2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
65 #define DESC_RING_BUF_SZ PAGE_SIZE
67 struct idmac_desc_64addr
{
68 u32 des0
; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
72 u32 des1
; /* Reserved */
74 u32 des2
; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
79 u32 des3
; /* Reserved */
81 u32 des4
; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5
; /* Upper 32-bits of Buffer Address Pointer 1*/
84 u32 des6
; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7
; /* Upper 32-bits of Next Descriptor Address */
89 __le32 des0
; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
98 __le32 des1
; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
102 __le32 des2
; /* buffer 1 physical address */
104 __le32 des3
; /* buffer 2 physical address */
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file
*s
, void *v
)
113 struct dw_mci_slot
*slot
= s
->private;
114 struct mmc_request
*mrq
;
115 struct mmc_command
*cmd
;
116 struct mmc_command
*stop
;
117 struct mmc_data
*data
;
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot
->host
->lock
);
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd
->opcode
, cmd
->arg
, cmd
->flags
,
132 cmd
->resp
[0], cmd
->resp
[1], cmd
->resp
[2],
133 cmd
->resp
[2], cmd
->error
);
135 seq_printf(s
, "DATA %u / %u * %u flg %x err %d\n",
136 data
->bytes_xfered
, data
->blocks
,
137 data
->blksz
, data
->flags
, data
->error
);
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop
->opcode
, stop
->arg
, stop
->flags
,
142 stop
->resp
[0], stop
->resp
[1], stop
->resp
[2],
143 stop
->resp
[2], stop
->error
);
146 spin_unlock_bh(&slot
->host
->lock
);
151 static int dw_mci_req_open(struct inode
*inode
, struct file
*file
)
153 return single_open(file
, dw_mci_req_show
, inode
->i_private
);
156 static const struct file_operations dw_mci_req_fops
= {
157 .owner
= THIS_MODULE
,
158 .open
= dw_mci_req_open
,
161 .release
= single_release
,
164 static int dw_mci_regs_show(struct seq_file
*s
, void *v
)
166 struct dw_mci
*host
= s
->private;
168 pm_runtime_get_sync(host
->dev
);
170 seq_printf(s
, "STATUS:\t0x%08x\n", mci_readl(host
, STATUS
));
171 seq_printf(s
, "RINTSTS:\t0x%08x\n", mci_readl(host
, RINTSTS
));
172 seq_printf(s
, "CMD:\t0x%08x\n", mci_readl(host
, CMD
));
173 seq_printf(s
, "CTRL:\t0x%08x\n", mci_readl(host
, CTRL
));
174 seq_printf(s
, "INTMASK:\t0x%08x\n", mci_readl(host
, INTMASK
));
175 seq_printf(s
, "CLKENA:\t0x%08x\n", mci_readl(host
, CLKENA
));
177 pm_runtime_put_autosuspend(host
->dev
);
182 static int dw_mci_regs_open(struct inode
*inode
, struct file
*file
)
184 return single_open(file
, dw_mci_regs_show
, inode
->i_private
);
187 static const struct file_operations dw_mci_regs_fops
= {
188 .owner
= THIS_MODULE
,
189 .open
= dw_mci_regs_open
,
192 .release
= single_release
,
195 static void dw_mci_init_debugfs(struct dw_mci_slot
*slot
)
197 struct mmc_host
*mmc
= slot
->mmc
;
198 struct dw_mci
*host
= slot
->host
;
202 root
= mmc
->debugfs_root
;
206 node
= debugfs_create_file("regs", S_IRUSR
, root
, host
,
211 node
= debugfs_create_file("req", S_IRUSR
, root
, slot
,
216 node
= debugfs_create_u32("state", S_IRUSR
, root
, (u32
*)&host
->state
);
220 node
= debugfs_create_x32("pending_events", S_IRUSR
, root
,
221 (u32
*)&host
->pending_events
);
225 node
= debugfs_create_x32("completed_events", S_IRUSR
, root
,
226 (u32
*)&host
->completed_events
);
233 dev_err(&mmc
->class_dev
, "failed to initialize debugfs for slot\n");
235 #endif /* defined(CONFIG_DEBUG_FS) */
237 static bool dw_mci_ctrl_reset(struct dw_mci
*host
, u32 reset
)
241 ctrl
= mci_readl(host
, CTRL
);
243 mci_writel(host
, CTRL
, ctrl
);
245 /* wait till resets clear */
246 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_CTRL
, ctrl
,
248 1, 500 * USEC_PER_MSEC
)) {
250 "Timeout resetting block (ctrl reset %#x)\n",
258 static void dw_mci_wait_while_busy(struct dw_mci
*host
, u32 cmd_flags
)
263 * Databook says that before issuing a new data transfer command
264 * we need to check to see if the card is busy. Data transfer commands
265 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
267 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
270 if ((cmd_flags
& SDMMC_CMD_PRV_DAT_WAIT
) &&
271 !(cmd_flags
& SDMMC_CMD_VOLT_SWITCH
)) {
272 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_STATUS
,
274 !(status
& SDMMC_STATUS_BUSY
),
275 10, 500 * USEC_PER_MSEC
))
276 dev_err(host
->dev
, "Busy; trying anyway\n");
280 static void mci_send_cmd(struct dw_mci_slot
*slot
, u32 cmd
, u32 arg
)
282 struct dw_mci
*host
= slot
->host
;
283 unsigned int cmd_status
= 0;
285 mci_writel(host
, CMDARG
, arg
);
286 wmb(); /* drain writebuffer */
287 dw_mci_wait_while_busy(host
, cmd
);
288 mci_writel(host
, CMD
, SDMMC_CMD_START
| cmd
);
290 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_CMD
, cmd_status
,
291 !(cmd_status
& SDMMC_CMD_START
),
292 1, 500 * USEC_PER_MSEC
))
293 dev_err(&slot
->mmc
->class_dev
,
294 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
295 cmd
, arg
, cmd_status
);
298 static u32
dw_mci_prepare_command(struct mmc_host
*mmc
, struct mmc_command
*cmd
)
300 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
301 struct dw_mci
*host
= slot
->host
;
304 cmd
->error
= -EINPROGRESS
;
307 if (cmd
->opcode
== MMC_STOP_TRANSMISSION
||
308 cmd
->opcode
== MMC_GO_IDLE_STATE
||
309 cmd
->opcode
== MMC_GO_INACTIVE_STATE
||
310 (cmd
->opcode
== SD_IO_RW_DIRECT
&&
311 ((cmd
->arg
>> 9) & 0x1FFFF) == SDIO_CCCR_ABORT
))
312 cmdr
|= SDMMC_CMD_STOP
;
313 else if (cmd
->opcode
!= MMC_SEND_STATUS
&& cmd
->data
)
314 cmdr
|= SDMMC_CMD_PRV_DAT_WAIT
;
316 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
319 /* Special bit makes CMD11 not die */
320 cmdr
|= SDMMC_CMD_VOLT_SWITCH
;
322 /* Change state to continue to handle CMD11 weirdness */
323 WARN_ON(slot
->host
->state
!= STATE_SENDING_CMD
);
324 slot
->host
->state
= STATE_SENDING_CMD11
;
327 * We need to disable low power mode (automatic clock stop)
328 * while doing voltage switch so we don't confuse the card,
329 * since stopping the clock is a specific part of the UHS
330 * voltage change dance.
332 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
333 * unconditionally turned back on in dw_mci_setup_bus() if it's
334 * ever called with a non-zero clock. That shouldn't happen
335 * until the voltage change is all done.
337 clk_en_a
= mci_readl(host
, CLKENA
);
338 clk_en_a
&= ~(SDMMC_CLKEN_LOW_PWR
<< slot
->id
);
339 mci_writel(host
, CLKENA
, clk_en_a
);
340 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
341 SDMMC_CMD_PRV_DAT_WAIT
, 0);
344 if (cmd
->flags
& MMC_RSP_PRESENT
) {
345 /* We expect a response, so set this bit */
346 cmdr
|= SDMMC_CMD_RESP_EXP
;
347 if (cmd
->flags
& MMC_RSP_136
)
348 cmdr
|= SDMMC_CMD_RESP_LONG
;
351 if (cmd
->flags
& MMC_RSP_CRC
)
352 cmdr
|= SDMMC_CMD_RESP_CRC
;
355 cmdr
|= SDMMC_CMD_DAT_EXP
;
356 if (cmd
->data
->flags
& MMC_DATA_WRITE
)
357 cmdr
|= SDMMC_CMD_DAT_WR
;
360 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD
, &slot
->flags
))
361 cmdr
|= SDMMC_CMD_USE_HOLD_REG
;
366 static u32
dw_mci_prep_stop_abort(struct dw_mci
*host
, struct mmc_command
*cmd
)
368 struct mmc_command
*stop
;
374 stop
= &host
->stop_abort
;
376 memset(stop
, 0, sizeof(struct mmc_command
));
378 if (cmdr
== MMC_READ_SINGLE_BLOCK
||
379 cmdr
== MMC_READ_MULTIPLE_BLOCK
||
380 cmdr
== MMC_WRITE_BLOCK
||
381 cmdr
== MMC_WRITE_MULTIPLE_BLOCK
||
382 cmdr
== MMC_SEND_TUNING_BLOCK
||
383 cmdr
== MMC_SEND_TUNING_BLOCK_HS200
) {
384 stop
->opcode
= MMC_STOP_TRANSMISSION
;
386 stop
->flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
387 } else if (cmdr
== SD_IO_RW_EXTENDED
) {
388 stop
->opcode
= SD_IO_RW_DIRECT
;
389 stop
->arg
|= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT
<< 9) |
390 ((cmd
->arg
>> 28) & 0x7);
391 stop
->flags
= MMC_RSP_SPI_R5
| MMC_RSP_R5
| MMC_CMD_AC
;
396 cmdr
= stop
->opcode
| SDMMC_CMD_STOP
|
397 SDMMC_CMD_RESP_CRC
| SDMMC_CMD_RESP_EXP
;
399 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD
, &host
->slot
->flags
))
400 cmdr
|= SDMMC_CMD_USE_HOLD_REG
;
405 static inline void dw_mci_set_cto(struct dw_mci
*host
)
407 unsigned int cto_clks
;
408 unsigned int cto_div
;
410 unsigned long irqflags
;
412 cto_clks
= mci_readl(host
, TMOUT
) & 0xff;
413 cto_div
= (mci_readl(host
, CLKDIV
) & 0xff) * 2;
417 cto_ms
= DIV_ROUND_UP_ULL((u64
)MSEC_PER_SEC
* cto_clks
* cto_div
,
420 /* add a bit spare time */
424 * The durations we're working with are fairly short so we have to be
425 * extra careful about synchronization here. Specifically in hardware a
426 * command timeout is _at most_ 5.1 ms, so that means we expect an
427 * interrupt (either command done or timeout) to come rather quickly
428 * after the mci_writel. ...but just in case we have a long interrupt
429 * latency let's add a bit of paranoia.
