1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 /* ethtool support for igb */
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
42 char stat_string
[ETH_GSTRING_LEN
];
47 #define IGB_STAT(_name, _stat) { \
48 .stat_string = _name, \
49 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 .stat_offset = offsetof(struct igb_adapter, _stat) \
52 static const struct igb_stats igb_gstrings_stats
[] = {
53 IGB_STAT("rx_packets", stats
.gprc
),
54 IGB_STAT("tx_packets", stats
.gptc
),
55 IGB_STAT("rx_bytes", stats
.gorc
),
56 IGB_STAT("tx_bytes", stats
.gotc
),
57 IGB_STAT("rx_broadcast", stats
.bprc
),
58 IGB_STAT("tx_broadcast", stats
.bptc
),
59 IGB_STAT("rx_multicast", stats
.mprc
),
60 IGB_STAT("tx_multicast", stats
.mptc
),
61 IGB_STAT("multicast", stats
.mprc
),
62 IGB_STAT("collisions", stats
.colc
),
63 IGB_STAT("rx_crc_errors", stats
.crcerrs
),
64 IGB_STAT("rx_no_buffer_count", stats
.rnbc
),
65 IGB_STAT("rx_missed_errors", stats
.mpc
),
66 IGB_STAT("tx_aborted_errors", stats
.ecol
),
67 IGB_STAT("tx_carrier_errors", stats
.tncrs
),
68 IGB_STAT("tx_window_errors", stats
.latecol
),
69 IGB_STAT("tx_abort_late_coll", stats
.latecol
),
70 IGB_STAT("tx_deferred_ok", stats
.dc
),
71 IGB_STAT("tx_single_coll_ok", stats
.scc
),
72 IGB_STAT("tx_multi_coll_ok", stats
.mcc
),
73 IGB_STAT("tx_timeout_count", tx_timeout_count
),
74 IGB_STAT("rx_long_length_errors", stats
.roc
),
75 IGB_STAT("rx_short_length_errors", stats
.ruc
),
76 IGB_STAT("rx_align_errors", stats
.algnerrc
),
77 IGB_STAT("tx_tcp_seg_good", stats
.tsctc
),
78 IGB_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
79 IGB_STAT("rx_flow_control_xon", stats
.xonrxc
),
80 IGB_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
81 IGB_STAT("tx_flow_control_xon", stats
.xontxc
),
82 IGB_STAT("tx_flow_control_xoff", stats
.xofftxc
),
83 IGB_STAT("rx_long_byte_count", stats
.gorc
),
84 IGB_STAT("tx_dma_out_of_sync", stats
.doosync
),
85 IGB_STAT("tx_smbus", stats
.mgptc
),
86 IGB_STAT("rx_smbus", stats
.mgprc
),
87 IGB_STAT("dropped_smbus", stats
.mgpdc
),
88 IGB_STAT("os2bmc_rx_by_bmc", stats
.o2bgptc
),
89 IGB_STAT("os2bmc_tx_by_bmc", stats
.b2ospc
),
90 IGB_STAT("os2bmc_tx_by_host", stats
.o2bspc
),
91 IGB_STAT("os2bmc_rx_by_host", stats
.b2ogprc
),
92 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts
),
93 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared
),
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 .stat_string = __stringify(_net_stat), \
98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
101 static const struct igb_stats igb_gstrings_net_stats
[] = {
102 IGB_NETDEV_STAT(rx_errors
),
103 IGB_NETDEV_STAT(tx_errors
),
104 IGB_NETDEV_STAT(tx_dropped
),
105 IGB_NETDEV_STAT(rx_length_errors
),
106 IGB_NETDEV_STAT(rx_over_errors
),
107 IGB_NETDEV_STAT(rx_frame_errors
),
108 IGB_NETDEV_STAT(rx_fifo_errors
),
109 IGB_NETDEV_STAT(tx_fifo_errors
),
110 IGB_NETDEV_STAT(tx_heartbeat_errors
)
113 #define IGB_GLOBAL_STATS_LEN \
114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN \
116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
122 #define IGB_QUEUE_STATS_LEN \
123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 IGB_RX_QUEUE_STATS_LEN) + \
125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
130 enum igb_diagnostics_results
{
138 static const char igb_gstrings_test
[][ETH_GSTRING_LEN
] = {
139 [TEST_REG
] = "Register test (offline)",
140 [TEST_EEP
] = "Eeprom test (offline)",
141 [TEST_IRQ
] = "Interrupt test (offline)",
142 [TEST_LOOP
] = "Loopback test (offline)",
143 [TEST_LINK
] = "Link test (on/offline)"
145 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
147 static int igb_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
149 struct igb_adapter
*adapter
= netdev_priv(netdev
);
150 struct e1000_hw
*hw
= &adapter
->hw
;
151 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
152 struct e1000_sfp_flags
*eth_flags
= &dev_spec
->eth_flags
;
156 status
= rd32(E1000_STATUS
);
157 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
159 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
160 SUPPORTED_10baseT_Full
|
161 SUPPORTED_100baseT_Half
|
162 SUPPORTED_100baseT_Full
|
163 SUPPORTED_1000baseT_Full
|
167 ecmd
->advertising
= ADVERTISED_TP
;
169 if (hw
->mac
.autoneg
== 1) {
170 ecmd
->advertising
|= ADVERTISED_Autoneg
;
171 /* the e1000 autoneg seems to match ethtool nicely */
172 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
175 ecmd
->port
= PORT_TP
;
176 ecmd
->phy_address
= hw
->phy
.addr
;
177 ecmd
->transceiver
= XCVR_INTERNAL
;
179 ecmd
->supported
= (SUPPORTED_FIBRE
|
180 SUPPORTED_1000baseKX_Full
|
183 ecmd
->advertising
= (ADVERTISED_FIBRE
|
184 ADVERTISED_1000baseKX_Full
);
185 if (hw
->mac
.type
== e1000_i354
) {
186 if ((hw
->device_id
==
187 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
) &&
188 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
189 ecmd
->supported
|= SUPPORTED_2500baseX_Full
;
191 ~SUPPORTED_1000baseKX_Full
;
192 ecmd
->advertising
|= ADVERTISED_2500baseX_Full
;
194 ~ADVERTISED_1000baseKX_Full
;
197 if (eth_flags
->e100_base_fx
) {
198 ecmd
->supported
|= SUPPORTED_100baseT_Full
;
199 ecmd
->advertising
|= ADVERTISED_100baseT_Full
;
201 if (hw
->mac
.autoneg
== 1)
202 ecmd
->advertising
|= ADVERTISED_Autoneg
;
204 ecmd
->port
= PORT_FIBRE
;
205 ecmd
->transceiver
= XCVR_EXTERNAL
;
207 if (hw
->mac
.autoneg
!= 1)
208 ecmd
->advertising
&= ~(ADVERTISED_Pause
|
209 ADVERTISED_Asym_Pause
);
211 switch (hw
->fc
.requested_mode
) {
213 ecmd
->advertising
|= ADVERTISED_Pause
;
215 case e1000_fc_rx_pause
:
216 ecmd
->advertising
|= (ADVERTISED_Pause
|
217 ADVERTISED_Asym_Pause
);
219 case e1000_fc_tx_pause
:
220 ecmd
->advertising
|= ADVERTISED_Asym_Pause
;
223 ecmd
->advertising
&= ~(ADVERTISED_Pause
|
224 ADVERTISED_Asym_Pause
);
226 if (status
& E1000_STATUS_LU
) {
227 if ((status
& E1000_STATUS_2P5_SKU
) &&
228 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
230 } else if (status
& E1000_STATUS_SPEED_1000
) {
232 } else if (status
& E1000_STATUS_SPEED_100
) {
237 if ((status
& E1000_STATUS_FD
) ||
238 hw
->phy
.media_type
!= e1000_media_type_copper
)
239 ecmd
->duplex
= DUPLEX_FULL
;
241 ecmd
->duplex
= DUPLEX_HALF
;
243 speed
= SPEED_UNKNOWN
;
244 ecmd
->duplex
= DUPLEX_UNKNOWN
;
246 ethtool_cmd_speed_set(ecmd
, speed
);
247 if ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
249 ecmd
->autoneg
= AUTONEG_ENABLE
;
251 ecmd
->autoneg
= AUTONEG_DISABLE
;
253 /* MDI-X => 2; MDI =>1; Invalid =>0 */
254 if (hw
->phy
.media_type
== e1000_media_type_copper
)
255 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
258 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
260 if (hw
->phy
.mdix
== AUTO_ALL_MODES
)
261 ecmd
->eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
263 ecmd
->eth_tp_mdix_ctrl
= hw
->phy
.mdix
;
268 static int igb_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
270 struct igb_adapter
*adapter
= netdev_priv(netdev
);
271 struct e1000_hw
*hw
= &adapter
->hw
;
273 /* When SoL/IDER sessions are active, autoneg/speed/duplex
276 if (igb_check_reset_block(hw
)) {
277 dev_err(&adapter
->pdev
->dev
,
278 "Cannot change link characteristics when SoL/IDER is active.\n");
282 /* MDI setting is only allowed when autoneg enabled because
283 * some hardware doesn't allow MDI setting when speed or
286 if (ecmd
->eth_tp_mdix_ctrl
) {
287 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
290 if ((ecmd
->eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
291 (ecmd
->autoneg
!= AUTONEG_ENABLE
)) {
292 dev_err(&adapter
->pdev
->dev
, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
298 usleep_range(1000, 2000);
300 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
302 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
303 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
306 switch (adapter
->link_speed
) {
308 hw
->phy
.autoneg_advertised
=
309 ADVERTISED_2500baseX_Full
;
312 hw
->phy
.autoneg_advertised
=
313 ADVERTISED_1000baseT_Full
;
316 hw
->phy
.autoneg_advertised
=
317 ADVERTISED_100baseT_Full
;
323 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
327 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
328 if (adapter
->fc_autoneg
)
329 hw
->fc
.requested_mode
= e1000_fc_default
;
331 u32 speed
= ethtool_cmd_speed(ecmd
);
332 /* calling this overrides forced MDI setting */
333 if (igb_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
334 clear_bit(__IGB_RESETTING
, &adapter
->state
);
339 /* MDI-X => 2; MDI => 1; Auto => 3 */
340 if (ecmd
->eth_tp_mdix_ctrl
) {
341 /* fix up the value for auto (3 => 0) as zero is mapped
344 if (ecmd
->eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
345 hw
->phy
.mdix
= AUTO_ALL_MODES
;
347 hw
->phy
.mdix
= ecmd
->eth_tp_mdix_ctrl
;
351 if (netif_running(adapter
->netdev
)) {
357 clear_bit(__IGB_RESETTING
, &adapter
->state
);
361 static u32
igb_get_link(struct net_device
*netdev
)
363 struct igb_adapter
*adapter
= netdev_priv(netdev
);
364 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
366 /* If the link is not reported up to netdev, interrupts are disabled,
367 * and so the physical link state may have changed since we last
368 * looked. Set get_link_status to make sure that the true link
369 * state is interrogated, rather than pulling a cached and possibly
370 * stale link state from the driver.
372 if (!netif_carrier_ok(netdev
))
373 mac
->get_link_status
= 1;
375 return igb_has_link(adapter
);
378 static void igb_get_pauseparam(struct net_device
*netdev
,
379 struct ethtool_pauseparam
*pause
)
381 struct igb_adapter
*adapter
= netdev_priv(netdev
);
382 struct e1000_hw
*hw
= &adapter
->hw
;
385 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
387 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
)
389 else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
)
391 else if (hw
->fc
.current_mode
== e1000_fc_full
) {
397 static int igb_set_pauseparam(struct net_device
*netdev
,
398 struct ethtool_pauseparam
*pause
)
400 struct igb_adapter
*adapter
= netdev_priv(netdev
);
401 struct e1000_hw
*hw
= &adapter
->hw
;
404 /* 100basefx does not support setting link flow control */
405 if (hw
->dev_spec
._82575
.eth_flags
.e100_base_fx
)
408 adapter
->fc_autoneg
= pause
->autoneg
;
410 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
411 usleep_range(1000, 2000);
413 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
414 hw
->fc
.requested_mode
= e1000_fc_default
;
415 if (netif_running(adapter
->netdev
)) {
422 if (pause
->rx_pause
&& pause
->tx_pause
)
423 hw
->fc
.requested_mode
= e1000_fc_full
;
424 else if (pause
->rx_pause
&& !pause
->tx_pause
)
425 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
426 else if (!pause
->rx_pause
&& pause
->tx_pause
)
427 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
428 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
429 hw
->fc
.requested_mode
= e1000_fc_none
;
431 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
433 retval
= ((hw
->phy
.media_type
== e1000_media_type_copper
) ?
