pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / drivers / net / ethernet / neterion / vxge / vxge-config.c
blob6223930a8155e66878e1bde5645c5d31809e2a8b
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
27 offset, \
28 &val64); \
29 if (status != VXGE_HW_OK) \
30 return status; \
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
36 u64 val64;
38 val64 = readq(&vp_reg->rxmac_vcfg0);
39 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64, &vp_reg->rxmac_vcfg0);
41 val64 = readq(&vp_reg->rxmac_vcfg0);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
49 struct vxge_hw_vpath_reg __iomem *vp_reg;
50 struct __vxge_hw_virtualpath *vpath;
51 u64 val64, rxd_count, rxd_spat;
52 int count = 0, total_count = 0;
54 vpath = &hldev->virtual_paths[vp_id];
55 vp_reg = vpath->vp_reg;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64 = readq(&vp_reg->prc_cfg6);
65 rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 * leg room.
69 rxd_spat *= 2;
71 do {
72 mdelay(1);
74 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64 = readq(&vp_reg->frm_in_progress_cnt);
80 if ((rxd_count <= rxd_spat) || (val64 > 0))
81 count = 0;
82 else
83 count++;
84 total_count++;
85 } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 (total_count < VXGE_HW_MAX_POLLING_COUNT));
88 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 __func__);
92 return total_count;
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
101 int i, total_count = 0;
103 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 continue;
107 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 break;
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
121 u64 val64;
122 u32 i = 0;
124 udelay(10);
126 do {
127 val64 = readq(reg);
128 if (!(val64 & mask))
129 return VXGE_HW_OK;
130 udelay(100);
131 } while (++i <= 9);
133 i = 0;
134 do {
135 val64 = readq(reg);
136 if (!(val64 & mask))
137 return VXGE_HW_OK;
138 mdelay(1);
139 } while (++i <= max_millis);
141 return VXGE_HW_FAIL;
144 static inline enum vxge_hw_status
145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146 u64 mask, u32 max_millis)
148 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149 wmb();
150 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151 wmb();
153 return __vxge_hw_device_register_poll(addr, mask, max_millis);
156 static enum vxge_hw_status
157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158 u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159 u64 *steer_ctrl)
161 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162 enum vxge_hw_status status;
163 u64 val64;
164 u32 retry = 0, max_retry = 3;
166 spin_lock(&vpath->lock);
167 if (!vpath->vp_open) {
168 spin_unlock(&vpath->lock);
169 max_retry = 100;
172 writeq(*data0, &vp_reg->rts_access_steer_data0);
173 writeq(*data1, &vp_reg->rts_access_steer_data1);
174 wmb();
176 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180 *steer_ctrl;
182 status = __vxge_hw_pio_mem_write64(val64,
183 &vp_reg->rts_access_steer_ctrl,
184 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
187 /* The __vxge_hw_device_register_poll can udelay for a significant
188 * amount of time, blocking other process from the CPU. If it delays
189 * for ~5secs, a NMI error can occur. A way around this is to give up
190 * the processor via msleep, but this is not allowed is under lock.
191 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
192 * 1sec and sleep for 10ms until the firmware operation has completed
193 * or timed-out.
195 while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196 if (!vpath->vp_open)
197 msleep(20);
198 status = __vxge_hw_device_register_poll(
199 &vp_reg->rts_access_steer_ctrl,
200 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
204 if (status != VXGE_HW_OK)
205 goto out;
207 val64 = readq(&vp_reg->rts_access_steer_ctrl);
208 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209 *data0 = readq(&vp_reg->rts_access_steer_data0);
210 *data1 = readq(&vp_reg->rts_access_steer_data1);
211 *steer_ctrl = val64;
212 } else
213 status = VXGE_HW_FAIL;
215 out:
216 if (vpath->vp_open)
217 spin_unlock(&vpath->lock);
218 return status;
221 enum vxge_hw_status
222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223 u32 *minor, u32 *build)
225 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226 struct __vxge_hw_virtualpath *vpath;
227 enum vxge_hw_status status;
229 vpath = &hldev->virtual_paths[hldev->first_vp_id];
231 status = vxge_hw_vpath_fw_api(vpath,
232 VXGE_HW_FW_UPGRADE_ACTION,
233 VXGE_HW_FW_UPGRADE_MEMO,
234 VXGE_HW_FW_UPGRADE_OFFSET_READ,
235 &data0, &data1, &steer_ctrl);
236 if (status != VXGE_HW_OK)
237 return status;
239 *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240 *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241 *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
243 return status;
246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
248 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249 struct __vxge_hw_virtualpath *vpath;
250 enum vxge_hw_status status;
251 u32 ret;
253 vpath = &hldev->virtual_paths[hldev->first_vp_id];
255 status = vxge_hw_vpath_fw_api(vpath,
256 VXGE_HW_FW_UPGRADE_ACTION,
257 VXGE_HW_FW_UPGRADE_MEMO,
258 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259 &data0, &data1, &steer_ctrl);
260 if (status != VXGE_HW_OK) {
261 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262 goto exit;
265 ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266 if (ret != 1) {
267 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268 __func__, ret);
269 status = VXGE_HW_FAIL;
272 exit:
273 return status;
276 enum vxge_hw_status
277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
279 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280 struct __vxge_hw_virtualpath *vpath;
281 enum vxge_hw_status status;
282 int ret_code, sec_code;
284 vpath = &hldev->virtual_paths[hldev->first_vp_id];
286 /* send upgrade start command */
287 status = vxge_hw_vpath_fw_api(vpath,
288 VXGE_HW_FW_UPGRADE_ACTION,
289 VXGE_HW_FW_UPGRADE_MEMO,
290 VXGE_HW_FW_UPGRADE_OFFSET_START,
291 &data0, &data1, &steer_ctrl);
292 if (status != VXGE_HW_OK) {
293 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294 __func__);
295 return status;
298 /* Transfer fw image to adapter 16 bytes at a time */
299 for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300 steer_ctrl = 0;
302 /* The next 128bits of fwdata to be loaded onto the adapter */
303 data0 = *((u64 *)fwdata);
304 data1 = *((u64 *)fwdata + 1);
306 status = vxge_hw_vpath_fw_api(vpath,
307 VXGE_HW_FW_UPGRADE_ACTION,
308 VXGE_HW_FW_UPGRADE_MEMO,
309 VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310 &data0, &data1, &steer_ctrl);
311 if (status != VXGE_HW_OK) {
312 vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313 __func__);
314 goto out;
317 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318 switch (ret_code) {
319 case VXGE_HW_FW_UPGRADE_OK:
320 /* All OK, send next 16 bytes. */
321 break;
322 case VXGE_FW_UPGRADE_BYTES2SKIP:
323 /* skip bytes in the stream */
324 fwdata += (data0 >> 8) & 0xFFFFFFFF;
325 break;
326 case VXGE_HW_FW_UPGRADE_DONE:
327 goto out;
328 case VXGE_HW_FW_UPGRADE_ERR:
329 sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330 switch (sec_code) {
331 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333 printk(KERN_ERR
334 "corrupted data from .ncf file\n");
335 break;
336 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341 printk(KERN_ERR "invalid .ncf file\n");
342 break;
343 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344 printk(KERN_ERR "buffer overflow\n");
345 break;
346 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347 printk(KERN_ERR "failed to flash the image\n");
348 break;
349 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350 printk(KERN_ERR
351 "generic error. Unknown error type\n");
352 break;
353 default:
354 printk(KERN_ERR "Unknown error of type %d\n",
355 sec_code);
356 break;
358 status = VXGE_HW_FAIL;
359 goto out;
360 default:
361 printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362 status = VXGE_HW_FAIL;
363 goto out;
365 /* point to next 16 bytes */
366 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
368 out:
369 return status;
372 enum vxge_hw_status
373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374 struct eprom_image *img)
376 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377 struct __vxge_hw_virtualpath *vpath;
378 enum vxge_hw_status status;
379 int i;
381 vpath = &hldev->virtual_paths[hldev->first_vp_id];
383 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385 data1 = steer_ctrl = 0;
387 status = vxge_hw_vpath_fw_api(vpath,
388 VXGE_HW_FW_API_GET_EPROM_REV,
389 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390 0, &data0, &data1, &steer_ctrl);
391 if (status != VXGE_HW_OK)
392 break;
394 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
400 return status;
404 * __vxge_hw_channel_free - Free memory allocated for channel
405 * This function deallocates memory from the channel and various arrays
406 * in the channel
408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
410 kfree(channel->work_arr);
411 kfree(channel->free_arr);
412 kfree(channel->reserve_arr);
413 kfree(channel->orig_arr);
414 kfree(channel);
418 * __vxge_hw_channel_initialize - Initialize a channel
419 * This function initializes a channel by properly setting the
420 * various references
422 static enum vxge_hw_status
423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
425 u32 i;
426 struct __vxge_hw_virtualpath *vpath;
428 vpath = channel->vph->vpath;
430 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431 for (i = 0; i < channel->length; i++)
432 channel->orig_arr[i] = channel->reserve_arr[i];
435 switch (channel->type) {
436 case VXGE_HW_CHANNEL_TYPE_FIFO:
437 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438 channel->stats = &((struct __vxge_hw_fifo *)
439 channel)->stats->common_stats;
440 break;
441 case VXGE_HW_CHANNEL_TYPE_RING:
442 vpath->ringh = (struct __vxge_hw_ring *)channel;
443 channel->stats = &((struct __vxge_hw_ring *)
444 channel)->stats->common_stats;
445 break;
446 default:
447 break;
450 return VXGE_HW_OK;
454 * __vxge_hw_channel_reset - Resets a channel
455 * This function resets a channel by properly setting the various references
457 static enum vxge_hw_status
458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
460 u32 i;
462 for (i = 0; i < channel->length; i++) {
463 if (channel->reserve_arr != NULL)
464 channel->reserve_arr[i] = channel->orig_arr[i];
465 if (channel->free_arr != NULL)
466 channel->free_arr[i] = NULL;
467 if (channel->work_arr != NULL)
468 channel->work_arr[i] = NULL;
470 channel->free_ptr = channel->length;
471 channel->reserve_ptr = channel->length;
472 channel->reserve_top = 0;
473 channel->post_index = 0;
474 channel->compl_index = 0;
476 return VXGE_HW_OK;
480 * __vxge_hw_device_pci_e_init
481 * Initialize certain PCI/PCI-X configuration registers
482 * with recommended values. Save config space for future hw resets.
484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
486 u16 cmd = 0;
488 /* Set the PErr Repconse bit and SERR in PCI command register. */
489 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490 cmd |= 0x140;
491 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
493 pci_save_state(hldev->pdev);
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497 * in progress
498 * This routine checks the vpath reset in progress register is turned zero
500 static enum vxge_hw_status
501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
503 enum vxge_hw_status status;
504 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507 return status;
511 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512 * Set the swapper bits appropriately for the lagacy section.
514 static enum vxge_hw_status
515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
517 u64 val64;
518 enum vxge_hw_status status = VXGE_HW_OK;
520 val64 = readq(&legacy_reg->toc_swapper_fb);
522 wmb();
524 switch (val64) {
525 case VXGE_HW_SWAPPER_INITIAL_VALUE:
526 return status;
528 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530 &legacy_reg->pifm_rd_swap_en);
531 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532 &legacy_reg->pifm_rd_flip_en);
533 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534 &legacy_reg->pifm_wr_swap_en);
535 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536 &legacy_reg->pifm_wr_flip_en);
537 break;
539 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541 &legacy_reg->pifm_rd_swap_en);
542 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543 &legacy_reg->pifm_wr_swap_en);
544 break;
546 case VXGE_HW_SWAPPER_BIT_FLIPPED:
547 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548 &legacy_reg->pifm_rd_flip_en);
549 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550 &legacy_reg->pifm_wr_flip_en);
551 break;
554 wmb();
556 val64 = readq(&legacy_reg->toc_swapper_fb);
558 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559 status = VXGE_HW_ERR_SWAPPER_CTRL;
561 return status;
565 * __vxge_hw_device_toc_get
566 * This routine sets the swapper and reads the toc pointer and returns the
567 * memory mapped address of the toc
569 static struct vxge_hw_toc_reg __iomem *
570 __vxge_hw_device_toc_get(void __iomem *bar0)
572 u64 val64;
573 struct vxge_hw_toc_reg __iomem *toc = NULL;
574 enum vxge_hw_status status;
576 struct vxge_hw_legacy_reg __iomem *legacy_reg =
577 (struct vxge_hw_legacy_reg __iomem *)bar0;
579 status = __vxge_hw_legacy_swapper_set(legacy_reg);
580 if (status != VXGE_HW_OK)
581 goto exit;
583 val64 = readq(&legacy_reg->toc_first_pointer);
584 toc = bar0 + val64;
585 exit:
586 return toc;
590 * __vxge_hw_device_reg_addr_get
591 * This routine sets the swapper and reads the toc pointer and initializes the
592 * register location pointers in the device object. It waits until the ric is
593 * completed initializing registers.
595 static enum vxge_hw_status
596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
598 u64 val64;
599 u32 i;
600 enum vxge_hw_status status = VXGE_HW_OK;
602 hldev->legacy_reg = hldev->bar0;
604 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605 if (hldev->toc_reg == NULL) {
606 status = VXGE_HW_FAIL;
607 goto exit;
610 val64 = readq(&hldev->toc_reg->toc_common_pointer);
611 hldev->common_reg = hldev->bar0 + val64;
613 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614 hldev->mrpcim_reg = hldev->bar0 + val64;
616 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618 hldev->srpcim_reg[i] = hldev->bar0 + val64;
621 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623 hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
626 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628 hldev->vpath_reg[i] = hldev->bar0 + val64;
631 val64 = readq(&hldev->toc_reg->toc_kdfc);
633 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634 case 0:
635 hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636 break;
637 default:
638 break;
641 status = __vxge_hw_device_vpath_reset_in_prog_check(
642 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644 return status;
648 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649 * This routine returns the Access Rights of the driver
651 static u32
652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
654 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
656 switch (host_type) {
657 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658 if (func_id == 0) {
659 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
662 break;
663 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666 break;
667 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670 break;
671 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674 break;
675 case VXGE_HW_SR_VH_FUNCTION0:
676 case VXGE_HW_VH_NORMAL_FUNCTION:
677 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678 break;
681 return access_rights;
684 * __vxge_hw_device_is_privilaged
685 * This routine checks if the device function is privilaged or not
688 enum vxge_hw_status
689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
691 if (__vxge_hw_device_access_rights_get(host_type,
692 func_id) &
693 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694 return VXGE_HW_OK;
695 else
696 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
700 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701 * Returns the function number of the vpath.
