pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / drivers / net / ethernet / marvell / skge.c
blob7173836fe361962d5c88796ac34c07c9d5ecd166
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
48 #include <asm/irq.h>
50 #include "skge.h"
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.14"
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
66 #define BLINK_MS 250
67 #define LINK_HZ HZ
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION);
77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78 NETIF_MSG_LINK | NETIF_MSG_IFUP |
79 NETIF_MSG_IFDOWN);
81 static int debug = -1; /* defaults above */
82 module_param(debug, int, 0);
83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
85 static const struct pci_device_id skge_id_table[] = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90 #endif
91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
97 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
99 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100 { 0 }
102 MODULE_DEVICE_TABLE(pci, skge_id_table);
104 static int skge_up(struct net_device *dev);
105 static int skge_down(struct net_device *dev);
106 static void skge_phy_reset(struct skge_port *skge);
107 static void skge_tx_clean(struct net_device *dev);
108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110 static void genesis_get_stats(struct skge_port *skge, u64 *data);
111 static void yukon_get_stats(struct skge_port *skge, u64 *data);
112 static void yukon_init(struct skge_hw *hw, int port);
113 static void genesis_mac_init(struct skge_hw *hw, int port);
114 static void genesis_link_up(struct skge_port *skge);
115 static void skge_set_multicast(struct net_device *dev);
116 static irqreturn_t skge_intr(int irq, void *dev_id);
118 /* Avoid conditionals by using array */
119 static const int txqaddr[] = { Q_XA1, Q_XA2 };
120 static const int rxqaddr[] = { Q_R1, Q_R2 };
121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
126 static inline bool is_genesis(const struct skge_hw *hw)
128 #ifdef CONFIG_SKGE_GENESIS
129 return hw->chip_id == CHIP_ID_GENESIS;
130 #else
131 return false;
132 #endif
135 static int skge_get_regs_len(struct net_device *dev)
137 return 0x4000;
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
143 * cause bus hangs!
145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146 void *p)
148 const struct skge_port *skge = netdev_priv(dev);
149 const void __iomem *io = skge->hw->regs;
151 regs->version = 1;
152 memset(p, 0, regs->len);
153 memcpy_fromio(p, io, B3_RAM_ADDR);
155 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
156 regs->len - B3_RI_WTO_R1);
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32 wol_supported(const struct skge_hw *hw)
162 if (is_genesis(hw))
163 return 0;
165 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166 return 0;
168 return WAKE_MAGIC | WAKE_PHY;
171 static void skge_wol_init(struct skge_port *skge)
173 struct skge_hw *hw = skge->hw;
174 int port = skge->port;
175 u16 ctrl;
177 skge_write16(hw, B0_CTST, CS_RST_CLR);
178 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
180 /* Turn on Vaux */
181 skge_write8(hw, B0_POWER_CTRL,
182 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
184 /* WA code for COMA mode -- clear PHY reset */
185 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187 u32 reg = skge_read32(hw, B2_GP_IO);
188 reg |= GP_DIR_9;
189 reg &= ~GP_IO_9;
190 skge_write32(hw, B2_GP_IO, reg);
193 skge_write32(hw, SK_REG(port, GPHY_CTRL),
194 GPC_DIS_SLEEP |
195 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
196 GPC_ANEG_1 | GPC_RST_SET);
198 skge_write32(hw, SK_REG(port, GPHY_CTRL),
199 GPC_DIS_SLEEP |
200 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
201 GPC_ANEG_1 | GPC_RST_CLR);
203 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
205 /* Force to 10/100 skge_reset will re-enable on resume */
206 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
207 (PHY_AN_100FULL | PHY_AN_100HALF |
208 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
209 /* no 1000 HD/FD */
210 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211 gm_phy_write(hw, port, PHY_MARV_CTRL,
212 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
213 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
216 /* Set GMAC to no flow control and auto update for speed/duplex */
217 gma_write16(hw, port, GM_GP_CTRL,
218 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
219 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
221 /* Set WOL address */
222 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223 skge->netdev->dev_addr, ETH_ALEN);
225 /* Turn on appropriate WOL control bits */
226 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227 ctrl = 0;
228 if (skge->wol & WAKE_PHY)
229 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230 else
231 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
233 if (skge->wol & WAKE_MAGIC)
234 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235 else
236 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
238 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
239 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
241 /* block receiver */
242 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
247 struct skge_port *skge = netdev_priv(dev);
249 wol->supported = wol_supported(skge->hw);
250 wol->wolopts = skge->wol;
253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
255 struct skge_port *skge = netdev_priv(dev);
256 struct skge_hw *hw = skge->hw;
258 if ((wol->wolopts & ~wol_supported(hw)) ||
259 !device_can_wakeup(&hw->pdev->dev))
260 return -EOPNOTSUPP;
262 skge->wol = wol->wolopts;
264 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
266 return 0;
269 /* Determine supported/advertised modes based on hardware.
270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
272 static u32 skge_supported_modes(const struct skge_hw *hw)
274 u32 supported;
276 if (hw->copper) {
277 supported = (SUPPORTED_10baseT_Half |
278 SUPPORTED_10baseT_Full |
279 SUPPORTED_100baseT_Half |
280 SUPPORTED_100baseT_Full |
281 SUPPORTED_1000baseT_Half |
282 SUPPORTED_1000baseT_Full |
283 SUPPORTED_Autoneg |
284 SUPPORTED_TP);
286 if (is_genesis(hw))
287 supported &= ~(SUPPORTED_10baseT_Half |
288 SUPPORTED_10baseT_Full |
289 SUPPORTED_100baseT_Half |
290 SUPPORTED_100baseT_Full);
292 else if (hw->chip_id == CHIP_ID_YUKON)
293 supported &= ~SUPPORTED_1000baseT_Half;
294 } else
295 supported = (SUPPORTED_1000baseT_Full |
296 SUPPORTED_1000baseT_Half |
297 SUPPORTED_FIBRE |
298 SUPPORTED_Autoneg);
300 return supported;
303 static int skge_get_settings(struct net_device *dev,
304 struct ethtool_cmd *ecmd)
306 struct skge_port *skge = netdev_priv(dev);
307 struct skge_hw *hw = skge->hw;
309 ecmd->transceiver = XCVR_INTERNAL;
310 ecmd->supported = skge_supported_modes(hw);
312 if (hw->copper) {
313 ecmd->port = PORT_TP;
314 ecmd->phy_address = hw->phy_addr;
315 } else
316 ecmd->port = PORT_FIBRE;
318 ecmd->advertising = skge->advertising;
319 ecmd->autoneg = skge->autoneg;
320 ethtool_cmd_speed_set(ecmd, skge->speed);
321 ecmd->duplex = skge->duplex;
322 return 0;
325 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
327 struct skge_port *skge = netdev_priv(dev);
328 const struct skge_hw *hw = skge->hw;
329 u32 supported = skge_supported_modes(hw);
330 int err = 0;
332 if (ecmd->autoneg == AUTONEG_ENABLE) {
333 ecmd->advertising = supported;
334 skge->duplex = -1;
335 skge->speed = -1;
336 } else {
337 u32 setting;
338 u32 speed = ethtool_cmd_speed(ecmd);
340 switch (speed) {
341 case SPEED_1000:
342 if (ecmd->duplex == DUPLEX_FULL)
343 setting = SUPPORTED_1000baseT_Full;
344 else if (ecmd->duplex == DUPLEX_HALF)
345 setting = SUPPORTED_1000baseT_Half;
346 else
347 return -EINVAL;
348 break;
349 case SPEED_100:
350 if (ecmd->duplex == DUPLEX_FULL)
351 setting = SUPPORTED_100baseT_Full;
352 else if (ecmd->duplex == DUPLEX_HALF)
353 setting = SUPPORTED_100baseT_Half;
354 else
355 return -EINVAL;
356 break;
358 case SPEED_10:
359 if (ecmd->duplex == DUPLEX_FULL)
360 setting = SUPPORTED_10baseT_Full;
361 else if (ecmd->duplex == DUPLEX_HALF)
362 setting = SUPPORTED_10baseT_Half;
363 else
364 return -EINVAL;
365 break;
366 default:
367 return -EINVAL;
370 if ((setting & supported) == 0)
371 return -EINVAL;
373 skge->speed = speed;
374 skge->duplex = ecmd->duplex;
377 skge->autoneg = ecmd->autoneg;
378 skge->advertising = ecmd->advertising;
380 if (netif_running(dev)) {
381 skge_down(dev);
382 err = skge_up(dev);
383 if (err) {
384 dev_close(dev);
385 return err;
389 return 0;
392 static void skge_get_drvinfo(struct net_device *dev,
393 struct ethtool_drvinfo *info)
395 struct skge_port *skge = netdev_priv(dev);
397 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
398 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
399 strlcpy(info->bus_info, pci_name(skge->hw->pdev),
400 sizeof(info->bus_info));
403 static const struct skge_stat {
404 char name[ETH_GSTRING_LEN];
405 u16 xmac_offset;
406 u16 gma_offset;
407 } skge_stats[] = {
408 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
409 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
411 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
412 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
413 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
414 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
415 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
416 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
417 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
420 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
427 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
430 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
434 static int skge_get_sset_count(struct net_device *dev, int sset)
436 switch (sset) {
437 case ETH_SS_STATS:
438 return ARRAY_SIZE(skge_stats);
439 default:
440 return -EOPNOTSUPP;
444 static void skge_get_ethtool_stats(struct net_device *dev,
445 struct ethtool_stats *stats, u64 *data)
447 struct skge_port *skge = netdev_priv(dev);
449 if (is_genesis(skge->hw))
450 genesis_get_stats(skge, data);
451 else
452 yukon_get_stats(skge, data);
455 /* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
461 struct skge_port *skge = netdev_priv(dev);
462 u64 data[ARRAY_SIZE(skge_stats)];
464 if (is_genesis(skge->hw))
465 genesis_get_stats(skge, data);
466 else
467 yukon_get_stats(skge, data);
469 dev->stats.tx_bytes = data[0];
470 dev->stats.rx_bytes = data[1];
471 dev->stats.tx_packets = data[2] + data[4] + data[6];
472 dev->stats.rx_packets = data[3] + data[5] + data[7];
473 dev->stats.multicast = data[3] + data[5];
474 dev->stats.collisions = data[10];
475 dev->stats.tx_aborted_errors = data[12];
477 return &dev->stats;
480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
482 int i;
484 switch (stringset) {
485 case ETH_SS_STATS:
486 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 memcpy(data + i * ETH_GSTRING_LEN,
488 skge_stats[i].name, ETH_GSTRING_LEN);
489 break;
493 static void skge_get_ring_param(struct net_device *dev,
494 struct ethtool_ringparam *p)
496 struct skge_port *skge = netdev_priv(dev);
498 p->rx_max_pending = MAX_RX_RING_SIZE;
499 p->tx_max_pending = MAX_TX_RING_SIZE;
501 p->rx_pending = skge->rx_ring.count;
502 p->tx_pending = skge->tx_ring.count;
505 static int skge_set_ring_param(struct net_device *dev,
506 struct ethtool_ringparam *p)
508 struct skge_port *skge = netdev_priv(dev);
509 int err = 0;
511 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
512 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
513 return -EINVAL;
515 skge->rx_ring.count = p->rx_pending;
516 skge->tx_ring.count = p->tx_pending;
518 if (netif_running(dev)) {
519 skge_down(dev);
520 err = skge_up(dev);
521 if (err)
522 dev_close(dev);
525 return err;
528 static u32 skge_get_msglevel(struct net_device *netdev)
530 struct skge_port *skge = netdev_priv(netdev);
531 return skge->msg_enable;
534 static void skge_set_msglevel(struct net_device *netdev, u32 value)
536 struct skge_port *skge = netdev_priv(netdev);
537 skge->msg_enable = value;
540 static int skge_nway_reset(struct net_device *dev)
542 struct skge_port *skge = netdev_priv(dev);
544 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
545 return -EINVAL;
547 skge_phy_reset(skge);
548 return 0;
551 static void skge_get_pauseparam(struct net_device *dev,
552 struct ethtool_pauseparam *ecmd)
554 struct skge_port *skge = netdev_priv(dev);
556 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
557 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
558 ecmd->tx_pause = (ecmd->rx_pause ||
559 (skge->flow_control == FLOW_MODE_LOC_SEND));
561 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
564 static int skge_set_pauseparam(struct net_device *dev,
565 struct ethtool_pauseparam *ecmd)
567 struct skge_port *skge = netdev_priv(dev);
568 struct ethtool_pauseparam old;
569 int err = 0;
571 skge_get_pauseparam(dev, &old);
573 if (ecmd->autoneg != old.autoneg)
574 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
575 else {
576 if (ecmd->rx_pause && ecmd->tx_pause)
577 skge->flow_control = FLOW_MODE_SYMMETRIC;
578 else if (ecmd->rx_pause && !ecmd->tx_pause)
579 skge->flow_control = FLOW_MODE_SYM_OR_REM;
580 else if (!ecmd->rx_pause && ecmd->tx_pause)
581 skge->flow_control = FLOW_MODE_LOC_SEND;
582 else
583 skge->flow_control = FLOW_MODE_NONE;
586 if (netif_running(dev)) {
587 skge_down(dev);
588 err = skge_up(dev);
589 if (err) {
590 dev_close(dev);
591 return err;
595 return 0;
598 /* Chip internal frequency for clock calculations */
599 static inline u32 hwkhz(const struct skge_hw *hw)
601 return is_genesis(hw) ? 53125 : 78125;
604 /* Chip HZ to microseconds */
605 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
607 return (ticks * 1000) / hwkhz(hw);
610 /* Microseconds to chip HZ */
611 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
613 return hwkhz(hw) * usec / 1000;
616 static int skge_get_coalesce(struct net_device *dev,
617 struct ethtool_coalesce *ecmd)
619 struct skge_port *skge = netdev_priv(dev);
620 struct skge_hw *hw = skge->hw;
621 int port = skge->port;
623 ecmd->rx_coalesce_usecs = 0;
624 ecmd->tx_coalesce_usecs = 0;
626 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
627 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
628 u32 msk = skge_read32(hw, B2_IRQM_MSK);
630 if (msk & rxirqmask[port])
631 ecmd->rx_coalesce_usecs = delay;
632 if (msk & txirqmask[port])
633 ecmd->tx_coalesce_usecs = delay;
636 return 0;
639 /* Note: interrupt timer is per board, but can turn on/off per port */
640 static int skge_set_coalesce(struct net_device *dev,
641 struct ethtool_coalesce *ecmd)
643 struct skge_port *skge = netdev_priv(dev);
644 struct skge_hw *hw = skge->hw;
645 int port = skge->port;
646 u32 msk = skge_read32(hw, B2_IRQM_MSK);
647 u32 delay = 25;
649 if (ecmd->rx_coalesce_usecs == 0)
650 msk &= ~rxirqmask[port];
651 else if (ecmd->rx_coalesce_usecs < 25 ||
652 ecmd->rx_coalesce_usecs > 33333)
653 return -EINVAL;
654 else {
655 msk |= rxirqmask[port];
656 delay = ecmd->rx_coalesce_usecs;
659 if (ecmd->tx_coalesce_usecs == 0)
660 msk &= ~txirqmask[port];
661 else if (ecmd->tx_coalesce_usecs < 25 ||
662 ecmd->tx_coalesce_usecs > 33333)
663 return -EINVAL;
664 else {
665 msk |= txirqmask[port];
666 delay = min(delay, ecmd->rx_coalesce_usecs);
669 skge_write32(hw, B2_IRQM_MSK, msk);
670 if (msk == 0)
671 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
672 else {
673 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
674 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
676 return 0;
679 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
680 static void skge_led(struct skge_port *skge, enum led_mode mode)
682 struct skge_hw *hw = skge->hw;
683 int port = skge->port;
685 spin_lock_bh(&hw->phy_lock);
686 if (is_genesis(hw)) {
687 switch (mode) {
688 case LED_MODE_OFF:
689 if (hw->phy_type == SK_PHY_BCOM)
690 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
691 else {
692 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
693 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
695 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
696 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
697 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
698 break;
700 case LED_MODE_ON:
701 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
702 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
704 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
705 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
707 break;
709 case LED_MODE_TST:
710 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
711 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
714 if (hw->phy_type == SK_PHY_BCOM)
715 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
716 else {
717 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
718 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
719 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
723 } else {
724 switch (mode) {
725 case LED_MODE_OFF:
726 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
727 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
728 PHY_M_LED_MO_DUP(MO_LED_OFF) |
729 PHY_M_LED_MO_10(MO_LED_OFF) |
730 PHY_M_LED_MO_100(MO_LED_OFF) |
731 PHY_M_LED_MO_1000(MO_LED_OFF) |
732 PHY_M_LED_MO_RX(MO_LED_OFF));
733 break;
734 case LED_MODE_ON:
735 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
736 PHY_M_LED_PULS_DUR(PULS_170MS) |
737 PHY_M_LED_BLINK_RT(BLINK_84MS) |
738 PHY_M_LEDC_TX_CTRL |
739 PHY_M_LEDC_DP_CTRL);
741 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
742 PHY_M_LED_MO_RX(MO_LED_OFF) |
743 (skge->speed == SPEED_100 ?