431 * In general we'll assume that at least an interrupt will be asserted
432 * in hardware by the time the cto_timer runs. ...and if it hasn't
433 * been asserted in hardware by that time then we'll assume it'll never
436 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
437 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
438 mod_timer(&host
->cto_timer
,
439 jiffies
+ msecs_to_jiffies(cto_ms
) + 1);
440 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
443 static void dw_mci_start_command(struct dw_mci
*host
,
444 struct mmc_command
*cmd
, u32 cmd_flags
)
448 "start command: ARGR=0x%08x CMDR=0x%08x\n",
449 cmd
->arg
, cmd_flags
);
451 mci_writel(host
, CMDARG
, cmd
->arg
);
452 wmb(); /* drain writebuffer */
453 dw_mci_wait_while_busy(host
, cmd_flags
);
455 mci_writel(host
, CMD
, cmd_flags
| SDMMC_CMD_START
);
457 /* response expected command only */
458 if (cmd_flags
& SDMMC_CMD_RESP_EXP
)
459 dw_mci_set_cto(host
);
462 static inline void send_stop_abort(struct dw_mci
*host
, struct mmc_data
*data
)
464 struct mmc_command
*stop
= &host
->stop_abort
;
466 dw_mci_start_command(host
, stop
, host
->stop_cmdr
);
469 /* DMA interface functions */
470 static void dw_mci_stop_dma(struct dw_mci
*host
)
472 if (host
->using_dma
) {
473 host
->dma_ops
->stop(host
);
474 host
->dma_ops
->cleanup(host
);
477 /* Data transfer was stopped by the interrupt handler */
478 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
481 static void dw_mci_dma_cleanup(struct dw_mci
*host
)
483 struct mmc_data
*data
= host
->data
;
485 if (data
&& data
->host_cookie
== COOKIE_MAPPED
) {
486 dma_unmap_sg(host
->dev
,
489 mmc_get_dma_dir(data
));
490 data
->host_cookie
= COOKIE_UNMAPPED
;
494 static void dw_mci_idmac_reset(struct dw_mci
*host
)
496 u32 bmod
= mci_readl(host
, BMOD
);
497 /* Software reset of DMA */
498 bmod
|= SDMMC_IDMAC_SWRESET
;
499 mci_writel(host
, BMOD
, bmod
);
502 static void dw_mci_idmac_stop_dma(struct dw_mci
*host
)
506 /* Disable and reset the IDMAC interface */
507 temp
= mci_readl(host
, CTRL
);
508 temp
&= ~SDMMC_CTRL_USE_IDMAC
;
509 temp
|= SDMMC_CTRL_DMA_RESET
;
510 mci_writel(host
, CTRL
, temp
);
512 /* Stop the IDMAC running */
513 temp
= mci_readl(host
, BMOD
);
514 temp
&= ~(SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
);
515 temp
|= SDMMC_IDMAC_SWRESET
;
516 mci_writel(host
, BMOD
, temp
);
519 static void dw_mci_dmac_complete_dma(void *arg
)
521 struct dw_mci
*host
= arg
;
522 struct mmc_data
*data
= host
->data
;
524 dev_vdbg(host
->dev
, "DMA complete\n");
526 if ((host
->use_dma
== TRANS_MODE_EDMAC
) &&
527 data
&& (data
->flags
& MMC_DATA_READ
))
528 /* Invalidate cache after read */
529 dma_sync_sg_for_cpu(mmc_dev(host
->slot
->mmc
),
534 host
->dma_ops
->cleanup(host
);
537 * If the card was removed, data will be NULL. No point in trying to
538 * send the stop command or waiting for NBUSY in this case.
541 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
542 tasklet_schedule(&host
->tasklet
);
546 static int dw_mci_idmac_init(struct dw_mci
*host
)
550 if (host
->dma_64bit_address
== 1) {
551 struct idmac_desc_64addr
*p
;
552 /* Number of descriptors in the ring buffer */
554 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc_64addr
);
556 /* Forward link the descriptor list */
557 for (i
= 0, p
= host
->sg_cpu
; i
< host
->ring_size
- 1;
559 p
->des6
= (host
->sg_dma
+
560 (sizeof(struct idmac_desc_64addr
) *
561 (i
+ 1))) & 0xffffffff;
563 p
->des7
= (u64
)(host
->sg_dma
+
564 (sizeof(struct idmac_desc_64addr
) *
566 /* Initialize reserved and buffer size fields to "0" */
573 /* Set the last descriptor as the end-of-ring descriptor */
574 p
->des6
= host
->sg_dma
& 0xffffffff;
575 p
->des7
= (u64
)host
->sg_dma
>> 32;
576 p
->des0
= IDMAC_DES0_ER
;
579 struct idmac_desc
*p
;
580 /* Number of descriptors in the ring buffer */
582 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc
);
584 /* Forward link the descriptor list */
585 for (i
= 0, p
= host
->sg_cpu
;
586 i
< host
->ring_size
- 1;
588 p
->des3
= cpu_to_le32(host
->sg_dma
+
589 (sizeof(struct idmac_desc
) * (i
+ 1)));
594 /* Set the last descriptor as the end-of-ring descriptor */
595 p
->des3
= cpu_to_le32(host
->sg_dma
);
596 p
->des0
= cpu_to_le32(IDMAC_DES0_ER
);
599 dw_mci_idmac_reset(host
);
601 if (host
->dma_64bit_address
== 1) {
602 /* Mask out interrupts - get Tx & Rx complete only */
603 mci_writel(host
, IDSTS64
, IDMAC_INT_CLR
);
604 mci_writel(host
, IDINTEN64
, SDMMC_IDMAC_INT_NI
|
605 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
607 /* Set the descriptor base address */
608 mci_writel(host
, DBADDRL
, host
->sg_dma
& 0xffffffff);
609 mci_writel(host
, DBADDRU
, (u64
)host
->sg_dma
>> 32);
612 /* Mask out interrupts - get Tx & Rx complete only */
613 mci_writel(host
, IDSTS
, IDMAC_INT_CLR
);
614 mci_writel(host
, IDINTEN
, SDMMC_IDMAC_INT_NI
|
615 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
617 /* Set the descriptor base address */
618 mci_writel(host
, DBADDR
, host
->sg_dma
);
624 static inline int dw_mci_prepare_desc64(struct dw_mci
*host
,
625 struct mmc_data
*data
,
628 unsigned int desc_len
;
629 struct idmac_desc_64addr
*desc_first
, *desc_last
, *desc
;
633 desc_first
= desc_last
= desc
= host
->sg_cpu
;
635 for (i
= 0; i
< sg_len
; i
++) {
636 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
638 u64 mem_addr
= sg_dma_address(&data
->sg
[i
]);
640 for ( ; length
; desc
++) {
641 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
642 length
: DW_MCI_DESC_DATA_LENGTH
;
647 * Wait for the former clear OWN bit operation
648 * of IDMAC to make sure that this descriptor
649 * isn't still owned by IDMAC as IDMAC's write
650 * ops and CPU's read ops are asynchronous.
652 if (readl_poll_timeout_atomic(&desc
->des0
, val
,
653 !(val
& IDMAC_DES0_OWN
),
654 10, 100 * USEC_PER_MSEC
))
658 * Set the OWN bit and disable interrupts
659 * for this descriptor
661 desc
->des0
= IDMAC_DES0_OWN
| IDMAC_DES0_DIC
|
665 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc
, desc_len
);
667 /* Physical address to DMA to/from */
668 desc
->des4
= mem_addr
& 0xffffffff;
669 desc
->des5
= mem_addr
>> 32;
671 /* Update physical address for the next desc */
672 mem_addr
+= desc_len
;
674 /* Save pointer to the last descriptor */
679 /* Set first descriptor */
680 desc_first
->des0
|= IDMAC_DES0_FD
;
682 /* Set last descriptor */
683 desc_last
->des0
&= ~(IDMAC_DES0_CH
| IDMAC_DES0_DIC
);
684 desc_last
->des0
|= IDMAC_DES0_LD
;
688 /* restore the descriptor chain as it's polluted */
689 dev_dbg(host
->dev
, "descriptor is still owned by IDMAC.\n");
690 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
691 dw_mci_idmac_init(host
);
696 static inline int dw_mci_prepare_desc32(struct dw_mci
*host
,
697 struct mmc_data
*data
,
700 unsigned int desc_len
;
701 struct idmac_desc
*desc_first
, *desc_last
, *desc
;
705 desc_first
= desc_last
= desc
= host
->sg_cpu
;
707 for (i
= 0; i
< sg_len
; i
++) {
708 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
710 u32 mem_addr
= sg_dma_address(&data
->sg
[i
]);
712 for ( ; length
; desc
++) {
713 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
714 length
: DW_MCI_DESC_DATA_LENGTH
;
719 * Wait for the former clear OWN bit operation
720 * of IDMAC to make sure that this descriptor
721 * isn't still owned by IDMAC as IDMAC's write
722 * ops and CPU's read ops are asynchronous.
724 if (readl_poll_timeout_atomic(&desc
->des0
, val
,
725 IDMAC_OWN_CLR64(val
),
727 100 * USEC_PER_MSEC
))
731 * Set the OWN bit and disable interrupts
732 * for this descriptor
734 desc
->des0
= cpu_to_le32(IDMAC_DES0_OWN
|
739 IDMAC_SET_BUFFER1_SIZE(desc
, desc_len
);
741 /* Physical address to DMA to/from */
742 desc
->des2
= cpu_to_le32(mem_addr
);
744 /* Update physical address for the next desc */
745 mem_addr
+= desc_len
;
747 /* Save pointer to the last descriptor */
752 /* Set first descriptor */
753 desc_first
->des0
|= cpu_to_le32(IDMAC_DES0_FD
);
755 /* Set last descriptor */
756 desc_last
->des0
&= cpu_to_le32(~(IDMAC_DES0_CH
|
758 desc_last
->des0
|= cpu_to_le32(IDMAC_DES0_LD
);
762 /* restore the descriptor chain as it's polluted */
763 dev_dbg(host
->dev
, "descriptor is still owned by IDMAC.\n");
764 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
765 dw_mci_idmac_init(host
);
769 static int dw_mci_idmac_start_dma(struct dw_mci
*host
, unsigned int sg_len
)
774 if (host
->dma_64bit_address
== 1)
775 ret
= dw_mci_prepare_desc64(host
, host
->data
, sg_len
);
777 ret
= dw_mci_prepare_desc32(host
, host
->data
, sg_len
);
782 /* drain writebuffer */
785 /* Make sure to reset DMA in case we did PIO before this */
786 dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
);
787 dw_mci_idmac_reset(host
);
789 /* Select IDMAC interface */
790 temp
= mci_readl(host
, CTRL
);
791 temp
|= SDMMC_CTRL_USE_IDMAC
;
792 mci_writel(host
, CTRL
, temp
);
794 /* drain writebuffer */
797 /* Enable the IDMAC */
798 temp
= mci_readl(host
, BMOD
);
799 temp
|= SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
;
800 mci_writel(host
, BMOD
, temp
);
802 /* Start it running */
803 mci_writel(host
, PLDMND
, 1);
809 static const struct dw_mci_dma_ops dw_mci_idmac_ops
= {
810 .init
= dw_mci_idmac_init
,
811 .start
= dw_mci_idmac_start_dma
,
812 .stop
= dw_mci_idmac_stop_dma
,
813 .complete
= dw_mci_dmac_complete_dma
,
814 .cleanup
= dw_mci_dma_cleanup
,
817 static void dw_mci_edmac_stop_dma(struct dw_mci
*host
)
819 dmaengine_terminate_async(host
->dms
->ch
);
822 static int dw_mci_edmac_start_dma(struct dw_mci
*host
,
825 struct dma_slave_config cfg
;
826 struct dma_async_tx_descriptor
*desc
= NULL
;
827 struct scatterlist
*sgl
= host
->data
->sg
;
828 const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
829 u32 sg_elems
= host
->data
->sg_len
;
831 u32 fifo_offset
= host
->fifo_reg
- host
->regs
;
834 /* Set external dma config: burst size, burst width */
835 cfg
.dst_addr
= host
->phy_regs
+ fifo_offset
;
836 cfg
.src_addr
= cfg
.dst_addr
;
837 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
838 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
840 /* Match burst msize with external dma config */
841 fifoth_val
= mci_readl(host
, FIFOTH
);
842 cfg
.dst_maxburst
= mszs
[(fifoth_val
>> 28) & 0x7];
843 cfg
.src_maxburst
= cfg
.dst_maxburst
;
845 if (host
->data
->flags
& MMC_DATA_WRITE
)
846 cfg
.direction
= DMA_MEM_TO_DEV
;
848 cfg
.direction
= DMA_DEV_TO_MEM
;
850 ret
= dmaengine_slave_config(host
->dms
->ch
, &cfg
);
852 dev_err(host
->dev
, "Failed to config edmac.\n");
856 desc
= dmaengine_prep_slave_sg(host
->dms
->ch
, sgl
,
857 sg_len
, cfg
.direction
,
858 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
860 dev_err(host
->dev
, "Can't prepare slave sg.\n");
864 /* Set dw_mci_dmac_complete_dma as callback */
865 desc
->callback
= dw_mci_dmac_complete_dma
;
866 desc
->callback_param
= (void *)host
;
867 dmaengine_submit(desc
);
869 /* Flush cache before write */
870 if (host
->data
->flags
& MMC_DATA_WRITE
)
871 dma_sync_sg_for_device(mmc_dev(host
->slot
->mmc
), sgl
,
872 sg_elems
, DMA_TO_DEVICE
);
874 dma_async_issue_pending(host
->dms
->ch
);
879 static int dw_mci_edmac_init(struct dw_mci
*host
)
881 /* Request external dma channel */
882 host
->dms
= kzalloc(sizeof(struct dw_mci_dma_slave
), GFP_KERNEL
);
886 host
->dms
->ch
= dma_request_slave_channel(host
->dev
, "rx-tx");
887 if (!host
->dms
->ch
) {
888 dev_err(host
->dev
, "Failed to get external DMA channel.\n");
897 static void dw_mci_edmac_exit(struct dw_mci
*host
)
901 dma_release_channel(host
->dms
->ch
);
902 host
->dms
->ch
= NULL
;
909 static const struct dw_mci_dma_ops dw_mci_edmac_ops
= {
910 .init
= dw_mci_edmac_init
,
911 .exit
= dw_mci_edmac_exit
,
912 .start
= dw_mci_edmac_start_dma
,
913 .stop
= dw_mci_edmac_stop_dma
,
914 .complete
= dw_mci_dmac_complete_dma
,
915 .cleanup
= dw_mci_dma_cleanup
,
918 static int dw_mci_pre_dma_transfer(struct dw_mci
*host
,
919 struct mmc_data
*data
,
922 struct scatterlist
*sg
;
923 unsigned int i
, sg_len
;
925 if (data
->host_cookie
== COOKIE_PRE_MAPPED
)
929 * We don't do DMA on "complex" transfers, i.e. with
930 * non-word-aligned buffers or lengths. Also, we don't bother
931 * with all the DMA setup overhead for short transfers.