703 static u32
704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
706 u64 val64;
708 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
710 return
711 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
715 * __vxge_hw_device_host_info_get
716 * This routine returns the host type assignments
718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
720 u64 val64;
721 u32 i;
723 val64 = readq(&hldev->common_reg->host_type_assignments);
725 hldev->host_type =
726 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
728 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
730 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732 continue;
734 hldev->func_id =
735 __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
737 hldev->access_rights = __vxge_hw_device_access_rights_get(
738 hldev->host_type, hldev->func_id);
740 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
743 hldev->first_vp_id = i;
744 break;
749 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750 * link width and signalling rate.
752 static enum vxge_hw_status
753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
755 struct pci_dev *dev = hldev->pdev;
756 u16 lnk;
758 /* Get the negotiated link width and speed from PCI config space */
759 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
761 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762 return VXGE_HW_ERR_INVALID_PCI_INFO;
764 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765 case PCIE_LNK_WIDTH_RESRV:
766 case PCIE_LNK_X1:
767 case PCIE_LNK_X2:
768 case PCIE_LNK_X4:
769 case PCIE_LNK_X8:
770 break;
771 default:
772 return VXGE_HW_ERR_INVALID_PCI_INFO;
775 return VXGE_HW_OK;
779 * __vxge_hw_device_initialize
780 * Initialize Titan-V hardware.
782 static enum vxge_hw_status
783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
785 enum vxge_hw_status status = VXGE_HW_OK;
787 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788 hldev->func_id)) {
789 /* Validate the pci-e link width and speed */
790 status = __vxge_hw_verify_pci_e_info(hldev);
791 if (status != VXGE_HW_OK)
792 goto exit;
795 exit:
796 return status;
800 * __vxge_hw_vpath_fw_ver_get - Get the fw version
801 * Returns FW Version
803 static enum vxge_hw_status
804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805 struct vxge_hw_device_hw_info *hw_info)
807 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811 u64 data0, data1 = 0, steer_ctrl = 0;
812 enum vxge_hw_status status;
814 status = vxge_hw_vpath_fw_api(vpath,
815 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817 0, &data0, &data1, &steer_ctrl);
818 if (status != VXGE_HW_OK)
819 goto exit;
821 fw_date->day =
822 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823 fw_date->month =
824 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825 fw_date->year =
826 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
828 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829 fw_date->month, fw_date->day, fw_date->year);
831 fw_version->major =
832 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833 fw_version->minor =
834 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835 fw_version->build =
836 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
838 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839 fw_version->major, fw_version->minor, fw_version->build);
841 flash_date->day =
842 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843 flash_date->month =
844 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845 flash_date->year =
846 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
848 snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849 flash_date->month, flash_date->day, flash_date->year);
851 flash_version->major =
852 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853 flash_version->minor =
854 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855 flash_version->build =
856 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
858 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859 flash_version->major, flash_version->minor,
860 flash_version->build);
862 exit:
863 return status;
867 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868 * part number and product description.
870 static enum vxge_hw_status
871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872 struct vxge_hw_device_hw_info *hw_info)
874 enum vxge_hw_status status;
875 u64 data0, data1 = 0, steer_ctrl = 0;
876 u8 *serial_number = hw_info->serial_number;
877 u8 *part_number = hw_info->part_number;
878 u8 *product_desc = hw_info->product_desc;
879 u32 i, j = 0;
881 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
883 status = vxge_hw_vpath_fw_api(vpath,
884 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886 0, &data0, &data1, &steer_ctrl);
887 if (status != VXGE_HW_OK)
888 return status;
890 ((u64 *)serial_number)[0] = be64_to_cpu(data0);
891 ((u64 *)serial_number)[1] = be64_to_cpu(data1);
893 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894 data1 = steer_ctrl = 0;
896 status = vxge_hw_vpath_fw_api(vpath,
897 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899 0, &data0, &data1, &steer_ctrl);
900 if (status != VXGE_HW_OK)
901 return status;
903 ((u64 *)part_number)[0] = be64_to_cpu(data0);
904 ((u64 *)part_number)[1] = be64_to_cpu(data1);
906 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908 data0 = i;
909 data1 = steer_ctrl = 0;
911 status = vxge_hw_vpath_fw_api(vpath,
912 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914 0, &data0, &data1, &steer_ctrl);
915 if (status != VXGE_HW_OK)
916 return status;
918 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
922 return status;
926 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927 * Returns pci function mode
929 static enum vxge_hw_status
930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931 struct vxge_hw_device_hw_info *hw_info)
933 u64 data0, data1 = 0, steer_ctrl = 0;
934 enum vxge_hw_status status;
936 data0 = 0;
938 status = vxge_hw_vpath_fw_api(vpath,
939 VXGE_HW_FW_API_GET_FUNC_MODE,
940 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941 0, &data0, &data1, &steer_ctrl);
942 if (status != VXGE_HW_OK)
943 return status;
945 hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946 return status;
950 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951 * from MAC address table.
953 static enum vxge_hw_status
954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955 u8 *macaddr, u8 *macaddr_mask)
957 u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958 data0 = 0, data1 = 0, steer_ctrl = 0;
959 enum vxge_hw_status status;
960 int i;
962 do {
963 status = vxge_hw_vpath_fw_api(vpath, action,
964 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965 0, &data0, &data1, &steer_ctrl);
966 if (status != VXGE_HW_OK)
967 goto exit;
969 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971 data1);
973 for (i = ETH_ALEN; i > 0; i--) {
974 macaddr[i - 1] = (u8) (data0 & 0xFF);
975 data0 >>= 8;
977 macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978 data1 >>= 8;
981 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982 data0 = 0, data1 = 0, steer_ctrl = 0;
984 } while (!is_valid_ether_addr(macaddr));
985 exit:
986 return status;
990 * vxge_hw_device_hw_info_get - Get the hw information
991 * Returns the vpath mask that has the bits set for each vpath allocated
992 * for the driver, FW version information, and the first mac address for
993 * each vpath
995 enum vxge_hw_status
996 vxge_hw_device_hw_info_get(void __iomem *bar0,
997 struct vxge_hw_device_hw_info *hw_info)
999 u32 i;
1000 u64 val64;
1001 struct vxge_hw_toc_reg __iomem *toc;
1002 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1003 struct vxge_hw_common_reg __iomem *common_reg;
1004 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1005 enum vxge_hw_status status;
1006 struct __vxge_hw_virtualpath vpath;
1008 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1010 toc = __vxge_hw_device_toc_get(bar0);
1011 if (toc == NULL) {
1012 status = VXGE_HW_ERR_CRITICAL;
1013 goto exit;
1016 val64 = readq(&toc->toc_common_pointer);
1017 common_reg = bar0 + val64;
1019 status = __vxge_hw_device_vpath_reset_in_prog_check(
1020 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1021 if (status != VXGE_HW_OK)
1022 goto exit;
1024 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1026 val64 = readq(&common_reg->host_type_assignments);
1028 hw_info->host_type =
1029 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1031 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1032 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1033 continue;
1035 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1037 vpmgmt_reg = bar0 + val64;
1039 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1040 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1041 hw_info->func_id) &
1042 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1044 val64 = readq(&toc->toc_mrpcim_pointer);
1046 mrpcim_reg = bar0 + val64;
1048 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1049 wmb();
1052 val64 = readq(&toc->toc_vpath_pointer[i]);
1054 spin_lock_init(&vpath.lock);
1055 vpath.vp_reg = bar0 + val64;
1056 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1058 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1059 if (status != VXGE_HW_OK)
1060 goto exit;
1062 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1063 if (status != VXGE_HW_OK)
1064 goto exit;
1066 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1067 if (status != VXGE_HW_OK)
1068 goto exit;
1070 break;
1073 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1074 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1075 continue;
1077 val64 = readq(&toc->toc_vpath_pointer[i]);
1078 vpath.vp_reg = bar0 + val64;
1079 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1081 status = __vxge_hw_vpath_addr_get(&vpath,
1082 hw_info->mac_addrs[i],
1083 hw_info->mac_addr_masks[i]);
1084 if (status != VXGE_HW_OK)
1085 goto exit;
1087 exit:
1088 return status;
1092 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1096 struct __vxge_hw_device *hldev;
1097 struct list_head *p, *n;
1098 u16 ret;
1100 if (blockpool == NULL) {
1101 ret = 1;
1102 goto exit;
1105 hldev = blockpool->hldev;
1107 list_for_each_safe(p, n, &blockpool->free_block_list) {
1108 pci_unmap_single(hldev->pdev,
1109 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1110 ((struct __vxge_hw_blockpool_entry *)p)->length,
1111 PCI_DMA_BIDIRECTIONAL);
1113 vxge_os_dma_free(hldev->pdev,
1114 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1115 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1117 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1118 kfree(p);
1119 blockpool->pool_size--;
1122 list_for_each_safe(p, n, &blockpool->free_entry_list) {
1123 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1124 kfree((void *)p);
1126 ret = 0;
1127 exit:
1128 return;
1132 * __vxge_hw_blockpool_create - Create block pool
1134 static enum vxge_hw_status
1135 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1136 struct __vxge_hw_blockpool *blockpool,
1137 u32 pool_size,
1138 u32 pool_max)
1140 u32 i;
1141 struct __vxge_hw_blockpool_entry *entry = NULL;
1142 void *memblock;
1143 dma_addr_t dma_addr;
1144 struct pci_dev *dma_handle;
1145 struct pci_dev *acc_handle;
1146 enum vxge_hw_status status = VXGE_HW_OK;
1148 if (blockpool == NULL) {
1149 status = VXGE_HW_FAIL;
1150 goto blockpool_create_exit;
1153 blockpool->hldev = hldev;
1154 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1155 blockpool->pool_size = 0;
1156 blockpool->pool_max = pool_max;
1157 blockpool->req_out = 0;
1159 INIT_LIST_HEAD(&blockpool->free_block_list);
1160 INIT_LIST_HEAD(&blockpool->free_entry_list);
1162 for (i = 0; i < pool_size + pool_max; i++) {
1163 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1164 GFP_KERNEL);
1165 if (entry == NULL) {
1166 __vxge_hw_blockpool_destroy(blockpool);
1167 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1168 goto blockpool_create_exit;
1170 list_add(&entry->item, &blockpool->free_entry_list);
1173 for (i = 0; i < pool_size; i++) {
1174 memblock = vxge_os_dma_malloc(
1175 hldev->pdev,
1176 VXGE_HW_BLOCK_SIZE,
1177 &dma_handle,
1178 &acc_handle);
1179 if (memblock == NULL) {
1180 __vxge_hw_blockpool_destroy(blockpool);
1181 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1182 goto blockpool_create_exit;
1185 dma_addr = pci_map_single(hldev->pdev, memblock,
1186 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1187 if (unlikely(pci_dma_mapping_error(hldev->pdev,
1188 dma_addr))) {
1189 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1190 __vxge_hw_blockpool_destroy(blockpool);
1191 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1192 goto blockpool_create_exit;
1195 if (!list_empty(&blockpool->free_entry_list))
1196 entry = (struct __vxge_hw_blockpool_entry *)
1197 list_first_entry(&blockpool->free_entry_list,
1198 struct __vxge_hw_blockpool_entry,
1199 item);
1201 if (entry == NULL)
1202 entry =
1203 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1204 GFP_KERNEL);
1205 if (entry != NULL) {
1206 list_del(&entry->item);
1207 entry->length = VXGE_HW_BLOCK_SIZE;
1208 entry->memblock = memblock;
1209 entry->dma_addr = dma_addr;
1210 entry->acc_handle = acc_handle;
1211 entry->dma_handle = dma_handle;
1212 list_add(&entry->item,
1213 &blockpool->free_block_list);
1214 blockpool->pool_size++;
1215 } else {
1216 __vxge_hw_blockpool_destroy(blockpool);
1217 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1218 goto blockpool_create_exit;
1222 blockpool_create_exit:
1223 return status;
1227 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1228 * Check the fifo configuration
1230 static enum vxge_hw_status
1231 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1233 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1234 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1235 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1237 return VXGE_HW_OK;
1241 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1242 * Check the vpath configuration
1244 static enum vxge_hw_status
1245 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1247 enum vxge_hw_status status;
1249 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1250 (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1251 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1253 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1254 if (status != VXGE_HW_OK)
1255 return status;
1257 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1258 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1259 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1260 return VXGE_HW_BADCFG_VPATH_MTU;
1262 if ((vp_config->rpa_strip_vlan_tag !=
1263 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1264 (vp_config->rpa_strip_vlan_tag !=
1265 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1266 (vp_config->rpa_strip_vlan_tag !=
1267 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1268 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1270 return VXGE_HW_OK;
1274 * __vxge_hw_device_config_check - Check device configuration.
1275 * Check the device configuration
1277 static enum vxge_hw_status
1278 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1280 u32 i;
1281 enum vxge_hw_status status;
1283 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1284 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1285 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1286 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1287 return VXGE_HW_BADCFG_INTR_MODE;
1289 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1290 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1291 return VXGE_HW_BADCFG_RTS_MAC_EN;
1293 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1294 status = __vxge_hw_device_vpath_config_check(
1295 &new_config->vp_config[i]);
1296 if (status != VXGE_HW_OK)
1297 return status;
1300 return VXGE_HW_OK;
1304 * vxge_hw_device_initialize - Initialize Titan device.
1305 * Initialize Titan device. Note that all the arguments of this public API
1306 * are 'IN', including @hldev. Driver cooperates with
1307 * OS to find new Titan device, locate its PCI and memory spaces.
1309 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1310 * to enable the latter to perform Titan hardware initialization.
1312 enum vxge_hw_status
1313 vxge_hw_device_initialize(
1314 struct __vxge_hw_device **devh,
1315 struct vxge_hw_device_attr *attr,
1316 struct vxge_hw_device_config *device_config)
1318 u32 i;
1319 u32 nblocks = 0;
1320 struct __vxge_hw_device *hldev = NULL;
1321 enum vxge_hw_status status = VXGE_HW_OK;
1323 status = __vxge_hw_device_config_check(device_config);
1324 if (status != VXGE_HW_OK)
1325 goto exit;
1327 hldev = vzalloc(sizeof(struct __vxge_hw_device));
1328 if (hldev == NULL) {
1329 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1330 goto exit;
1333 hldev->magic = VXGE_HW_DEVICE_MAGIC;
1335 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1337 /* apply config */
1338 memcpy(&hldev->config, device_config,
1339 sizeof(struct vxge_hw_device_config));
1341 hldev->bar0 = attr->bar0;
1342 hldev->pdev = attr->pdev;
1344 hldev->uld_callbacks = attr->uld_callbacks;
1346 __vxge_hw_device_pci_e_init(hldev);
1348 status = __vxge_hw_device_reg_addr_get(hldev);
1349 if (status != VXGE_HW_OK) {
1350 vfree(hldev);
1351 goto exit;
1354 __vxge_hw_device_host_info_get(hldev);
1356 /* Incrementing for stats blocks */
1357 nblocks++;
1359 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1360 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1361 continue;
1363 if (device_config->vp_config[i].ring.enable ==
1364 VXGE_HW_RING_ENABLE)
1365 nblocks += device_config->vp_config[i].ring.ring_blocks;
1367 if (device_config->vp_config[i].fifo.enable ==
1368 VXGE_HW_FIFO_ENABLE)
1369 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1370 nblocks++;
1373 if (__vxge_hw_blockpool_create(hldev,
1374 &hldev->block_pool,
1375 device_config->dma_blockpool_initial + nblocks,
1376 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1378 vxge_hw_device_terminate(hldev);
1379 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1380 goto exit;
1383 status = __vxge_hw_device_initialize(hldev);
1384 if (status != VXGE_HW_OK) {
1385 vxge_hw_device_terminate(hldev);
1386 goto exit;
1389 *devh = hldev;
1390 exit:
1391 return status;
1395 * vxge_hw_device_terminate - Terminate Titan device.
