2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
64 #define DESC_RING_BUF_SZ PAGE_SIZE
66 struct idmac_desc_64addr
{
67 u32 des0
; /* Control Descriptor */
69 u32 des1
; /* Reserved */
71 u32 des2
; /*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76 u32 des3
; /* Reserved */
78 u32 des4
; /* Lower 32-bits of Buffer Address Pointer 1*/
79 u32 des5
; /* Upper 32-bits of Buffer Address Pointer 1*/
81 u32 des6
; /* Lower 32-bits of Next Descriptor Address */
82 u32 des7
; /* Upper 32-bits of Next Descriptor Address */
86 __le32 des0
; /* Control Descriptor */
87 #define IDMAC_DES0_DIC BIT(1)
88 #define IDMAC_DES0_LD BIT(2)
89 #define IDMAC_DES0_FD BIT(3)
90 #define IDMAC_DES0_CH BIT(4)
91 #define IDMAC_DES0_ER BIT(5)
92 #define IDMAC_DES0_CES BIT(30)
93 #define IDMAC_DES0_OWN BIT(31)
95 __le32 des1
; /* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99 __le32 des2
; /* buffer 1 physical address */
101 __le32 des3
; /* buffer 2 physical address */
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH 0x1000
107 static bool dw_mci_reset(struct dw_mci
*host
);
108 static bool dw_mci_ctrl_reset(struct dw_mci
*host
, u32 reset
);
109 static int dw_mci_card_busy(struct mmc_host
*mmc
);
110 static int dw_mci_get_cd(struct mmc_host
*mmc
);
112 #if defined(CONFIG_DEBUG_FS)
113 static int dw_mci_req_show(struct seq_file
*s
, void *v
)
115 struct dw_mci_slot
*slot
= s
->private;
116 struct mmc_request
*mrq
;
117 struct mmc_command
*cmd
;
118 struct mmc_command
*stop
;
119 struct mmc_data
*data
;
121 /* Make sure we get a consistent snapshot */
122 spin_lock_bh(&slot
->host
->lock
);
132 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
133 cmd
->opcode
, cmd
->arg
, cmd
->flags
,
134 cmd
->resp
[0], cmd
->resp
[1], cmd
->resp
[2],
135 cmd
->resp
[2], cmd
->error
);
137 seq_printf(s
, "DATA %u / %u * %u flg %x err %d\n",
138 data
->bytes_xfered
, data
->blocks
,
139 data
->blksz
, data
->flags
, data
->error
);
142 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
143 stop
->opcode
, stop
->arg
, stop
->flags
,
144 stop
->resp
[0], stop
->resp
[1], stop
->resp
[2],
145 stop
->resp
[2], stop
->error
);
148 spin_unlock_bh(&slot
->host
->lock
);
153 static int dw_mci_req_open(struct inode
*inode
, struct file
*file
)
155 return single_open(file
, dw_mci_req_show
, inode
->i_private
);
158 static const struct file_operations dw_mci_req_fops
= {
159 .owner
= THIS_MODULE
,
160 .open
= dw_mci_req_open
,
163 .release
= single_release
,
166 static int dw_mci_regs_show(struct seq_file
*s
, void *v
)
168 seq_printf(s
, "STATUS:\t0x%08x\n", SDMMC_STATUS
);
169 seq_printf(s
, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS
);
170 seq_printf(s
, "CMD:\t0x%08x\n", SDMMC_CMD
);
171 seq_printf(s
, "CTRL:\t0x%08x\n", SDMMC_CTRL
);
172 seq_printf(s
, "INTMASK:\t0x%08x\n", SDMMC_INTMASK
);
173 seq_printf(s
, "CLKENA:\t0x%08x\n", SDMMC_CLKENA
);
178 static int dw_mci_regs_open(struct inode
*inode
, struct file
*file
)
180 return single_open(file
, dw_mci_regs_show
, inode
->i_private
);
183 static const struct file_operations dw_mci_regs_fops
= {
184 .owner
= THIS_MODULE
,
185 .open
= dw_mci_regs_open
,
188 .release
= single_release
,
191 static void dw_mci_init_debugfs(struct dw_mci_slot
*slot
)
193 struct mmc_host
*mmc
= slot
->mmc
;
194 struct dw_mci
*host
= slot
->host
;
198 root
= mmc
->debugfs_root
;
202 node
= debugfs_create_file("regs", S_IRUSR
, root
, host
,
207 node
= debugfs_create_file("req", S_IRUSR
, root
, slot
,
212 node
= debugfs_create_u32("state", S_IRUSR
, root
, (u32
*)&host
->state
);
216 node
= debugfs_create_x32("pending_events", S_IRUSR
, root
,
217 (u32
*)&host
->pending_events
);
221 node
= debugfs_create_x32("completed_events", S_IRUSR
, root
,
222 (u32
*)&host
->completed_events
);
229 dev_err(&mmc
->class_dev
, "failed to initialize debugfs for slot\n");
231 #endif /* defined(CONFIG_DEBUG_FS) */
233 static void mci_send_cmd(struct dw_mci_slot
*slot
, u32 cmd
, u32 arg
);
235 static u32
dw_mci_prepare_command(struct mmc_host
*mmc
, struct mmc_command
*cmd
)
237 struct mmc_data
*data
;
238 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
239 struct dw_mci
*host
= slot
->host
;
242 cmd
->error
= -EINPROGRESS
;
245 if (cmd
->opcode
== MMC_STOP_TRANSMISSION
||
246 cmd
->opcode
== MMC_GO_IDLE_STATE
||
247 cmd
->opcode
== MMC_GO_INACTIVE_STATE
||
248 (cmd
->opcode
== SD_IO_RW_DIRECT
&&
249 ((cmd
->arg
>> 9) & 0x1FFFF) == SDIO_CCCR_ABORT
))
250 cmdr
|= SDMMC_CMD_STOP
;
251 else if (cmd
->opcode
!= MMC_SEND_STATUS
&& cmd
->data
)
252 cmdr
|= SDMMC_CMD_PRV_DAT_WAIT
;
254 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
257 /* Special bit makes CMD11 not die */
258 cmdr
|= SDMMC_CMD_VOLT_SWITCH
;
260 /* Change state to continue to handle CMD11 weirdness */
261 WARN_ON(slot
->host
->state
!= STATE_SENDING_CMD
);
262 slot
->host
->state
= STATE_SENDING_CMD11
;
265 * We need to disable low power mode (automatic clock stop)
266 * while doing voltage switch so we don't confuse the card,
267 * since stopping the clock is a specific part of the UHS
268 * voltage change dance.
270 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
271 * unconditionally turned back on in dw_mci_setup_bus() if it's
272 * ever called with a non-zero clock. That shouldn't happen
273 * until the voltage change is all done.
275 clk_en_a
= mci_readl(host
, CLKENA
);
276 clk_en_a
&= ~(SDMMC_CLKEN_LOW_PWR
<< slot
->id
);
277 mci_writel(host
, CLKENA
, clk_en_a
);
278 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
279 SDMMC_CMD_PRV_DAT_WAIT
, 0);
282 if (cmd
->flags
& MMC_RSP_PRESENT
) {
283 /* We expect a response, so set this bit */
284 cmdr
|= SDMMC_CMD_RESP_EXP
;
285 if (cmd
->flags
& MMC_RSP_136
)
286 cmdr
|= SDMMC_CMD_RESP_LONG
;
289 if (cmd
->flags
& MMC_RSP_CRC
)
290 cmdr
|= SDMMC_CMD_RESP_CRC
;
294 cmdr
|= SDMMC_CMD_DAT_EXP
;
295 if (data
->flags
& MMC_DATA_WRITE
)
296 cmdr
|= SDMMC_CMD_DAT_WR
;
299 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD
, &slot
->flags
))
300 cmdr
|= SDMMC_CMD_USE_HOLD_REG
;
305 static u32
dw_mci_prep_stop_abort(struct dw_mci
*host
, struct mmc_command
*cmd
)
307 struct mmc_command
*stop
;
313 stop
= &host
->stop_abort
;
315 memset(stop
, 0, sizeof(struct mmc_command
));
317 if (cmdr
== MMC_READ_SINGLE_BLOCK
||
318 cmdr
== MMC_READ_MULTIPLE_BLOCK
||
319 cmdr
== MMC_WRITE_BLOCK
||
320 cmdr
== MMC_WRITE_MULTIPLE_BLOCK
||
321 cmdr
== MMC_SEND_TUNING_BLOCK
||
322 cmdr
== MMC_SEND_TUNING_BLOCK_HS200
) {
323 stop
->opcode
= MMC_STOP_TRANSMISSION
;
325 stop
->flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
326 } else if (cmdr
== SD_IO_RW_EXTENDED
) {
327 stop
->opcode
= SD_IO_RW_DIRECT
;
328 stop
->arg
|= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT
<< 9) |
329 ((cmd
->arg
>> 28) & 0x7);
330 stop
->flags
= MMC_RSP_SPI_R5
| MMC_RSP_R5
| MMC_CMD_AC
;
335 cmdr
= stop
->opcode
| SDMMC_CMD_STOP
|
336 SDMMC_CMD_RESP_CRC
| SDMMC_CMD_RESP_EXP
;
341 static void dw_mci_wait_while_busy(struct dw_mci
*host
, u32 cmd_flags
)
343 unsigned long timeout
= jiffies
+ msecs_to_jiffies(500);
346 * Databook says that before issuing a new data transfer command
347 * we need to check to see if the card is busy. Data transfer commands
348 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
350 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
353 if ((cmd_flags
& SDMMC_CMD_PRV_DAT_WAIT
) &&
354 !(cmd_flags
& SDMMC_CMD_VOLT_SWITCH
)) {
355 while (mci_readl(host
, STATUS
) & SDMMC_STATUS_BUSY
) {
356 if (time_after(jiffies
, timeout
)) {
357 /* Command will fail; we'll pass error then */
358 dev_err(host
->dev
, "Busy; trying anyway\n");
366 static void dw_mci_start_command(struct dw_mci
*host
,
367 struct mmc_command
*cmd
, u32 cmd_flags
)
371 "start command: ARGR=0x%08x CMDR=0x%08x\n",
372 cmd
->arg
, cmd_flags
);
374 mci_writel(host
, CMDARG
, cmd
->arg
);
375 wmb(); /* drain writebuffer */
376 dw_mci_wait_while_busy(host
, cmd_flags
);
378 mci_writel(host
, CMD
, cmd_flags
| SDMMC_CMD_START
);
381 static inline void send_stop_abort(struct dw_mci
*host
, struct mmc_data
*data
)
383 struct mmc_command
*stop
= data
->stop
? data
->stop
: &host
->stop_abort
;
385 dw_mci_start_command(host
, stop
, host
->stop_cmdr
);
388 /* DMA interface functions */
389 static void dw_mci_stop_dma(struct dw_mci
*host
)
391 if (host
->using_dma
) {
392 host
->dma_ops
->stop(host
);
393 host
->dma_ops
->cleanup(host
);
396 /* Data transfer was stopped by the interrupt handler */
397 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
400 static int dw_mci_get_dma_dir(struct mmc_data
*data
)
402 if (data
->flags
& MMC_DATA_WRITE
)
403 return DMA_TO_DEVICE
;
405 return DMA_FROM_DEVICE
;
408 static void dw_mci_dma_cleanup(struct dw_mci
*host
)
410 struct mmc_data
*data
= host
->data
;
413 if (!data
->host_cookie
)
414 dma_unmap_sg(host
->dev
,
417 dw_mci_get_dma_dir(data
));
420 static void dw_mci_idmac_reset(struct dw_mci
*host
)
422 u32 bmod
= mci_readl(host
, BMOD
);
423 /* Software reset of DMA */
424 bmod
|= SDMMC_IDMAC_SWRESET
;
425 mci_writel(host
, BMOD
, bmod
);
428 static void dw_mci_idmac_stop_dma(struct dw_mci
*host
)
432 /* Disable and reset the IDMAC interface */
433 temp
= mci_readl(host
, CTRL
);
434 temp
&= ~SDMMC_CTRL_USE_IDMAC
;
435 temp
|= SDMMC_CTRL_DMA_RESET
;
436 mci_writel(host
, CTRL
, temp
);
438 /* Stop the IDMAC running */
439 temp
= mci_readl(host
, BMOD
);
440 temp
&= ~(SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
);
441 temp
|= SDMMC_IDMAC_SWRESET
;
442 mci_writel(host
, BMOD
, temp
);
445 static void dw_mci_dmac_complete_dma(void *arg
)
447 struct dw_mci
*host
= arg
;
448 struct mmc_data
*data
= host
->data
;
450 dev_vdbg(host
->dev
, "DMA complete\n");
452 if ((host
->use_dma
== TRANS_MODE_EDMAC
) &&
453 data
&& (data
->flags
& MMC_DATA_READ
))
454 /* Invalidate cache after read */
455 dma_sync_sg_for_cpu(mmc_dev(host
->cur_slot
->mmc
),
460 host
->dma_ops
->cleanup(host
);
463 * If the card was removed, data will be NULL. No point in trying to
464 * send the stop command or waiting for NBUSY in this case.
