2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock
);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node
);
79 EXPORT_PER_CPU_SYMBOL(numa_node
);
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
89 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
91 int _node_numa_mem_
[MAX_NUMNODES
];
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy
;
96 EXPORT_SYMBOL(latent_entropy
);
100 * Array of node states.
102 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
103 [N_POSSIBLE
] = NODE_MASK_ALL
,
104 [N_ONLINE
] = { { [0] = 1UL } },
106 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY
] = { { [0] = 1UL } },
113 [N_CPU
] = { { [0] = 1UL } },
116 EXPORT_SYMBOL(node_states
);
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock
);
121 unsigned long totalram_pages __read_mostly
;
122 unsigned long totalreserve_pages __read_mostly
;
123 unsigned long totalcma_pages __read_mostly
;
125 int percpu_pagelist_fraction
;
126 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page
*page
)
141 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
143 page
->index
= migratetype
;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask
;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex
));
161 if (saved_gfp_mask
) {
162 gfp_allowed_mask
= saved_gfp_mask
;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex
));
170 WARN_ON(saved_gfp_mask
);
171 saved_gfp_mask
= gfp_allowed_mask
;
172 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly
;
187 static void __free_pages_ok(struct page
*page
, unsigned int order
);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
201 #ifdef CONFIG_ZONE_DMA
204 #ifdef CONFIG_ZONE_DMA32
207 #ifdef CONFIG_HIGHMEM
213 EXPORT_SYMBOL(totalram_pages
);
215 static char * const zone_names
[MAX_NR_ZONES
] = {
216 #ifdef CONFIG_ZONE_DMA
219 #ifdef CONFIG_ZONE_DMA32
223 #ifdef CONFIG_HIGHMEM
227 #ifdef CONFIG_ZONE_DEVICE
232 char * const migratetype_names
[MIGRATE_TYPES
] = {
240 #ifdef CONFIG_MEMORY_ISOLATION
245 compound_page_dtor
* const compound_page_dtors
[] = {
248 #ifdef CONFIG_HUGETLB_PAGE
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 int min_free_kbytes
= 1024;
257 int user_min_free_kbytes
= -1;
258 int watermark_scale_factor
= 10;
260 static unsigned long __meminitdata nr_kernel_pages
;
261 static unsigned long __meminitdata nr_all_pages
;
262 static unsigned long __meminitdata dma_reserve
;
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
267 static unsigned long __initdata required_kernelcore
;
268 static unsigned long __initdata required_movablecore
;
269 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
270 static bool mirrored_kernelcore
;
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274 EXPORT_SYMBOL(movable_zone
);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
278 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
279 int nr_online_nodes __read_mostly
= 1;
280 EXPORT_SYMBOL(nr_node_ids
);
281 EXPORT_SYMBOL(nr_online_nodes
);
284 int page_group_by_mobility_disabled __read_mostly
;
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
289 unsigned long max_initialise
;
290 unsigned long reserved_lowmem
;
293 * Initialise at least 2G of a node but also take into account that
294 * two large system hashes that can take up 1GB for 0.25TB/node.
296 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
297 (pgdat
->node_spanned_pages
>> 8));
300 * Compensate the all the memblock reservations (e.g. crash kernel)
301 * from the initial estimation to make sure we will initialize enough
304 reserved_lowmem
= memblock_reserved_memory_within(pgdat
->node_start_pfn
,
305 pgdat
->node_start_pfn
+ max_initialise
);
306 max_initialise
+= reserved_lowmem
;
308 pgdat
->static_init_size
= min(max_initialise
, pgdat
->node_spanned_pages
);
309 pgdat
->first_deferred_pfn
= ULONG_MAX
;
312 /* Returns true if the struct page for the pfn is uninitialised */
313 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
315 int nid
= early_pfn_to_nid(pfn
);
317 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
324 * Returns false when the remaining initialisation should be deferred until
325 * later in the boot cycle when it can be parallelised.