744 PHY_M_LED_MO_100(MO_LED_ON) : 0));
745 break;
746 case LED_MODE_TST:
747 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
748 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749 PHY_M_LED_MO_DUP(MO_LED_ON) |
750 PHY_M_LED_MO_10(MO_LED_ON) |
751 PHY_M_LED_MO_100(MO_LED_ON) |
752 PHY_M_LED_MO_1000(MO_LED_ON) |
753 PHY_M_LED_MO_RX(MO_LED_ON));
756 spin_unlock_bh(&hw->phy_lock);
759 /* blink LED's for finding board */
760 static int skge_set_phys_id(struct net_device *dev,
761 enum ethtool_phys_id_state state)
763 struct skge_port *skge = netdev_priv(dev);
765 switch (state) {
766 case ETHTOOL_ID_ACTIVE:
767 return 2; /* cycle on/off twice per second */
769 case ETHTOOL_ID_ON:
770 skge_led(skge, LED_MODE_TST);
771 break;
773 case ETHTOOL_ID_OFF:
774 skge_led(skge, LED_MODE_OFF);
775 break;
777 case ETHTOOL_ID_INACTIVE:
778 /* back to regular LED state */
779 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
782 return 0;
785 static int skge_get_eeprom_len(struct net_device *dev)
787 struct skge_port *skge = netdev_priv(dev);
788 u32 reg2;
790 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
791 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
794 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
796 u32 val;
798 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
800 do {
801 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
802 } while (!(offset & PCI_VPD_ADDR_F));
804 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
805 return val;
808 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
810 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
811 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
812 offset | PCI_VPD_ADDR_F);
814 do {
815 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
816 } while (offset & PCI_VPD_ADDR_F);
819 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
820 u8 *data)
822 struct skge_port *skge = netdev_priv(dev);
823 struct pci_dev *pdev = skge->hw->pdev;
824 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
825 int length = eeprom->len;
826 u16 offset = eeprom->offset;
828 if (!cap)
829 return -EINVAL;
831 eeprom->magic = SKGE_EEPROM_MAGIC;
833 while (length > 0) {
834 u32 val = skge_vpd_read(pdev, cap, offset);
835 int n = min_t(int, length, sizeof(val));
837 memcpy(data, &val, n);
838 length -= n;
839 data += n;
840 offset += n;
842 return 0;
845 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
846 u8 *data)
848 struct skge_port *skge = netdev_priv(dev);
849 struct pci_dev *pdev = skge->hw->pdev;
850 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
851 int length = eeprom->len;
852 u16 offset = eeprom->offset;
854 if (!cap)
855 return -EINVAL;
857 if (eeprom->magic != SKGE_EEPROM_MAGIC)
858 return -EINVAL;
860 while (length > 0) {
861 u32 val;
862 int n = min_t(int, length, sizeof(val));
864 if (n < sizeof(val))
865 val = skge_vpd_read(pdev, cap, offset);
866 memcpy(&val, data, n);
868 skge_vpd_write(pdev, cap, offset, val);
870 length -= n;
871 data += n;
872 offset += n;
874 return 0;
877 static const struct ethtool_ops skge_ethtool_ops = {
878 .get_settings = skge_get_settings,
879 .set_settings = skge_set_settings,
880 .get_drvinfo = skge_get_drvinfo,
881 .get_regs_len = skge_get_regs_len,
882 .get_regs = skge_get_regs,
883 .get_wol = skge_get_wol,
884 .set_wol = skge_set_wol,
885 .get_msglevel = skge_get_msglevel,
886 .set_msglevel = skge_set_msglevel,
887 .nway_reset = skge_nway_reset,
888 .get_link = ethtool_op_get_link,
889 .get_eeprom_len = skge_get_eeprom_len,
890 .get_eeprom = skge_get_eeprom,
891 .set_eeprom = skge_set_eeprom,
892 .get_ringparam = skge_get_ring_param,
893 .set_ringparam = skge_set_ring_param,
894 .get_pauseparam = skge_get_pauseparam,
895 .set_pauseparam = skge_set_pauseparam,
896 .get_coalesce = skge_get_coalesce,
897 .set_coalesce = skge_set_coalesce,
898 .get_strings = skge_get_strings,
899 .set_phys_id = skge_set_phys_id,
900 .get_sset_count = skge_get_sset_count,
901 .get_ethtool_stats = skge_get_ethtool_stats,
905 * Allocate ring elements and chain them together
906 * One-to-one association of board descriptors with ring elements
908 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
910 struct skge_tx_desc *d;
911 struct skge_element *e;
912 int i;
914 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
915 if (!ring->start)
916 return -ENOMEM;
918 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
919 e->desc = d;
920 if (i == ring->count - 1) {
921 e->next = ring->start;
922 d->next_offset = base;
923 } else {
924 e->next = e + 1;
925 d->next_offset = base + (i+1) * sizeof(*d);
928 ring->to_use = ring->to_clean = ring->start;
930 return 0;
933 /* Allocate and setup a new buffer for receiving */
934 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
935 struct sk_buff *skb, unsigned int bufsize)
937 struct skge_rx_desc *rd = e->desc;
938 dma_addr_t map;
940 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
941 PCI_DMA_FROMDEVICE);
943 if (pci_dma_mapping_error(skge->hw->pdev, map))
944 return -1;
946 rd->dma_lo = lower_32_bits(map);
947 rd->dma_hi = upper_32_bits(map);
948 e->skb = skb;
949 rd->csum1_start = ETH_HLEN;
950 rd->csum2_start = ETH_HLEN;
951 rd->csum1 = 0;
952 rd->csum2 = 0;
954 wmb();
956 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
957 dma_unmap_addr_set(e, mapaddr, map);
958 dma_unmap_len_set(e, maplen, bufsize);
959 return 0;
962 /* Resume receiving using existing skb,
963 * Note: DMA address is not changed by chip.
964 * MTU not changed while receiver active.
966 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
968 struct skge_rx_desc *rd = e->desc;
970 rd->csum2 = 0;
971 rd->csum2_start = ETH_HLEN;
973 wmb();
975 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
979 /* Free all buffers in receive ring, assumes receiver stopped */
980 static void skge_rx_clean(struct skge_port *skge)
982 struct skge_hw *hw = skge->hw;
983 struct skge_ring *ring = &skge->rx_ring;
984 struct skge_element *e;
986 e = ring->start;
987 do {
988 struct skge_rx_desc *rd = e->desc;
989 rd->control = 0;
990 if (e->skb) {
991 pci_unmap_single(hw->pdev,
992 dma_unmap_addr(e, mapaddr),
993 dma_unmap_len(e, maplen),
994 PCI_DMA_FROMDEVICE);
995 dev_kfree_skb(e->skb);
996 e->skb = NULL;
998 } while ((e = e->next) != ring->start);
1002 /* Allocate buffers for receive ring
1003 * For receive: to_clean is next received frame.