467 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
468 tasklet_schedule(&host
->tasklet
);
472 static int dw_mci_idmac_init(struct dw_mci
*host
)
476 if (host
->dma_64bit_address
== 1) {
477 struct idmac_desc_64addr
*p
;
478 /* Number of descriptors in the ring buffer */
480 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc_64addr
);
482 /* Forward link the descriptor list */
483 for (i
= 0, p
= host
->sg_cpu
; i
< host
->ring_size
- 1;
485 p
->des6
= (host
->sg_dma
+
486 (sizeof(struct idmac_desc_64addr
) *
487 (i
+ 1))) & 0xffffffff;
489 p
->des7
= (u64
)(host
->sg_dma
+
490 (sizeof(struct idmac_desc_64addr
) *
492 /* Initialize reserved and buffer size fields to "0" */
498 /* Set the last descriptor as the end-of-ring descriptor */
499 p
->des6
= host
->sg_dma
& 0xffffffff;
500 p
->des7
= (u64
)host
->sg_dma
>> 32;
501 p
->des0
= IDMAC_DES0_ER
;
504 struct idmac_desc
*p
;
505 /* Number of descriptors in the ring buffer */
507 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc
);
509 /* Forward link the descriptor list */
510 for (i
= 0, p
= host
->sg_cpu
;
511 i
< host
->ring_size
- 1;
513 p
->des3
= cpu_to_le32(host
->sg_dma
+
514 (sizeof(struct idmac_desc
) * (i
+ 1)));
518 /* Set the last descriptor as the end-of-ring descriptor */
519 p
->des3
= cpu_to_le32(host
->sg_dma
);
520 p
->des0
= cpu_to_le32(IDMAC_DES0_ER
);
523 dw_mci_idmac_reset(host
);
525 if (host
->dma_64bit_address
== 1) {
526 /* Mask out interrupts - get Tx & Rx complete only */
527 mci_writel(host
, IDSTS64
, IDMAC_INT_CLR
);
528 mci_writel(host
, IDINTEN64
, SDMMC_IDMAC_INT_NI
|
529 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
531 /* Set the descriptor base address */
532 mci_writel(host
, DBADDRL
, host
->sg_dma
& 0xffffffff);
533 mci_writel(host
, DBADDRU
, (u64
)host
->sg_dma
>> 32);
536 /* Mask out interrupts - get Tx & Rx complete only */
537 mci_writel(host
, IDSTS
, IDMAC_INT_CLR
);
538 mci_writel(host
, IDINTEN
, SDMMC_IDMAC_INT_NI
|
539 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
541 /* Set the descriptor base address */
542 mci_writel(host
, DBADDR
, host
->sg_dma
);
548 static inline int dw_mci_prepare_desc64(struct dw_mci
*host
,
549 struct mmc_data
*data
,
552 unsigned int desc_len
;
553 struct idmac_desc_64addr
*desc_first
, *desc_last
, *desc
;
554 unsigned long timeout
;
557 desc_first
= desc_last
= desc
= host
->sg_cpu
;
559 for (i
= 0; i
< sg_len
; i
++) {
560 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
562 u64 mem_addr
= sg_dma_address(&data
->sg
[i
]);
564 for ( ; length
; desc
++) {
565 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
566 length
: DW_MCI_DESC_DATA_LENGTH
;
571 * Wait for the former clear OWN bit operation
572 * of IDMAC to make sure that this descriptor
573 * isn't still owned by IDMAC as IDMAC's write
574 * ops and CPU's read ops are asynchronous.
576 timeout
= jiffies
+ msecs_to_jiffies(100);
577 while (readl(&desc
->des0
) & IDMAC_DES0_OWN
) {
578 if (time_after(jiffies
, timeout
))
584 * Set the OWN bit and disable interrupts
585 * for this descriptor
587 desc
->des0
= IDMAC_DES0_OWN
| IDMAC_DES0_DIC
|
591 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc
, desc_len
);
593 /* Physical address to DMA to/from */
594 desc
->des4
= mem_addr
& 0xffffffff;
595 desc
->des5
= mem_addr
>> 32;
597 /* Update physical address for the next desc */
598 mem_addr
+= desc_len
;
600 /* Save pointer to the last descriptor */
605 /* Set first descriptor */
606 desc_first
->des0
|= IDMAC_DES0_FD
;
608 /* Set last descriptor */
609 desc_last
->des0
&= ~(IDMAC_DES0_CH
| IDMAC_DES0_DIC
);
610 desc_last
->des0
|= IDMAC_DES0_LD
;
614 /* restore the descriptor chain as it's polluted */
615 dev_dbg(host
->dev
, "desciptor is still owned by IDMAC.\n");
616 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
617 dw_mci_idmac_init(host
);
622 static inline int dw_mci_prepare_desc32(struct dw_mci
*host
,
623 struct mmc_data
*data
,
626 unsigned int desc_len
;
627 struct idmac_desc
*desc_first
, *desc_last
, *desc
;
628 unsigned long timeout
;
631 desc_first
= desc_last
= desc
= host
->sg_cpu
;
633 for (i
= 0; i
< sg_len
; i
++) {
634 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
636 u32 mem_addr
= sg_dma_address(&data
->sg
[i
]);
638 for ( ; length
; desc
++) {
639 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
640 length
: DW_MCI_DESC_DATA_LENGTH
;
645 * Wait for the former clear OWN bit operation
646 * of IDMAC to make sure that this descriptor
647 * isn't still owned by IDMAC as IDMAC's write
648 * ops and CPU's read ops are asynchronous.
650 timeout
= jiffies
+ msecs_to_jiffies(100);
651 while (readl(&desc
->des0
) &
652 cpu_to_le32(IDMAC_DES0_OWN
)) {
653 if (time_after(jiffies
, timeout
))
659 * Set the OWN bit and disable interrupts
660 * for this descriptor
662 desc
->des0
= cpu_to_le32(IDMAC_DES0_OWN
|
667 IDMAC_SET_BUFFER1_SIZE(desc
, desc_len
);
669 /* Physical address to DMA to/from */
670 desc
->des2
= cpu_to_le32(mem_addr
);
672 /* Update physical address for the next desc */
673 mem_addr
+= desc_len
;
675 /* Save pointer to the last descriptor */
680 /* Set first descriptor */
681 desc_first
->des0
|= cpu_to_le32(IDMAC_DES0_FD
);
683 /* Set last descriptor */
684 desc_last
->des0
&= cpu_to_le32(~(IDMAC_DES0_CH
|
686 desc_last
->des0
|= cpu_to_le32(IDMAC_DES0_LD
);
690 /* restore the descriptor chain as it's polluted */
691 dev_dbg(host
->dev
, "desciptor is still owned by IDMAC.\n");
692 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
693 dw_mci_idmac_init(host
);
697 static int dw_mci_idmac_start_dma(struct dw_mci
*host
, unsigned int sg_len
)
702 if (host
->dma_64bit_address
== 1)
703 ret
= dw_mci_prepare_desc64(host
, host
->data
, sg_len
);
705 ret
= dw_mci_prepare_desc32(host
, host
->data
, sg_len
);
710 /* drain writebuffer */
713 /* Make sure to reset DMA in case we did PIO before this */
714 dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
);
715 dw_mci_idmac_reset(host
);
717 /* Select IDMAC interface */
718 temp
= mci_readl(host
, CTRL
);
719 temp
|= SDMMC_CTRL_USE_IDMAC
;
720 mci_writel(host
, CTRL
, temp
);
722 /* drain writebuffer */
725 /* Enable the IDMAC */
726 temp
= mci_readl(host
, BMOD
);
727 temp
|= SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
;
728 mci_writel(host
, BMOD
, temp
);
730 /* Start it running */
731 mci_writel(host
, PLDMND
, 1);
737 static const struct dw_mci_dma_ops dw_mci_idmac_ops
= {
738 .init
= dw_mci_idmac_init
,
739 .start
= dw_mci_idmac_start_dma
,
740 .stop
= dw_mci_idmac_stop_dma
,
741 .complete
= dw_mci_dmac_complete_dma
,
742 .cleanup
= dw_mci_dma_cleanup
,
745 static void dw_mci_edmac_stop_dma(struct dw_mci
*host
)
747 dmaengine_terminate_async(host
->dms
->ch
);
750 static int dw_mci_edmac_start_dma(struct dw_mci
*host
,
753 struct dma_slave_config cfg
;
754 struct dma_async_tx_descriptor
*desc
= NULL
;
755 struct scatterlist
*sgl
= host
->data
->sg
;
756 const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
757 u32 sg_elems
= host
->data
->sg_len
;
759 u32 fifo_offset
= host
->fifo_reg
- host
->regs
;
762 /* Set external dma config: burst size, burst width */
763 cfg
.dst_addr
= host
->phy_regs
+ fifo_offset
;
764 cfg
.src_addr
= cfg
.dst_addr
;
765 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
766 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
768 /* Match burst msize with external dma config */
769 fifoth_val
= mci_readl(host
, FIFOTH
);
770 cfg
.dst_maxburst
= mszs
[(fifoth_val
>> 28) & 0x7];
771 cfg
.src_maxburst
= cfg
.dst_maxburst
;
773 if (host
->data
->flags
& MMC_DATA_WRITE
)
774 cfg
.direction
= DMA_MEM_TO_DEV
;
776 cfg
.direction
= DMA_DEV_TO_MEM
;
778 ret
= dmaengine_slave_config(host
->dms
->ch
, &cfg
);
780 dev_err(host
->dev
, "Failed to config edmac.\n");
784 desc
= dmaengine_prep_slave_sg(host
->dms
->ch
, sgl
,
785 sg_len
, cfg
.direction
,
786 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
788 dev_err(host
->dev
, "Can't prepare slave sg.\n");
792 /* Set dw_mci_dmac_complete_dma as callback */
793 desc
->callback
= dw_mci_dmac_complete_dma
;
794 desc
->callback_param
= (void *)host
;
795 dmaengine_submit(desc
);
797 /* Flush cache before write */
798 if (host
->data
->flags
& MMC_DATA_WRITE
)
799 dma_sync_sg_for_device(mmc_dev(host
->cur_slot
->mmc
), sgl
,
800 sg_elems
, DMA_TO_DEVICE
);
802 dma_async_issue_pending(host
->dms
->ch
);
807 static int dw_mci_edmac_init(struct dw_mci
*host
)
809 /* Request external dma channel */
810 host
->dms
= kzalloc(sizeof(struct dw_mci_dma_slave
), GFP_KERNEL
);
814 host
->dms
->ch
= dma_request_slave_channel(host
->dev
, "rx-tx");
815 if (!host
->dms
->ch
) {
816 dev_err(host
->dev
, "Failed to get external DMA channel.\n");
825 static void dw_mci_edmac_exit(struct dw_mci
*host
)
829 dma_release_channel(host
->dms
->ch
);
830 host
->dms
->ch
= NULL
;
837 static const struct dw_mci_dma_ops dw_mci_edmac_ops
= {
838 .init
= dw_mci_edmac_init
,
839 .exit
= dw_mci_edmac_exit
,
840 .start
= dw_mci_edmac_start_dma
,
841 .stop
= dw_mci_edmac_stop_dma
,
842 .complete
= dw_mci_dmac_complete_dma
,
843 .cleanup
= dw_mci_dma_cleanup
,
846 static int dw_mci_pre_dma_transfer(struct dw_mci
*host
,
847 struct mmc_data
*data
,
850 struct scatterlist
*sg
;
851 unsigned int i
, sg_len
;
853 if (!next
&& data
->host_cookie
)
854 return data
->host_cookie
;
857 * We don't do DMA on "complex" transfers, i.e. with
858 * non-word-aligned buffers or lengths. Also, we don't bother
859 * with all the DMA setup overhead for short transfers.