1396 * Terminate HW device.
1398 void
1399 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1401 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1403 hldev->magic = VXGE_HW_DEVICE_DEAD;
1404 __vxge_hw_blockpool_destroy(&hldev->block_pool);
1405 vfree(hldev);
1409 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1410 * and offset and perform an operation
1412 static enum vxge_hw_status
1413 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1414 u32 operation, u32 offset, u64 *stat)
1416 u64 val64;
1417 enum vxge_hw_status status = VXGE_HW_OK;
1418 struct vxge_hw_vpath_reg __iomem *vp_reg;
1420 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1421 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1422 goto vpath_stats_access_exit;
1425 vp_reg = vpath->vp_reg;
1427 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1428 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1429 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1431 status = __vxge_hw_pio_mem_write64(val64,
1432 &vp_reg->xmac_stats_access_cmd,
1433 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1434 vpath->hldev->config.device_poll_millis);
1435 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1436 *stat = readq(&vp_reg->xmac_stats_access_data);
1437 else
1438 *stat = 0;
1440 vpath_stats_access_exit:
1441 return status;
1445 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1447 static enum vxge_hw_status
1448 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1449 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1451 u64 *val64;
1452 int i;
1453 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1454 enum vxge_hw_status status = VXGE_HW_OK;
1456 val64 = (u64 *)vpath_tx_stats;
1458 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1459 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1460 goto exit;
1463 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1464 status = __vxge_hw_vpath_stats_access(vpath,
1465 VXGE_HW_STATS_OP_READ,
1466 offset, val64);
1467 if (status != VXGE_HW_OK)
1468 goto exit;
1469 offset++;
1470 val64++;
1472 exit:
1473 return status;
1477 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1479 static enum vxge_hw_status
1480 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1481 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1483 u64 *val64;
1484 enum vxge_hw_status status = VXGE_HW_OK;
1485 int i;
1486 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1487 val64 = (u64 *) vpath_rx_stats;
1489 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1490 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1491 goto exit;
1493 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1494 status = __vxge_hw_vpath_stats_access(vpath,
1495 VXGE_HW_STATS_OP_READ,
1496 offset >> 3, val64);
1497 if (status != VXGE_HW_OK)
1498 goto exit;
1500 offset += 8;
1501 val64++;
1503 exit:
1504 return status;
1508 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1510 static enum vxge_hw_status
1511 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1512 struct vxge_hw_vpath_stats_hw_info *hw_stats)
1514 u64 val64;
1515 enum vxge_hw_status status = VXGE_HW_OK;
1516 struct vxge_hw_vpath_reg __iomem *vp_reg;
1518 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1519 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1520 goto exit;
1522 vp_reg = vpath->vp_reg;
1524 val64 = readq(&vp_reg->vpath_debug_stats0);
1525 hw_stats->ini_num_mwr_sent =
1526 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1528 val64 = readq(&vp_reg->vpath_debug_stats1);
1529 hw_stats->ini_num_mrd_sent =
1530 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1532 val64 = readq(&vp_reg->vpath_debug_stats2);
1533 hw_stats->ini_num_cpl_rcvd =
1534 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1536 val64 = readq(&vp_reg->vpath_debug_stats3);
1537 hw_stats->ini_num_mwr_byte_sent =
1538 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1540 val64 = readq(&vp_reg->vpath_debug_stats4);
1541 hw_stats->ini_num_cpl_byte_rcvd =
1542 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1544 val64 = readq(&vp_reg->vpath_debug_stats5);
1545 hw_stats->wrcrdtarb_xoff =
1546 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1548 val64 = readq(&vp_reg->vpath_debug_stats6);
1549 hw_stats->rdcrdtarb_xoff =
1550 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1552 val64 = readq(&vp_reg->vpath_genstats_count01);
1553 hw_stats->vpath_genstats_count0 =
1554 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1555 val64);
1557 val64 = readq(&vp_reg->vpath_genstats_count01);
1558 hw_stats->vpath_genstats_count1 =
1559 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1560 val64);
1562 val64 = readq(&vp_reg->vpath_genstats_count23);
1563 hw_stats->vpath_genstats_count2 =
1564 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1565 val64);
1567 val64 = readq(&vp_reg->vpath_genstats_count01);
1568 hw_stats->vpath_genstats_count3 =
1569 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1570 val64);
1572 val64 = readq(&vp_reg->vpath_genstats_count4);
1573 hw_stats->vpath_genstats_count4 =
1574 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1575 val64);
1577 val64 = readq(&vp_reg->vpath_genstats_count5);
1578 hw_stats->vpath_genstats_count5 =
1579 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1580 val64);
1582 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1583 if (status != VXGE_HW_OK)
1584 goto exit;
1586 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1587 if (status != VXGE_HW_OK)
1588 goto exit;
1590 VXGE_HW_VPATH_STATS_PIO_READ(
1591 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1593 hw_stats->prog_event_vnum0 =
1594 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1596 hw_stats->prog_event_vnum1 =
1597 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1599 VXGE_HW_VPATH_STATS_PIO_READ(
1600 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1602 hw_stats->prog_event_vnum2 =
1603 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1605 hw_stats->prog_event_vnum3 =
1606 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1608 val64 = readq(&vp_reg->rx_multi_cast_stats);
1609 hw_stats->rx_multi_cast_frame_discard =
1610 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1612 val64 = readq(&vp_reg->rx_frm_transferred);
1613 hw_stats->rx_frm_transferred =
1614 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1616 val64 = readq(&vp_reg->rxd_returned);
1617 hw_stats->rxd_returned =
1618 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1620 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1621 hw_stats->rx_mpa_len_fail_frms =
1622 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1623 hw_stats->rx_mpa_mrk_fail_frms =
1624 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1625 hw_stats->rx_mpa_crc_fail_frms =
1626 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1628 val64 = readq(&vp_reg->dbg_stats_rx_fau);
1629 hw_stats->rx_permitted_frms =
1630 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1631 hw_stats->rx_vp_reset_discarded_frms =
1632 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1633 hw_stats->rx_wol_frms =
1634 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1636 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1637 hw_stats->tx_vp_reset_discarded_frms =
1638 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1639 val64);
1640 exit:
1641 return status;
1645 * vxge_hw_device_stats_get - Get the device hw statistics.
1646 * Returns the vpath h/w stats for the device.
1648 enum vxge_hw_status
1649 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1650 struct vxge_hw_device_stats_hw_info *hw_stats)
1652 u32 i;
1653 enum vxge_hw_status status = VXGE_HW_OK;
1655 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1656 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1657 (hldev->virtual_paths[i].vp_open ==
1658 VXGE_HW_VP_NOT_OPEN))
1659 continue;
1661 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1662 hldev->virtual_paths[i].hw_stats,
1663 sizeof(struct vxge_hw_vpath_stats_hw_info));
1665 status = __vxge_hw_vpath_stats_get(
1666 &hldev->virtual_paths[i],
1667 hldev->virtual_paths[i].hw_stats);
1670 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1671 sizeof(struct vxge_hw_device_stats_hw_info));
1673 return status;
1677 * vxge_hw_driver_stats_get - Get the device sw statistics.
1678 * Returns the vpath s/w stats for the device.
1680 enum vxge_hw_status vxge_hw_driver_stats_get(
1681 struct __vxge_hw_device *hldev,
1682 struct vxge_hw_device_stats_sw_info *sw_stats)
1684 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1685 sizeof(struct vxge_hw_device_stats_sw_info));
1687 return VXGE_HW_OK;
1691 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1692 * and offset and perform an operation
1693 * Get the statistics from the given location and offset.
1695 enum vxge_hw_status
1696 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1697 u32 operation, u32 location, u32 offset, u64 *stat)
1699 u64 val64;
1700 enum vxge_hw_status status = VXGE_HW_OK;
1702 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1703 hldev->func_id);
1704 if (status != VXGE_HW_OK)
1705 goto exit;
1707 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1708 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1709 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1710 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1712 status = __vxge_hw_pio_mem_write64(val64,
1713 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1714 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1715 hldev->config.device_poll_millis);
1717 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1718 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1719 else
1720 *stat = 0;
1721 exit:
1722 return status;
1726 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1727 * Get the Statistics on aggregate port
1729 static enum vxge_hw_status
1730 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1731 struct vxge_hw_xmac_aggr_stats *aggr_stats)
1733 u64 *val64;
1734 int i;
1735 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1736 enum vxge_hw_status status = VXGE_HW_OK;
1738 val64 = (u64 *)aggr_stats;
1740 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1741 hldev->func_id);
1742 if (status != VXGE_HW_OK)
1743 goto exit;
1745 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1746 status = vxge_hw_mrpcim_stats_access(hldev,
1747 VXGE_HW_STATS_OP_READ,
1748 VXGE_HW_STATS_LOC_AGGR,
1749 ((offset + (104 * port)) >> 3), val64);
1750 if (status != VXGE_HW_OK)
1751 goto exit;
1753 offset += 8;
1754 val64++;
1756 exit:
1757 return status;
1761 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1762 * Get the Statistics on port
1764 static enum vxge_hw_status
1765 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1766 struct vxge_hw_xmac_port_stats *port_stats)
1768 u64 *val64;
1769 enum vxge_hw_status status = VXGE_HW_OK;
1770 int i;
1771 u32 offset = 0x0;
1772 val64 = (u64 *) port_stats;
1774 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1775 hldev->func_id);
1776 if (status != VXGE_HW_OK)
1777 goto exit;
1779 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1780 status = vxge_hw_mrpcim_stats_access(hldev,
1781 VXGE_HW_STATS_OP_READ,
1782 VXGE_HW_STATS_LOC_AGGR,
1783 ((offset + (608 * port)) >> 3), val64);
1784 if (status != VXGE_HW_OK)
1785 goto exit;
1787 offset += 8;
1788 val64++;
1791 exit:
1792 return status;
1796 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1797 * Get the XMAC Statistics
1799 enum vxge_hw_status
1800 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1801 struct vxge_hw_xmac_stats *xmac_stats)
1803 enum vxge_hw_status status = VXGE_HW_OK;
1804 u32 i;
1806 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1807 0, &xmac_stats->aggr_stats[0]);
1808 if (status != VXGE_HW_OK)
1809 goto exit;
1811 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1812 1, &xmac_stats->aggr_stats[1]);
1813 if (status != VXGE_HW_OK)
1814 goto exit;
1816 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1818 status = vxge_hw_device_xmac_port_stats_get(hldev,
1819 i, &xmac_stats->port_stats[i]);
1820 if (status != VXGE_HW_OK)
1821 goto exit;
1824 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1826 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1827 continue;
1829 status = __vxge_hw_vpath_xmac_tx_stats_get(
1830 &hldev->virtual_paths[i],
1831 &xmac_stats->vpath_tx_stats[i]);
1832 if (status != VXGE_HW_OK)
1833 goto exit;
1835 status = __vxge_hw_vpath_xmac_rx_stats_get(
1836 &hldev->virtual_paths[i],
1837 &xmac_stats->vpath_rx_stats[i]);
1838 if (status != VXGE_HW_OK)
1839 goto exit;
1841 exit:
1842 return status;
1846 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1847 * This routine is used to dynamically change the debug output
1849 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1850 enum vxge_debug_level level, u32 mask)
1852 if (hldev == NULL)
1853 return;
1855 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1856 defined(VXGE_DEBUG_ERR_MASK)
1857 hldev->debug_module_mask = mask;
1858 hldev->debug_level = level;
1859 #endif
1861 #if defined(VXGE_DEBUG_ERR_MASK)
1862 hldev->level_err = level & VXGE_ERR;
1863 #endif
1865 #if defined(VXGE_DEBUG_TRACE_MASK)
1866 hldev->level_trace = level & VXGE_TRACE;
1867 #endif
1871 * vxge_hw_device_error_level_get - Get the error level
1872 * This routine returns the current error level set
1874 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1876 #if defined(VXGE_DEBUG_ERR_MASK)
1877 if (hldev == NULL)
1878 return VXGE_ERR;
1879 else
1880 return hldev->level_err;
1881 #else
1882 return 0;
1883 #endif
1887 * vxge_hw_device_trace_level_get - Get the trace level
1888 * This routine returns the current trace level set
1890 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1892 #if defined(VXGE_DEBUG_TRACE_MASK)
1893 if (hldev == NULL)
1894 return VXGE_TRACE;
1895 else
1896 return hldev->level_trace;
1897 #else
1898 return 0;
1899 #endif
1903 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1904 * Returns the Pause frame generation and reception capability of the NIC.
1906 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1907 u32 port, u32 *tx, u32 *rx)
1909 u64 val64;
1910 enum vxge_hw_status status = VXGE_HW_OK;
1912 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1913 status = VXGE_HW_ERR_INVALID_DEVICE;
1914 goto exit;
1917 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1918 status = VXGE_HW_ERR_INVALID_PORT;
1919 goto exit;
1922 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1923 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1924 goto exit;
1927 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1928 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1929 *tx = 1;
1930 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1931 *rx = 1;
1932 exit:
1933 return status;
1937 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1938 * It can be used to set or reset Pause frame generation or reception
1939 * support of the NIC.