1005 static int skge_rx_fill(struct net_device *dev)
1007 struct skge_port *skge = netdev_priv(dev);
1008 struct skge_ring *ring = &skge->rx_ring;
1009 struct skge_element *e;
1011 e = ring->start;
1012 do {
1013 struct sk_buff *skb;
1015 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1016 GFP_KERNEL);
1017 if (!skb)
1018 return -ENOMEM;
1020 skb_reserve(skb, NET_IP_ALIGN);
1021 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1022 dev_kfree_skb(skb);
1023 return -EIO;
1025 } while ((e = e->next) != ring->start);
1027 ring->to_clean = ring->start;
1028 return 0;
1031 static const char *skge_pause(enum pause_status status)
1033 switch (status) {
1034 case FLOW_STAT_NONE:
1035 return "none";
1036 case FLOW_STAT_REM_SEND:
1037 return "rx only";
1038 case FLOW_STAT_LOC_SEND:
1039 return "tx_only";
1040 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1041 return "both";
1042 default:
1043 return "indeterminated";
1048 static void skge_link_up(struct skge_port *skge)
1050 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1051 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1053 netif_carrier_on(skge->netdev);
1054 netif_wake_queue(skge->netdev);
1056 netif_info(skge, link, skge->netdev,
1057 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1058 skge->speed,
1059 skge->duplex == DUPLEX_FULL ? "full" : "half",
1060 skge_pause(skge->flow_status));
1063 static void skge_link_down(struct skge_port *skge)
1065 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1066 netif_carrier_off(skge->netdev);
1067 netif_stop_queue(skge->netdev);
1069 netif_info(skge, link, skge->netdev, "Link is down\n");
1072 static void xm_link_down(struct skge_hw *hw, int port)
1074 struct net_device *dev = hw->dev[port];
1075 struct skge_port *skge = netdev_priv(dev);
1077 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1079 if (netif_carrier_ok(dev))
1080 skge_link_down(skge);
1083 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1085 int i;
1087 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1088 *val = xm_read16(hw, port, XM_PHY_DATA);
1090 if (hw->phy_type == SK_PHY_XMAC)
1091 goto ready;
1093 for (i = 0; i < PHY_RETRIES; i++) {
1094 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1095 goto ready;
1096 udelay(1);
1099 return -ETIMEDOUT;
1100 ready:
1101 *val = xm_read16(hw, port, XM_PHY_DATA);
1103 return 0;
1106 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1108 u16 v = 0;
1109 if (__xm_phy_read(hw, port, reg, &v))
1110 pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1111 return v;
1114 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1116 int i;
1118 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1119 for (i = 0; i < PHY_RETRIES; i++) {
1120 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1121 goto ready;
1122 udelay(1);
1124 return -EIO;
1126 ready:
1127 xm_write16(hw, port, XM_PHY_DATA, val);
1128 for (i = 0; i < PHY_RETRIES; i++) {
1129 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130 return 0;
1131 udelay(1);
1133 return -ETIMEDOUT;
1136 static void genesis_init(struct skge_hw *hw)
1138 /* set blink source counter */
1139 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1140 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1142 /* configure mac arbiter */
1143 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1145 /* configure mac arbiter timeout values */
1146 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1147 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1148 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1149 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1151 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1152 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1153 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1154 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1156 /* configure packet arbiter timeout */
1157 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1158 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1159 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1160 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1161 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1164 static void genesis_reset(struct skge_hw *hw, int port)
1166 static const u8 zero[8] = { 0 };
1167 u32 reg;
1169 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1171 /* reset the statistics module */
1172 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1173 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1174 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1175 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1176 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1178 /* disable Broadcom PHY IRQ */
1179 if (hw->phy_type == SK_PHY_BCOM)
1180 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1182 xm_outhash(hw, port, XM_HSM, zero);
1184 /* Flush TX and RX fifo */
1185 reg = xm_read32(hw, port, XM_MODE);
1186 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1187 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1190 /* Convert mode to MII values */
1191 static const u16 phy_pause_map[] = {
1192 [FLOW_MODE_NONE] = 0,
1193 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1194 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1195 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1198 /* special defines for FIBER (88E1011S only) */
1199 static const u16 fiber_pause_map[] = {
1200 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1201 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1202 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1203 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1207 /* Check status of Broadcom phy link */
1208 static void bcom_check_link(struct skge_hw *hw, int port)
1210 struct net_device *dev = hw->dev[port];
1211 struct skge_port *skge = netdev_priv(dev);
1212 u16 status;
1214 /* read twice because of latch */
1215 xm_phy_read(hw, port, PHY_BCOM_STAT);
1216 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1218 if ((status & PHY_ST_LSYNC) == 0) {
1219 xm_link_down(hw, port);
1220 return;
1223 if (skge->autoneg == AUTONEG_ENABLE) {
1224 u16 lpa, aux;
1226 if (!(status & PHY_ST_AN_OVER))
1227 return;
1229 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1230 if (lpa & PHY_B_AN_RF) {
1231 netdev_notice(dev, "remote fault\n");
1232 return;
1235 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1237 /* Check Duplex mismatch */
1238 switch (aux & PHY_B_AS_AN_RES_MSK) {
1239 case PHY_B_RES_1000FD:
1240 skge->duplex = DUPLEX_FULL;
1241 break;
1242 case PHY_B_RES_1000HD:
1243 skge->duplex = DUPLEX_HALF;
1244 break;
1245 default:
1246 netdev_notice(dev, "duplex mismatch\n");
1247 return;
1250 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1251 switch (aux & PHY_B_AS_PAUSE_MSK) {
1252 case PHY_B_AS_PAUSE_MSK:
1253 skge->flow_status = FLOW_STAT_SYMMETRIC;
1254 break;
1255 case PHY_B_AS_PRR:
1256 skge->flow_status = FLOW_STAT_REM_SEND;
1257 break;
1258 case PHY_B_AS_PRT:
1259 skge->flow_status = FLOW_STAT_LOC_SEND;
1260 break;
1261 default:
1262 skge->flow_status = FLOW_STAT_NONE;
1264 skge->speed = SPEED_1000;
1267 if (!netif_carrier_ok(dev))
1268 genesis_link_up(skge);
1271 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1272 * Phy on for 100 or 10Mbit operation
1274 static void bcom_phy_init(struct skge_port *skge)
1276 struct skge_hw *hw = skge->hw;
1277 int port = skge->port;
1278 int i;
1279 u16 id1, r, ext, ctl;
1281 /* magic workaround patterns for Broadcom */
1282 static const struct {
1283 u16 reg;
1284 u16 val;
1285 } A1hack[] = {
1286 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1287 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1288 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1289 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1290 }, C0hack[] = {
1291 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1292 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1295 /* read Id from external PHY (all have the same address) */
1296 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1298 /* Optimize MDIO transfer by suppressing preamble. */
1299 r = xm_read16(hw, port, XM_MMU_CMD);
1300 r |= XM_MMU_NO_PRE;
1301 xm_write16(hw, port, XM_MMU_CMD, r);
1303 switch (id1) {
1304 case PHY_BCOM_ID1_C0:
1306 * Workaround BCOM Errata for the C0 type.
1307 * Write magic patterns to reserved registers.
1309 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1310 xm_phy_write(hw, port,
1311 C0hack[i].reg, C0hack[i].val);
1313 break;
1314 case PHY_BCOM_ID1_A1:
1316 * Workaround BCOM Errata for the A1 type.
1317 * Write magic patterns to reserved registers.
1319 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1320 xm_phy_write(hw, port,
1321 A1hack[i].reg, A1hack[i].val);
1322 break;
1326 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1327 * Disable Power Management after reset.
1329 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1330 r |= PHY_B_AC_DIS_PM;
1331 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1333 /* Dummy read */
1334 xm_read16(hw, port, XM_ISRC);
1336 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1337 ctl = PHY_CT_SP1000; /* always 1000mbit */
1339 if (skge->autoneg == AUTONEG_ENABLE) {
1341 * Workaround BCOM Errata #1 for the C5 type.
1342 * 1000Base-T Link Acquisition Failure in Slave Mode
1343 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1345 u16 adv = PHY_B_1000C_RD;
1346 if (skge->advertising & ADVERTISED_1000baseT_Half)
1347 adv |= PHY_B_1000C_AHD;
1348 if (skge->advertising & ADVERTISED_1000baseT_Full)
1349 adv |= PHY_B_1000C_AFD;
1350 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1352 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1353 } else {
1354 if (skge->duplex == DUPLEX_FULL)
1355 ctl |= PHY_CT_DUP_MD;
1356 /* Force to slave */
1357 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1360 /* Set autonegotiation pause parameters */
1361 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1362 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1364 /* Handle Jumbo frames */
1365 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1366 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1367 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1369 ext |= PHY_B_PEC_HIGH_LA;
1373 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1374 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1376 /* Use link status change interrupt */
1377 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1380 static void xm_phy_init(struct skge_port *skge)
1382 struct skge_hw *hw = skge->hw;
1383 int port = skge->port;
1384 u16 ctrl = 0;
1386 if (skge->autoneg == AUTONEG_ENABLE) {
1387 if (skge->advertising & ADVERTISED_1000baseT_Half)
1388 ctrl |= PHY_X_AN_HD;
1389 if (skge->advertising & ADVERTISED_1000baseT_Full)
1390 ctrl |= PHY_X_AN_FD;
1392 ctrl |= fiber_pause_map[skge->flow_control];
1394 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1396 /* Restart Auto-negotiation */
1397 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1398 } else {
1399 /* Set DuplexMode in Config register */
1400 if (skge->duplex == DUPLEX_FULL)
1401 ctrl |= PHY_CT_DUP_MD;
1403 * Do NOT enable Auto-negotiation here. This would hold
1404 * the link down because no IDLEs are transmitted
1408 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1410 /* Poll PHY for status changes */
1411 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1414 static int xm_check_link(struct net_device *dev)
1416 struct skge_port *skge = netdev_priv(dev);
1417 struct skge_hw *hw = skge->hw;
1418 int port = skge->port;
1419 u16 status;
1421 /* read twice because of latch */
1422 xm_phy_read(hw, port, PHY_XMAC_STAT);
1423 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1425 if ((status & PHY_ST_LSYNC) == 0) {
1426 xm_link_down(hw, port);
1427 return 0;
1430 if (skge->autoneg == AUTONEG_ENABLE) {
1431 u16 lpa, res;
1433 if (!(status & PHY_ST_AN_OVER))
1434 return 0;
1436 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1437 if (lpa & PHY_B_AN_RF) {
1438 netdev_notice(dev, "remote fault\n");
1439 return 0;
1442 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1444 /* Check Duplex mismatch */
1445 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1446 case PHY_X_RS_FD:
1447 skge->duplex = DUPLEX_FULL;
1448 break;
1449 case PHY_X_RS_HD:
1450 skge->duplex = DUPLEX_HALF;
1451 break;
1452 default:
1453 netdev_notice(dev, "duplex mismatch\n");
1454 return 0;
1457 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1458 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1459 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1460 (lpa & PHY_X_P_SYM_MD))
1461 skge->flow_status = FLOW_STAT_SYMMETRIC;
1462 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1463 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1464 /* Enable PAUSE receive, disable PAUSE transmit */
1465 skge->flow_status = FLOW_STAT_REM_SEND;
1466 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1467 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1468 /* Disable PAUSE receive, enable PAUSE transmit */
1469 skge->flow_status = FLOW_STAT_LOC_SEND;
1470 else
1471 skge->flow_status = FLOW_STAT_NONE;
1473 skge->speed = SPEED_1000;
1476 if (!netif_carrier_ok(dev))
1477 genesis_link_up(skge);
1478 return 1;
1481 /* Poll to check for link coming up.
1483 * Since internal PHY is wired to a level triggered pin, can't
1484 * get an interrupt when carrier is detected, need to poll for
1485 * link coming up.
1487 static void xm_link_timer(unsigned long arg)
1489 struct skge_port *skge = (struct skge_port *) arg;
1490 struct net_device *dev = skge->netdev;
1491 struct skge_hw *hw = skge->hw;
1492 int port = skge->port;
1493 int i;
1494 unsigned long flags;
1496 if (!netif_running(dev))
1497 return;
1499 spin_lock_irqsave(&hw->phy_lock, flags);
1502 * Verify that the link by checking GPIO register three times.
1503 * This pin has the signal from the link_sync pin connected to it.
1505 for (i = 0; i < 3; i++) {
1506 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1507 goto link_down;
1510 /* Re-enable interrupt to detect link down */
1511 if (xm_check_link(dev)) {
1512 u16 msk = xm_read16(hw, port, XM_IMSK);
1513 msk &= ~XM_IS_INP_ASS;
1514 xm_write16(hw, port, XM_IMSK, msk);
1515 xm_read16(hw, port, XM_ISRC);
1516 } else {
1517 link_down:
1518 mod_timer(&skge->link_timer,
1519 round_jiffies(jiffies + LINK_HZ));
1521 spin_unlock_irqrestore(&hw->phy_lock, flags);
1524 static void genesis_mac_init(struct skge_hw *hw, int port)
1526 struct net_device *dev = hw->dev[port];
1527 struct skge_port *skge = netdev_priv(dev);
1528 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1529 int i;
1530 u32 r;
1531 static const u8 zero[6] = { 0 };
1533 for (i = 0; i < 10; i++) {
1534 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1535 MFF_SET_MAC_RST);
1536 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1537 goto reset_ok;
1538 udelay(1);
1541 netdev_warn(dev, "genesis reset failed\n");
1543 reset_ok:
1544 /* Unreset the XMAC. */
1545 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1548 * Perform additional initialization for external PHYs,
1549 * namely for the 1000baseTX cards that use the XMAC's
1550 * GMII mode.
1552 if (hw->phy_type != SK_PHY_XMAC) {
1553 /* Take external Phy out of reset */
1554 r = skge_read32(hw, B2_GP_IO);
1555 if (port == 0)
1556 r |= GP_DIR_0|GP_IO_0;
1557 else
1558 r |= GP_DIR_2|GP_IO_2;
1560 skge_write32(hw, B2_GP_IO, r);
1562 /* Enable GMII interface */
1563 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1567 switch (hw->phy_type) {
1568 case SK_PHY_XMAC:
1569 xm_phy_init(skge);
1570 break;
1571 case SK_PHY_BCOM:
1572 bcom_phy_init(skge);
1573 bcom_check_link(hw, port);
1576 /* Set Station Address */
1577 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1579 /* We don't use match addresses so clear */
1580 for (i = 1; i < 16; i++)
1581 xm_outaddr(hw, port, XM_EXM(i), zero);
1583 /* Clear MIB counters */
1584 xm_write16(hw, port, XM_STAT_CMD,
1585 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1586 /* Clear two times according to Errata #3 */
1587 xm_write16(hw, port, XM_STAT_CMD,
1588 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1590 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1591 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1593 /* We don't need the FCS appended to the packet. */
1594 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1595 if (jumbo)
1596 r |= XM_RX_BIG_PK_OK;
1598 if (skge->duplex == DUPLEX_HALF) {
1600 * If in manual half duplex mode the other side might be in
1601 * full duplex mode, so ignore if a carrier extension is not seen
1602 * on frames received
1604 r |= XM_RX_DIS_CEXT;
1606 xm_write16(hw, port, XM_RX_CMD, r);
1608 /* We want short frames padded to 60 bytes. */
1609 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1611 /* Increase threshold for jumbo frames on dual port */
1612 if (hw->ports > 1 && jumbo)
1613 xm_write16(hw, port, XM_TX_THR, 1020);
1614 else
1615 xm_write16(hw, port, XM_TX_THR, 512);
1618 * Enable the reception of all error frames. This is is
1619 * a necessary evil due to the design of the XMAC. The
1620 * XMAC's receive FIFO is only 8K in size, however jumbo
1621 * frames can be up to 9000 bytes in length. When bad
1622 * frame filtering is enabled, the XMAC's RX FIFO operates
1623 * in 'store and forward' mode. For this to work, the
1624 * entire frame has to fit into the FIFO, but that means
1625 * that jumbo frames larger than 8192 bytes will be
1626 * truncated. Disabling all bad frame filtering causes
1627 * the RX FIFO to operate in streaming mode, in which
1628 * case the XMAC will start transferring frames out of the
1629 * RX FIFO as soon as the FIFO threshold is reached.