434 igb_force_mac_fc(hw
) : igb_setup_link(hw
));
437 clear_bit(__IGB_RESETTING
, &adapter
->state
);
441 static u32
igb_get_msglevel(struct net_device
*netdev
)
443 struct igb_adapter
*adapter
= netdev_priv(netdev
);
444 return adapter
->msg_enable
;
447 static void igb_set_msglevel(struct net_device
*netdev
, u32 data
)
449 struct igb_adapter
*adapter
= netdev_priv(netdev
);
450 adapter
->msg_enable
= data
;
453 static int igb_get_regs_len(struct net_device
*netdev
)
455 #define IGB_REGS_LEN 739
456 return IGB_REGS_LEN
* sizeof(u32
);
459 static void igb_get_regs(struct net_device
*netdev
,
460 struct ethtool_regs
*regs
, void *p
)
462 struct igb_adapter
*adapter
= netdev_priv(netdev
);
463 struct e1000_hw
*hw
= &adapter
->hw
;
467 memset(p
, 0, IGB_REGS_LEN
* sizeof(u32
));
469 regs
->version
= (1u << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
471 /* General Registers */
472 regs_buff
[0] = rd32(E1000_CTRL
);
473 regs_buff
[1] = rd32(E1000_STATUS
);
474 regs_buff
[2] = rd32(E1000_CTRL_EXT
);
475 regs_buff
[3] = rd32(E1000_MDIC
);
476 regs_buff
[4] = rd32(E1000_SCTL
);
477 regs_buff
[5] = rd32(E1000_CONNSW
);
478 regs_buff
[6] = rd32(E1000_VET
);
479 regs_buff
[7] = rd32(E1000_LEDCTL
);
480 regs_buff
[8] = rd32(E1000_PBA
);
481 regs_buff
[9] = rd32(E1000_PBS
);
482 regs_buff
[10] = rd32(E1000_FRTIMER
);
483 regs_buff
[11] = rd32(E1000_TCPTIMER
);
486 regs_buff
[12] = rd32(E1000_EECD
);
489 /* Reading EICS for EICR because they read the
490 * same but EICS does not clear on read
492 regs_buff
[13] = rd32(E1000_EICS
);
493 regs_buff
[14] = rd32(E1000_EICS
);
494 regs_buff
[15] = rd32(E1000_EIMS
);
495 regs_buff
[16] = rd32(E1000_EIMC
);
496 regs_buff
[17] = rd32(E1000_EIAC
);
497 regs_buff
[18] = rd32(E1000_EIAM
);
498 /* Reading ICS for ICR because they read the
499 * same but ICS does not clear on read
501 regs_buff
[19] = rd32(E1000_ICS
);
502 regs_buff
[20] = rd32(E1000_ICS
);
503 regs_buff
[21] = rd32(E1000_IMS
);
504 regs_buff
[22] = rd32(E1000_IMC
);
505 regs_buff
[23] = rd32(E1000_IAC
);
506 regs_buff
[24] = rd32(E1000_IAM
);
507 regs_buff
[25] = rd32(E1000_IMIRVP
);
510 regs_buff
[26] = rd32(E1000_FCAL
);
511 regs_buff
[27] = rd32(E1000_FCAH
);
512 regs_buff
[28] = rd32(E1000_FCTTV
);
513 regs_buff
[29] = rd32(E1000_FCRTL
);
514 regs_buff
[30] = rd32(E1000_FCRTH
);
515 regs_buff
[31] = rd32(E1000_FCRTV
);
518 regs_buff
[32] = rd32(E1000_RCTL
);
519 regs_buff
[33] = rd32(E1000_RXCSUM
);
520 regs_buff
[34] = rd32(E1000_RLPML
);
521 regs_buff
[35] = rd32(E1000_RFCTL
);
522 regs_buff
[36] = rd32(E1000_MRQC
);
523 regs_buff
[37] = rd32(E1000_VT_CTL
);
526 regs_buff
[38] = rd32(E1000_TCTL
);
527 regs_buff
[39] = rd32(E1000_TCTL_EXT
);
528 regs_buff
[40] = rd32(E1000_TIPG
);
529 regs_buff
[41] = rd32(E1000_DTXCTL
);
532 regs_buff
[42] = rd32(E1000_WUC
);
533 regs_buff
[43] = rd32(E1000_WUFC
);
534 regs_buff
[44] = rd32(E1000_WUS
);
535 regs_buff
[45] = rd32(E1000_IPAV
);
536 regs_buff
[46] = rd32(E1000_WUPL
);
539 regs_buff
[47] = rd32(E1000_PCS_CFG0
);
540 regs_buff
[48] = rd32(E1000_PCS_LCTL
);
541 regs_buff
[49] = rd32(E1000_PCS_LSTAT
);
542 regs_buff
[50] = rd32(E1000_PCS_ANADV
);
543 regs_buff
[51] = rd32(E1000_PCS_LPAB
);
544 regs_buff
[52] = rd32(E1000_PCS_NPTX
);
545 regs_buff
[53] = rd32(E1000_PCS_LPABNP
);
548 regs_buff
[54] = adapter
->stats
.crcerrs
;
549 regs_buff
[55] = adapter
->stats
.algnerrc
;
550 regs_buff
[56] = adapter
->stats
.symerrs
;
551 regs_buff
[57] = adapter
->stats
.rxerrc
;
552 regs_buff
[58] = adapter
->stats
.mpc
;
553 regs_buff
[59] = adapter
->stats
.scc
;
554 regs_buff
[60] = adapter
->stats
.ecol
;
555 regs_buff
[61] = adapter
->stats
.mcc
;
556 regs_buff
[62] = adapter
->stats
.latecol
;
557 regs_buff
[63] = adapter
->stats
.colc
;
558 regs_buff
[64] = adapter
->stats
.dc
;
559 regs_buff
[65] = adapter
->stats
.tncrs
;
560 regs_buff
[66] = adapter
->stats
.sec
;
561 regs_buff
[67] = adapter
->stats
.htdpmc
;
562 regs_buff
[68] = adapter
->stats
.rlec
;
563 regs_buff
[69] = adapter
->stats
.xonrxc
;
564 regs_buff
[70] = adapter
->stats
.xontxc
;
565 regs_buff
[71] = adapter
->stats
.xoffrxc
;
566 regs_buff
[72] = adapter
->stats
.xofftxc
;
567 regs_buff
[73] = adapter
->stats
.fcruc
;
568 regs_buff
[74] = adapter
->stats
.prc64
;
569 regs_buff
[75] = adapter
->stats
.prc127
;
570 regs_buff
[76] = adapter
->stats
.prc255
;
571 regs_buff
[77] = adapter
->stats
.prc511
;
572 regs_buff
[78] = adapter
->stats
.prc1023
;
573 regs_buff
[79] = adapter
->stats
.prc1522
;
574 regs_buff
[80] = adapter
->stats
.gprc
;
575 regs_buff
[81] = adapter
->stats
.bprc
;
576 regs_buff
[82] = adapter
->stats
.mprc
;
577 regs_buff
[83] = adapter
->stats
.gptc
;
578 regs_buff
[84] = adapter
->stats
.gorc
;
579 regs_buff
[86] = adapter
->stats
.gotc
;
580 regs_buff
[88] = adapter
->stats
.rnbc
;
581 regs_buff
[89] = adapter
->stats
.ruc
;
582 regs_buff
[90] = adapter
->stats
.rfc
;
583 regs_buff
[91] = adapter
->stats
.roc
;
584 regs_buff
[92] = adapter
->stats
.rjc
;
585 regs_buff
[93] = adapter
->stats
.mgprc
;
586 regs_buff
[94] = adapter
->stats
.mgpdc
;
587 regs_buff
[95] = adapter
->stats
.mgptc
;
588 regs_buff
[96] = adapter
->stats
.tor
;
589 regs_buff
[98] = adapter
->stats
.tot
;
590 regs_buff
[100] = adapter
->stats
.tpr
;
591 regs_buff
[101] = adapter
->stats
.tpt
;
592 regs_buff
[102] = adapter
->stats
.ptc64
;
593 regs_buff
[103] = adapter
->stats
.ptc127
;
594 regs_buff
[104] = adapter
->stats
.ptc255
;
595 regs_buff
[105] = adapter
->stats
.ptc511
;
596 regs_buff
[106] = adapter
->stats
.ptc1023
;
597 regs_buff
[107] = adapter
->stats
.ptc1522
;
598 regs_buff
[108] = adapter
->stats
.mptc
;
599 regs_buff
[109] = adapter
->stats
.bptc
;
600 regs_buff
[110] = adapter
->stats
.tsctc
;
601 regs_buff
[111] = adapter
->stats
.iac
;
602 regs_buff
[112] = adapter
->stats
.rpthc
;
603 regs_buff
[113] = adapter
->stats
.hgptc
;
604 regs_buff
[114] = adapter
->stats
.hgorc
;
605 regs_buff
[116] = adapter
->stats
.hgotc
;
606 regs_buff
[118] = adapter
->stats
.lenerrs
;
607 regs_buff
[119] = adapter
->stats
.scvpc
;
608 regs_buff
[120] = adapter
->stats
.hrmpc
;
610 for (i
= 0; i
< 4; i
++)
611 regs_buff
[121 + i
] = rd32(E1000_SRRCTL(i
));
612 for (i
= 0; i
< 4; i
++)
613 regs_buff
[125 + i
] = rd32(E1000_PSRTYPE(i
));
614 for (i
= 0; i
< 4; i
++)
615 regs_buff
[129 + i
] = rd32(E1000_RDBAL(i
));
616 for (i
= 0; i
< 4; i
++)
617 regs_buff
[133 + i
] = rd32(E1000_RDBAH(i
));
618 for (i
= 0; i
< 4; i
++)
619 regs_buff
[137 + i
] = rd32(E1000_RDLEN(i
));
620 for (i
= 0; i
< 4; i
++)
621 regs_buff
[141 + i
] = rd32(E1000_RDH(i
));
622 for (i
= 0; i
< 4; i
++)
623 regs_buff
[145 + i
] = rd32(E1000_RDT(i
));
624 for (i
= 0; i
< 4; i
++)
625 regs_buff
[149 + i
] = rd32(E1000_RXDCTL(i
));
627 for (i
= 0; i
< 10; i
++)
628 regs_buff
[153 + i
] = rd32(E1000_EITR(i
));
629 for (i
= 0; i
< 8; i
++)
630 regs_buff
[163 + i
] = rd32(E1000_IMIR(i
));
631 for (i
= 0; i
< 8; i
++)
632 regs_buff
[171 + i
] = rd32(E1000_IMIREXT(i
));
633 for (i
= 0; i
< 16; i
++)
634 regs_buff
[179 + i
] = rd32(E1000_RAL(i
));
635 for (i
= 0; i
< 16; i
++)
636 regs_buff
[195 + i
] = rd32(E1000_RAH(i
));
638 for (i
= 0; i
< 4; i
++)
639 regs_buff
[211 + i
] = rd32(E1000_TDBAL(i
));
640 for (i
= 0; i
< 4; i
++)
641 regs_buff
[215 + i
] = rd32(E1000_TDBAH(i
));
642 for (i
= 0; i
< 4; i
++)
643 regs_buff
[219 + i
] = rd32(E1000_TDLEN(i
));
644 for (i
= 0; i
< 4; i
++)
645 regs_buff
[223 + i
] = rd32(E1000_TDH(i
));
646 for (i
= 0; i
< 4; i
++)
647 regs_buff
[227 + i
] = rd32(E1000_TDT(i
));
648 for (i
= 0; i
< 4; i
++)
649 regs_buff
[231 + i
] = rd32(E1000_TXDCTL(i
));
650 for (i
= 0; i
< 4; i
++)
651 regs_buff
[235 + i
] = rd32(E1000_TDWBAL(i
));
652 for (i
= 0; i
< 4; i
++)
653 regs_buff
[239 + i
] = rd32(E1000_TDWBAH(i
));
654 for (i
= 0; i
< 4; i
++)
655 regs_buff
[243 + i
] = rd32(E1000_DCA_TXCTRL(i
));
657 for (i
= 0; i
< 4; i
++)
658 regs_buff
[247 + i
] = rd32(E1000_IP4AT_REG(i
));
659 for (i
= 0; i
< 4; i
++)
660 regs_buff
[251 + i
] = rd32(E1000_IP6AT_REG(i
));
661 for (i
= 0; i
< 32; i
++)
662 regs_buff
[255 + i
] = rd32(E1000_WUPM_REG(i
));
663 for (i
= 0; i
< 128; i
++)
664 regs_buff
[287 + i
] = rd32(E1000_FFMT_REG(i
));
665 for (i
= 0; i
< 128; i
++)
666 regs_buff
[415 + i
] = rd32(E1000_FFVT_REG(i
));
667 for (i
= 0; i
< 4; i
++)
668 regs_buff
[543 + i
] = rd32(E1000_FFLT_REG(i
));
670 regs_buff
[547] = rd32(E1000_TDFH
);
671 regs_buff
[548] = rd32(E1000_TDFT
);
672 regs_buff
[549] = rd32(E1000_TDFHS
);
673 regs_buff
[550] = rd32(E1000_TDFPC
);
675 if (hw
->mac
.type
> e1000_82580
) {
676 regs_buff
[551] = adapter
->stats
.o2bgptc
;
677 regs_buff
[552] = adapter
->stats
.b2ospc
;
678 regs_buff
[553] = adapter
->stats
.o2bspc
;
679 regs_buff
[554] = adapter
->stats
.b2ogprc
;
682 if (hw
->mac
.type
!= e1000_82576
)
684 for (i
= 0; i
< 12; i
++)
685 regs_buff
[555 + i
] = rd32(E1000_SRRCTL(i
+ 4));
686 for (i
= 0; i
< 4; i
++)
687 regs_buff
[567 + i
] = rd32(E1000_PSRTYPE(i
+ 4));
688 for (i
= 0; i
< 12; i
++)
689 regs_buff
[571 + i
] = rd32(E1000_RDBAL(i
+ 4));
690 for (i
= 0; i
< 12; i
++)
691 regs_buff
[583 + i
] = rd32(E1000_RDBAH(i
+ 4));
692 for (i
= 0; i
< 12; i
++)
693 regs_buff
[595 + i
] = rd32(E1000_RDLEN(i
+ 4));
694 for (i
= 0; i
< 12; i
++)
695 regs_buff
[607 + i
] = rd32(E1000_RDH(i
+ 4));
696 for (i
= 0; i
< 12; i
++)
697 regs_buff
[619 + i
] = rd32(E1000_RDT(i
+ 4));
698 for (i
= 0; i
< 12; i
++)
699 regs_buff
[631 + i
] = rd32(E1000_RXDCTL(i
+ 4));
701 for (i
= 0; i
< 12; i
++)
702 regs_buff
[643 + i
] = rd32(E1000_TDBAL(i
+ 4));
703 for (i
= 0; i
< 12; i
++)
704 regs_buff
[655 + i
] = rd32(E1000_TDBAH(i
+ 4));
705 for (i
= 0; i
< 12; i
++)
706 regs_buff
[667 + i
] = rd32(E1000_TDLEN(i
+ 4));
707 for (i
= 0; i
< 12; i
++)
708 regs_buff
[679 + i
] = rd32(E1000_TDH(i
+ 4));
709 for (i
= 0; i
< 12; i
++)
710 regs_buff
[691 + i
] = rd32(E1000_TDT(i
+ 4));
711 for (i
= 0; i
< 12; i
++)
712 regs_buff
[703 + i
] = rd32(E1000_TXDCTL(i
+ 4));
713 for (i
= 0; i
< 12; i
++)
714 regs_buff
[715 + i
] = rd32(E1000_TDWBAL(i
+ 4));
715 for (i
= 0; i
< 12; i
++)
716 regs_buff
[727 + i
] = rd32(E1000_TDWBAH(i
+ 4));
719 static int igb_get_eeprom_len(struct net_device
*netdev
)
721 struct igb_adapter
*adapter
= netdev_priv(netdev
);
722 return adapter
->hw
.nvm
.word_size
* 2;
725 static int igb_get_eeprom(struct net_device
*netdev
,
726 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
728 struct igb_adapter
*adapter
= netdev_priv(netdev
);
729 struct e1000_hw
*hw
= &adapter
->hw
;
731 int first_word
, last_word
;
735 if (eeprom
->len
== 0)
738 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
740 first_word
= eeprom
->offset
>> 1;
741 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
743 eeprom_buff
= kmalloc(sizeof(u16
) *
744 (last_word
- first_word
+ 1), GFP_KERNEL
);
748 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
)
749 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
,
750 last_word
- first_word
+ 1,
753 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
754 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
+ i
, 1,
761 /* Device's eeprom is always little-endian, word addressable */
762 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
763 le16_to_cpus(&eeprom_buff
[i
]);
765 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
772 static int igb_set_eeprom(struct net_device
*netdev
,
773 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
775 struct igb_adapter
*adapter
= netdev_priv(netdev
);
776 struct e1000_hw
*hw
= &adapter
->hw
;
779 int max_len
, first_word
, last_word
, ret_val
= 0;
782 if (eeprom
->len
== 0)
785 if ((hw
->mac
.type
>= e1000_i210
) &&
786 !igb_get_flash_presence_i210(hw
)) {
790 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
793 max_len
= hw
->nvm
.word_size
* 2;
795 first_word
= eeprom
->offset
>> 1;
796 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
797 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
801 ptr
= (void *)eeprom_buff
;
803 if (eeprom
->offset
& 1) {
804 /* need read/modify/write of first changed EEPROM word
805 * only the second byte of the word is being modified
807 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
, 1,
811 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
812 /* need read/modify/write of last changed EEPROM word
813 * only the first byte of the word is being modified
815 ret_val
= hw
->nvm
.ops
.read(hw
, last_word
, 1,
816 &eeprom_buff
[last_word
- first_word
]);
819 /* Device's eeprom is always little-endian, word addressable */
820 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
821 le16_to_cpus(&eeprom_buff
[i
]);
823 memcpy(ptr
, bytes
, eeprom
->len
);
825 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
826 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
828 ret_val
= hw
->nvm
.ops
.write(hw
, first_word
,
829 last_word
- first_word
+ 1, eeprom_buff
);
831 /* Update the checksum if nvm write succeeded */
833 hw
->nvm
.ops
.update(hw
);
835 igb_set_fw_version(adapter
);
840 static void igb_get_drvinfo(struct net_device
*netdev
,
841 struct ethtool_drvinfo
*drvinfo
)
843 struct igb_adapter
*adapter
= netdev_priv(netdev
);
845 strlcpy(drvinfo
->driver
, igb_driver_name
, sizeof(drvinfo
->driver
));
846 strlcpy(drvinfo
->version
, igb_driver_version
, sizeof(drvinfo
->version
));
848 /* EEPROM image version # is reported as firmware version # for
851 strlcpy(drvinfo
->fw_version
, adapter
->fw_version
,
852 sizeof(drvinfo
->fw_version
));
853 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
854 sizeof(drvinfo
->bus_info
));
857 static void igb_get_ringparam(struct net_device
*netdev
,
858 struct ethtool_ringparam
*ring
)
860 struct igb_adapter
*adapter
= netdev_priv(netdev
);
862 ring
->rx_max_pending
= IGB_MAX_RXD
;
863 ring
->tx_max_pending
= IGB_MAX_TXD
;
864 ring
->rx_pending
= adapter
->rx_ring_count
;
865 ring
->tx_pending
= adapter
->tx_ring_count
;
868 static int igb_set_ringparam(struct net_device
*netdev
,
869 struct ethtool_ringparam
*ring
)
871 struct igb_adapter
*adapter
= netdev_priv(netdev
);
872 struct igb_ring
*temp_ring
;
874 u16 new_rx_count
, new_tx_count
;
876 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
879 new_rx_count
= min_t(u32
, ring
->rx_pending
, IGB_MAX_RXD
);
880 new_rx_count
= max_t(u16
, new_rx_count
, IGB_MIN_RXD
);
881 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
883 new_tx_count
= min_t(u32
, ring
->tx_pending
, IGB_MAX_TXD
);
