perf bench futex: Cache align the worker struct
[linux/fpc-iii.git] / drivers / mmc / host / dw_mmc.c
blob4fcbc4012ed03b554185cf42eeb1567b915745f6
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
42 #include "dw_mmc.h"
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 SDMMC_IDMAC_INT_TI)
64 #define DESC_RING_BUF_SZ PAGE_SIZE
66 struct idmac_desc_64addr {
67 u32 des0; /* Control Descriptor */
69 u32 des1; /* Reserved */
71 u32 des2; /*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76 u32 des3; /* Reserved */
78 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
79 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
81 u32 des6; /* Lower 32-bits of Next Descriptor Address */
82 u32 des7; /* Upper 32-bits of Next Descriptor Address */
85 struct idmac_desc {
86 __le32 des0; /* Control Descriptor */
87 #define IDMAC_DES0_DIC BIT(1)
88 #define IDMAC_DES0_LD BIT(2)
89 #define IDMAC_DES0_FD BIT(3)
90 #define IDMAC_DES0_CH BIT(4)
91 #define IDMAC_DES0_ER BIT(5)
92 #define IDMAC_DES0_CES BIT(30)
93 #define IDMAC_DES0_OWN BIT(31)
95 __le32 des1; /* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99 __le32 des2; /* buffer 1 physical address */
101 __le32 des3; /* buffer 2 physical address */
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH 0x1000
107 static bool dw_mci_reset(struct dw_mci *host);
108 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
109 static int dw_mci_card_busy(struct mmc_host *mmc);
110 static int dw_mci_get_cd(struct mmc_host *mmc);
112 #if defined(CONFIG_DEBUG_FS)
113 static int dw_mci_req_show(struct seq_file *s, void *v)
115 struct dw_mci_slot *slot = s->private;
116 struct mmc_request *mrq;
117 struct mmc_command *cmd;
118 struct mmc_command *stop;
119 struct mmc_data *data;
121 /* Make sure we get a consistent snapshot */
122 spin_lock_bh(&slot->host->lock);
123 mrq = slot->mrq;
125 if (mrq) {
126 cmd = mrq->cmd;
127 data = mrq->data;
128 stop = mrq->stop;
130 if (cmd)
131 seq_printf(s,
132 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
133 cmd->opcode, cmd->arg, cmd->flags,
134 cmd->resp[0], cmd->resp[1], cmd->resp[2],
135 cmd->resp[2], cmd->error);
136 if (data)
137 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
138 data->bytes_xfered, data->blocks,
139 data->blksz, data->flags, data->error);
140 if (stop)
141 seq_printf(s,
142 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
143 stop->opcode, stop->arg, stop->flags,
144 stop->resp[0], stop->resp[1], stop->resp[2],
145 stop->resp[2], stop->error);
148 spin_unlock_bh(&slot->host->lock);
150 return 0;
153 static int dw_mci_req_open(struct inode *inode, struct file *file)
155 return single_open(file, dw_mci_req_show, inode->i_private);
158 static const struct file_operations dw_mci_req_fops = {
159 .owner = THIS_MODULE,
160 .open = dw_mci_req_open,
161 .read = seq_read,
162 .llseek = seq_lseek,
163 .release = single_release,
166 static int dw_mci_regs_show(struct seq_file *s, void *v)
168 seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
169 seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
170 seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
171 seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
172 seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
173 seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
175 return 0;
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
180 return single_open(file, dw_mci_regs_show, inode->i_private);
183 static const struct file_operations dw_mci_regs_fops = {
184 .owner = THIS_MODULE,
185 .open = dw_mci_regs_open,
186 .read = seq_read,
187 .llseek = seq_lseek,
188 .release = single_release,
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
193 struct mmc_host *mmc = slot->mmc;
194 struct dw_mci *host = slot->host;
195 struct dentry *root;
196 struct dentry *node;
198 root = mmc->debugfs_root;
199 if (!root)
200 return;
202 node = debugfs_create_file("regs", S_IRUSR, root, host,
203 &dw_mci_regs_fops);
204 if (!node)
205 goto err;
207 node = debugfs_create_file("req", S_IRUSR, root, slot,
208 &dw_mci_req_fops);
209 if (!node)
210 goto err;
212 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 if (!node)
214 goto err;
216 node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 (u32 *)&host->pending_events);
218 if (!node)
219 goto err;
221 node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 (u32 *)&host->completed_events);
223 if (!node)
224 goto err;
226 return;
228 err:
229 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
231 #endif /* defined(CONFIG_DEBUG_FS) */
233 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
235 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
237 struct mmc_data *data;
238 struct dw_mci_slot *slot = mmc_priv(mmc);
239 struct dw_mci *host = slot->host;
240 u32 cmdr;
242 cmd->error = -EINPROGRESS;
243 cmdr = cmd->opcode;
245 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
246 cmd->opcode == MMC_GO_IDLE_STATE ||
247 cmd->opcode == MMC_GO_INACTIVE_STATE ||
248 (cmd->opcode == SD_IO_RW_DIRECT &&
249 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
250 cmdr |= SDMMC_CMD_STOP;
251 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
252 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
254 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
255 u32 clk_en_a;
257 /* Special bit makes CMD11 not die */
258 cmdr |= SDMMC_CMD_VOLT_SWITCH;
260 /* Change state to continue to handle CMD11 weirdness */
261 WARN_ON(slot->host->state != STATE_SENDING_CMD);
262 slot->host->state = STATE_SENDING_CMD11;
265 * We need to disable low power mode (automatic clock stop)
266 * while doing voltage switch so we don't confuse the card,
267 * since stopping the clock is a specific part of the UHS
268 * voltage change dance.
270 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
271 * unconditionally turned back on in dw_mci_setup_bus() if it's
272 * ever called with a non-zero clock. That shouldn't happen
273 * until the voltage change is all done.
275 clk_en_a = mci_readl(host, CLKENA);
276 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
277 mci_writel(host, CLKENA, clk_en_a);
278 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
279 SDMMC_CMD_PRV_DAT_WAIT, 0);
282 if (cmd->flags & MMC_RSP_PRESENT) {
283 /* We expect a response, so set this bit */
284 cmdr |= SDMMC_CMD_RESP_EXP;
285 if (cmd->flags & MMC_RSP_136)
286 cmdr |= SDMMC_CMD_RESP_LONG;
289 if (cmd->flags & MMC_RSP_CRC)
290 cmdr |= SDMMC_CMD_RESP_CRC;
292 data = cmd->data;
293 if (data) {
294 cmdr |= SDMMC_CMD_DAT_EXP;
295 if (data->flags & MMC_DATA_WRITE)
296 cmdr |= SDMMC_CMD_DAT_WR;
299 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
300 cmdr |= SDMMC_CMD_USE_HOLD_REG;
302 return cmdr;
305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
307 struct mmc_command *stop;
308 u32 cmdr;
310 if (!cmd->data)
311 return 0;
313 stop = &host->stop_abort;
314 cmdr = cmd->opcode;
315 memset(stop, 0, sizeof(struct mmc_command));
317 if (cmdr == MMC_READ_SINGLE_BLOCK ||
318 cmdr == MMC_READ_MULTIPLE_BLOCK ||
319 cmdr == MMC_WRITE_BLOCK ||
320 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
321 cmdr == MMC_SEND_TUNING_BLOCK ||
322 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
323 stop->opcode = MMC_STOP_TRANSMISSION;
324 stop->arg = 0;
325 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
326 } else if (cmdr == SD_IO_RW_EXTENDED) {
327 stop->opcode = SD_IO_RW_DIRECT;
328 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
329 ((cmd->arg >> 28) & 0x7);
330 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
331 } else {
332 return 0;
335 cmdr = stop->opcode | SDMMC_CMD_STOP |
336 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
338 return cmdr;
341 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
343 unsigned long timeout = jiffies + msecs_to_jiffies(500);
346 * Databook says that before issuing a new data transfer command
347 * we need to check to see if the card is busy. Data transfer commands
348 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
350 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
351 * expected.
353 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
354 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
355 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
356 if (time_after(jiffies, timeout)) {
357 /* Command will fail; we'll pass error then */
358 dev_err(host->dev, "Busy; trying anyway\n");
359 break;
361 udelay(10);
366 static void dw_mci_start_command(struct dw_mci *host,
367 struct mmc_command *cmd, u32 cmd_flags)
369 host->cmd = cmd;
370 dev_vdbg(host->dev,
371 "start command: ARGR=0x%08x CMDR=0x%08x\n",
372 cmd->arg, cmd_flags);
374 mci_writel(host, CMDARG, cmd->arg);
375 wmb(); /* drain writebuffer */
376 dw_mci_wait_while_busy(host, cmd_flags);
378 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
381 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
383 struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
385 dw_mci_start_command(host, stop, host->stop_cmdr);
388 /* DMA interface functions */
389 static void dw_mci_stop_dma(struct dw_mci *host)
391 if (host->using_dma) {
392 host->dma_ops->stop(host);
393 host->dma_ops->cleanup(host);
396 /* Data transfer was stopped by the interrupt handler */
397 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
400 static int dw_mci_get_dma_dir(struct mmc_data *data)
402 if (data->flags & MMC_DATA_WRITE)
403 return DMA_TO_DEVICE;
404 else
405 return DMA_FROM_DEVICE;
408 static void dw_mci_dma_cleanup(struct dw_mci *host)
410 struct mmc_data *data = host->data;
412 if (data)
413 if (!data->host_cookie)
414 dma_unmap_sg(host->dev,
415 data->sg,
416 data->sg_len,
417 dw_mci_get_dma_dir(data));
420 static void dw_mci_idmac_reset(struct dw_mci *host)
422 u32 bmod = mci_readl(host, BMOD);
423 /* Software reset of DMA */
424 bmod |= SDMMC_IDMAC_SWRESET;
425 mci_writel(host, BMOD, bmod);
428 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
430 u32 temp;
432 /* Disable and reset the IDMAC interface */
433 temp = mci_readl(host, CTRL);
434 temp &= ~SDMMC_CTRL_USE_IDMAC;
435 temp |= SDMMC_CTRL_DMA_RESET;
436 mci_writel(host, CTRL, temp);
438 /* Stop the IDMAC running */
439 temp = mci_readl(host, BMOD);
440 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
441 temp |= SDMMC_IDMAC_SWRESET;
442 mci_writel(host, BMOD, temp);
445 static void dw_mci_dmac_complete_dma(void *arg)
447 struct dw_mci *host = arg;
448 struct mmc_data *data = host->data;
450 dev_vdbg(host->dev, "DMA complete\n");
452 if ((host->use_dma == TRANS_MODE_EDMAC) &&
453 data && (data->flags & MMC_DATA_READ))
454 /* Invalidate cache after read */
455 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
456 data->sg,
457 data->sg_len,
458 DMA_FROM_DEVICE);
460 host->dma_ops->cleanup(host);
463 * If the card was removed, data will be NULL. No point in trying to
464 * send the stop command or waiting for NBUSY in this case.