1631 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1635 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1636 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1637 * and 'Octets Rx OK Hi Cnt Ov'.
1639 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1642 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1643 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1644 * and 'Octets Tx OK Hi Cnt Ov'.
1646 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1648 /* Configure MAC arbiter */
1649 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1651 /* configure timeout values */
1652 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1653 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1654 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1655 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1657 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1658 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1659 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1660 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1662 /* Configure Rx MAC FIFO */
1663 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1664 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1665 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1667 /* Configure Tx MAC FIFO */
1668 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1669 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1670 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1672 if (jumbo) {
1673 /* Enable frame flushing if jumbo frames used */
1674 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1675 } else {
1676 /* enable timeout timers if normal frames */
1677 skge_write16(hw, B3_PA_CTRL,
1678 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1682 static void genesis_stop(struct skge_port *skge)
1684 struct skge_hw *hw = skge->hw;
1685 int port = skge->port;
1686 unsigned retries = 1000;
1687 u16 cmd;
1689 /* Disable Tx and Rx */
1690 cmd = xm_read16(hw, port, XM_MMU_CMD);
1691 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1692 xm_write16(hw, port, XM_MMU_CMD, cmd);
1694 genesis_reset(hw, port);
1696 /* Clear Tx packet arbiter timeout IRQ */
1697 skge_write16(hw, B3_PA_CTRL,
1698 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1700 /* Reset the MAC */
1701 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1702 do {
1703 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1704 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1705 break;
1706 } while (--retries > 0);
1708 /* For external PHYs there must be special handling */
1709 if (hw->phy_type != SK_PHY_XMAC) {
1710 u32 reg = skge_read32(hw, B2_GP_IO);
1711 if (port == 0) {
1712 reg |= GP_DIR_0;
1713 reg &= ~GP_IO_0;
1714 } else {
1715 reg |= GP_DIR_2;
1716 reg &= ~GP_IO_2;
1718 skge_write32(hw, B2_GP_IO, reg);
1719 skge_read32(hw, B2_GP_IO);
1722 xm_write16(hw, port, XM_MMU_CMD,
1723 xm_read16(hw, port, XM_MMU_CMD)
1724 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1726 xm_read16(hw, port, XM_MMU_CMD);
1730 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1732 struct skge_hw *hw = skge->hw;
1733 int port = skge->port;
1734 int i;
1735 unsigned long timeout = jiffies + HZ;
1737 xm_write16(hw, port,
1738 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1740 /* wait for update to complete */
1741 while (xm_read16(hw, port, XM_STAT_CMD)
1742 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1743 if (time_after(jiffies, timeout))
1744 break;
1745 udelay(10);
1748 /* special case for 64 bit octet counter */
1749 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1750 | xm_read32(hw, port, XM_TXO_OK_LO);
1751 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1752 | xm_read32(hw, port, XM_RXO_OK_LO);
1754 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1755 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1758 static void genesis_mac_intr(struct skge_hw *hw, int port)
1760 struct net_device *dev = hw->dev[port];
1761 struct skge_port *skge = netdev_priv(dev);
1762 u16 status = xm_read16(hw, port, XM_ISRC);
1764 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1765 "mac interrupt status 0x%x\n", status);
1767 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1768 xm_link_down(hw, port);
1769 mod_timer(&skge->link_timer, jiffies + 1);
1772 if (status & XM_IS_TXF_UR) {
1773 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1774 ++dev->stats.tx_fifo_errors;
1778 static void genesis_link_up(struct skge_port *skge)
1780 struct skge_hw *hw = skge->hw;
1781 int port = skge->port;
1782 u16 cmd, msk;
1783 u32 mode;
1785 cmd = xm_read16(hw, port, XM_MMU_CMD);
1788 * enabling pause frame reception is required for 1000BT
1789 * because the XMAC is not reset if the link is going down
1791 if (skge->flow_status == FLOW_STAT_NONE ||
1792 skge->flow_status == FLOW_STAT_LOC_SEND)
1793 /* Disable Pause Frame Reception */
1794 cmd |= XM_MMU_IGN_PF;
1795 else
1796 /* Enable Pause Frame Reception */
1797 cmd &= ~XM_MMU_IGN_PF;
1799 xm_write16(hw, port, XM_MMU_CMD, cmd);
1801 mode = xm_read32(hw, port, XM_MODE);
1802 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1803 skge->flow_status == FLOW_STAT_LOC_SEND) {
1805 * Configure Pause Frame Generation
1806 * Use internal and external Pause Frame Generation.
1807 * Sending pause frames is edge triggered.
1808 * Send a Pause frame with the maximum pause time if
1809 * internal oder external FIFO full condition occurs.
1810 * Send a zero pause time frame to re-start transmission.
1812 /* XM_PAUSE_DA = '010000C28001' (default) */
1813 /* XM_MAC_PTIME = 0xffff (maximum) */
1814 /* remember this value is defined in big endian (!) */
1815 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1817 mode |= XM_PAUSE_MODE;
1818 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1819 } else {
1821 * disable pause frame generation is required for 1000BT
1822 * because the XMAC is not reset if the link is going down
1824 /* Disable Pause Mode in Mode Register */
1825 mode &= ~XM_PAUSE_MODE;
1827 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1830 xm_write32(hw, port, XM_MODE, mode);
1832 /* Turn on detection of Tx underrun */
1833 msk = xm_read16(hw, port, XM_IMSK);
1834 msk &= ~XM_IS_TXF_UR;
1835 xm_write16(hw, port, XM_IMSK, msk);
1837 xm_read16(hw, port, XM_ISRC);
1839 /* get MMU Command Reg. */
1840 cmd = xm_read16(hw, port, XM_MMU_CMD);
1841 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1842 cmd |= XM_MMU_GMII_FD;
1845 * Workaround BCOM Errata (#10523) for all BCom Phys
1846 * Enable Power Management after link up
1848 if (hw->phy_type == SK_PHY_BCOM) {
1849 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1850 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1851 & ~PHY_B_AC_DIS_PM);
1852 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1855 /* enable Rx/Tx */
1856 xm_write16(hw, port, XM_MMU_CMD,
1857 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1858 skge_link_up(skge);
1862 static inline void bcom_phy_intr(struct skge_port *skge)
1864 struct skge_hw *hw = skge->hw;
1865 int port = skge->port;
1866 u16 isrc;
1868 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1869 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1870 "phy interrupt status 0x%x\n", isrc);
1872 if (isrc & PHY_B_IS_PSE)
1873 pr_err("%s: uncorrectable pair swap error\n",
1874 hw->dev[port]->name);
1876 /* Workaround BCom Errata:
1877 * enable and disable loopback mode if "NO HCD" occurs.
1879 if (isrc & PHY_B_IS_NO_HDCL) {
1880 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1881 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1882 ctrl | PHY_CT_LOOP);
1883 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884 ctrl & ~PHY_CT_LOOP);
1887 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1888 bcom_check_link(hw, port);
1892 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1894 int i;
1896 gma_write16(hw, port, GM_SMI_DATA, val);
1897 gma_write16(hw, port, GM_SMI_CTRL,
1898 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1899 for (i = 0; i < PHY_RETRIES; i++) {
1900 udelay(1);
1902 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1903 return 0;
1906 pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1907 return -EIO;
1910 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1912 int i;
1914 gma_write16(hw, port, GM_SMI_CTRL,
1915 GM_SMI_CT_PHY_AD(hw->phy_addr)
1916 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1918 for (i = 0; i < PHY_RETRIES; i++) {
1919 udelay(1);
1920 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1921 goto ready;
1924 return -ETIMEDOUT;
1925 ready:
1926 *val = gma_read16(hw, port, GM_SMI_DATA);
1927 return 0;
1930 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1932 u16 v = 0;
1933 if (__gm_phy_read(hw, port, reg, &v))
1934 pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1935 return v;
1938 /* Marvell Phy Initialization */
1939 static void yukon_init(struct skge_hw *hw, int port)
1941 struct skge_port *skge = netdev_priv(hw->dev[port]);
1942 u16 ctrl, ct1000, adv;
1944 if (skge->autoneg == AUTONEG_ENABLE) {
1945 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1947 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1948 PHY_M_EC_MAC_S_MSK);
1949 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1951 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1953 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1956 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1957 if (skge->autoneg == AUTONEG_DISABLE)
1958 ctrl &= ~PHY_CT_ANE;
1960 ctrl |= PHY_CT_RESET;
1961 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1963 ctrl = 0;
1964 ct1000 = 0;
1965 adv = PHY_AN_CSMA;
1967 if (skge->autoneg == AUTONEG_ENABLE) {
1968 if (hw->copper) {
1969 if (skge->advertising & ADVERTISED_1000baseT_Full)
1970 ct1000 |= PHY_M_1000C_AFD;
1971 if (skge->advertising & ADVERTISED_1000baseT_Half)
1972 ct1000 |= PHY_M_1000C_AHD;
1973 if (skge->advertising & ADVERTISED_100baseT_Full)
1974 adv |= PHY_M_AN_100_FD;
1975 if (skge->advertising & ADVERTISED_100baseT_Half)
1976 adv |= PHY_M_AN_100_HD;
1977 if (skge->advertising & ADVERTISED_10baseT_Full)
1978 adv |= PHY_M_AN_10_FD;
1979 if (skge->advertising & ADVERTISED_10baseT_Half)
1980 adv |= PHY_M_AN_10_HD;
1982 /* Set Flow-control capabilities */
1983 adv |= phy_pause_map[skge->flow_control];
1984 } else {
1985 if (skge->advertising & ADVERTISED_1000baseT_Full)
1986 adv |= PHY_M_AN_1000X_AFD;
1987 if (skge->advertising & ADVERTISED_1000baseT_Half)
1988 adv |= PHY_M_AN_1000X_AHD;
1990 adv |= fiber_pause_map[skge->flow_control];
1993 /* Restart Auto-negotiation */
1994 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1995 } else {
1996 /* forced speed/duplex settings */
1997 ct1000 = PHY_M_1000C_MSE;
1999 if (skge->duplex == DUPLEX_FULL)
2000 ctrl |= PHY_CT_DUP_MD;
2002 switch (skge->speed) {
2003 case SPEED_1000:
2004 ctrl |= PHY_CT_SP1000;
2005 break;
2006 case SPEED_100:
2007 ctrl |= PHY_CT_SP100;
2008 break;
2011 ctrl |= PHY_CT_RESET;
2014 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2016 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2017 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2019 /* Enable phy interrupt on autonegotiation complete (or link up) */
2020 if (skge->autoneg == AUTONEG_ENABLE)
2021 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2022 else
2023 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2026 static void yukon_reset(struct skge_hw *hw, int port)
2028 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2029 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2030 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2031 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2032 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2034 gma_write16(hw, port, GM_RX_CTRL,
2035 gma_read16(hw, port, GM_RX_CTRL)
2036 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2039 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2040 static int is_yukon_lite_a0(struct skge_hw *hw)
2042 u32 reg;
2043 int ret;
2045 if (hw->chip_id != CHIP_ID_YUKON)
2046 return 0;
2048 reg = skge_read32(hw, B2_FAR);
2049 skge_write8(hw, B2_FAR + 3, 0xff);
2050 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2051 skge_write32(hw, B2_FAR, reg);
2052 return ret;
2055 static void yukon_mac_init(struct skge_hw *hw, int port)
2057 struct skge_port *skge = netdev_priv(hw->dev[port]);
2058 int i;
2059 u32 reg;
2060 const u8 *addr = hw->dev[port]->dev_addr;
2062 /* WA code for COMA mode -- set PHY reset */
2063 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2064 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2065 reg = skge_read32(hw, B2_GP_IO);
2066 reg |= GP_DIR_9 | GP_IO_9;
2067 skge_write32(hw, B2_GP_IO, reg);
2070 /* hard reset */
2071 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2072 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2074 /* WA code for COMA mode -- clear PHY reset */
2075 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2076 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2077 reg = skge_read32(hw, B2_GP_IO);
2078 reg |= GP_DIR_9;
2079 reg &= ~GP_IO_9;
2080 skge_write32(hw, B2_GP_IO, reg);
2083 /* Set hardware config mode */
2084 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2085 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2086 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2088 /* Clear GMC reset */
2089 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2090 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2091 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2093 if (skge->autoneg == AUTONEG_DISABLE) {
2094 reg = GM_GPCR_AU_ALL_DIS;
2095 gma_write16(hw, port, GM_GP_CTRL,
2096 gma_read16(hw, port, GM_GP_CTRL) | reg);
2098 switch (skge->speed) {
2099 case SPEED_1000:
2100 reg &= ~GM_GPCR_SPEED_100;
2101 reg |= GM_GPCR_SPEED_1000;
2102 break;
2103 case SPEED_100:
2104 reg &= ~GM_GPCR_SPEED_1000;
2105 reg |= GM_GPCR_SPEED_100;
2106 break;
2107 case SPEED_10:
2108 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2109 break;
2112 if (skge->duplex == DUPLEX_FULL)
2113 reg |= GM_GPCR_DUP_FULL;
2114 } else
2115 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2117 switch (skge->flow_control) {
2118 case FLOW_MODE_NONE:
2119 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2120 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2121 break;
2122 case FLOW_MODE_LOC_SEND:
2123 /* disable Rx flow-control */
2124 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2125 break;
2126 case FLOW_MODE_SYMMETRIC:
2127 case FLOW_MODE_SYM_OR_REM:
2128 /* enable Tx & Rx flow-control */
2129 break;
2132 gma_write16(hw, port, GM_GP_CTRL, reg);
2133 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2135 yukon_init(hw, port);
2137 /* MIB clear */
2138 reg = gma_read16(hw, port, GM_PHY_ADDR);
2139 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2141 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2142 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2143 gma_write16(hw, port, GM_PHY_ADDR, reg);
2145 /* transmit control */
2146 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2148 /* receive control reg: unicast + multicast + no FCS */
2149 gma_write16(hw, port, GM_RX_CTRL,
2150 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2152 /* transmit flow control */
2153 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2155 /* transmit parameter */
2156 gma_write16(hw, port, GM_TX_PARAM,
2157 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2158 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2159 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2161 /* configure the Serial Mode Register */
2162 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2163 | GM_SMOD_VLAN_ENA
2164 | IPG_DATA_VAL(IPG_DATA_DEF);
2166 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2167 reg |= GM_SMOD_JUMBO_ENA;
2169 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2171 /* physical address: used for pause frames */
2172 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2173 /* virtual address for data */
2174 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2176 /* enable interrupt mask for counter overflows */
