ARM: dts: add 'dr_mode' property to hsotg devices for exynos boards
[linux/fpc-iii.git] / drivers / spi / spi-sh-msiof.c
blob239be7cbe5a83ee5e5a037bec810ee3bd24bf382
1 /*
2 * SuperH MSIOF SPI Master Interface
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Glider bvba
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 #include <linux/bitmap.h>
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/gpio.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
31 #include <linux/spi/sh_msiof.h>
32 #include <linux/spi/spi.h>
34 #include <asm/unaligned.h>
37 struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
43 struct sh_msiof_spi_priv {
44 struct spi_master *master;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 const struct sh_msiof_chipdata *chipdata;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
51 int tx_fifo_size;
52 int rx_fifo_size;
53 void *tx_dma_page;
54 void *rx_dma_page;
55 dma_addr_t tx_dma_addr;
56 dma_addr_t rx_dma_addr;
59 #define TMDR1 0x00 /* Transmit Mode Register 1 */
60 #define TMDR2 0x04 /* Transmit Mode Register 2 */
61 #define TMDR3 0x08 /* Transmit Mode Register 3 */
62 #define RMDR1 0x10 /* Receive Mode Register 1 */
63 #define RMDR2 0x14 /* Receive Mode Register 2 */
64 #define RMDR3 0x18 /* Receive Mode Register 3 */
65 #define TSCR 0x20 /* Transmit Clock Select Register */
66 #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
67 #define CTR 0x28 /* Control Register */
68 #define FCTR 0x30 /* FIFO Control Register */
69 #define STR 0x40 /* Status Register */
70 #define IER 0x44 /* Interrupt Enable Register */
71 #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
72 #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
73 #define TFDR 0x50 /* Transmit FIFO Data Register */
74 #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
75 #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
76 #define RFDR 0x60 /* Receive FIFO Data Register */
78 /* TMDR1 and RMDR1 */
79 #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
81 #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
82 #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
83 #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
84 #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
85 #define MDR1_FLD_MASK 0x000000c0 /* Frame Sync Signal Interval (0-3) */
86 #define MDR1_FLD_SHIFT 2
87 #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
88 /* TMDR1 */
89 #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
91 /* TMDR2 and RMDR2 */
92 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
93 #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
94 #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
96 #define MAX_WDLEN 256U
98 /* TSCR and RSCR */
99 #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
100 #define SCR_BRPS(i) (((i) - 1) << 8)
101 #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
102 #define SCR_BRDV_DIV_2 0x0000
103 #define SCR_BRDV_DIV_4 0x0001
104 #define SCR_BRDV_DIV_8 0x0002
105 #define SCR_BRDV_DIV_16 0x0003
106 #define SCR_BRDV_DIV_32 0x0004
107 #define SCR_BRDV_DIV_1 0x0007
109 /* CTR */
110 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
111 #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
112 #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
113 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
114 #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
115 #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
116 #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
117 #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
118 #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
119 #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
120 #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
121 #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
122 #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
123 #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
124 #define CTR_TXE 0x00000200 /* Transmit Enable */
125 #define CTR_RXE 0x00000100 /* Receive Enable */
127 /* FCTR */
128 #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
129 #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
130 #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
131 #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
132 #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
133 #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
134 #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