861 if (data
->blocks
* data
->blksz
< DW_MCI_DMA_THRESHOLD
)
867 for_each_sg(data
->sg
, sg
, data
->sg_len
, i
) {
868 if (sg
->offset
& 3 || sg
->length
& 3)
872 sg_len
= dma_map_sg(host
->dev
,
875 dw_mci_get_dma_dir(data
));
880 data
->host_cookie
= sg_len
;
885 static void dw_mci_pre_req(struct mmc_host
*mmc
,
886 struct mmc_request
*mrq
,
889 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
890 struct mmc_data
*data
= mrq
->data
;
892 if (!slot
->host
->use_dma
|| !data
)
895 if (data
->host_cookie
) {
896 data
->host_cookie
= 0;
900 if (dw_mci_pre_dma_transfer(slot
->host
, mrq
->data
, 1) < 0)
901 data
->host_cookie
= 0;
904 static void dw_mci_post_req(struct mmc_host
*mmc
,
905 struct mmc_request
*mrq
,
908 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
909 struct mmc_data
*data
= mrq
->data
;
911 if (!slot
->host
->use_dma
|| !data
)
914 if (data
->host_cookie
)
915 dma_unmap_sg(slot
->host
->dev
,
918 dw_mci_get_dma_dir(data
));
919 data
->host_cookie
= 0;
922 static void dw_mci_adjust_fifoth(struct dw_mci
*host
, struct mmc_data
*data
)
924 unsigned int blksz
= data
->blksz
;
925 const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
926 u32 fifo_width
= 1 << host
->data_shift
;
927 u32 blksz_depth
= blksz
/ fifo_width
, fifoth_val
;
928 u32 msize
= 0, rx_wmark
= 1, tx_wmark
, tx_wmark_invers
;
929 int idx
= ARRAY_SIZE(mszs
) - 1;
931 /* pio should ship this scenario */
935 tx_wmark
= (host
->fifo_depth
) / 2;
936 tx_wmark_invers
= host
->fifo_depth
- tx_wmark
;
940 * if blksz is not a multiple of the FIFO width
942 if (blksz
% fifo_width
)
946 if (!((blksz_depth
% mszs
[idx
]) ||
947 (tx_wmark_invers
% mszs
[idx
]))) {
949 rx_wmark
= mszs
[idx
] - 1;
954 * If idx is '0', it won't be tried
955 * Thus, initial values are uesed
958 fifoth_val
= SDMMC_SET_FIFOTH(msize
, rx_wmark
, tx_wmark
);
959 mci_writel(host
, FIFOTH
, fifoth_val
);
962 static void dw_mci_ctrl_thld(struct dw_mci
*host
, struct mmc_data
*data
)
964 unsigned int blksz
= data
->blksz
;
965 u32 blksz_depth
, fifo_depth
;
970 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
971 * in the FIFO region, so we really shouldn't access it).
973 if (host
->verid
< DW_MMC_240A
||
974 (host
->verid
< DW_MMC_280A
&& data
->flags
& MMC_DATA_WRITE
))
978 * Card write Threshold is introduced since 2.80a
979 * It's used when HS400 mode is enabled.
981 if (data
->flags
& MMC_DATA_WRITE
&&
982 !(host
->timing
!= MMC_TIMING_MMC_HS400
))
985 if (data
->flags
& MMC_DATA_WRITE
)
986 enable
= SDMMC_CARD_WR_THR_EN
;
988 enable
= SDMMC_CARD_RD_THR_EN
;
990 if (host
->timing
!= MMC_TIMING_MMC_HS200
&&
991 host
->timing
!= MMC_TIMING_UHS_SDR104
)
994 blksz_depth
= blksz
/ (1 << host
->data_shift
);
995 fifo_depth
= host
->fifo_depth
;
997 if (blksz_depth
> fifo_depth
)
1001 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1002 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1003 * Currently just choose blksz.
1006 mci_writel(host
, CDTHRCTL
, SDMMC_SET_THLD(thld_size
, enable
));
1010 mci_writel(host
, CDTHRCTL
, 0);
1013 static int dw_mci_submit_data_dma(struct dw_mci
*host
, struct mmc_data
*data
)
1015 unsigned long irqflags
;
1019 host
->using_dma
= 0;
1021 /* If we don't have a channel, we can't do DMA */
1025 sg_len
= dw_mci_pre_dma_transfer(host
, data
, 0);
1027 host
->dma_ops
->stop(host
);
1031 host
->using_dma
= 1;
1033 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1035 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1036 (unsigned long)host
->sg_cpu
,
1037 (unsigned long)host
->sg_dma
,
1041 * Decide the MSIZE and RX/TX Watermark.
1042 * If current block size is same with previous size,
1043 * no need to update fifoth.
1045 if (host
->prev_blksz
!= data
->blksz
)
1046 dw_mci_adjust_fifoth(host
, data
);
1048 /* Enable the DMA interface */
1049 temp
= mci_readl(host
, CTRL
);
1050 temp
|= SDMMC_CTRL_DMA_ENABLE
;
1051 mci_writel(host
, CTRL
, temp
);
1053 /* Disable RX/TX IRQs, let DMA handle it */
1054 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1055 temp
= mci_readl(host
, INTMASK
);
1056 temp
&= ~(SDMMC_INT_RXDR
| SDMMC_INT_TXDR
);
1057 mci_writel(host
, INTMASK
, temp
);
1058 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1060 if (host
->dma_ops
->start(host
, sg_len
)) {
1061 /* We can't do DMA, try PIO for this one */
1063 "%s: fall back to PIO mode for current transfer\n",
1071 static void dw_mci_submit_data(struct dw_mci
*host
, struct mmc_data
*data
)
1073 unsigned long irqflags
;
1074 int flags
= SG_MITER_ATOMIC
;
1077 data
->error
= -EINPROGRESS
;
1079 WARN_ON(host
->data
);
1083 if (data
->flags
& MMC_DATA_READ
)
1084 host
->dir_status
= DW_MCI_RECV_STATUS
;
1086 host
->dir_status
= DW_MCI_SEND_STATUS
;
1088 dw_mci_ctrl_thld(host
, data
);
1090 if (dw_mci_submit_data_dma(host
, data
)) {
1091 if (host
->data
->flags
& MMC_DATA_READ
)
1092 flags
|= SG_MITER_TO_SG
;
1094 flags
|= SG_MITER_FROM_SG
;
1096 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
1097 host
->sg
= data
->sg
;
1098 host
->part_buf_start
= 0;
1099 host
->part_buf_count
= 0;
1101 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
| SDMMC_INT_RXDR
);
1103 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1104 temp
= mci_readl(host
, INTMASK
);
1105 temp
|= SDMMC_INT_TXDR
| SDMMC_INT_RXDR
;
1106 mci_writel(host
, INTMASK
, temp
);
1107 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1109 temp
= mci_readl(host
, CTRL
);
1110 temp
&= ~SDMMC_CTRL_DMA_ENABLE
;
1111 mci_writel(host
, CTRL
, temp
);
1114 * Use the initial fifoth_val for PIO mode.
1115 * If next issued data may be transfered by DMA mode,
1116 * prev_blksz should be invalidated.
1118 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
1119 host
->prev_blksz
= 0;
1122 * Keep the current block size.
1123 * It will be used to decide whether to update
1124 * fifoth register next time.
1126 host
->prev_blksz
= data
->blksz
;
1130 static void mci_send_cmd(struct dw_mci_slot
*slot
, u32 cmd
, u32 arg
)
1132 struct dw_mci
*host
= slot
->host
;
1133 unsigned long timeout
= jiffies
+ msecs_to_jiffies(500);
1134 unsigned int cmd_status
= 0;
1136 mci_writel(host
, CMDARG
, arg
);
1137 wmb(); /* drain writebuffer */
1138 dw_mci_wait_while_busy(host
, cmd
);
1139 mci_writel(host
, CMD
, SDMMC_CMD_START
| cmd
);
1141 while (time_before(jiffies
, timeout
)) {
1142 cmd_status
= mci_readl(host
, CMD
);
1143 if (!(cmd_status
& SDMMC_CMD_START
))
1146 dev_err(&slot
->mmc
->class_dev
,
1147 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1148 cmd
, arg
, cmd_status
);
1151 static void dw_mci_setup_bus(struct dw_mci_slot
*slot
, bool force_clkinit
)
1153 struct dw_mci
*host
= slot
->host
;
1154 unsigned int clock
= slot
->clock
;
1157 u32 sdmmc_cmd_bits
= SDMMC_CMD_UPD_CLK
| SDMMC_CMD_PRV_DAT_WAIT
;
1159 /* We must continue to set bit 28 in CMD until the change is complete */
1160 if (host
->state
== STATE_WAITING_CMD11_DONE
)
1161 sdmmc_cmd_bits
|= SDMMC_CMD_VOLT_SWITCH
;
1164 mci_writel(host
, CLKENA
, 0);
1165 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1166 } else if (clock
!= host
->current_speed
|| force_clkinit
) {
1167 div
= host
->bus_hz
/ clock
;
1168 if (host
->bus_hz
% clock
&& host
->bus_hz
> clock
)
1170 * move the + 1 after the divide to prevent
1171 * over-clocking the card.
1175 div
= (host
->bus_hz
!= clock
) ? DIV_ROUND_UP(div
, 2) : 0;
1177 if (clock
!= slot
->__clk_old
|| force_clkinit
)
1178 dev_info(&slot
->mmc
->class_dev
,
1179 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1180 slot
->id
, host
->bus_hz
, clock
,
1181 div
? ((host
->bus_hz
/ div
) >> 1) :
1185 mci_writel(host
, CLKENA
, 0);
1186 mci_writel(host
, CLKSRC
, 0);
1189 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1191 /* set clock to desired speed */
1192 mci_writel(host
, CLKDIV
, div
);
1195 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1197 /* enable clock; only low power if no SDIO */
1198 clk_en_a
= SDMMC_CLKEN_ENABLE
<< slot
->id
;
1199 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
))
1200 clk_en_a
|= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1201 mci_writel(host
, CLKENA
, clk_en_a
);
1204 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1206 /* keep the last clock value that was requested from core */
1207 slot
->__clk_old
= clock
;
1210 host
->current_speed
= clock
;
1212 /* Set the current slot bus width */
1213 mci_writel(host
, CTYPE
, (slot
->ctype
<< slot
->id
));
1216 static void __dw_mci_start_request(struct dw_mci
*host
,
1217 struct dw_mci_slot
*slot
,
1218 struct mmc_command
*cmd
)
1220 struct mmc_request
*mrq
;
1221 struct mmc_data
*data
;
1226 host
->cur_slot
= slot
;
1229 host
->pending_events
= 0;
1230 host
->completed_events
= 0;
1231 host
->cmd_status
= 0;
1232 host
->data_status
= 0;
1233 host
->dir_status
= 0;
1237 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
1238 mci_writel(host
, BYTCNT
, data
->blksz
*data
->blocks
);
1239 mci_writel(host
, BLKSIZ
, data
->blksz
);
1242 cmdflags
= dw_mci_prepare_command(slot
->mmc
, cmd
);
1244 /* this is the first command, send the initialization clock */
1245 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
))
1246 cmdflags
|= SDMMC_CMD_INIT
;
1249 dw_mci_submit_data(host
, data
);
1250 wmb(); /* drain writebuffer */
1253 dw_mci_start_command(host
, cmd
, cmdflags
);
1255 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
1256 unsigned long irqflags
;
1259 * Databook says to fail after 2ms w/ no response, but evidence
1260 * shows that sometimes the cmd11 interrupt takes over 130ms.