2177 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2178 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2179 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2181 /* Initialize Mac Fifo */
2183 /* Configure Rx MAC FIFO */
2184 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2185 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2187 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2188 if (is_yukon_lite_a0(hw))
2189 reg &= ~GMF_RX_F_FL_ON;
2191 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2192 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2194 * because Pause Packet Truncation in GMAC is not working
2195 * we have to increase the Flush Threshold to 64 bytes
2196 * in order to flush pause packets in Rx FIFO on Yukon-1
2198 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2200 /* Configure Tx MAC FIFO */
2201 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2202 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2205 /* Go into power down mode */
2206 static void yukon_suspend(struct skge_hw *hw, int port)
2208 u16 ctrl;
2210 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2211 ctrl |= PHY_M_PC_POL_R_DIS;
2212 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2214 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2215 ctrl |= PHY_CT_RESET;
2216 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2218 /* switch IEEE compatible power down mode on */
2219 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2220 ctrl |= PHY_CT_PDOWN;
2221 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2224 static void yukon_stop(struct skge_port *skge)
2226 struct skge_hw *hw = skge->hw;
2227 int port = skge->port;
2229 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2230 yukon_reset(hw, port);
2232 gma_write16(hw, port, GM_GP_CTRL,
2233 gma_read16(hw, port, GM_GP_CTRL)
2234 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2235 gma_read16(hw, port, GM_GP_CTRL);
2237 yukon_suspend(hw, port);
2239 /* set GPHY Control reset */
2240 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2241 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2244 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2246 struct skge_hw *hw = skge->hw;
2247 int port = skge->port;
2248 int i;
2250 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2251 | gma_read32(hw, port, GM_TXO_OK_LO);
2252 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2253 | gma_read32(hw, port, GM_RXO_OK_LO);
2255 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2256 data[i] = gma_read32(hw, port,
2257 skge_stats[i].gma_offset);
2260 static void yukon_mac_intr(struct skge_hw *hw, int port)
2262 struct net_device *dev = hw->dev[port];
2263 struct skge_port *skge = netdev_priv(dev);
2264 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2266 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2267 "mac interrupt status 0x%x\n", status);
2269 if (status & GM_IS_RX_FF_OR) {
2270 ++dev->stats.rx_fifo_errors;
2271 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2274 if (status & GM_IS_TX_FF_UR) {
2275 ++dev->stats.tx_fifo_errors;
2276 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2281 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2283 switch (aux & PHY_M_PS_SPEED_MSK) {
2284 case PHY_M_PS_SPEED_1000:
2285 return SPEED_1000;
2286 case PHY_M_PS_SPEED_100:
2287 return SPEED_100;
2288 default:
2289 return SPEED_10;
2293 static void yukon_link_up(struct skge_port *skge)
2295 struct skge_hw *hw = skge->hw;
2296 int port = skge->port;
2297 u16 reg;
2299 /* Enable Transmit FIFO Underrun */
2300 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2302 reg = gma_read16(hw, port, GM_GP_CTRL);
2303 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2304 reg |= GM_GPCR_DUP_FULL;
2306 /* enable Rx/Tx */
2307 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2308 gma_write16(hw, port, GM_GP_CTRL, reg);
2310 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2311 skge_link_up(skge);
2314 static void yukon_link_down(struct skge_port *skge)
2316 struct skge_hw *hw = skge->hw;
2317 int port = skge->port;
2318 u16 ctrl;
2320 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2321 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2322 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2324 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2325 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2326 ctrl |= PHY_M_AN_ASP;
2327 /* restore Asymmetric Pause bit */
2328 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2331 skge_link_down(skge);
2333 yukon_init(hw, port);
2336 static void yukon_phy_intr(struct skge_port *skge)
2338 struct skge_hw *hw = skge->hw;
2339 int port = skge->port;
2340 const char *reason = NULL;
2341 u16 istatus, phystat;
2343 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2344 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2346 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2347 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2349 if (istatus & PHY_M_IS_AN_COMPL) {
2350 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2351 & PHY_M_AN_RF) {
2352 reason = "remote fault";
2353 goto failed;
2356 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2357 reason = "master/slave fault";
2358 goto failed;
2361 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2362 reason = "speed/duplex";
2363 goto failed;
2366 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2367 ? DUPLEX_FULL : DUPLEX_HALF;
2368 skge->speed = yukon_speed(hw, phystat);
2370 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2371 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2372 case PHY_M_PS_PAUSE_MSK:
2373 skge->flow_status = FLOW_STAT_SYMMETRIC;
2374 break;
2375 case PHY_M_PS_RX_P_EN:
2376 skge->flow_status = FLOW_STAT_REM_SEND;
2377 break;
2378 case PHY_M_PS_TX_P_EN:
2379 skge->flow_status = FLOW_STAT_LOC_SEND;
2380 break;
2381 default:
2382 skge->flow_status = FLOW_STAT_NONE;
2385 if (skge->flow_status == FLOW_STAT_NONE ||
2386 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2387 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2388 else
2389 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2390 yukon_link_up(skge);
2391 return;
2394 if (istatus & PHY_M_IS_LSP_CHANGE)
2395 skge->speed = yukon_speed(hw, phystat);
2397 if (istatus & PHY_M_IS_DUP_CHANGE)
2398 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2399 if (istatus & PHY_M_IS_LST_CHANGE) {
2400 if (phystat & PHY_M_PS_LINK_UP)
2401 yukon_link_up(skge);
2402 else
2403 yukon_link_down(skge);
2405 return;
2406 failed:
2407 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2409 /* XXX restart autonegotiation? */
2412 static void skge_phy_reset(struct skge_port *skge)
2414 struct skge_hw *hw = skge->hw;
2415 int port = skge->port;
2416 struct net_device *dev = hw->dev[port];
2418 netif_stop_queue(skge->netdev);
2419 netif_carrier_off(skge->netdev);
2421 spin_lock_bh(&hw->phy_lock);
2422 if (is_genesis(hw)) {
2423 genesis_reset(hw, port);
2424 genesis_mac_init(hw, port);
2425 } else {
2426 yukon_reset(hw, port);
2427 yukon_init(hw, port);
2429 spin_unlock_bh(&hw->phy_lock);
2431 skge_set_multicast(dev);
2434 /* Basic MII support */
2435 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2437 struct mii_ioctl_data *data = if_mii(ifr);
2438 struct skge_port *skge = netdev_priv(dev);
2439 struct skge_hw *hw = skge->hw;
2440 int err = -EOPNOTSUPP;
2442 if (!netif_running(dev))
2443 return -ENODEV; /* Phy still in reset */
2445 switch (cmd) {
2446 case SIOCGMIIPHY:
2447 data->phy_id = hw->phy_addr;
2449 /* fallthru */
2450 case SIOCGMIIREG: {
2451 u16 val = 0;
2452 spin_lock_bh(&hw->phy_lock);
2454 if (is_genesis(hw))
2455 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2456 else
2457 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458 spin_unlock_bh(&hw->phy_lock);
2459 data->val_out = val;
2460 break;
2463 case SIOCSMIIREG:
2464 spin_lock_bh(&hw->phy_lock);
2465 if (is_genesis(hw))
2466 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2467 data->val_in);
2468 else
2469 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2470 data->val_in);
2471 spin_unlock_bh(&hw->phy_lock);
2472 break;
2474 return err;
2477 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2479 u32 end;
2481 start /= 8;
2482 len /= 8;
2483 end = start + len - 1;
2485 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2486 skge_write32(hw, RB_ADDR(q, RB_START), start);
2487 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2488 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2489 skge_write32(hw, RB_ADDR(q, RB_END), end);
2491 if (q == Q_R1 || q == Q_R2) {
2492 /* Set thresholds on receive queue's */
2493 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2494 start + (2*len)/3);
2495 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2496 start + (len/3));
2497 } else {
2498 /* Enable store & forward on Tx queue's because
2499 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2501 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2504 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2507 /* Setup Bus Memory Interface */
2508 static void skge_qset(struct skge_port *skge, u16 q,
2509 const struct skge_element *e)
2511 struct skge_hw *hw = skge->hw;
2512 u32 watermark = 0x600;
2513 u64 base = skge->dma + (e->desc - skge->mem);
2515 /* optimization to reduce window on 32bit/33mhz */
2516 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2517 watermark /= 2;
2519 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2520 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2521 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2522 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2525 static int skge_up(struct net_device *dev)
2527 struct skge_port *skge = netdev_priv(dev);
2528 struct skge_hw *hw = skge->hw;
2529 int port = skge->port;
2530 u32 chunk, ram_addr;
2531 size_t rx_size, tx_size;
2532 int err;
2534 if (!is_valid_ether_addr(dev->dev_addr))
2535 return -EINVAL;
2537 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2539 if (dev->mtu > RX_BUF_SIZE)
2540 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2541 else
2542 skge->rx_buf_size = RX_BUF_SIZE;
2545 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2546 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2547 skge->mem_size = tx_size + rx_size;
2548 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2549 if (!skge->mem)
2550 return -ENOMEM;
2552 BUG_ON(skge->dma & 7);
2554 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2555 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2556 err = -EINVAL;
2557 goto free_pci_mem;
2560 memset(skge->mem, 0, skge->mem_size);
2562 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2563 if (err)
2564 goto free_pci_mem;
2566 err = skge_rx_fill(dev);
2567 if (err)
2568 goto free_rx_ring;
2570 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2571 skge->dma + rx_size);
2572 if (err)
2573 goto free_rx_ring;
2575 if (hw->ports == 1) {
2576 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2577 dev->name, hw);
2578 if (err) {
2579 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2580 hw->pdev->irq, err);
2581 goto free_tx_ring;
2585 /* Initialize MAC */
2586 netif_carrier_off(dev);
2587 spin_lock_bh(&hw->phy_lock);
2588 if (is_genesis(hw))
2589 genesis_mac_init(hw, port);
2590 else
2591 yukon_mac_init(hw, port);
2592 spin_unlock_bh(&hw->phy_lock);
2594 /* Configure RAMbuffers - equally between ports and tx/rx */
2595 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2596 ram_addr = hw->ram_offset + 2 * chunk * port;
2598 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2599 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2601 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2602 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2603 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2605 /* Start receiver BMU */
2606 wmb();
2607 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2608 skge_led(skge, LED_MODE_ON);
2610 spin_lock_irq(&hw->hw_lock);
2611 hw->intr_mask |= portmask[port];
2612 skge_write32(hw, B0_IMSK, hw->intr_mask);
2613 skge_read32(hw, B0_IMSK);
2614 spin_unlock_irq(&hw->hw_lock);
2616 napi_enable(&skge->napi);
2618 skge_set_multicast(dev);
2620 return 0;
2622 free_tx_ring:
2623 kfree(skge->tx_ring.start);
2624 free_rx_ring:
2625 skge_rx_clean(skge);
2626 kfree(skge->rx_ring.start);
2627 free_pci_mem:
2628 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2629 skge->mem = NULL;
2631 return err;
2634 /* stop receiver */
2635 static void skge_rx_stop(struct skge_hw *hw, int port)
2637 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2638 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2639 RB_RST_SET|RB_DIS_OP_MD);
2640 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2643 static int skge_down(struct net_device *dev)
2645 struct skge_port *skge = netdev_priv(dev);
2646 struct skge_hw *hw = skge->hw;
2647 int port = skge->port;
2649 if (skge->mem == NULL)
2650 return 0;
2652 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2654 netif_tx_disable(dev);
2656 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2657 del_timer_sync(&skge->link_timer);
2659 napi_disable(&skge->napi);
2660 netif_carrier_off(dev);
2662 spin_lock_irq(&hw->hw_lock);
2663 hw->intr_mask &= ~portmask[port];
2664 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2665 skge_read32(hw, B0_IMSK);
2666 spin_unlock_irq(&hw->hw_lock);
2668 if (hw->ports == 1)
2669 free_irq(hw->pdev->irq, hw);
2671 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2672 if (is_genesis(hw))
2673 genesis_stop(skge);
2674 else
2675 yukon_stop(skge);
2677 /* Stop transmitter */
2678 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2679 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2680 RB_RST_SET|RB_DIS_OP_MD);
2683 /* Disable Force Sync bit and Enable Alloc bit */
2684 skge_write8(hw, SK_REG(port, TXA_CTRL),
2685 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2687 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2688 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2689 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2691 /* Reset PCI FIFO */
2692 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2693 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2695 /* Reset the RAM Buffer async Tx queue */
2696 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2698 skge_rx_stop(hw, port);
2700 if (is_genesis(hw)) {
2701 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2702 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2703 } else {
2704 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2705 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2708 skge_led(skge, LED_MODE_OFF);
2710 netif_tx_lock_bh(dev);
2711 skge_tx_clean(dev);
2712 netif_tx_unlock_bh(dev);
2714 skge_rx_clean(skge);
2716 kfree(skge->rx_ring.start);
2717 kfree(skge->tx_ring.start);
2718 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2719 skge->mem = NULL;
2720 return 0;
2723 static inline int skge_avail(const struct skge_ring *ring)
2725 smp_mb();
2726 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2727 + (ring->to_clean - ring->to_use) - 1;
2730 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2731 struct net_device *dev)
2733 struct skge_port *skge = netdev_priv(dev);
2734 struct skge_hw *hw = skge->hw;
2735 struct skge_element *e;
2736 struct skge_tx_desc *td;
2737 int i;
2738 u32 control, len;
2739 dma_addr_t map;
2741 if (skb_padto(skb, ETH_ZLEN))
2742 return NETDEV_TX_OK;
2744 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2745 return NETDEV_TX_BUSY;
2747 e = skge->tx_ring.to_use;
2748 td = e->desc;
2749 BUG_ON(td->control & BMU_OWN);
2750 e->skb = skb;
2751 len = skb_headlen(skb);
2752 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2753 if (pci_dma_mapping_error(hw->pdev, map))
2754 goto mapping_error;
2756 dma_unmap_addr_set(e, mapaddr, map);
2757 dma_unmap_len_set(e, maplen, len);
2759 td->dma_lo = lower_32_bits(map);
2760 td->dma_hi = upper_32_bits(map);
2762 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2763 const int offset = skb_checksum_start_offset(skb);
2765 /* This seems backwards, but it is what the sk98lin
2766 * does. Looks like hardware is wrong?