1941 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1942 u32 port, u32 tx, u32 rx)
1944 u64 val64;
1945 enum vxge_hw_status status = VXGE_HW_OK;
1947 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1948 status = VXGE_HW_ERR_INVALID_DEVICE;
1949 goto exit;
1952 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1953 status = VXGE_HW_ERR_INVALID_PORT;
1954 goto exit;
1957 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1958 hldev->func_id);
1959 if (status != VXGE_HW_OK)
1960 goto exit;
1962 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1963 if (tx)
1964 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1965 else
1966 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1967 if (rx)
1968 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1969 else
1970 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1972 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1973 exit:
1974 return status;
1977 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1979 struct pci_dev *dev = hldev->pdev;
1980 u16 lnk;
1982 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1983 return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1987 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1988 * This function returns the index of memory block
1990 static inline u32
1991 __vxge_hw_ring_block_memblock_idx(u8 *block)
1993 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1997 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1998 * This function sets index to a memory block
2000 static inline void
2001 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
2003 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2007 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2008 * in RxD block
2009 * Sets the next block pointer in RxD block
2011 static inline void
2012 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2014 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2018 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2019 * first block
2020 * Returns the dma address of the first RxD block
2022 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2024 struct vxge_hw_mempool_dma *dma_object;
2026 dma_object = ring->mempool->memblocks_dma_arr;
2027 vxge_assert(dma_object != NULL);
2029 return dma_object->addr;
2033 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2034 * This function returns the dma address of a given item
2036 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2037 void *item)
2039 u32 memblock_idx;
2040 void *memblock;
2041 struct vxge_hw_mempool_dma *memblock_dma_object;
2042 ptrdiff_t dma_item_offset;
2044 /* get owner memblock index */
2045 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2047 /* get owner memblock by memblock index */
2048 memblock = mempoolh->memblocks_arr[memblock_idx];
2050 /* get memblock DMA object by memblock index */
2051 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2053 /* calculate offset in the memblock of this item */
2054 dma_item_offset = (u8 *)item - (u8 *)memblock;
2056 return memblock_dma_object->addr + dma_item_offset;
2060 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2061 * This function returns the dma address of a given item
2063 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2064 struct __vxge_hw_ring *ring, u32 from,
2065 u32 to)
2067 u8 *to_item , *from_item;
2068 dma_addr_t to_dma;
2070 /* get "from" RxD block */
2071 from_item = mempoolh->items_arr[from];
2072 vxge_assert(from_item);
2074 /* get "to" RxD block */
2075 to_item = mempoolh->items_arr[to];
2076 vxge_assert(to_item);
2078 /* return address of the beginning of previous RxD block */
2079 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2081 /* set next pointer for this RxD block to point on
2082 * previous item's DMA start address */
2083 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2087 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2088 * block callback
2089 * This function is callback passed to __vxge_hw_mempool_create to create memory
2090 * pool for RxD block
2092 static void
2093 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2094 u32 memblock_index,
2095 struct vxge_hw_mempool_dma *dma_object,
2096 u32 index, u32 is_last)
2098 u32 i;
2099 void *item = mempoolh->items_arr[index];
2100 struct __vxge_hw_ring *ring =
2101 (struct __vxge_hw_ring *)mempoolh->userdata;
2103 /* format rxds array */
2104 for (i = 0; i < ring->rxds_per_block; i++) {
2105 void *rxdblock_priv;
2106 void *uld_priv;
2107 struct vxge_hw_ring_rxd_1 *rxdp;
2109 u32 reserve_index = ring->channel.reserve_ptr -
2110 (index * ring->rxds_per_block + i + 1);
2111 u32 memblock_item_idx;
2113 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2114 i * ring->rxd_size;
2116 /* Note: memblock_item_idx is index of the item within
2117 * the memblock. For instance, in case of three RxD-blocks
2118 * per memblock this value can be 0, 1 or 2. */
2119 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2120 memblock_index, item,
2121 &memblock_item_idx);
2123 rxdp = ring->channel.reserve_arr[reserve_index];
2125 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2127 /* pre-format Host_Control */
2128 rxdp->host_control = (u64)(size_t)uld_priv;
2131 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2133 if (is_last) {
2134 /* link last one with first one */
2135 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2138 if (index > 0) {
2139 /* link this RxD block with previous one */
2140 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2145 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2146 * This function replenishes the RxDs from reserve array to work array
2148 static enum vxge_hw_status
2149 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2151 void *rxd;
2152 struct __vxge_hw_channel *channel;
2153 enum vxge_hw_status status = VXGE_HW_OK;
2155 channel = &ring->channel;
2157 while (vxge_hw_channel_dtr_count(channel) > 0) {
2159 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2161 vxge_assert(status == VXGE_HW_OK);
2163 if (ring->rxd_init) {
2164 status = ring->rxd_init(rxd, channel->userdata);
2165 if (status != VXGE_HW_OK) {
2166 vxge_hw_ring_rxd_free(ring, rxd);
2167 goto exit;
2171 vxge_hw_ring_rxd_post(ring, rxd);
2173 status = VXGE_HW_OK;
2174 exit:
2175 return status;
2179 * __vxge_hw_channel_allocate - Allocate memory for channel
2180 * This function allocates required memory for the channel and various arrays
2181 * in the channel
2183 static struct __vxge_hw_channel *
2184 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2185 enum __vxge_hw_channel_type type,
2186 u32 length, u32 per_dtr_space,
2187 void *userdata)
2189 struct __vxge_hw_channel *channel;
2190 struct __vxge_hw_device *hldev;
2191 int size = 0;
2192 u32 vp_id;
2194 hldev = vph->vpath->hldev;
2195 vp_id = vph->vpath->vp_id;
2197 switch (type) {
2198 case VXGE_HW_CHANNEL_TYPE_FIFO:
2199 size = sizeof(struct __vxge_hw_fifo);
2200 break;
2201 case VXGE_HW_CHANNEL_TYPE_RING:
2202 size = sizeof(struct __vxge_hw_ring);
2203 break;
2204 default:
2205 break;
2208 channel = kzalloc(size, GFP_KERNEL);
2209 if (channel == NULL)
2210 goto exit0;
2211 INIT_LIST_HEAD(&channel->item);
2213 channel->common_reg = hldev->common_reg;
2214 channel->first_vp_id = hldev->first_vp_id;
2215 channel->type = type;
2216 channel->devh = hldev;
2217 channel->vph = vph;
2218 channel->userdata = userdata;
2219 channel->per_dtr_space = per_dtr_space;
2220 channel->length = length;
2221 channel->vp_id = vp_id;
2223 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2224 if (channel->work_arr == NULL)
2225 goto exit1;
2227 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2228 if (channel->free_arr == NULL)
2229 goto exit1;
2230 channel->free_ptr = length;
2232 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2233 if (channel->reserve_arr == NULL)
2234 goto exit1;
2235 channel->reserve_ptr = length;
2236 channel->reserve_top = 0;
2238 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2239 if (channel->orig_arr == NULL)
2240 goto exit1;
2242 return channel;
2243 exit1:
2244 __vxge_hw_channel_free(channel);
2246 exit0:
2247 return NULL;
2251 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2252 * Adds a block to block pool
2254 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2255 void *block_addr,
2256 u32 length,
2257 struct pci_dev *dma_h,
2258 struct pci_dev *acc_handle)
2260 struct __vxge_hw_blockpool *blockpool;
2261 struct __vxge_hw_blockpool_entry *entry = NULL;
2262 dma_addr_t dma_addr;
2263 enum vxge_hw_status status = VXGE_HW_OK;
2264 u32 req_out;
2266 blockpool = &devh->block_pool;
2268 if (block_addr == NULL) {
2269 blockpool->req_out--;
2270 status = VXGE_HW_FAIL;
2271 goto exit;
2274 dma_addr = pci_map_single(devh->pdev, block_addr, length,
2275 PCI_DMA_BIDIRECTIONAL);
2277 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2278 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2279 blockpool->req_out--;
2280 status = VXGE_HW_FAIL;
2281 goto exit;
2284 if (!list_empty(&blockpool->free_entry_list))
2285 entry = (struct __vxge_hw_blockpool_entry *)
2286 list_first_entry(&blockpool->free_entry_list,
2287 struct __vxge_hw_blockpool_entry,
2288 item);
2290 if (entry == NULL)
2291 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2292 else
2293 list_del(&entry->item);
2295 if (entry != NULL) {
2296 entry->length = length;
2297 entry->memblock = block_addr;
2298 entry->dma_addr = dma_addr;
2299 entry->acc_handle = acc_handle;
2300 entry->dma_handle = dma_h;
2301 list_add(&entry->item, &blockpool->free_block_list);
2302 blockpool->pool_size++;
2303 status = VXGE_HW_OK;
2304 } else
2305 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2307 blockpool->req_out--;
2309 req_out = blockpool->req_out;
2310 exit:
2311 return;
2314 static inline void
2315 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2317 gfp_t flags;
2318 void *vaddr;
2320 if (in_interrupt())
2321 flags = GFP_ATOMIC | GFP_DMA;
2322 else
2323 flags = GFP_KERNEL | GFP_DMA;
2325 vaddr = kmalloc((size), flags);
2327 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2331 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2333 static
2334 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2336 u32 nreq = 0, i;
2338 if ((blockpool->pool_size + blockpool->req_out) <
2339 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2340 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2341 blockpool->req_out += nreq;
2344 for (i = 0; i < nreq; i++)
2345 vxge_os_dma_malloc_async(
2346 (blockpool->hldev)->pdev,
2347 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2351 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2352 * Allocates a block of memory of given size, either from block pool
2353 * or by calling vxge_os_dma_malloc()
2355 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2356 struct vxge_hw_mempool_dma *dma_object)
2358 struct __vxge_hw_blockpool_entry *entry = NULL;
2359 struct __vxge_hw_blockpool *blockpool;
2360 void *memblock = NULL;
2361 enum vxge_hw_status status = VXGE_HW_OK;
2363 blockpool = &devh->block_pool;
2365 if (size != blockpool->block_size) {
2367 memblock = vxge_os_dma_malloc(devh->pdev, size,
2368 &dma_object->handle,
2369 &dma_object->acc_handle);
2371 if (memblock == NULL) {
2372 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2373 goto exit;
2376 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2377 PCI_DMA_BIDIRECTIONAL);
2379 if (unlikely(pci_dma_mapping_error(devh->pdev,
2380 dma_object->addr))) {
2381 vxge_os_dma_free(devh->pdev, memblock,
2382 &dma_object->acc_handle);
2383 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2384 goto exit;
2387 } else {
2389 if (!list_empty(&blockpool->free_block_list))
2390 entry = (struct __vxge_hw_blockpool_entry *)
2391 list_first_entry(&blockpool->free_block_list,
2392 struct __vxge_hw_blockpool_entry,
2393 item);
2395 if (entry != NULL) {
2396 list_del(&entry->item);
2397 dma_object->addr = entry->dma_addr;
2398 dma_object->handle = entry->dma_handle;
2399 dma_object->acc_handle = entry->acc_handle;
2400 memblock = entry->memblock;
2402 list_add(&entry->item,
2403 &blockpool->free_entry_list);
2404 blockpool->pool_size--;
2407 if (memblock != NULL)
2408 __vxge_hw_blockpool_blocks_add(blockpool);
2410 exit:
2411 return memblock;
2415 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2417 static void
2418 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2420 struct list_head *p, *n;
2422 list_for_each_safe(p, n, &blockpool->free_block_list) {
2424 if (blockpool->pool_size < blockpool->pool_max)
2425 break;
2427 pci_unmap_single(
2428 (blockpool->hldev)->pdev,
2429 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2430 ((struct __vxge_hw_blockpool_entry *)p)->length,
2431 PCI_DMA_BIDIRECTIONAL);
2433 vxge_os_dma_free(
2434 (blockpool->hldev)->pdev,
2435 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2436 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2438 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2440 list_add(p, &blockpool->free_entry_list);
2442 blockpool->pool_size--;
2448 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2449 * __vxge_hw_blockpool_malloc
2451 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2452 void *memblock, u32 size,
2453 struct vxge_hw_mempool_dma *dma_object)
2455 struct __vxge_hw_blockpool_entry *entry = NULL;
2456 struct __vxge_hw_blockpool *blockpool;
2457 enum vxge_hw_status status = VXGE_HW_OK;
2459 blockpool = &devh->block_pool;
2461 if (size != blockpool->block_size) {
2462 pci_unmap_single(devh->pdev, dma_object->addr, size,
2463 PCI_DMA_BIDIRECTIONAL);
2464 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2465 } else {
2467 if (!list_empty(&blockpool->free_entry_list))
2468 entry = (struct __vxge_hw_blockpool_entry *)
2469 list_first_entry(&blockpool->free_entry_list,
2470 struct __vxge_hw_blockpool_entry,
2471 item);
2473 if (entry == NULL)
2474 entry = vmalloc(sizeof(
2475 struct __vxge_hw_blockpool_entry));
2476 else
2477 list_del(&entry->item);
2479 if (entry != NULL) {
2480 entry->length = size;
2481 entry->memblock = memblock;
2482 entry->dma_addr = dma_object->addr;
2483 entry->acc_handle = dma_object->acc_handle;
2484 entry->dma_handle = dma_object->handle;
2485 list_add(&entry->item,
2486 &blockpool->free_block_list);
2487 blockpool->pool_size++;
2488 status = VXGE_HW_OK;
2489 } else
2490 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2492 if (status == VXGE_HW_OK)
2493 __vxge_hw_blockpool_blocks_remove(blockpool);
2498 * vxge_hw_mempool_destroy
2500 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2502 u32 i, j;
2503 struct __vxge_hw_device *devh = mempool->devh;
2505 for (i = 0; i < mempool->memblocks_allocated; i++) {
2506 struct vxge_hw_mempool_dma *dma_object;
2508 vxge_assert(mempool->memblocks_arr[i]);
2509 vxge_assert(mempool->memblocks_dma_arr + i);
2511 dma_object = mempool->memblocks_dma_arr + i;
2513 for (j = 0; j < mempool->items_per_memblock; j++) {
2514 u32 index = i * mempool->items_per_memblock + j;
2516 /* to skip last partially filled(if any) memblock */
2517 if (index >= mempool->items_current)
2518 break;
2521 vfree(mempool->memblocks_priv_arr[i]);
2523 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2524 mempool->memblock_size, dma_object);
2527 vfree(mempool->items_arr);
2528 vfree(mempool->memblocks_dma_arr);
2529 vfree(mempool->memblocks_priv_arr);
2530 vfree(mempool->memblocks_arr);
2531 vfree(mempool);
2535 * __vxge_hw_mempool_grow
2536 * Will resize mempool up to %num_allocate value.
2538 static enum vxge_hw_status
2539 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2540 u32 *num_allocated)
2542 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2543 u32 n_items = mempool->items_per_memblock;
2544 u32 start_block_idx = mempool->memblocks_allocated;
2545 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2546 enum vxge_hw_status status = VXGE_HW_OK;
2548 *num_allocated = 0;
2550 if (end_block_idx > mempool->memblocks_max) {
2551 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2552 goto exit;
2555 for (i = start_block_idx; i < end_block_idx; i++) {
2556 u32 j;
2557 u32 is_last = ((end_block_idx - 1) == i);
2558 struct vxge_hw_mempool_dma *dma_object =
2559 mempool->memblocks_dma_arr + i;
2560 void *the_memblock;
2562 /* allocate memblock's private part. Each DMA memblock
2563 * has a space allocated for item's private usage upon
2564 * mempool's user request. Each time mempool grows, it will
2565 * allocate new memblock and its private part at once.