884 new_tx_count
= max_t(u16
, new_tx_count
, IGB_MIN_TXD
);
885 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
887 if ((new_tx_count
== adapter
->tx_ring_count
) &&
888 (new_rx_count
== adapter
->rx_ring_count
)) {
893 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
894 usleep_range(1000, 2000);
896 if (!netif_running(adapter
->netdev
)) {
897 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
898 adapter
->tx_ring
[i
]->count
= new_tx_count
;
899 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
900 adapter
->rx_ring
[i
]->count
= new_rx_count
;
901 adapter
->tx_ring_count
= new_tx_count
;
902 adapter
->rx_ring_count
= new_rx_count
;
906 if (adapter
->num_tx_queues
> adapter
->num_rx_queues
)
907 temp_ring
= vmalloc(adapter
->num_tx_queues
*
908 sizeof(struct igb_ring
));
910 temp_ring
= vmalloc(adapter
->num_rx_queues
*
911 sizeof(struct igb_ring
));
920 /* We can't just free everything and then setup again,
921 * because the ISRs in MSI-X mode get passed pointers
922 * to the Tx and Rx ring structs.
924 if (new_tx_count
!= adapter
->tx_ring_count
) {
925 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
926 memcpy(&temp_ring
[i
], adapter
->tx_ring
[i
],
927 sizeof(struct igb_ring
));
929 temp_ring
[i
].count
= new_tx_count
;
930 err
= igb_setup_tx_resources(&temp_ring
[i
]);
934 igb_free_tx_resources(&temp_ring
[i
]);
940 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
941 igb_free_tx_resources(adapter
->tx_ring
[i
]);
943 memcpy(adapter
->tx_ring
[i
], &temp_ring
[i
],
944 sizeof(struct igb_ring
));
947 adapter
->tx_ring_count
= new_tx_count
;
950 if (new_rx_count
!= adapter
->rx_ring_count
) {
951 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
952 memcpy(&temp_ring
[i
], adapter
->rx_ring
[i
],
953 sizeof(struct igb_ring
));
955 temp_ring
[i
].count
= new_rx_count
;
956 err
= igb_setup_rx_resources(&temp_ring
[i
]);
960 igb_free_rx_resources(&temp_ring
[i
]);
967 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
968 igb_free_rx_resources(adapter
->rx_ring
[i
]);
970 memcpy(adapter
->rx_ring
[i
], &temp_ring
[i
],
971 sizeof(struct igb_ring
));
974 adapter
->rx_ring_count
= new_rx_count
;
980 clear_bit(__IGB_RESETTING
, &adapter
->state
);
984 /* ethtool register test data */
985 struct igb_reg_test
{
994 /* In the hardware, registers are laid out either singly, in arrays
995 * spaced 0x100 bytes apart, or in contiguous tables. We assume
996 * most tests take place on arrays or single registers (handled
997 * as a single-element array) and special-case the tables.
998 * Table tests are always pattern tests.
1000 * We also make provision for some required setup steps by specifying
1001 * registers to be written without any read-back testing.
1004 #define PATTERN_TEST 1
1005 #define SET_READ_TEST 2
1006 #define WRITE_NO_TEST 3
1007 #define TABLE32_TEST 4
1008 #define TABLE64_TEST_LO 5
1009 #define TABLE64_TEST_HI 6
1012 static struct igb_reg_test reg_test_i210
[] = {
1013 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1014 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1015 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1016 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1017 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1018 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1019 /* RDH is read-only for i210, only test RDT. */
1020 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1021 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1022 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1023 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1024 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1025 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1026 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1027 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1028 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1029 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1030 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1031 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1032 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1033 0xFFFFFFFF, 0xFFFFFFFF },
1034 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1035 0x900FFFFF, 0xFFFFFFFF },
1036 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1037 0xFFFFFFFF, 0xFFFFFFFF },
1042 static struct igb_reg_test reg_test_i350
[] = {
1043 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1044 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1045 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1046 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFF0000, 0xFFFF0000 },
1047 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1048 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1049 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1050 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1051 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1052 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1053 /* RDH is read-only for i350, only test RDT. */
1054 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1055 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1056 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1057 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1058 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1059 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1060 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1061 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1062 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1063 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1064 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1065 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1066 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1067 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1068 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1069 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1070 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1071 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1072 0xFFFFFFFF, 0xFFFFFFFF },
1073 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1074 0xC3FFFFFF, 0xFFFFFFFF },
1075 { E1000_RA2
, 0, 16, TABLE64_TEST_LO
,
1076 0xFFFFFFFF, 0xFFFFFFFF },
1077 { E1000_RA2
, 0, 16, TABLE64_TEST_HI
,
1078 0xC3FFFFFF, 0xFFFFFFFF },
1079 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1080 0xFFFFFFFF, 0xFFFFFFFF },
1084 /* 82580 reg test */
1085 static struct igb_reg_test reg_test_82580
[] = {
1086 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1087 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1088 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1089 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1090 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1091 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1092 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1093 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1094 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1095 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1096 /* RDH is read-only for 82580, only test RDT. */
1097 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1098 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1099 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1100 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1101 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1102 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1103 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1104 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1105 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1106 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1107 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1108 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1109 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1110 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1111 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1112 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1113 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1114 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1115 0xFFFFFFFF, 0xFFFFFFFF },
1116 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1117 0x83FFFFFF, 0xFFFFFFFF },
1118 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
,
1119 0xFFFFFFFF, 0xFFFFFFFF },
1120 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
,
1121 0x83FFFFFF, 0xFFFFFFFF },
1122 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1123 0xFFFFFFFF, 0xFFFFFFFF },
1127 /* 82576 reg test */
1128 static struct igb_reg_test reg_test_82576
[] = {
1129 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1130 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1131 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1132 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1133 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1134 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1135 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1136 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1137 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1138 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1139 /* Enable all RX queues before testing. */
1140 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0,
1141 E1000_RXDCTL_QUEUE_ENABLE
},
1142 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0,
1143 E1000_RXDCTL_QUEUE_ENABLE
},
1144 /* RDH is read-only for 82576, only test RDT. */
1145 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1146 { E1000_RDT(4), 0x40, 12, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1147 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1148 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, 0 },
1149 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1150 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1151 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1152 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1153 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1154 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1155 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1156 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1157 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1158 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1159 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1160 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1161 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1162 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1163 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1164 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1165 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1166 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1170 /* 82575 register test */
1171 static struct igb_reg_test reg_test_82575
[] = {
1172 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1173 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1174 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1175 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1176 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1177 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1178 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1179 /* Enable all four RX queues before testing. */
1180 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0,
1181 E1000_RXDCTL_QUEUE_ENABLE
},
1182 /* RDH is read-only for 82575, only test RDT. */
1183 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1184 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1185 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1186 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1187 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1188 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1189 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1190 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1191 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1192 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0x003FFFFB },
1193 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0xFFFFFFFF },
1194 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1195 { E1000_TXCW
, 0x100, 1, PATTERN_TEST
, 0xC000FFFF, 0x0000FFFF },
1196 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1197 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x800FFFFF, 0xFFFFFFFF },
1198 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1202 static bool reg_pattern_test(struct igb_adapter
*adapter
, u64
*data
,
1203 int reg
, u32 mask
, u32 write
)
1205 struct e1000_hw
*hw
= &adapter
->hw
;
1207 static const u32 _test
[] = {
1208 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1209 for (pat
= 0; pat
< ARRAY_SIZE(_test
); pat
++) {
1210 wr32(reg
, (_test
[pat
] & write
));
1211 val
= rd32(reg
) & mask
;
1212 if (val
!= (_test
[pat
] & write
& mask
)) {
1213 dev_err(&adapter
->pdev
->dev
,
1214 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1215 reg
, val
, (_test
[pat
] & write
& mask
));
1224 static bool reg_set_and_check(struct igb_adapter
*adapter
, u64
*data
,
1225 int reg
, u32 mask
, u32 write
)
1227 struct e1000_hw
*hw
= &adapter
->hw
;
1230 wr32(reg
, write
& mask
);
1232 if ((write
& mask
) != (val
& mask
)) {
1233 dev_err(&adapter
->pdev
->dev
,
1234 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1235 reg
, (val
& mask
), (write
& mask
));
1243 #define REG_PATTERN_TEST(reg, mask, write) \
1245 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1249 #define REG_SET_AND_CHECK(reg, mask, write) \
1251 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1255 static int igb_reg_test(struct igb_adapter
*adapter
, u64
*data
)
1257 struct e1000_hw
*hw
= &adapter
->hw
;
1258 struct igb_reg_test
*test
;
1259 u32 value
, before
, after
;
1262 switch (adapter
->hw
.mac
.type
) {
1265 test
= reg_test_i350
;
1266 toggle
= 0x7FEFF3FF;
1270 test
= reg_test_i210
;
1271 toggle
= 0x7FEFF3FF;
1274 test
= reg_test_82580
;
1275 toggle
= 0x7FEFF3FF;
1278 test
= reg_test_82576
;
1279 toggle
= 0x7FFFF3FF;
1282 test
= reg_test_82575
;
1283 toggle
= 0x7FFFF3FF;
1287 /* Because the status register is such a special case,
1288 * we handle it separately from the rest of the register
1289 * tests. Some bits are read-only, some toggle, and some
1290 * are writable on newer MACs.