2768 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2769 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2770 control = BMU_TCP_CHECK;
2771 else
2772 control = BMU_UDP_CHECK;
2774 td->csum_offs = 0;
2775 td->csum_start = offset;
2776 td->csum_write = offset + skb->csum_offset;
2777 } else
2778 control = BMU_CHECK;
2780 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2781 control |= BMU_EOF | BMU_IRQ_EOF;
2782 else {
2783 struct skge_tx_desc *tf = td;
2785 control |= BMU_STFWD;
2786 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2787 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2789 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2790 skb_frag_size(frag), DMA_TO_DEVICE);
2791 if (dma_mapping_error(&hw->pdev->dev, map))
2792 goto mapping_unwind;
2794 e = e->next;
2795 e->skb = skb;
2796 tf = e->desc;
2797 BUG_ON(tf->control & BMU_OWN);
2799 tf->dma_lo = lower_32_bits(map);
2800 tf->dma_hi = upper_32_bits(map);
2801 dma_unmap_addr_set(e, mapaddr, map);
2802 dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2804 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2806 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2808 /* Make sure all the descriptors written */
2809 wmb();
2810 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2811 wmb();
2813 netdev_sent_queue(dev, skb->len);
2815 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2817 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2818 "tx queued, slot %td, len %d\n",
2819 e - skge->tx_ring.start, skb->len);
2821 skge->tx_ring.to_use = e->next;
2822 smp_wmb();
2824 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2825 netdev_dbg(dev, "transmit queue full\n");
2826 netif_stop_queue(dev);
2829 return NETDEV_TX_OK;
2831 mapping_unwind:
2832 e = skge->tx_ring.to_use;
2833 pci_unmap_single(hw->pdev,
2834 dma_unmap_addr(e, mapaddr),
2835 dma_unmap_len(e, maplen),
2836 PCI_DMA_TODEVICE);
2837 while (i-- > 0) {
2838 e = e->next;
2839 pci_unmap_page(hw->pdev,
2840 dma_unmap_addr(e, mapaddr),
2841 dma_unmap_len(e, maplen),
2842 PCI_DMA_TODEVICE);
2845 mapping_error:
2846 if (net_ratelimit())
2847 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2848 dev_kfree_skb_any(skb);
2849 return NETDEV_TX_OK;
2853 /* Free resources associated with this reing element */
2854 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2855 u32 control)
2857 /* skb header vs. fragment */
2858 if (control & BMU_STF)
2859 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2860 dma_unmap_len(e, maplen),
2861 PCI_DMA_TODEVICE);
2862 else
2863 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2864 dma_unmap_len(e, maplen),
2865 PCI_DMA_TODEVICE);
2868 /* Free all buffers in transmit ring */
2869 static void skge_tx_clean(struct net_device *dev)
2871 struct skge_port *skge = netdev_priv(dev);
2872 struct skge_element *e;
2874 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2875 struct skge_tx_desc *td = e->desc;
2877 skge_tx_unmap(skge->hw->pdev, e, td->control);
2879 if (td->control & BMU_EOF)
2880 dev_kfree_skb(e->skb);
2881 td->control = 0;
2884 netdev_reset_queue(dev);
2885 skge->tx_ring.to_clean = e;
2888 static void skge_tx_timeout(struct net_device *dev)
2890 struct skge_port *skge = netdev_priv(dev);
2892 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2894 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2895 skge_tx_clean(dev);
2896 netif_wake_queue(dev);
2899 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2901 int err;
2903 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2904 return -EINVAL;
2906 if (!netif_running(dev)) {
2907 dev->mtu = new_mtu;
2908 return 0;
2911 skge_down(dev);
2913 dev->mtu = new_mtu;
2915 err = skge_up(dev);
2916 if (err)
2917 dev_close(dev);
2919 return err;
2922 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2924 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2926 u32 crc, bit;
2928 crc = ether_crc_le(ETH_ALEN, addr);
2929 bit = ~crc & 0x3f;
2930 filter[bit/8] |= 1 << (bit%8);
2933 static void genesis_set_multicast(struct net_device *dev)
2935 struct skge_port *skge = netdev_priv(dev);
2936 struct skge_hw *hw = skge->hw;
2937 int port = skge->port;
2938 struct netdev_hw_addr *ha;
2939 u32 mode;
2940 u8 filter[8];
2942 mode = xm_read32(hw, port, XM_MODE);
2943 mode |= XM_MD_ENA_HASH;
2944 if (dev->flags & IFF_PROMISC)
2945 mode |= XM_MD_ENA_PROM;
2946 else
2947 mode &= ~XM_MD_ENA_PROM;
2949 if (dev->flags & IFF_ALLMULTI)
2950 memset(filter, 0xff, sizeof(filter));
2951 else {
2952 memset(filter, 0, sizeof(filter));
2954 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2955 skge->flow_status == FLOW_STAT_SYMMETRIC)
2956 genesis_add_filter(filter, pause_mc_addr);
2958 netdev_for_each_mc_addr(ha, dev)
2959 genesis_add_filter(filter, ha->addr);
2962 xm_write32(hw, port, XM_MODE, mode);
2963 xm_outhash(hw, port, XM_HSM, filter);
2966 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2968 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2969 filter[bit/8] |= 1 << (bit%8);
2972 static void yukon_set_multicast(struct net_device *dev)
2974 struct skge_port *skge = netdev_priv(dev);
2975 struct skge_hw *hw = skge->hw;
2976 int port = skge->port;
2977 struct netdev_hw_addr *ha;
2978 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2979 skge->flow_status == FLOW_STAT_SYMMETRIC);
2980 u16 reg;
2981 u8 filter[8];
2983 memset(filter, 0, sizeof(filter));
2985 reg = gma_read16(hw, port, GM_RX_CTRL);
2986 reg |= GM_RXCR_UCF_ENA;
2988 if (dev->flags & IFF_PROMISC) /* promiscuous */
2989 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2990 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2991 memset(filter, 0xff, sizeof(filter));
2992 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2993 reg &= ~GM_RXCR_MCF_ENA;
2994 else {
2995 reg |= GM_RXCR_MCF_ENA;
2997 if (rx_pause)
2998 yukon_add_filter(filter, pause_mc_addr);
3000 netdev_for_each_mc_addr(ha, dev)
3001 yukon_add_filter(filter, ha->addr);
3005 gma_write16(hw, port, GM_MC_ADDR_H1,
3006 (u16)filter[0] | ((u16)filter[1] << 8));
3007 gma_write16(hw, port, GM_MC_ADDR_H2,
3008 (u16)filter[2] | ((u16)filter[3] << 8));
3009 gma_write16(hw, port, GM_MC_ADDR_H3,
3010 (u16)filter[4] | ((u16)filter[5] << 8));
3011 gma_write16(hw, port, GM_MC_ADDR_H4,
3012 (u16)filter[6] | ((u16)filter[7] << 8));
3014 gma_write16(hw, port, GM_RX_CTRL, reg);
3017 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3019 if (is_genesis(hw))
3020 return status >> XMR_FS_LEN_SHIFT;
3021 else
3022 return status >> GMR_FS_LEN_SHIFT;
3025 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3027 if (is_genesis(hw))
3028 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3029 else
3030 return (status & GMR_FS_ANY_ERR) ||
3031 (status & GMR_FS_RX_OK) == 0;
3034 static void skge_set_multicast(struct net_device *dev)
3036 struct skge_port *skge = netdev_priv(dev);
3038 if (is_genesis(skge->hw))
3039 genesis_set_multicast(dev);
3040 else
3041 yukon_set_multicast(dev);
3046 /* Get receive buffer from descriptor.
3047 * Handles copy of small buffers and reallocation failures
3049 static struct sk_buff *skge_rx_get(struct net_device *dev,
3050 struct skge_element *e,
3051 u32 control, u32 status, u16 csum)
3053 struct skge_port *skge = netdev_priv(dev);
3054 struct sk_buff *skb;
3055 u16 len = control & BMU_BBC;
3057 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3058 "rx slot %td status 0x%x len %d\n",
3059 e - skge->rx_ring.start, status, len);
3061 if (len > skge->rx_buf_size)
3062 goto error;
3064 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3065 goto error;
3067 if (bad_phy_status(skge->hw, status))
3068 goto error;
3070 if (phy_length(skge->hw, status) != len)
3071 goto error;
3073 if (len < RX_COPY_THRESHOLD) {
3074 skb = netdev_alloc_skb_ip_align(dev, len);
3075 if (!skb)
3076 goto resubmit;
3078 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3079 dma_unmap_addr(e, mapaddr),
3080 dma_unmap_len(e, maplen),
3081 PCI_DMA_FROMDEVICE);
3082 skb_copy_from_linear_data(e->skb, skb->data, len);
3083 pci_dma_sync_single_for_device(skge->hw->pdev,
3084 dma_unmap_addr(e, mapaddr),
3085 dma_unmap_len(e, maplen),
3086 PCI_DMA_FROMDEVICE);
3087 skge_rx_reuse(e, skge->rx_buf_size);
3088 } else {
3089 struct skge_element ee;
3090 struct sk_buff *nskb;
3092 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3093 if (!nskb)
3094 goto resubmit;
3096 ee = *e;
3098 skb = ee.skb;
3099 prefetch(skb->data);
3101 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3102 dev_kfree_skb(nskb);
3103 goto resubmit;
3106 pci_unmap_single(skge->hw->pdev,
3107 dma_unmap_addr(&ee, mapaddr),
3108 dma_unmap_len(&ee, maplen),
3109 PCI_DMA_FROMDEVICE);
3112 skb_put(skb, len);
3114 if (dev->features & NETIF_F_RXCSUM) {
3115 skb->csum = csum;
3116 skb->ip_summed = CHECKSUM_COMPLETE;
3119 skb->protocol = eth_type_trans(skb, dev);
3121 return skb;
3122 error:
3124 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3125 "rx err, slot %td control 0x%x status 0x%x\n",
3126 e - skge->rx_ring.start, control, status);
3128 if (is_genesis(skge->hw)) {
3129 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3130 dev->stats.rx_length_errors++;
3131 if (status & XMR_FS_FRA_ERR)
3132 dev->stats.rx_frame_errors++;
3133 if (status & XMR_FS_FCS_ERR)
3134 dev->stats.rx_crc_errors++;
3135 } else {
3136 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3137 dev->stats.rx_length_errors++;
3138 if (status & GMR_FS_FRAGMENT)
3139 dev->stats.rx_frame_errors++;
3140 if (status & GMR_FS_CRC_ERR)
3141 dev->stats.rx_crc_errors++;
3144 resubmit:
3145 skge_rx_reuse(e, skge->rx_buf_size);
3146 return NULL;
3149 /* Free all buffers in Tx ring which are no longer owned by device */
3150 static void skge_tx_done(struct net_device *dev)
3152 struct skge_port *skge = netdev_priv(dev);
3153 struct skge_ring *ring = &skge->tx_ring;
3154 struct skge_element *e;
3155 unsigned int bytes_compl = 0, pkts_compl = 0;
3157 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3159 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3160 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3162 if (control & BMU_OWN)
3163 break;
3165 skge_tx_unmap(skge->hw->pdev, e, control);
3167 if (control & BMU_EOF) {
3168 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3169 "tx done slot %td\n",
3170 e - skge->tx_ring.start);
3172 pkts_compl++;
3173 bytes_compl += e->skb->len;
3175 dev_consume_skb_any(e->skb);
3178 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3179 skge->tx_ring.to_clean = e;
3181 /* Can run lockless until we need to synchronize to restart queue. */
3182 smp_mb();
3184 if (unlikely(netif_queue_stopped(dev) &&
3185 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186 netif_tx_lock(dev);
3187 if (unlikely(netif_queue_stopped(dev) &&
3188 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3189 netif_wake_queue(dev);
3192 netif_tx_unlock(dev);
3196 static int skge_poll(struct napi_struct *napi, int to_do)
3198 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3199 struct net_device *dev = skge->netdev;
3200 struct skge_hw *hw = skge->hw;
3201 struct skge_ring *ring = &skge->rx_ring;
3202 struct skge_element *e;
3203 int work_done = 0;
3205 skge_tx_done(dev);
3207 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3209 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3210 struct skge_rx_desc *rd = e->desc;
3211 struct sk_buff *skb;
3212 u32 control;
3214 rmb();
3215 control = rd->control;
3216 if (control & BMU_OWN)
3217 break;
3219 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3220 if (likely(skb)) {
3221 napi_gro_receive(napi, skb);
3222 ++work_done;
3225 ring->to_clean = e;
3227 /* restart receiver */
3228 wmb();
3229 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3231 if (work_done < to_do) {
3232 unsigned long flags;
3234 napi_gro_flush(napi, false);
3235 spin_lock_irqsave(&hw->hw_lock, flags);
3236 __napi_complete(napi);
3237 hw->intr_mask |= napimask[skge->port];
3238 skge_write32(hw, B0_IMSK, hw->intr_mask);
3239 skge_read32(hw, B0_IMSK);
3240 spin_unlock_irqrestore(&hw->hw_lock, flags);
3243 return work_done;
3246 /* Parity errors seem to happen when Genesis is connected to a switch
3247 * with no other ports present. Heartbeat error??
