pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / drivers / net / ethernet / mellanox / mlx4 / icm.c
blob2a9dd460a95f8149d884af048dc651eaaec4904f
1 /*
2 * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/errno.h>
35 #include <linux/mm.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
39 #include <linux/mlx4/cmd.h>
41 #include "mlx4.h"
42 #include "icm.h"
43 #include "fw.h"
46 * We allocate in as big chunks as we can, up to a maximum of 256 KB
47 * per chunk.
49 enum {
50 MLX4_ICM_ALLOC_SIZE = 1 << 18,
51 MLX4_TABLE_CHUNK_SIZE = 1 << 18
54 static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
56 int i;
58 if (chunk->nsg > 0)
59 pci_unmap_sg(dev->persist->pdev, chunk->mem, chunk->npages,
60 PCI_DMA_BIDIRECTIONAL);
62 for (i = 0; i < chunk->npages; ++i)
63 __free_pages(sg_page(&chunk->mem[i]),
64 get_order(chunk->mem[i].length));
67 static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
69 int i;
71 for (i = 0; i < chunk->npages; ++i)
72 dma_free_coherent(&dev->persist->pdev->dev,
73 chunk->mem[i].length,
74 lowmem_page_address(sg_page(&chunk->mem[i])),
75 sg_dma_address(&chunk->mem[i]));
78 void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent)
80 struct mlx4_icm_chunk *chunk, *tmp;
82 if (!icm)
83 return;
85 list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) {
86 if (coherent)
87 mlx4_free_icm_coherent(dev, chunk);
88 else
89 mlx4_free_icm_pages(dev, chunk);
91 kfree(chunk);
94 kfree(icm);
97 static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order,
98 gfp_t gfp_mask, int node)
100 struct page *page;
102 page = alloc_pages_node(node, gfp_mask, order);
103 if (!page) {
104 page = alloc_pages(gfp_mask, order);
105 if (!page)
106 return -ENOMEM;
109 sg_set_page(mem, page, PAGE_SIZE << order, 0);
110 return 0;
113 static int mlx4_alloc_icm_coherent(struct device *dev, struct scatterlist *mem,
114 int order, gfp_t gfp_mask)
116 void *buf = dma_alloc_coherent(dev, PAGE_SIZE << order,
117 &sg_dma_address(mem), gfp_mask);
118 if (!buf)
119 return -ENOMEM;
121 sg_set_buf(mem, buf, PAGE_SIZE << order);
122 BUG_ON(mem->offset);
123 sg_dma_len(mem) = PAGE_SIZE << order;
124 return 0;
127 struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
128 gfp_t gfp_mask, int coherent)
130 struct mlx4_icm *icm;
131 struct mlx4_icm_chunk *chunk = NULL;
132 int cur_order;
133 int ret;
135 /* We use sg_set_buf for coherent allocs, which assumes low memory */
136 BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM));
138 icm = kmalloc_node(sizeof(*icm),
139 gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN),
140 dev->numa_node);
141 if (!icm) {
142 icm = kmalloc(sizeof(*icm),
143 gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
144 if (!icm)
145 return NULL;
148 icm->refcount = 0;
149 INIT_LIST_HEAD(&icm->chunk_list);
151 cur_order = get_order(MLX4_ICM_ALLOC_SIZE);
153 while (npages > 0) {
154 if (!chunk) {
155 chunk = kmalloc_node(sizeof(*chunk),
156 gfp_mask & ~(__GFP_HIGHMEM |
157 __GFP_NOWARN),
158 dev->numa_node);
159 if (!chunk) {
160 chunk = kmalloc(sizeof(*chunk),
161 gfp_mask & ~(__GFP_HIGHMEM |
162 __GFP_NOWARN));
163 if (!chunk)
164 goto fail;
167 sg_init_table(chunk->mem, MLX4_ICM_CHUNK_LEN);
168 chunk->npages = 0;
169 chunk->nsg = 0;
170 list_add_tail(&chunk->list, &icm->chunk_list);
173 while (1 << cur_order > npages)
174 --cur_order;
176 if (coherent)
177 ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev,
178 &chunk->mem[chunk->npages],
179 cur_order, gfp_mask);
180 else
181 ret = mlx4_alloc_icm_pages(&chunk->mem[chunk->npages],
182 cur_order, gfp_mask,
183 dev->numa_node);
185 if (ret) {