2566 * This helps to minimize memory usage a lot. */
2567 mempool->memblocks_priv_arr[i] =
2568 vzalloc(mempool->items_priv_size * n_items);
2569 if (mempool->memblocks_priv_arr[i] == NULL) {
2570 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2571 goto exit;
2574 /* allocate DMA-capable memblock */
2575 mempool->memblocks_arr[i] =
2576 __vxge_hw_blockpool_malloc(mempool->devh,
2577 mempool->memblock_size, dma_object);
2578 if (mempool->memblocks_arr[i] == NULL) {
2579 vfree(mempool->memblocks_priv_arr[i]);
2580 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2581 goto exit;
2584 (*num_allocated)++;
2585 mempool->memblocks_allocated++;
2587 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2589 the_memblock = mempool->memblocks_arr[i];
2591 /* fill the items hash array */
2592 for (j = 0; j < n_items; j++) {
2593 u32 index = i * n_items + j;
2595 if (first_time && index >= mempool->items_initial)
2596 break;
2598 mempool->items_arr[index] =
2599 ((char *)the_memblock + j*mempool->item_size);
2601 /* let caller to do more job on each item */
2602 if (mempool->item_func_alloc != NULL)
2603 mempool->item_func_alloc(mempool, i,
2604 dma_object, index, is_last);
2606 mempool->items_current = index + 1;
2609 if (first_time && mempool->items_current ==
2610 mempool->items_initial)
2611 break;
2613 exit:
2614 return status;
2618 * vxge_hw_mempool_create
2619 * This function will create memory pool object. Pool may grow but will
2620 * never shrink. Pool consists of number of dynamically allocated blocks
2621 * with size enough to hold %items_initial number of items. Memory is
2622 * DMA-able but client must map/unmap before interoperating with the device.
2624 static struct vxge_hw_mempool *
2625 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2626 u32 memblock_size,
2627 u32 item_size,
2628 u32 items_priv_size,
2629 u32 items_initial,
2630 u32 items_max,
2631 const struct vxge_hw_mempool_cbs *mp_callback,
2632 void *userdata)
2634 enum vxge_hw_status status = VXGE_HW_OK;
2635 u32 memblocks_to_allocate;
2636 struct vxge_hw_mempool *mempool = NULL;
2637 u32 allocated;
2639 if (memblock_size < item_size) {
2640 status = VXGE_HW_FAIL;
2641 goto exit;
2644 mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2645 if (mempool == NULL) {
2646 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2647 goto exit;
2650 mempool->devh = devh;
2651 mempool->memblock_size = memblock_size;
2652 mempool->items_max = items_max;
2653 mempool->items_initial = items_initial;
2654 mempool->item_size = item_size;
2655 mempool->items_priv_size = items_priv_size;
2656 mempool->item_func_alloc = mp_callback->item_func_alloc;
2657 mempool->userdata = userdata;
2659 mempool->memblocks_allocated = 0;
2661 mempool->items_per_memblock = memblock_size / item_size;
2663 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2664 mempool->items_per_memblock;
2666 /* allocate array of memblocks */
2667 mempool->memblocks_arr =
2668 vzalloc(sizeof(void *) * mempool->memblocks_max);
2669 if (mempool->memblocks_arr == NULL) {
2670 __vxge_hw_mempool_destroy(mempool);
2671 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2672 mempool = NULL;
2673 goto exit;
2676 /* allocate array of private parts of items per memblocks */
2677 mempool->memblocks_priv_arr =
2678 vzalloc(sizeof(void *) * mempool->memblocks_max);
2679 if (mempool->memblocks_priv_arr == NULL) {
2680 __vxge_hw_mempool_destroy(mempool);
2681 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2682 mempool = NULL;
2683 goto exit;
2686 /* allocate array of memblocks DMA objects */
2687 mempool->memblocks_dma_arr =
2688 vzalloc(sizeof(struct vxge_hw_mempool_dma) *
2689 mempool->memblocks_max);
2690 if (mempool->memblocks_dma_arr == NULL) {
2691 __vxge_hw_mempool_destroy(mempool);
2692 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2693 mempool = NULL;
2694 goto exit;
2697 /* allocate hash array of items */
2698 mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max);
2699 if (mempool->items_arr == NULL) {
2700 __vxge_hw_mempool_destroy(mempool);
2701 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2702 mempool = NULL;
2703 goto exit;
2706 /* calculate initial number of memblocks */
2707 memblocks_to_allocate = (mempool->items_initial +
2708 mempool->items_per_memblock - 1) /
2709 mempool->items_per_memblock;
2711 /* pre-allocate the mempool */
2712 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2713 &allocated);
2714 if (status != VXGE_HW_OK) {
2715 __vxge_hw_mempool_destroy(mempool);
2716 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2717 mempool = NULL;
2718 goto exit;
2721 exit:
2722 return mempool;
2726 * __vxge_hw_ring_abort - Returns the RxD
2727 * This function terminates the RxDs of ring
2729 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2731 void *rxdh;
2732 struct __vxge_hw_channel *channel;
2734 channel = &ring->channel;
2736 for (;;) {
2737 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2739 if (rxdh == NULL)
2740 break;
2742 vxge_hw_channel_dtr_complete(channel);
2744 if (ring->rxd_term)
2745 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2746 channel->userdata);
2748 vxge_hw_channel_dtr_free(channel, rxdh);
2751 return VXGE_HW_OK;
2755 * __vxge_hw_ring_reset - Resets the ring
2756 * This function resets the ring during vpath reset operation
2758 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2760 enum vxge_hw_status status = VXGE_HW_OK;
2761 struct __vxge_hw_channel *channel;
2763 channel = &ring->channel;
2765 __vxge_hw_ring_abort(ring);
2767 status = __vxge_hw_channel_reset(channel);
2769 if (status != VXGE_HW_OK)
2770 goto exit;
2772 if (ring->rxd_init) {
2773 status = vxge_hw_ring_replenish(ring);
2774 if (status != VXGE_HW_OK)
2775 goto exit;
2777 exit:
2778 return status;
2782 * __vxge_hw_ring_delete - Removes the ring
2783 * This function freeup the memory pool and removes the ring
2785 static enum vxge_hw_status
2786 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2788 struct __vxge_hw_ring *ring = vp->vpath->ringh;
2790 __vxge_hw_ring_abort(ring);
2792 if (ring->mempool)
2793 __vxge_hw_mempool_destroy(ring->mempool);
2795 vp->vpath->ringh = NULL;
2796 __vxge_hw_channel_free(&ring->channel);
2798 return VXGE_HW_OK;
2802 * __vxge_hw_ring_create - Create a Ring
2803 * This function creates Ring and initializes it.
2805 static enum vxge_hw_status
2806 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2807 struct vxge_hw_ring_attr *attr)
2809 enum vxge_hw_status status = VXGE_HW_OK;
2810 struct __vxge_hw_ring *ring;
2811 u32 ring_length;
2812 struct vxge_hw_ring_config *config;
2813 struct __vxge_hw_device *hldev;
2814 u32 vp_id;
2815 static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2816 .item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2819 if ((vp == NULL) || (attr == NULL)) {
2820 status = VXGE_HW_FAIL;
2821 goto exit;
2824 hldev = vp->vpath->hldev;
2825 vp_id = vp->vpath->vp_id;
2827 config = &hldev->config.vp_config[vp_id].ring;
2829 ring_length = config->ring_blocks *
2830 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2832 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2833 VXGE_HW_CHANNEL_TYPE_RING,
2834 ring_length,
2835 attr->per_rxd_space,
2836 attr->userdata);
2837 if (ring == NULL) {
2838 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2839 goto exit;
2842 vp->vpath->ringh = ring;
2843 ring->vp_id = vp_id;
2844 ring->vp_reg = vp->vpath->vp_reg;
2845 ring->common_reg = hldev->common_reg;
2846 ring->stats = &vp->vpath->sw_stats->ring_stats;
2847 ring->config = config;
2848 ring->callback = attr->callback;
2849 ring->rxd_init = attr->rxd_init;
2850 ring->rxd_term = attr->rxd_term;
2851 ring->buffer_mode = config->buffer_mode;
2852 ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2853 ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2854 ring->rxds_limit = config->rxds_limit;
2856 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2857 ring->rxd_priv_size =
2858 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2859 ring->per_rxd_space = attr->per_rxd_space;
2861 ring->rxd_priv_size =
2862 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2863 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2865 /* how many RxDs can fit into one block. Depends on configured
2866 * buffer_mode. */
2867 ring->rxds_per_block =
2868 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2870 /* calculate actual RxD block private size */
2871 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2872 ring->mempool = __vxge_hw_mempool_create(hldev,
2873 VXGE_HW_BLOCK_SIZE,
2874 VXGE_HW_BLOCK_SIZE,
2875 ring->rxdblock_priv_size,
2876 ring->config->ring_blocks,
2877 ring->config->ring_blocks,
2878 &ring_mp_callback,
2879 ring);
2880 if (ring->mempool == NULL) {
2881 __vxge_hw_ring_delete(vp);
2882 return VXGE_HW_ERR_OUT_OF_MEMORY;
2885 status = __vxge_hw_channel_initialize(&ring->channel);
2886 if (status != VXGE_HW_OK) {
2887 __vxge_hw_ring_delete(vp);
2888 goto exit;
2891 /* Note:
2892 * Specifying rxd_init callback means two things:
2893 * 1) rxds need to be initialized by driver at channel-open time;
2894 * 2) rxds need to be posted at channel-open time
2895 * (that's what the initial_replenish() below does)
2896 * Currently we don't have a case when the 1) is done without the 2).
2898 if (ring->rxd_init) {
2899 status = vxge_hw_ring_replenish(ring);
2900 if (status != VXGE_HW_OK) {
2901 __vxge_hw_ring_delete(vp);
2902 goto exit;
2906 /* initial replenish will increment the counter in its post() routine,
2907 * we have to reset it */
2908 ring->stats->common_stats.usage_cnt = 0;
2909 exit:
2910 return status;
2914 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2915 * Initialize Titan device config with default values.
2917 enum vxge_hw_status
2918 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2920 u32 i;
2922 device_config->dma_blockpool_initial =
2923 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2924 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2925 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2926 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2927 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2928 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2929 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
2931 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2932 device_config->vp_config[i].vp_id = i;
2934 device_config->vp_config[i].min_bandwidth =
2935 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2937 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2939 device_config->vp_config[i].ring.ring_blocks =
2940 VXGE_HW_DEF_RING_BLOCKS;
2942 device_config->vp_config[i].ring.buffer_mode =
2943 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2945 device_config->vp_config[i].ring.scatter_mode =
2946 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2948 device_config->vp_config[i].ring.rxds_limit =
2949 VXGE_HW_DEF_RING_RXDS_LIMIT;
2951 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2953 device_config->vp_config[i].fifo.fifo_blocks =
2954 VXGE_HW_MIN_FIFO_BLOCKS;
2956 device_config->vp_config[i].fifo.max_frags =
2957 VXGE_HW_MAX_FIFO_FRAGS;
2959 device_config->vp_config[i].fifo.memblock_size =
2960 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2962 device_config->vp_config[i].fifo.alignment_size =
2963 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2965 device_config->vp_config[i].fifo.intr =
2966 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2968 device_config->vp_config[i].fifo.no_snoop_bits =
2969 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2970 device_config->vp_config[i].tti.intr_enable =
2971 VXGE_HW_TIM_INTR_DEFAULT;
2973 device_config->vp_config[i].tti.btimer_val =
2974 VXGE_HW_USE_FLASH_DEFAULT;
2976 device_config->vp_config[i].tti.timer_ac_en =
2977 VXGE_HW_USE_FLASH_DEFAULT;
2979 device_config->vp_config[i].tti.timer_ci_en =
2980 VXGE_HW_USE_FLASH_DEFAULT;
2982 device_config->vp_config[i].tti.timer_ri_en =
2983 VXGE_HW_USE_FLASH_DEFAULT;
2985 device_config->vp_config[i].tti.rtimer_val =
2986 VXGE_HW_USE_FLASH_DEFAULT;
2988 device_config->vp_config[i].tti.util_sel =
2989 VXGE_HW_USE_FLASH_DEFAULT;
2991 device_config->vp_config[i].tti.ltimer_val =
2992 VXGE_HW_USE_FLASH_DEFAULT;
2994 device_config->vp_config[i].tti.urange_a =
2995 VXGE_HW_USE_FLASH_DEFAULT;
2997 device_config->vp_config[i].tti.uec_a =
2998 VXGE_HW_USE_FLASH_DEFAULT;
3000 device_config->vp_config[i].tti.urange_b =
3001 VXGE_HW_USE_FLASH_DEFAULT;
3003 device_config->vp_config[i].tti.uec_b =
3004 VXGE_HW_USE_FLASH_DEFAULT;
3006 device_config->vp_config[i].tti.urange_c =
3007 VXGE_HW_USE_FLASH_DEFAULT;
3009 device_config->vp_config[i].tti.uec_c =
3010 VXGE_HW_USE_FLASH_DEFAULT;
3012 device_config->vp_config[i].tti.uec_d =
3013 VXGE_HW_USE_FLASH_DEFAULT;
3015 device_config->vp_config[i].rti.intr_enable =
3016 VXGE_HW_TIM_INTR_DEFAULT;
3018 device_config->vp_config[i].rti.btimer_val =
3019 VXGE_HW_USE_FLASH_DEFAULT;
3021 device_config->vp_config[i].rti.timer_ac_en =
3022 VXGE_HW_USE_FLASH_DEFAULT;
3024 device_config->vp_config[i].rti.timer_ci_en =
3025 VXGE_HW_USE_FLASH_DEFAULT;
3027 device_config->vp_config[i].rti.timer_ri_en =
3028 VXGE_HW_USE_FLASH_DEFAULT;
3030 device_config->vp_config[i].rti.rtimer_val =
3031 VXGE_HW_USE_FLASH_DEFAULT;
3033 device_config->vp_config[i].rti.util_sel =
3034 VXGE_HW_USE_FLASH_DEFAULT;
3036 device_config->vp_config[i].rti.ltimer_val =
3037 VXGE_HW_USE_FLASH_DEFAULT;
3039 device_config->vp_config[i].rti.urange_a =
3040 VXGE_HW_USE_FLASH_DEFAULT;
3042 device_config->vp_config[i].rti.uec_a =
3043 VXGE_HW_USE_FLASH_DEFAULT;
3045 device_config->vp_config[i].rti.urange_b =
3046 VXGE_HW_USE_FLASH_DEFAULT;
3048 device_config->vp_config[i].rti.uec_b =
3049 VXGE_HW_USE_FLASH_DEFAULT;
3051 device_config->vp_config[i].rti.urange_c =
3052 VXGE_HW_USE_FLASH_DEFAULT;
3054 device_config->vp_config[i].rti.uec_c =
3055 VXGE_HW_USE_FLASH_DEFAULT;
3057 device_config->vp_config[i].rti.uec_d =
3058 VXGE_HW_USE_FLASH_DEFAULT;
3060 device_config->vp_config[i].mtu =
3061 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3063 device_config->vp_config[i].rpa_strip_vlan_tag =
3064 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3067 return VXGE_HW_OK;
3071 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3072 * Set the swapper bits appropriately for the vpath.