3249 static void skge_mac_parity(struct skge_hw *hw, int port)
3251 struct net_device *dev = hw->dev[port];
3253 ++dev->stats.tx_heartbeat_errors;
3255 if (is_genesis(hw))
3256 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3257 MFF_CLR_PERR);
3258 else
3259 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3260 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3261 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3262 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3265 static void skge_mac_intr(struct skge_hw *hw, int port)
3267 if (is_genesis(hw))
3268 genesis_mac_intr(hw, port);
3269 else
3270 yukon_mac_intr(hw, port);
3273 /* Handle device specific framing and timeout interrupts */
3274 static void skge_error_irq(struct skge_hw *hw)
3276 struct pci_dev *pdev = hw->pdev;
3277 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3279 if (is_genesis(hw)) {
3280 /* clear xmac errors */
3281 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3282 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3283 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3284 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3285 } else {
3286 /* Timestamp (unused) overflow */
3287 if (hwstatus & IS_IRQ_TIST_OV)
3288 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3291 if (hwstatus & IS_RAM_RD_PAR) {
3292 dev_err(&pdev->dev, "Ram read data parity error\n");
3293 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3296 if (hwstatus & IS_RAM_WR_PAR) {
3297 dev_err(&pdev->dev, "Ram write data parity error\n");
3298 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3301 if (hwstatus & IS_M1_PAR_ERR)
3302 skge_mac_parity(hw, 0);
3304 if (hwstatus & IS_M2_PAR_ERR)
3305 skge_mac_parity(hw, 1);
3307 if (hwstatus & IS_R1_PAR_ERR) {
3308 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3309 hw->dev[0]->name);
3310 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3313 if (hwstatus & IS_R2_PAR_ERR) {
3314 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3315 hw->dev[1]->name);
3316 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3319 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3320 u16 pci_status, pci_cmd;
3322 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3323 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3325 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3326 pci_cmd, pci_status);
3328 /* Write the error bits back to clear them. */
3329 pci_status &= PCI_STATUS_ERROR_BITS;
3330 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3331 pci_write_config_word(pdev, PCI_COMMAND,
3332 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3333 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3334 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3336 /* if error still set then just ignore it */
3337 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3338 if (hwstatus & IS_IRQ_STAT) {
3339 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3340 hw->intr_mask &= ~IS_HW_ERR;
3346 * Interrupt from PHY are handled in tasklet (softirq)
3347 * because accessing phy registers requires spin wait which might
3348 * cause excess interrupt latency.
3350 static void skge_extirq(unsigned long arg)
3352 struct skge_hw *hw = (struct skge_hw *) arg;
3353 int port;
3355 for (port = 0; port < hw->ports; port++) {
3356 struct net_device *dev = hw->dev[port];
3358 if (netif_running(dev)) {
3359 struct skge_port *skge = netdev_priv(dev);
3361 spin_lock(&hw->phy_lock);
3362 if (!is_genesis(hw))
3363 yukon_phy_intr(skge);
3364 else if (hw->phy_type == SK_PHY_BCOM)
3365 bcom_phy_intr(skge);
3366 spin_unlock(&hw->phy_lock);
3370 spin_lock_irq(&hw->hw_lock);
3371 hw->intr_mask |= IS_EXT_REG;
3372 skge_write32(hw, B0_IMSK, hw->intr_mask);
3373 skge_read32(hw, B0_IMSK);
3374 spin_unlock_irq(&hw->hw_lock);
3377 static irqreturn_t skge_intr(int irq, void *dev_id)
3379 struct skge_hw *hw = dev_id;
3380 u32 status;
3381 int handled = 0;
3383 spin_lock(&hw->hw_lock);
3384 /* Reading this register masks IRQ */
3385 status = skge_read32(hw, B0_SP_ISRC);
3386 if (status == 0 || status == ~0)
3387 goto out;
3389 handled = 1;
3390 status &= hw->intr_mask;
3391 if (status & IS_EXT_REG) {
3392 hw->intr_mask &= ~IS_EXT_REG;
3393 tasklet_schedule(&hw->phy_task);
3396 if (status & (IS_XA1_F|IS_R1_F)) {
3397 struct skge_port *skge = netdev_priv(hw->dev[0]);
3398 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3399 napi_schedule(&skge->napi);
3402 if (status & IS_PA_TO_TX1)
3403 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3405 if (status & IS_PA_TO_RX1) {
3406 ++hw->dev[0]->stats.rx_over_errors;
3407 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3411 if (status & IS_MAC1)
3412 skge_mac_intr(hw, 0);
3414 if (hw->dev[1]) {
3415 struct skge_port *skge = netdev_priv(hw->dev[1]);
3417 if (status & (IS_XA2_F|IS_R2_F)) {
3418 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3419 napi_schedule(&skge->napi);
3422 if (status & IS_PA_TO_RX2) {
3423 ++hw->dev[1]->stats.rx_over_errors;
3424 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3427 if (status & IS_PA_TO_TX2)
3428 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3430 if (status & IS_MAC2)
3431 skge_mac_intr(hw, 1);
3434 if (status & IS_HW_ERR)
3435 skge_error_irq(hw);
3436 out:
3437 skge_write32(hw, B0_IMSK, hw->intr_mask);
3438 skge_read32(hw, B0_IMSK);
3439 spin_unlock(&hw->hw_lock);
3441 return IRQ_RETVAL(handled);
3444 #ifdef CONFIG_NET_POLL_CONTROLLER
3445 static void skge_netpoll(struct net_device *dev)
3447 struct skge_port *skge = netdev_priv(dev);
3449 disable_irq(dev->irq);
3450 skge_intr(dev->irq, skge->hw);
3451 enable_irq(dev->irq);
3453 #endif
3455 static int skge_set_mac_address(struct net_device *dev, void *p)
3457 struct skge_port *skge = netdev_priv(dev);
3458 struct skge_hw *hw = skge->hw;
3459 unsigned port = skge->port;
3460 const struct sockaddr *addr = p;
3461 u16 ctrl;
3463 if (!is_valid_ether_addr(addr->sa_data))
3464 return -EADDRNOTAVAIL;
3466 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3468 if (!netif_running(dev)) {
3469 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3470 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471 } else {
3472 /* disable Rx */
3473 spin_lock_bh(&hw->phy_lock);
3474 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3475 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3477 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3478 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3480 if (is_genesis(hw))
3481 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3482 else {
3483 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3484 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3487 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3488 spin_unlock_bh(&hw->phy_lock);
3491 return 0;
3494 static const struct {
3495 u8 id;
3496 const char *name;
3497 } skge_chips[] = {
3498 { CHIP_ID_GENESIS, "Genesis" },
3499 { CHIP_ID_YUKON, "Yukon" },
3500 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3501 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3504 static const char *skge_board_name(const struct skge_hw *hw)
3506 int i;
3507 static char buf[16];
3509 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3510 if (skge_chips[i].id == hw->chip_id)
3511 return skge_chips[i].name;
3513 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3514 return buf;
3519 * Setup the board data structure, but don't bring up
3520 * the port(s)
3522 static int skge_reset(struct skge_hw *hw)
3524 u32 reg;
3525 u16 ctst, pci_status;
3526 u8 t8, mac_cfg, pmd_type;
3527 int i;
3529 ctst = skge_read16(hw, B0_CTST);
3531 /* do a SW reset */
3532 skge_write8(hw, B0_CTST, CS_RST_SET);
3533 skge_write8(hw, B0_CTST, CS_RST_CLR);
3535 /* clear PCI errors, if any */
3536 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3537 skge_write8(hw, B2_TST_CTRL2, 0);
3539 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3540 pci_write_config_word(hw->pdev, PCI_STATUS,
3541 pci_status | PCI_STATUS_ERROR_BITS);
3542 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3543 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3545 /* restore CLK_RUN bits (for Yukon-Lite) */
3546 skge_write16(hw, B0_CTST,
3547 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3549 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3550 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3551 pmd_type = skge_read8(hw, B2_PMD_TYP);
3552 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3554 switch (hw->chip_id) {
3555 case CHIP_ID_GENESIS:
3556 #ifdef CONFIG_SKGE_GENESIS
3557 switch (hw->phy_type) {
3558 case SK_PHY_XMAC:
3559 hw->phy_addr = PHY_ADDR_XMAC;
3560 break;
3561 case SK_PHY_BCOM:
3562 hw->phy_addr = PHY_ADDR_BCOM;
3563 break;
3564 default:
3565 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3566 hw->phy_type);
3567 return -EOPNOTSUPP;
3569 break;
3570 #else
3571 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3572 return -EOPNOTSUPP;
3573 #endif
3575 case CHIP_ID_YUKON:
3576 case CHIP_ID_YUKON_LITE:
3577 case CHIP_ID_YUKON_LP:
3578 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3579 hw->copper = 1;
3581 hw->phy_addr = PHY_ADDR_MARV;
3582 break;
3584 default:
3585 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3586 hw->chip_id);
3587 return -EOPNOTSUPP;
3590 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3591 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3592 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3594 /* read the adapters RAM size */
3595 t8 = skge_read8(hw, B2_E_0);
3596 if (is_genesis(hw)) {
3597 if (t8 == 3) {
3598 /* special case: 4 x 64k x 36, offset = 0x80000 */
3599 hw->ram_size = 0x100000;
3600 hw->ram_offset = 0x80000;
3601 } else
3602 hw->ram_size = t8 * 512;
3603 } else if (t8 == 0)
3604 hw->ram_size = 0x20000;
3605 else
3606 hw->ram_size = t8 * 4096;
3608 hw->intr_mask = IS_HW_ERR;
3610 /* Use PHY IRQ for all but fiber based Genesis board */
3611 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3612 hw->intr_mask |= IS_EXT_REG;
3614 if (is_genesis(hw))
3615 genesis_init(hw);
3616 else {
3617 /* switch power to VCC (WA for VAUX problem) */
3618 skge_write8(hw, B0_POWER_CTRL,
3619 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3621 /* avoid boards with stuck Hardware error bits */
3622 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3623 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3624 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3625 hw->intr_mask &= ~IS_HW_ERR;
3628 /* Clear PHY COMA */
3629 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3630 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3631 reg &= ~PCI_PHY_COMA;
3632 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3633 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3636 for (i = 0; i < hw->ports; i++) {
3637 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3638 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3642 /* turn off hardware timer (unused) */
3643 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3644 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3645 skge_write8(hw, B0_LED, LED_STAT_ON);
3647 /* enable the Tx Arbiters */
3648 for (i = 0; i < hw->ports; i++)
3649 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3651 /* Initialize ram interface */
3652 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3654 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3655 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3656 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3657 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3658 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3659 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3660 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3661 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3662 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3663 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3664 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3665 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3667 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3669 /* Set interrupt moderation for Transmit only
3670 * Receive interrupts avoided by NAPI
3672 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3673 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3674 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3676 /* Leave irq disabled until first port is brought up. */
3677 skge_write32(hw, B0_IMSK, 0);
3679 for (i = 0; i < hw->ports; i++) {
3680 if (is_genesis(hw))
3681 genesis_reset(hw, i);
3682 else
3683 yukon_reset(hw, i);