1292 before
= rd32(E1000_STATUS
);
1293 value
= (rd32(E1000_STATUS
) & toggle
);
1294 wr32(E1000_STATUS
, toggle
);
1295 after
= rd32(E1000_STATUS
) & toggle
;
1296 if (value
!= after
) {
1297 dev_err(&adapter
->pdev
->dev
,
1298 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1303 /* restore previous status */
1304 wr32(E1000_STATUS
, before
);
1306 /* Perform the remainder of the register test, looping through
1307 * the test table until we either fail or reach the null entry.
1310 for (i
= 0; i
< test
->array_len
; i
++) {
1311 switch (test
->test_type
) {
1313 REG_PATTERN_TEST(test
->reg
+
1314 (i
* test
->reg_offset
),
1319 REG_SET_AND_CHECK(test
->reg
+
1320 (i
* test
->reg_offset
),
1326 (adapter
->hw
.hw_addr
+ test
->reg
)
1327 + (i
* test
->reg_offset
));
1330 REG_PATTERN_TEST(test
->reg
+ (i
* 4),
1334 case TABLE64_TEST_LO
:
1335 REG_PATTERN_TEST(test
->reg
+ (i
* 8),
1339 case TABLE64_TEST_HI
:
1340 REG_PATTERN_TEST((test
->reg
+ 4) + (i
* 8),
1353 static int igb_eeprom_test(struct igb_adapter
*adapter
, u64
*data
)
1355 struct e1000_hw
*hw
= &adapter
->hw
;
1359 /* Validate eeprom on all parts but flashless */
1360 switch (hw
->mac
.type
) {
1363 if (igb_get_flash_presence_i210(hw
)) {
1364 if (adapter
->hw
.nvm
.ops
.validate(&adapter
->hw
) < 0)
1369 if (adapter
->hw
.nvm
.ops
.validate(&adapter
->hw
) < 0)
1377 static irqreturn_t
igb_test_intr(int irq
, void *data
)
1379 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
1380 struct e1000_hw
*hw
= &adapter
->hw
;
1382 adapter
->test_icr
|= rd32(E1000_ICR
);
1387 static int igb_intr_test(struct igb_adapter
*adapter
, u64
*data
)
1389 struct e1000_hw
*hw
= &adapter
->hw
;
1390 struct net_device
*netdev
= adapter
->netdev
;
1391 u32 mask
, ics_mask
, i
= 0, shared_int
= true;
1392 u32 irq
= adapter
->pdev
->irq
;
1396 /* Hook up test interrupt handler just for this test */
1397 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1398 if (request_irq(adapter
->msix_entries
[0].vector
,
1399 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1403 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1405 if (request_irq(irq
,
1406 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1410 } else if (!request_irq(irq
, igb_test_intr
, IRQF_PROBE_SHARED
,
1411 netdev
->name
, adapter
)) {
1413 } else if (request_irq(irq
, igb_test_intr
, IRQF_SHARED
,
1414 netdev
->name
, adapter
)) {
1418 dev_info(&adapter
->pdev
->dev
, "testing %s interrupt\n",
1419 (shared_int
? "shared" : "unshared"));
1421 /* Disable all the interrupts */
1422 wr32(E1000_IMC
, ~0);
1424 usleep_range(10000, 11000);
1426 /* Define all writable bits for ICS */
1427 switch (hw
->mac
.type
) {
1429 ics_mask
= 0x37F47EDD;
1432 ics_mask
= 0x77D4FBFD;
1435 ics_mask
= 0x77DCFED5;
1441 ics_mask
= 0x77DCFED5;
1444 ics_mask
= 0x7FFFFFFF;
1448 /* Test each interrupt */
1449 for (; i
< 31; i
++) {
1450 /* Interrupt to test */
1453 if (!(mask
& ics_mask
))
1457 /* Disable the interrupt to be reported in
1458 * the cause register and then force the same
1459 * interrupt and see if one gets posted. If
1460 * an interrupt was posted to the bus, the
1463 adapter
->test_icr
= 0;
1465 /* Flush any pending interrupts */
1466 wr32(E1000_ICR
, ~0);
1468 wr32(E1000_IMC
, mask
);
1469 wr32(E1000_ICS
, mask
);
1471 usleep_range(10000, 11000);
1473 if (adapter
->test_icr
& mask
) {
1479 /* Enable the interrupt to be reported in
1480 * the cause register and then force the same
1481 * interrupt and see if one gets posted. If
1482 * an interrupt was not posted to the bus, the
1485 adapter
->test_icr
= 0;
1487 /* Flush any pending interrupts */
1488 wr32(E1000_ICR
, ~0);
1490 wr32(E1000_IMS
, mask
);
1491 wr32(E1000_ICS
, mask
);
1493 usleep_range(10000, 11000);
1495 if (!(adapter
->test_icr
& mask
)) {
1501 /* Disable the other interrupts to be reported in
1502 * the cause register and then force the other
1503 * interrupts and see if any get posted. If
1504 * an interrupt was posted to the bus, the
1507 adapter
->test_icr
= 0;
1509 /* Flush any pending interrupts */
1510 wr32(E1000_ICR
, ~0);
1512 wr32(E1000_IMC
, ~mask
);
1513 wr32(E1000_ICS
, ~mask
);
1515 usleep_range(10000, 11000);
1517 if (adapter
->test_icr
& mask
) {
1524 /* Disable all the interrupts */
1525 wr32(E1000_IMC
, ~0);
1527 usleep_range(10000, 11000);
1529 /* Unhook test interrupt handler */
1530 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
)
1531 free_irq(adapter
->msix_entries
[0].vector
, adapter
);
1533 free_irq(irq
, adapter
);
1538 static void igb_free_desc_rings(struct igb_adapter
*adapter
)
1540 igb_free_tx_resources(&adapter
->test_tx_ring
);
1541 igb_free_rx_resources(&adapter
->test_rx_ring
);
1544 static int igb_setup_desc_rings(struct igb_adapter
*adapter
)
1546 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1547 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1548 struct e1000_hw
*hw
= &adapter
->hw
;
1551 /* Setup Tx descriptor ring and Tx buffers */
1552 tx_ring
->count
= IGB_DEFAULT_TXD
;
1553 tx_ring
->dev
= &adapter
->pdev
->dev
;
1554 tx_ring
->netdev
= adapter
->netdev
;
1555 tx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1557 if (igb_setup_tx_resources(tx_ring
)) {
1562 igb_setup_tctl(adapter
);
1563 igb_configure_tx_ring(adapter
, tx_ring
);
1565 /* Setup Rx descriptor ring and Rx buffers */
1566 rx_ring
->count
= IGB_DEFAULT_RXD
;
1567 rx_ring
->dev
= &adapter
->pdev
->dev
;
1568 rx_ring
->netdev
= adapter
->netdev
;
1569 rx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1571 if (igb_setup_rx_resources(rx_ring
)) {
1576 /* set the default queue to queue 0 of PF */
1577 wr32(E1000_MRQC
, adapter
->vfs_allocated_count
<< 3);
1579 /* enable receive ring */
1580 igb_setup_rctl(adapter
);
1581 igb_configure_rx_ring(adapter
, rx_ring
);
1583 igb_alloc_rx_buffers(rx_ring
, igb_desc_unused(rx_ring
));
1588 igb_free_desc_rings(adapter
);
1592 static void igb_phy_disable_receiver(struct igb_adapter
*adapter
)
1594 struct e1000_hw
*hw
= &adapter
->hw
;
1596 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1597 igb_write_phy_reg(hw
, 29, 0x001F);
1598 igb_write_phy_reg(hw
, 30, 0x8FFC);
1599 igb_write_phy_reg(hw
, 29, 0x001A);
1600 igb_write_phy_reg(hw
, 30, 0x8FF0);
1603 static int igb_integrated_phy_loopback(struct igb_adapter
*adapter
)
1605 struct e1000_hw
*hw
= &adapter
->hw
;
1608 hw
->mac
.autoneg
= false;
1610 if (hw
->phy
.type
== e1000_phy_m88
) {
1611 if (hw
->phy
.id
!= I210_I_PHY_ID
) {
1612 /* Auto-MDI/MDIX Off */
1613 igb_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1614 /* reset to update Auto-MDI/MDIX */
1615 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x9140);
1617 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x8140);
1619 /* force 1000, set loopback */
1620 igb_write_phy_reg(hw
, I347AT4_PAGE_SELECT
, 0);
1621 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1623 } else if (hw
->phy
.type
== e1000_phy_82580
) {
1624 /* enable MII loopback */
1625 igb_write_phy_reg(hw
, I82580_PHY_LBK_CTRL
, 0x8041);
1628 /* add small delay to avoid loopback test failure */
1631 /* force 1000, set loopback */
1632 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1634 /* Now set up the MAC to the same speed/duplex as the PHY. */
1635 ctrl_reg
= rd32(E1000_CTRL
);
1636 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1637 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1638 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1639 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1640 E1000_CTRL_FD
| /* Force Duplex to FULL */
1641 E1000_CTRL_SLU
); /* Set link up enable bit */
1643 if (hw
->phy
.type
== e1000_phy_m88
)
1644 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1646 wr32(E1000_CTRL
, ctrl_reg
);
1648 /* Disable the receiver on the PHY so when a cable is plugged in, the
1649 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1651 if (hw
->phy
.type
== e1000_phy_m88
)
1652 igb_phy_disable_receiver(adapter
);
1658 static int igb_set_phy_loopback(struct igb_adapter
*adapter
)
1660 return igb_integrated_phy_loopback(adapter
);
1663 static int igb_setup_loopback_test(struct igb_adapter
*adapter
)
1665 struct e1000_hw
*hw
= &adapter
->hw
;
1668 reg
= rd32(E1000_CTRL_EXT
);
1670 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1671 if (reg
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1672 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1673 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1674 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1675 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
) ||
1676 (hw
->device_id
== E1000_DEV_ID_I354_SGMII
) ||
1677 (hw
->device_id
== E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
)) {
1678 /* Enable DH89xxCC MPHY for near end loopback */
1679 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1680 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1681 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1682 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1684 reg
= rd32(E1000_MPHY_DATA
);
1685 reg
|= E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1686 wr32(E1000_MPHY_DATA
, reg
);
1689 reg
= rd32(E1000_RCTL
);
1690 reg
|= E1000_RCTL_LBM_TCVR
;
1691 wr32(E1000_RCTL
, reg
);
1693 wr32(E1000_SCTL
, E1000_ENABLE_SERDES_LOOPBACK
);
1695 reg
= rd32(E1000_CTRL
);
1696 reg
&= ~(E1000_CTRL_RFCE
|
1699 reg
|= E1000_CTRL_SLU
|
1701 wr32(E1000_CTRL
, reg
);
1703 /* Unset switch control to serdes energy detect */
1704 reg
= rd32(E1000_CONNSW
);
1705 reg
&= ~E1000_CONNSW_ENRGSRC
;
1706 wr32(E1000_CONNSW
, reg
);
1708 /* Unset sigdetect for SERDES loopback on
1709 * 82580 and newer devices.