135 #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
136 #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
137 #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
138 #define FCTR_TFUA_SHIFT 20
139 #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
140 #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
141 #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
142 #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
143 #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
144 #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
145 #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
146 #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
147 #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
148 #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
149 #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
150 #define FCTR_RFUA_SHIFT 4
151 #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
153 /* STR */
154 #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
155 #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
156 #define STR_TEOF 0x00800000 /* Frame Transmission End */
157 #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
158 #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
159 #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
160 #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
161 #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
162 #define STR_REOF 0x00000080 /* Frame Reception End */
163 #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
164 #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
165 #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
167 /* IER */
168 #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
169 #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
170 #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
171 #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
172 #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
173 #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
174 #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
175 #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
176 #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
177 #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
178 #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
179 #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
180 #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
181 #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
184 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
186 switch (reg_offs) {
187 case TSCR:
188 case RSCR:
189 return ioread16(p->mapbase + reg_offs);
190 default:
191 return ioread32(p->mapbase + reg_offs);
195 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196 u32 value)
198 switch (reg_offs) {
199 case TSCR:
200 case RSCR:
201 iowrite16(value, p->mapbase + reg_offs);
202 break;
203 default:
204 iowrite32(value, p->mapbase + reg_offs);
205 break;
209 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210 u32 clr, u32 set)
212 u32 mask = clr | set;
213 u32 data;
214 int k;
216 data = sh_msiof_read(p, CTR);
217 data &= ~clr;
218 data |= set;
219 sh_msiof_write(p, CTR, data);
221 for (k = 100; k > 0; k--) {
222 if ((sh_msiof_read(p, CTR) & mask) == set)
223 break;
225 udelay(10);
228 return k > 0 ? 0 : -ETIMEDOUT;
231 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
233 struct sh_msiof_spi_priv *p = data;
235 /* just disable the interrupt and wake up */
236 sh_msiof_write(p, IER, 0);
237 complete(&p->done);
239 return IRQ_HANDLED;
242 static struct {
243 unsigned short div;
244 unsigned short scr;
245 } const sh_msiof_spi_clk_table[] = {
246 { 1, SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
247 { 2, SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
248 { 4, SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
249 { 8, SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
250 { 16, SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
251 { 32, SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
252 { 64, SCR_BRPS(32) | SCR_BRDV_DIV_2 },
253 { 128, SCR_BRPS(32) | SCR_BRDV_DIV_4 },
254 { 256, SCR_BRPS(32) | SCR_BRDV_DIV_8 },
255 { 512, SCR_BRPS(32) | SCR_BRDV_DIV_16 },
256 { 1024, SCR_BRPS(32) | SCR_BRDV_DIV_32 },
259 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
260 unsigned long parent_rate, u32 spi_hz)
262 unsigned long div = 1024;
263 size_t k;
265 if (!WARN_ON(!spi_hz || !parent_rate))