466 if (data) {
467 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
468 tasklet_schedule(&host->tasklet);
472 static int dw_mci_idmac_init(struct dw_mci *host)
474 int i;
476 if (host->dma_64bit_address == 1) {
477 struct idmac_desc_64addr *p;
478 /* Number of descriptors in the ring buffer */
479 host->ring_size =
480 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
482 /* Forward link the descriptor list */
483 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
484 i++, p++) {
485 p->des6 = (host->sg_dma +
486 (sizeof(struct idmac_desc_64addr) *
487 (i + 1))) & 0xffffffff;
489 p->des7 = (u64)(host->sg_dma +
490 (sizeof(struct idmac_desc_64addr) *
491 (i + 1))) >> 32;
492 /* Initialize reserved and buffer size fields to "0" */
493 p->des1 = 0;
494 p->des2 = 0;
495 p->des3 = 0;
498 /* Set the last descriptor as the end-of-ring descriptor */
499 p->des6 = host->sg_dma & 0xffffffff;
500 p->des7 = (u64)host->sg_dma >> 32;
501 p->des0 = IDMAC_DES0_ER;
503 } else {
504 struct idmac_desc *p;
505 /* Number of descriptors in the ring buffer */
506 host->ring_size =
507 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
509 /* Forward link the descriptor list */
510 for (i = 0, p = host->sg_cpu;
511 i < host->ring_size - 1;
512 i++, p++) {
513 p->des3 = cpu_to_le32(host->sg_dma +
514 (sizeof(struct idmac_desc) * (i + 1)));
515 p->des1 = 0;
518 /* Set the last descriptor as the end-of-ring descriptor */
519 p->des3 = cpu_to_le32(host->sg_dma);
520 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
523 dw_mci_idmac_reset(host);
525 if (host->dma_64bit_address == 1) {
526 /* Mask out interrupts - get Tx & Rx complete only */
527 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
528 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
529 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
531 /* Set the descriptor base address */
532 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
533 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
535 } else {
536 /* Mask out interrupts - get Tx & Rx complete only */
537 mci_writel(host, IDSTS, IDMAC_INT_CLR);
538 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
539 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
541 /* Set the descriptor base address */
542 mci_writel(host, DBADDR, host->sg_dma);
545 return 0;
548 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
549 struct mmc_data *data,
550 unsigned int sg_len)
552 unsigned int desc_len;
553 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
554 unsigned long timeout;
555 int i;
557 desc_first = desc_last = desc = host->sg_cpu;
559 for (i = 0; i < sg_len; i++) {
560 unsigned int length = sg_dma_len(&data->sg[i]);
562 u64 mem_addr = sg_dma_address(&data->sg[i]);
564 for ( ; length ; desc++) {
565 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
566 length : DW_MCI_DESC_DATA_LENGTH;
568 length -= desc_len;
571 * Wait for the former clear OWN bit operation
572 * of IDMAC to make sure that this descriptor
573 * isn't still owned by IDMAC as IDMAC's write
574 * ops and CPU's read ops are asynchronous.
576 timeout = jiffies + msecs_to_jiffies(100);
577 while (readl(&desc->des0) & IDMAC_DES0_OWN) {
578 if (time_after(jiffies, timeout))
579 goto err_own_bit;
580 udelay(10);
584 * Set the OWN bit and disable interrupts
585 * for this descriptor
587 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
588 IDMAC_DES0_CH;
590 /* Buffer length */
591 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
593 /* Physical address to DMA to/from */
594 desc->des4 = mem_addr & 0xffffffff;
595 desc->des5 = mem_addr >> 32;
597 /* Update physical address for the next desc */
598 mem_addr += desc_len;
600 /* Save pointer to the last descriptor */
601 desc_last = desc;
605 /* Set first descriptor */
606 desc_first->des0 |= IDMAC_DES0_FD;
608 /* Set last descriptor */
609 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
610 desc_last->des0 |= IDMAC_DES0_LD;
612 return 0;
613 err_own_bit:
614 /* restore the descriptor chain as it's polluted */
615 dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n");
616 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
617 dw_mci_idmac_init(host);
618 return -EINVAL;
622 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
623 struct mmc_data *data,
624 unsigned int sg_len)
626 unsigned int desc_len;
627 struct idmac_desc *desc_first, *desc_last, *desc;
628 unsigned long timeout;
629 int i;
631 desc_first = desc_last = desc = host->sg_cpu;
633 for (i = 0; i < sg_len; i++) {
634 unsigned int length = sg_dma_len(&data->sg[i]);
636 u32 mem_addr = sg_dma_address(&data->sg[i]);
638 for ( ; length ; desc++) {
639 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
640 length : DW_MCI_DESC_DATA_LENGTH;
642 length -= desc_len;
645 * Wait for the former clear OWN bit operation
646 * of IDMAC to make sure that this descriptor
647 * isn't still owned by IDMAC as IDMAC's write
648 * ops and CPU's read ops are asynchronous.
650 timeout = jiffies + msecs_to_jiffies(100);
651 while (readl(&desc->des0) &
652 cpu_to_le32(IDMAC_DES0_OWN)) {
653 if (time_after(jiffies, timeout))
654 goto err_own_bit;
655 udelay(10);
659 * Set the OWN bit and disable interrupts
660 * for this descriptor
662 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
663 IDMAC_DES0_DIC |
664 IDMAC_DES0_CH);
666 /* Buffer length */
667 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
669 /* Physical address to DMA to/from */
670 desc->des2 = cpu_to_le32(mem_addr);
672 /* Update physical address for the next desc */
673 mem_addr += desc_len;
675 /* Save pointer to the last descriptor */
676 desc_last = desc;
680 /* Set first descriptor */
681 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
683 /* Set last descriptor */
684 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
685 IDMAC_DES0_DIC));
686 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
688 return 0;
689 err_own_bit:
690 /* restore the descriptor chain as it's polluted */
691 dev_dbg(host->dev, "desciptor is still owned by IDMAC.\n");
692 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
693 dw_mci_idmac_init(host);
694 return -EINVAL;
697 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
699 u32 temp;
700 int ret;
702 if (host->dma_64bit_address == 1)
703 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
704 else
705 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
707 if (ret)
708 goto out;
710 /* drain writebuffer */
711 wmb();
713 /* Make sure to reset DMA in case we did PIO before this */
714 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
715 dw_mci_idmac_reset(host);
717 /* Select IDMAC interface */
718 temp = mci_readl(host, CTRL);
719 temp |= SDMMC_CTRL_USE_IDMAC;
720 mci_writel(host, CTRL, temp);
722 /* drain writebuffer */
723 wmb();
725 /* Enable the IDMAC */
726 temp = mci_readl(host, BMOD);
727 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
728 mci_writel(host, BMOD, temp);
730 /* Start it running */
731 mci_writel(host, PLDMND, 1);
733 out:
734 return ret;
737 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
738 .init = dw_mci_idmac_init,
739 .start = dw_mci_idmac_start_dma,
740 .stop = dw_mci_idmac_stop_dma,
741 .complete = dw_mci_dmac_complete_dma,
742 .cleanup = dw_mci_dma_cleanup,
745 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
747 dmaengine_terminate_async(host->dms->ch);
750 static int dw_mci_edmac_start_dma(struct dw_mci *host,
751 unsigned int sg_len)
753 struct dma_slave_config cfg;
754 struct dma_async_tx_descriptor *desc = NULL;
755 struct scatterlist *sgl = host->data->sg;
756 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
757 u32 sg_elems = host->data->sg_len;
758 u32 fifoth_val;
759 u32 fifo_offset = host->fifo_reg - host->regs;
760 int ret = 0;
762 /* Set external dma config: burst size, burst width */
763 cfg.dst_addr = host->phy_regs + fifo_offset;
764 cfg.src_addr = cfg.dst_addr;
765 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
766 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
768 /* Match burst msize with external dma config */
769 fifoth_val = mci_readl(host, FIFOTH);
770 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
771 cfg.src_maxburst = cfg.dst_maxburst;
773 if (host->data->flags & MMC_DATA_WRITE)
774 cfg.direction = DMA_MEM_TO_DEV;
775 else
776 cfg.direction = DMA_DEV_TO_MEM;
778 ret = dmaengine_slave_config(host->dms->ch, &cfg);
779 if (ret) {
780 dev_err(host->dev, "Failed to config edmac.\n");
781 return -EBUSY;
784 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
785 sg_len, cfg.direction,
786 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
787 if (!desc) {
788 dev_err(host->dev, "Can't prepare slave sg.\n");
789 return -EBUSY;
792 /* Set dw_mci_dmac_complete_dma as callback */
793 desc->callback = dw_mci_dmac_complete_dma;
794 desc->callback_param = (void *)host;
795 dmaengine_submit(desc);
797 /* Flush cache before write */
798 if (host->data->flags & MMC_DATA_WRITE)
799 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
800 sg_elems, DMA_TO_DEVICE);
802 dma_async_issue_pending(host->dms->ch);
804 return 0;
807 static int dw_mci_edmac_init(struct dw_mci *host)
809 /* Request external dma channel */
810 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
811 if (!host->dms)
812 return -ENOMEM;
814 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
815 if (!host->dms->ch) {
816 dev_err(host->dev, "Failed to get external DMA channel.\n");
817 kfree(host->dms);
818 host->dms = NULL;
819 return -ENXIO;
822 return 0;
825 static void dw_mci_edmac_exit(struct dw_mci *host)
827 if (host->dms) {
828 if (host->dms->ch) {
829 dma_release_channel(host->dms->ch);
830 host->dms->ch = NULL;
832 kfree(host->dms);
833 host->dms = NULL;
837 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
838 .init = dw_mci_edmac_init,
839 .exit = dw_mci_edmac_exit,
840 .start = dw_mci_edmac_start_dma,
841 .stop = dw_mci_edmac_stop_dma,
842 .complete = dw_mci_dmac_complete_dma,
843 .cleanup = dw_mci_dma_cleanup,
846 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
847 struct mmc_data *data,
848 bool next)
850 struct scatterlist *sg;
851 unsigned int i, sg_len;
853 if (!next && data->host_cookie)
854 return data->host_cookie;
857 * We don't do DMA on "complex" transfers, i.e. with
858 * non-word-aligned buffers or lengths. Also, we don't bother
859 * with all the DMA setup overhead for short transfers.