1711 if (hw
->mac
.type
>= e1000_82580
) {
1712 reg
= rd32(E1000_PCS_CFG0
);
1713 reg
|= E1000_PCS_CFG_IGN_SD
;
1714 wr32(E1000_PCS_CFG0
, reg
);
1717 /* Set PCS register for forced speed */
1718 reg
= rd32(E1000_PCS_LCTL
);
1719 reg
&= ~E1000_PCS_LCTL_AN_ENABLE
; /* Disable Autoneg*/
1720 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1721 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1722 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1723 E1000_PCS_LCTL_FSD
| /* Force Speed */
1724 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1725 wr32(E1000_PCS_LCTL
, reg
);
1730 return igb_set_phy_loopback(adapter
);
1733 static void igb_loopback_cleanup(struct igb_adapter
*adapter
)
1735 struct e1000_hw
*hw
= &adapter
->hw
;
1739 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1740 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1741 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1742 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
) ||
1743 (hw
->device_id
== E1000_DEV_ID_I354_SGMII
)) {
1746 /* Disable near end loopback on DH89xxCC */
1747 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1748 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1749 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1750 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1752 reg
= rd32(E1000_MPHY_DATA
);
1753 reg
&= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1754 wr32(E1000_MPHY_DATA
, reg
);
1757 rctl
= rd32(E1000_RCTL
);
1758 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1759 wr32(E1000_RCTL
, rctl
);
1761 hw
->mac
.autoneg
= true;
1762 igb_read_phy_reg(hw
, PHY_CONTROL
, &phy_reg
);
1763 if (phy_reg
& MII_CR_LOOPBACK
) {
1764 phy_reg
&= ~MII_CR_LOOPBACK
;
1765 igb_write_phy_reg(hw
, PHY_CONTROL
, phy_reg
);
1766 igb_phy_sw_reset(hw
);
1770 static void igb_create_lbtest_frame(struct sk_buff
*skb
,
1771 unsigned int frame_size
)
1773 memset(skb
->data
, 0xFF, frame_size
);
1775 memset(&skb
->data
[frame_size
], 0xAA, frame_size
- 1);
1776 memset(&skb
->data
[frame_size
+ 10], 0xBE, 1);
1777 memset(&skb
->data
[frame_size
+ 12], 0xAF, 1);
1780 static int igb_check_lbtest_frame(struct igb_rx_buffer
*rx_buffer
,
1781 unsigned int frame_size
)
1783 unsigned char *data
;
1788 data
= kmap(rx_buffer
->page
);
1790 if (data
[3] != 0xFF ||
1791 data
[frame_size
+ 10] != 0xBE ||
1792 data
[frame_size
+ 12] != 0xAF)
1795 kunmap(rx_buffer
->page
);
1800 static int igb_clean_test_rings(struct igb_ring
*rx_ring
,
1801 struct igb_ring
*tx_ring
,
1804 union e1000_adv_rx_desc
*rx_desc
;
1805 struct igb_rx_buffer
*rx_buffer_info
;
1806 struct igb_tx_buffer
*tx_buffer_info
;
1807 u16 rx_ntc
, tx_ntc
, count
= 0;
1809 /* initialize next to clean and descriptor values */
1810 rx_ntc
= rx_ring
->next_to_clean
;
1811 tx_ntc
= tx_ring
->next_to_clean
;
1812 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1814 while (igb_test_staterr(rx_desc
, E1000_RXD_STAT_DD
)) {
1815 /* check Rx buffer */
1816 rx_buffer_info
= &rx_ring
->rx_buffer_info
[rx_ntc
];
1818 /* sync Rx buffer for CPU read */
1819 dma_sync_single_for_cpu(rx_ring
->dev
,
1820 rx_buffer_info
->dma
,
1824 /* verify contents of skb */
1825 if (igb_check_lbtest_frame(rx_buffer_info
, size
))
1828 /* sync Rx buffer for device write */
1829 dma_sync_single_for_device(rx_ring
->dev
,
1830 rx_buffer_info
->dma
,
1834 /* unmap buffer on Tx side */
1835 tx_buffer_info
= &tx_ring
->tx_buffer_info
[tx_ntc
];
1836 igb_unmap_and_free_tx_resource(tx_ring
, tx_buffer_info
);
1838 /* increment Rx/Tx next to clean counters */
1840 if (rx_ntc
== rx_ring
->count
)
1843 if (tx_ntc
== tx_ring
->count
)
1846 /* fetch next descriptor */
1847 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1850 netdev_tx_reset_queue(txring_txq(tx_ring
));
1852 /* re-map buffers to ring, store next to clean values */
1853 igb_alloc_rx_buffers(rx_ring
, count
);
1854 rx_ring
->next_to_clean
= rx_ntc
;
1855 tx_ring
->next_to_clean
= tx_ntc
;
1860 static int igb_run_loopback_test(struct igb_adapter
*adapter
)
1862 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1863 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1864 u16 i
, j
, lc
, good_cnt
;
1866 unsigned int size
= IGB_RX_HDR_LEN
;
1867 netdev_tx_t tx_ret_val
;
1868 struct sk_buff
*skb
;
1870 /* allocate test skb */
1871 skb
= alloc_skb(size
, GFP_KERNEL
);
1875 /* place data into test skb */
1876 igb_create_lbtest_frame(skb
, size
);
1879 /* Calculate the loop count based on the largest descriptor ring
1880 * The idea is to wrap the largest ring a number of times using 64
1881 * send/receive pairs during each loop
1884 if (rx_ring
->count
<= tx_ring
->count
)
1885 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1887 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1889 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1890 /* reset count of good packets */
1893 /* place 64 packets on the transmit queue*/
1894 for (i
= 0; i
< 64; i
++) {
1896 tx_ret_val
= igb_xmit_frame_ring(skb
, tx_ring
);
1897 if (tx_ret_val
== NETDEV_TX_OK
)
1901 if (good_cnt
!= 64) {
1906 /* allow 200 milliseconds for packets to go from Tx to Rx */
1909 good_cnt
= igb_clean_test_rings(rx_ring
, tx_ring
, size
);
1910 if (good_cnt
!= 64) {
1914 } /* end loop count loop */
1916 /* free the original skb */
1922 static int igb_loopback_test(struct igb_adapter
*adapter
, u64
*data
)
1924 /* PHY loopback cannot be performed if SoL/IDER
1925 * sessions are active
1927 if (igb_check_reset_block(&adapter
->hw
)) {
1928 dev_err(&adapter
->pdev
->dev
,
1929 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1934 if (adapter
->hw
.mac
.type
== e1000_i354
) {
1935 dev_info(&adapter
->pdev
->dev
,
1936 "Loopback test not supported on i354.\n");
1940 *data
= igb_setup_desc_rings(adapter
);
1943 *data
= igb_setup_loopback_test(adapter
);
1946 *data
= igb_run_loopback_test(adapter
);
1947 igb_loopback_cleanup(adapter
);
1950 igb_free_desc_rings(adapter
);
1955 static int igb_link_test(struct igb_adapter
*adapter
, u64
*data
)
1957 struct e1000_hw
*hw
= &adapter
->hw
;
1959 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1962 hw
->mac
.serdes_has_link
= false;
1964 /* On some blade server designs, link establishment
1965 * could take as long as 2-3 minutes
1968 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1969 if (hw
->mac
.serdes_has_link
)
1972 } while (i
++ < 3750);
1976 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1977 if (hw
->mac
.autoneg
)
1980 if (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
))
1986 static void igb_diag_test(struct net_device
*netdev
,
1987 struct ethtool_test
*eth_test
, u64
*data
)
1989 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1990 u16 autoneg_advertised
;
1991 u8 forced_speed_duplex
, autoneg
;
1992 bool if_running
= netif_running(netdev
);
1994 set_bit(__IGB_TESTING
, &adapter
->state
);
1996 /* can't do offline tests on media switching devices */
1997 if (adapter
->hw
.dev_spec
._82575
.mas_capable
)
1998 eth_test
->flags
&= ~ETH_TEST_FL_OFFLINE
;
1999 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
2002 /* save speed, duplex, autoneg settings */
2003 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
2004 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
2005 autoneg
= adapter
->hw
.mac
.autoneg
;
2007 dev_info(&adapter
->pdev
->dev
, "offline testing starting\n");
2009 /* power up link for link test */
2010 igb_power_up_link(adapter
);
2012 /* Link test performed before hardware reset so autoneg doesn't
2013 * interfere with test result
2015 if (igb_link_test(adapter
, &data
[TEST_LINK
]))
2016 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2019 /* indicate we're in test mode */
2024 if (igb_reg_test(adapter
, &data
[TEST_REG
]))
2025 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2028 if (igb_eeprom_test(adapter
, &data
[TEST_EEP
]))
2029 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2032 if (igb_intr_test(adapter
, &data
[TEST_IRQ
]))
2033 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2036 /* power up link for loopback test */
2037 igb_power_up_link(adapter
);
2038 if (igb_loopback_test(adapter
, &data
[TEST_LOOP
]))
2039 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2041 /* restore speed, duplex, autoneg settings */
2042 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
2043 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
2044 adapter
->hw
.mac
.autoneg
= autoneg
;
2046 /* force this routine to wait until autoneg complete/timeout */
2047 adapter
->hw
.phy
.autoneg_wait_to_complete
= true;
2049 adapter
->hw
.phy
.autoneg_wait_to_complete
= false;
2051 clear_bit(__IGB_TESTING
, &adapter
->state
);
2055 dev_info(&adapter
->pdev
->dev
, "online testing starting\n");
2057 /* PHY is powered down when interface is down */
2058 if (if_running
&& igb_link_test(adapter
, &data
[TEST_LINK
]))
2059 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2061 data
[TEST_LINK
] = 0;
2063 /* Online tests aren't run; pass by default */
2067 data
[TEST_LOOP
] = 0;
2069 clear_bit(__IGB_TESTING
, &adapter
->state
);
2071 msleep_interruptible(4 * 1000);
2074 static void igb_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2076 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2080 if (!(adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
))
2083 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
2084 WAKE_BCAST
| WAKE_MAGIC
|
2087 /* apply any specific unsupported masks here */
2088 switch (adapter
->hw
.device_id
) {
2093 if (adapter
->wol
& E1000_WUFC_EX
)
2094 wol
->wolopts
|= WAKE_UCAST
;
2095 if (adapter
->wol
& E1000_WUFC_MC
)
2096 wol
->wolopts
|= WAKE_MCAST
;
2097 if (adapter
->wol
& E1000_WUFC_BC
)
2098 wol
->wolopts
|= WAKE_BCAST
;
2099 if (adapter
->wol
& E1000_WUFC_MAG
)
2100 wol
->wolopts
|= WAKE_MAGIC
;
2101 if (adapter
->wol
& E1000_WUFC_LNKC
)
2102 wol
->wolopts
|= WAKE_PHY
;
2105 static int igb_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2107 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2109 if (wol
->wolopts
& (WAKE_ARP
| WAKE_MAGICSECURE
))
2112 if (!(adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
))
2113 return wol
->wolopts
? -EOPNOTSUPP
: 0;
2115 /* these settings will always override what we currently have */
2118 if (wol
->wolopts
& WAKE_UCAST
)
2119 adapter
->wol
|= E1000_WUFC_EX
;
2120 if (wol
->wolopts
& WAKE_MCAST
)
2121 adapter
->wol
|= E1000_WUFC_MC
;
2122 if (wol