266 div = DIV_ROUND_UP(parent_rate, spi_hz);
268 /* TODO: make more fine grained */
270 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
271 if (sh_msiof_spi_clk_table[k].div >= div)
272 break;
275 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
277 sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
278 if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
279 sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
282 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
283 u32 cpol, u32 cpha,
284 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
286 u32 tmp;
287 int edge;
290 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
291 * 0 0 10 10 1 1
292 * 0 1 10 10 0 0
293 * 1 0 11 11 0 0
294 * 1 1 11 11 1 1
296 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
297 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
298 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
299 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
300 if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
301 /* These bits are reserved if RX needs TX */
302 tmp &= ~0x0000ffff;
304 sh_msiof_write(p, RMDR1, tmp);
306 tmp = 0;
307 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
308 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
310 edge = cpol ^ !cpha;
312 tmp |= edge << CTR_TEDG_SHIFT;
313 tmp |= edge << CTR_REDG_SHIFT;
314 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
315 sh_msiof_write(p, CTR, tmp);
318 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
319 const void *tx_buf, void *rx_buf,
320 u32 bits, u32 words)
322 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
324 if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
325 sh_msiof_write(p, TMDR2, dr2);
326 else
327 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
329 if (rx_buf)
330 sh_msiof_write(p, RMDR2, dr2);
333 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
335 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
338 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
339 const void *tx_buf, int words, int fs)
341 const u8 *buf_8 = tx_buf;
342 int k;
344 for (k = 0; k < words; k++)
345 sh_msiof_write(p, TFDR, buf_8[k] << fs);
348 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
349 const void *tx_buf, int words, int fs)
351 const u16 *buf_16 = tx_buf;
352 int k;
354 for (k = 0; k < words; k++)
355 sh_msiof_write(p, TFDR, buf_16[k] << fs);
358 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
359 const void *tx_buf, int words, int fs)
361 const u16 *buf_16 = tx_buf;
362 int k;
364 for (k = 0; k < words; k++)
365 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
368 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
369 const void *tx_buf, int words, int fs)
371 const u32 *buf_32 = tx_buf;
372 int k;
374 for (k = 0; k < words; k++)
375 sh_msiof_write(p, TFDR, buf_32[k] << fs);
378 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
379 const void *tx_buf, int words, int fs)
381 const u32 *buf_32 = tx_buf;
382 int k;
384 for (k = 0; k < words; k++)
385 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
388 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
389 const void *tx_buf, int words, int fs)
391 const u32 *buf_32 = tx_buf;
392 int k;
394 for (k = 0; k < words; k++)
395 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
398 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
399 const void *tx_buf, int words, int fs)
401 const u32 *buf_32 = tx_buf;
402 int k;
404 for (k = 0; k < words; k++)
405 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
408 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
409 void *rx_buf, int words, int fs)
411 u8 *buf_8 = rx_buf;
412 int k;
414 for (k = 0; k < words; k++)
415 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
418 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
419 void *rx_buf, int words, int fs)
421 u16 *buf_16 = rx_buf;
422 int k;
424 for (k = 0; k < words; k++)
425 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
428 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
429 void *rx_buf, int words, int fs)
431 u16 *buf_16 = rx_buf;
432 int k;
434 for (k = 0; k < words; k++)
435 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
438 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
439 void *rx_buf, int words, int fs)
441 u32 *buf_32 = rx_buf;
442 int k;
444 for (k = 0; k < words; k++)
445 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