933 if (data
->blocks
* data
->blksz
< DW_MCI_DMA_THRESHOLD
)
939 for_each_sg(data
->sg
, sg
, data
->sg_len
, i
) {
940 if (sg
->offset
& 3 || sg
->length
& 3)
944 sg_len
= dma_map_sg(host
->dev
,
947 mmc_get_dma_dir(data
));
951 data
->host_cookie
= cookie
;
956 static void dw_mci_pre_req(struct mmc_host
*mmc
,
957 struct mmc_request
*mrq
)
959 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
960 struct mmc_data
*data
= mrq
->data
;
962 if (!slot
->host
->use_dma
|| !data
)
965 /* This data might be unmapped at this time */
966 data
->host_cookie
= COOKIE_UNMAPPED
;
968 if (dw_mci_pre_dma_transfer(slot
->host
, mrq
->data
,
969 COOKIE_PRE_MAPPED
) < 0)
970 data
->host_cookie
= COOKIE_UNMAPPED
;
973 static void dw_mci_post_req(struct mmc_host
*mmc
,
974 struct mmc_request
*mrq
,
977 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
978 struct mmc_data
*data
= mrq
->data
;
980 if (!slot
->host
->use_dma
|| !data
)
983 if (data
->host_cookie
!= COOKIE_UNMAPPED
)
984 dma_unmap_sg(slot
->host
->dev
,
987 mmc_get_dma_dir(data
));
988 data
->host_cookie
= COOKIE_UNMAPPED
;
991 static int dw_mci_get_cd(struct mmc_host
*mmc
)
994 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
995 struct dw_mci
*host
= slot
->host
;
996 int gpio_cd
= mmc_gpio_get_cd(mmc
);
998 /* Use platform get_cd function, else try onboard card detect */
999 if (((mmc
->caps
& MMC_CAP_NEEDS_POLL
)
1000 || !mmc_card_is_removable(mmc
))) {
1003 if (!test_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
)) {
1004 if (mmc
->caps
& MMC_CAP_NEEDS_POLL
) {
1005 dev_info(&mmc
->class_dev
,
1006 "card is polling.\n");
1008 dev_info(&mmc
->class_dev
,
1009 "card is non-removable.\n");
1011 set_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
);
1015 } else if (gpio_cd
>= 0)
1018 present
= (mci_readl(slot
->host
, CDETECT
) & (1 << slot
->id
))
1021 spin_lock_bh(&host
->lock
);
1022 if (present
&& !test_and_set_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
))
1023 dev_dbg(&mmc
->class_dev
, "card is present\n");
1024 else if (!present
&&
1025 !test_and_clear_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
))
1026 dev_dbg(&mmc
->class_dev
, "card is not present\n");
1027 spin_unlock_bh(&host
->lock
);
1032 static void dw_mci_adjust_fifoth(struct dw_mci
*host
, struct mmc_data
*data
)
1034 unsigned int blksz
= data
->blksz
;
1035 const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
1036 u32 fifo_width
= 1 << host
->data_shift
;
1037 u32 blksz_depth
= blksz
/ fifo_width
, fifoth_val
;
1038 u32 msize
= 0, rx_wmark
= 1, tx_wmark
, tx_wmark_invers
;
1039 int idx
= ARRAY_SIZE(mszs
) - 1;
1041 /* pio should ship this scenario */
1045 tx_wmark
= (host
->fifo_depth
) / 2;
1046 tx_wmark_invers
= host
->fifo_depth
- tx_wmark
;
1050 * if blksz is not a multiple of the FIFO width
1052 if (blksz
% fifo_width
)
1056 if (!((blksz_depth
% mszs
[idx
]) ||
1057 (tx_wmark_invers
% mszs
[idx
]))) {
1059 rx_wmark
= mszs
[idx
] - 1;
1062 } while (--idx
> 0);
1064 * If idx is '0', it won't be tried
1065 * Thus, initial values are uesed
1068 fifoth_val
= SDMMC_SET_FIFOTH(msize
, rx_wmark
, tx_wmark
);
1069 mci_writel(host
, FIFOTH
, fifoth_val
);
1072 static void dw_mci_ctrl_thld(struct dw_mci
*host
, struct mmc_data
*data
)
1074 unsigned int blksz
= data
->blksz
;
1075 u32 blksz_depth
, fifo_depth
;
1080 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1081 * in the FIFO region, so we really shouldn't access it).
1083 if (host
->verid
< DW_MMC_240A
||
1084 (host
->verid
< DW_MMC_280A
&& data
->flags
& MMC_DATA_WRITE
))
1088 * Card write Threshold is introduced since 2.80a
1089 * It's used when HS400 mode is enabled.
1091 if (data
->flags
& MMC_DATA_WRITE
&&
1092 !(host
->timing
!= MMC_TIMING_MMC_HS400
))
1095 if (data
->flags
& MMC_DATA_WRITE
)
1096 enable
= SDMMC_CARD_WR_THR_EN
;
1098 enable
= SDMMC_CARD_RD_THR_EN
;
1100 if (host
->timing
!= MMC_TIMING_MMC_HS200
&&
1101 host
->timing
!= MMC_TIMING_UHS_SDR104
)
1104 blksz_depth
= blksz
/ (1 << host
->data_shift
);
1105 fifo_depth
= host
->fifo_depth
;
1107 if (blksz_depth
> fifo_depth
)
1111 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1112 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1113 * Currently just choose blksz.
1116 mci_writel(host
, CDTHRCTL
, SDMMC_SET_THLD(thld_size
, enable
));
1120 mci_writel(host
, CDTHRCTL
, 0);
1123 static int dw_mci_submit_data_dma(struct dw_mci
*host
, struct mmc_data
*data
)
1125 unsigned long irqflags
;
1129 host
->using_dma
= 0;
1131 /* If we don't have a channel, we can't do DMA */
1135 sg_len
= dw_mci_pre_dma_transfer(host
, data
, COOKIE_MAPPED
);
1137 host
->dma_ops
->stop(host
);
1141 host
->using_dma
= 1;
1143 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1145 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1146 (unsigned long)host
->sg_cpu
,
1147 (unsigned long)host
->sg_dma
,
1151 * Decide the MSIZE and RX/TX Watermark.
1152 * If current block size is same with previous size,
1153 * no need to update fifoth.
1155 if (host
->prev_blksz
!= data
->blksz
)
1156 dw_mci_adjust_fifoth(host
, data
);
1158 /* Enable the DMA interface */
1159 temp
= mci_readl(host
, CTRL
);
1160 temp
|= SDMMC_CTRL_DMA_ENABLE
;
1161 mci_writel(host
, CTRL
, temp
);
1163 /* Disable RX/TX IRQs, let DMA handle it */
1164 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1165 temp
= mci_readl(host
, INTMASK
);
1166 temp
&= ~(SDMMC_INT_RXDR
| SDMMC_INT_TXDR
);
1167 mci_writel(host
, INTMASK
, temp
);
1168 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1170 if (host
->dma_ops
->start(host
, sg_len
)) {
1171 host
->dma_ops
->stop(host
);
1172 /* We can't do DMA, try PIO for this one */
1174 "%s: fall back to PIO mode for current transfer\n",
1182 static void dw_mci_submit_data(struct dw_mci
*host
, struct mmc_data
*data
)
1184 unsigned long irqflags
;
1185 int flags
= SG_MITER_ATOMIC
;
1188 data
->error
= -EINPROGRESS
;
1190 WARN_ON(host
->data
);
1194 if (data
->flags
& MMC_DATA_READ
)
1195 host
->dir_status
= DW_MCI_RECV_STATUS
;
1197 host
->dir_status
= DW_MCI_SEND_STATUS
;
1199 dw_mci_ctrl_thld(host
, data
);
1201 if (dw_mci_submit_data_dma(host
, data
)) {
1202 if (host
->data
->flags
& MMC_DATA_READ
)
1203 flags
|= SG_MITER_TO_SG
;
1205 flags
|= SG_MITER_FROM_SG
;
1207 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
1208 host
->sg
= data
->sg
;
1209 host
->part_buf_start
= 0;
1210 host
->part_buf_count
= 0;
1212 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
| SDMMC_INT_RXDR
);
1214 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1215 temp
= mci_readl(host
, INTMASK
);
1216 temp
|= SDMMC_INT_TXDR
| SDMMC_INT_RXDR
;
1217 mci_writel(host
, INTMASK
, temp
);
1218 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1220 temp
= mci_readl(host
, CTRL
);
1221 temp
&= ~SDMMC_CTRL_DMA_ENABLE
;
1222 mci_writel(host
, CTRL
, temp
);
1225 * Use the initial fifoth_val for PIO mode. If wm_algined
1226 * is set, we set watermark same as data size.
1227 * If next issued data may be transfered by DMA mode,
1228 * prev_blksz should be invalidated.
1230 if (host
->wm_aligned
)
1231 dw_mci_adjust_fifoth(host
, data
);
1233 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
1234 host
->prev_blksz
= 0;
1237 * Keep the current block size.
1238 * It will be used to decide whether to update
1239 * fifoth register next time.
1241 host
->prev_blksz
= data
->blksz
;
1245 static void dw_mci_setup_bus(struct dw_mci_slot
*slot
, bool force_clkinit
)
1247 struct dw_mci
*host
= slot
->host
;
1248 unsigned int clock
= slot
->clock
;
1251 u32 sdmmc_cmd_bits
= SDMMC_CMD_UPD_CLK
| SDMMC_CMD_PRV_DAT_WAIT
;
1253 /* We must continue to set bit 28 in CMD until the change is complete */
1254 if (host
->state
== STATE_WAITING_CMD11_DONE
)
1255 sdmmc_cmd_bits
|= SDMMC_CMD_VOLT_SWITCH
;
1258 mci_writel(host
, CLKENA
, 0);
1259 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1260 } else if (clock
!= host
->current_speed
|| force_clkinit
) {
1261 div
= host
->bus_hz
/ clock
;
1262 if (host
->bus_hz
% clock
&& host
->bus_hz
> clock
)
1264 * move the + 1 after the divide to prevent
1265 * over-clocking the card.
1269 div
= (host
->bus_hz
!= clock
) ? DIV_ROUND_UP(div
, 2) : 0;
1271 if ((clock
!= slot
->__clk_old
&&
1272 !test_bit(DW_MMC_CARD_NEEDS_POLL
, &slot
->flags
)) ||
1274 /* Silent the verbose log if calling from PM context */
1276 dev_info(&slot
->mmc
->class_dev
,
1277 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1278 slot
->id
, host
->bus_hz
, clock
,
1279 div
? ((host
->bus_hz
/ div
) >> 1) :
1283 * If card is polling, display the message only
1284 * one time at boot time.