1261 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1262 * is just about to roll over.
1264 * We do this whole thing under spinlock and only if the
1265 * command hasn't already completed (indicating the the irq
1266 * already ran so we don't want the timeout).
1268 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1269 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
1270 mod_timer(&host
->cmd11_timer
,
1271 jiffies
+ msecs_to_jiffies(500) + 1);
1272 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1276 host
->stop_cmdr
= dw_mci_prepare_command(slot
->mmc
, mrq
->stop
);
1278 host
->stop_cmdr
= dw_mci_prep_stop_abort(host
, cmd
);
1281 static void dw_mci_start_request(struct dw_mci
*host
,
1282 struct dw_mci_slot
*slot
)
1284 struct mmc_request
*mrq
= slot
->mrq
;
1285 struct mmc_command
*cmd
;
1287 cmd
= mrq
->sbc
? mrq
->sbc
: mrq
->cmd
;
1288 __dw_mci_start_request(host
, slot
, cmd
);
1291 /* must be called with host->lock held */
1292 static void dw_mci_queue_request(struct dw_mci
*host
, struct dw_mci_slot
*slot
,
1293 struct mmc_request
*mrq
)
1295 dev_vdbg(&slot
->mmc
->class_dev
, "queue request: state=%d\n",
1300 if (host
->state
== STATE_WAITING_CMD11_DONE
) {
1301 dev_warn(&slot
->mmc
->class_dev
,
1302 "Voltage change didn't complete\n");
1304 * this case isn't expected to happen, so we can
1305 * either crash here or just try to continue on
1306 * in the closest possible state
1308 host
->state
= STATE_IDLE
;
1311 if (host
->state
== STATE_IDLE
) {
1312 host
->state
= STATE_SENDING_CMD
;
1313 dw_mci_start_request(host
, slot
);
1315 list_add_tail(&slot
->queue_node
, &host
->queue
);
1319 static void dw_mci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1321 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1322 struct dw_mci
*host
= slot
->host
;
1327 * The check for card presence and queueing of the request must be
1328 * atomic, otherwise the card could be removed in between and the
1329 * request wouldn't fail until another card was inserted.
1332 if (!dw_mci_get_cd(mmc
)) {
1333 mrq
->cmd
->error
= -ENOMEDIUM
;
1334 mmc_request_done(mmc
, mrq
);
1338 spin_lock_bh(&host
->lock
);
1340 dw_mci_queue_request(host
, slot
, mrq
);
1342 spin_unlock_bh(&host
->lock
);
1345 static void dw_mci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1347 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1348 const struct dw_mci_drv_data
*drv_data
= slot
->host
->drv_data
;
1352 switch (ios
->bus_width
) {
1353 case MMC_BUS_WIDTH_4
:
1354 slot
->ctype
= SDMMC_CTYPE_4BIT
;
1356 case MMC_BUS_WIDTH_8
:
1357 slot
->ctype
= SDMMC_CTYPE_8BIT
;
1360 /* set default 1 bit mode */
1361 slot
->ctype
= SDMMC_CTYPE_1BIT
;
1364 regs
= mci_readl(slot
->host
, UHS_REG
);
1367 if (ios
->timing
== MMC_TIMING_MMC_DDR52
||
1368 ios
->timing
== MMC_TIMING_UHS_DDR50
||
1369 ios
->timing
== MMC_TIMING_MMC_HS400
)
1370 regs
|= ((0x1 << slot
->id
) << 16);
1372 regs
&= ~((0x1 << slot
->id
) << 16);
1374 mci_writel(slot
->host
, UHS_REG
, regs
);
1375 slot
->host
->timing
= ios
->timing
;
1378 * Use mirror of ios->clock to prevent race with mmc
1379 * core ios update when finding the minimum.
1381 slot
->clock
= ios
->clock
;
1383 if (drv_data
&& drv_data
->set_ios
)
1384 drv_data
->set_ios(slot
->host
, ios
);
1386 switch (ios
->power_mode
) {
1388 if (!IS_ERR(mmc
->supply
.vmmc
)) {
1389 ret
= mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
,
1392 dev_err(slot
->host
->dev
,
1393 "failed to enable vmmc regulator\n");
1394 /*return, if failed turn on vmmc*/
1398 set_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
);
1399 regs
= mci_readl(slot
->host
, PWREN
);
1400 regs
|= (1 << slot
->id
);
1401 mci_writel(slot
->host
, PWREN
, regs
);
1404 if (!slot
->host
->vqmmc_enabled
) {
1405 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1406 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1408 dev_err(slot
->host
->dev
,
1409 "failed to enable vqmmc\n");
1411 slot
->host
->vqmmc_enabled
= true;
1414 /* Keep track so we don't reset again */
1415 slot
->host
->vqmmc_enabled
= true;
1418 /* Reset our state machine after powering on */
1419 dw_mci_ctrl_reset(slot
->host
,
1420 SDMMC_CTRL_ALL_RESET_FLAGS
);
1423 /* Adjust clock / bus width after power is up */
1424 dw_mci_setup_bus(slot
, false);
1428 /* Turn clock off before power goes down */
1429 dw_mci_setup_bus(slot
, false);
1431 if (!IS_ERR(mmc
->supply
.vmmc
))
1432 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1434 if (!IS_ERR(mmc
->supply
.vqmmc
) && slot
->host
->vqmmc_enabled
)
1435 regulator_disable(mmc
->supply
.vqmmc
);
1436 slot
->host
->vqmmc_enabled
= false;
1438 regs
= mci_readl(slot
->host
, PWREN
);
1439 regs
&= ~(1 << slot
->id
);
1440 mci_writel(slot
->host
, PWREN
, regs
);
1446 if (slot
->host
->state
== STATE_WAITING_CMD11_DONE
&& ios
->clock
!= 0)
1447 slot
->host
->state
= STATE_IDLE
;
1450 static int dw_mci_card_busy(struct mmc_host
*mmc
)
1452 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1456 * Check the busy bit which is low when DAT[3:0]
1457 * (the data lines) are 0000
1459 status
= mci_readl(slot
->host
, STATUS
);
1461 return !!(status
& SDMMC_STATUS_BUSY
);
1464 static int dw_mci_switch_voltage(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1466 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1467 struct dw_mci
*host
= slot
->host
;
1468 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1470 u32 v18
= SDMMC_UHS_18V
<< slot
->id
;
1473 if (drv_data
&& drv_data
->switch_voltage
)
1474 return drv_data
->switch_voltage(mmc
, ios
);
1477 * Program the voltage. Note that some instances of dw_mmc may use
1478 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1479 * does no harm but you need to set the regulator directly. Try both.
1481 uhs
= mci_readl(host
, UHS_REG
);
1482 if (ios
->signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1487 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1488 ret
= mmc_regulator_set_vqmmc(mmc
, ios
);
1491 dev_dbg(&mmc
->class_dev
,
1492 "Regulator set error %d - %s V\n",
1493 ret
, uhs
& v18
? "1.8" : "3.3");
1497 mci_writel(host
, UHS_REG
, uhs
);
1502 static int dw_mci_get_ro(struct mmc_host
*mmc
)
1505 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1506 int gpio_ro
= mmc_gpio_get_ro(mmc
);
1508 /* Use platform get_ro function, else try on board write protect */
1510 read_only
= gpio_ro
;
1513 mci_readl(slot
->host
, WRTPRT
) & (1 << slot
->id
) ? 1 : 0;
1515 dev_dbg(&mmc
->class_dev
, "card is %s\n",
1516 read_only
? "read-only" : "read-write");
1521 static int dw_mci_get_cd(struct mmc_host
*mmc
)
1524 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1525 struct dw_mci
*host
= slot
->host
;
1526 int gpio_cd
= mmc_gpio_get_cd(mmc
);
1528 /* Use platform get_cd function, else try onboard card detect */
1529 if ((mmc
->caps
& MMC_CAP_NEEDS_POLL
) || !mmc_card_is_removable(mmc
))
1531 else if (gpio_cd
>= 0)
1534 present
= (mci_readl(slot
->host
, CDETECT
) & (1 << slot
->id
))
1537 spin_lock_bh(&host
->lock
);
1539 set_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
);
1540 dev_dbg(&mmc
->class_dev
, "card is present\n");
1542 clear_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
);
1543 dev_dbg(&mmc
->class_dev
, "card is not present\n");
1545 spin_unlock_bh(&host
->lock
);
1550 static void dw_mci_hw_reset(struct mmc_host
*mmc
)
1552 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1553 struct dw_mci
*host
= slot
->host
;
1556 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1557 dw_mci_idmac_reset(host
);
1559 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
|
1560 SDMMC_CTRL_FIFO_RESET
))
1564 * According to eMMC spec, card reset procedure:
1565 * tRstW >= 1us: RST_n pulse width
1566 * tRSCA >= 200us: RST_n to Command time
1567 * tRSTH >= 1us: RST_n high period
1569 reset
= mci_readl(host
, RST_N
);
1570 reset
&= ~(SDMMC_RST_HWACTIVE
<< slot
->id
);
1571 mci_writel(host
, RST_N
, reset
);
1573 reset
|= SDMMC_RST_HWACTIVE
<< slot
->id
;
1574 mci_writel(host
, RST_N
, reset
);
1575 usleep_range(200, 300);
1578 static void dw_mci_init_card(struct mmc_host
*mmc
, struct mmc_card
*card
)
1580 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1581 struct dw_mci
*host
= slot
->host
;
1584 * Low power mode will stop the card clock when idle. According to the
1585 * description of the CLKENA register we should disable low power mode
1586 * for SDIO cards if we need SDIO interrupts to work.