861 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
862 return -EINVAL;
864 if (data->blksz & 3)
865 return -EINVAL;
867 for_each_sg(data->sg, sg, data->sg_len, i) {
868 if (sg->offset & 3 || sg->length & 3)
869 return -EINVAL;
872 sg_len = dma_map_sg(host->dev,
873 data->sg,
874 data->sg_len,
875 dw_mci_get_dma_dir(data));
876 if (sg_len == 0)
877 return -EINVAL;
879 if (next)
880 data->host_cookie = sg_len;
882 return sg_len;
885 static void dw_mci_pre_req(struct mmc_host *mmc,
886 struct mmc_request *mrq,
887 bool is_first_req)
889 struct dw_mci_slot *slot = mmc_priv(mmc);
890 struct mmc_data *data = mrq->data;
892 if (!slot->host->use_dma || !data)
893 return;
895 if (data->host_cookie) {
896 data->host_cookie = 0;
897 return;
900 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
901 data->host_cookie = 0;
904 static void dw_mci_post_req(struct mmc_host *mmc,
905 struct mmc_request *mrq,
906 int err)
908 struct dw_mci_slot *slot = mmc_priv(mmc);
909 struct mmc_data *data = mrq->data;
911 if (!slot->host->use_dma || !data)
912 return;
914 if (data->host_cookie)
915 dma_unmap_sg(slot->host->dev,
916 data->sg,
917 data->sg_len,
918 dw_mci_get_dma_dir(data));
919 data->host_cookie = 0;
922 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
924 unsigned int blksz = data->blksz;
925 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
926 u32 fifo_width = 1 << host->data_shift;
927 u32 blksz_depth = blksz / fifo_width, fifoth_val;
928 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
929 int idx = ARRAY_SIZE(mszs) - 1;
931 /* pio should ship this scenario */
932 if (!host->use_dma)
933 return;
935 tx_wmark = (host->fifo_depth) / 2;
936 tx_wmark_invers = host->fifo_depth - tx_wmark;
939 * MSIZE is '1',
940 * if blksz is not a multiple of the FIFO width
942 if (blksz % fifo_width)
943 goto done;
945 do {
946 if (!((blksz_depth % mszs[idx]) ||
947 (tx_wmark_invers % mszs[idx]))) {
948 msize = idx;
949 rx_wmark = mszs[idx] - 1;
950 break;
952 } while (--idx > 0);
954 * If idx is '0', it won't be tried
955 * Thus, initial values are uesed
957 done:
958 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
959 mci_writel(host, FIFOTH, fifoth_val);
962 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
964 unsigned int blksz = data->blksz;
965 u32 blksz_depth, fifo_depth;
966 u16 thld_size;
967 u8 enable;
970 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
971 * in the FIFO region, so we really shouldn't access it).
973 if (host->verid < DW_MMC_240A ||
974 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
975 return;
978 * Card write Threshold is introduced since 2.80a
979 * It's used when HS400 mode is enabled.
981 if (data->flags & MMC_DATA_WRITE &&
982 !(host->timing != MMC_TIMING_MMC_HS400))
983 return;
985 if (data->flags & MMC_DATA_WRITE)
986 enable = SDMMC_CARD_WR_THR_EN;
987 else
988 enable = SDMMC_CARD_RD_THR_EN;
990 if (host->timing != MMC_TIMING_MMC_HS200 &&
991 host->timing != MMC_TIMING_UHS_SDR104)
992 goto disable;
994 blksz_depth = blksz / (1 << host->data_shift);
995 fifo_depth = host->fifo_depth;
997 if (blksz_depth > fifo_depth)
998 goto disable;
1001 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1002 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1003 * Currently just choose blksz.
1005 thld_size = blksz;
1006 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1007 return;
1009 disable:
1010 mci_writel(host, CDTHRCTL, 0);
1013 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1015 unsigned long irqflags;
1016 int sg_len;
1017 u32 temp;
1019 host->using_dma = 0;
1021 /* If we don't have a channel, we can't do DMA */
1022 if (!host->use_dma)
1023 return -ENODEV;
1025 sg_len = dw_mci_pre_dma_transfer(host, data, 0);
1026 if (sg_len < 0) {
1027 host->dma_ops->stop(host);
1028 return sg_len;
1031 host->using_dma = 1;
1033 if (host->use_dma == TRANS_MODE_IDMAC)
1034 dev_vdbg(host->dev,
1035 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1036 (unsigned long)host->sg_cpu,
1037 (unsigned long)host->sg_dma,
1038 sg_len);
1041 * Decide the MSIZE and RX/TX Watermark.
1042 * If current block size is same with previous size,
1043 * no need to update fifoth.
1045 if (host->prev_blksz != data->blksz)
1046 dw_mci_adjust_fifoth(host, data);
1048 /* Enable the DMA interface */
1049 temp = mci_readl(host, CTRL);
1050 temp |= SDMMC_CTRL_DMA_ENABLE;
1051 mci_writel(host, CTRL, temp);
1053 /* Disable RX/TX IRQs, let DMA handle it */
1054 spin_lock_irqsave(&host->irq_lock, irqflags);
1055 temp = mci_readl(host, INTMASK);
1056 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1057 mci_writel(host, INTMASK, temp);
1058 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1060 if (host->dma_ops->start(host, sg_len)) {
1061 /* We can't do DMA, try PIO for this one */
1062 dev_dbg(host->dev,
1063 "%s: fall back to PIO mode for current transfer\n",
1064 __func__);
1065 return -ENODEV;
1068 return 0;
1071 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1073 unsigned long irqflags;
1074 int flags = SG_MITER_ATOMIC;
1075 u32 temp;
1077 data->error = -EINPROGRESS;
1079 WARN_ON(host->data);
1080 host->sg = NULL;
1081 host->data = data;
1083 if (data->flags & MMC_DATA_READ)
1084 host->dir_status = DW_MCI_RECV_STATUS;
1085 else
1086 host->dir_status = DW_MCI_SEND_STATUS;
1088 dw_mci_ctrl_thld(host, data);
1090 if (dw_mci_submit_data_dma(host, data)) {
1091 if (host->data->flags & MMC_DATA_READ)
1092 flags |= SG_MITER_TO_SG;
1093 else
1094 flags |= SG_MITER_FROM_SG;
1096 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1097 host->sg = data->sg;
1098 host->part_buf_start = 0;
1099 host->part_buf_count = 0;
1101 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1103 spin_lock_irqsave(&host->irq_lock, irqflags);
1104 temp = mci_readl(host, INTMASK);
1105 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1106 mci_writel(host, INTMASK, temp);
1107 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1109 temp = mci_readl(host, CTRL);
1110 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1111 mci_writel(host, CTRL, temp);
1114 * Use the initial fifoth_val for PIO mode.
1115 * If next issued data may be transfered by DMA mode,
1116 * prev_blksz should be invalidated.
1118 mci_writel(host, FIFOTH, host->fifoth_val);
1119 host->prev_blksz = 0;
1120 } else {
1122 * Keep the current block size.
1123 * It will be used to decide whether to update
1124 * fifoth register next time.
1126 host->prev_blksz = data->blksz;
1130 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1132 struct dw_mci *host = slot->host;
1133 unsigned long timeout = jiffies + msecs_to_jiffies(500);
1134 unsigned int cmd_status = 0;
1136 mci_writel(host, CMDARG, arg);
1137 wmb(); /* drain writebuffer */
1138 dw_mci_wait_while_busy(host, cmd);
1139 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1141 while (time_before(jiffies, timeout)) {
1142 cmd_status = mci_readl(host, CMD);
1143 if (!(cmd_status & SDMMC_CMD_START))
1144 return;
1146 dev_err(&slot->mmc->class_dev,
1147 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1148 cmd, arg, cmd_status);
1151 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1153 struct dw_mci *host = slot->host;
1154 unsigned int clock = slot->clock;
1155 u32 div;
1156 u32 clk_en_a;
1157 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1159 /* We must continue to set bit 28 in CMD until the change is complete */
1160 if (host->state == STATE_WAITING_CMD11_DONE)
1161 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1163 if (!clock) {
1164 mci_writel(host, CLKENA, 0);
1165 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1166 } else if (clock != host->current_speed || force_clkinit) {
1167 div = host->bus_hz / clock;
1168 if (host->bus_hz % clock && host->bus_hz > clock)
1170 * move the + 1 after the divide to prevent
1171 * over-clocking the card.
1173 div += 1;
1175 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1177 if (clock != slot->__clk_old || force_clkinit)
1178 dev_info(&slot->mmc->class_dev,
1179 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1180 slot->id, host->bus_hz, clock,
1181 div ? ((host->bus_hz / div) >> 1) :
1182 host->bus_hz, div);
1184 /* disable clock */
1185 mci_writel(host, CLKENA, 0);
1186 mci_writel(host, CLKSRC, 0);
1188 /* inform CIU */
1189 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1191 /* set clock to desired speed */
1192 mci_writel(host, CLKDIV, div);
1194 /* inform CIU */
1195 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1197 /* enable clock; only low power if no SDIO */
1198 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1199 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1200 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1201 mci_writel(host, CLKENA, clk_en_a);
1203 /* inform CIU */
1204 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1206 /* keep the last clock value that was requested from core */
1207 slot->__clk_old = clock;
1210 host->current_speed = clock;
1212 /* Set the current slot bus width */
1213 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1216 static void __dw_mci_start_request(struct dw_mci *host,
1217 struct dw_mci_slot *slot,
1218 struct mmc_command *cmd)
1220 struct mmc_request *mrq;
1221 struct mmc_data *data;
1222 u32 cmdflags;
1224 mrq = slot->mrq;
1226 host->cur_slot = slot;
1227 host->mrq = mrq;
1229 host->pending_events = 0;
1230 host->completed_events = 0;
1231 host->cmd_status = 0;
1232 host->data_status = 0;
1233 host->dir_status = 0;
1235 data = cmd->data;
1236 if (data) {
1237 mci_writel(host, TMOUT, 0xFFFFFFFF);
1238 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1239 mci_writel(host, BLKSIZ, data->blksz);
1242 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1244 /* this is the first command, send the initialization clock */
1245 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1246 cmdflags |= SDMMC_CMD_INIT;
1248 if (data) {
1249 dw_mci_submit_data(host, data);
1250 wmb(); /* drain writebuffer */
1253 dw_mci_start_command(host, cmd, cmdflags);
1255 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1256 unsigned long irqflags;
1259 * Databook says to fail after 2ms w/ no response, but evidence
1260 * shows that sometimes the cmd11 interrupt takes over 130ms.
1261 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1262 * is just about to roll over.
1264 * We do this whole thing under spinlock and only if the
1265 * command hasn't already completed (indicating the the irq
1266 * already ran so we don't want the timeout).
1268 spin_lock_irqsave(&host->irq_lock, irqflags);
1269 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1270 mod_timer(&host->cmd11_timer,
1271 jiffies + msecs_to_jiffies(500) + 1);
1272 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1275 if (mrq->stop)
1276 host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1277 else
1278 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1281 static void dw_mci_start_request(struct dw_mci *host,
1282 struct dw_mci_slot *slot)
1284 struct mmc_request *mrq = slot->mrq;
1285 struct mmc_command *cmd;
1287 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1288 __dw_mci_start_request(host, slot, cmd);
1291 /* must be called with host->lock held */
1292 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1293 struct mmc_request *mrq)
1295 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1296 host->state);
1298 slot->mrq = mrq;
1300 if (host->state == STATE_WAITING_CMD11_DONE) {
1301 dev_warn(&slot->mmc->class_dev,
1302 "Voltage change didn't complete\n");
1304 * this case isn't expected to happen, so we can
1305 * either crash here or just try to continue on
1306 * in the closest possible state
1308 host->state = STATE_IDLE;
1311 if (host->state == STATE_IDLE) {
1312 host->state = STATE_SENDING_CMD;
1313 dw_mci_start_request(host, slot);
1314 } else {
1315 list_add_tail(&slot->queue_node, &host->queue);
1319 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1321 struct dw_mci_slot *slot = mmc_priv(mmc);
1322 struct dw_mci *host = slot->host;
1324 WARN_ON(slot->mrq);
1327 * The check for card presence and queueing of the request must be
1328 * atomic, otherwise the card could be removed in between and the
1329 * request wouldn't fail until another card was inserted.