->wolopts
& WAKE_BCAST
)
2123 adapter
->wol
|= E1000_WUFC_BC
;
2124 if (wol
->wolopts
& WAKE_MAGIC
)
2125 adapter
->wol
|= E1000_WUFC_MAG
;
2126 if (wol
->wolopts
& WAKE_PHY
)
2127 adapter
->wol
|= E1000_WUFC_LNKC
;
2128 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
2133 /* bit defines for adapter->led_status */
2134 #define IGB_LED_ON 0
2136 static int igb_set_phys_id(struct net_device
*netdev
,
2137 enum ethtool_phys_id_state state
)
2139 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2140 struct e1000_hw
*hw
= &adapter
->hw
;
2143 case ETHTOOL_ID_ACTIVE
:
2149 case ETHTOOL_ID_OFF
:
2152 case ETHTOOL_ID_INACTIVE
:
2154 clear_bit(IGB_LED_ON
, &adapter
->led_status
);
2155 igb_cleanup_led(hw
);
2162 static int igb_set_coalesce(struct net_device
*netdev
,
2163 struct ethtool_coalesce
*ec
)
2165 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2168 if (ec
->rx_max_coalesced_frames
||
2169 ec
->rx_coalesce_usecs_irq
||
2170 ec
->rx_max_coalesced_frames_irq
||
2171 ec
->tx_max_coalesced_frames
||
2172 ec
->tx_coalesce_usecs_irq
||
2173 ec
->stats_block_coalesce_usecs
||
2174 ec
->use_adaptive_rx_coalesce
||
2175 ec
->use_adaptive_tx_coalesce
||
2177 ec
->rx_coalesce_usecs_low
||
2178 ec
->rx_max_coalesced_frames_low
||
2179 ec
->tx_coalesce_usecs_low
||
2180 ec
->tx_max_coalesced_frames_low
||
2181 ec
->pkt_rate_high
||
2182 ec
->rx_coalesce_usecs_high
||
2183 ec
->rx_max_coalesced_frames_high
||
2184 ec
->tx_coalesce_usecs_high
||
2185 ec
->tx_max_coalesced_frames_high
||
2186 ec
->rate_sample_interval
)
2189 if ((ec
->rx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
2190 ((ec
->rx_coalesce_usecs
> 3) &&
2191 (ec
->rx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
2192 (ec
->rx_coalesce_usecs
== 2))
2195 if ((ec
->tx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
2196 ((ec
->tx_coalesce_usecs
> 3) &&
2197 (ec
->tx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
2198 (ec
->tx_coalesce_usecs
== 2))
2201 if ((adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
) && ec
->tx_coalesce_usecs
)
2204 /* If ITR is disabled, disable DMAC */
2205 if (ec
->rx_coalesce_usecs
== 0) {
2206 if (adapter
->flags
& IGB_FLAG_DMAC
)
2207 adapter
->flags
&= ~IGB_FLAG_DMAC
;
2210 /* convert to rate of irq's per second */
2211 if (ec
->rx_coalesce_usecs
&& ec
->rx_coalesce_usecs
<= 3)
2212 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
;
2214 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
<< 2;
2216 /* convert to rate of irq's per second */
2217 if (adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)
2218 adapter
->tx_itr_setting
= adapter
->rx_itr_setting
;
2219 else if (ec
->tx_coalesce_usecs
&& ec
->tx_coalesce_usecs
<= 3)
2220 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
;
2222 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
<< 2;
2224 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2225 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
2226 q_vector
->tx
.work_limit
= adapter
->tx_work_limit
;
2227 if (q_vector
->rx
.ring
)
2228 q_vector
->itr_val
= adapter
->rx_itr_setting
;
2230 q_vector
->itr_val
= adapter
->tx_itr_setting
;
2231 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
2232 q_vector
->itr_val
= IGB_START_ITR
;
2233 q_vector
->set_itr
= 1;
2239 static int igb_get_coalesce(struct net_device
*netdev
,
2240 struct ethtool_coalesce
*ec
)
2242 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2244 if (adapter
->rx_itr_setting
<= 3)
2245 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
;
2247 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
>> 2;
2249 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)) {
2250 if (adapter
->tx_itr_setting
<= 3)
2251 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
;
2253 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
>> 2;
2259 static int igb_nway_reset(struct net_device
*netdev
)
2261 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2262 if (netif_running(netdev
))
2263 igb_reinit_locked(adapter
);
2267 static int igb_get_sset_count(struct net_device
*netdev
, int sset
)
2271 return IGB_STATS_LEN
;
2273 return IGB_TEST_LEN
;
2279 static void igb_get_ethtool_stats(struct net_device
*netdev
,
2280 struct ethtool_stats
*stats
, u64
*data
)
2282 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2283 struct rtnl_link_stats64
*net_stats
= &adapter
->stats64
;
2285 struct igb_ring
*ring
;
2289 spin_lock(&adapter
->stats64_lock
);
2290 igb_update_stats(adapter
, net_stats
);
2292 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2293 p
= (char *)adapter
+ igb_gstrings_stats
[i
].stat_offset
;
2294 data
[i
] = (igb_gstrings_stats
[i
].sizeof_stat
==
2295 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2297 for (j
= 0; j
< IGB_NETDEV_STATS_LEN
; j
++, i
++) {
2298 p
= (char *)net_stats
+ igb_gstrings_net_stats
[j
].stat_offset
;
2299 data
[i
] = (igb_gstrings_net_stats
[j
].sizeof_stat
==
2300 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2302 for (j
= 0; j
< adapter
->num_tx_queues
; j
++) {
2305 ring
= adapter
->tx_ring
[j
];
2307 start
= u64_stats_fetch_begin_irq(&ring
->tx_syncp
);
2308 data
[i
] = ring
->tx_stats
.packets
;
2309 data
[i
+1] = ring
->tx_stats
.bytes
;
2310 data
[i
+2] = ring
->tx_stats
.restart_queue
;
2311 } while (u64_stats_fetch_retry_irq(&ring
->tx_syncp
, start
));
2313 start
= u64_stats_fetch_begin_irq(&ring
->tx_syncp2
);
2314 restart2
= ring
->tx_stats
.restart_queue2
;
2315 } while (u64_stats_fetch_retry_irq(&ring
->tx_syncp2
, start
));
2316 data
[i
+2] += restart2
;
2318 i
+= IGB_TX_QUEUE_STATS_LEN
;
2320 for (j
= 0; j
< adapter
->num_rx_queues
; j
++) {
2321 ring
= adapter
->rx_ring
[j
];
2323 start
= u64_stats_fetch_begin_irq(&ring
->rx_syncp
);
2324 data
[i
] = ring
->rx_stats
.packets
;
2325 data
[i
+1] = ring
->rx_stats
.bytes
;
2326 data
[i
+2] = ring
->rx_stats
.drops
;
2327 data
[i
+3] = ring
->rx_stats
.csum_err
;
2328 data
[i
+4] = ring
->rx_stats
.alloc_failed
;
2329 } while (u64_stats_fetch_retry_irq(&ring
->rx_syncp
, start
));
2330 i
+= IGB_RX_QUEUE_STATS_LEN
;
2332 spin_unlock(&adapter
->stats64_lock
);
2335 static void igb_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2337 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2341 switch (stringset
) {
2343 memcpy(data
, *igb_gstrings_test
,
2344 IGB_TEST_LEN
*ETH_GSTRING_LEN
);
2347 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2348 memcpy(p
, igb_gstrings_stats
[i
].stat_string
,
2350 p
+= ETH_GSTRING_LEN
;
2352 for (i
= 0; i
< IGB_NETDEV_STATS_LEN
; i
++) {
2353 memcpy(p
, igb_gstrings_net_stats
[i
].stat_string
,
2355 p
+= ETH_GSTRING_LEN
;
2357 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2358 sprintf(p
, "tx_queue_%u_packets", i
);
2359 p
+= ETH_GSTRING_LEN
;
2360 sprintf(p
, "tx_queue_%u_bytes", i
);
2361 p
+= ETH_GSTRING_LEN
;
2362 sprintf(p
, "tx_queue_%u_restart", i
);
2363 p
+= ETH_GSTRING_LEN
;
2365 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2366 sprintf(p
, "rx_queue_%u_packets", i
);
2367 p
+= ETH_GSTRING_LEN
;
2368 sprintf(p
, "rx_queue_%u_bytes", i
);
2369 p
+= ETH_GSTRING_LEN
;
2370 sprintf(p
, "rx_queue_%u_drops", i
);
2371 p
+= ETH_GSTRING_LEN
;
2372 sprintf(p
, "rx_queue_%u_csum_err", i
);
2373 p
+= ETH_GSTRING_LEN
;
2374 sprintf(p
, "rx_queue_%u_alloc_failed", i
);
2375 p
+= ETH_GSTRING_LEN
;
2377 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2382 static int igb_get_ts_info(struct net_device
*dev
,
2383 struct ethtool_ts_info
*info
)
2385 struct igb_adapter
*adapter
= netdev_priv(dev
);
2387 if (adapter
->ptp_clock
)
2388 info
->phc_index
= ptp_clock_index(adapter
->ptp_clock
);
2390 info
->phc_index
= -1;
2392 switch (adapter
->hw
.mac
.type
) {
2394 info
->so_timestamping
=
2395 SOF_TIMESTAMPING_TX_SOFTWARE
|
2396 SOF_TIMESTAMPING_RX_SOFTWARE
|
2397 SOF_TIMESTAMPING_SOFTWARE
;
2405 info
->so_timestamping
=
2406 SOF_TIMESTAMPING_TX_SOFTWARE
|
2407 SOF_TIMESTAMPING_RX_SOFTWARE
|
2408 SOF_TIMESTAMPING_SOFTWARE
|
2409 SOF_TIMESTAMPING_TX_HARDWARE
|
2410 SOF_TIMESTAMPING_RX_HARDWARE
|
2411 SOF_TIMESTAMPING_RAW_HARDWARE
;
2414 BIT(HWTSTAMP_TX_OFF
) |
2415 BIT(HWTSTAMP_TX_ON
);
2417 info
->rx_filters
= BIT(HWTSTAMP_FILTER_NONE
);
2419 /* 82576 does not support timestamping all packets. */
2420 if (adapter
->hw
.mac
.type
>= e1000_82580
)
2421 info
->rx_filters
|= BIT(HWTSTAMP_FILTER_ALL
);
2424 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC
) |
2425 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
) |
2426 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT
);
2434 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2435 static int igb_get_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2436 struct ethtool_rxnfc
*cmd
)
2438 struct ethtool_rx_flow_spec
*fsp
= &cmd
->fs
;
2439 struct igb_nfc_filter
*rule
= NULL
;
2441 /* report total rule count */
2442 cmd
->data
= IGB_MAX_RXNFC_FILTERS
;
2444 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2445 if (fsp
->location
<= rule
->sw_idx
)
2449 if (!rule
|| fsp
->location
!= rule
->sw_idx
)
2452 if (rule
->filter
.match_flags
) {
2453 fsp
->flow_type
= ETHER_FLOW
;
2454 fsp
->ring_cookie
= rule
->action
;
2455 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
) {
2456 fsp
->h_u
.ether_spec
.h_proto
= rule
->filter
.etype
;
2457 fsp
->m_u
.ether_spec
.h_proto
= ETHER_TYPE_FULL_MASK
;
2459 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
) {
2460 fsp
->flow_type
|= FLOW_EXT
;
2461 fsp
->h_ext
.vlan_tci
= rule
->filter
.vlan_tci
;
2462 fsp
->m_ext
.vlan_tci
= htons(VLAN_PRIO_MASK
);
2469 static int igb_get_ethtool_nfc_all(struct igb_adapter
*adapter
,
2470 struct ethtool_rxnfc
*cmd
,
2473 struct igb_nfc_filter
*rule
;
2476 /* report total rule count */
2477 cmd
->data
= IGB_MAX_RXNFC_FILTERS
;
2479 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2480 if (cnt
== cmd
->rule_cnt
)
2482 rule_locs
[cnt
] = rule
->sw_idx
;
2486 cmd
->rule_cnt
= cnt
;
2491 static int igb_get_rss_hash_opts(struct igb_adapter
*adapter
,
2492 struct ethtool_rxnfc
*cmd
)
2496 /* Report default options for RSS on igb */
2497 switch (cmd
->flow_type
) {
2499 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2502 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV4_UDP
)
2503 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2506 case AH_ESP_V4_FLOW
:
2510 cmd
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2513 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2516 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV6_UDP