1588 if (mmc
->caps
& MMC_CAP_SDIO_IRQ
) {
1589 const u32 clken_low_pwr
= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1593 clk_en_a_old
= mci_readl(host
, CLKENA
);
1595 if (card
->type
== MMC_TYPE_SDIO
||
1596 card
->type
== MMC_TYPE_SD_COMBO
) {
1597 set_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1598 clk_en_a
= clk_en_a_old
& ~clken_low_pwr
;
1600 clear_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1601 clk_en_a
= clk_en_a_old
| clken_low_pwr
;
1604 if (clk_en_a
!= clk_en_a_old
) {
1605 mci_writel(host
, CLKENA
, clk_en_a
);
1606 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
1607 SDMMC_CMD_PRV_DAT_WAIT
, 0);
1612 static void dw_mci_enable_sdio_irq(struct mmc_host
*mmc
, int enb
)
1614 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1615 struct dw_mci
*host
= slot
->host
;
1616 unsigned long irqflags
;
1619 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1621 /* Enable/disable Slot Specific SDIO interrupt */
1622 int_mask
= mci_readl(host
, INTMASK
);
1624 int_mask
|= SDMMC_INT_SDIO(slot
->sdio_id
);
1626 int_mask
&= ~SDMMC_INT_SDIO(slot
->sdio_id
);
1627 mci_writel(host
, INTMASK
, int_mask
);
1629 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1632 static int dw_mci_execute_tuning(struct mmc_host
*mmc
, u32 opcode
)
1634 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1635 struct dw_mci
*host
= slot
->host
;
1636 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1639 if (drv_data
&& drv_data
->execute_tuning
)
1640 err
= drv_data
->execute_tuning(slot
, opcode
);
1644 static int dw_mci_prepare_hs400_tuning(struct mmc_host
*mmc
,
1645 struct mmc_ios
*ios
)
1647 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1648 struct dw_mci
*host
= slot
->host
;
1649 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1651 if (drv_data
&& drv_data
->prepare_hs400_tuning
)
1652 return drv_data
->prepare_hs400_tuning(host
, ios
);
1657 static const struct mmc_host_ops dw_mci_ops
= {
1658 .request
= dw_mci_request
,
1659 .pre_req
= dw_mci_pre_req
,
1660 .post_req
= dw_mci_post_req
,
1661 .set_ios
= dw_mci_set_ios
,
1662 .get_ro
= dw_mci_get_ro
,
1663 .get_cd
= dw_mci_get_cd
,
1664 .hw_reset
= dw_mci_hw_reset
,
1665 .enable_sdio_irq
= dw_mci_enable_sdio_irq
,
1666 .execute_tuning
= dw_mci_execute_tuning
,
1667 .card_busy
= dw_mci_card_busy
,
1668 .start_signal_voltage_switch
= dw_mci_switch_voltage
,
1669 .init_card
= dw_mci_init_card
,
1670 .prepare_hs400_tuning
= dw_mci_prepare_hs400_tuning
,
1673 static void dw_mci_request_end(struct dw_mci
*host
, struct mmc_request
*mrq
)
1674 __releases(&host
->lock
)
1675 __acquires(&host
->lock
)
1677 struct dw_mci_slot
*slot
;
1678 struct mmc_host
*prev_mmc
= host
->cur_slot
->mmc
;
1680 WARN_ON(host
->cmd
|| host
->data
);
1682 host
->cur_slot
->mrq
= NULL
;
1684 if (!list_empty(&host
->queue
)) {
1685 slot
= list_entry(host
->queue
.next
,
1686 struct dw_mci_slot
, queue_node
);
1687 list_del(&slot
->queue_node
);
1688 dev_vdbg(host
->dev
, "list not empty: %s is next\n",
1689 mmc_hostname(slot
->mmc
));
1690 host
->state
= STATE_SENDING_CMD
;
1691 dw_mci_start_request(host
, slot
);
1693 dev_vdbg(host
->dev
, "list empty\n");
1695 if (host
->state
== STATE_SENDING_CMD11
)
1696 host
->state
= STATE_WAITING_CMD11_DONE
;
1698 host
->state
= STATE_IDLE
;
1701 spin_unlock(&host
->lock
);
1702 mmc_request_done(prev_mmc
, mrq
);
1703 spin_lock(&host
->lock
);
1706 static int dw_mci_command_complete(struct dw_mci
*host
, struct mmc_command
*cmd
)
1708 u32 status
= host
->cmd_status
;
1710 host
->cmd_status
= 0;
1712 /* Read the response from the card (up to 16 bytes) */
1713 if (cmd
->flags
& MMC_RSP_PRESENT
) {
1714 if (cmd
->flags
& MMC_RSP_136
) {
1715 cmd
->resp
[3] = mci_readl(host
, RESP0
);
1716 cmd
->resp
[2] = mci_readl(host
, RESP1
);
1717 cmd
->resp
[1] = mci_readl(host
, RESP2
);
1718 cmd
->resp
[0] = mci_readl(host
, RESP3
);
1720 cmd
->resp
[0] = mci_readl(host
, RESP0
);
1727 if (status
& SDMMC_INT_RTO
)
1728 cmd
->error
= -ETIMEDOUT
;
1729 else if ((cmd
->flags
& MMC_RSP_CRC
) && (status
& SDMMC_INT_RCRC
))
1730 cmd
->error
= -EILSEQ
;
1731 else if (status
& SDMMC_INT_RESP_ERR
)
1739 static int dw_mci_data_complete(struct dw_mci
*host
, struct mmc_data
*data
)
1741 u32 status
= host
->data_status
;
1743 if (status
& DW_MCI_DATA_ERROR_FLAGS
) {
1744 if (status
& SDMMC_INT_DRTO
) {
1745 data
->error
= -ETIMEDOUT
;
1746 } else if (status
& SDMMC_INT_DCRC
) {
1747 data
->error
= -EILSEQ
;
1748 } else if (status
& SDMMC_INT_EBE
) {
1749 if (host
->dir_status
==
1750 DW_MCI_SEND_STATUS
) {
1752 * No data CRC status was returned.
1753 * The number of bytes transferred
1754 * will be exaggerated in PIO mode.
1756 data
->bytes_xfered
= 0;
1757 data
->error
= -ETIMEDOUT
;
1758 } else if (host
->dir_status
==
1759 DW_MCI_RECV_STATUS
) {
1760 data
->error
= -EILSEQ
;
1763 /* SDMMC_INT_SBE is included */
1764 data
->error
= -EILSEQ
;
1767 dev_dbg(host
->dev
, "data error, status 0x%08x\n", status
);
1770 * After an error, there may be data lingering
1775 data
->bytes_xfered
= data
->blocks
* data
->blksz
;
1782 static void dw_mci_set_drto(struct dw_mci
*host
)
1784 unsigned int drto_clks
;
1785 unsigned int drto_ms
;
1787 drto_clks
= mci_readl(host
, TMOUT
) >> 8;
1788 drto_ms
= DIV_ROUND_UP(drto_clks
, host
->bus_hz
/ 1000);
1790 /* add a bit spare time */
1793 mod_timer(&host
->dto_timer
, jiffies
+ msecs_to_jiffies(drto_ms
));
1796 static void dw_mci_tasklet_func(unsigned long priv
)
1798 struct dw_mci
*host
= (struct dw_mci
*)priv
;
1799 struct mmc_data
*data
;
1800 struct mmc_command
*cmd
;
1801 struct mmc_request
*mrq
;
1802 enum dw_mci_state state
;
1803 enum dw_mci_state prev_state
;
1806 spin_lock(&host
->lock
);
1808 state
= host
->state
;
1817 case STATE_WAITING_CMD11_DONE
:
1820 case STATE_SENDING_CMD11
:
1821 case STATE_SENDING_CMD
:
1822 if (!test_and_clear_bit(EVENT_CMD_COMPLETE
,
1823 &host
->pending_events
))
1828 set_bit(EVENT_CMD_COMPLETE
, &host
->completed_events
);
1829 err
= dw_mci_command_complete(host
, cmd
);
1830 if (cmd
== mrq
->sbc
&& !err
) {
1831 prev_state
= state
= STATE_SENDING_CMD
;
1832 __dw_mci_start_request(host
, host
->cur_slot
,
1837 if (cmd
->data
&& err
) {
1839 * During UHS tuning sequence, sending the stop
1840 * command after the response CRC error would
1841 * throw the system into a confused state
1842 * causing all future tuning phases to report
1845 * In such case controller will move into a data
1846 * transfer state after a response error or
1847 * response CRC error. Let's let that finish
1848 * before trying to send a stop, so we'll go to
1849 * STATE_SENDING_DATA.
1851 * Although letting the data transfer take place
1852 * will waste a bit of time (we already know
1853 * the command was bad), it can't cause any
1854 * errors since it's possible it would have
1855 * taken place anyway if this tasklet got
1856 * delayed. Allowing the transfer to take place
1857 * avoids races and keeps things simple.
1859 if ((err
!= -ETIMEDOUT
) &&
1860 (cmd
->opcode
== MMC_SEND_TUNING_BLOCK
)) {
1861 state
= STATE_SENDING_DATA
;
1865 dw_mci_stop_dma(host
);
1866 send_stop_abort(host
, data
);
1867 state
= STATE_SENDING_STOP
;
1871 if (!cmd
->data
|| err
) {
1872 dw_mci_request_end(host
, mrq
);
1876 prev_state
= state
= STATE_SENDING_DATA
;
1879 case STATE_SENDING_DATA
:
1881 * We could get a data error and never a transfer
1882 * complete so we'd better check for it here.
1884 * Note that we don't really care if we also got a
1885 * transfer complete; stopping the DMA and sending an
1888 if (test_and_clear_bit(EVENT_DATA_ERROR
,
1889 &host
->pending_events
)) {
1890 dw_mci_stop_dma(host
);
1892 !(host
->data_status
& (SDMMC_INT_DRTO
|
1894 send_stop_abort(host
, data
);
1895 state
= STATE_DATA_ERROR
;
1899 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
1900 &host
->pending_events
)) {
1902 * If all data-related interrupts don't come
1903 * within the given time in reading data state.
1905 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
1906 dw_mci_set_drto(host
);
1910 set_bit(EVENT_XFER_COMPLETE
, &host
->completed_events
);
1913 * Handle an EVENT_DATA_ERROR that might have shown up
1914 * before the transfer completed. This might not have
1915 * been caught by the check above because the interrupt
1916 * could have gone off between the previous check and
1917 * the check for transfer complete.
1919 * Technically this ought not be needed assuming we
1920 * get a DATA_COMPLETE eventually (we'll notice the
1921 * error and end the request), but it shouldn't hurt.
1923 * This has the advantage of sending the stop command.
1925 if (test_and_clear_bit(EVENT_DATA_ERROR
,
1926 &host
->pending_events
)) {
1927 dw_mci_stop_dma(host
);
1929 !(host
->data_status
& (SDMMC_INT_DRTO
|
1931 send_stop_abort(host
, data
);
1932 state
= STATE_DATA_ERROR
;
1935 prev_state
= state
= STATE_DATA_BUSY
;
1939 case STATE_DATA_BUSY
:
1940 if (!test_and_clear_bit(EVENT_DATA_COMPLETE
,
1941 &host
->pending_events
)) {
1943 * If data error interrupt comes but data over
1944 * interrupt doesn't come within the given time.
1945 * in reading data state.
1947 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
1948 dw_mci_set_drto(host
);
1953 set_bit(EVENT_DATA_COMPLETE
, &host
->completed_events
);
1954 err
= dw_mci_data_complete(host
, data
);
1957 if (!data
->stop
|| mrq
->sbc
) {
1958 if (mrq
->sbc
&& data
->stop
)
1959 data
->stop
->error
= 0;
1960 dw_mci_request_end(host
, mrq
);
1964 /* stop command for open-ended transfer*/
1966 send_stop_abort(host
, data
);
1969 * If we don't have a command complete now we'll
1970 * never get one since we just reset everything;
1971 * better end the request.
1973 * If we do have a command complete we'll fall
1974 * through to the SENDING_STOP command and
1975 * everything will be peachy keen.
1977 if (!test_bit(EVENT_CMD_COMPLETE
,
1978 &host
->pending_events
)) {
1980 dw_mci_request_end(host
, mrq
);
1986 * If err has non-zero,
1987 * stop-abort command has been already issued.