448 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
449 void *rx_buf, int words, int fs)
451 u32 *buf_32 = rx_buf;
452 int k;
454 for (k = 0; k < words; k++)
455 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
458 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
459 void *rx_buf, int words, int fs)
461 u32 *buf_32 = rx_buf;
462 int k;
464 for (k = 0; k < words; k++)
465 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
468 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
469 void *rx_buf, int words, int fs)
471 u32 *buf_32 = rx_buf;
472 int k;
474 for (k = 0; k < words; k++)
475 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
478 static int sh_msiof_spi_setup(struct spi_device *spi)
480 struct device_node *np = spi->master->dev.of_node;
481 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
483 if (!np) {
485 * Use spi->controller_data for CS (same strategy as spi_gpio),
486 * if any. otherwise let HW control CS
488 spi->cs_gpio = (uintptr_t)spi->controller_data;
491 /* Configure pins before deasserting CS */
492 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
493 !!(spi->mode & SPI_CPHA),
494 !!(spi->mode & SPI_3WIRE),
495 !!(spi->mode & SPI_LSB_FIRST),
496 !!(spi->mode & SPI_CS_HIGH));
498 if (spi->cs_gpio >= 0)
499 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
501 return 0;
504 static int sh_msiof_prepare_message(struct spi_master *master,
505 struct spi_message *msg)
507 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
508 const struct spi_device *spi = msg->spi;
510 /* Configure pins before asserting CS */
511 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
512 !!(spi->mode & SPI_CPHA),
513 !!(spi->mode & SPI_3WIRE),
514 !!(spi->mode & SPI_LSB_FIRST),
515 !!(spi->mode & SPI_CS_HIGH));
516 return 0;
519 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
521 int ret;
523 /* setup clock and rx/tx signals */
524 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
525 if (rx_buf && !ret)
526 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
527 if (!ret)
528 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
530 /* start by setting frame bit */
531 if (!ret)
532 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
534 return ret;
537 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
539 int ret;
541 /* shut down frame, rx/tx and clock signals */
542 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
543 if (!ret)
544 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
545 if (rx_buf && !ret)
546 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
547 if (!ret)
548 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
550 return ret;
553 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
554 void (*tx_fifo)(struct sh_msiof_spi_priv *,
555 const void *, int, int),
556 void (*rx_fifo)(struct sh_msiof_spi_priv *,
557 void *, int, int),
558 const void *tx_buf, void *rx_buf,
559 int words, int bits)
561 int fifo_shift;
562 int ret;
564 /* limit maximum word transfer to rx/tx fifo size */
565 if (tx_buf)
566 words = min_t(int, words, p->tx_fifo_size);
567 if (rx_buf)
568 words = min_t(int, words, p->rx_fifo_size);
570 /* the fifo contents need shifting */
571 fifo_shift = 32 - bits;
573 /* default FIFO watermarks for PIO */
574 sh_msiof_write(p, FCTR, 0);
576 /* setup msiof transfer mode registers */
577 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
578 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
580 /* write tx fifo */
581 if (tx_buf)
582 tx_fifo(p, tx_buf, words, fifo_shift);
584 reinit_completion(&p->done);
586 ret = sh_msiof_spi_start(p, rx_buf);
587 if (ret) {
588 dev_err(&p->pdev->dev, "failed to start hardware\n");
589 goto stop_ier;
592 /* wait for tx fifo to be emptied / rx fifo to be filled */
593 ret = wait_for_completion_timeout(&p->done, HZ);
594 if (!ret) {
595 dev_err(&p->pdev->dev, "PIO timeout\n");
596 ret = -ETIMEDOUT;
597 goto stop_reset;
600 /* read rx fifo */
601 if (rx_buf)
602 rx_fifo(p, rx_buf, words, fifo_shift);
604 /* clear status bits */
605 sh_msiof_reset_str(p);
607 ret = sh_msiof_spi_stop(p, rx_buf);
608 if (ret) {
609 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
610 return ret;
613 return words;
615 stop_reset:
616 sh_msiof_reset_str(p);
617 sh_msiof_spi_stop(p, rx_buf);
618 stop_ier:
619 sh_msiof_write(p, IER, 0);
620 return ret;
623 static void sh_msiof_dma_complete(void *arg)
625 struct sh_msiof_spi_priv *p = arg;
627 sh_msiof_write(p, IER, 0);