1286 if (slot
->mmc
->caps
& MMC_CAP_NEEDS_POLL
&&
1287 slot
->mmc
->f_min
== clock
)
1288 set_bit(DW_MMC_CARD_NEEDS_POLL
, &slot
->flags
);
1292 mci_writel(host
, CLKENA
, 0);
1293 mci_writel(host
, CLKSRC
, 0);
1296 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1298 /* set clock to desired speed */
1299 mci_writel(host
, CLKDIV
, div
);
1302 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1304 /* enable clock; only low power if no SDIO */
1305 clk_en_a
= SDMMC_CLKEN_ENABLE
<< slot
->id
;
1306 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
))
1307 clk_en_a
|= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1308 mci_writel(host
, CLKENA
, clk_en_a
);
1311 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1313 /* keep the last clock value that was requested from core */
1314 slot
->__clk_old
= clock
;
1317 host
->current_speed
= clock
;
1319 /* Set the current slot bus width */
1320 mci_writel(host
, CTYPE
, (slot
->ctype
<< slot
->id
));
1323 static void __dw_mci_start_request(struct dw_mci
*host
,
1324 struct dw_mci_slot
*slot
,
1325 struct mmc_command
*cmd
)
1327 struct mmc_request
*mrq
;
1328 struct mmc_data
*data
;
1335 host
->pending_events
= 0;
1336 host
->completed_events
= 0;
1337 host
->cmd_status
= 0;
1338 host
->data_status
= 0;
1339 host
->dir_status
= 0;
1343 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
1344 mci_writel(host
, BYTCNT
, data
->blksz
*data
->blocks
);
1345 mci_writel(host
, BLKSIZ
, data
->blksz
);
1348 cmdflags
= dw_mci_prepare_command(slot
->mmc
, cmd
);
1350 /* this is the first command, send the initialization clock */
1351 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
))
1352 cmdflags
|= SDMMC_CMD_INIT
;
1355 dw_mci_submit_data(host
, data
);
1356 wmb(); /* drain writebuffer */
1359 dw_mci_start_command(host
, cmd
, cmdflags
);
1361 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
1362 unsigned long irqflags
;
1365 * Databook says to fail after 2ms w/ no response, but evidence
1366 * shows that sometimes the cmd11 interrupt takes over 130ms.
1367 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1368 * is just about to roll over.
1370 * We do this whole thing under spinlock and only if the
1371 * command hasn't already completed (indicating the the irq
1372 * already ran so we don't want the timeout).
1374 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1375 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
1376 mod_timer(&host
->cmd11_timer
,
1377 jiffies
+ msecs_to_jiffies(500) + 1);
1378 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1381 host
->stop_cmdr
= dw_mci_prep_stop_abort(host
, cmd
);
1384 static void dw_mci_start_request(struct dw_mci
*host
,
1385 struct dw_mci_slot
*slot
)
1387 struct mmc_request
*mrq
= slot
->mrq
;
1388 struct mmc_command
*cmd
;
1390 cmd
= mrq
->sbc
? mrq
->sbc
: mrq
->cmd
;
1391 __dw_mci_start_request(host
, slot
, cmd
);
1394 /* must be called with host->lock held */
1395 static void dw_mci_queue_request(struct dw_mci
*host
, struct dw_mci_slot
*slot
,
1396 struct mmc_request
*mrq
)
1398 dev_vdbg(&slot
->mmc
->class_dev
, "queue request: state=%d\n",
1403 if (host
->state
== STATE_WAITING_CMD11_DONE
) {
1404 dev_warn(&slot
->mmc
->class_dev
,
1405 "Voltage change didn't complete\n");
1407 * this case isn't expected to happen, so we can
1408 * either crash here or just try to continue on
1409 * in the closest possible state
1411 host
->state
= STATE_IDLE
;
1414 if (host
->state
== STATE_IDLE
) {
1415 host
->state
= STATE_SENDING_CMD
;
1416 dw_mci_start_request(host
, slot
);
1418 list_add_tail(&slot
->queue_node
, &host
->queue
);
1422 static void dw_mci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1424 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1425 struct dw_mci
*host
= slot
->host
;
1430 * The check for card presence and queueing of the request must be
1431 * atomic, otherwise the card could be removed in between and the
1432 * request wouldn't fail until another card was inserted.
1435 if (!dw_mci_get_cd(mmc
)) {
1436 mrq
->cmd
->error
= -ENOMEDIUM
;
1437 mmc_request_done(mmc
, mrq
);
1441 spin_lock_bh(&host
->lock
);
1443 dw_mci_queue_request(host
, slot
, mrq
);
1445 spin_unlock_bh(&host
->lock
);
1448 static void dw_mci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1450 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1451 const struct dw_mci_drv_data
*drv_data
= slot
->host
->drv_data
;
1455 switch (ios
->bus_width
) {
1456 case MMC_BUS_WIDTH_4
:
1457 slot
->ctype
= SDMMC_CTYPE_4BIT
;
1459 case MMC_BUS_WIDTH_8
:
1460 slot
->ctype
= SDMMC_CTYPE_8BIT
;
1463 /* set default 1 bit mode */
1464 slot
->ctype
= SDMMC_CTYPE_1BIT
;
1467 regs
= mci_readl(slot
->host
, UHS_REG
);
1470 if (ios
->timing
== MMC_TIMING_MMC_DDR52
||
1471 ios
->timing
== MMC_TIMING_UHS_DDR50
||
1472 ios
->timing
== MMC_TIMING_MMC_HS400
)
1473 regs
|= ((0x1 << slot
->id
) << 16);
1475 regs
&= ~((0x1 << slot
->id
) << 16);
1477 mci_writel(slot
->host
, UHS_REG
, regs
);
1478 slot
->host
->timing
= ios
->timing
;
1481 * Use mirror of ios->clock to prevent race with mmc
1482 * core ios update when finding the minimum.
1484 slot
->clock
= ios
->clock
;
1486 if (drv_data
&& drv_data
->set_ios
)
1487 drv_data
->set_ios(slot
->host
, ios
);
1489 switch (ios
->power_mode
) {
1491 if (!IS_ERR(mmc
->supply
.vmmc
)) {
1492 ret
= mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
,
1495 dev_err(slot
->host
->dev
,
1496 "failed to enable vmmc regulator\n");
1497 /*return, if failed turn on vmmc*/
1501 set_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
);
1502 regs
= mci_readl(slot
->host
, PWREN
);
1503 regs
|= (1 << slot
->id
);
1504 mci_writel(slot
->host
, PWREN
, regs
);
1507 if (!slot
->host
->vqmmc_enabled
) {
1508 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1509 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1511 dev_err(slot
->host
->dev
,
1512 "failed to enable vqmmc\n");
1514 slot
->host
->vqmmc_enabled
= true;
1517 /* Keep track so we don't reset again */
1518 slot
->host
->vqmmc_enabled
= true;
1521 /* Reset our state machine after powering on */
1522 dw_mci_ctrl_reset(slot
->host
,
1523 SDMMC_CTRL_ALL_RESET_FLAGS
);
1526 /* Adjust clock / bus width after power is up */
1527 dw_mci_setup_bus(slot
, false);
1531 /* Turn clock off before power goes down */
1532 dw_mci_setup_bus(slot
, false);
1534 if (!IS_ERR(mmc
->supply
.vmmc
))
1535 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1537 if (!IS_ERR(mmc
->supply
.vqmmc
) && slot
->host
->vqmmc_enabled
)
1538 regulator_disable(mmc
->supply
.vqmmc
);
1539 slot
->host
->vqmmc_enabled
= false;
1541 regs
= mci_readl(slot
->host
, PWREN
);
1542 regs
&= ~(1 << slot
->id
);
1543 mci_writel(slot
->host
, PWREN
, regs
);
1549 if (slot
->host
->state
== STATE_WAITING_CMD11_DONE
&& ios
->clock
!= 0)
1550 slot
->host
->state
= STATE_IDLE
;
1553 static int dw_mci_card_busy(struct mmc_host
*mmc
)
1555 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1559 * Check the busy bit which is low when DAT[3:0]
1560 * (the data lines) are 0000
1562 status
= mci_readl(slot
->host
, STATUS
);
1564 return !!(status
& SDMMC_STATUS_BUSY
);
1567 static int dw_mci_switch_voltage(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1569 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1570 struct dw_mci
*host
= slot
->host
;
1571 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1573 u32 v18
= SDMMC_UHS_18V
<< slot
->id
;
1576 if (drv_data
&& drv_data
->switch_voltage
)
1577 return drv_data
->switch_voltage(mmc
, ios
);
1580 * Program the voltage. Note that some instances of dw_mmc may use
1581 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1582 * does no harm but you need to set the regulator directly. Try both.
1584 uhs
= mci_readl(host
, UHS_REG
);
1585 if (ios
->signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1590 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1591 ret
= mmc_regulator_set_vqmmc(mmc
, ios
);
1594 dev_dbg(&mmc
->class_dev
,
1595 "Regulator set error %d - %s V\n",
1596 ret
, uhs
& v18
? "1.8" : "3.3");
1600 mci_writel(host
, UHS_REG
, uhs
);
1605 static int dw_mci_get_ro(struct mmc_host
*mmc
)
1608 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1609 int gpio_ro
= mmc_gpio_get_ro(mmc
);
1611 /* Use platform get_ro function, else try on board write protect */
1613 read_only
= gpio_ro
;
1616 mci_readl(slot
->host
, WRTPRT
) & (1 << slot
->id
) ? 1 : 0;
1618 dev_dbg(&mmc
->class_dev
, "card is %s\n",
1619 read_only
? "read-only" : "read-write");
1624 static void dw_mci_hw_reset(struct mmc_host
*mmc
)
1626 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1627 struct dw_mci
*host
= slot
->host
;
1630 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1631 dw_mci_idmac_reset(host
);
1633 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
|
1634 SDMMC_CTRL_FIFO_RESET
))
1638 * According to eMMC spec, card reset procedure:
1639 * tRstW >= 1us: RST_n pulse width
1640 * tRSCA >= 200us: RST_n to Command time
1641 * tRSTH >= 1us: RST_n high period
1643 reset
= mci_readl(host
, RST_N
);
1644 reset
&= ~(SDMMC_RST_HWACTIVE
<< slot
->id
);
1645 mci_writel(host
, RST_N
, reset
);
1647 reset
|= SDMMC_RST_HWACTIVE
<< slot
->id
;
1648 mci_writel(host
, RST_N
, reset
);
1649 usleep_range(200, 300);
1652 static void dw_mci_init_card(struct mmc_host
*mmc
, struct mmc_card
*card
)
1654 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1655 struct dw_mci
*host
= slot
->host
;
1658 * Low power mode will stop the card clock when idle. According to the
1659 * description of the CLKENA register we should disable low power mode
1660 * for SDIO cards if we need SDIO interrupts to work.
1662 if (mmc
->caps
& MMC_CAP_SDIO_IRQ
) {
1663 const u32 clken_low_pwr
= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1667 clk_en_a_old
= mci_readl(host
, CLKENA
);
1669 if (card
->type
== MMC_TYPE_SDIO
||
1670 card
->type
== MMC_TYPE_SD_COMBO
) {
1671 set_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1672 clk_en_a
= clk_en_a_old
& ~clken_low_pwr
;
1674 clear_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1675 clk_en_a
= clk_en_a_old
| clken_low_pwr
;
1678 if (clk_en_a
!= clk_en_a_old
) {
1679 mci_writel(host
, CLKENA
, clk_en_a
);
1680 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
1681 SDMMC_CMD_PRV_DAT_WAIT
, 0);
1686 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot
*slot
, int enb
)
1688 struct dw_mci
*host
= slot
->host
;
1689 unsigned long irqflags
;
1692 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1694 /* Enable/disable Slot Specific SDIO interrupt */
1695 int_mask
= mci_readl(host
, INTMASK
);
1697 int_mask
|= SDMMC_INT_SDIO(slot
->sdio_id
);
1699 int_mask
&= ~SDMMC_INT_SDIO(slot
->sdio_id
);
1700 mci_writel(host
, INTMASK
, int_mask
);
1702 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1705 static void dw_mci_enable_sdio_irq(struct mmc_host
*mmc
, int enb
)
1707 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1708 struct dw_mci
*host
= slot
->host
;
1710 __dw_mci_enable_sdio_irq(slot
, enb
);
1712 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1714 pm_runtime_get_noresume(host
->dev
);
1716 pm_runtime_put_noidle(host
->dev
);
1719 static void dw_mci_ack_sdio_irq(struct mmc_host
*mmc
)
1721 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1723 __dw_mci_enable_sdio_irq(slot
, 1);
1726 static int dw_mci_execute_tuning(struct mmc_host
*mmc
, u32 opcode
)
1728 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1729 struct dw_mci
*host
= slot
->host
;
1730 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1733 if (drv_data
&& drv_data
->execute_tuning
)
1734 err
= drv_data
->execute_tuning(slot
, opcode
);
1738 static int dw_mci_prepare_hs400_tuning(struct mmc_host
*mmc
,
1739 struct mmc_ios
*ios
)
1741 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1742 struct dw_mci
*host
= slot
->host
;
1743 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1745 if (drv_data
&& drv_data
->prepare_hs400_tuning
)
1746 return drv_data
->prepare_hs400_tuning(host
, ios
);
1751 static bool dw_mci_reset(struct dw_mci
*host
)
1753 u32 flags
= SDMMC_CTRL_RESET
| SDMMC_CTRL_FIFO_RESET
;
1758 * Resetting generates a block interrupt, hence setting
1759 * the scatter-gather pointer to NULL.