1332 if (!dw_mci_get_cd(mmc)) {
1333 mrq->cmd->error = -ENOMEDIUM;
1334 mmc_request_done(mmc, mrq);
1335 return;
1338 spin_lock_bh(&host->lock);
1340 dw_mci_queue_request(host, slot, mrq);
1342 spin_unlock_bh(&host->lock);
1345 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1347 struct dw_mci_slot *slot = mmc_priv(mmc);
1348 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1349 u32 regs;
1350 int ret;
1352 switch (ios->bus_width) {
1353 case MMC_BUS_WIDTH_4:
1354 slot->ctype = SDMMC_CTYPE_4BIT;
1355 break;
1356 case MMC_BUS_WIDTH_8:
1357 slot->ctype = SDMMC_CTYPE_8BIT;
1358 break;
1359 default:
1360 /* set default 1 bit mode */
1361 slot->ctype = SDMMC_CTYPE_1BIT;
1364 regs = mci_readl(slot->host, UHS_REG);
1366 /* DDR mode set */
1367 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1368 ios->timing == MMC_TIMING_UHS_DDR50 ||
1369 ios->timing == MMC_TIMING_MMC_HS400)
1370 regs |= ((0x1 << slot->id) << 16);
1371 else
1372 regs &= ~((0x1 << slot->id) << 16);
1374 mci_writel(slot->host, UHS_REG, regs);
1375 slot->host->timing = ios->timing;
1378 * Use mirror of ios->clock to prevent race with mmc
1379 * core ios update when finding the minimum.
1381 slot->clock = ios->clock;
1383 if (drv_data && drv_data->set_ios)
1384 drv_data->set_ios(slot->host, ios);
1386 switch (ios->power_mode) {
1387 case MMC_POWER_UP:
1388 if (!IS_ERR(mmc->supply.vmmc)) {
1389 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1390 ios->vdd);
1391 if (ret) {
1392 dev_err(slot->host->dev,
1393 "failed to enable vmmc regulator\n");
1394 /*return, if failed turn on vmmc*/
1395 return;
1398 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1399 regs = mci_readl(slot->host, PWREN);
1400 regs |= (1 << slot->id);
1401 mci_writel(slot->host, PWREN, regs);
1402 break;
1403 case MMC_POWER_ON:
1404 if (!slot->host->vqmmc_enabled) {
1405 if (!IS_ERR(mmc->supply.vqmmc)) {
1406 ret = regulator_enable(mmc->supply.vqmmc);
1407 if (ret < 0)
1408 dev_err(slot->host->dev,
1409 "failed to enable vqmmc\n");
1410 else
1411 slot->host->vqmmc_enabled = true;
1413 } else {
1414 /* Keep track so we don't reset again */
1415 slot->host->vqmmc_enabled = true;
1418 /* Reset our state machine after powering on */
1419 dw_mci_ctrl_reset(slot->host,
1420 SDMMC_CTRL_ALL_RESET_FLAGS);
1423 /* Adjust clock / bus width after power is up */
1424 dw_mci_setup_bus(slot, false);
1426 break;
1427 case MMC_POWER_OFF:
1428 /* Turn clock off before power goes down */
1429 dw_mci_setup_bus(slot, false);
1431 if (!IS_ERR(mmc->supply.vmmc))
1432 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1434 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1435 regulator_disable(mmc->supply.vqmmc);
1436 slot->host->vqmmc_enabled = false;
1438 regs = mci_readl(slot->host, PWREN);
1439 regs &= ~(1 << slot->id);
1440 mci_writel(slot->host, PWREN, regs);
1441 break;
1442 default:
1443 break;
1446 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1447 slot->host->state = STATE_IDLE;
1450 static int dw_mci_card_busy(struct mmc_host *mmc)
1452 struct dw_mci_slot *slot = mmc_priv(mmc);
1453 u32 status;
1456 * Check the busy bit which is low when DAT[3:0]
1457 * (the data lines) are 0000
1459 status = mci_readl(slot->host, STATUS);
1461 return !!(status & SDMMC_STATUS_BUSY);
1464 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1466 struct dw_mci_slot *slot = mmc_priv(mmc);
1467 struct dw_mci *host = slot->host;
1468 const struct dw_mci_drv_data *drv_data = host->drv_data;
1469 u32 uhs;
1470 u32 v18 = SDMMC_UHS_18V << slot->id;
1471 int ret;
1473 if (drv_data && drv_data->switch_voltage)
1474 return drv_data->switch_voltage(mmc, ios);
1477 * Program the voltage. Note that some instances of dw_mmc may use
1478 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1479 * does no harm but you need to set the regulator directly. Try both.
1481 uhs = mci_readl(host, UHS_REG);
1482 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1483 uhs &= ~v18;
1484 else
1485 uhs |= v18;
1487 if (!IS_ERR(mmc->supply.vqmmc)) {
1488 ret = mmc_regulator_set_vqmmc(mmc, ios);
1490 if (ret) {
1491 dev_dbg(&mmc->class_dev,
1492 "Regulator set error %d - %s V\n",
1493 ret, uhs & v18 ? "1.8" : "3.3");
1494 return ret;
1497 mci_writel(host, UHS_REG, uhs);
1499 return 0;
1502 static int dw_mci_get_ro(struct mmc_host *mmc)
1504 int read_only;
1505 struct dw_mci_slot *slot = mmc_priv(mmc);
1506 int gpio_ro = mmc_gpio_get_ro(mmc);
1508 /* Use platform get_ro function, else try on board write protect */
1509 if (gpio_ro >= 0)
1510 read_only = gpio_ro;
1511 else
1512 read_only =
1513 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1515 dev_dbg(&mmc->class_dev, "card is %s\n",
1516 read_only ? "read-only" : "read-write");
1518 return read_only;
1521 static int dw_mci_get_cd(struct mmc_host *mmc)
1523 int present;
1524 struct dw_mci_slot *slot = mmc_priv(mmc);
1525 struct dw_mci *host = slot->host;
1526 int gpio_cd = mmc_gpio_get_cd(mmc);
1528 /* Use platform get_cd function, else try onboard card detect */
1529 if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))
1530 present = 1;
1531 else if (gpio_cd >= 0)
1532 present = gpio_cd;
1533 else
1534 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1535 == 0 ? 1 : 0;
1537 spin_lock_bh(&host->lock);
1538 if (present) {
1539 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1540 dev_dbg(&mmc->class_dev, "card is present\n");
1541 } else {
1542 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1543 dev_dbg(&mmc->class_dev, "card is not present\n");
1545 spin_unlock_bh(&host->lock);
1547 return present;
1550 static void dw_mci_hw_reset(struct mmc_host *mmc)
1552 struct dw_mci_slot *slot = mmc_priv(mmc);
1553 struct dw_mci *host = slot->host;
1554 int reset;
1556 if (host->use_dma == TRANS_MODE_IDMAC)
1557 dw_mci_idmac_reset(host);
1559 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1560 SDMMC_CTRL_FIFO_RESET))
1561 return;
1564 * According to eMMC spec, card reset procedure:
1565 * tRstW >= 1us: RST_n pulse width
1566 * tRSCA >= 200us: RST_n to Command time
1567 * tRSTH >= 1us: RST_n high period
1569 reset = mci_readl(host, RST_N);
1570 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1571 mci_writel(host, RST_N, reset);
1572 usleep_range(1, 2);
1573 reset |= SDMMC_RST_HWACTIVE << slot->id;
1574 mci_writel(host, RST_N, reset);
1575 usleep_range(200, 300);
1578 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1580 struct dw_mci_slot *slot = mmc_priv(mmc);
1581 struct dw_mci *host = slot->host;
1584 * Low power mode will stop the card clock when idle. According to the
1585 * description of the CLKENA register we should disable low power mode
1586 * for SDIO cards if we need SDIO interrupts to work.
1588 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1589 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1590 u32 clk_en_a_old;
1591 u32 clk_en_a;
1593 clk_en_a_old = mci_readl(host, CLKENA);
1595 if (card->type == MMC_TYPE_SDIO ||
1596 card->type == MMC_TYPE_SD_COMBO) {
1597 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1598 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1599 } else {
1600 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1601 clk_en_a = clk_en_a_old | clken_low_pwr;
1604 if (clk_en_a != clk_en_a_old) {
1605 mci_writel(host, CLKENA, clk_en_a);
1606 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1607 SDMMC_CMD_PRV_DAT_WAIT, 0);
1612 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1614 struct dw_mci_slot *slot = mmc_priv(mmc);
1615 struct dw_mci *host = slot->host;
1616 unsigned long irqflags;
1617 u32 int_mask;
1619 spin_lock_irqsave(&host->irq_lock, irqflags);
1621 /* Enable/disable Slot Specific SDIO interrupt */
1622 int_mask = mci_readl(host, INTMASK);
1623 if (enb)
1624 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1625 else
1626 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1627 mci_writel(host, INTMASK, int_mask);
1629 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1632 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1634 struct dw_mci_slot *slot = mmc_priv(mmc);
1635 struct dw_mci *host = slot->host;
1636 const struct dw_mci_drv_data *drv_data = host->drv_data;
1637 int err = -EINVAL;
1639 if (drv_data && drv_data->execute_tuning)
1640 err = drv_data->execute_tuning(slot, opcode);
1641 return err;
1644 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1645 struct mmc_ios *ios)
1647 struct dw_mci_slot *slot = mmc_priv(mmc);
1648 struct dw_mci *host = slot->host;
1649 const struct dw_mci_drv_data *drv_data = host->drv_data;
1651 if (drv_data && drv_data->prepare_hs400_tuning)
1652 return drv_data->prepare_hs400_tuning(host, ios);
1654 return 0;
1657 static const struct mmc_host_ops dw_mci_ops = {
1658 .request = dw_mci_request,
1659 .pre_req = dw_mci_pre_req,
1660 .post_req = dw_mci_post_req,
1661 .set_ios = dw_mci_set_ios,
1662 .get_ro = dw_mci_get_ro,
1663 .get_cd = dw_mci_get_cd,
1664 .hw_reset = dw_mci_hw_reset,
1665 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1666 .execute_tuning = dw_mci_execute_tuning,
1667 .card_busy = dw_mci_card_busy,
1668 .start_signal_voltage_switch = dw_mci_switch_voltage,
1669 .init_card = dw_mci_init_card,
1670 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1673 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1674 __releases(&host->lock)
1675 __acquires(&host->lock)
1677 struct dw_mci_slot *slot;
1678 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1680 WARN_ON(host->cmd || host->data);
1682 host->cur_slot->mrq = NULL;
1683 host->mrq = NULL;
1684 if (!list_empty(&host->queue)) {
1685 slot = list_entry(host->queue.next,
1686 struct dw_mci_slot, queue_node);
1687 list_del(&slot->queue_node);
1688 dev_vdbg(host->dev, "list not empty: %s is next\n",
1689 mmc_hostname(slot->mmc));
1690 host->state = STATE_SENDING_CMD;
1691 dw_mci_start_request(host, slot);
1692 } else {
1693 dev_vdbg(host->dev, "list empty\n");
1695 if (host->state == STATE_SENDING_CMD11)
1696 host->state = STATE_WAITING_CMD11_DONE;
1697 else
1698 host->state = STATE_IDLE;
1701 spin_unlock(&host->lock);
1702 mmc_request_done(prev_mmc, mrq);
1703 spin_lock(&host->lock);
1706 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1708 u32 status = host->cmd_status;
1710 host->cmd_status = 0;
1712 /* Read the response from the card (up to 16 bytes) */
1713 if (cmd->flags & MMC_RSP_PRESENT) {
1714 if (cmd->flags & MMC_RSP_136) {
1715 cmd->resp[3] = mci_readl(host, RESP0);
1716 cmd->resp[2] = mci_readl(host, RESP1);
1717 cmd->resp[1] = mci_readl(host, RESP2);
1718 cmd->resp[0] = mci_readl(host, RESP3);
1719 } else {
1720 cmd->resp[0] = mci_readl(host, RESP0);
1721 cmd->resp[1] = 0;
1722 cmd->resp[2] = 0;
1723 cmd->resp[3] = 0;
1727 if (status & SDMMC_INT_RTO)
1728 cmd->error = -ETIMEDOUT;
1729 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1730 cmd->error = -EILSEQ;
1731 else if (status & SDMMC_INT_RESP_ERR)
1732 cmd->error = -EIO;
1733 else
1734 cmd->error = 0;
1736 return cmd->error;
1739 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1741 u32 status = host->data_status;
1743 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1744 if (status & SDMMC_INT_DRTO) {
1745 data->error = -ETIMEDOUT;
1746 } else if (status & SDMMC_INT_DCRC) {
1747 data->error = -EILSEQ;
1748 } else if (status & SDMMC_INT_EBE) {
1749 if (host->dir_status ==
1750 DW_MCI_SEND_STATUS) {
1752 * No data CRC status was returned.