)
2517 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2520 case AH_ESP_V6_FLOW
:
2524 cmd
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2533 static int igb_get_rxnfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
,
2536 struct igb_adapter
*adapter
= netdev_priv(dev
);
2537 int ret
= -EOPNOTSUPP
;
2540 case ETHTOOL_GRXRINGS
:
2541 cmd
->data
= adapter
->num_rx_queues
;
2544 case ETHTOOL_GRXCLSRLCNT
:
2545 cmd
->rule_cnt
= adapter
->nfc_filter_count
;
2548 case ETHTOOL_GRXCLSRULE
:
2549 ret
= igb_get_ethtool_nfc_entry(adapter
, cmd
);
2551 case ETHTOOL_GRXCLSRLALL
:
2552 ret
= igb_get_ethtool_nfc_all(adapter
, cmd
, rule_locs
);
2555 ret
= igb_get_rss_hash_opts(adapter
, cmd
);
2564 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2565 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2566 static int igb_set_rss_hash_opt(struct igb_adapter
*adapter
,
2567 struct ethtool_rxnfc
*nfc
)
2569 u32 flags
= adapter
->flags
;
2571 /* RSS does not support anything other than hashing
2572 * to queues on src and dst IPs and ports
2574 if (nfc
->data
& ~(RXH_IP_SRC
| RXH_IP_DST
|
2575 RXH_L4_B_0_1
| RXH_L4_B_2_3
))
2578 switch (nfc
->flow_type
) {
2581 if (!(nfc
->data
& RXH_IP_SRC
) ||
2582 !(nfc
->data
& RXH_IP_DST
) ||
2583 !(nfc
->data
& RXH_L4_B_0_1
) ||
2584 !(nfc
->data
& RXH_L4_B_2_3
))
2588 if (!(nfc
->data
& RXH_IP_SRC
) ||
2589 !(nfc
->data
& RXH_IP_DST
))
2591 switch (nfc
->data
& (RXH_L4_B_0_1
| RXH_L4_B_2_3
)) {
2593 flags
&= ~IGB_FLAG_RSS_FIELD_IPV4_UDP
;
2595 case (RXH_L4_B_0_1
| RXH_L4_B_2_3
):
2596 flags
|= IGB_FLAG_RSS_FIELD_IPV4_UDP
;
2603 if (!(nfc
->data
& RXH_IP_SRC
) ||
2604 !(nfc
->data
& RXH_IP_DST
))
2606 switch (nfc
->data
& (RXH_L4_B_0_1
| RXH_L4_B_2_3
)) {
2608 flags
&= ~IGB_FLAG_RSS_FIELD_IPV6_UDP
;
2610 case (RXH_L4_B_0_1
| RXH_L4_B_2_3
):
2611 flags
|= IGB_FLAG_RSS_FIELD_IPV6_UDP
;
2617 case AH_ESP_V4_FLOW
:
2621 case AH_ESP_V6_FLOW
:
2625 if (!(nfc
->data
& RXH_IP_SRC
) ||
2626 !(nfc
->data
& RXH_IP_DST
) ||
2627 (nfc
->data
& RXH_L4_B_0_1
) ||
2628 (nfc
->data
& RXH_L4_B_2_3
))
2635 /* if we changed something we need to update flags */
2636 if (flags
!= adapter
->flags
) {
2637 struct e1000_hw
*hw
= &adapter
->hw
;
2638 u32 mrqc
= rd32(E1000_MRQC
);
2640 if ((flags
& UDP_RSS_FLAGS
) &&
2641 !(adapter
->flags
& UDP_RSS_FLAGS
))
2642 dev_err(&adapter
->pdev
->dev
,
2643 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2645 adapter
->flags
= flags
;
2647 /* Perform hash on these packet types */
2648 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4
|
2649 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
2650 E1000_MRQC_RSS_FIELD_IPV6
|
2651 E1000_MRQC_RSS_FIELD_IPV6_TCP
;
2653 mrqc
&= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP
|
2654 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
2656 if (flags
& IGB_FLAG_RSS_FIELD_IPV4_UDP
)
2657 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4_UDP
;
2659 if (flags
& IGB_FLAG_RSS_FIELD_IPV6_UDP
)
2660 mrqc
|= E1000_MRQC_RSS_FIELD_IPV6_UDP
;
2662 wr32(E1000_MRQC
, mrqc
);
2668 static int igb_rxnfc_write_etype_filter(struct igb_adapter
*adapter
,
2669 struct igb_nfc_filter
*input
)
2671 struct e1000_hw
*hw
= &adapter
->hw
;
2676 /* find an empty etype filter register */
2677 for (i
= 0; i
< MAX_ETYPE_FILTER
; ++i
) {
2678 if (!adapter
->etype_bitmap
[i
])
2681 if (i
== MAX_ETYPE_FILTER
) {
2682 dev_err(&adapter
->pdev
->dev
, "ethtool -N: etype filters are all used.\n");
2686 adapter
->etype_bitmap
[i
] = true;
2688 etqf
= rd32(E1000_ETQF(i
));
2689 etype
= ntohs(input
->filter
.etype
& ETHER_TYPE_FULL_MASK
);
2691 etqf
|= E1000_ETQF_FILTER_ENABLE
;
2692 etqf
&= ~E1000_ETQF_ETYPE_MASK
;
2693 etqf
|= (etype
& E1000_ETQF_ETYPE_MASK
);
2695 etqf
&= ~E1000_ETQF_QUEUE_MASK
;
2696 etqf
|= ((input
->action
<< E1000_ETQF_QUEUE_SHIFT
)
2697 & E1000_ETQF_QUEUE_MASK
);
2698 etqf
|= E1000_ETQF_QUEUE_ENABLE
;
2700 wr32(E1000_ETQF(i
), etqf
);
2702 input
->etype_reg_index
= i
;
2707 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter
*adapter
,
2708 struct igb_nfc_filter
*input
)
2710 struct e1000_hw
*hw
= &adapter
->hw
;
2715 vlapqf
= rd32(E1000_VLAPQF
);
2716 vlan_priority
= (ntohs(input
->filter
.vlan_tci
) & VLAN_PRIO_MASK
)
2718 queue_index
= (vlapqf
>> (vlan_priority
* 4)) & E1000_VLAPQF_QUEUE_MASK
;
2720 /* check whether this vlan prio is already set */
2721 if ((vlapqf
& E1000_VLAPQF_P_VALID(vlan_priority
)) &&
2722 (queue_index
!= input
->action
)) {
2723 dev_err(&adapter
->pdev
->dev
, "ethtool rxnfc set vlan prio filter failed.\n");
2727 vlapqf
|= E1000_VLAPQF_P_VALID(vlan_priority
);
2728 vlapqf
|= E1000_VLAPQF_QUEUE_SEL(vlan_priority
, input
->action
);
2730 wr32(E1000_VLAPQF
, vlapqf
);
2735 int igb_add_filter(struct igb_adapter
*adapter
, struct igb_nfc_filter
*input
)
2739 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
) {
2740 err
= igb_rxnfc_write_etype_filter(adapter
, input
);
2745 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
)
2746 err
= igb_rxnfc_write_vlan_prio_filter(adapter
, input
);
2751 static void igb_clear_etype_filter_regs(struct igb_adapter
*adapter
,
2754 struct e1000_hw
*hw
= &adapter
->hw
;
2755 u32 etqf
= rd32(E1000_ETQF(reg_index
));
2757 etqf
&= ~E1000_ETQF_QUEUE_ENABLE
;
2758 etqf
&= ~E1000_ETQF_QUEUE_MASK
;
2759 etqf
&= ~E1000_ETQF_FILTER_ENABLE
;
2761 wr32(E1000_ETQF(reg_index
), etqf
);
2763 adapter
->etype_bitmap
[reg_index
] = false;
2766 static void igb_clear_vlan_prio_filter(struct igb_adapter
*adapter
,
2769 struct e1000_hw
*hw
= &adapter
->hw
;
2773 vlan_priority
= (vlan_tci
& VLAN_PRIO_MASK
) >> VLAN_PRIO_SHIFT
;
2775 vlapqf
= rd32(E1000_VLAPQF
);
2776 vlapqf
&= ~E1000_VLAPQF_P_VALID(vlan_priority
);
2777 vlapqf
&= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority
,
2778 E1000_VLAPQF_QUEUE_MASK
);
2780 wr32(E1000_VLAPQF
, vlapqf
);
2783 int igb_erase_filter(struct igb_adapter
*adapter
, struct igb_nfc_filter
*input
)
2785 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
)
2786 igb_clear_etype_filter_regs(adapter
,
2787 input
->etype_reg_index
);
2789 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
)
2790 igb_clear_vlan_prio_filter(adapter
,
2791 ntohs(input
->filter
.vlan_tci
));
2796 static int igb_update_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2797 struct igb_nfc_filter
*input
,
2800 struct igb_nfc_filter
*rule
, *parent
;
2806 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2807 /* hash found, or no matching entry */
2808 if (rule
->sw_idx
>= sw_idx
)
2813 /* if there is an old rule occupying our place remove it */
2814 if (rule
&& (rule
->sw_idx
== sw_idx
)) {
2816 err
= igb_erase_filter(adapter
, rule
);
2818 hlist_del(&rule
->nfc_node
);
2820 adapter
->nfc_filter_count
--;
2823 /* If no input this was a delete, err should be 0 if a rule was
2824 * successfully found and removed from the list else -EINVAL
2829 /* initialize node */
2830 INIT_HLIST_NODE(&input
->nfc_node
);
2832 /* add filter to the list */
2834 hlist_add_behind(&parent
->nfc_node
, &input
->nfc_node
);
2836 hlist_add_head(&input
->nfc_node
, &adapter
->nfc_filter_list
);
2839 adapter
->nfc_filter_count
++;
2844 static int igb_add_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2845 struct ethtool_rxnfc
*cmd
)
2847 struct net_device
*netdev
= adapter
->netdev
;
2848 struct ethtool_rx_flow_spec
*fsp
=
2849 (struct ethtool_rx_flow_spec
*)&cmd
->fs
;
2850 struct igb_nfc_filter
*input
, *rule
;
2853 if (!(netdev
->hw_features
& NETIF_F_NTUPLE
))
2856 /* Don't allow programming if the action is a queue greater than
2857 * the number of online Rx queues.
2859 if ((fsp
->ring_cookie
== RX_CLS_FLOW_DISC
) ||
2860 (fsp
->ring_cookie
>= adapter
->num_rx_queues
)) {
2861 dev_err(&adapter
->pdev
->dev
, "ethtool -N: The specified action is invalid\n");
2865 /* Don't allow indexes to exist outside of available space */
2866 if (fsp
->location
>= IGB_MAX_RXNFC_FILTERS
) {
2867 dev_err(&adapter
->pdev
->dev
, "Location out of range\n");
2871 if ((fsp
->flow_type
& ~FLOW_EXT
) != ETHER_FLOW
)
2874 if (fsp
->m_u
.ether_spec
.h_proto
!= ETHER_TYPE_FULL_MASK
&&
2875 fsp
->m_ext
.vlan_tci
!= htons(VLAN_PRIO_MASK
))
2878 input
= kzalloc(sizeof(*input
), GFP_KERNEL
);
2882 if (fsp
->m_u
.ether_spec
.h_proto
== ETHER_TYPE_FULL_MASK
) {
2883 input
->filter
.etype
= fsp
->h_u
.ether_spec
.h_proto
;
2884 input
->filter
.match_flags
= IGB_FILTER_FLAG_ETHER_TYPE
;
2887 if ((fsp
->flow_type
& FLOW_EXT
) && fsp
->m_ext
.vlan_tci
) {
2888 if (fsp
->m_ext
.vlan_tci
!= htons(VLAN_PRIO_MASK
)) {
2892 input
->filter
.vlan_tci
= fsp
->h_ext
.vlan_tci
;
2893 input
->filter
.match_flags
|= IGB_FILTER_FLAG_VLAN_TCI
;
2896 input
->action
= fsp
->ring_cookie
;
2897 input
->sw_idx
= fsp
->location
;
2899 spin_lock(&adapter
->nfc_lock
);
2901 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2902 if (!memcmp(&input
->filter
, &rule
->filter
,
2903 sizeof(input
->filter
))) {
2905 dev_err(&adapter
->pdev
->dev
,
2906 "ethtool: this filter is already set\n");
2907 goto err_out_w_lock
;
2911 err
= igb_add_filter(adapter
, input
);
2913 goto err_out_w_lock
;
2915 igb_update_ethtool_nfc_entry(adapter
, input
, input
->sw_idx
);
2917 spin_unlock(&adapter
->nfc_lock
);
2921 spin_unlock(&adapter
->nfc_lock
);
2927 static int igb_del_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2928 struct ethtool_rxnfc
*cmd
)
2930 struct ethtool_rx_flow_spec
*fsp
=
2931 (struct ethtool_rx_flow_spec
*)&cmd
->fs
;
2934 spin_lock(&adapter
->nfc_lock
);
2935 err
= igb_update_ethtool_nfc_entry(adapter
, NULL
, fsp
->location
);
2936 spin_unlock(&adapter
->nfc_lock
);
2941 static int igb_set_rxnfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
)
2943 struct igb_adapter
*adapter
= netdev_priv(dev
);
2944 int ret
= -EOPNOTSUPP
;
2948 ret
= igb_set_rss_hash_opt(adapter
, cmd
);
2950 case ETHTOOL_SRXCLSRLINS
:
2951 ret
= igb_add_ethtool_nfc_entry(adapter
, cmd
);
2953 case ETHTOOL_SRXCLSRLDEL
:
2954 ret
= igb_del_ethtool_nfc_entry(adapter
, cmd
);
2962 static int igb_get_eee(struct net_device
*netdev
, struct ethtool_eee
*edata
)
2964 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2965 struct e1000_hw
*hw
= &adapter
->hw
;
2969 if ((hw
->mac
.type
< e1000_i350
) ||
2970 (hw
->phy
.media_type
!= e1000_media_type_copper
))
2973 edata
->supported
= (SUPPORTED_1000baseT_Full
|
2974 SUPPORTED_100baseT_Full
);
2975 if (!hw
->dev_spec
._82575
.eee_disable