327 static inline bool update_defer_init(pg_data_t
*pgdat
,
328 unsigned long pfn
, unsigned long zone_end
,
329 unsigned long *nr_initialised
)
331 /* Always populate low zones for address-contrained allocations */
332 if (zone_end
< pgdat_end_pfn(pgdat
))
335 if ((*nr_initialised
> pgdat
->static_init_size
) &&
336 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
337 pgdat
->first_deferred_pfn
= pfn
;
344 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
348 static inline bool early_page_uninitialised(unsigned long pfn
)
353 static inline bool update_defer_init(pg_data_t
*pgdat
,
354 unsigned long pfn
, unsigned long zone_end
,
355 unsigned long *nr_initialised
)
361 /* Return a pointer to the bitmap storing bits affecting a block of pages */
362 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
365 #ifdef CONFIG_SPARSEMEM
366 return __pfn_to_section(pfn
)->pageblock_flags
;
368 return page_zone(page
)->pageblock_flags
;
369 #endif /* CONFIG_SPARSEMEM */
372 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
374 #ifdef CONFIG_SPARSEMEM
375 pfn
&= (PAGES_PER_SECTION
-1);
376 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
378 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
379 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
380 #endif /* CONFIG_SPARSEMEM */
384 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
385 * @page: The page within the block of interest
386 * @pfn: The target page frame number
387 * @end_bitidx: The last bit of interest to retrieve
388 * @mask: mask of bits that the caller is interested in
390 * Return: pageblock_bits flags
392 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
394 unsigned long end_bitidx
,
397 unsigned long *bitmap
;
398 unsigned long bitidx
, word_bitidx
;
401 bitmap
= get_pageblock_bitmap(page
, pfn
);
402 bitidx
= pfn_to_bitidx(page
, pfn
);
403 word_bitidx
= bitidx
/ BITS_PER_LONG
;
404 bitidx
&= (BITS_PER_LONG
-1);
406 word
= bitmap
[word_bitidx
];
407 bitidx
+= end_bitidx
;
408 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
411 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
412 unsigned long end_bitidx
,
415 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
418 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
420 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
424 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
425 * @page: The page within the block of interest
426 * @flags: The flags to set
427 * @pfn: The target page frame number
428 * @end_bitidx: The last bit of interest
429 * @mask: mask of bits that the caller is interested in
431 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
433 unsigned long end_bitidx
,
436 unsigned long *bitmap
;
437 unsigned long bitidx
, word_bitidx
;
438 unsigned long old_word
, word
;
440 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
442 bitmap
= get_pageblock_bitmap(page
, pfn
);
443 bitidx
= pfn_to_bitidx(page
, pfn
);
444 word_bitidx
= bitidx
/ BITS_PER_LONG
;
445 bitidx
&= (BITS_PER_LONG
-1);
447 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
449 bitidx
+= end_bitidx
;
450 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
451 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
453 word
= READ_ONCE(bitmap
[word_bitidx
]);
455 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
456 if (word
== old_word
)
462 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
464 if (unlikely(page_group_by_mobility_disabled
&&
465 migratetype
< MIGRATE_PCPTYPES
))
466 migratetype
= MIGRATE_UNMOVABLE
;
468 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
469 PB_migrate
, PB_migrate_end
);
472 #ifdef CONFIG_DEBUG_VM
473 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
477 unsigned long pfn
= page_to_pfn(page
);
478 unsigned long sp
, start_pfn
;
481 seq
= zone_span_seqbegin(zone
);
482 start_pfn
= zone
->zone_start_pfn
;
483 sp
= zone
->spanned_pages
;
484 if (!zone_spans_pfn(zone
, pfn
))
486 } while (zone_span_seqretry(zone
, seq
));
489 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
490 pfn
, zone_to_nid(zone
), zone
->name
,
491 start_pfn
, start_pfn
+ sp
);
496 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
498 if (!pfn_valid_within(page_to_pfn(page
)))
500 if (zone
!= page_zone(page
))
506 * Temporary debugging check for pages not lying within a given zone.