1762 sg_miter_stop(&host
->sg_miter
);
1767 flags
|= SDMMC_CTRL_DMA_RESET
;
1769 if (dw_mci_ctrl_reset(host
, flags
)) {
1771 * In all cases we clear the RAWINTS
1772 * register to clear any interrupts.
1774 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
1776 if (!host
->use_dma
) {
1781 /* Wait for dma_req to be cleared */
1782 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_STATUS
,
1784 !(status
& SDMMC_STATUS_DMA_REQ
),
1785 1, 500 * USEC_PER_MSEC
)) {
1787 "%s: Timeout waiting for dma_req to be cleared\n",
1792 /* when using DMA next we reset the fifo again */
1793 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_FIFO_RESET
))
1796 /* if the controller reset bit did clear, then set clock regs */
1797 if (!(mci_readl(host
, CTRL
) & SDMMC_CTRL_RESET
)) {
1799 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1805 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1806 /* It is also required that we reinit idmac */
1807 dw_mci_idmac_init(host
);
1812 /* After a CTRL reset we need to have CIU set clock registers */
1813 mci_send_cmd(host
->slot
, SDMMC_CMD_UPD_CLK
, 0);
1818 static const struct mmc_host_ops dw_mci_ops
= {
1819 .request
= dw_mci_request
,
1820 .pre_req
= dw_mci_pre_req
,
1821 .post_req
= dw_mci_post_req
,
1822 .set_ios
= dw_mci_set_ios
,
1823 .get_ro
= dw_mci_get_ro
,
1824 .get_cd
= dw_mci_get_cd
,
1825 .hw_reset
= dw_mci_hw_reset
,
1826 .enable_sdio_irq
= dw_mci_enable_sdio_irq
,
1827 .ack_sdio_irq
= dw_mci_ack_sdio_irq
,
1828 .execute_tuning
= dw_mci_execute_tuning
,
1829 .card_busy
= dw_mci_card_busy
,
1830 .start_signal_voltage_switch
= dw_mci_switch_voltage
,
1831 .init_card
= dw_mci_init_card
,
1832 .prepare_hs400_tuning
= dw_mci_prepare_hs400_tuning
,
1835 static void dw_mci_request_end(struct dw_mci
*host
, struct mmc_request
*mrq
)
1836 __releases(&host
->lock
)
1837 __acquires(&host
->lock
)
1839 struct dw_mci_slot
*slot
;
1840 struct mmc_host
*prev_mmc
= host
->slot
->mmc
;
1842 WARN_ON(host
->cmd
|| host
->data
);
1844 host
->slot
->mrq
= NULL
;
1846 if (!list_empty(&host
->queue
)) {
1847 slot
= list_entry(host
->queue
.next
,
1848 struct dw_mci_slot
, queue_node
);
1849 list_del(&slot
->queue_node
);
1850 dev_vdbg(host
->dev
, "list not empty: %s is next\n",
1851 mmc_hostname(slot
->mmc
));
1852 host
->state
= STATE_SENDING_CMD
;
1853 dw_mci_start_request(host
, slot
);
1855 dev_vdbg(host
->dev
, "list empty\n");
1857 if (host
->state
== STATE_SENDING_CMD11
)
1858 host
->state
= STATE_WAITING_CMD11_DONE
;
1860 host
->state
= STATE_IDLE
;
1863 spin_unlock(&host
->lock
);
1864 mmc_request_done(prev_mmc
, mrq
);
1865 spin_lock(&host
->lock
);
1868 static int dw_mci_command_complete(struct dw_mci
*host
, struct mmc_command
*cmd
)
1870 u32 status
= host
->cmd_status
;
1872 host
->cmd_status
= 0;
1874 /* Read the response from the card (up to 16 bytes) */
1875 if (cmd
->flags
& MMC_RSP_PRESENT
) {
1876 if (cmd
->flags
& MMC_RSP_136
) {
1877 cmd
->resp
[3] = mci_readl(host
, RESP0
);
1878 cmd
->resp
[2] = mci_readl(host
, RESP1
);
1879 cmd
->resp
[1] = mci_readl(host
, RESP2
);
1880 cmd
->resp
[0] = mci_readl(host
, RESP3
);
1882 cmd
->resp
[0] = mci_readl(host
, RESP0
);
1889 if (status
& SDMMC_INT_RTO
)
1890 cmd
->error
= -ETIMEDOUT
;
1891 else if ((cmd
->flags
& MMC_RSP_CRC
) && (status
& SDMMC_INT_RCRC
))
1892 cmd
->error
= -EILSEQ
;
1893 else if (status
& SDMMC_INT_RESP_ERR
)
1901 static int dw_mci_data_complete(struct dw_mci
*host
, struct mmc_data
*data
)
1903 u32 status
= host
->data_status
;
1905 if (status
& DW_MCI_DATA_ERROR_FLAGS
) {
1906 if (status
& SDMMC_INT_DRTO
) {
1907 data
->error
= -ETIMEDOUT
;
1908 } else if (status
& SDMMC_INT_DCRC
) {
1909 data
->error
= -EILSEQ
;
1910 } else if (status
& SDMMC_INT_EBE
) {
1911 if (host
->dir_status
==
1912 DW_MCI_SEND_STATUS
) {
1914 * No data CRC status was returned.
1915 * The number of bytes transferred
1916 * will be exaggerated in PIO mode.
1918 data
->bytes_xfered
= 0;
1919 data
->error
= -ETIMEDOUT
;
1920 } else if (host
->dir_status
==
1921 DW_MCI_RECV_STATUS
) {
1922 data
->error
= -EILSEQ
;
1925 /* SDMMC_INT_SBE is included */
1926 data
->error
= -EILSEQ
;
1929 dev_dbg(host
->dev
, "data error, status 0x%08x\n", status
);
1932 * After an error, there may be data lingering
1937 data
->bytes_xfered
= data
->blocks
* data
->blksz
;
1944 static void dw_mci_set_drto(struct dw_mci
*host
)
1946 unsigned int drto_clks
;
1947 unsigned int drto_div
;
1948 unsigned int drto_ms
;
1950 drto_clks
= mci_readl(host
, TMOUT
) >> 8;
1951 drto_div
= (mci_readl(host
, CLKDIV
) & 0xff) * 2;
1955 drto_ms
= DIV_ROUND_UP_ULL((u64
)MSEC_PER_SEC
* drto_clks
* drto_div
,
1958 /* add a bit spare time */
1961 mod_timer(&host
->dto_timer
, jiffies
+ msecs_to_jiffies(drto_ms
));
1964 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci
*host
)
1966 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
1970 * Really be certain that the timer has stopped. This is a bit of
1971 * paranoia and could only really happen if we had really bad
1972 * interrupt latency and the interrupt routine and timeout were
1973 * running concurrently so that the del_timer() in the interrupt
1974 * handler couldn't run.
1976 WARN_ON(del_timer_sync(&host
->cto_timer
));
1977 clear_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
1982 static void dw_mci_tasklet_func(unsigned long priv
)
1984 struct dw_mci
*host
= (struct dw_mci
*)priv
;
1985 struct mmc_data
*data
;
1986 struct mmc_command
*cmd
;
1987 struct mmc_request
*mrq
;
1988 enum dw_mci_state state
;
1989 enum dw_mci_state prev_state
;
1992 spin_lock(&host
->lock
);
1994 state
= host
->state
;
2003 case STATE_WAITING_CMD11_DONE
:
2006 case STATE_SENDING_CMD11
:
2007 case STATE_SENDING_CMD
:
2008 if (!dw_mci_clear_pending_cmd_complete(host
))
2013 set_bit(EVENT_CMD_COMPLETE
, &host
->completed_events
);
2014 err
= dw_mci_command_complete(host
, cmd
);
2015 if (cmd
== mrq
->sbc
&& !err
) {
2016 prev_state
= state
= STATE_SENDING_CMD
;
2017 __dw_mci_start_request(host
, host
->slot
,
2022 if (cmd
->data
&& err
) {
2024 * During UHS tuning sequence, sending the stop
2025 * command after the response CRC error would
2026 * throw the system into a confused state
2027 * causing all future tuning phases to report
2030 * In such case controller will move into a data
2031 * transfer state after a response error or
2032 * response CRC error. Let's let that finish
2033 * before trying to send a stop, so we'll go to
2034 * STATE_SENDING_DATA.
2036 * Although letting the data transfer take place
2037 * will waste a bit of time (we already know
2038 * the command was bad), it can't cause any
2039 * errors since it's possible it would have
2040 * taken place anyway if this tasklet got
2041 * delayed. Allowing the transfer to take place
2042 * avoids races and keeps things simple.
2044 if ((err
!= -ETIMEDOUT
) &&
2045 (cmd
->opcode
== MMC_SEND_TUNING_BLOCK
)) {
2046 state
= STATE_SENDING_DATA
;
2050 dw_mci_stop_dma(host
);
2051 send_stop_abort(host
, data
);
2052 state
= STATE_SENDING_STOP
;
2056 if (!cmd
->data
|| err
) {
2057 dw_mci_request_end(host
, mrq
);
2061 prev_state
= state
= STATE_SENDING_DATA
;
2064 case STATE_SENDING_DATA
:
2066 * We could get a data error and never a transfer
2067 * complete so we'd better check for it here.
2069 * Note that we don't really care if we also got a
2070 * transfer complete; stopping the DMA and sending an
2073 if (test_and_clear_bit(EVENT_DATA_ERROR
,
2074 &host
->pending_events
)) {
2075 dw_mci_stop_dma(host
);
2076 if (!(host
->data_status
& (SDMMC_INT_DRTO
|
2078 send_stop_abort(host
, data
);
2079 state
= STATE_DATA_ERROR
;
2083 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
2084 &host
->pending_events
)) {
2086 * If all data-related interrupts don't come
2087 * within the given time in reading data state.
2089 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
2090 dw_mci_set_drto(host
);
2094 set_bit(EVENT_XFER_COMPLETE
, &host
->completed_events
);
2097 * Handle an EVENT_DATA_ERROR that might have shown up
2098 * before the transfer completed. This might not have
2099 * been caught by the check above because the interrupt
2100 * could have gone off between the previous check and
2101 * the check for transfer complete.
2103 * Technically this ought not be needed assuming we
2104 * get a DATA_COMPLETE eventually (we'll notice the
2105 * error and end the request), but it shouldn't hurt.
2107 * This has the advantage of sending the stop command.
2109 if (test_and_clear_bit(EVENT_DATA_ERROR
,
2110 &host
->pending_events
)) {
2111 dw_mci_stop_dma(host
);
2112 if (!(host
->data_status
& (SDMMC_INT_DRTO
|
2114 send_stop_abort(host
, data
);
2115 state
= STATE_DATA_ERROR
;
2118 prev_state
= state
= STATE_DATA_BUSY
;
2122 case STATE_DATA_BUSY
:
2123 if (!test_and_clear_bit(EVENT_DATA_COMPLETE
,
2124 &host
->pending_events
)) {
2126 * If data error interrupt comes but data over
2127 * interrupt doesn't come within the given time.
2128 * in reading data state.
2130 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
2131 dw_mci_set_drto(host
);
2136 set_bit(EVENT_DATA_COMPLETE
, &host
->completed_events
);
2137 err
= dw_mci_data_complete(host
, data
);
2140 if (!data
->stop
|| mrq
->sbc
) {
2141 if (mrq
->sbc
&& data
->stop
)
2142 data
->stop
->error
= 0;
2143 dw_mci_request_end(host
, mrq
);
2147 /* stop command for open-ended transfer*/
2149 send_stop_abort(host
, data
);
2152 * If we don't have a command complete now we'll
2153 * never get one since we just reset everything;
2154 * better end the request.
2156 * If we do have a command complete we'll fall
2157 * through to the SENDING_STOP command and
2158 * everything will be peachy keen.
2160 if (!test_bit(EVENT_CMD_COMPLETE
,
2161 &host
->pending_events
)) {
2163 dw_mci_request_end(host
, mrq
);
2169 * If err has non-zero,
2170 * stop-abort command has been already issued.