1753 * The number of bytes transferred
1754 * will be exaggerated in PIO mode.
1756 data->bytes_xfered = 0;
1757 data->error = -ETIMEDOUT;
1758 } else if (host->dir_status ==
1759 DW_MCI_RECV_STATUS) {
1760 data->error = -EILSEQ;
1762 } else {
1763 /* SDMMC_INT_SBE is included */
1764 data->error = -EILSEQ;
1767 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1770 * After an error, there may be data lingering
1771 * in the FIFO
1773 dw_mci_reset(host);
1774 } else {
1775 data->bytes_xfered = data->blocks * data->blksz;
1776 data->error = 0;
1779 return data->error;
1782 static void dw_mci_set_drto(struct dw_mci *host)
1784 unsigned int drto_clks;
1785 unsigned int drto_ms;
1787 drto_clks = mci_readl(host, TMOUT) >> 8;
1788 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1790 /* add a bit spare time */
1791 drto_ms += 10;
1793 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1796 static void dw_mci_tasklet_func(unsigned long priv)
1798 struct dw_mci *host = (struct dw_mci *)priv;
1799 struct mmc_data *data;
1800 struct mmc_command *cmd;
1801 struct mmc_request *mrq;
1802 enum dw_mci_state state;
1803 enum dw_mci_state prev_state;
1804 unsigned int err;
1806 spin_lock(&host->lock);
1808 state = host->state;
1809 data = host->data;
1810 mrq = host->mrq;
1812 do {
1813 prev_state = state;
1815 switch (state) {
1816 case STATE_IDLE:
1817 case STATE_WAITING_CMD11_DONE:
1818 break;
1820 case STATE_SENDING_CMD11:
1821 case STATE_SENDING_CMD:
1822 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1823 &host->pending_events))
1824 break;
1826 cmd = host->cmd;
1827 host->cmd = NULL;
1828 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1829 err = dw_mci_command_complete(host, cmd);
1830 if (cmd == mrq->sbc && !err) {
1831 prev_state = state = STATE_SENDING_CMD;
1832 __dw_mci_start_request(host, host->cur_slot,
1833 mrq->cmd);
1834 goto unlock;
1837 if (cmd->data && err) {
1839 * During UHS tuning sequence, sending the stop
1840 * command after the response CRC error would
1841 * throw the system into a confused state
1842 * causing all future tuning phases to report
1843 * failure.
1845 * In such case controller will move into a data
1846 * transfer state after a response error or
1847 * response CRC error. Let's let that finish
1848 * before trying to send a stop, so we'll go to
1849 * STATE_SENDING_DATA.
1851 * Although letting the data transfer take place
1852 * will waste a bit of time (we already know
1853 * the command was bad), it can't cause any
1854 * errors since it's possible it would have
1855 * taken place anyway if this tasklet got
1856 * delayed. Allowing the transfer to take place
1857 * avoids races and keeps things simple.
1859 if ((err != -ETIMEDOUT) &&
1860 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1861 state = STATE_SENDING_DATA;
1862 continue;
1865 dw_mci_stop_dma(host);
1866 send_stop_abort(host, data);
1867 state = STATE_SENDING_STOP;
1868 break;
1871 if (!cmd->data || err) {
1872 dw_mci_request_end(host, mrq);
1873 goto unlock;
1876 prev_state = state = STATE_SENDING_DATA;
1877 /* fall through */
1879 case STATE_SENDING_DATA:
1881 * We could get a data error and never a transfer
1882 * complete so we'd better check for it here.
1884 * Note that we don't really care if we also got a
1885 * transfer complete; stopping the DMA and sending an
1886 * abort won't hurt.
1888 if (test_and_clear_bit(EVENT_DATA_ERROR,
1889 &host->pending_events)) {
1890 dw_mci_stop_dma(host);
1891 if (data->stop ||
1892 !(host->data_status & (SDMMC_INT_DRTO |
1893 SDMMC_INT_EBE)))
1894 send_stop_abort(host, data);
1895 state = STATE_DATA_ERROR;
1896 break;
1899 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1900 &host->pending_events)) {
1902 * If all data-related interrupts don't come
1903 * within the given time in reading data state.
1905 if (host->dir_status == DW_MCI_RECV_STATUS)
1906 dw_mci_set_drto(host);
1907 break;
1910 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1913 * Handle an EVENT_DATA_ERROR that might have shown up
1914 * before the transfer completed. This might not have
1915 * been caught by the check above because the interrupt
1916 * could have gone off between the previous check and
1917 * the check for transfer complete.
1919 * Technically this ought not be needed assuming we
1920 * get a DATA_COMPLETE eventually (we'll notice the
1921 * error and end the request), but it shouldn't hurt.
1923 * This has the advantage of sending the stop command.
1925 if (test_and_clear_bit(EVENT_DATA_ERROR,
1926 &host->pending_events)) {
1927 dw_mci_stop_dma(host);
1928 if (data->stop ||
1929 !(host->data_status & (SDMMC_INT_DRTO |
1930 SDMMC_INT_EBE)))
1931 send_stop_abort(host, data);
1932 state = STATE_DATA_ERROR;
1933 break;
1935 prev_state = state = STATE_DATA_BUSY;
1937 /* fall through */
1939 case STATE_DATA_BUSY:
1940 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1941 &host->pending_events)) {
1943 * If data error interrupt comes but data over
1944 * interrupt doesn't come within the given time.
1945 * in reading data state.
1947 if (host->dir_status == DW_MCI_RECV_STATUS)
1948 dw_mci_set_drto(host);
1949 break;
1952 host->data = NULL;
1953 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1954 err = dw_mci_data_complete(host, data);
1956 if (!err) {
1957 if (!data->stop || mrq->sbc) {
1958 if (mrq->sbc && data->stop)
1959 data->stop->error = 0;
1960 dw_mci_request_end(host, mrq);
1961 goto unlock;
1964 /* stop command for open-ended transfer*/
1965 if (data->stop)
1966 send_stop_abort(host, data);
1967 } else {
1969 * If we don't have a command complete now we'll
1970 * never get one since we just reset everything;
1971 * better end the request.
1973 * If we do have a command complete we'll fall
1974 * through to the SENDING_STOP command and
1975 * everything will be peachy keen.
1977 if (!test_bit(EVENT_CMD_COMPLETE,
1978 &host->pending_events)) {
1979 host->cmd = NULL;
1980 dw_mci_request_end(host, mrq);
1981 goto unlock;
1986 * If err has non-zero,
1987 * stop-abort command has been already issued.