)
2977 mmd_eee_adv_to_ethtool_adv_t(adapter
->eee_advert
);
2979 /* The IPCNFG and EEER registers are not supported on I354. */
2980 if (hw
->mac
.type
== e1000_i354
) {
2981 igb_get_eee_status_i354(hw
, (bool *)&edata
->eee_active
);
2985 eeer
= rd32(E1000_EEER
);
2987 /* EEE status on negotiated link */
2988 if (eeer
& E1000_EEER_EEE_NEG
)
2989 edata
->eee_active
= true;
2991 if (eeer
& E1000_EEER_TX_LPI_EN
)
2992 edata
->tx_lpi_enabled
= true;
2995 /* EEE Link Partner Advertised */
2996 switch (hw
->mac
.type
) {
2998 ret_val
= igb_read_emi_reg(hw
, E1000_EEE_LP_ADV_ADDR_I350
,
3003 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
3008 ret_val
= igb_read_xmdio_reg(hw
, E1000_EEE_LP_ADV_ADDR_I210
,
3009 E1000_EEE_LP_ADV_DEV_I210
,
3014 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
3021 edata
->eee_enabled
= !hw
->dev_spec
._82575
.eee_disable
;
3023 if ((hw
->mac
.type
== e1000_i354
) &&
3024 (edata
->eee_enabled
))
3025 edata
->tx_lpi_enabled
= true;
3027 /* Report correct negotiated EEE status for devices that
3028 * wrongly report EEE at half-duplex
3030 if (adapter
->link_duplex
== HALF_DUPLEX
) {
3031 edata
->eee_enabled
= false;
3032 edata
->eee_active
= false;
3033 edata
->tx_lpi_enabled
= false;
3034 edata
->advertised
&= ~edata
->advertised
;
3040 static int igb_set_eee(struct net_device
*netdev
,
3041 struct ethtool_eee
*edata
)
3043 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3044 struct e1000_hw
*hw
= &adapter
->hw
;
3045 struct ethtool_eee eee_curr
;
3046 bool adv1g_eee
= true, adv100m_eee
= true;
3049 if ((hw
->mac
.type
< e1000_i350
) ||
3050 (hw
->phy
.media_type
!= e1000_media_type_copper
))
3053 memset(&eee_curr
, 0, sizeof(struct ethtool_eee
));
3055 ret_val
= igb_get_eee(netdev
, &eee_curr
);
3059 if (eee_curr
.eee_enabled
) {
3060 if (eee_curr
.tx_lpi_enabled
!= edata
->tx_lpi_enabled
) {
3061 dev_err(&adapter
->pdev
->dev
,
3062 "Setting EEE tx-lpi is not supported\n");
3066 /* Tx LPI timer is not implemented currently */
3067 if (edata
->tx_lpi_timer
) {
3068 dev_err(&adapter
->pdev
->dev
,
3069 "Setting EEE Tx LPI timer is not supported\n");
3073 if (!edata
->advertised
|| (edata
->advertised
&
3074 ~(ADVERTISE_100_FULL
| ADVERTISE_1000_FULL
))) {
3075 dev_err(&adapter
->pdev
->dev
,
3076 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3079 adv100m_eee
= !!(edata
->advertised
& ADVERTISE_100_FULL
);
3080 adv1g_eee
= !!(edata
->advertised
& ADVERTISE_1000_FULL
);
3082 } else if (!edata
->eee_enabled
) {
3083 dev_err(&adapter
->pdev
->dev
,
3084 "Setting EEE options are not supported with EEE disabled\n");
3088 adapter
->eee_advert
= ethtool_adv_to_mmd_eee_adv_t(edata
->advertised
);
3089 if (hw
->dev_spec
._82575
.eee_disable
!= !edata
->eee_enabled
) {
3090 hw
->dev_spec
._82575
.eee_disable
= !edata
->eee_enabled
;
3091 adapter
->flags
|= IGB_FLAG_EEE
;
3094 if (netif_running(netdev
))
3095 igb_reinit_locked(adapter
);
3100 if (hw
->mac
.type
== e1000_i354
)
3101 ret_val
= igb_set_eee_i354(hw
, adv1g_eee
, adv100m_eee
);
3103 ret_val
= igb_set_eee_i350(hw
, adv1g_eee
, adv100m_eee
);
3106 dev_err(&adapter
->pdev
->dev
,
3107 "Problem setting EEE advertisement options\n");
3114 static int igb_get_module_info(struct net_device
*netdev
,
3115 struct ethtool_modinfo
*modinfo
)
3117 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3118 struct e1000_hw
*hw
= &adapter
->hw
;
3120 u16 sff8472_rev
, addr_mode
;
3121 bool page_swap
= false;
3123 if ((hw
->phy
.media_type
== e1000_media_type_copper
) ||
3124 (hw
->phy
.media_type
== e1000_media_type_unknown
))
3127 /* Check whether we support SFF-8472 or not */
3128 status
= igb_read_phy_reg_i2c(hw
, IGB_SFF_8472_COMP
, &sff8472_rev
);
3132 /* addressing mode is not supported */
3133 status
= igb_read_phy_reg_i2c(hw
, IGB_SFF_8472_SWAP
, &addr_mode
);
3137 /* addressing mode is not supported */
3138 if ((addr_mode
& 0xFF) & IGB_SFF_ADDRESSING_MODE
) {
3139 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3143 if ((sff8472_rev
& 0xFF) == IGB_SFF_8472_UNSUP
|| page_swap
) {
3144 /* We have an SFP, but it does not support SFF-8472 */
3145 modinfo
->type
= ETH_MODULE_SFF_8079
;
3146 modinfo
->eeprom_len
= ETH_MODULE_SFF_8079_LEN
;
3148 /* We have an SFP which supports a revision of SFF-8472 */
3149 modinfo
->type
= ETH_MODULE_SFF_8472
;
3150 modinfo
->eeprom_len
= ETH_MODULE_SFF_8472_LEN
;
3156 static int igb_get_module_eeprom(struct net_device
*netdev
,
3157 struct ethtool_eeprom
*ee
, u8
*data
)
3159 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3160 struct e1000_hw
*hw
= &adapter
->hw
;
3163 u16 first_word
, last_word
;
3169 first_word
= ee
->offset
>> 1;
3170 last_word
= (ee
->offset
+ ee
->len
- 1) >> 1;
3172 dataword
= kmalloc(sizeof(u16
) * (last_word
- first_word
+ 1),
3177 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3178 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
3179 status
= igb_read_phy_reg_i2c(hw
, (first_word
+ i
) * 2,
3182 /* Error occurred while reading module */
3187 be16_to_cpus(&dataword
[i
]);
3190 memcpy(data
, (u8
*)dataword
+ (ee
->offset
& 1), ee
->len
);
3196 static int igb_ethtool_begin(struct net_device
*netdev
)
3198 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3199 pm_runtime_get_sync(&adapter
->pdev
->dev
);
3203 static void igb_ethtool_complete(struct net_device
*netdev
)
3205 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3206 pm_runtime_put(&adapter
->pdev
->dev
);
3209 static u32
igb_get_rxfh_indir_size(struct net_device
*netdev
)
3211 return IGB_RETA_SIZE
;
3214 static int igb_get_rxfh(struct net_device
*netdev
, u32
*indir
, u8
*key
,
3217 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3221 *hfunc
= ETH_RSS_HASH_TOP
;
3224 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3225 indir
[i
] = adapter
->rss_indir_tbl
[i
];
3230 void igb_write_rss_indir_tbl(struct igb_adapter
*adapter
)
3232 struct e1000_hw
*hw
= &adapter
->hw
;
3233 u32 reg
= E1000_RETA(0);
3237 switch (hw
->mac
.type
) {
3242 /* 82576 supports 2 RSS queues for SR-IOV */
3243 if (adapter
->vfs_allocated_count
)
3250 while (i
< IGB_RETA_SIZE
) {
3254 for (j
= 3; j
>= 0; j
--) {
3256 val
|= adapter
->rss_indir_tbl
[i
+ j
];
3259 wr32(reg
, val
<< shift
);
3265 static int igb_set_rxfh(struct net_device
*netdev
, const u32
*indir
,
3266 const u8
*key
, const u8 hfunc
)
3268 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3269 struct e1000_hw
*hw
= &adapter
->hw
;
3273 /* We do not allow change in unsupported parameters */
3275 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
3280 num_queues
= adapter
->rss_queues
;
3282 switch (hw
->mac
.type
) {
3284 /* 82576 supports 2 RSS queues for SR-IOV */
3285 if (adapter
->vfs_allocated_count
)
3292 /* Verify user input. */
3293 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3294 if (indir
[i
] >= num_queues
)
3298 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3299 adapter
->rss_indir_tbl
[i
] = indir
[i
];
3301 igb_write_rss_indir_tbl(adapter
);
3306 static unsigned int igb_max_channels(struct igb_adapter
*adapter
)
3308 struct e1000_hw
*hw
= &adapter
->hw
;
3309 unsigned int max_combined
= 0;
3311 switch (hw
->mac
.type
) {
3313 max_combined
= IGB_MAX_RX_QUEUES_I211
;
3317 max_combined
= IGB_MAX_RX_QUEUES_82575
;
3320 if (!!adapter
->vfs_allocated_count
) {
3326 if (!!adapter
->vfs_allocated_count
) {
3334 max_combined
= IGB_MAX_RX_QUEUES
;
3338 return max_combined
;
3341 static void igb_get_channels(struct net_device
*netdev
,
3342 struct ethtool_channels
*ch
)
3344 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3346 /* Report maximum channels */
3347 ch
->max_combined
= igb_max_channels(adapter
);
3349 /* Report info for other vector */
3350 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
3351 ch
->max_other
= NON_Q_VECTORS
;
3352 ch
->other_count
= NON_Q_VECTORS
;
3355 ch
->combined_count
= adapter
->rss_queues
;
3358 static int igb_set_channels(struct net_device
*netdev
,
3359 struct ethtool_channels
*ch
)
3361 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3362 unsigned int count
= ch
->combined_count
;
3363 unsigned int max_combined
= 0;
3365 /* Verify they are not requesting separate vectors */
3366 if (!count
|| ch
->rx_count
|| ch
->tx_count
)
3369 /* Verify other_count is valid and has not been changed */
3370 if (ch
->other_count
!= NON_Q_VECTORS
)
3373 /* Verify the number of channels doesn't exceed hw limits */
3374 max_combined
= igb_max_channels(adapter
);
3375 if (count
> max_combined
)
3378 if (count
!= adapter
->rss_queues
) {
3379 adapter
->rss_queues
= count
;
3380 igb_set_flag_queue_pairs(adapter
, max_combined
);
3382 /* Hardware has to reinitialize queues and interrupts to
3383 * match the new configuration.
3385 return igb_reinit_queues(adapter
);
3391 static const struct ethtool_ops igb_ethtool_ops
= {
3392 .get_settings
= igb_get_settings
,
3393 .set_settings
= igb_set_settings
,
3394 .get_drvinfo
= igb_get_drvinfo
,
3395 .get_regs_len
= igb_get_regs_len
,
3396 .get_regs
= igb_get_regs
,
3397 .get_wol
= igb_get_wol
,
3398 .set_wol
= igb_set_wol
,
3399 .get_msglevel
= igb_get_msglevel
,
3400 .set_msglevel
= igb_set_msglevel
,
3401 .nway_reset
= igb_nway_reset
,
3402 .get_link
= igb_get_link
,
3403 .get_eeprom_len
= igb_get_eeprom_len
,
3404 .get_eeprom
= igb_get_eeprom
,
3405 .set_eeprom
= igb_set_eeprom
,
3406 .get_ringparam
= igb_get_ringparam
,
3407 .set_ringparam
= igb_set_ringparam
,
3408 .get_pauseparam
= igb_get_pauseparam
,
3409 .set_pauseparam
= igb_set_pauseparam
,
3410 .self_test
= igb_diag_test
,
3411 .get_strings
= igb_get_strings
,
3412 .set_phys_id
= igb_set_phys_id
,
3413 .get_sset_count
= igb_get_sset_count
,
3414 .get_ethtool_stats
= igb_get_ethtool_stats
,
3415 .get_coalesce
= igb_get_coalesce
,
3416 .set_coalesce
= igb_set_coalesce
,
3417 .get_ts_info
= igb_get_ts_info
,
3418 .get_rxnfc
= igb_get_rxnfc
,
3419 .set_rxnfc
= igb_set_rxnfc
,
3420 .get_eee
= igb_get_eee
,
3421 .set_eee
= igb_set_eee
,
3422 .get_module_info
= igb_get_module_info
,
3423 .get_module_eeprom
= igb_get_module_eeprom
,
3424 .get_rxfh_indir_size
= igb_get_rxfh_indir_size
,
3425 .get_rxfh
= igb_get_rxfh
,
3426 .set_rxfh
= igb_set_rxfh
,
3427 .get_channels
= igb_get_channels
,
3428 .set_channels
= igb_set_channels
,
3429 .begin
= igb_ethtool_begin
,
3430 .complete
= igb_ethtool_complete
,
3433 void igb_set_ethtool_ops(struct net_device
*netdev
)
3435 netdev
->ethtool_ops
= &igb_ethtool_ops
;