628 complete(&p->done);
631 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
632 void *rx, unsigned int len)
634 u32 ier_bits = 0;
635 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
636 dma_cookie_t cookie;
637 int ret;
639 /* First prepare and submit the DMA request(s), as this may fail */
640 if (rx) {
641 ier_bits |= IER_RDREQE | IER_RDMAE;
642 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
643 p->rx_dma_addr, len, DMA_FROM_DEVICE,
644 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
645 if (!desc_rx)
646 return -EAGAIN;
648 desc_rx->callback = sh_msiof_dma_complete;
649 desc_rx->callback_param = p;
650 cookie = dmaengine_submit(desc_rx);
651 if (dma_submit_error(cookie))
652 return cookie;
655 if (tx) {
656 ier_bits |= IER_TDREQE | IER_TDMAE;
657 dma_sync_single_for_device(p->master->dma_tx->device->dev,
658 p->tx_dma_addr, len, DMA_TO_DEVICE);
659 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
660 p->tx_dma_addr, len, DMA_TO_DEVICE,
661 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
662 if (!desc_tx) {
663 ret = -EAGAIN;
664 goto no_dma_tx;
667 if (rx) {
668 /* No callback */
669 desc_tx->callback = NULL;
670 } else {
671 desc_tx->callback = sh_msiof_dma_complete;
672 desc_tx->callback_param = p;
674 cookie = dmaengine_submit(desc_tx);
675 if (dma_submit_error(cookie)) {
676 ret = cookie;
677 goto no_dma_tx;
681 /* 1 stage FIFO watermarks for DMA */
682 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
684 /* setup msiof transfer mode registers (32-bit words) */
685 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
687 sh_msiof_write(p, IER, ier_bits);
689 reinit_completion(&p->done);
691 /* Now start DMA */
692 if (rx)
693 dma_async_issue_pending(p->master->dma_rx);
694 if (tx)
695 dma_async_issue_pending(p->master->dma_tx);
697 ret = sh_msiof_spi_start(p, rx);
698 if (ret) {
699 dev_err(&p->pdev->dev, "failed to start hardware\n");
700 goto stop_dma;
703 /* wait for tx fifo to be emptied / rx fifo to be filled */
704 ret = wait_for_completion_timeout(&p->done, HZ);
705 if (!ret) {
706 dev_err(&p->pdev->dev, "DMA timeout\n");
707 ret = -ETIMEDOUT;
708 goto stop_reset;
711 /* clear status bits */
712 sh_msiof_reset_str(p);
714 ret = sh_msiof_spi_stop(p, rx);
715 if (ret) {
716 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
717 return ret;
720 if (rx)
721 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
722 p->rx_dma_addr, len,
723 DMA_FROM_DEVICE);
725 return 0;
727 stop_reset:
728 sh_msiof_reset_str(p);
729 sh_msiof_spi_stop(p, rx);
730 stop_dma:
731 if (tx)
732 dmaengine_terminate_all(p->master->dma_tx);
733 no_dma_tx:
734 if (rx)
735 dmaengine_terminate_all(p->master->dma_rx);
736 sh_msiof_write(p, IER, 0);
737 return ret;
740 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
742 /* src or dst can be unaligned, but not both */
743 if ((unsigned long)src & 3) {
744 while (words--) {
745 *dst++ = swab32(get_unaligned(src));
746 src++;
748 } else if ((unsigned long)dst & 3) {
749 while (words--) {
750 put_unaligned(swab32(*src++), dst);
751 dst++;
753 } else {
754 while (words--)
755 *dst++ = swab32(*src++);
759 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
761 /* src or dst can be unaligned, but not both */
762 if ((unsigned long)src & 3) {
763 while (words--) {
764 *dst++ = swahw32(get_unaligned(src));
765 src++;
767 } else if ((unsigned long)dst & 3) {
768 while (words--) {
769 put_unaligned(swahw32(*src++), dst);
770 dst++;
772 } else {
773 while (words--)
774 *dst++ = swahw32(*src++);
778 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
780 memcpy(dst, src, words * 4);
783 static int sh_msiof_transfer_one(struct spi_master *master,
784 struct spi_device *spi,
785 struct spi_transfer *t)
787 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
788 void (*copy32)(u32 *, const u32 *, unsigned int);
789 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
790 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
791 const void *tx_buf = t->tx_buf;
792 void *rx_buf = t->rx_buf;
793 unsigned int len = t->len;
794 unsigned int bits = t->bits_per_word;
795 unsigned int bytes_per_word;
796 unsigned int words;
797 int n;
798 bool swab;
799 int ret;
801 /* setup clocks (clock already enabled in chipselect()) */
802 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
804 while (master->dma_tx && len > 15) {
806 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
807 * words, with byte resp. word swapping.