1989 prev_state
= state
= STATE_SENDING_STOP
;
1993 case STATE_SENDING_STOP
:
1994 if (!test_and_clear_bit(EVENT_CMD_COMPLETE
,
1995 &host
->pending_events
))
1998 /* CMD error in data command */
1999 if (mrq
->cmd
->error
&& mrq
->data
)
2006 dw_mci_command_complete(host
, mrq
->stop
);
2008 host
->cmd_status
= 0;
2010 dw_mci_request_end(host
, mrq
);
2013 case STATE_DATA_ERROR
:
2014 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
2015 &host
->pending_events
))
2018 state
= STATE_DATA_BUSY
;
2021 } while (state
!= prev_state
);
2023 host
->state
= state
;
2025 spin_unlock(&host
->lock
);
2029 /* push final bytes to part_buf, only use during push */
2030 static void dw_mci_set_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2032 memcpy((void *)&host
->part_buf
, buf
, cnt
);
2033 host
->part_buf_count
= cnt
;
2036 /* append bytes to part_buf, only use during push */
2037 static int dw_mci_push_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2039 cnt
= min(cnt
, (1 << host
->data_shift
) - host
->part_buf_count
);
2040 memcpy((void *)&host
->part_buf
+ host
->part_buf_count
, buf
, cnt
);
2041 host
->part_buf_count
+= cnt
;
2045 /* pull first bytes from part_buf, only use during pull */
2046 static int dw_mci_pull_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2048 cnt
= min_t(int, cnt
, host
->part_buf_count
);
2050 memcpy(buf
, (void *)&host
->part_buf
+ host
->part_buf_start
,
2052 host
->part_buf_count
-= cnt
;
2053 host
->part_buf_start
+= cnt
;
2058 /* pull final bytes from the part_buf, assuming it's just been filled */
2059 static void dw_mci_pull_final_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2061 memcpy(buf
, &host
->part_buf
, cnt
);
2062 host
->part_buf_start
= cnt
;
2063 host
->part_buf_count
= (1 << host
->data_shift
) - cnt
;
2066 static void dw_mci_push_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2068 struct mmc_data
*data
= host
->data
;
2071 /* try and push anything in the part_buf */
2072 if (unlikely(host
->part_buf_count
)) {
2073 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2077 if (host
->part_buf_count
== 2) {
2078 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2079 host
->part_buf_count
= 0;
2082 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2083 if (unlikely((unsigned long)buf
& 0x1)) {
2085 u16 aligned_buf
[64];
2086 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2087 int items
= len
>> 1;
2089 /* memcpy from input buffer into aligned buffer */
2090 memcpy(aligned_buf
, buf
, len
);
2093 /* push data from aligned buffer into fifo */
2094 for (i
= 0; i
< items
; ++i
)
2095 mci_fifo_writew(host
->fifo_reg
, aligned_buf
[i
]);
2102 for (; cnt
>= 2; cnt
-= 2)
2103 mci_fifo_writew(host
->fifo_reg
, *pdata
++);
2106 /* put anything remaining in the part_buf */
2108 dw_mci_set_part_bytes(host
, buf
, cnt
);
2109 /* Push data if we have reached the expected data length */
2110 if ((data
->bytes_xfered
+ init_cnt
) ==
2111 (data
->blksz
* data
->blocks
))
2112 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2116 static void dw_mci_pull_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2118 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2119 if (unlikely((unsigned long)buf
& 0x1)) {
2121 /* pull data from fifo into aligned buffer */
2122 u16 aligned_buf
[64];
2123 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2124 int items
= len
>> 1;
2127 for (i
= 0; i
< items
; ++i
)
2128 aligned_buf
[i
] = mci_fifo_readw(host
->fifo_reg
);
2129 /* memcpy from aligned buffer into output buffer */
2130 memcpy(buf
, aligned_buf
, len
);
2139 for (; cnt
>= 2; cnt
-= 2)
2140 *pdata
++ = mci_fifo_readw(host
->fifo_reg
);
2144 host
->part_buf16
= mci_fifo_readw(host
->fifo_reg
);
2145 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2149 static void dw_mci_push_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2151 struct mmc_data
*data
= host
->data
;
2154 /* try and push anything in the part_buf */
2155 if (unlikely(host
->part_buf_count
)) {
2156 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2160 if (host
->part_buf_count
== 4) {
2161 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2162 host
->part_buf_count
= 0;
2165 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2166 if (unlikely((unsigned long)buf
& 0x3)) {
2168 u32 aligned_buf
[32];
2169 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2170 int items
= len
>> 2;
2172 /* memcpy from input buffer into aligned buffer */
2173 memcpy(aligned_buf
, buf
, len
);
2176 /* push data from aligned buffer into fifo */
2177 for (i
= 0; i
< items
; ++i
)
2178 mci_fifo_writel(host
->fifo_reg
, aligned_buf
[i
]);
2185 for (; cnt
>= 4; cnt
-= 4)
2186 mci_fifo_writel(host
->fifo_reg
, *pdata
++);
2189 /* put anything remaining in the part_buf */
2191 dw_mci_set_part_bytes(host
, buf
, cnt
);
2192 /* Push data if we have reached the expected data length */
2193 if ((data
->bytes_xfered
+ init_cnt
) ==
2194 (data
->blksz
* data
->blocks
))
2195 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2199 static void dw_mci_pull_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2201 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2202 if (unlikely((unsigned long)buf
& 0x3)) {
2204 /* pull data from fifo into aligned buffer */
2205 u32 aligned_buf
[32];
2206 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2207 int items
= len
>> 2;
2210 for (i
= 0; i
< items
; ++i
)
2211 aligned_buf
[i
] = mci_fifo_readl(host
->fifo_reg
);
2212 /* memcpy from aligned buffer into output buffer */
2213 memcpy(buf
, aligned_buf
, len
);
2222 for (; cnt
>= 4; cnt
-= 4)
2223 *pdata
++ = mci_fifo_readl(host
->fifo_reg
);
2227 host
->part_buf32
= mci_fifo_readl(host
->fifo_reg
);
2228 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2232 static void dw_mci_push_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2234 struct mmc_data
*data
= host
->data
;
2237 /* try and push anything in the part_buf */
2238 if (unlikely(host
->part_buf_count
)) {
2239 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2244 if (host
->part_buf_count
== 8) {
2245 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2246 host
->part_buf_count
= 0;
2249 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2250 if (unlikely((unsigned long)buf
& 0x7)) {
2252 u64 aligned_buf
[16];
2253 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2254 int items
= len
>> 3;
2256 /* memcpy from input buffer into aligned buffer */
2257 memcpy(aligned_buf
, buf
, len
);
2260 /* push data from aligned buffer into fifo */
2261 for (i
= 0; i
< items
; ++i
)
2262 mci_fifo_writeq(host
->fifo_reg
, aligned_buf
[i
]);
2269 for (; cnt
>= 8; cnt
-= 8)
2270 mci_fifo_writeq(host
->fifo_reg
, *pdata
++);
2273 /* put anything remaining in the part_buf */
2275 dw_mci_set_part_bytes(host
, buf
, cnt
);
2276 /* Push data if we have reached the expected data length */
2277 if ((data
->bytes_xfered
+ init_cnt
) ==
2278 (data
->blksz
* data
->blocks
))
2279 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2283 static void dw_mci_pull_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2285 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2286 if (unlikely((unsigned long)buf
& 0x7)) {
2288 /* pull data from fifo into aligned buffer */
2289 u64 aligned_buf
[16];
2290 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2291 int items
= len
>> 3;
2294 for (i
= 0; i
< items
; ++i
)
2295 aligned_buf
[i
] = mci_fifo_readq(host
->fifo_reg
);
2297 /* memcpy from aligned buffer into output buffer */
2298 memcpy(buf
, aligned_buf
, len
);
2307 for (; cnt
>= 8; cnt
-= 8)
2308 *pdata
++ = mci_fifo_readq(host
->fifo_reg
);
2312 host
->part_buf
= mci_fifo_readq(host
->fifo_reg
);
2313 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2317 static void dw_mci_pull_data(struct dw_mci
*host
, void *buf
, int cnt
)
2321 /* get remaining partial bytes */
2322 len
= dw_mci_pull_part_bytes(host
, buf
, cnt
);
2323 if (unlikely(len
== cnt
))
2328 /* get the rest of the data */
2329 host
->pull_data(host
, buf
, cnt
);
2332 static void dw_mci_read_data_pio(struct dw_mci
*host
, bool dto
)
2334 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2336 unsigned int offset
;
2337 struct mmc_data
*data
= host
->data
;
2338 int shift
= host
->data_shift
;
2341 unsigned int remain
, fcnt
;
2344 if (!sg_miter_next(sg_miter
))
2347 host
->sg
= sg_miter
->piter
.sg
;
2348 buf
= sg_miter
->addr
;
2349 remain
= sg_miter
->length
;
2353 fcnt
= (SDMMC_GET_FCNT(mci_readl(host
, STATUS
))
2354 << shift
) + host
->part_buf_count
;
2355 len
= min(remain
, fcnt
);
2358 dw_mci_pull_data(host
, (void *)(buf
+ offset
), len
);
2359 data
->bytes_xfered
+= len
;
2364 sg_miter
->consumed
= offset
;
2365 status
= mci_readl(host
, MINTSTS
);
2366 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2367 /* if the RXDR is ready read again */
2368 } while ((status
& SDMMC_INT_RXDR
) ||
2369 (dto
&& SDMMC_GET_FCNT(mci_readl(host
, STATUS
))));
2372 if (!sg_miter_next(sg_miter
))
2374 sg_miter
->consumed
= 0;
2376 sg_miter_stop(sg_miter
);
2380 sg_miter_stop(sg_miter
);
2382 smp_wmb(); /* drain writebuffer */
2383 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2386 static void dw_mci_write_data_pio(struct dw_mci
*host
)
2388 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2390 unsigned int offset
;
2391 struct mmc_data
*data
= host
->data
;
2392 int shift
= host
->data_shift
;
2395 unsigned int fifo_depth
= host
->fifo_depth
;
2396 unsigned int remain
, fcnt
;
2399 if (!sg_miter_next(sg_miter
))
2402 host
->sg
= sg_miter
->piter
.sg
;
2403 buf
= sg_miter
->addr
;
2404 remain
= sg_miter
->length
;
2408 fcnt
= ((fifo_depth
-
2409 SDMMC_GET_FCNT(mci_readl(host
, STATUS
)))
2410 << shift
) - host
->part_buf_count
;
2411 len
= min(remain
, fcnt
);
2414 host
->push_data(host
, (void *)(buf
+ offset
), len
);
2415 data
->bytes_xfered
+= len
;
2420 sg_miter
->consumed
= offset
;
2421 status
= mci_readl(host
, MINTSTS
);
2422 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2423 } while (status
& SDMMC_INT_TXDR
); /* if TXDR write again */
2426 if (!sg_miter_next(sg_miter
))
2428 sg_miter
->consumed
= 0;
2430 sg_miter_stop(sg_miter
);
2434 sg_miter_stop(sg_miter
);
2436 smp_wmb(); /* drain writebuffer */
2437 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2440 static void dw_mci_cmd_interrupt(struct dw_mci
*host
, u32 status
)
2442 if (!host
->cmd_status
)
2443 host
->cmd_status
= status
;
2445 smp_wmb(); /* drain writebuffer */
2447 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2448 tasklet_schedule(&host
->tasklet
);
2451 static void dw_mci_handle_cd(struct dw_mci
*host
)
2455 for (i
= 0; i
< host
->num_slots
; i
++) {
2456 struct dw_mci_slot
*slot
= host
->slot
[i
];
2461 if (slot
->mmc
->ops
->card_event
)
2462 slot
->mmc
->ops
->card_event(slot
->mmc
);
2463 mmc_detect_change(slot
->mmc
,
2464 msecs_to_jiffies(host
->pdata
->detect_delay_ms
));
2468 static irqreturn_t
dw_mci_interrupt(int irq
, void *dev_id
)
2470 struct dw_mci
*host
= dev_id
;
2474 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
2477 /* Check volt switch first, since it can look like an error */
2478 if ((host
->state
== STATE_SENDING_CMD11
) &&
2479 (pending
& SDMMC_INT_VOLT_SWITCH
)) {
2480 unsigned long irqflags
;
2482 mci_writel(host
, RINTSTS
, SDMMC_INT_VOLT_SWITCH
);
2483 pending
&= ~SDMMC_INT_VOLT_SWITCH
;
2486 * Hold the lock; we know cmd11_timer can't be kicked
2487 * off after the lock is released, so safe to delete.
