rproc->firmware = p;
1371 rproc->name = name;
1372 rproc->ops = ops;
1373 rproc->priv = &rproc[1];
1375 device_initialize(&rproc->dev);
1376 rproc->dev.parent = dev;
1377 rproc->dev.type = &rproc_type;
1379 /* Assign a unique device index and name */
1380 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1381 if (rproc->index < 0) {
1382 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1383 put_device(&rproc->dev);
1384 return NULL;
1387 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1389 atomic_set(&rproc->power, 0);
1391 /* Set ELF as the default fw_ops handler */
1392 rproc->fw_ops = &rproc_elf_fw_ops;
1394 mutex_init(&rproc->lock);
1396 idr_init(&rproc->notifyids);
1398 INIT_LIST_HEAD(&rproc->carveouts);
1399 INIT_LIST_HEAD(&rproc->mappings);
1400 INIT_LIST_HEAD(&rproc->traces);
1401 INIT_LIST_HEAD(&rproc->rvdevs);
1403 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1404 init_completion(&rproc->crash_comp);
1406 rproc->state = RPROC_OFFLINE;
1408 return rproc;
1410 EXPORT_SYMBOL(rproc_alloc);
1413 * rproc_put() - unroll rproc_alloc()
1414 * @rproc: the remote processor handle
1416 * This function decrements the rproc dev refcount.
1418 * If no one holds any reference to rproc anymore, then its refcount would
1419 * now drop to zero, and it would be freed.
1421 void rproc_put(struct rproc *rproc)
1423 put_device(&rproc->dev);
1425 EXPORT_SYMBOL(rproc_put);
1428 * rproc_del() - unregister a remote processor
1429 * @rproc: rproc handle to unregister
1431 * This function should be called when the platform specific rproc
1432 * implementation decides to remove the rproc device. it should
1433 * _only_ be called if a previous invocation of rproc_add()
1434 * has completed successfully.
1436 * After rproc_del() returns, @rproc isn't freed yet, because
1437 * of the outstanding reference created by rproc_alloc. To decrement that
1438 * one last refcount, one still needs to call rproc_put().
1440 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1442 int rproc_del(struct rproc *rproc)
1444 struct rproc_vdev *rvdev, *tmp;
1446 if (!rproc)
1447 return -EINVAL;
1449 /* if rproc is just being registered, wait */
1450 wait_for_completion(&rproc->firmware_loading_complete);
1452 /* clean up remote vdev entries */
1453 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1454 rproc_remove_virtio_dev(rvdev);
1456 /* Free the copy of the resource table */
1457 kfree(rproc->cached_table);
1459 /* the rproc is downref'ed as soon as it's removed from the klist */
1460 mutex_lock(&rproc_list_mutex);
1461 list_del(&rproc->node);
1462 mutex_unlock(&rproc_list_mutex);
1464 device_del(&rproc->dev);
1466 return 0;
1468 EXPORT_SYMBOL(rproc_del);
1471 * rproc_report_crash() - rproc crash reporter function
1472 * @rproc: remote processor
1473 * @type: crash type
1475 * This function must be called every time a crash is detected by the low-level
1476 * drivers implementing a specific remoteproc. This should not be called from a
1477 * non-remoteproc driver.
1479 * This function can be called from atomic/interrupt context.
1481 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1483 if (!rproc) {
1484 pr_err("NULL rproc pointer\n");
1485 return;
1488 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1489 rproc->name, rproc_crash_to_string(type));
1491 /* create a new task to handle the error */
1492 schedule_work(&rproc->crash_handler);
1494 EXPORT_SYMBOL(rproc_report_crash);
1496 static int __init remoteproc_init(void)
1498 rproc_init_debugfs();
1500 return 0;
1502 module_init(remoteproc_init);
1504 static void __exit remoteproc_exit(void)
1506 ida_destroy(&rproc_dev_index);
1508 rproc_exit_debugfs();
1510 module_exit(remoteproc_exit);
1512 MODULE_LICENSE("GPL v2");
1513 MODULE_DESCRIPTION("Generic Remote Processor Framework");