809 unsigned int l = min(len, MAX_WDLEN * 4);
811 if (bits <= 8) {
812 if (l & 3)
813 break;
814 copy32 = copy_bswap32;
815 } else if (bits <= 16) {
816 if (l & 1)
817 break;
818 copy32 = copy_wswap32;
819 } else {
820 copy32 = copy_plain32;
823 if (tx_buf)
824 copy32(p->tx_dma_page, tx_buf, l / 4);
826 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
827 if (ret == -EAGAIN) {
828 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
829 dev_driver_string(&p->pdev->dev),
830 dev_name(&p->pdev->dev));
831 break;
833 if (ret)
834 return ret;
836 if (rx_buf) {
837 copy32(rx_buf, p->rx_dma_page, l / 4);
838 rx_buf += l;
840 if (tx_buf)
841 tx_buf += l;
843 len -= l;
844 if (!len)
845 return 0;
848 if (bits <= 8 && len > 15 && !(len & 3)) {
849 bits = 32;
850 swab = true;
851 } else {
852 swab = false;
855 /* setup bytes per word and fifo read/write functions */
856 if (bits <= 8) {
857 bytes_per_word = 1;
858 tx_fifo = sh_msiof_spi_write_fifo_8;
859 rx_fifo = sh_msiof_spi_read_fifo_8;
860 } else if (bits <= 16) {
861 bytes_per_word = 2;
862 if ((unsigned long)tx_buf & 0x01)
863 tx_fifo = sh_msiof_spi_write_fifo_16u;
864 else
865 tx_fifo = sh_msiof_spi_write_fifo_16;
867 if ((unsigned long)rx_buf & 0x01)
868 rx_fifo = sh_msiof_spi_read_fifo_16u;
869 else
870 rx_fifo = sh_msiof_spi_read_fifo_16;
871 } else if (swab) {
872 bytes_per_word = 4;
873 if ((unsigned long)tx_buf & 0x03)
874 tx_fifo = sh_msiof_spi_write_fifo_s32u;
875 else
876 tx_fifo = sh_msiof_spi_write_fifo_s32;
878 if ((unsigned long)rx_buf & 0x03)
879 rx_fifo = sh_msiof_spi_read_fifo_s32u;
880 else
881 rx_fifo = sh_msiof_spi_read_fifo_s32;
882 } else {
883 bytes_per_word = 4;
884 if ((unsigned long)tx_buf & 0x03)
885 tx_fifo = sh_msiof_spi_write_fifo_32u;
886 else
887 tx_fifo = sh_msiof_spi_write_fifo_32;
889 if ((unsigned long)rx_buf & 0x03)
890 rx_fifo = sh_msiof_spi_read_fifo_32u;
891 else
892 rx_fifo = sh_msiof_spi_read_fifo_32;
895 /* transfer in fifo sized chunks */
896 words = len / bytes_per_word;
898 while (words > 0) {
899 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
900 words, bits);
901 if (n < 0)
902 return n;
904 if (tx_buf)
905 tx_buf += n * bytes_per_word;
906 if (rx_buf)
907 rx_buf += n * bytes_per_word;
908 words -= n;
911 return 0;
914 static const struct sh_msiof_chipdata sh_data = {
915 .tx_fifo_size = 64,
916 .rx_fifo_size = 64,
917 .master_flags = 0,
920 static const struct sh_msiof_chipdata r8a779x_data = {
921 .tx_fifo_size = 64,
922 .rx_fifo_size = 256,
923 .master_flags = SPI_MASTER_MUST_TX,
926 static const struct of_device_id sh_msiof_match[] = {
927 { .compatible = "renesas,sh-msiof", .data = &sh_data },
928 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
929 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
930 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
931 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
932 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
933 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
936 MODULE_DEVICE_TABLE(of, sh_msiof_match);
938 #ifdef CONFIG_OF
939 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
941 struct sh_msiof_spi_info *info;
942 struct device_node *np = dev->of_node;
943 u32 num_cs = 1;
945 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
946 if (!info)
947 return NULL;
949 /* Parse the MSIOF properties */
950 of_property_read_u32(np, "num-cs", &num_cs);
951 of_property_read_u32(np, "renesas,tx-fifo-size",
952 &info->tx_fifo_override);
953 of_property_read_u32(np, "renesas,rx-fifo-size",
954 &info->rx_fifo_override);
956 info->num_chipselect = num_cs;
958 return info;
960 #else
961 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
963 return NULL;
965 #endif
967 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
968 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
970 dma_cap_mask_t mask;
971 struct dma_chan *chan;