1989 prev_state = state = STATE_SENDING_STOP;
1991 /* fall through */
1993 case STATE_SENDING_STOP:
1994 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1995 &host->pending_events))
1996 break;
1998 /* CMD error in data command */
1999 if (mrq->cmd->error && mrq->data)
2000 dw_mci_reset(host);
2002 host->cmd = NULL;
2003 host->data = NULL;
2005 if (mrq->stop)
2006 dw_mci_command_complete(host, mrq->stop);
2007 else
2008 host->cmd_status = 0;
2010 dw_mci_request_end(host, mrq);
2011 goto unlock;
2013 case STATE_DATA_ERROR:
2014 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2015 &host->pending_events))
2016 break;
2018 state = STATE_DATA_BUSY;
2019 break;
2021 } while (state != prev_state);
2023 host->state = state;
2024 unlock:
2025 spin_unlock(&host->lock);
2029 /* push final bytes to part_buf, only use during push */
2030 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2032 memcpy((void *)&host->part_buf, buf, cnt);
2033 host->part_buf_count = cnt;
2036 /* append bytes to part_buf, only use during push */
2037 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2039 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2040 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2041 host->part_buf_count += cnt;
2042 return cnt;
2045 /* pull first bytes from part_buf, only use during pull */
2046 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2048 cnt = min_t(int, cnt, host->part_buf_count);
2049 if (cnt) {
2050 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2051 cnt);
2052 host->part_buf_count -= cnt;
2053 host->part_buf_start += cnt;
2055 return cnt;
2058 /* pull final bytes from the part_buf, assuming it's just been filled */
2059 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2061 memcpy(buf, &host->part_buf, cnt);
2062 host->part_buf_start = cnt;
2063 host->part_buf_count = (1 << host->data_shift) - cnt;
2066 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2068 struct mmc_data *data = host->data;
2069 int init_cnt = cnt;
2071 /* try and push anything in the part_buf */
2072 if (unlikely(host->part_buf_count)) {
2073 int len = dw_mci_push_part_bytes(host, buf, cnt);
2075 buf += len;
2076 cnt -= len;
2077 if (host->part_buf_count == 2) {
2078 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2079 host->part_buf_count = 0;
2082 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2083 if (unlikely((unsigned long)buf & 0x1)) {
2084 while (cnt >= 2) {
2085 u16 aligned_buf[64];
2086 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2087 int items = len >> 1;
2088 int i;
2089 /* memcpy from input buffer into aligned buffer */
2090 memcpy(aligned_buf, buf, len);
2091 buf += len;
2092 cnt -= len;
2093 /* push data from aligned buffer into fifo */
2094 for (i = 0; i < items; ++i)
2095 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2097 } else
2098 #endif
2100 u16 *pdata = buf;
2102 for (; cnt >= 2; cnt -= 2)
2103 mci_fifo_writew(host->fifo_reg, *pdata++);
2104 buf = pdata;
2106 /* put anything remaining in the part_buf */
2107 if (cnt) {
2108 dw_mci_set_part_bytes(host, buf, cnt);
2109 /* Push data if we have reached the expected data length */
2110 if ((data->bytes_xfered + init_cnt) ==
2111 (data->blksz * data->blocks))
2112 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2116 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2118 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2119 if (unlikely((unsigned long)buf & 0x1)) {
2120 while (cnt >= 2) {
2121 /* pull data from fifo into aligned buffer */
2122 u16 aligned_buf[64];
2123 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2124 int items = len >> 1;
2125 int i;
2127 for (i = 0; i < items; ++i)
2128 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2129 /* memcpy from aligned buffer into output buffer */
2130 memcpy(buf, aligned_buf, len);
2131 buf += len;
2132 cnt -= len;
2134 } else
2135 #endif
2137 u16 *pdata = buf;
2139 for (; cnt >= 2; cnt -= 2)
2140 *pdata++ = mci_fifo_readw(host->fifo_reg);
2141 buf = pdata;
2143 if (cnt) {
2144 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2145 dw_mci_pull_final_bytes(host, buf, cnt);
2149 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2151 struct mmc_data *data = host->data;
2152 int init_cnt = cnt;
2154 /* try and push anything in the part_buf */
2155 if (unlikely(host->part_buf_count)) {
2156 int len = dw_mci_push_part_bytes(host, buf, cnt);
2158 buf += len;
2159 cnt -= len;
2160 if (host->part_buf_count == 4) {
2161 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2162 host->part_buf_count = 0;
2165 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2166 if (unlikely((unsigned long)buf & 0x3)) {
2167 while (cnt >= 4) {
2168 u32 aligned_buf[32];
2169 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2170 int items = len >> 2;
2171 int i;
2172 /* memcpy from input buffer into aligned buffer */
2173 memcpy(aligned_buf, buf, len);
2174 buf += len;
2175 cnt -= len;
2176 /* push data from aligned buffer into fifo */
2177 for (i = 0; i < items; ++i)
2178 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2180 } else
2181 #endif
2183 u32 *pdata = buf;
2185 for (; cnt >= 4; cnt -= 4)
2186 mci_fifo_writel(host->fifo_reg, *pdata++);
2187 buf = pdata;
2189 /* put anything remaining in the part_buf */
2190 if (cnt) {
2191 dw_mci_set_part_bytes(host, buf, cnt);
2192 /* Push data if we have reached the expected data length */
2193 if ((data->bytes_xfered + init_cnt) ==
2194 (data->blksz * data->blocks))
2195 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2199 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2201 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2202 if (unlikely((unsigned long)buf & 0x3)) {
2203 while (cnt >= 4) {
2204 /* pull data from fifo into aligned buffer */
2205 u32 aligned_buf[32];
2206 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2207 int items = len >> 2;
2208 int i;
2210 for (i = 0; i < items; ++i)
2211 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2212 /* memcpy from aligned buffer into output buffer */
2213 memcpy(buf, aligned_buf, len);
2214 buf += len;
2215 cnt -= len;
2217 } else
2218 #endif
2220 u32 *pdata = buf;
2222 for (; cnt >= 4; cnt -= 4)
2223 *pdata++ = mci_fifo_readl(host->fifo_reg);
2224 buf = pdata;
2226 if (cnt) {
2227 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2228 dw_mci_pull_final_bytes(host, buf, cnt);
2232 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2234 struct mmc_data *data = host->data;
2235 int init_cnt = cnt;
2237 /* try and push anything in the part_buf */
2238 if (unlikely(host->part_buf_count)) {
2239 int len = dw_mci_push_part_bytes(host, buf, cnt);
2241 buf += len;
2242 cnt -= len;
2244 if (host->part_buf_count == 8) {
2245 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2246 host->part_buf_count = 0;
2249 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2250 if (unlikely((unsigned long)buf & 0x7)) {
2251 while (cnt >= 8) {
2252 u64 aligned_buf[16];
2253 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2254 int items = len >> 3;
2255 int i;
2256 /* memcpy from input buffer into aligned buffer */
2257 memcpy(aligned_buf, buf, len);
2258 buf += len;
2259 cnt -= len;
2260 /* push data from aligned buffer into fifo */
2261 for (i = 0; i < items; ++i)
2262 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2264 } else
2265 #endif
2267 u64 *pdata = buf;
2269 for (; cnt >= 8; cnt -= 8)
2270 mci_fifo_writeq(host->fifo_reg, *pdata++);
2271 buf = pdata;
2273 /* put anything remaining in the part_buf */
2274 if (cnt) {
2275 dw_mci_set_part_bytes(host, buf, cnt);
2276 /* Push data if we have reached the expected data length */
2277 if ((data->bytes_xfered + init_cnt) ==
2278 (data->blksz * data->blocks))
2279 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2283 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2285 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2286 if (unlikely((unsigned long)buf & 0x7)) {
2287 while (cnt >= 8) {
2288 /* pull data from fifo into aligned buffer */
2289 u64 aligned_buf[16];
2290 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2291 int items = len >> 3;
2292 int i;
2294 for (i = 0; i < items; ++i)
2295 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2297 /* memcpy from aligned buffer into output buffer */
2298 memcpy(buf, aligned_buf, len);
2299 buf += len;
2300 cnt -= len;
2302 } else
2303 #endif
2305 u64 *pdata = buf;
2307 for (; cnt >= 8; cnt -= 8)
2308 *pdata++ = mci_fifo_readq(host->fifo_reg);
2309 buf = pdata;
2311 if (cnt) {
2312 host->part_buf = mci_fifo_readq(host->fifo_reg);
2313 dw_mci_pull_final_bytes(host, buf, cnt);
2317 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2319 int len;
2321 /* get remaining partial bytes */
2322 len = dw_mci_pull_part_bytes(host, buf, cnt);
2323 if (unlikely(len == cnt))
2324 return;
2325 buf += len;
2326 cnt -= len;
2328 /* get the rest of the data */
2329 host->pull_data(host, buf, cnt);
2332 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2334 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2335 void *buf;
2336 unsigned int offset;
2337 struct mmc_data *data = host->data;
2338 int shift = host->data_shift;
2339 u32 status;
2340 unsigned int len;
2341 unsigned int remain, fcnt;
2343 do {
2344 if (!sg_miter_next(sg_miter))
2345 goto done;
2347 host->sg = sg_miter->piter.sg;
2348 buf = sg_miter->addr;
2349 remain = sg_miter->length;
2350 offset = 0;
2352 do {
2353 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2354 << shift) + host->part_buf_count;
2355 len = min(remain, fcnt);
2356 if (!len)
2357 break;
2358 dw_mci_pull_data(host, (void *)(buf + offset), len);
2359 data->bytes_xfered += len;
2360 offset += len;
2361 remain -= len;
2362 } while (remain);
2364 sg_miter->consumed = offset;
2365 status = mci_readl(host, MINTSTS);
2366 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2367 /* if the RXDR is ready read again */
2368 } while ((status & SDMMC_INT_RXDR) ||
2369 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2371 if (!remain) {
2372 if (!sg_miter_next(sg_miter))
2373 goto done;
2374 sg_miter->consumed = 0;
2376 sg_miter_stop(sg_miter);
2377 return;
2379 done:
2380 sg_miter_stop(sg_miter);
2381 host->sg = NULL;
2382 smp_wmb(); /* drain writebuffer */
2383 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2386 static void dw_mci_write_data_pio(struct dw_mci *host)
2388 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2389 void *buf;
2390 unsigned int offset;
2391 struct mmc_data *data = host->data;
2392 int shift = host->data_shift;
2393 u32 status;
2394 unsigned int len;
2395 unsigned int fifo_depth = host->fifo_depth;
2396 unsigned int remain, fcnt;
2398 do {
2399 if (!sg_miter_next(sg_miter))
2400 goto done;
2402 host->sg = sg_miter->piter.sg;
2403 buf = sg_miter->addr;
2404 remain = sg_miter->length;
2405 offset = 0;
2407 do {
2408 fcnt = ((fifo_depth -
2409 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2410 << shift) - host->part_buf_count;
2411 len = min(remain, fcnt);
2412 if (!len)
2413 break;
2414 host->push_data(host, (void *)(buf + offset), len);
2415 data->bytes_xfered += len;
2416 offset += len;
2417 remain -= len;
2418 } while (remain);
2420 sg_miter->consumed = offset;
2421 status = mci_readl(host, MINTSTS);
2422 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2423 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2425 if (!remain) {
2426 if (!sg_miter_next(sg_miter))
2427 goto done;
2428 sg_miter->consumed = 0;
2430 sg_miter_stop(sg_miter);
2431 return;
2433 done:
2434 sg_miter_stop(sg_miter);
2435 host->sg = NULL;
2436 smp_wmb(); /* drain writebuffer */
2437 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2440 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2442 if (!host->cmd_status)
2443 host->cmd_status = status;
2445 smp_wmb(); /* drain writebuffer */
2447 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2448 tasklet_schedule(&host->tasklet);
2451 static void dw_mci_handle_cd(struct dw_mci *host)
2453 int i;
2455 for (i = 0; i < host->num_slots; i++) {
2456 struct dw_mci_slot *slot = host->slot[i];
2458 if (!slot)
2459 continue;
2461 if (slot->mmc->ops->card_event)
2462 slot->mmc->ops->card_event(slot->mmc);
2463 mmc_detect_change(slot->mmc,
2464 msecs_to_jiffies(host->pdata->detect_delay_ms));
2468 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2470 struct dw_mci *host = dev_id;
2471 u32 pending;
2472 int i;
2474 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2476 if (pending) {
2477 /* Check volt switch first, since it can look like an error */
2478 if ((host->state == STATE_SENDING_CMD11) &&
2479 (pending & SDMMC_INT_VOLT_SWITCH)) {
2480 unsigned long irqflags;
2482 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2483 pending &= ~SDMMC_INT_VOLT_SWITCH;
2486 * Hold the lock; we know cmd11_timer can't be kicked
2487 * off after the lock is released, so safe to delete.