186 if (--cur_order < 0)
187 goto fail;
188 else
189 continue;
192 ++chunk->npages;
194 if (coherent)
195 ++chunk->nsg;
196 else if (chunk->npages == MLX4_ICM_CHUNK_LEN) {
197 chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->mem,
198 chunk->npages,
199 PCI_DMA_BIDIRECTIONAL);
201 if (chunk->nsg <= 0)
202 goto fail;
205 if (chunk->npages == MLX4_ICM_CHUNK_LEN)
206 chunk = NULL;
208 npages -= 1 << cur_order;
211 if (!coherent && chunk) {
212 chunk->nsg = pci_map_sg(dev->persist->pdev, chunk->mem,
213 chunk->npages,
214 PCI_DMA_BIDIRECTIONAL);
216 if (chunk->nsg <= 0)
217 goto fail;
220 return icm;
222 fail:
223 mlx4_free_icm(dev, icm, coherent);
224 return NULL;
227 static int mlx4_MAP_ICM(struct mlx4_dev *dev, struct mlx4_icm *icm, u64 virt)
229 return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM, icm, virt);
232 static int mlx4_UNMAP_ICM(struct mlx4_dev *dev, u64 virt, u32 page_count)
234 return mlx4_cmd(dev, virt, page_count, 0, MLX4_CMD_UNMAP_ICM,
235 MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
238 int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm)
240 return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM_AUX, icm, -1);
243 int mlx4_UNMAP_ICM_AUX(struct mlx4_dev *dev)
245 return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX,
246 MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
249 int mlx4_table_get(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj,
250 gfp_t gfp)
252 u32 i = (obj & (table->num_obj - 1)) /
253 (MLX4_TABLE_CHUNK_SIZE / table->obj_size);
254 int ret = 0;
256 mutex_lock(&table->mutex);
258 if (table->icm[i]) {
259 ++table->icm[i]->refcount;
260 goto out;
263 table->icm[i] = mlx4_alloc_icm(dev, MLX4_TABLE_CHUNK_SIZE >> PAGE_SHIFT,
264 (table->lowmem ? gfp : GFP_HIGHUSER) |
265 __GFP_NOWARN, table->coherent);
266 if (!table->icm[i]) {
267 ret = -ENOMEM;
268 goto out;
271 if (mlx4_MAP_ICM(dev, table->icm[i], table->virt +
272 (u64) i * MLX4_TABLE_CHUNK_SIZE)) {
273 mlx4_free_icm(dev, table->icm[i], table->coherent);
274 table->icm[i] = NULL;
275 ret = -ENOMEM;
276 goto out;
279 ++table->icm[i]->refcount;
281 out:
282 mutex_unlock(&table->mutex);
283 return ret;
286 void mlx4_table_put(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
288 u32 i;
289 u64 offset;
291 i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size);
293 mutex_lock(&table->mutex);
295 if (--table->icm[i]->refcount == 0) {
296 offset = (u64) i * MLX4_TABLE_CHUNK_SIZE;
297 mlx4_UNMAP_ICM(dev, table->virt + offset,
298 MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
299 mlx4_free_icm(dev, table->icm[i], table->coherent);
300 table->icm[i] = NULL;
303 mutex_unlock(&table->mutex);
306 void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj,
307 dma_addr_t *dma_handle)
309 int offset, dma_offset, i;
310 u64 idx;
311 struct mlx4_icm_chunk *chunk;
312 struct mlx4_icm *icm;
313 struct page *page = NULL;
315 if (!table->lowmem)
316 return NULL;
318 mutex_lock(&table->mutex);
320 idx = (u64) (obj & (table->num_obj - 1)) * table->obj_size;
321 icm = table->icm[idx / MLX4_TABLE_CHUNK_SIZE];
322 dma_offset = offset = idx % MLX4_TABLE_CHUNK_SIZE;
324 if (!icm)
325 goto out;
327 list_for_each_entry(chunk, &icm->chunk_list, list) {
328 for (i = 0; i < chunk->npages; ++i) {
329 if (dma_handle && dma_offset >= 0) {
330 if (sg_dma_len(&chunk->mem[i]) > dma_offset)
331 *dma_handle = sg_dma_address(&chunk->mem[i]) +
332 dma_offset;
333 dma_offset -= sg_dma_len(&chunk->mem[i]);
336 * DMA mapping can merge pages but not split them,
337 * so if we found the page, dma_handle has already
338 * been assigned to.