2172 prev_state
= state
= STATE_SENDING_STOP
;
2176 case STATE_SENDING_STOP
:
2177 if (!dw_mci_clear_pending_cmd_complete(host
))
2180 /* CMD error in data command */
2181 if (mrq
->cmd
->error
&& mrq
->data
)
2187 if (!mrq
->sbc
&& mrq
->stop
)
2188 dw_mci_command_complete(host
, mrq
->stop
);
2190 host
->cmd_status
= 0;
2192 dw_mci_request_end(host
, mrq
);
2195 case STATE_DATA_ERROR
:
2196 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
2197 &host
->pending_events
))
2200 state
= STATE_DATA_BUSY
;
2203 } while (state
!= prev_state
);
2205 host
->state
= state
;
2207 spin_unlock(&host
->lock
);
2211 /* push final bytes to part_buf, only use during push */
2212 static void dw_mci_set_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2214 memcpy((void *)&host
->part_buf
, buf
, cnt
);
2215 host
->part_buf_count
= cnt
;
2218 /* append bytes to part_buf, only use during push */
2219 static int dw_mci_push_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2221 cnt
= min(cnt
, (1 << host
->data_shift
) - host
->part_buf_count
);
2222 memcpy((void *)&host
->part_buf
+ host
->part_buf_count
, buf
, cnt
);
2223 host
->part_buf_count
+= cnt
;
2227 /* pull first bytes from part_buf, only use during pull */
2228 static int dw_mci_pull_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2230 cnt
= min_t(int, cnt
, host
->part_buf_count
);
2232 memcpy(buf
, (void *)&host
->part_buf
+ host
->part_buf_start
,
2234 host
->part_buf_count
-= cnt
;
2235 host
->part_buf_start
+= cnt
;
2240 /* pull final bytes from the part_buf, assuming it's just been filled */
2241 static void dw_mci_pull_final_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2243 memcpy(buf
, &host
->part_buf
, cnt
);
2244 host
->part_buf_start
= cnt
;
2245 host
->part_buf_count
= (1 << host
->data_shift
) - cnt
;
2248 static void dw_mci_push_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2250 struct mmc_data
*data
= host
->data
;
2253 /* try and push anything in the part_buf */
2254 if (unlikely(host
->part_buf_count
)) {
2255 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2259 if (host
->part_buf_count
== 2) {
2260 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2261 host
->part_buf_count
= 0;
2264 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2265 if (unlikely((unsigned long)buf
& 0x1)) {
2267 u16 aligned_buf
[64];
2268 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2269 int items
= len
>> 1;
2271 /* memcpy from input buffer into aligned buffer */
2272 memcpy(aligned_buf
, buf
, len
);
2275 /* push data from aligned buffer into fifo */
2276 for (i
= 0; i
< items
; ++i
)
2277 mci_fifo_writew(host
->fifo_reg
, aligned_buf
[i
]);
2284 for (; cnt
>= 2; cnt
-= 2)
2285 mci_fifo_writew(host
->fifo_reg
, *pdata
++);
2288 /* put anything remaining in the part_buf */
2290 dw_mci_set_part_bytes(host
, buf
, cnt
);
2291 /* Push data if we have reached the expected data length */
2292 if ((data
->bytes_xfered
+ init_cnt
) ==
2293 (data
->blksz
* data
->blocks
))
2294 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2298 static void dw_mci_pull_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2300 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2301 if (unlikely((unsigned long)buf
& 0x1)) {
2303 /* pull data from fifo into aligned buffer */
2304 u16 aligned_buf
[64];
2305 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2306 int items
= len
>> 1;
2309 for (i
= 0; i
< items
; ++i
)
2310 aligned_buf
[i
] = mci_fifo_readw(host
->fifo_reg
);
2311 /* memcpy from aligned buffer into output buffer */
2312 memcpy(buf
, aligned_buf
, len
);
2321 for (; cnt
>= 2; cnt
-= 2)
2322 *pdata
++ = mci_fifo_readw(host
->fifo_reg
);
2326 host
->part_buf16
= mci_fifo_readw(host
->fifo_reg
);
2327 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2331 static void dw_mci_push_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2333 struct mmc_data
*data
= host
->data
;
2336 /* try and push anything in the part_buf */
2337 if (unlikely(host
->part_buf_count
)) {
2338 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2342 if (host
->part_buf_count
== 4) {
2343 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2344 host
->part_buf_count
= 0;
2347 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2348 if (unlikely((unsigned long)buf
& 0x3)) {
2350 u32 aligned_buf
[32];
2351 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2352 int items
= len
>> 2;
2354 /* memcpy from input buffer into aligned buffer */
2355 memcpy(aligned_buf
, buf
, len
);
2358 /* push data from aligned buffer into fifo */
2359 for (i
= 0; i
< items
; ++i
)
2360 mci_fifo_writel(host
->fifo_reg
, aligned_buf
[i
]);
2367 for (; cnt
>= 4; cnt
-= 4)
2368 mci_fifo_writel(host
->fifo_reg
, *pdata
++);
2371 /* put anything remaining in the part_buf */
2373 dw_mci_set_part_bytes(host
, buf
, cnt
);
2374 /* Push data if we have reached the expected data length */
2375 if ((data
->bytes_xfered
+ init_cnt
) ==
2376 (data
->blksz
* data
->blocks
))
2377 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2381 static void dw_mci_pull_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2383 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2384 if (unlikely((unsigned long)buf
& 0x3)) {
2386 /* pull data from fifo into aligned buffer */
2387 u32 aligned_buf
[32];
2388 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2389 int items
= len
>> 2;
2392 for (i
= 0; i
< items
; ++i
)
2393 aligned_buf
[i
] = mci_fifo_readl(host
->fifo_reg
);
2394 /* memcpy from aligned buffer into output buffer */
2395 memcpy(buf
, aligned_buf
, len
);
2404 for (; cnt
>= 4; cnt
-= 4)
2405 *pdata
++ = mci_fifo_readl(host
->fifo_reg
);
2409 host
->part_buf32
= mci_fifo_readl(host
->fifo_reg
);
2410 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2414 static void dw_mci_push_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2416 struct mmc_data
*data
= host
->data
;
2419 /* try and push anything in the part_buf */
2420 if (unlikely(host
->part_buf_count
)) {
2421 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2426 if (host
->part_buf_count
== 8) {
2427 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2428 host
->part_buf_count
= 0;
2431 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2432 if (unlikely((unsigned long)buf
& 0x7)) {
2434 u64 aligned_buf
[16];
2435 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2436 int items
= len
>> 3;
2438 /* memcpy from input buffer into aligned buffer */
2439 memcpy(aligned_buf
, buf
, len
);
2442 /* push data from aligned buffer into fifo */
2443 for (i
= 0; i
< items
; ++i
)
2444 mci_fifo_writeq(host
->fifo_reg
, aligned_buf
[i
]);
2451 for (; cnt
>= 8; cnt
-= 8)
2452 mci_fifo_writeq(host
->fifo_reg
, *pdata
++);
2455 /* put anything remaining in the part_buf */
2457 dw_mci_set_part_bytes(host
, buf
, cnt
);
2458 /* Push data if we have reached the expected data length */
2459 if ((data
->bytes_xfered
+ init_cnt
) ==
2460 (data
->blksz
* data
->blocks
))
2461 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2465 static void dw_mci_pull_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2467 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2468 if (unlikely((unsigned long)buf
& 0x7)) {
2470 /* pull data from fifo into aligned buffer */
2471 u64 aligned_buf
[16];
2472 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2473 int items
= len
>> 3;
2476 for (i
= 0; i
< items
; ++i
)
2477 aligned_buf
[i
] = mci_fifo_readq(host
->fifo_reg
);
2479 /* memcpy from aligned buffer into output buffer */
2480 memcpy(buf
, aligned_buf
, len
);
2489 for (; cnt
>= 8; cnt
-= 8)
2490 *pdata
++ = mci_fifo_readq(host
->fifo_reg
);
2494 host
->part_buf
= mci_fifo_readq(host
->fifo_reg
);
2495 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2499 static void dw_mci_pull_data(struct dw_mci
*host
, void *buf
, int cnt
)
2503 /* get remaining partial bytes */
2504 len
= dw_mci_pull_part_bytes(host
, buf
, cnt
);
2505 if (unlikely(len
== cnt
))
2510 /* get the rest of the data */
2511 host
->pull_data(host
, buf
, cnt
);
2514 static void dw_mci_read_data_pio(struct dw_mci
*host
, bool dto
)
2516 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2518 unsigned int offset
;
2519 struct mmc_data
*data
= host
->data
;
2520 int shift
= host
->data_shift
;
2523 unsigned int remain
, fcnt
;
2526 if (!sg_miter_next(sg_miter
))
2529 host
->sg
= sg_miter
->piter
.sg
;
2530 buf
= sg_miter
->addr
;
2531 remain
= sg_miter
->length
;
2535 fcnt
= (SDMMC_GET_FCNT(mci_readl(host
, STATUS
))
2536 << shift
) + host
->part_buf_count
;
2537 len
= min(remain
, fcnt
);
2540 dw_mci_pull_data(host
, (void *)(buf
+ offset
), len
);
2541 data
->bytes_xfered
+= len
;
2546 sg_miter
->consumed
= offset
;
2547 status
= mci_readl(host
, MINTSTS
);
2548 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2549 /* if the RXDR is ready read again */
2550 } while ((status
& SDMMC_INT_RXDR
) ||
2551 (dto
&& SDMMC_GET_FCNT(mci_readl(host
, STATUS
))));
2554 if (!sg_miter_next(sg_miter
))
2556 sg_miter
->consumed
= 0;
2558 sg_miter_stop(sg_miter
);
2562 sg_miter_stop(sg_miter
);
2564 smp_wmb(); /* drain writebuffer */
2565 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2568 static void dw_mci_write_data_pio(struct dw_mci
*host
)
2570 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2572 unsigned int offset
;
2573 struct mmc_data
*data
= host
->data
;
2574 int shift
= host
->data_shift
;
2577 unsigned int fifo_depth
= host
->fifo_depth
;
2578 unsigned int remain
, fcnt
;
2581 if (!sg_miter_next(sg_miter
))
2584 host
->sg
= sg_miter
->piter
.sg
;
2585 buf
= sg_miter
->addr
;
2586 remain
= sg_miter
->length
;
2590 fcnt
= ((fifo_depth
-
2591 SDMMC_GET_FCNT(mci_readl(host
, STATUS
)))
2592 << shift
) - host
->part_buf_count
;
2593 len
= min(remain
, fcnt
);
2596 host
->push_data(host
, (void *)(buf
+ offset
), len
);
2597 data
->bytes_xfered
+= len
;
2602 sg_miter
->consumed
= offset
;
2603 status
= mci_readl(host
, MINTSTS
);
2604 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2605 } while (status
& SDMMC_INT_TXDR
); /* if TXDR write again */
2608 if (!sg_miter_next(sg_miter
))
2610 sg_miter
->consumed
= 0;
2612 sg_miter_stop(sg_miter
);
2616 sg_miter_stop(sg_miter
);
2618 smp_wmb(); /* drain writebuffer */
2619 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2622 static void dw_mci_cmd_interrupt(struct dw_mci
*host
, u32 status
)
2624 del_timer(&host
->cto_timer
);
2626 if (!host
->cmd_status
)
2627 host
->cmd_status
= status
;
2629 smp_wmb(); /* drain writebuffer */
2631 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2632 tasklet_schedule(&host
->tasklet
);
2635 static void dw_mci_handle_cd(struct dw_mci
*host
)
2637 struct dw_mci_slot
*slot
= host
->slot
;
2639 if (slot
->mmc
->ops
->card_event
)
2640 slot
->mmc
->ops
->card_event(slot
->mmc
);
2641 mmc_detect_change(slot
->mmc
,
2642 msecs_to_jiffies(host
->pdata
->detect_delay_ms
));
2645 static irqreturn_t
dw_mci_interrupt(int irq
, void *dev_id
)
2647 struct dw_mci
*host
= dev_id
;
2649 struct dw_mci_slot
*slot
= host
->slot
;
2650 unsigned long irqflags
;
2652 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
2655 /* Check volt switch first, since it can look like an error */
2656 if ((host
->state
== STATE_SENDING_CMD11
) &&
2657 (pending
& SDMMC_INT_VOLT_SWITCH
)) {
2658 mci_writel(host
, RINTSTS
, SDMMC_INT_VOLT_SWITCH
);
2659 pending
&= ~SDMMC_INT_VOLT_SWITCH
;
2662 * Hold the lock; we know cmd11_timer can't be kicked
2663 * off after the lock is released, so safe to delete.