508 static int bad_range(struct zone
*zone
, struct page
*page
)
510 if (page_outside_zone_boundaries(zone
, page
))
512 if (!page_is_consistent(zone
, page
))
518 static inline int bad_range(struct zone
*zone
, struct page
*page
)
524 static void bad_page(struct page
*page
, const char *reason
,
525 unsigned long bad_flags
)
527 static unsigned long resume
;
528 static unsigned long nr_shown
;
529 static unsigned long nr_unshown
;
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
535 if (nr_shown
== 60) {
536 if (time_before(jiffies
, resume
)) {
542 "BUG: Bad page state: %lu messages suppressed\n",
549 resume
= jiffies
+ 60 * HZ
;
551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
552 current
->comm
, page_to_pfn(page
));
553 __dump_page(page
, reason
);
554 bad_flags
&= page
->flags
;
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags
, &bad_flags
);
558 dump_page_owner(page
);
563 /* Leave bad fields for debug, except PageBuddy could make trouble */
564 page_mapcount_reset(page
); /* remove PageBuddy */
565 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
569 * Higher-order pages are called "compound pages". They are structured thusly:
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
583 void free_compound_page(struct page
*page
)
585 __free_pages_ok(page
, compound_order(page
));
588 void prep_compound_page(struct page
*page
, unsigned int order
)
591 int nr_pages
= 1 << order
;
593 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
594 set_compound_order(page
, order
);
596 for (i
= 1; i
< nr_pages
; i
++) {
597 struct page
*p
= page
+ i
;
598 set_page_count(p
, 0);
599 p
->mapping
= TAIL_MAPPING
;
600 set_compound_head(p
, page
);
602 atomic_set(compound_mapcount_ptr(page
), -1);
605 #ifdef CONFIG_DEBUG_PAGEALLOC
606 unsigned int _debug_guardpage_minorder
;
607 bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
609 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
610 bool _debug_guardpage_enabled __read_mostly
;
612 static int __init
early_debug_pagealloc(char *buf
)
616 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
618 early_param("debug_pagealloc", early_debug_pagealloc
);
620 static bool need_debug_guardpage(void)
622 /* If we don't use debug_pagealloc, we don't need guard page */
623 if (!debug_pagealloc_enabled())
626 if (!debug_guardpage_minorder())
632 static void init_debug_guardpage(void)
634 if (!debug_pagealloc_enabled())
637 if (!debug_guardpage_minorder())
640 _debug_guardpage_enabled
= true;
643 struct page_ext_operations debug_guardpage_ops
= {
644 .need
= need_debug_guardpage
,
645 .init
= init_debug_guardpage
,
648 static int __init
debug_guardpage_minorder_setup(char *buf
)
652 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
653 pr_err("Bad debug_guardpage_minorder value\n");
656 _debug_guardpage_minorder
= res
;
657 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
660 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
662 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
663 unsigned int order
, int migratetype
)
665 struct page_ext
*page_ext
;
667 if (!debug_guardpage_enabled())
670 if (order
>= debug_guardpage_minorder())
673 page_ext
= lookup_page_ext(page
);
674 if (unlikely(!page_ext
))
677 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
679 INIT_LIST_HEAD(&page
->lru
);
680 set_page_private(page
, order
);
681 /* Guard pages are not available for any usage */
682 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
687 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
688 unsigned int order
, int migratetype
)
690 struct page_ext
*page_ext
;
692 if (!debug_guardpage_enabled())
695 page_ext
= lookup_page_ext(page
);
696 if (unlikely(!page_ext
))
699 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
701 set_page_private(page
, 0);
702 if (!is_migrate_isolate(migratetype
))
703 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
706 struct page_ext_operations debug_guardpage_ops
;
707 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
708 unsigned int order
, int migratetype
) { return false; }
709 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
710 unsigned int order
, int migratetype
) {}
713 static inline void set_page_order(struct page
*page
, unsigned int order
)
715 set_page_private(page
, order
);
716 __SetPageBuddy(page
);
719 static inline void rmv_page_order(struct page
*page
)
721 __ClearPageBuddy(page
);
722 set_page_private(page
, 0);
726 * This function checks whether a page is free && is the buddy
727 * we can do coalesce a page and its buddy if
728 * (a) the buddy is not in a hole &&
729 * (b) the buddy is in the buddy system &&
730 * (c) a page and its buddy have the same order &&
731 * (d) a page and its buddy are in the same zone.
733 * For recording whether a page is in the buddy system, we set ->_mapcount
734 * PAGE_BUDDY_MAPCOUNT_VALUE.
735 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
736 * serialized by zone->lock.
738 * For recording page's order, we use page_private(page).
740 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
743 if (!pfn_valid_within(page_to_pfn(buddy
)))
746 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
747 if (page_zone_id(page
) != page_zone_id(buddy
))
750 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
755 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
757 * zone check is done late to avoid uselessly
758 * calculating zone/node ids for pages that could
761 if (page_zone_id(page
) != page_zone_id(buddy
))
764 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
772 * Freeing function for a buddy system allocator.