3074 static enum vxge_hw_status
3075 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3077 #ifndef __BIG_ENDIAN
3078 u64 val64;
3080 val64 = readq(&vpath_reg->vpath_general_cfg1);
3081 wmb();
3082 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3083 writeq(val64, &vpath_reg->vpath_general_cfg1);
3084 wmb();
3085 #endif
3086 return VXGE_HW_OK;
3090 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3091 * Set the swapper bits appropriately for the vpath.
3093 static enum vxge_hw_status
3094 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3095 struct vxge_hw_vpath_reg __iomem *vpath_reg)
3097 u64 val64;
3099 val64 = readq(&legacy_reg->pifm_wr_swap_en);
3101 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3102 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3103 wmb();
3105 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3106 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
3107 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3109 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3110 wmb();
3113 return VXGE_HW_OK;
3117 * vxge_hw_mgmt_reg_read - Read Titan register.
3119 enum vxge_hw_status
3120 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3121 enum vxge_hw_mgmt_reg_type type,
3122 u32 index, u32 offset, u64 *value)
3124 enum vxge_hw_status status = VXGE_HW_OK;
3126 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3127 status = VXGE_HW_ERR_INVALID_DEVICE;
3128 goto exit;
3131 switch (type) {
3132 case vxge_hw_mgmt_reg_type_legacy:
3133 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3134 status = VXGE_HW_ERR_INVALID_OFFSET;
3135 break;
3137 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3138 break;
3139 case vxge_hw_mgmt_reg_type_toc:
3140 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3141 status = VXGE_HW_ERR_INVALID_OFFSET;
3142 break;
3144 *value = readq((void __iomem *)hldev->toc_reg + offset);
3145 break;
3146 case vxge_hw_mgmt_reg_type_common:
3147 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3148 status = VXGE_HW_ERR_INVALID_OFFSET;
3149 break;
3151 *value = readq((void __iomem *)hldev->common_reg + offset);
3152 break;
3153 case vxge_hw_mgmt_reg_type_mrpcim:
3154 if (!(hldev->access_rights &
3155 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3156 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3157 break;
3159 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3160 status = VXGE_HW_ERR_INVALID_OFFSET;
3161 break;
3163 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3164 break;
3165 case vxge_hw_mgmt_reg_type_srpcim:
3166 if (!(hldev->access_rights &
3167 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3168 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3169 break;
3171 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3172 status = VXGE_HW_ERR_INVALID_INDEX;
3173 break;
3175 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3176 status = VXGE_HW_ERR_INVALID_OFFSET;
3177 break;
3179 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3180 offset);
3181 break;
3182 case vxge_hw_mgmt_reg_type_vpmgmt:
3183 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3184 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3185 status = VXGE_HW_ERR_INVALID_INDEX;
3186 break;
3188 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3189 status = VXGE_HW_ERR_INVALID_OFFSET;
3190 break;
3192 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3193 offset);
3194 break;
3195 case vxge_hw_mgmt_reg_type_vpath:
3196 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3197 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3198 status = VXGE_HW_ERR_INVALID_INDEX;
3199 break;
3201 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3202 status = VXGE_HW_ERR_INVALID_INDEX;
3203 break;
3205 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3206 status = VXGE_HW_ERR_INVALID_OFFSET;
3207 break;
3209 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3210 offset);
3211 break;
3212 default:
3213 status = VXGE_HW_ERR_INVALID_TYPE;
3214 break;
3217 exit:
3218 return status;
3222 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3224 enum vxge_hw_status
3225 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3227 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
3228 int i = 0, j = 0;
3230 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3231 if (!((vpath_mask) & vxge_mBIT(i)))
3232 continue;
3233 vpmgmt_reg = hldev->vpmgmt_reg[i];
3234 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3235 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3236 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3237 return VXGE_HW_FAIL;
3240 return VXGE_HW_OK;
3243 * vxge_hw_mgmt_reg_Write - Write Titan register.
3245 enum vxge_hw_status
3246 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3247 enum vxge_hw_mgmt_reg_type type,
3248 u32 index, u32 offset, u64 value)
3250 enum vxge_hw_status status = VXGE_HW_OK;
3252 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3253 status = VXGE_HW_ERR_INVALID_DEVICE;
3254 goto exit;
3257 switch (type) {
3258 case vxge_hw_mgmt_reg_type_legacy:
3259 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3260 status = VXGE_HW_ERR_INVALID_OFFSET;
3261 break;
3263 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3264 break;
3265 case vxge_hw_mgmt_reg_type_toc:
3266 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3267 status = VXGE_HW_ERR_INVALID_OFFSET;
3268 break;
3270 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3271 break;
3272 case vxge_hw_mgmt_reg_type_common:
3273 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3274 status = VXGE_HW_ERR_INVALID_OFFSET;
3275 break;
3277 writeq(value, (void __iomem *)hldev->common_reg + offset);
3278 break;
3279 case vxge_hw_mgmt_reg_type_mrpcim:
3280 if (!(hldev->access_rights &
3281 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3282 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3283 break;
3285 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3286 status = VXGE_HW_ERR_INVALID_OFFSET;
3287 break;
3289 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3290 break;
3291 case vxge_hw_mgmt_reg_type_srpcim:
3292 if (!(hldev->access_rights &
3293 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3294 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3295 break;
3297 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3298 status = VXGE_HW_ERR_INVALID_INDEX;
3299 break;
3301 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3302 status = VXGE_HW_ERR_INVALID_OFFSET;
3303 break;
3305 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3306 offset);
3308 break;
3309 case vxge_hw_mgmt_reg_type_vpmgmt:
3310 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3311 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3312 status = VXGE_HW_ERR_INVALID_INDEX;
3313 break;
3315 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3316 status = VXGE_HW_ERR_INVALID_OFFSET;
3317 break;
3319 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3320 offset);
3321 break;
3322 case vxge_hw_mgmt_reg_type_vpath:
3323 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3324 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3325 status = VXGE_HW_ERR_INVALID_INDEX;
3326 break;
3328 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3329 status = VXGE_HW_ERR_INVALID_OFFSET;
3330 break;
3332 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3333 offset);
3334 break;
3335 default:
3336 status = VXGE_HW_ERR_INVALID_TYPE;
3337 break;
3339 exit:
3340 return status;
3344 * __vxge_hw_fifo_abort - Returns the TxD
3345 * This function terminates the TxDs of fifo
3347 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3349 void *txdlh;
3351 for (;;) {
3352 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3354 if (txdlh == NULL)
3355 break;
3357 vxge_hw_channel_dtr_complete(&fifo->channel);
3359 if (fifo->txdl_term) {
3360 fifo->txdl_term(txdlh,
3361 VXGE_HW_TXDL_STATE_POSTED,
3362 fifo->channel.userdata);
3365 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3368 return VXGE_HW_OK;
3372 * __vxge_hw_fifo_reset - Resets the fifo
3373 * This function resets the fifo during vpath reset operation
3375 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3377 enum vxge_hw_status status = VXGE_HW_OK;
3379 __vxge_hw_fifo_abort(fifo);
3380 status = __vxge_hw_channel_reset(&fifo->channel);
3382 return status;
3386 * __vxge_hw_fifo_delete - Removes the FIFO
3387 * This function freeup the memory pool and removes the FIFO
3389 static enum vxge_hw_status
3390 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3392 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3394 __vxge_hw_fifo_abort(fifo);
3396 if (fifo->mempool)
3397 __vxge_hw_mempool_destroy(fifo->mempool);
3399 vp->vpath->fifoh = NULL;
3401 __vxge_hw_channel_free(&fifo->channel);
3403 return VXGE_HW_OK;
3407 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3408 * list callback
3409 * This function is callback passed to __vxge_hw_mempool_create to create memory
3410 * pool for TxD list
3412 static void
3413 __vxge_hw_fifo_mempool_item_alloc(
3414 struct vxge_hw_mempool *mempoolh,
3415 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3416 u32 index, u32 is_last)
3418 u32 memblock_item_idx;
3419 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3420 struct vxge_hw_fifo_txd *txdp =
3421 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3422 struct __vxge_hw_fifo *fifo =
3423 (struct __vxge_hw_fifo *)mempoolh->userdata;
3424 void *memblock = mempoolh->memblocks_arr[memblock_index];
3426 vxge_assert(txdp);
3428 txdp->host_control = (u64) (size_t)
3429 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3430 &memblock_item_idx);
3432 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3434 vxge_assert(txdl_priv);
3436 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3438 /* pre-format HW's TxDL's private */
3439 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3440 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3441 txdl_priv->dma_handle = dma_object->handle;
3442 txdl_priv->memblock = memblock;
3443 txdl_priv->first_txdp = txdp;
3444 txdl_priv->next_txdl_priv = NULL;
3445 txdl_priv->alloc_frags = 0;
3449 * __vxge_hw_fifo_create - Create a FIFO
3450 * This function creates FIFO and initializes it.
3452 static enum vxge_hw_status
3453 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3454 struct vxge_hw_fifo_attr *attr)
3456 enum vxge_hw_status status = VXGE_HW_OK;
3457 struct __vxge_hw_fifo *fifo;
3458 struct vxge_hw_fifo_config *config;
3459 u32 txdl_size, txdl_per_memblock;
3460 struct vxge_hw_mempool_cbs fifo_mp_callback;
3461 struct __vxge_hw_virtualpath *vpath;
3463 if ((vp == NULL) || (attr == NULL)) {
3464 status = VXGE_HW_ERR_INVALID_HANDLE;
3465 goto exit;
3467 vpath = vp->vpath;
3468 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3470 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3472 txdl_per_memblock = config->memblock_size / txdl_size;
3474 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3475 VXGE_HW_CHANNEL_TYPE_FIFO,
3476 config->fifo_blocks * txdl_per_memblock,
3477 attr->per_txdl_space, attr->userdata);
3479 if (fifo == NULL) {
3480 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3481 goto exit;
3484 vpath->fifoh = fifo;
3485 fifo->nofl_db = vpath->nofl_db;
3487 fifo->vp_id = vpath->vp_id;
3488 fifo->vp_reg = vpath->vp_reg;
3489 fifo->stats = &vpath->sw_stats->fifo_stats;
3491 fifo->config = config;
3493 /* apply "interrupts per txdl" attribute */
3494 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3495 fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3496 fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3498 if (fifo->config->intr)
3499 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3501 fifo->no_snoop_bits = config->no_snoop_bits;
3504 * FIFO memory management strategy:
3506 * TxDL split into three independent parts:
3507 * - set of TxD's
3508 * - TxD HW private part
3509 * - driver private part
3511 * Adaptative memory allocation used. i.e. Memory allocated on
3512 * demand with the size which will fit into one memory block.
3513 * One memory block may contain more than one TxDL.
3515 * During "reserve" operations more memory can be allocated on demand
3516 * for example due to FIFO full condition.
3518 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3519 * routine which will essentially stop the channel and free resources.
3522 /* TxDL common private size == TxDL private + driver private */
3523 fifo->priv_size =
3524 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3525 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
3526 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3528 fifo->per_txdl_space = attr->per_txdl_space;
3530 /* recompute txdl size to be cacheline aligned */
3531 fifo->txdl_size = txdl_size;
3532 fifo->txdl_per_memblock = txdl_per_memblock;
3534 fifo->txdl_term = attr->txdl_term;
3535 fifo->callback = attr->callback;
3537 if (fifo->txdl_per_memblock == 0) {
3538 __vxge_hw_fifo_delete(vp);
3539 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3540 goto exit;
3543 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3545 fifo->mempool =
3546 __vxge_hw_mempool_create(vpath->hldev,
3547 fifo->config->memblock_size,
3548 fifo->txdl_size,
3549 fifo->priv_size,
3550 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3551 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3552 &fifo_mp_callback,
3553 fifo);
3555 if (fifo->mempool == NULL) {
3556 __vxge_hw_fifo_delete(vp);
3557 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3558 goto exit;
3561 status = __vxge_hw_channel_initialize(&fifo->channel);
3562 if (status != VXGE_HW_OK) {
3563 __vxge_hw_fifo_delete(vp);
3564 goto exit;
3567 vxge_assert(fifo->channel.reserve_ptr);
3568 exit:
3569 return status;
3573 * __vxge_hw_vpath_pci_read - Read the content of given address
3574 * in pci config space.
3575 * Read from the vpath pci config space.
3577 static enum vxge_hw_status
3578 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3579 u32 phy_func_0, u32 offset, u32 *val)
3581 u64 val64;
3582 enum vxge_hw_status status = VXGE_HW_OK;
3583 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3585 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3587 if (phy_func_0)
3588 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3590 writeq(val64, &vp_reg->pci_config_access_cfg1);
3591 wmb();
3592 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3593 &vp_reg->pci_config_access_cfg2);
3594 wmb();
3596 status = __vxge_hw_device_register_poll(
3597 &vp_reg->pci_config_access_cfg2,
3598 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3600 if (status != VXGE_HW_OK)
3601 goto exit;
3603 val64 = readq(&vp_reg->pci_config_access_status);
3605 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3606 status = VXGE_HW_FAIL;
3607 *val = 0;
3608 } else
3609 *val = (u32)vxge_bVALn(val64, 32, 32);
3610 exit:
3611 return status;
3615 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3616 * @hldev: HW device.
3617 * @on_off: TRUE if flickering to be on, FALSE to be off
3619 * Flicker the link LED.