3686 return 0;
3690 #ifdef CONFIG_SKGE_DEBUG
3692 static struct dentry *skge_debug;
3694 static int skge_debug_show(struct seq_file *seq, void *v)
3696 struct net_device *dev = seq->private;
3697 const struct skge_port *skge = netdev_priv(dev);
3698 const struct skge_hw *hw = skge->hw;
3699 const struct skge_element *e;
3701 if (!netif_running(dev))
3702 return -ENETDOWN;
3704 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3705 skge_read32(hw, B0_IMSK));
3707 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3708 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3709 const struct skge_tx_desc *t = e->desc;
3710 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3711 t->control, t->dma_hi, t->dma_lo, t->status,
3712 t->csum_offs, t->csum_write, t->csum_start);
3715 seq_printf(seq, "\nRx Ring:\n");
3716 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3717 const struct skge_rx_desc *r = e->desc;
3719 if (r->control & BMU_OWN)
3720 break;
3722 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3723 r->control, r->dma_hi, r->dma_lo, r->status,
3724 r->timestamp, r->csum1, r->csum1_start);
3727 return 0;
3730 static int skge_debug_open(struct inode *inode, struct file *file)
3732 return single_open(file, skge_debug_show, inode->i_private);
3735 static const struct file_operations skge_debug_fops = {
3736 .owner = THIS_MODULE,
3737 .open = skge_debug_open,
3738 .read = seq_read,
3739 .llseek = seq_lseek,
3740 .release = single_release,
3744 * Use network device events to create/remove/rename
3745 * debugfs file entries
3747 static int skge_device_event(struct notifier_block *unused,
3748 unsigned long event, void *ptr)
3750 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3751 struct skge_port *skge;
3752 struct dentry *d;
3754 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3755 goto done;
3757 skge = netdev_priv(dev);
3758 switch (event) {
3759 case NETDEV_CHANGENAME:
3760 if (skge->debugfs) {
3761 d = debugfs_rename(skge_debug, skge->debugfs,
3762 skge_debug, dev->name);
3763 if (d)
3764 skge->debugfs = d;
3765 else {
3766 netdev_info(dev, "rename failed\n");
3767 debugfs_remove(skge->debugfs);
3770 break;
3772 case NETDEV_GOING_DOWN:
3773 if (skge->debugfs) {
3774 debugfs_remove(skge->debugfs);
3775 skge->debugfs = NULL;
3777 break;
3779 case NETDEV_UP:
3780 d = debugfs_create_file(dev->name, S_IRUGO,
3781 skge_debug, dev,
3782 &skge_debug_fops);
3783 if (!d || IS_ERR(d))
3784 netdev_info(dev, "debugfs create failed\n");
3785 else
3786 skge->debugfs = d;
3787 break;
3790 done:
3791 return NOTIFY_DONE;
3794 static struct notifier_block skge_notifier = {
3795 .notifier_call = skge_device_event,
3799 static __init void skge_debug_init(void)
3801 struct dentry *ent;
3803 ent = debugfs_create_dir("skge", NULL);
3804 if (!ent || IS_ERR(ent)) {
3805 pr_info("debugfs create directory failed\n");
3806 return;
3809 skge_debug = ent;
3810 register_netdevice_notifier(&skge_notifier);
3813 static __exit void skge_debug_cleanup(void)
3815 if (skge_debug) {
3816 unregister_netdevice_notifier(&skge_notifier);
3817 debugfs_remove(skge_debug);
3818 skge_debug = NULL;
3822 #else
3823 #define skge_debug_init()
3824 #define skge_debug_cleanup()
3825 #endif
3827 static const struct net_device_ops skge_netdev_ops = {
3828 .ndo_open = skge_up,
3829 .ndo_stop = skge_down,
3830 .ndo_start_xmit = skge_xmit_frame,
3831 .ndo_do_ioctl = skge_ioctl,
3832 .ndo_get_stats = skge_get_stats,
3833 .ndo_tx_timeout = skge_tx_timeout,
3834 .ndo_change_mtu = skge_change_mtu,
3835 .ndo_validate_addr = eth_validate_addr,
3836 .ndo_set_rx_mode = skge_set_multicast,
3837 .ndo_set_mac_address = skge_set_mac_address,
3838 #ifdef CONFIG_NET_POLL_CONTROLLER
3839 .ndo_poll_controller = skge_netpoll,
3840 #endif
3844 /* Initialize network device */
3845 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3846 int highmem)
3848 struct skge_port *skge;
3849 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3851 if (!dev)
3852 return NULL;
3854 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3855 dev->netdev_ops = &skge_netdev_ops;
3856 dev->ethtool_ops = &skge_ethtool_ops;
3857 dev->watchdog_timeo = TX_WATCHDOG;
3858 dev->irq = hw->pdev->irq;
3860 if (highmem)
3861 dev->features |= NETIF_F_HIGHDMA;
3863 skge = netdev_priv(dev);
3864 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3865 skge->netdev = dev;
3866 skge->hw = hw;
3867 skge->msg_enable = netif_msg_init(debug, default_msg);
3869 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3870 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3872 /* Auto speed and flow control */
3873 skge->autoneg = AUTONEG_ENABLE;
3874 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3875 skge->duplex = -1;
3876 skge->speed = -1;
3877 skge->advertising = skge_supported_modes(hw);
3879 if (device_can_wakeup(&hw->pdev->dev)) {
3880 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3881 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3884 hw->dev[port] = dev;
3886 skge->port = port;
3888 /* Only used for Genesis XMAC */
3889 if (is_genesis(hw))
3890 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3891 else {
3892 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3893 NETIF_F_RXCSUM;
3894 dev->features |= dev->hw_features;
3897 /* read the mac address */
3898 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3900 return dev;
3903 static void skge_show_addr(struct net_device *dev)
3905 const struct skge_port *skge = netdev_priv(dev);
3907 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3910 static int only_32bit_dma;
3912 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3914 struct net_device *dev, *dev1;
3915 struct skge_hw *hw;
3916 int err, using_dac = 0;
3918 err = pci_enable_device(pdev);
3919 if (err) {
3920 dev_err(&pdev->dev, "cannot enable PCI device\n");
3921 goto err_out;
3924 err = pci_request_regions(pdev, DRV_NAME);
3925 if (err) {
3926 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3927 goto err_out_disable_pdev;
3930 pci_set_master(pdev);
3932 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3933 using_dac = 1;
3934 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3935 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3936 using_dac = 0;
3937 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3940 if (err) {
3941 dev_err(&pdev->dev, "no usable DMA configuration\n");
3942 goto err_out_free_regions;
3945 #ifdef __BIG_ENDIAN
3946 /* byte swap descriptors in hardware */
3948 u32 reg;
3950 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3951 reg |= PCI_REV_DESC;
3952 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3954 #endif
3956 err = -ENOMEM;
3957 /* space for skge@pci:0000:04:00.0 */
3958 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3959 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3960 if (!hw)
3961 goto err_out_free_regions;
3963 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3965 hw->pdev = pdev;
3966 spin_lock_init(&hw->hw_lock);
3967 spin_lock_init(&hw->phy_lock);
3968 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3970 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3971 if (!hw->regs) {
3972 dev_err(&pdev->dev, "cannot map device registers\n");
3973 goto err_out_free_hw;
3976 err = skge_reset(hw);
3977 if (err)
3978 goto err_out_iounmap;
3980 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3981 DRV_VERSION,
3982 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3983 skge_board_name(hw), hw->chip_rev);
3985 dev = skge_devinit(hw, 0, using_dac);
3986 if (!dev) {
3987 err = -ENOMEM;
3988 goto err_out_led_off;
3991 /* Some motherboards are broken and has zero in ROM. */
3992 if (!is_valid_ether_addr(dev->dev_addr))
3993 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3995 err = register_netdev(dev);
3996 if (err) {
3997 dev_err(&pdev->dev, "cannot register net device\n");
3998 goto err_out_free_netdev;
4001 skge_show_addr(dev);
4003 if (hw->ports > 1) {
4004 dev1 = skge_devinit(hw, 1, using_dac);
4005 if (!dev1) {
4006 err = -ENOMEM;
4007 goto err_out_unregister;
4010 err = register_netdev(dev1);
4011 if (err) {
4012 dev_err(&pdev->dev, "cannot register second net device\n");
4013 goto err_out_free_dev1;
4016 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4017 hw->irq_name, hw);
4018 if (err) {
4019 dev_err(&pdev->dev, "cannot assign irq %d\n",
4020 pdev->irq);
4021 goto err_out_unregister_dev1;
4024 skge_show_addr(dev1);
4026 pci_set_drvdata(pdev, hw);
4028 return 0;
4030 err_out_unregister_dev1:
4031 unregister_netdev(dev1);
4032 err_out_free_dev1:
4033 free_netdev(dev1);
4034 err_out_unregister:
4035 unregister_netdev(dev);
4036 err_out_free_netdev:
4037 free_netdev(dev);
4038 err_out_led_off:
4039 skge_write16(hw, B0_LED, LED_STAT_OFF);
4040 err_out_iounmap:
4041 iounmap(hw->regs);
4042 err_out_free_hw:
4043 kfree(hw);
4044 err_out_free_regions:
4045 pci_release_regions(pdev);
4046 err_out_disable_pdev:
4047 pci_disable_device(pdev);
4048 err_out:
4049 return err;
4052 static void skge_remove(struct pci_dev *pdev)
4054 struct skge_hw *hw = pci_get_drvdata(pdev);
4055 struct net_device *dev0, *dev1;
4057 if (!hw)
4058 return;
4060 dev1 = hw->dev[1];
4061 if (dev1)
4062 unregister_netdev(dev1);
4063 dev0 = hw->dev[0];
4064 unregister_netdev(dev0);
4066 tasklet_kill(&hw->phy_task);
4068 spin_lock_irq(&hw->hw_lock);
4069 hw->intr_mask = 0;
4071 if (hw->ports > 1) {
4072 skge_write32(hw, B0_IMSK, 0);
4073 skge_read32(hw, B0_IMSK);
4074 free_irq(pdev->irq, hw);
4076 spin_unlock_irq(&hw->hw_lock);
4078 skge_write16(hw, B0_LED, LED_STAT_OFF);
4079 skge_write8(hw, B0_CTST, CS_RST_SET);
4081 if (hw->ports > 1)
4082 free_irq(pdev->irq, hw);
4083 pci_release_regions(pdev);
4084 pci_disable_device(pdev);
4085 if (dev1)
4086 free_netdev(dev1);
4087 free_netdev(dev0);
4089 iounmap(hw->regs);
4090 kfree(hw);
4093 #ifdef CONFIG_PM_SLEEP
4094 static int skge_suspend(struct device *dev)
4096 struct pci_dev *pdev = to_pci_dev(dev);
4097 struct skge_hw *hw = pci_get_drvdata(pdev);
4098 int i;
4100 if (!hw)
4101 return 0;
4103 for (i = 0; i < hw->ports; i++) {
4104 struct net_device *dev = hw->dev[i];
4105 struct skge_port *skge = netdev_priv(dev);
4107 if (netif_running(dev))
4108 skge_down(dev);
4110 if (skge->wol)
4111 skge_wol_init(skge);
4114 skge_write32(hw, B0_IMSK, 0);
4116 return 0;
4119 static int skge_resume(struct device *dev)
4121 struct pci_dev *pdev = to_pci_dev(dev);
4122 struct skge_hw *hw = pci_get_drvdata(pdev);
4123 int i, err;
4125 if (!hw)
4126 return 0;
4128 err = skge_reset(hw);
4129 if (err)
4130 goto out;
4132 for (i = 0; i < hw->ports; i++) {
4133 struct net_device *dev = hw->dev[i];
4135 if (netif_running(dev)) {
4136 err = skge_up(dev);
4138 if (err) {
4139 netdev_err(dev, "could not up: %d\n", err);
4140 dev_close(dev);
4141 goto out;
4145 out:
4146 return err;
4149 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4150 #define SKGE_PM_OPS (&skge_pm_ops)
4152 #else
4154 #define SKGE_PM_OPS NULL
4155 #endif /* CONFIG_PM_SLEEP */
4157 static void skge_shutdown(struct pci_dev *pdev)
4159 struct skge_hw *hw = pci_get_drvdata(pdev);
4160 int i;
4162 if (!hw)
4163 return;
4165 for (i = 0; i < hw->ports; i++) {
4166 struct net_device *dev = hw->dev[i];
4167 struct skge_port *skge = netdev_priv(dev);
4169 if (skge->wol)
4170 skge_wol_init(skge);
4173 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4174 pci_set_power_state(pdev, PCI_D3hot);
4177 static struct pci_driver skge_driver = {
4178 .name = DRV_NAME,
4179 .id_table = skge_id_table,
4180 .probe = skge_probe,
4181 .remove = skge_remove,
4182 .shutdown = skge_shutdown,
4183 .driver.pm = SKGE_PM_OPS,
4186 static struct dmi_system_id skge_32bit_dma_boards[] = {
4188 .ident = "Gigabyte nForce boards",
4189 .matches = {
4190 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4191 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4195 .ident = "ASUS P5NSLI",
4196 .matches = {
4197 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4198 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4202 .ident = "FUJITSU SIEMENS A8NE-FM",
4203 .matches = {
4204 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4205 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4211 static int __init skge_init_module(void)
4213 if (dmi_check_system(skge_32bit_dma_boards))
4214 only_32bit_dma = 1;
4215 skge_debug_init();
4216 return pci_register_driver(&skge_driver);
4219 static void __exit skge_cleanup_module(void)
4221 pci_unregister_driver(&skge_driver);
4222 skge_debug_cleanup();
4225 module_init(skge_init_module);
4226 module_exit(skge_cleanup_module);