774 * The concept of a buddy system is to maintain direct-mapped table
775 * (containing bit values) for memory blocks of various "orders".
776 * The bottom level table contains the map for the smallest allocatable
777 * units of memory (here, pages), and each level above it describes
778 * pairs of units from the levels below, hence, "buddies".
779 * At a high level, all that happens here is marking the table entry
780 * at the bottom level available, and propagating the changes upward
781 * as necessary, plus some accounting needed to play nicely with other
782 * parts of the VM system.
783 * At each level, we keep a list of pages, which are heads of continuous
784 * free pages of length of (1 << order) and marked with _mapcount
785 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
787 * So when we are allocating or freeing one, we can derive the state of the
788 * other. That is, if we allocate a small block, and both were
789 * free, the remainder of the region must be split into blocks.
790 * If a block is freed, and its buddy is also free, then this
791 * triggers coalescing into a block of larger size.
796 static inline void __free_one_page(struct page
*page
,
798 struct zone
*zone
, unsigned int order
,
801 unsigned long page_idx
;
802 unsigned long combined_idx
;
803 unsigned long uninitialized_var(buddy_idx
);
805 unsigned int max_order
;
807 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
809 VM_BUG_ON(!zone_is_initialized(zone
));
810 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
812 VM_BUG_ON(migratetype
== -1);
813 if (likely(!is_migrate_isolate(migratetype
)))
814 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
816 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
818 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
819 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
822 while (order
< max_order
- 1) {
823 buddy_idx
= __find_buddy_index(page_idx
, order
);
824 buddy
= page
+ (buddy_idx
- page_idx
);
825 if (!page_is_buddy(page
, buddy
, order
))
828 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
829 * merge with it and move up one order.
831 if (page_is_guard(buddy
)) {
832 clear_page_guard(zone
, buddy
, order
, migratetype
);
834 list_del(&buddy
->lru
);
835 zone
->free_area
[order
].nr_free
--;
836 rmv_page_order(buddy
);
838 combined_idx
= buddy_idx
& page_idx
;
839 page
= page
+ (combined_idx
- page_idx
);
840 page_idx
= combined_idx
;
843 if (max_order
< MAX_ORDER
) {
844 /* If we are here, it means order is >= pageblock_order.
845 * We want to prevent merge between freepages on isolate
846 * pageblock and normal pageblock. Without this, pageblock
847 * isolation could cause incorrect freepage or CMA accounting.
849 * We don't want to hit this code for the more frequent
852 if (unlikely(has_isolate_pageblock(zone
))) {
855 buddy_idx
= __find_buddy_index(page_idx
, order
);
856 buddy
= page
+ (buddy_idx
- page_idx
);
857 buddy_mt
= get_pageblock_migratetype(buddy
);
859 if (migratetype
!= buddy_mt
860 && (is_migrate_isolate(migratetype
) ||
861 is_migrate_isolate(buddy_mt
)))
865 goto continue_merging
;
869 set_page_order(page
, order
);
872 * If this is not the largest possible page, check if the buddy
873 * of the next-highest order is free. If it is, it's possible
874 * that pages are being freed that will coalesce soon. In case,
875 * that is happening, add the free page to the tail of the list
876 * so it's less likely to be used soon and more likely to be merged
877 * as a higher order page
879 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
880 struct page
*higher_page
, *higher_buddy
;
881 combined_idx
= buddy_idx
& page_idx
;
882 higher_page
= page
+ (combined_idx
- page_idx
);
883 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
884 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
885 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
886 list_add_tail(&page
->lru
,
887 &zone
->free_area
[order
].free_list
[migratetype
]);
892 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
894 zone
->free_area
[order
].nr_free
++;
898 * A bad page could be due to a number of fields. Instead of multiple branches,
899 * try and check multiple fields with one check. The caller must do a detailed
900 * check if necessary.