2489 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2490 dw_mci_cmd_interrupt(host
, pending
);
2491 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
2493 del_timer(&host
->cmd11_timer
);
2496 if (pending
& DW_MCI_CMD_ERROR_FLAGS
) {
2497 mci_writel(host
, RINTSTS
, DW_MCI_CMD_ERROR_FLAGS
);
2498 host
->cmd_status
= pending
;
2499 smp_wmb(); /* drain writebuffer */
2500 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2503 if (pending
& DW_MCI_DATA_ERROR_FLAGS
) {
2504 /* if there is an error report DATA_ERROR */
2505 mci_writel(host
, RINTSTS
, DW_MCI_DATA_ERROR_FLAGS
);
2506 host
->data_status
= pending
;
2507 smp_wmb(); /* drain writebuffer */
2508 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
2509 tasklet_schedule(&host
->tasklet
);
2512 if (pending
& SDMMC_INT_DATA_OVER
) {
2513 del_timer(&host
->dto_timer
);
2515 mci_writel(host
, RINTSTS
, SDMMC_INT_DATA_OVER
);
2516 if (!host
->data_status
)
2517 host
->data_status
= pending
;
2518 smp_wmb(); /* drain writebuffer */
2519 if (host
->dir_status
== DW_MCI_RECV_STATUS
) {
2520 if (host
->sg
!= NULL
)
2521 dw_mci_read_data_pio(host
, true);
2523 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
2524 tasklet_schedule(&host
->tasklet
);
2527 if (pending
& SDMMC_INT_RXDR
) {
2528 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2529 if (host
->dir_status
== DW_MCI_RECV_STATUS
&& host
->sg
)
2530 dw_mci_read_data_pio(host
, false);
2533 if (pending
& SDMMC_INT_TXDR
) {
2534 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2535 if (host
->dir_status
== DW_MCI_SEND_STATUS
&& host
->sg
)
2536 dw_mci_write_data_pio(host
);
2539 if (pending
& SDMMC_INT_CMD_DONE
) {
2540 mci_writel(host
, RINTSTS
, SDMMC_INT_CMD_DONE
);
2541 dw_mci_cmd_interrupt(host
, pending
);
2544 if (pending
& SDMMC_INT_CD
) {
2545 mci_writel(host
, RINTSTS
, SDMMC_INT_CD
);
2546 dw_mci_handle_cd(host
);
2549 /* Handle SDIO Interrupts */
2550 for (i
= 0; i
< host
->num_slots
; i
++) {
2551 struct dw_mci_slot
*slot
= host
->slot
[i
];
2556 if (pending
& SDMMC_INT_SDIO(slot
->sdio_id
)) {
2557 mci_writel(host
, RINTSTS
,
2558 SDMMC_INT_SDIO(slot
->sdio_id
));
2559 mmc_signal_sdio_irq(slot
->mmc
);
2565 if (host
->use_dma
!= TRANS_MODE_IDMAC
)
2568 /* Handle IDMA interrupts */
2569 if (host
->dma_64bit_address
== 1) {
2570 pending
= mci_readl(host
, IDSTS64
);
2571 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2572 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_TI
|
2573 SDMMC_IDMAC_INT_RI
);
2574 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_NI
);
2575 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2576 host
->dma_ops
->complete((void *)host
);
2579 pending
= mci_readl(host
, IDSTS
);
2580 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2581 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_TI
|
2582 SDMMC_IDMAC_INT_RI
);
2583 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_NI
);
2584 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2585 host
->dma_ops
->complete((void *)host
);
2592 static int dw_mci_init_slot(struct dw_mci
*host
, unsigned int id
)
2594 struct mmc_host
*mmc
;
2595 struct dw_mci_slot
*slot
;
2596 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
2600 mmc
= mmc_alloc_host(sizeof(struct dw_mci_slot
), host
->dev
);
2604 slot
= mmc_priv(mmc
);
2606 slot
->sdio_id
= host
->sdio_id0
+ id
;
2609 host
->slot
[id
] = slot
;
2611 mmc
->ops
= &dw_mci_ops
;
2612 if (of_property_read_u32_array(host
->dev
->of_node
,
2613 "clock-freq-min-max", freq
, 2)) {
2614 mmc
->f_min
= DW_MCI_FREQ_MIN
;
2615 mmc
->f_max
= DW_MCI_FREQ_MAX
;
2617 mmc
->f_min
= freq
[0];
2618 mmc
->f_max
= freq
[1];
2621 /*if there are external regulators, get them*/
2622 ret
= mmc_regulator_get_supply(mmc
);
2623 if (ret
== -EPROBE_DEFER
)
2624 goto err_host_allocated
;
2626 if (!mmc
->ocr_avail
)
2627 mmc
->ocr_avail
= MMC_VDD_32_33
| MMC_VDD_33_34
;
2629 if (host
->pdata
->caps
)
2630 mmc
->caps
= host
->pdata
->caps
;
2633 * Support MMC_CAP_ERASE by default.
2634 * It needs to use trim/discard/erase commands.
2636 mmc
->caps
|= MMC_CAP_ERASE
;
2638 if (host
->pdata
->pm_caps
)
2639 mmc
->pm_caps
= host
->pdata
->pm_caps
;
2641 if (host
->dev
->of_node
) {
2642 ctrl_id
= of_alias_get_id(host
->dev
->of_node
, "mshc");
2646 ctrl_id
= to_platform_device(host
->dev
)->id
;
2648 if (drv_data
&& drv_data
->caps
)
2649 mmc
->caps
|= drv_data
->caps
[ctrl_id
];
2651 if (host
->pdata
->caps2
)
2652 mmc
->caps2
= host
->pdata
->caps2
;
2654 ret
= mmc_of_parse(mmc
);
2656 goto err_host_allocated
;
2658 /* Useful defaults if platform data is unset. */
2659 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2660 mmc
->max_segs
= host
->ring_size
;
2661 mmc
->max_blk_size
= 65535;
2662 mmc
->max_seg_size
= 0x1000;
2663 mmc
->max_req_size
= mmc
->max_seg_size
* host
->ring_size
;
2664 mmc
->max_blk_count
= mmc
->max_req_size
/ 512;
2665 } else if (host
->use_dma
== TRANS_MODE_EDMAC
) {
2667 mmc
->max_blk_size
= 65535;
2668 mmc
->max_blk_count
= 65535;
2670 mmc
->max_blk_size
* mmc
->max_blk_count
;
2671 mmc
->max_seg_size
= mmc
->max_req_size
;
2673 /* TRANS_MODE_PIO */
2675 mmc
->max_blk_size
= 65535; /* BLKSIZ is 16 bits */
2676 mmc
->max_blk_count
= 512;
2677 mmc
->max_req_size
= mmc
->max_blk_size
*
2679 mmc
->max_seg_size
= mmc
->max_req_size
;
2684 ret
= mmc_add_host(mmc
);
2686 goto err_host_allocated
;
2688 #if defined(CONFIG_DEBUG_FS)
2689 dw_mci_init_debugfs(slot
);
2699 static void dw_mci_cleanup_slot(struct dw_mci_slot
*slot
, unsigned int id
)
2701 /* Debugfs stuff is cleaned up by mmc core */
2702 mmc_remove_host(slot
->mmc
);
2703 slot
->host
->slot
[id
] = NULL
;
2704 mmc_free_host(slot
->mmc
);
2707 static void dw_mci_init_dma(struct dw_mci
*host
)
2710 struct device
*dev
= host
->dev
;
2711 struct device_node
*np
= dev
->of_node
;
2714 * Check tansfer mode from HCON[17:16]
2715 * Clear the ambiguous description of dw_mmc databook:
2716 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2717 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2718 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2719 * 2b'11: Non DW DMA Interface -> pio only
2720 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2721 * simpler request/acknowledge handshake mechanism and both of them
2722 * are regarded as external dma master for dw_mmc.
2724 host
->use_dma
= SDMMC_GET_TRANS_MODE(mci_readl(host
, HCON
));
2725 if (host
->use_dma
== DMA_INTERFACE_IDMA
) {
2726 host
->use_dma
= TRANS_MODE_IDMAC
;
2727 } else if (host
->use_dma
== DMA_INTERFACE_DWDMA
||
2728 host
->use_dma
== DMA_INTERFACE_GDMA
) {
2729 host
->use_dma
= TRANS_MODE_EDMAC
;
2734 /* Determine which DMA interface to use */
2735 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2737 * Check ADDR_CONFIG bit in HCON to find
2738 * IDMAC address bus width
2740 addr_config
= SDMMC_GET_ADDR_CONFIG(mci_readl(host
, HCON
));
2742 if (addr_config
== 1) {
2743 /* host supports IDMAC in 64-bit address mode */
2744 host
->dma_64bit_address
= 1;
2746 "IDMAC supports 64-bit address mode.\n");
2747 if (!dma_set_mask(host
->dev
, DMA_BIT_MASK(64)))
2748 dma_set_coherent_mask(host
->dev
,
2751 /* host supports IDMAC in 32-bit address mode */
2752 host
->dma_64bit_address
= 0;
2754 "IDMAC supports 32-bit address mode.\n");
2757 /* Alloc memory for sg translation */
2758 host
->sg_cpu
= dmam_alloc_coherent(host
->dev
,
2760 &host
->sg_dma
, GFP_KERNEL
);
2761 if (!host
->sg_cpu
) {
2763 "%s: could not alloc DMA memory\n",
2768 host
->dma_ops
= &dw_mci_idmac_ops
;
2769 dev_info(host
->dev
, "Using internal DMA controller.\n");
2771 /* TRANS_MODE_EDMAC: check dma bindings again */
2772 if ((of_property_count_strings(np
, "dma-names") < 0) ||
2773 (!of_find_property(np
, "dmas", NULL
))) {
2776 host
->dma_ops
= &dw_mci_edmac_ops
;
2777 dev_info(host
->dev
, "Using external DMA controller.\n");
2780 if (host
->dma_ops
->init
&& host
->dma_ops
->start
&&
2781 host
->dma_ops
->stop
&& host
->dma_ops
->cleanup
) {
2782 if (host
->dma_ops
->init(host
)) {
2783 dev_err(host
->dev
, "%s: Unable to initialize DMA Controller.\n",
2788 dev_err(host
->dev
, "DMA initialization not found.\n");
2795 dev_info(host
->dev
, "Using PIO mode.\n");
2796 host
->use_dma
= TRANS_MODE_PIO
;
2799 static bool dw_mci_ctrl_reset(struct dw_mci
*host
, u32 reset
)
2801 unsigned long timeout
= jiffies
+ msecs_to_jiffies(500);
2804 ctrl
= mci_readl(host
, CTRL
);
2806 mci_writel(host
, CTRL
, ctrl
);
2808 /* wait till resets clear */
2810 ctrl
= mci_readl(host
, CTRL
);
2811 if (!(ctrl
& reset
))
2813 } while (time_before(jiffies
, timeout
));
2816 "Timeout resetting block (ctrl reset %#x)\n",
2822 static bool dw_mci_reset(struct dw_mci
*host
)
2824 u32 flags
= SDMMC_CTRL_RESET
| SDMMC_CTRL_FIFO_RESET
;
2828 * Reseting generates a block interrupt, hence setting
2829 * the scatter-gather pointer to NULL.
2832 sg_miter_stop(&host
->sg_miter
);
2837 flags
|= SDMMC_CTRL_DMA_RESET
;
2839 if (dw_mci_ctrl_reset(host
, flags
)) {
2841 * In all cases we clear the RAWINTS register to clear any
2844 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
2846 /* if using dma we wait for dma_req to clear */
2847 if (host
->use_dma
) {
2848 unsigned long timeout
= jiffies
+ msecs_to_jiffies(500);
2852 status
= mci_readl(host
, STATUS
);
2853 if (!(status
& SDMMC_STATUS_DMA_REQ
))
2856 } while (time_before(jiffies
, timeout
));
2858 if (status
& SDMMC_STATUS_DMA_REQ
) {
2860 "%s: Timeout waiting for dma_req to clear during reset\n",
2865 /* when using DMA next we reset the fifo again */
2866 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_FIFO_RESET
))
2870 /* if the controller reset bit did clear, then set clock regs */
2871 if (!(mci_readl(host
, CTRL
) & SDMMC_CTRL_RESET
)) {
2873 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2879 if (host
->use_dma
== TRANS_MODE_IDMAC
)
2880 /* It is also recommended that we reset and reprogram idmac */
2881 dw_mci_idmac_reset(host
);
2886 /* After a CTRL reset we need to have CIU set clock registers */
2887 mci_send_cmd(host
->cur_slot
, SDMMC_CMD_UPD_CLK
, 0);
2892 static void dw_mci_cmd11_timer(unsigned long arg
)
2894 struct dw_mci
*host
= (struct dw_mci
*)arg
;
2896 if (host
->state
!= STATE_SENDING_CMD11
) {
2897 dev_warn(host
->dev
, "Unexpected CMD11 timeout\n");
2901 host
->cmd_status
= SDMMC_INT_RTO
;
2902 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2903 tasklet_schedule(&host
->tasklet
);
2906 static void dw_mci_dto_timer(unsigned long arg
)
2908 struct dw_mci
*host
= (struct dw_mci
*)arg
;
2910 switch (host
->state
) {
2911 case STATE_SENDING_DATA
:
2912 case STATE_DATA_BUSY
:
2914 * If DTO interrupt does NOT come in sending data state,
2915 * we should notify the driver to terminate current transfer
2916 * and report a data timeout to the core.