2665 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2666 dw_mci_cmd_interrupt(host
, pending
);
2667 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2669 del_timer(&host
->cmd11_timer
);
2672 if (pending
& DW_MCI_CMD_ERROR_FLAGS
) {
2673 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2675 del_timer(&host
->cto_timer
);
2676 mci_writel(host
, RINTSTS
, DW_MCI_CMD_ERROR_FLAGS
);
2677 host
->cmd_status
= pending
;
2678 smp_wmb(); /* drain writebuffer */
2679 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2681 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2684 if (pending
& DW_MCI_DATA_ERROR_FLAGS
) {
2685 /* if there is an error report DATA_ERROR */
2686 mci_writel(host
, RINTSTS
, DW_MCI_DATA_ERROR_FLAGS
);
2687 host
->data_status
= pending
;
2688 smp_wmb(); /* drain writebuffer */
2689 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
2690 tasklet_schedule(&host
->tasklet
);
2693 if (pending
& SDMMC_INT_DATA_OVER
) {
2694 del_timer(&host
->dto_timer
);
2696 mci_writel(host
, RINTSTS
, SDMMC_INT_DATA_OVER
);
2697 if (!host
->data_status
)
2698 host
->data_status
= pending
;
2699 smp_wmb(); /* drain writebuffer */
2700 if (host
->dir_status
== DW_MCI_RECV_STATUS
) {
2701 if (host
->sg
!= NULL
)
2702 dw_mci_read_data_pio(host
, true);
2704 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
2705 tasklet_schedule(&host
->tasklet
);
2708 if (pending
& SDMMC_INT_RXDR
) {
2709 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2710 if (host
->dir_status
== DW_MCI_RECV_STATUS
&& host
->sg
)
2711 dw_mci_read_data_pio(host
, false);
2714 if (pending
& SDMMC_INT_TXDR
) {
2715 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2716 if (host
->dir_status
== DW_MCI_SEND_STATUS
&& host
->sg
)
2717 dw_mci_write_data_pio(host
);
2720 if (pending
& SDMMC_INT_CMD_DONE
) {
2721 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2723 mci_writel(host
, RINTSTS
, SDMMC_INT_CMD_DONE
);
2724 dw_mci_cmd_interrupt(host
, pending
);
2726 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2729 if (pending
& SDMMC_INT_CD
) {
2730 mci_writel(host
, RINTSTS
, SDMMC_INT_CD
);
2731 dw_mci_handle_cd(host
);
2734 if (pending
& SDMMC_INT_SDIO(slot
->sdio_id
)) {
2735 mci_writel(host
, RINTSTS
,
2736 SDMMC_INT_SDIO(slot
->sdio_id
));
2737 __dw_mci_enable_sdio_irq(slot
, 0);
2738 sdio_signal_irq(slot
->mmc
);
2743 if (host
->use_dma
!= TRANS_MODE_IDMAC
)
2746 /* Handle IDMA interrupts */
2747 if (host
->dma_64bit_address
== 1) {
2748 pending
= mci_readl(host
, IDSTS64
);
2749 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2750 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_TI
|
2751 SDMMC_IDMAC_INT_RI
);
2752 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_NI
);
2753 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2754 host
->dma_ops
->complete((void *)host
);
2757 pending
= mci_readl(host
, IDSTS
);
2758 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2759 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_TI
|
2760 SDMMC_IDMAC_INT_RI
);
2761 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_NI
);
2762 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2763 host
->dma_ops
->complete((void *)host
);
2770 static int dw_mci_init_slot_caps(struct dw_mci_slot
*slot
)
2772 struct dw_mci
*host
= slot
->host
;
2773 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
2774 struct mmc_host
*mmc
= slot
->mmc
;
2777 if (host
->pdata
->caps
)
2778 mmc
->caps
= host
->pdata
->caps
;
2781 * Support MMC_CAP_ERASE by default.
2782 * It needs to use trim/discard/erase commands.
2784 mmc
->caps
|= MMC_CAP_ERASE
;
2786 if (host
->pdata
->pm_caps
)
2787 mmc
->pm_caps
= host
->pdata
->pm_caps
;
2789 if (host
->dev
->of_node
) {
2790 ctrl_id
= of_alias_get_id(host
->dev
->of_node
, "mshc");
2794 ctrl_id
= to_platform_device(host
->dev
)->id
;
2797 if (drv_data
&& drv_data
->caps
) {
2798 if (ctrl_id
>= drv_data
->num_caps
) {
2799 dev_err(host
->dev
, "invalid controller id %d\n",
2803 mmc
->caps
|= drv_data
->caps
[ctrl_id
];
2806 if (host
->pdata
->caps2
)
2807 mmc
->caps2
= host
->pdata
->caps2
;
2809 /* Process SDIO IRQs through the sdio_irq_work. */
2810 if (mmc
->caps
& MMC_CAP_SDIO_IRQ
)
2811 mmc
->caps2
|= MMC_CAP2_SDIO_IRQ_NOTHREAD
;
2816 static int dw_mci_init_slot(struct dw_mci
*host
)
2818 struct mmc_host
*mmc
;
2819 struct dw_mci_slot
*slot
;
2823 mmc
= mmc_alloc_host(sizeof(struct dw_mci_slot
), host
->dev
);
2827 slot
= mmc_priv(mmc
);
2829 slot
->sdio_id
= host
->sdio_id0
+ slot
->id
;
2834 mmc
->ops
= &dw_mci_ops
;
2835 if (device_property_read_u32_array(host
->dev
, "clock-freq-min-max",
2837 mmc
->f_min
= DW_MCI_FREQ_MIN
;
2838 mmc
->f_max
= DW_MCI_FREQ_MAX
;
2841 "'clock-freq-min-max' property was deprecated.\n");
2842 mmc
->f_min
= freq
[0];
2843 mmc
->f_max
= freq
[1];
2846 /*if there are external regulators, get them*/
2847 ret
= mmc_regulator_get_supply(mmc
);
2848 if (ret
== -EPROBE_DEFER
)
2849 goto err_host_allocated
;
2851 if (!mmc
->ocr_avail
)
2852 mmc
->ocr_avail
= MMC_VDD_32_33
| MMC_VDD_33_34
;
2854 ret
= mmc_of_parse(mmc
);
2856 goto err_host_allocated
;
2858 ret
= dw_mci_init_slot_caps(slot
);
2860 goto err_host_allocated
;
2862 /* Useful defaults if platform data is unset. */
2863 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2864 mmc
->max_segs
= host
->ring_size
;
2865 mmc
->max_blk_size
= 65535;
2866 mmc
->max_seg_size
= 0x1000;
2867 mmc
->max_req_size
= mmc
->max_seg_size
* host
->ring_size
;
2868 mmc
->max_blk_count
= mmc
->max_req_size
/ 512;
2869 } else if (host
->use_dma
== TRANS_MODE_EDMAC
) {
2871 mmc
->max_blk_size
= 65535;
2872 mmc
->max_blk_count
= 65535;
2874 mmc
->max_blk_size
* mmc
->max_blk_count
;
2875 mmc
->max_seg_size
= mmc
->max_req_size
;
2877 /* TRANS_MODE_PIO */
2879 mmc
->max_blk_size
= 65535; /* BLKSIZ is 16 bits */
2880 mmc
->max_blk_count
= 512;
2881 mmc
->max_req_size
= mmc
->max_blk_size
*
2883 mmc
->max_seg_size
= mmc
->max_req_size
;
2888 ret
= mmc_add_host(mmc
);
2890 goto err_host_allocated
;
2892 #if defined(CONFIG_DEBUG_FS)
2893 dw_mci_init_debugfs(slot
);
2903 static void dw_mci_cleanup_slot(struct dw_mci_slot
*slot
)
2905 /* Debugfs stuff is cleaned up by mmc core */
2906 mmc_remove_host(slot
->mmc
);
2907 slot
->host
->slot
= NULL
;
2908 mmc_free_host(slot
->mmc
);
2911 static void dw_mci_init_dma(struct dw_mci
*host
)
2914 struct device
*dev
= host
->dev
;
2917 * Check tansfer mode from HCON[17:16]
2918 * Clear the ambiguous description of dw_mmc databook:
2919 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2920 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2921 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2922 * 2b'11: Non DW DMA Interface -> pio only
2923 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2924 * simpler request/acknowledge handshake mechanism and both of them
2925 * are regarded as external dma master for dw_mmc.
2927 host
->use_dma
= SDMMC_GET_TRANS_MODE(mci_readl(host
, HCON
));
2928 if (host
->use_dma
== DMA_INTERFACE_IDMA
) {
2929 host
->use_dma
= TRANS_MODE_IDMAC
;
2930 } else if (host
->use_dma
== DMA_INTERFACE_DWDMA
||
2931 host
->use_dma
== DMA_INTERFACE_GDMA
) {
2932 host
->use_dma
= TRANS_MODE_EDMAC
;
2937 /* Determine which DMA interface to use */
2938 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2940 * Check ADDR_CONFIG bit in HCON to find
2941 * IDMAC address bus width
2943 addr_config
= SDMMC_GET_ADDR_CONFIG(mci_readl(host
, HCON
));
2945 if (addr_config
== 1) {
2946 /* host supports IDMAC in 64-bit address mode */
2947 host
->dma_64bit_address
= 1;
2949 "IDMAC supports 64-bit address mode.\n");
2950 if (!dma_set_mask(host
->dev
, DMA_BIT_MASK(64)))
2951 dma_set_coherent_mask(host
->dev
,
2954 /* host supports IDMAC in 32-bit address mode */
2955 host
->dma_64bit_address
= 0;
2957 "IDMAC supports 32-bit address mode.\n");
2960 /* Alloc memory for sg translation */
2961 host
->sg_cpu
= dmam_alloc_coherent(host
->dev
,
2963 &host
->sg_dma
, GFP_KERNEL
);
2964 if (!host
->sg_cpu
) {
2966 "%s: could not alloc DMA memory\n",
2971 host
->dma_ops
= &dw_mci_idmac_ops
;
2972 dev_info(host
->dev
, "Using internal DMA controller.\n");
2974 /* TRANS_MODE_EDMAC: check dma bindings again */
2975 if ((device_property_read_string_array(dev
, "dma-names",
2977 !device_property_present(dev
, "dmas")) {
2980 host
->dma_ops
= &dw_mci_edmac_ops
;
2981 dev_info(host
->dev
, "Using external DMA controller.\n");
2984 if (host
->dma_ops
->init
&& host
->dma_ops
->start
&&
2985 host
->dma_ops
->stop
&& host
->dma_ops
->cleanup
) {
2986 if (host
->dma_ops
->init(host
)) {
2987 dev_err(host
->dev
, "%s: Unable to initialize DMA Controller.\n",
2992 dev_err(host
->dev
, "DMA initialization not found.\n");
2999 dev_info(host
->dev
, "Using PIO mode.\n");
3000 host
->use_dma
= TRANS_MODE_PIO
;
3003 static void dw_mci_cmd11_timer(unsigned long arg
)
3005 struct dw_mci
*host
= (struct dw_mci
*)arg
;
3007 if (host
->state
!= STATE_SENDING_CMD11
) {
3008 dev_warn(host
->dev
, "Unexpected CMD11 timeout\n");
3012 host
->cmd_status
= SDMMC_INT_RTO
;
3013 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
3014 tasklet_schedule(&host
->tasklet
);
3017 static void dw_mci_cto_timer(unsigned long arg
)
3019 struct dw_mci
*host
= (struct dw_mci
*)arg
;
3020 unsigned long irqflags
;
3023 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3026 * If somehow we have very bad interrupt latency it's remotely possible
3027 * that the timer could fire while the interrupt is still pending or
3028 * while the interrupt is midway through running. Let's be paranoid
3029 * and detect those two cases. Note that this is paranoia is somewhat
3030 * justified because in this function we don't actually cancel the
3031 * pending command in the controller--we just assume it will never come.
3033 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
3034 if (pending
& (DW_MCI_CMD_ERROR_FLAGS
| SDMMC_INT_CMD_DONE
)) {
3035 /* The interrupt should fire; no need to act but we can warn */
3036 dev_warn(host
->dev
, "Unexpected interrupt latency\n");
3039 if (test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
)) {
3040 /* Presumably interrupt handler couldn't delete the timer */
3041 dev_warn(host
->dev
, "CTO timeout when already completed\n");
3046 * Continued paranoia to make sure we're in the state we expect.
3047 * This paranoia isn't really justified but it seems good to be safe.
3049 switch (host
->state
) {
3050 case STATE_SENDING_CMD11
:
3051 case STATE_SENDING_CMD
:
3052 case STATE_SENDING_STOP
:
3054 * If CMD_DONE interrupt does NOT come in sending command
3055 * state, we should notify the driver to terminate current
3056 * transfer and report a command timeout to the core.
3058 host
->cmd_status
= SDMMC_INT_RTO
;
3059 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
3060 tasklet_schedule(&host
->tasklet
);
3063 dev_warn(host
->dev
, "Unexpected command timeout, state %d\n",
3069 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3072 static void dw_mci_dto_timer(unsigned long arg
)
3074 struct dw_mci
*host
= (struct dw_mci
*)arg
;
3076 switch (host
->state
) {
3077 case STATE_SENDING_DATA
:
3078 case STATE_DATA_BUSY
:
3080 * If DTO interrupt does NOT come in sending data state,
3081 * we should notify the driver to terminate current transfer
3082 * and report a data timeout to the core.