2489 spin_lock_irqsave(&host->irq_lock, irqflags);
2490 dw_mci_cmd_interrupt(host, pending);
2491 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2493 del_timer(&host->cmd11_timer);
2496 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2497 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2498 host->cmd_status = pending;
2499 smp_wmb(); /* drain writebuffer */
2500 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2503 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2504 /* if there is an error report DATA_ERROR */
2505 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2506 host->data_status = pending;
2507 smp_wmb(); /* drain writebuffer */
2508 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2509 tasklet_schedule(&host->tasklet);
2512 if (pending & SDMMC_INT_DATA_OVER) {
2513 del_timer(&host->dto_timer);
2515 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2516 if (!host->data_status)
2517 host->data_status = pending;
2518 smp_wmb(); /* drain writebuffer */
2519 if (host->dir_status == DW_MCI_RECV_STATUS) {
2520 if (host->sg != NULL)
2521 dw_mci_read_data_pio(host, true);
2523 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2524 tasklet_schedule(&host->tasklet);
2527 if (pending & SDMMC_INT_RXDR) {
2528 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2529 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2530 dw_mci_read_data_pio(host, false);
2533 if (pending & SDMMC_INT_TXDR) {
2534 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2535 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2536 dw_mci_write_data_pio(host);
2539 if (pending & SDMMC_INT_CMD_DONE) {
2540 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2541 dw_mci_cmd_interrupt(host, pending);
2544 if (pending & SDMMC_INT_CD) {
2545 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2546 dw_mci_handle_cd(host);
2549 /* Handle SDIO Interrupts */
2550 for (i = 0; i < host->num_slots; i++) {
2551 struct dw_mci_slot *slot = host->slot[i];
2553 if (!slot)
2554 continue;
2556 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2557 mci_writel(host, RINTSTS,
2558 SDMMC_INT_SDIO(slot->sdio_id));
2559 mmc_signal_sdio_irq(slot->mmc);
2565 if (host->use_dma != TRANS_MODE_IDMAC)
2566 return IRQ_HANDLED;
2568 /* Handle IDMA interrupts */
2569 if (host->dma_64bit_address == 1) {
2570 pending = mci_readl(host, IDSTS64);
2571 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2572 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2573 SDMMC_IDMAC_INT_RI);
2574 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2575 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2576 host->dma_ops->complete((void *)host);
2578 } else {
2579 pending = mci_readl(host, IDSTS);
2580 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2581 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2582 SDMMC_IDMAC_INT_RI);
2583 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2584 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2585 host->dma_ops->complete((void *)host);
2589 return IRQ_HANDLED;
2592 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2594 struct mmc_host *mmc;
2595 struct dw_mci_slot *slot;
2596 const struct dw_mci_drv_data *drv_data = host->drv_data;
2597 int ctrl_id, ret;
2598 u32 freq[2];
2600 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2601 if (!mmc)
2602 return -ENOMEM;
2604 slot = mmc_priv(mmc);
2605 slot->id = id;
2606 slot->sdio_id = host->sdio_id0 + id;
2607 slot->mmc = mmc;
2608 slot->host = host;
2609 host->slot[id] = slot;
2611 mmc->ops = &dw_mci_ops;
2612 if (of_property_read_u32_array(host->dev->of_node,
2613 "clock-freq-min-max", freq, 2)) {
2614 mmc->f_min = DW_MCI_FREQ_MIN;
2615 mmc->f_max = DW_MCI_FREQ_MAX;
2616 } else {
2617 mmc->f_min = freq[0];
2618 mmc->f_max = freq[1];
2621 /*if there are external regulators, get them*/
2622 ret = mmc_regulator_get_supply(mmc);
2623 if (ret == -EPROBE_DEFER)
2624 goto err_host_allocated;
2626 if (!mmc->ocr_avail)
2627 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2629 if (host->pdata->caps)
2630 mmc->caps = host->pdata->caps;
2633 * Support MMC_CAP_ERASE by default.
2634 * It needs to use trim/discard/erase commands.
2636 mmc->caps |= MMC_CAP_ERASE;
2638 if (host->pdata->pm_caps)
2639 mmc->pm_caps = host->pdata->pm_caps;
2641 if (host->dev->of_node) {
2642 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2643 if (ctrl_id < 0)
2644 ctrl_id = 0;
2645 } else {
2646 ctrl_id = to_platform_device(host->dev)->id;
2648 if (drv_data && drv_data->caps)
2649 mmc->caps |= drv_data->caps[ctrl_id];
2651 if (host->pdata->caps2)
2652 mmc->caps2 = host->pdata->caps2;
2654 ret = mmc_of_parse(mmc);
2655 if (ret)
2656 goto err_host_allocated;
2658 /* Useful defaults if platform data is unset. */
2659 if (host->use_dma == TRANS_MODE_IDMAC) {
2660 mmc->max_segs = host->ring_size;
2661 mmc->max_blk_size = 65535;
2662 mmc->max_seg_size = 0x1000;
2663 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2664 mmc->max_blk_count = mmc->max_req_size / 512;
2665 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2666 mmc->max_segs = 64;
2667 mmc->max_blk_size = 65535;
2668 mmc->max_blk_count = 65535;
2669 mmc->max_req_size =
2670 mmc->max_blk_size * mmc->max_blk_count;
2671 mmc->max_seg_size = mmc->max_req_size;
2672 } else {
2673 /* TRANS_MODE_PIO */
2674 mmc->max_segs = 64;
2675 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2676 mmc->max_blk_count = 512;
2677 mmc->max_req_size = mmc->max_blk_size *
2678 mmc->max_blk_count;
2679 mmc->max_seg_size = mmc->max_req_size;
2682 dw_mci_get_cd(mmc);
2684 ret = mmc_add_host(mmc);
2685 if (ret)
2686 goto err_host_allocated;
2688 #if defined(CONFIG_DEBUG_FS)
2689 dw_mci_init_debugfs(slot);
2690 #endif
2692 return 0;
2694 err_host_allocated:
2695 mmc_free_host(mmc);
2696 return ret;
2699 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2701 /* Debugfs stuff is cleaned up by mmc core */
2702 mmc_remove_host(slot->mmc);
2703 slot->host->slot[id] = NULL;
2704 mmc_free_host(slot->mmc);
2707 static void dw_mci_init_dma(struct dw_mci *host)
2709 int addr_config;
2710 struct device *dev = host->dev;
2711 struct device_node *np = dev->of_node;
2714 * Check tansfer mode from HCON[17:16]
2715 * Clear the ambiguous description of dw_mmc databook:
2716 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2717 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2718 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2719 * 2b'11: Non DW DMA Interface -> pio only
2720 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2721 * simpler request/acknowledge handshake mechanism and both of them
2722 * are regarded as external dma master for dw_mmc.
2724 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2725 if (host->use_dma == DMA_INTERFACE_IDMA) {
2726 host->use_dma = TRANS_MODE_IDMAC;
2727 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2728 host->use_dma == DMA_INTERFACE_GDMA) {
2729 host->use_dma = TRANS_MODE_EDMAC;
2730 } else {
2731 goto no_dma;
2734 /* Determine which DMA interface to use */
2735 if (host->use_dma == TRANS_MODE_IDMAC) {
2737 * Check ADDR_CONFIG bit in HCON to find
2738 * IDMAC address bus width
2740 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2742 if (addr_config == 1) {
2743 /* host supports IDMAC in 64-bit address mode */
2744 host->dma_64bit_address = 1;
2745 dev_info(host->dev,
2746 "IDMAC supports 64-bit address mode.\n");
2747 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2748 dma_set_coherent_mask(host->dev,
2749 DMA_BIT_MASK(64));
2750 } else {
2751 /* host supports IDMAC in 32-bit address mode */
2752 host->dma_64bit_address = 0;
2753 dev_info(host->dev,
2754 "IDMAC supports 32-bit address mode.\n");
2757 /* Alloc memory for sg translation */
2758 host->sg_cpu = dmam_alloc_coherent(host->dev,
2759 DESC_RING_BUF_SZ,
2760 &host->sg_dma, GFP_KERNEL);
2761 if (!host->sg_cpu) {
2762 dev_err(host->dev,
2763 "%s: could not alloc DMA memory\n",
2764 __func__);
2765 goto no_dma;
2768 host->dma_ops = &dw_mci_idmac_ops;
2769 dev_info(host->dev, "Using internal DMA controller.\n");
2770 } else {
2771 /* TRANS_MODE_EDMAC: check dma bindings again */
2772 if ((of_property_count_strings(np, "dma-names") < 0) ||
2773 (!of_find_property(np, "dmas", NULL))) {
2774 goto no_dma;
2776 host->dma_ops = &dw_mci_edmac_ops;
2777 dev_info(host->dev, "Using external DMA controller.\n");
2780 if (host->dma_ops->init && host->dma_ops->start &&
2781 host->dma_ops->stop && host->dma_ops->cleanup) {
2782 if (host->dma_ops->init(host)) {
2783 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2784 __func__);
2785 goto no_dma;
2787 } else {
2788 dev_err(host->dev, "DMA initialization not found.\n");
2789 goto no_dma;
2792 return;
2794 no_dma:
2795 dev_info(host->dev, "Using PIO mode.\n");
2796 host->use_dma = TRANS_MODE_PIO;
2799 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2801 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2802 u32 ctrl;
2804 ctrl = mci_readl(host, CTRL);
2805 ctrl |= reset;
2806 mci_writel(host, CTRL, ctrl);
2808 /* wait till resets clear */
2809 do {
2810 ctrl = mci_readl(host, CTRL);
2811 if (!(ctrl & reset))
2812 return true;
2813 } while (time_before(jiffies, timeout));
2815 dev_err(host->dev,
2816 "Timeout resetting block (ctrl reset %#x)\n",
2817 ctrl & reset);
2819 return false;
2822 static bool dw_mci_reset(struct dw_mci *host)
2824 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2825 bool ret = false;
2828 * Reseting generates a block interrupt, hence setting
2829 * the scatter-gather pointer to NULL.
2831 if (host->sg) {
2832 sg_miter_stop(&host->sg_miter);
2833 host->sg = NULL;
2836 if (host->use_dma)
2837 flags |= SDMMC_CTRL_DMA_RESET;
2839 if (dw_mci_ctrl_reset(host, flags)) {
2841 * In all cases we clear the RAWINTS register to clear any
2842 * interrupts.
2844 mci_writel(host, RINTSTS, 0xFFFFFFFF);
2846 /* if using dma we wait for dma_req to clear */
2847 if (host->use_dma) {
2848 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2849 u32 status;
2851 do {
2852 status = mci_readl(host, STATUS);
2853 if (!(status & SDMMC_STATUS_DMA_REQ))
2854 break;
2855 cpu_relax();
2856 } while (time_before(jiffies, timeout));
2858 if (status & SDMMC_STATUS_DMA_REQ) {
2859 dev_err(host->dev,
2860 "%s: Timeout waiting for dma_req to clear during reset\n",
2861 __func__);
2862 goto ciu_out;
2865 /* when using DMA next we reset the fifo again */
2866 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2867 goto ciu_out;
2869 } else {
2870 /* if the controller reset bit did clear, then set clock regs */
2871 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2872 dev_err(host->dev,
2873 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2874 __func__);
2875 goto ciu_out;
2879 if (host->use_dma == TRANS_MODE_IDMAC)
2880 /* It is also recommended that we reset and reprogram idmac */
2881 dw_mci_idmac_reset(host);
2883 ret = true;
2885 ciu_out:
2886 /* After a CTRL reset we need to have CIU set clock registers */
2887 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2889 return ret;
2892 static void dw_mci_cmd11_timer(unsigned long arg)
2894 struct dw_mci *host = (struct dw_mci *)arg;
2896 if (host->state != STATE_SENDING_CMD11) {
2897 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2898 return;
2901 host->cmd_status = SDMMC_INT_RTO;
2902 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2903 tasklet_schedule(&host->tasklet);
2906 static void dw_mci_dto_timer(unsigned long arg)
2908 struct dw_mci *host = (struct dw_mci *)arg;
2910 switch (host->state) {
2911 case STATE_SENDING_DATA:
2912 case STATE_DATA_BUSY:
2914 * If DTO interrupt does NOT come in sending data state,
2915 * we should notify the driver to terminate current transfer
2916 * and report a data timeout to the core.