3621 enum vxge_hw_status
3622 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3624 struct __vxge_hw_virtualpath *vpath;
3625 u64 data0, data1 = 0, steer_ctrl = 0;
3626 enum vxge_hw_status status;
3628 if (hldev == NULL) {
3629 status = VXGE_HW_ERR_INVALID_DEVICE;
3630 goto exit;
3633 vpath = &hldev->virtual_paths[hldev->first_vp_id];
3635 data0 = on_off;
3636 status = vxge_hw_vpath_fw_api(vpath,
3637 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3638 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3639 0, &data0, &data1, &steer_ctrl);
3640 exit:
3641 return status;
3645 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3647 enum vxge_hw_status
3648 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3649 u32 action, u32 rts_table, u32 offset,
3650 u64 *data0, u64 *data1)
3652 enum vxge_hw_status status;
3653 u64 steer_ctrl = 0;
3655 if (vp == NULL) {
3656 status = VXGE_HW_ERR_INVALID_HANDLE;
3657 goto exit;
3660 if ((rts_table ==
3661 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3662 (rts_table ==
3663 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3664 (rts_table ==
3665 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3666 (rts_table ==
3667 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3668 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3671 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3672 data0, data1, &steer_ctrl);
3673 if (status != VXGE_HW_OK)
3674 goto exit;
3676 if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3677 (rts_table !=
3678 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3679 *data1 = 0;
3680 exit:
3681 return status;
3685 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3687 enum vxge_hw_status
3688 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3689 u32 rts_table, u32 offset, u64 steer_data0,
3690 u64 steer_data1)
3692 u64 data0, data1 = 0, steer_ctrl = 0;
3693 enum vxge_hw_status status;
3695 if (vp == NULL) {
3696 status = VXGE_HW_ERR_INVALID_HANDLE;
3697 goto exit;
3700 data0 = steer_data0;
3702 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3703 (rts_table ==
3704 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3705 data1 = steer_data1;
3707 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3708 &data0, &data1, &steer_ctrl);
3709 exit:
3710 return status;
3714 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3716 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3717 struct __vxge_hw_vpath_handle *vp,
3718 enum vxge_hw_rth_algoritms algorithm,
3719 struct vxge_hw_rth_hash_types *hash_type,
3720 u16 bucket_size)
3722 u64 data0, data1;
3723 enum vxge_hw_status status = VXGE_HW_OK;
3725 if (vp == NULL) {
3726 status = VXGE_HW_ERR_INVALID_HANDLE;
3727 goto exit;
3730 status = __vxge_hw_vpath_rts_table_get(vp,
3731 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3732 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3733 0, &data0, &data1);
3734 if (status != VXGE_HW_OK)
3735 goto exit;
3737 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3738 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3740 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3741 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3742 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3744 if (hash_type->hash_type_tcpipv4_en)
3745 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3747 if (hash_type->hash_type_ipv4_en)
3748 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3750 if (hash_type->hash_type_tcpipv6_en)
3751 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3753 if (hash_type->hash_type_ipv6_en)
3754 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3756 if (hash_type->hash_type_tcpipv6ex_en)
3757 data0 |=
3758 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3760 if (hash_type->hash_type_ipv6ex_en)
3761 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3763 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3764 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3765 else
3766 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3768 status = __vxge_hw_vpath_rts_table_set(vp,
3769 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3770 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3771 0, data0, 0);
3772 exit:
3773 return status;
3776 static void
3777 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3778 u16 flag, u8 *itable)
3780 switch (flag) {
3781 case 1:
3782 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3783 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3784 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3785 itable[j]);
3786 case 2:
3787 *data0 |=
3788 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3789 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3790 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3791 itable[j]);
3792 case 3:
3793 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3794 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3795 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3796 itable[j]);
3797 case 4:
3798 *data1 |=
3799 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3800 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3801 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3802 itable[j]);
3803 default:
3804 return;
3808 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3810 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3811 struct __vxge_hw_vpath_handle **vpath_handles,
3812 u32 vpath_count,
3813 u8 *mtable,
3814 u8 *itable,
3815 u32 itable_size)
3817 u32 i, j, action, rts_table;
3818 u64 data0;
3819 u64 data1;
3820 u32 max_entries;
3821 enum vxge_hw_status status = VXGE_HW_OK;
3822 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3824 if (vp == NULL) {
3825 status = VXGE_HW_ERR_INVALID_HANDLE;
3826 goto exit;
3829 max_entries = (((u32)1) << itable_size);
3831 if (vp->vpath->hldev->config.rth_it_type
3832 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3833 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3834 rts_table =
3835 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3837 for (j = 0; j < max_entries; j++) {
3839 data1 = 0;
3841 data0 =
3842 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3843 itable[j]);
3845 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3846 action, rts_table, j, data0, data1);
3848 if (status != VXGE_HW_OK)
3849 goto exit;
3852 for (j = 0; j < max_entries; j++) {
3854 data1 = 0;
3856 data0 =
3857 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3858 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3859 itable[j]);
3861 status = __vxge_hw_vpath_rts_table_set(
3862 vpath_handles[mtable[itable[j]]], action,
3863 rts_table, j, data0, data1);
3865 if (status != VXGE_HW_OK)
3866 goto exit;
3868 } else {
3869 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3870 rts_table =
3871 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3872 for (i = 0; i < vpath_count; i++) {
3874 for (j = 0; j < max_entries;) {
3876 data0 = 0;
3877 data1 = 0;
3879 while (j < max_entries) {
3880 if (mtable[itable[j]] != i) {
3881 j++;
3882 continue;
3884 vxge_hw_rts_rth_data0_data1_get(j,
3885 &data0, &data1, 1, itable);
3886 j++;
3887 break;
3890 while (j < max_entries) {
3891 if (mtable[itable[j]] != i) {
3892 j++;
3893 continue;
3895 vxge_hw_rts_rth_data0_data1_get(j,
3896 &data0, &data1, 2, itable);
3897 j++;
3898 break;
3901 while (j < max_entries) {
3902 if (mtable[itable[j]] != i) {
3903 j++;
3904 continue;
3906 vxge_hw_rts_rth_data0_data1_get(j,
3907 &data0, &data1, 3, itable);
3908 j++;
3909 break;
3912 while (j < max_entries) {
3913 if (mtable[itable[j]] != i) {
3914 j++;
3915 continue;
3917 vxge_hw_rts_rth_data0_data1_get(j,
3918 &data0, &data1, 4, itable);
3919 j++;
3920 break;
3923 if (data0 != 0) {
3924 status = __vxge_hw_vpath_rts_table_set(
3925 vpath_handles[i],
3926 action, rts_table,
3927 0, data0, data1);
3929 if (status != VXGE_HW_OK)
3930 goto exit;
3935 exit:
3936 return status;
3940 * vxge_hw_vpath_check_leak - Check for memory leak
3941 * @ringh: Handle to the ring object used for receive
3943 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3944 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3945 * Returns: VXGE_HW_FAIL, if leak has occurred.
3948 enum vxge_hw_status
3949 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3951 enum vxge_hw_status status = VXGE_HW_OK;
3952 u64 rxd_new_count, rxd_spat;
3954 if (ring == NULL)
3955 return status;
3957 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3958 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3959 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3961 if (rxd_new_count >= rxd_spat)
3962 status = VXGE_HW_FAIL;
3964 return status;
3968 * __vxge_hw_vpath_mgmt_read
3969 * This routine reads the vpath_mgmt registers
3971 static enum vxge_hw_status
3972 __vxge_hw_vpath_mgmt_read(
3973 struct __vxge_hw_device *hldev,
3974 struct __vxge_hw_virtualpath *vpath)
3976 u32 i, mtu = 0, max_pyld = 0;
3977 u64 val64;
3979 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3981 val64 = readq(&vpath->vpmgmt_reg->
3982 rxmac_cfg0_port_vpmgmt_clone[i]);
3983 max_pyld =
3984 (u32)
3985 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3986 (val64);
3987 if (mtu < max_pyld)
3988 mtu = max_pyld;
3991 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3993 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3995 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3996 if (val64 & vxge_mBIT(i))
3997 vpath->vsport_number = i;
4000 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
4002 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
4003 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
4004 else
4005 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
4007 return VXGE_HW_OK;
4011 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4012 * This routine checks the vpath_rst_in_prog register to see if
4013 * adapter completed the reset process for the vpath
4015 static enum vxge_hw_status
4016 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4018 enum vxge_hw_status status;
4020 status = __vxge_hw_device_register_poll(
4021 &vpath->hldev->common_reg->vpath_rst_in_prog,
4022 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4023 1 << (16 - vpath->vp_id)),
4024 vpath->hldev->config.device_poll_millis);
4026 return status;
4030 * __vxge_hw_vpath_reset
4031 * This routine resets the vpath on the device
4033 static enum vxge_hw_status
4034 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4036 u64 val64;
4038 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4040 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4041 &hldev->common_reg->cmn_rsthdlr_cfg0);
4043 return VXGE_HW_OK;
4047 * __vxge_hw_vpath_sw_reset
4048 * This routine resets the vpath structures
4050 static enum vxge_hw_status
4051 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4053 enum vxge_hw_status status = VXGE_HW_OK;
4054 struct __vxge_hw_virtualpath *vpath;
4056 vpath = &hldev->virtual_paths[vp_id];
4058 if (vpath->ringh) {
4059 status = __vxge_hw_ring_reset(vpath->ringh);
4060 if (status != VXGE_HW_OK)
4061 goto exit;
4064 if (vpath->fifoh)
4065 status = __vxge_hw_fifo_reset(vpath->fifoh);
4066 exit:
4067 return status;
4071 * __vxge_hw_vpath_prc_configure
4072 * This routine configures the prc registers of virtual path using the config
4073 * passed
4075 static void
4076 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4078 u64 val64;
4079 struct __vxge_hw_virtualpath *vpath;
4080 struct vxge_hw_vp_config *vp_config;
4081 struct vxge_hw_vpath_reg __iomem *vp_reg;
4083 vpath = &hldev->virtual_paths[vp_id];
4084 vp_reg = vpath->vp_reg;
4085 vp_config = vpath->vp_config;
4087 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4088 return;
4090 val64 = readq(&vp_reg->prc_cfg1);
4091 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4092 writeq(val64, &vp_reg->prc_cfg1);
4094 val64 = readq(&vpath->vp_reg->prc_cfg6);
4095 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4096 writeq(val64, &vpath->vp_reg->prc_cfg6);
4098 val64 = readq(&vp_reg->prc_cfg7);
4100 if (vpath->vp_config->ring.scatter_mode !=
4101 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4103 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4105 switch (vpath->vp_config->ring.scatter_mode) {
4106 case VXGE_HW_RING_SCATTER_MODE_A:
4107 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4108 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4109 break;
4110 case VXGE_HW_RING_SCATTER_MODE_B:
4111 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4112 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4113 break;
4114 case VXGE_HW_RING_SCATTER_MODE_C:
4115 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4116 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4117 break;
4121 writeq(val64, &vp_reg->prc_cfg7);
4123 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4124 __vxge_hw_ring_first_block_address_get(
4125 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4127 val64 = readq(&vp_reg->prc_cfg4);
4128 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4129 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4131 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4132 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4134 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4135 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4136 else
4137 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4139 writeq(val64, &vp_reg->prc_cfg4);
4143 * __vxge_hw_vpath_kdfc_configure
4144 * This routine configures the kdfc registers of virtual path using the
4145 * config passed
4147 static enum vxge_hw_status
4148 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4150 u64 val64;
4151 u64 vpath_stride;
4152 enum vxge_hw_status status = VXGE_HW_OK;
4153 struct __vxge_hw_virtualpath *vpath;
4154 struct vxge_hw_vpath_reg __iomem *vp_reg;
4156 vpath = &hldev->virtual_paths[vp_id];
4157 vp_reg = vpath->vp_reg;
4158 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4160 if (status != VXGE_HW_OK)
4161 goto exit;
4163 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4165 vpath->max_kdfc_db =
4166 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4167 val64+1)/2;
4169 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4171 vpath->max_nofl_db = vpath->max_kdfc_db;
4173 if (vpath->max_nofl_db <
4174 ((vpath->vp_config->fifo.memblock_size /
4175 (vpath->vp_config->fifo.max_frags *
4176 sizeof(struct vxge_hw_fifo_txd))) *
4177 vpath->vp_config->fifo.fifo_blocks)) {
4179 return VXGE_HW_BADCFG_FIFO_BLOCKS;
4181 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4182 (vpath->max_nofl_db*2)-1);
4185 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4187 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4188 &vp_reg->kdfc_fifo_trpl_ctrl);
4190 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4192 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4193 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4195 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4196 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4197 #ifndef __BIG_ENDIAN
4198 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4199 #endif
4200 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4202 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4203 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4204 wmb();
4205 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4207 vpath->nofl_db =
4208 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4209 (hldev->kdfc + (vp_id *
4210 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4211 vpath_stride)));
4212 exit:
4213 return status;
4217 * __vxge_hw_vpath_mac_configure
4218 * This routine configures the mac of virtual path using the config passed
4220 static enum vxge_hw_status
4221 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4223 u64 val64;
4224 struct __vxge_hw_virtualpath *vpath;
4225 struct vxge_hw_vp_config *vp_config;
4226 struct vxge_hw_vpath_reg __iomem *vp_reg;
4228 vpath = &hldev->virtual_paths[vp_id];
4229 vp_reg = vpath->vp_reg;
4230 vp_config = vpath->vp_config;
4232 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4233 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4235 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4237 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4239 if (vp_config->rpa_strip_vlan_tag !=
4240 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4241 if (vp_config->rpa_strip_vlan_tag)
4242 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4243 else
4244 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4247 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4248 val64 = readq(&vp_reg->rxmac_vcfg0);
4250 if (vp_config->mtu !=
4251 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4252 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4253 if ((vp_config->mtu +
4254 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4255 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4256 vp_config->mtu +
4257 VXGE_HW_MAC_HEADER_MAX_SIZE);
4258 else
4259 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4260 vpath->max_mtu);
4263 writeq(val64, &vp_reg->rxmac_vcfg0);
4265 val64 = readq(&vp_reg->rxmac_vcfg1);
4267 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4268 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4270 if (hldev->config.rth_it_type ==
4271 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4272 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4273 0x2) |
4274 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4277 writeq(val64, &vp_reg->rxmac_vcfg1);
4279 return VXGE_HW_OK;
4283 * __vxge_hw_vpath_tim_configure
4284 * This routine configures the tim registers of virtual path using the config
4285 * passed
4287 static enum vxge_hw_status
4288 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4290 u64 val64;
4291 struct __vxge_hw_virtualpath *vpath;
4292 struct vxge_hw_vpath_reg __iomem *vp_reg;
4293 struct vxge_hw_vp_config *config;
4295 vpath = &hldev->virtual_paths[vp_id];
4296 vp_reg = vpath->vp_reg;
4297 config = vpath->vp_config;
4299 writeq(0, &vp_reg->tim_dest_addr);
4300 writeq(0, &vp_reg->tim_vpath_map);
4301 writeq(0, &vp_reg->tim_bitmap);
4302 writeq(0, &vp_reg->tim_remap);
4304 if (config->ring.enable == VXGE_HW_RING_ENABLE)
4305 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4306 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4307 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4309 val64 = readq(&vp_reg->tim_pci_cfg);
4310 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4311 writeq(val64, &vp_reg->tim_pci_cfg);
4313 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4315 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4317 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4318 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4319 0x3ffffff);
4320 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4321 config->tti.btimer_val);
4324 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4326 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4327 if (config->tti.timer_ac_en)
4328 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4329 else
4330 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4333 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4334 if (config->tti.timer_ci_en)
4335 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4336 else
4337 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4340 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4341 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4342 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4343 config->tti.urange_a);
4346 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4347 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4348 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4349 config->tti.urange_b);
4352 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4353 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4354 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4355 config->tti.urange_c);
4358 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4359 vpath->tim_tti_cfg1_saved = val64;
4361 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4363 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4364 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4365 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4366 config->tti.uec_a);
4369 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4370 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4371 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4372 config->tti.uec_b);
4375 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4376 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4377 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4378 config->tti.uec_c);
4381 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4382 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4383 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4384 config->tti.uec_d);
4387 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4388 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4390 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4391 if (config->tti.timer_ri_en)
4392 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4393 else
4394 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4397 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4398 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4399 0x3ffffff);
4400 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4401 config->tti.rtimer_val);
4404 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4405 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4406 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4409 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4410 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4411 0x3ffffff);
4412 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4413 config->tti.ltimer_val);
4416 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4417 vpath->tim_tti_cfg3_saved = val64;
4420 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4422 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4424 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4425 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4426 0x3ffffff);
4427 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4428 config->rti.btimer_val);
4431 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4433 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4434 if (config->rti.timer_ac_en)
4435 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4436 else
4437 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4440 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4441 if (config->rti.timer_ci_en)
4442 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4443 else
4444 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4447 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4448 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4449 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4450 config->rti.urange_a);
4453 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4454 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4455 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4456 config->rti.urange_b);
4459 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4460 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4461 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4462 config->rti.urange_c);
4465 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4466 vpath->tim_rti_cfg1_saved = val64;
4468 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4470 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4471 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4472 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4473 config->rti.uec_a);
4476 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4477 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4478 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4479 config->rti.uec_b);
4482 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4483 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4484 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4485 config->rti.uec_c);
4488 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4489 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4490 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4491 config->rti.uec_d);
4494 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4495 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4497 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4498 if (config->rti.timer_ri_en)
4499 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4500 else
4501 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4504 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4505 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4506 0x3ffffff);
4507 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4508 config->rti.rtimer_val);
4511 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4512 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4513 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4516 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4517 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4518 0x3ffffff);
4519 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4520 config->rti.ltimer_val);
4523 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4524 vpath->tim_rti_cfg3_saved = val64;
4527 val64 = 0;
4528 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4529 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4530 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4531 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4532 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4533 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4535 val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4536 val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4537 val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4538 writeq(val64, &vp_reg->tim_wrkld_clc);
4540 return VXGE_HW_OK;
4544 * __vxge_hw_vpath_initialize
4545 * This routine is the final phase of init which initializes the
4546 * registers of the vpath using the configuration passed.