2918 host
->data_status
= SDMMC_INT_DRTO
;
2919 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
2920 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
2921 tasklet_schedule(&host
->tasklet
);
2929 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
2931 struct dw_mci_board
*pdata
;
2932 struct device
*dev
= host
->dev
;
2933 struct device_node
*np
= dev
->of_node
;
2934 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
2936 u32 clock_frequency
;
2938 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
2940 return ERR_PTR(-ENOMEM
);
2942 /* find reset controller when exist */
2943 pdata
->rstc
= devm_reset_control_get_optional(dev
, NULL
);
2944 if (IS_ERR(pdata
->rstc
)) {
2945 if (PTR_ERR(pdata
->rstc
) == -EPROBE_DEFER
)
2946 return ERR_PTR(-EPROBE_DEFER
);
2949 /* find out number of slots supported */
2950 of_property_read_u32(np
, "num-slots", &pdata
->num_slots
);
2952 if (of_property_read_u32(np
, "fifo-depth", &pdata
->fifo_depth
))
2954 "fifo-depth property not found, using value of FIFOTH register as default\n");
2956 of_property_read_u32(np
, "card-detect-delay", &pdata
->detect_delay_ms
);
2958 if (!of_property_read_u32(np
, "clock-frequency", &clock_frequency
))
2959 pdata
->bus_hz
= clock_frequency
;
2961 if (drv_data
&& drv_data
->parse_dt
) {
2962 ret
= drv_data
->parse_dt(host
);
2964 return ERR_PTR(ret
);
2970 #else /* CONFIG_OF */
2971 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
2973 return ERR_PTR(-EINVAL
);
2975 #endif /* CONFIG_OF */
2977 static void dw_mci_enable_cd(struct dw_mci
*host
)
2979 unsigned long irqflags
;
2982 struct dw_mci_slot
*slot
;
2985 * No need for CD if all slots have a non-error GPIO
2986 * as well as broken card detection is found.
2988 for (i
= 0; i
< host
->num_slots
; i
++) {
2989 slot
= host
->slot
[i
];
2990 if (slot
->mmc
->caps
& MMC_CAP_NEEDS_POLL
)
2993 if (mmc_gpio_get_cd(slot
->mmc
) < 0)
2996 if (i
== host
->num_slots
)
2999 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3000 temp
= mci_readl(host
, INTMASK
);
3001 temp
|= SDMMC_INT_CD
;
3002 mci_writel(host
, INTMASK
, temp
);
3003 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3006 int dw_mci_probe(struct dw_mci
*host
)
3008 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
3009 int width
, i
, ret
= 0;
3014 host
->pdata
= dw_mci_parse_dt(host
);
3015 if (PTR_ERR(host
->pdata
) == -EPROBE_DEFER
) {
3016 return -EPROBE_DEFER
;
3017 } else if (IS_ERR(host
->pdata
)) {
3018 dev_err(host
->dev
, "platform data not available\n");
3023 host
->biu_clk
= devm_clk_get(host
->dev
, "biu");
3024 if (IS_ERR(host
->biu_clk
)) {
3025 dev_dbg(host
->dev
, "biu clock not available\n");
3027 ret
= clk_prepare_enable(host
->biu_clk
);
3029 dev_err(host
->dev
, "failed to enable biu clock\n");
3034 host
->ciu_clk
= devm_clk_get(host
->dev
, "ciu");
3035 if (IS_ERR(host
->ciu_clk
)) {
3036 dev_dbg(host
->dev
, "ciu clock not available\n");
3037 host
->bus_hz
= host
->pdata
->bus_hz
;
3039 ret
= clk_prepare_enable(host
->ciu_clk
);
3041 dev_err(host
->dev
, "failed to enable ciu clock\n");
3045 if (host
->pdata
->bus_hz
) {
3046 ret
= clk_set_rate(host
->ciu_clk
, host
->pdata
->bus_hz
);
3049 "Unable to set bus rate to %uHz\n",
3050 host
->pdata
->bus_hz
);
3052 host
->bus_hz
= clk_get_rate(host
->ciu_clk
);
3055 if (!host
->bus_hz
) {
3057 "Platform data must supply bus speed\n");
3062 if (drv_data
&& drv_data
->init
) {
3063 ret
= drv_data
->init(host
);
3066 "implementation specific init failed\n");
3071 if (!IS_ERR(host
->pdata
->rstc
)) {
3072 reset_control_assert(host
->pdata
->rstc
);
3073 usleep_range(10, 50);
3074 reset_control_deassert(host
->pdata
->rstc
);
3077 setup_timer(&host
->cmd11_timer
,
3078 dw_mci_cmd11_timer
, (unsigned long)host
);
3080 setup_timer(&host
->dto_timer
,
3081 dw_mci_dto_timer
, (unsigned long)host
);
3083 spin_lock_init(&host
->lock
);
3084 spin_lock_init(&host
->irq_lock
);
3085 INIT_LIST_HEAD(&host
->queue
);
3088 * Get the host data width - this assumes that HCON has been set with
3089 * the correct values.
3091 i
= SDMMC_GET_HDATA_WIDTH(mci_readl(host
, HCON
));
3093 host
->push_data
= dw_mci_push_data16
;
3094 host
->pull_data
= dw_mci_pull_data16
;
3096 host
->data_shift
= 1;
3097 } else if (i
== 2) {
3098 host
->push_data
= dw_mci_push_data64
;
3099 host
->pull_data
= dw_mci_pull_data64
;
3101 host
->data_shift
= 3;
3103 /* Check for a reserved value, and warn if it is */
3105 "HCON reports a reserved host data width!\n"
3106 "Defaulting to 32-bit access.\n");
3107 host
->push_data
= dw_mci_push_data32
;
3108 host
->pull_data
= dw_mci_pull_data32
;
3110 host
->data_shift
= 2;
3113 /* Reset all blocks */
3114 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3119 host
->dma_ops
= host
->pdata
->dma_ops
;
3120 dw_mci_init_dma(host
);
3122 /* Clear the interrupts for the host controller */
3123 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3124 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3126 /* Put in max timeout */
3127 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3130 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3131 * Tx Mark = fifo_size / 2 DMA Size = 8
3133 if (!host
->pdata
->fifo_depth
) {
3135 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3136 * have been overwritten by the bootloader, just like we're
3137 * about to do, so if you know the value for your hardware, you
3138 * should put it in the platform data.
3140 fifo_size
= mci_readl(host
, FIFOTH
);
3141 fifo_size
= 1 + ((fifo_size
>> 16) & 0xfff);
3143 fifo_size
= host
->pdata
->fifo_depth
;
3145 host
->fifo_depth
= fifo_size
;
3147 SDMMC_SET_FIFOTH(0x2, fifo_size
/ 2 - 1, fifo_size
/ 2);
3148 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3150 /* disable clock to CIU */
3151 mci_writel(host
, CLKENA
, 0);
3152 mci_writel(host
, CLKSRC
, 0);
3155 * In 2.40a spec, Data offset is changed.
3156 * Need to check the version-id and set data-offset for DATA register.
3158 host
->verid
= SDMMC_GET_VERID(mci_readl(host
, VERID
));
3159 dev_info(host
->dev
, "Version ID is %04x\n", host
->verid
);
3161 if (host
->verid
< DW_MMC_240A
)
3162 host
->fifo_reg
= host
->regs
+ DATA_OFFSET
;
3164 host
->fifo_reg
= host
->regs
+ DATA_240A_OFFSET
;
3166 tasklet_init(&host
->tasklet
, dw_mci_tasklet_func
, (unsigned long)host
);
3167 ret
= devm_request_irq(host
->dev
, host
->irq
, dw_mci_interrupt
,
3168 host
->irq_flags
, "dw-mci", host
);
3172 if (host
->pdata
->num_slots
)
3173 host
->num_slots
= host
->pdata
->num_slots
;
3175 host
->num_slots
= 1;
3177 if (host
->num_slots
< 1 ||
3178 host
->num_slots
> SDMMC_GET_SLOT_NUM(mci_readl(host
, HCON
))) {
3180 "Platform data must supply correct num_slots.\n");
3186 * Enable interrupts for command done, data over, data empty,
3187 * receive ready and error such as transmit, receive timeout, crc error
3189 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3190 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3191 DW_MCI_ERROR_FLAGS
);
3192 /* Enable mci interrupt */
3193 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3196 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3197 host
->irq
, width
, fifo_size
);
3199 /* We need at least one slot to succeed */
3200 for (i
= 0; i
< host
->num_slots
; i
++) {
3201 ret
= dw_mci_init_slot(host
, i
);
3203 dev_dbg(host
->dev
, "slot %d init failed\n", i
);
3209 dev_info(host
->dev
, "%d slots initialized\n", init_slots
);
3212 "attempted to initialize %d slots, but failed on all\n",
3217 /* Now that slots are all setup, we can enable card detect */
3218 dw_mci_enable_cd(host
);
3223 if (host
->use_dma
&& host
->dma_ops
->exit
)
3224 host
->dma_ops
->exit(host
);
3226 if (!IS_ERR(host
->pdata
->rstc
))
3227 reset_control_assert(host
->pdata
->rstc
);
3230 clk_disable_unprepare(host
->ciu_clk
);
3233 clk_disable_unprepare(host
->biu_clk
);
3237 EXPORT_SYMBOL(dw_mci_probe
);
3239 void dw_mci_remove(struct dw_mci
*host
)
3243 for (i
= 0; i
< host
->num_slots
; i
++) {
3244 dev_dbg(host
->dev
, "remove slot %d\n", i
);
3246 dw_mci_cleanup_slot(host
->slot
[i
], i
);
3249 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3250 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3252 /* disable clock to CIU */
3253 mci_writel(host
, CLKENA
, 0);
3254 mci_writel(host
, CLKSRC
, 0);
3256 if (host
->use_dma
&& host
->dma_ops
->exit
)
3257 host
->dma_ops
->exit(host
);
3259 if (!IS_ERR(host
->pdata
->rstc
))
3260 reset_control_assert(host
->pdata
->rstc
);
3262 clk_disable_unprepare(host
->ciu_clk
);
3263 clk_disable_unprepare(host
->biu_clk
);
3265 EXPORT_SYMBOL(dw_mci_remove
);
3269 #ifdef CONFIG_PM_SLEEP
3271 * TODO: we should probably disable the clock to the card in the suspend path.
3273 int dw_mci_suspend(struct dw_mci
*host
)
3275 if (host
->use_dma
&& host
->dma_ops
->exit
)
3276 host
->dma_ops
->exit(host
);
3280 EXPORT_SYMBOL(dw_mci_suspend
);
3282 int dw_mci_resume(struct dw_mci
*host
)
3286 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3291 if (host
->use_dma
&& host
->dma_ops
->init
)
3292 host
->dma_ops
->init(host
);
3295 * Restore the initial value at FIFOTH register
3296 * And Invalidate the prev_blksz with zero
3298 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3299 host
->prev_blksz
= 0;
3301 /* Put in max timeout */
3302 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3304 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3305 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3306 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3307 DW_MCI_ERROR_FLAGS
);
3308 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3310 for (i
= 0; i
< host
->num_slots
; i
++) {
3311 struct dw_mci_slot
*slot
= host
->slot
[i
];
3315 if (slot
->mmc
->pm_flags
& MMC_PM_KEEP_POWER
) {
3316 dw_mci_set_ios(slot
->mmc
, &slot
->mmc
->ios
);
3317 dw_mci_setup_bus(slot
, true);
3321 /* Now that slots are all setup, we can enable card detect */
3322 dw_mci_enable_cd(host
);
3326 EXPORT_SYMBOL(dw_mci_resume
);
3327 #endif /* CONFIG_PM_SLEEP */
3329 static int __init
dw_mci_init(void)
3331 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3335 static void __exit
dw_mci_exit(void)
3339 module_init(dw_mci_init
);
3340 module_exit(dw_mci_exit
);
3342 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3343 MODULE_AUTHOR("NXP Semiconductor VietNam");
3344 MODULE_AUTHOR("Imagination Technologies Ltd");
3345 MODULE_LICENSE("GPL v2");