972 struct dma_slave_config cfg;
973 int ret;
975 dma_cap_zero(mask);
976 dma_cap_set(DMA_SLAVE, mask);
978 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
979 (void *)(unsigned long)id, dev,
980 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
981 if (!chan) {
982 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
983 return NULL;
986 memset(&cfg, 0, sizeof(cfg));
987 cfg.slave_id = id;
988 cfg.direction = dir;
989 if (dir == DMA_MEM_TO_DEV) {
990 cfg.dst_addr = port_addr;
991 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
992 } else {
993 cfg.src_addr = port_addr;
994 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
997 ret = dmaengine_slave_config(chan, &cfg);
998 if (ret) {
999 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1000 dma_release_channel(chan);
1001 return NULL;
1004 return chan;
1007 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1009 struct platform_device *pdev = p->pdev;
1010 struct device *dev = &pdev->dev;
1011 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1012 unsigned int dma_tx_id, dma_rx_id;
1013 const struct resource *res;
1014 struct spi_master *master;
1015 struct device *tx_dev, *rx_dev;
1017 if (dev->of_node) {
1018 /* In the OF case we will get the slave IDs from the DT */
1019 dma_tx_id = 0;
1020 dma_rx_id = 0;
1021 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1022 dma_tx_id = info->dma_tx_id;
1023 dma_rx_id = info->dma_rx_id;
1024 } else {
1025 /* The driver assumes no error */
1026 return 0;
1029 /* The DMA engine uses the second register set, if present */
1030 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1031 if (!res)
1032 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1034 master = p->master;
1035 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1036 dma_tx_id,
1037 res->start + TFDR);
1038 if (!master->dma_tx)
1039 return -ENODEV;
1041 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1042 dma_rx_id,
1043 res->start + RFDR);
1044 if (!master->dma_rx)
1045 goto free_tx_chan;
1047 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1048 if (!p->tx_dma_page)
1049 goto free_rx_chan;
1051 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1052 if (!p->rx_dma_page)
1053 goto free_tx_page;
1055 tx_dev = master->dma_tx->device->dev;
1056 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1057 DMA_TO_DEVICE);
1058 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1059 goto free_rx_page;
1061 rx_dev = master->dma_rx->device->dev;
1062 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1063 DMA_FROM_DEVICE);
1064 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1065 goto unmap_tx_page;
1067 dev_info(dev, "DMA available");
1068 return 0;
1070 unmap_tx_page:
1071 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1072 free_rx_page:
1073 free_page((unsigned long)p->rx_dma_page);
1074 free_tx_page:
1075 free_page((unsigned long)p->tx_dma_page);
1076 free_rx_chan:
1077 dma_release_channel(master->dma_rx);
1078 free_tx_chan:
1079 dma_release_channel(master->dma_tx);
1080 master->dma_tx = NULL;
1081 return -ENODEV;
1084 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1086 struct spi_master *master = p->master;
1087 struct device *dev;
1089 if (!master->dma_tx)
1090 return;
1092 dev = &p->pdev->dev;
1093 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1094 PAGE_SIZE, DMA_FROM_DEVICE);
1095 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1096 PAGE_SIZE, DMA_TO_DEVICE);
1097 free_page((unsigned long)p->rx_dma_page);
1098 free_page((unsigned long)p->tx_dma_page);
1099 dma_release_channel(master->dma_rx);
1100 dma_release_channel(master->dma_tx);
1103 static int sh_msiof_spi_probe(struct platform_device *pdev)
1105 struct resource *r;
1106 struct spi_master *master;
1107 const struct of_device_id *of_id;
1108 struct sh_msiof_spi_priv *p;
1109 int i;
1110 int ret;