340 if (chunk->mem[i].length > offset) {
341 page = sg_page(&chunk->mem[i]);
342 goto out;
344 offset -= chunk->mem[i].length;
348 out:
349 mutex_unlock(&table->mutex);
350 return page ? lowmem_page_address(page) + offset : NULL;
353 int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
354 u32 start, u32 end)
356 int inc = MLX4_TABLE_CHUNK_SIZE / table->obj_size;
357 int err;
358 u32 i;
360 for (i = start; i <= end; i += inc) {
361 err = mlx4_table_get(dev, table, i, GFP_KERNEL);
362 if (err)
363 goto fail;
366 return 0;
368 fail:
369 while (i > start) {
370 i -= inc;
371 mlx4_table_put(dev, table, i);
374 return err;
377 void mlx4_table_put_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
378 u32 start, u32 end)
380 u32 i;
382 for (i = start; i <= end; i += MLX4_TABLE_CHUNK_SIZE / table->obj_size)
383 mlx4_table_put(dev, table, i);
386 int mlx4_init_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table,
387 u64 virt, int obj_size, u32 nobj, int reserved,
388 int use_lowmem, int use_coherent)
390 int obj_per_chunk;
391 int num_icm;
392 unsigned chunk_size;
393 int i;
394 u64 size;
396 obj_per_chunk = MLX4_TABLE_CHUNK_SIZE / obj_size;
397 num_icm = (nobj + obj_per_chunk - 1) / obj_per_chunk;
399 table->icm = kcalloc(num_icm, sizeof *table->icm, GFP_KERNEL);
400 if (!table->icm)
401 return -ENOMEM;
402 table->virt = virt;
403 table->num_icm = num_icm;
404 table->num_obj = nobj;
405 table->obj_size = obj_size;
406 table->lowmem = use_lowmem;
407 table->coherent = use_coherent;
408 mutex_init(&table->mutex);
410 size = (u64) nobj * obj_size;
411 for (i = 0; i * MLX4_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) {
412 chunk_size = MLX4_TABLE_CHUNK_SIZE;
413 if ((i + 1) * MLX4_TABLE_CHUNK_SIZE > size)
414 chunk_size = PAGE_ALIGN(size -
415 i * MLX4_TABLE_CHUNK_SIZE);
417 table->icm[i] = mlx4_alloc_icm(dev, chunk_size >> PAGE_SHIFT,
418 (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
419 __GFP_NOWARN, use_coherent);
420 if (!table->icm[i])
421 goto err;
422 if (mlx4_MAP_ICM(dev, table->icm[i], virt + i * MLX4_TABLE_CHUNK_SIZE)) {
423 mlx4_free_icm(dev, table->icm[i], use_coherent);
424 table->icm[i] = NULL;
425 goto err;
429 * Add a reference to this ICM chunk so that it never
430 * gets freed (since it contains reserved firmware objects).
432 ++table->icm[i]->refcount;
435 return 0;
437 err:
438 for (i = 0; i < num_icm; ++i)
439 if (table->icm[i]) {
440 mlx4_UNMAP_ICM(dev, virt + i * MLX4_TABLE_CHUNK_SIZE,
441 MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
442 mlx4_free_icm(dev, table->icm[i], use_coherent);
445 kfree(table->icm);
447 return -ENOMEM;
450 void mlx4_cleanup_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table)
452 int i;
454 for (i = 0; i < table->num_icm; ++i)
455 if (table->icm[i]) {
456 mlx4_UNMAP_ICM(dev, table->virt + i * MLX4_TABLE_CHUNK_SIZE,
457 MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
458 mlx4_free_icm(dev, table->icm[i], table->coherent);
461 kfree(table->icm);