4548 static enum vxge_hw_status
4549 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4551 u64 val64;
4552 u32 val32;
4553 enum vxge_hw_status status = VXGE_HW_OK;
4554 struct __vxge_hw_virtualpath *vpath;
4555 struct vxge_hw_vpath_reg __iomem *vp_reg;
4557 vpath = &hldev->virtual_paths[vp_id];
4559 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4560 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4561 goto exit;
4563 vp_reg = vpath->vp_reg;
4565 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4566 if (status != VXGE_HW_OK)
4567 goto exit;
4569 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4570 if (status != VXGE_HW_OK)
4571 goto exit;
4573 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4574 if (status != VXGE_HW_OK)
4575 goto exit;
4577 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4578 if (status != VXGE_HW_OK)
4579 goto exit;
4581 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4583 /* Get MRRS value from device control */
4584 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4585 if (status == VXGE_HW_OK) {
4586 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4587 val64 &=
4588 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4589 val64 |=
4590 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4592 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4595 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4596 val64 |=
4597 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4598 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4600 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4601 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4603 exit:
4604 return status;
4608 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4609 * This routine closes all channels it opened and freeup memory
4611 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4613 struct __vxge_hw_virtualpath *vpath;
4615 vpath = &hldev->virtual_paths[vp_id];
4617 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4618 goto exit;
4620 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4621 vpath->hldev->tim_int_mask1, vpath->vp_id);
4622 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4624 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4625 * work after the interface is brought down.
4627 spin_lock(&vpath->lock);
4628 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4629 spin_unlock(&vpath->lock);
4631 vpath->vpmgmt_reg = NULL;
4632 vpath->nofl_db = NULL;
4633 vpath->max_mtu = 0;
4634 vpath->vsport_number = 0;
4635 vpath->max_kdfc_db = 0;
4636 vpath->max_nofl_db = 0;
4637 vpath->ringh = NULL;
4638 vpath->fifoh = NULL;
4639 memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4640 vpath->stats_block = NULL;
4641 vpath->hw_stats = NULL;
4642 vpath->hw_stats_sav = NULL;
4643 vpath->sw_stats = NULL;
4645 exit:
4646 return;
4650 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4651 * This routine is the initial phase of init which resets the vpath and
4652 * initializes the software support structures.
4654 static enum vxge_hw_status
4655 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4656 struct vxge_hw_vp_config *config)
4658 struct __vxge_hw_virtualpath *vpath;
4659 enum vxge_hw_status status = VXGE_HW_OK;
4661 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4662 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4663 goto exit;
4666 vpath = &hldev->virtual_paths[vp_id];
4668 spin_lock_init(&vpath->lock);
4669 vpath->vp_id = vp_id;
4670 vpath->vp_open = VXGE_HW_VP_OPEN;
4671 vpath->hldev = hldev;
4672 vpath->vp_config = config;
4673 vpath->vp_reg = hldev->vpath_reg[vp_id];
4674 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4676 __vxge_hw_vpath_reset(hldev, vp_id);
4678 status = __vxge_hw_vpath_reset_check(vpath);
4679 if (status != VXGE_HW_OK) {
4680 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4681 goto exit;
4684 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4685 if (status != VXGE_HW_OK) {
4686 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4687 goto exit;
4690 INIT_LIST_HEAD(&vpath->vpath_handles);
4692 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4694 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4695 hldev->tim_int_mask1, vp_id);
4697 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4698 if (status != VXGE_HW_OK)
4699 __vxge_hw_vp_terminate(hldev, vp_id);
4700 exit:
4701 return status;
4705 * vxge_hw_vpath_mtu_set - Set MTU.
4706 * Set new MTU value. Example, to use jumbo frames:
4707 * vxge_hw_vpath_mtu_set(my_device, 9600);
4709 enum vxge_hw_status
4710 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4712 u64 val64;
4713 enum vxge_hw_status status = VXGE_HW_OK;
4714 struct __vxge_hw_virtualpath *vpath;
4716 if (vp == NULL) {
4717 status = VXGE_HW_ERR_INVALID_HANDLE;
4718 goto exit;
4720 vpath = vp->vpath;
4722 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4724 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4725 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4727 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4729 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4730 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4732 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4734 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4736 exit:
4737 return status;
4741 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4742 * Enable the DMA vpath statistics. The function is to be called to re-enable
4743 * the adapter to update stats into the host memory
4745 static enum vxge_hw_status
4746 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4748 enum vxge_hw_status status = VXGE_HW_OK;
4749 struct __vxge_hw_virtualpath *vpath;
4751 vpath = vp->vpath;
4753 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4754 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4755 goto exit;
4758 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4759 sizeof(struct vxge_hw_vpath_stats_hw_info));
4761 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4762 exit:
4763 return status;
4767 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4768 * This function allocates a block from block pool or from the system
4770 static struct __vxge_hw_blockpool_entry *
4771 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4773 struct __vxge_hw_blockpool_entry *entry = NULL;
4774 struct __vxge_hw_blockpool *blockpool;
4776 blockpool = &devh->block_pool;
4778 if (size == blockpool->block_size) {
4780 if (!list_empty(&blockpool->free_block_list))
4781 entry = (struct __vxge_hw_blockpool_entry *)
4782 list_first_entry(&blockpool->free_block_list,
4783 struct __vxge_hw_blockpool_entry,
4784 item);
4786 if (entry != NULL) {
4787 list_del(&entry->item);
4788 blockpool->pool_size--;
4792 if (entry != NULL)
4793 __vxge_hw_blockpool_blocks_add(blockpool);
4795 return entry;
4799 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4800 * This function is used to open access to virtual path of an
4801 * adapter for offload, GRO operations. This function returns
4802 * synchronously.
4804 enum vxge_hw_status
4805 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4806 struct vxge_hw_vpath_attr *attr,
4807 struct __vxge_hw_vpath_handle **vpath_handle)
4809 struct __vxge_hw_virtualpath *vpath;
4810 struct __vxge_hw_vpath_handle *vp;
4811 enum vxge_hw_status status;
4813 vpath = &hldev->virtual_paths[attr->vp_id];
4815 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4816 status = VXGE_HW_ERR_INVALID_STATE;
4817 goto vpath_open_exit1;
4820 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4821 &hldev->config.vp_config[attr->vp_id]);
4822 if (status != VXGE_HW_OK)
4823 goto vpath_open_exit1;
4825 vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4826 if (vp == NULL) {
4827 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4828 goto vpath_open_exit2;
4831 vp->vpath = vpath;
4833 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4834 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4835 if (status != VXGE_HW_OK)
4836 goto vpath_open_exit6;
4839 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4840 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4841 if (status != VXGE_HW_OK)
4842 goto vpath_open_exit7;
4844 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4847 vpath->fifoh->tx_intr_num =
4848 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4849 VXGE_HW_VPATH_INTR_TX;
4851 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4852 VXGE_HW_BLOCK_SIZE);
4853 if (vpath->stats_block == NULL) {
4854 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4855 goto vpath_open_exit8;
4858 vpath->hw_stats = vpath->stats_block->memblock;
4859 memset(vpath->hw_stats, 0,
4860 sizeof(struct vxge_hw_vpath_stats_hw_info));
4862 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4863 vpath->hw_stats;
4865 vpath->hw_stats_sav =
4866 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4867 memset(vpath->hw_stats_sav, 0,
4868 sizeof(struct vxge_hw_vpath_stats_hw_info));
4870 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4872 status = vxge_hw_vpath_stats_enable(vp);
4873 if (status != VXGE_HW_OK)
4874 goto vpath_open_exit8;
4876 list_add(&vp->item, &vpath->vpath_handles);
4878 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4880 *vpath_handle = vp;
4882 attr->fifo_attr.userdata = vpath->fifoh;
4883 attr->ring_attr.userdata = vpath->ringh;
4885 return VXGE_HW_OK;
4887 vpath_open_exit8:
4888 if (vpath->ringh != NULL)
4889 __vxge_hw_ring_delete(vp);
4890 vpath_open_exit7:
4891 if (vpath->fifoh != NULL)
4892 __vxge_hw_fifo_delete(vp);
4893 vpath_open_exit6:
4894 vfree(vp);
4895 vpath_open_exit2:
4896 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4897 vpath_open_exit1:
4899 return status;
4903 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4904 * (vpath) open
4905 * @vp: Handle got from previous vpath open
4907 * This function is used to close access to virtual path opened
4908 * earlier.
4910 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4912 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4913 struct __vxge_hw_ring *ring = vpath->ringh;
4914 struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4915 u64 new_count, val64, val164;
4917 if (vdev->titan1) {
4918 new_count = readq(&vpath->vp_reg->rxdmem_size);
4919 new_count &= 0x1fff;
4920 } else
4921 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4923 val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4925 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4926 &vpath->vp_reg->prc_rxd_doorbell);
4927 readl(&vpath->vp_reg->prc_rxd_doorbell);
4929 val164 /= 2;
4930 val64 = readq(&vpath->vp_reg->prc_cfg6);
4931 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4932 val64 &= 0x1ff;
4935 * Each RxD is of 4 qwords
4937 new_count -= (val64 + 1);
4938 val64 = min(val164, new_count) / 4;
4940 ring->rxds_limit = min(ring->rxds_limit, val64);
4941 if (ring->rxds_limit < 4)
4942 ring->rxds_limit = 4;
4946 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4947 * @devh: Hal device
4948 * @entry: Entry of block to be freed
4950 * This function frees a block from block pool
4952 static void
4953 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4954 struct __vxge_hw_blockpool_entry *entry)
4956 struct __vxge_hw_blockpool *blockpool;
4958 blockpool = &devh->block_pool;
4960 if (entry->length == blockpool->block_size) {
4961 list_add(&entry->item, &blockpool->free_block_list);
4962 blockpool->pool_size++;
4965 __vxge_hw_blockpool_blocks_remove(blockpool);
4969 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4970 * This function is used to close access to virtual path opened
4971 * earlier.
4973 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4975 struct __vxge_hw_virtualpath *vpath = NULL;
4976 struct __vxge_hw_device *devh = NULL;
4977 u32 vp_id = vp->vpath->vp_id;
4978 u32 is_empty = TRUE;
4979 enum vxge_hw_status status = VXGE_HW_OK;
4981 vpath = vp->vpath;
4982 devh = vpath->hldev;
4984 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4985 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4986 goto vpath_close_exit;
4989 list_del(&vp->item);
4991 if (!list_empty(&vpath->vpath_handles)) {
4992 list_add(&vp->item, &vpath->vpath_handles);
4993 is_empty = FALSE;
4996 if (!is_empty) {
4997 status = VXGE_HW_FAIL;
4998 goto vpath_close_exit;
5001 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
5003 if (vpath->ringh != NULL)
5004 __vxge_hw_ring_delete(vp);
5006 if (vpath->fifoh != NULL)
5007 __vxge_hw_fifo_delete(vp);
5009 if (vpath->stats_block != NULL)
5010 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5012 vfree(vp);
5014 __vxge_hw_vp_terminate(devh, vp_id);
5016 vpath_close_exit:
5017 return status;
5021 * vxge_hw_vpath_reset - Resets vpath
5022 * This function is used to request a reset of vpath
5024 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5026 enum vxge_hw_status status;
5027 u32 vp_id;
5028 struct __vxge_hw_virtualpath *vpath = vp->vpath;
5030 vp_id = vpath->vp_id;
5032 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5033 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5034 goto exit;
5037 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5038 if (status == VXGE_HW_OK)
5039 vpath->sw_stats->soft_reset_cnt++;
5040 exit:
5041 return status;
5045 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5046 * This function poll's for the vpath reset completion and re initializes
5047 * the vpath.
5049 enum vxge_hw_status
5050 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5052 struct __vxge_hw_virtualpath *vpath = NULL;
5053 enum vxge_hw_status status;
5054 struct __vxge_hw_device *hldev;
5055 u32 vp_id;
5057 vp_id = vp->vpath->vp_id;
5058 vpath = vp->vpath;
5059 hldev = vpath->hldev;
5061 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5062 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5063 goto exit;
5066 status = __vxge_hw_vpath_reset_check(vpath);
5067 if (status != VXGE_HW_OK)
5068 goto exit;
5070 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5071 if (status != VXGE_HW_OK)
5072 goto exit;
5074 status = __vxge_hw_vpath_initialize(hldev, vp_id);
5075 if (status != VXGE_HW_OK)
5076 goto exit;
5078 if (vpath->ringh != NULL)
5079 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5081 memset(vpath->hw_stats, 0,
5082 sizeof(struct vxge_hw_vpath_stats_hw_info));
5084 memset(vpath->hw_stats_sav, 0,
5085 sizeof(struct vxge_hw_vpath_stats_hw_info));
5087 writeq(vpath->stats_block->dma_addr,
5088 &vpath->vp_reg->stats_cfg);
5090 status = vxge_hw_vpath_stats_enable(vp);
5092 exit:
5093 return status;
5097 * vxge_hw_vpath_enable - Enable vpath.
5098 * This routine clears the vpath reset thereby enabling a vpath
5099 * to start forwarding frames and generating interrupts.
5101 void
5102 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5104 struct __vxge_hw_device *hldev;
5105 u64 val64;
5107 hldev = vp->vpath->hldev;
5109 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5110 1 << (16 - vp->vpath->vp_id));
5112 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5113 &hldev->common_reg->cmn_rsthdlr_cfg1);