3084 host
->data_status
= SDMMC_INT_DRTO
;
3085 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
3086 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
3087 tasklet_schedule(&host
->tasklet
);
3095 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
3097 struct dw_mci_board
*pdata
;
3098 struct device
*dev
= host
->dev
;
3099 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
3101 u32 clock_frequency
;
3103 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
3105 return ERR_PTR(-ENOMEM
);
3107 /* find reset controller when exist */
3108 pdata
->rstc
= devm_reset_control_get_optional_exclusive(dev
, "reset");
3109 if (IS_ERR(pdata
->rstc
)) {
3110 if (PTR_ERR(pdata
->rstc
) == -EPROBE_DEFER
)
3111 return ERR_PTR(-EPROBE_DEFER
);
3114 /* find out number of slots supported */
3115 if (!device_property_read_u32(dev
, "num-slots", &pdata
->num_slots
))
3116 dev_info(dev
, "'num-slots' was deprecated.\n");
3118 if (device_property_read_u32(dev
, "fifo-depth", &pdata
->fifo_depth
))
3120 "fifo-depth property not found, using value of FIFOTH register as default\n");
3122 device_property_read_u32(dev
, "card-detect-delay",
3123 &pdata
->detect_delay_ms
);
3125 device_property_read_u32(dev
, "data-addr", &host
->data_addr_override
);
3127 if (device_property_present(dev
, "fifo-watermark-aligned"))
3128 host
->wm_aligned
= true;
3130 if (!device_property_read_u32(dev
, "clock-frequency", &clock_frequency
))
3131 pdata
->bus_hz
= clock_frequency
;
3133 if (drv_data
&& drv_data
->parse_dt
) {
3134 ret
= drv_data
->parse_dt(host
);
3136 return ERR_PTR(ret
);
3142 #else /* CONFIG_OF */
3143 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
3145 return ERR_PTR(-EINVAL
);
3147 #endif /* CONFIG_OF */
3149 static void dw_mci_enable_cd(struct dw_mci
*host
)
3151 unsigned long irqflags
;
3155 * No need for CD if all slots have a non-error GPIO
3156 * as well as broken card detection is found.
3158 if (host
->slot
->mmc
->caps
& MMC_CAP_NEEDS_POLL
)
3161 if (mmc_gpio_get_cd(host
->slot
->mmc
) < 0) {
3162 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3163 temp
= mci_readl(host
, INTMASK
);
3164 temp
|= SDMMC_INT_CD
;
3165 mci_writel(host
, INTMASK
, temp
);
3166 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3170 int dw_mci_probe(struct dw_mci
*host
)
3172 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
3173 int width
, i
, ret
= 0;
3177 host
->pdata
= dw_mci_parse_dt(host
);
3178 if (PTR_ERR(host
->pdata
) == -EPROBE_DEFER
) {
3179 return -EPROBE_DEFER
;
3180 } else if (IS_ERR(host
->pdata
)) {
3181 dev_err(host
->dev
, "platform data not available\n");
3186 host
->biu_clk
= devm_clk_get(host
->dev
, "biu");
3187 if (IS_ERR(host
->biu_clk
)) {
3188 dev_dbg(host
->dev
, "biu clock not available\n");
3190 ret
= clk_prepare_enable(host
->biu_clk
);
3192 dev_err(host
->dev
, "failed to enable biu clock\n");
3197 host
->ciu_clk
= devm_clk_get(host
->dev
, "ciu");
3198 if (IS_ERR(host
->ciu_clk
)) {
3199 dev_dbg(host
->dev
, "ciu clock not available\n");
3200 host
->bus_hz
= host
->pdata
->bus_hz
;
3202 ret
= clk_prepare_enable(host
->ciu_clk
);
3204 dev_err(host
->dev
, "failed to enable ciu clock\n");
3208 if (host
->pdata
->bus_hz
) {
3209 ret
= clk_set_rate(host
->ciu_clk
, host
->pdata
->bus_hz
);
3212 "Unable to set bus rate to %uHz\n",
3213 host
->pdata
->bus_hz
);
3215 host
->bus_hz
= clk_get_rate(host
->ciu_clk
);
3218 if (!host
->bus_hz
) {
3220 "Platform data must supply bus speed\n");
3225 if (!IS_ERR(host
->pdata
->rstc
)) {
3226 reset_control_assert(host
->pdata
->rstc
);
3227 usleep_range(10, 50);
3228 reset_control_deassert(host
->pdata
->rstc
);
3231 if (drv_data
&& drv_data
->init
) {
3232 ret
= drv_data
->init(host
);
3235 "implementation specific init failed\n");
3240 setup_timer(&host
->cmd11_timer
,
3241 dw_mci_cmd11_timer
, (unsigned long)host
);
3243 setup_timer(&host
->cto_timer
,
3244 dw_mci_cto_timer
, (unsigned long)host
);
3246 setup_timer(&host
->dto_timer
,
3247 dw_mci_dto_timer
, (unsigned long)host
);
3249 spin_lock_init(&host
->lock
);
3250 spin_lock_init(&host
->irq_lock
);
3251 INIT_LIST_HEAD(&host
->queue
);
3254 * Get the host data width - this assumes that HCON has been set with
3255 * the correct values.
3257 i
= SDMMC_GET_HDATA_WIDTH(mci_readl(host
, HCON
));
3259 host
->push_data
= dw_mci_push_data16
;
3260 host
->pull_data
= dw_mci_pull_data16
;
3262 host
->data_shift
= 1;
3263 } else if (i
== 2) {
3264 host
->push_data
= dw_mci_push_data64
;
3265 host
->pull_data
= dw_mci_pull_data64
;
3267 host
->data_shift
= 3;
3269 /* Check for a reserved value, and warn if it is */
3271 "HCON reports a reserved host data width!\n"
3272 "Defaulting to 32-bit access.\n");
3273 host
->push_data
= dw_mci_push_data32
;
3274 host
->pull_data
= dw_mci_pull_data32
;
3276 host
->data_shift
= 2;
3279 /* Reset all blocks */
3280 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3285 host
->dma_ops
= host
->pdata
->dma_ops
;
3286 dw_mci_init_dma(host
);
3288 /* Clear the interrupts for the host controller */
3289 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3290 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3292 /* Put in max timeout */
3293 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3296 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3297 * Tx Mark = fifo_size / 2 DMA Size = 8
3299 if (!host
->pdata
->fifo_depth
) {
3301 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3302 * have been overwritten by the bootloader, just like we're
3303 * about to do, so if you know the value for your hardware, you
3304 * should put it in the platform data.
3306 fifo_size
= mci_readl(host
, FIFOTH
);
3307 fifo_size
= 1 + ((fifo_size
>> 16) & 0xfff);
3309 fifo_size
= host
->pdata
->fifo_depth
;
3311 host
->fifo_depth
= fifo_size
;
3313 SDMMC_SET_FIFOTH(0x2, fifo_size
/ 2 - 1, fifo_size
/ 2);
3314 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3316 /* disable clock to CIU */
3317 mci_writel(host
, CLKENA
, 0);
3318 mci_writel(host
, CLKSRC
, 0);
3321 * In 2.40a spec, Data offset is changed.
3322 * Need to check the version-id and set data-offset for DATA register.
3324 host
->verid
= SDMMC_GET_VERID(mci_readl(host
, VERID
));
3325 dev_info(host
->dev
, "Version ID is %04x\n", host
->verid
);
3327 if (host
->data_addr_override
)
3328 host
->fifo_reg
= host
->regs
+ host
->data_addr_override
;
3329 else if (host
->verid
< DW_MMC_240A
)
3330 host
->fifo_reg
= host
->regs
+ DATA_OFFSET
;
3332 host
->fifo_reg
= host
->regs
+ DATA_240A_OFFSET
;
3334 tasklet_init(&host
->tasklet
, dw_mci_tasklet_func
, (unsigned long)host
);
3335 ret
= devm_request_irq(host
->dev
, host
->irq
, dw_mci_interrupt
,
3336 host
->irq_flags
, "dw-mci", host
);
3341 * Enable interrupts for command done, data over, data empty,
3342 * receive ready and error such as transmit, receive timeout, crc error
3344 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3345 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3346 DW_MCI_ERROR_FLAGS
);
3347 /* Enable mci interrupt */
3348 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3351 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3352 host
->irq
, width
, fifo_size
);
3354 /* We need at least one slot to succeed */
3355 ret
= dw_mci_init_slot(host
);
3357 dev_dbg(host
->dev
, "slot %d init failed\n", i
);
3361 /* Now that slots are all setup, we can enable card detect */
3362 dw_mci_enable_cd(host
);
3367 if (host
->use_dma
&& host
->dma_ops
->exit
)
3368 host
->dma_ops
->exit(host
);
3370 if (!IS_ERR(host
->pdata
->rstc
))
3371 reset_control_assert(host
->pdata
->rstc
);
3374 clk_disable_unprepare(host
->ciu_clk
);
3377 clk_disable_unprepare(host
->biu_clk
);
3381 EXPORT_SYMBOL(dw_mci_probe
);
3383 void dw_mci_remove(struct dw_mci
*host
)
3385 dev_dbg(host
->dev
, "remove slot\n");
3387 dw_mci_cleanup_slot(host
->slot
);
3389 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3390 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3392 /* disable clock to CIU */
3393 mci_writel(host
, CLKENA
, 0);
3394 mci_writel(host
, CLKSRC
, 0);
3396 if (host
->use_dma
&& host
->dma_ops
->exit
)
3397 host
->dma_ops
->exit(host
);
3399 if (!IS_ERR(host
->pdata
->rstc
))
3400 reset_control_assert(host
->pdata
->rstc
);
3402 clk_disable_unprepare(host
->ciu_clk
);
3403 clk_disable_unprepare(host
->biu_clk
);
3405 EXPORT_SYMBOL(dw_mci_remove
);
3410 int dw_mci_runtime_suspend(struct device
*dev
)
3412 struct dw_mci
*host
= dev_get_drvdata(dev
);
3414 if (host
->use_dma
&& host
->dma_ops
->exit
)
3415 host
->dma_ops
->exit(host
);
3417 clk_disable_unprepare(host
->ciu_clk
);
3420 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3421 !mmc_card_is_removable(host
->slot
->mmc
)))
3422 clk_disable_unprepare(host
->biu_clk
);
3426 EXPORT_SYMBOL(dw_mci_runtime_suspend
);
3428 int dw_mci_runtime_resume(struct device
*dev
)
3431 struct dw_mci
*host
= dev_get_drvdata(dev
);
3434 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3435 !mmc_card_is_removable(host
->slot
->mmc
))) {
3436 ret
= clk_prepare_enable(host
->biu_clk
);
3441 ret
= clk_prepare_enable(host
->ciu_clk
);
3445 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3446 clk_disable_unprepare(host
->ciu_clk
);
3451 if (host
->use_dma
&& host
->dma_ops
->init
)
3452 host
->dma_ops
->init(host
);
3455 * Restore the initial value at FIFOTH register
3456 * And Invalidate the prev_blksz with zero
3458 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3459 host
->prev_blksz
= 0;
3461 /* Put in max timeout */
3462 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3464 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3465 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3466 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3467 DW_MCI_ERROR_FLAGS
);
3468 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3471 if (host
->slot
->mmc
->pm_flags
& MMC_PM_KEEP_POWER
)
3472 dw_mci_set_ios(host
->slot
->mmc
, &host
->slot
->mmc
->ios
);
3474 /* Force setup bus to guarantee available clock output */
3475 dw_mci_setup_bus(host
->slot
, true);
3477 /* Now that slots are all setup, we can enable card detect */
3478 dw_mci_enable_cd(host
);
3484 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3485 !mmc_card_is_removable(host
->slot
->mmc
)))
3486 clk_disable_unprepare(host
->biu_clk
);
3490 EXPORT_SYMBOL(dw_mci_runtime_resume
);
3491 #endif /* CONFIG_PM */
3493 static int __init
dw_mci_init(void)
3495 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3499 static void __exit
dw_mci_exit(void)
3503 module_init(dw_mci_init
);
3504 module_exit(dw_mci_exit
);
3506 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3507 MODULE_AUTHOR("NXP Semiconductor VietNam");
3508 MODULE_AUTHOR("Imagination Technologies Ltd");
3509 MODULE_LICENSE("GPL v2");