2918 host->data_status = SDMMC_INT_DRTO;
2919 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2920 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2921 tasklet_schedule(&host->tasklet);
2922 break;
2923 default:
2924 break;
2928 #ifdef CONFIG_OF
2929 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2931 struct dw_mci_board *pdata;
2932 struct device *dev = host->dev;
2933 struct device_node *np = dev->of_node;
2934 const struct dw_mci_drv_data *drv_data = host->drv_data;
2935 int ret;
2936 u32 clock_frequency;
2938 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2939 if (!pdata)
2940 return ERR_PTR(-ENOMEM);
2942 /* find reset controller when exist */
2943 pdata->rstc = devm_reset_control_get_optional(dev, NULL);
2944 if (IS_ERR(pdata->rstc)) {
2945 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2946 return ERR_PTR(-EPROBE_DEFER);
2949 /* find out number of slots supported */
2950 of_property_read_u32(np, "num-slots", &pdata->num_slots);
2952 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2953 dev_info(dev,
2954 "fifo-depth property not found, using value of FIFOTH register as default\n");
2956 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2958 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2959 pdata->bus_hz = clock_frequency;
2961 if (drv_data && drv_data->parse_dt) {
2962 ret = drv_data->parse_dt(host);
2963 if (ret)
2964 return ERR_PTR(ret);
2967 return pdata;
2970 #else /* CONFIG_OF */
2971 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2973 return ERR_PTR(-EINVAL);
2975 #endif /* CONFIG_OF */
2977 static void dw_mci_enable_cd(struct dw_mci *host)
2979 unsigned long irqflags;
2980 u32 temp;
2981 int i;
2982 struct dw_mci_slot *slot;
2985 * No need for CD if all slots have a non-error GPIO
2986 * as well as broken card detection is found.
2988 for (i = 0; i < host->num_slots; i++) {
2989 slot = host->slot[i];
2990 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
2991 return;
2993 if (mmc_gpio_get_cd(slot->mmc) < 0)
2994 break;
2996 if (i == host->num_slots)
2997 return;
2999 spin_lock_irqsave(&host->irq_lock, irqflags);
3000 temp = mci_readl(host, INTMASK);
3001 temp |= SDMMC_INT_CD;
3002 mci_writel(host, INTMASK, temp);
3003 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3006 int dw_mci_probe(struct dw_mci *host)
3008 const struct dw_mci_drv_data *drv_data = host->drv_data;
3009 int width, i, ret = 0;
3010 u32 fifo_size;
3011 int init_slots = 0;
3013 if (!host->pdata) {
3014 host->pdata = dw_mci_parse_dt(host);
3015 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3016 return -EPROBE_DEFER;
3017 } else if (IS_ERR(host->pdata)) {
3018 dev_err(host->dev, "platform data not available\n");
3019 return -EINVAL;
3023 host->biu_clk = devm_clk_get(host->dev, "biu");
3024 if (IS_ERR(host->biu_clk)) {
3025 dev_dbg(host->dev, "biu clock not available\n");
3026 } else {
3027 ret = clk_prepare_enable(host->biu_clk);
3028 if (ret) {
3029 dev_err(host->dev, "failed to enable biu clock\n");
3030 return ret;
3034 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3035 if (IS_ERR(host->ciu_clk)) {
3036 dev_dbg(host->dev, "ciu clock not available\n");
3037 host->bus_hz = host->pdata->bus_hz;
3038 } else {
3039 ret = clk_prepare_enable(host->ciu_clk);
3040 if (ret) {
3041 dev_err(host->dev, "failed to enable ciu clock\n");
3042 goto err_clk_biu;
3045 if (host->pdata->bus_hz) {
3046 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3047 if (ret)
3048 dev_warn(host->dev,
3049 "Unable to set bus rate to %uHz\n",
3050 host->pdata->bus_hz);
3052 host->bus_hz = clk_get_rate(host->ciu_clk);
3055 if (!host->bus_hz) {
3056 dev_err(host->dev,
3057 "Platform data must supply bus speed\n");
3058 ret = -ENODEV;
3059 goto err_clk_ciu;
3062 if (drv_data && drv_data->init) {
3063 ret = drv_data->init(host);
3064 if (ret) {
3065 dev_err(host->dev,
3066 "implementation specific init failed\n");
3067 goto err_clk_ciu;
3071 if (!IS_ERR(host->pdata->rstc)) {
3072 reset_control_assert(host->pdata->rstc);
3073 usleep_range(10, 50);
3074 reset_control_deassert(host->pdata->rstc);
3077 setup_timer(&host->cmd11_timer,
3078 dw_mci_cmd11_timer, (unsigned long)host);
3080 setup_timer(&host->dto_timer,
3081 dw_mci_dto_timer, (unsigned long)host);
3083 spin_lock_init(&host->lock);
3084 spin_lock_init(&host->irq_lock);
3085 INIT_LIST_HEAD(&host->queue);
3088 * Get the host data width - this assumes that HCON has been set with
3089 * the correct values.
3091 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3092 if (!i) {
3093 host->push_data = dw_mci_push_data16;
3094 host->pull_data = dw_mci_pull_data16;
3095 width = 16;
3096 host->data_shift = 1;
3097 } else if (i == 2) {
3098 host->push_data = dw_mci_push_data64;
3099 host->pull_data = dw_mci_pull_data64;
3100 width = 64;
3101 host->data_shift = 3;
3102 } else {
3103 /* Check for a reserved value, and warn if it is */
3104 WARN((i != 1),
3105 "HCON reports a reserved host data width!\n"
3106 "Defaulting to 32-bit access.\n");
3107 host->push_data = dw_mci_push_data32;
3108 host->pull_data = dw_mci_pull_data32;
3109 width = 32;
3110 host->data_shift = 2;
3113 /* Reset all blocks */
3114 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3115 ret = -ENODEV;
3116 goto err_clk_ciu;
3119 host->dma_ops = host->pdata->dma_ops;
3120 dw_mci_init_dma(host);
3122 /* Clear the interrupts for the host controller */
3123 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3124 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3126 /* Put in max timeout */
3127 mci_writel(host, TMOUT, 0xFFFFFFFF);
3130 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3131 * Tx Mark = fifo_size / 2 DMA Size = 8
3133 if (!host->pdata->fifo_depth) {
3135 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3136 * have been overwritten by the bootloader, just like we're
3137 * about to do, so if you know the value for your hardware, you
3138 * should put it in the platform data.
3140 fifo_size = mci_readl(host, FIFOTH);
3141 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3142 } else {
3143 fifo_size = host->pdata->fifo_depth;
3145 host->fifo_depth = fifo_size;
3146 host->fifoth_val =
3147 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3148 mci_writel(host, FIFOTH, host->fifoth_val);
3150 /* disable clock to CIU */
3151 mci_writel(host, CLKENA, 0);
3152 mci_writel(host, CLKSRC, 0);
3155 * In 2.40a spec, Data offset is changed.
3156 * Need to check the version-id and set data-offset for DATA register.
3158 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3159 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3161 if (host->verid < DW_MMC_240A)
3162 host->fifo_reg = host->regs + DATA_OFFSET;
3163 else
3164 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3166 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3167 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3168 host->irq_flags, "dw-mci", host);
3169 if (ret)
3170 goto err_dmaunmap;
3172 if (host->pdata->num_slots)
3173 host->num_slots = host->pdata->num_slots;
3174 else
3175 host->num_slots = 1;
3177 if (host->num_slots < 1 ||
3178 host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3179 dev_err(host->dev,
3180 "Platform data must supply correct num_slots.\n");
3181 ret = -ENODEV;
3182 goto err_clk_ciu;
3186 * Enable interrupts for command done, data over, data empty,
3187 * receive ready and error such as transmit, receive timeout, crc error
3189 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3190 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3191 DW_MCI_ERROR_FLAGS);
3192 /* Enable mci interrupt */
3193 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3195 dev_info(host->dev,
3196 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3197 host->irq, width, fifo_size);
3199 /* We need at least one slot to succeed */
3200 for (i = 0; i < host->num_slots; i++) {
3201 ret = dw_mci_init_slot(host, i);
3202 if (ret)
3203 dev_dbg(host->dev, "slot %d init failed\n", i);
3204 else
3205 init_slots++;
3208 if (init_slots) {
3209 dev_info(host->dev, "%d slots initialized\n", init_slots);
3210 } else {
3211 dev_dbg(host->dev,
3212 "attempted to initialize %d slots, but failed on all\n",
3213 host->num_slots);
3214 goto err_dmaunmap;
3217 /* Now that slots are all setup, we can enable card detect */
3218 dw_mci_enable_cd(host);
3220 return 0;
3222 err_dmaunmap:
3223 if (host->use_dma && host->dma_ops->exit)
3224 host->dma_ops->exit(host);
3226 if (!IS_ERR(host->pdata->rstc))
3227 reset_control_assert(host->pdata->rstc);
3229 err_clk_ciu:
3230 clk_disable_unprepare(host->ciu_clk);
3232 err_clk_biu:
3233 clk_disable_unprepare(host->biu_clk);
3235 return ret;
3237 EXPORT_SYMBOL(dw_mci_probe);
3239 void dw_mci_remove(struct dw_mci *host)
3241 int i;
3243 for (i = 0; i < host->num_slots; i++) {
3244 dev_dbg(host->dev, "remove slot %d\n", i);
3245 if (host->slot[i])
3246 dw_mci_cleanup_slot(host->slot[i], i);
3249 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3250 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3252 /* disable clock to CIU */
3253 mci_writel(host, CLKENA, 0);
3254 mci_writel(host, CLKSRC, 0);
3256 if (host->use_dma && host->dma_ops->exit)
3257 host->dma_ops->exit(host);
3259 if (!IS_ERR(host->pdata->rstc))
3260 reset_control_assert(host->pdata->rstc);
3262 clk_disable_unprepare(host->ciu_clk);
3263 clk_disable_unprepare(host->biu_clk);
3265 EXPORT_SYMBOL(dw_mci_remove);
3269 #ifdef CONFIG_PM_SLEEP
3271 * TODO: we should probably disable the clock to the card in the suspend path.
3273 int dw_mci_suspend(struct dw_mci *host)
3275 if (host->use_dma && host->dma_ops->exit)
3276 host->dma_ops->exit(host);
3278 return 0;
3280 EXPORT_SYMBOL(dw_mci_suspend);
3282 int dw_mci_resume(struct dw_mci *host)
3284 int i, ret;
3286 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3287 ret = -ENODEV;
3288 return ret;
3291 if (host->use_dma && host->dma_ops->init)
3292 host->dma_ops->init(host);
3295 * Restore the initial value at FIFOTH register
3296 * And Invalidate the prev_blksz with zero
3298 mci_writel(host, FIFOTH, host->fifoth_val);
3299 host->prev_blksz = 0;
3301 /* Put in max timeout */
3302 mci_writel(host, TMOUT, 0xFFFFFFFF);
3304 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3305 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3306 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3307 DW_MCI_ERROR_FLAGS);
3308 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3310 for (i = 0; i < host->num_slots; i++) {
3311 struct dw_mci_slot *slot = host->slot[i];
3313 if (!slot)
3314 continue;
3315 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3316 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3317 dw_mci_setup_bus(slot, true);
3321 /* Now that slots are all setup, we can enable card detect */
3322 dw_mci_enable_cd(host);
3324 return 0;
3326 EXPORT_SYMBOL(dw_mci_resume);
3327 #endif /* CONFIG_PM_SLEEP */
3329 static int __init dw_mci_init(void)
3331 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3332 return 0;
3335 static void __exit dw_mci_exit(void)
3339 module_init(dw_mci_init);
3340 module_exit(dw_mci_exit);
3342 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3343 MODULE_AUTHOR("NXP Semiconductor VietNam");
3344 MODULE_AUTHOR("Imagination Technologies Ltd");
3345 MODULE_LICENSE("GPL v2");