1112 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1113 if (master == NULL) {
1114 dev_err(&pdev->dev, "failed to allocate spi master\n");
1115 return -ENOMEM;
1118 p = spi_master_get_devdata(master);
1120 platform_set_drvdata(pdev, p);
1121 p->master = master;
1123 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1124 if (of_id) {
1125 p->chipdata = of_id->data;
1126 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1127 } else {
1128 p->chipdata = (const void *)pdev->id_entry->driver_data;
1129 p->info = dev_get_platdata(&pdev->dev);
1132 if (!p->info) {
1133 dev_err(&pdev->dev, "failed to obtain device info\n");
1134 ret = -ENXIO;
1135 goto err1;
1138 init_completion(&p->done);
1140 p->clk = devm_clk_get(&pdev->dev, NULL);
1141 if (IS_ERR(p->clk)) {
1142 dev_err(&pdev->dev, "cannot get clock\n");
1143 ret = PTR_ERR(p->clk);
1144 goto err1;
1147 i = platform_get_irq(pdev, 0);
1148 if (i < 0) {
1149 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1150 ret = -ENOENT;
1151 goto err1;
1154 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1155 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1156 if (IS_ERR(p->mapbase)) {
1157 ret = PTR_ERR(p->mapbase);
1158 goto err1;
1161 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1162 dev_name(&pdev->dev), p);
1163 if (ret) {
1164 dev_err(&pdev->dev, "unable to request irq\n");
1165 goto err1;
1168 p->pdev = pdev;
1169 pm_runtime_enable(&pdev->dev);
1171 /* Platform data may override FIFO sizes */
1172 p->tx_fifo_size = p->chipdata->tx_fifo_size;
1173 p->rx_fifo_size = p->chipdata->rx_fifo_size;
1174 if (p->info->tx_fifo_override)
1175 p->tx_fifo_size = p->info->tx_fifo_override;
1176 if (p->info->rx_fifo_override)
1177 p->rx_fifo_size = p->info->rx_fifo_override;
1179 /* init master code */
1180 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1181 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1182 master->flags = p->chipdata->master_flags;
1183 master->bus_num = pdev->id;
1184 master->dev.of_node = pdev->dev.of_node;
1185 master->num_chipselect = p->info->num_chipselect;
1186 master->setup = sh_msiof_spi_setup;
1187 master->prepare_message = sh_msiof_prepare_message;
1188 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1189 master->auto_runtime_pm = true;
1190 master->transfer_one = sh_msiof_transfer_one;
1192 ret = sh_msiof_request_dma(p);
1193 if (ret < 0)
1194 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1196 ret = devm_spi_register_master(&pdev->dev, master);
1197 if (ret < 0) {
1198 dev_err(&pdev->dev, "spi_register_master error.\n");
1199 goto err2;
1202 return 0;
1204 err2:
1205 sh_msiof_release_dma(p);
1206 pm_runtime_disable(&pdev->dev);
1207 err1:
1208 spi_master_put(master);
1209 return ret;
1212 static int sh_msiof_spi_remove(struct platform_device *pdev)
1214 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1216 sh_msiof_release_dma(p);
1217 pm_runtime_disable(&pdev->dev);
1218 return 0;
1221 static struct platform_device_id spi_driver_ids[] = {
1222 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1223 { "spi_r8a7790_msiof", (kernel_ulong_t)&r8a779x_data },
1224 { "spi_r8a7791_msiof", (kernel_ulong_t)&r8a779x_data },
1225 { "spi_r8a7792_msiof", (kernel_ulong_t)&r8a779x_data },
1226 { "spi_r8a7793_msiof", (kernel_ulong_t)&r8a779x_data },
1227 { "spi_r8a7794_msiof", (kernel_ulong_t)&r8a779x_data },
1230 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1232 static struct platform_driver sh_msiof_spi_drv = {
1233 .probe = sh_msiof_spi_probe,
1234 .remove = sh_msiof_spi_remove,
1235 .id_table = spi_driver_ids,
1236 .driver = {
1237 .name = "spi_sh_msiof",
1238 .of_match_table = of_match_ptr(sh_msiof_match),
1241 module_platform_driver(sh_msiof_spi_drv);
1243 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1244 MODULE_AUTHOR("Magnus Damm");
1245 MODULE_LICENSE("GPL v2");
1246 MODULE_ALIAS("platform:spi_sh_msiof");