902 static inline bool page_expected_state(struct page
*page
,
903 unsigned long check_flags
)
905 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
908 if (unlikely((unsigned long)page
->mapping
|
909 page_ref_count(page
) |
911 (unsigned long)page
->mem_cgroup
|
913 (page
->flags
& check_flags
)))
919 static void free_pages_check_bad(struct page
*page
)
921 const char *bad_reason
;
922 unsigned long bad_flags
;
927 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
928 bad_reason
= "nonzero mapcount";
929 if (unlikely(page
->mapping
!= NULL
))
930 bad_reason
= "non-NULL mapping";
931 if (unlikely(page_ref_count(page
) != 0))
932 bad_reason
= "nonzero _refcount";
933 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
934 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
935 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
938 if (unlikely(page
->mem_cgroup
))
939 bad_reason
= "page still charged to cgroup";
941 bad_page(page
, bad_reason
, bad_flags
);
944 static inline int free_pages_check(struct page
*page
)
946 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
949 /* Something has gone sideways, find it */
950 free_pages_check_bad(page
);
954 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
959 * We rely page->lru.next never has bit 0 set, unless the page
960 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
962 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
964 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
968 switch (page
- head_page
) {
970 /* the first tail page: ->mapping is compound_mapcount() */
971 if (unlikely(compound_mapcount(page
))) {
972 bad_page(page
, "nonzero compound_mapcount", 0);
978 * the second tail page: ->mapping is
979 * page_deferred_list().next -- ignore value.
983 if (page
->mapping
!= TAIL_MAPPING
) {
984 bad_page(page
, "corrupted mapping in tail page", 0);
989 if (unlikely(!PageTail(page
))) {
990 bad_page(page
, "PageTail not set", 0);
993 if (unlikely(compound_head(page
) != head_page
)) {
994 bad_page(page
, "compound_head not consistent", 0);
999 page
->mapping
= NULL
;
1000 clear_compound_head(page
);
1004 static __always_inline
bool free_pages_prepare(struct page
*page
,
1005 unsigned int order
, bool check_free
)
1009 VM_BUG_ON_PAGE(PageTail(page
), page
);
1011 trace_mm_page_free(page
, order
);
1012 kmemcheck_free_shadow(page
, order
);
1015 * Check tail pages before head page information is cleared to
1016 * avoid checking PageCompound for order-0 pages.
1018 if (unlikely(order
)) {
1019 bool compound
= PageCompound(page
);
1022 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1025 ClearPageDoubleMap(page
);
1026 for (i
= 1; i
< (1 << order
); i
++) {
1028 bad
+= free_tail_pages_check(page
, page
+ i
);
1029 if (unlikely(free_pages_check(page
+ i
))) {
1033 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1036 if (PageMappingFlags(page
))
1037 page
->mapping
= NULL
;
1038 if (memcg_kmem_enabled() && PageKmemcg(page
))
1039 memcg_kmem_uncharge(page
, order
);
1041 bad
+= free_pages_check(page
);
1045 page_cpupid_reset_last(page
);
1046 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1047 reset_page_owner(page
, order
);
1049 if (!PageHighMem(page
)) {
1050 debug_check_no_locks_freed(page_address(page
),
1051 PAGE_SIZE
<< order
);
1052 debug_check_no_obj_freed(page_address(page
),
1053 PAGE_SIZE
<< order
);
1055 arch_free_page(page
, order
);
1056 kernel_poison_pages(page
, 1 << order
, 0);
1057 kernel_map_pages(page
, 1 << order
, 0);
1058 kasan_free_pages(page
, order
);
1063 #ifdef CONFIG_DEBUG_VM
1064 static inline bool free_pcp_prepare(struct page
*page
)
1066 return free_pages_prepare(page
, 0, true);
1069 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1074 static bool free_pcp_prepare(struct page
*page
)
1076 return free_pages_prepare(page
, 0, false);
1079 static bool bulkfree_pcp_prepare(struct page
*page
)
1081 return free_pages_check(page
);
1083 #endif /* CONFIG_DEBUG_VM */
1086 * Frees a number of pages from the PCP lists
1087 * Assumes all pages on list are in same zone, and of same order.
1088 * count is the number of pages to free.
1090 * If the zone was previously in an "all pages pinned" state then look to
1091 * see if this freeing clears that state.
1093 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1094 * pinned" detection logic.
1096 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1097 struct per_cpu_pages
*pcp
)
1099 int migratetype
= 0;
1101 unsigned long nr_scanned
;
1102 bool isolated_pageblocks
;
1104 spin_lock(&zone
->lock
);
1105 isolated_pageblocks
= has_isolate_pageblock(zone
);
1106 nr_scanned
= node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
);
1108 __mod_node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
, -nr_scanned
);
1112 struct list_head
*list
;
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1123 if (++migratetype
== MIGRATE_PCPTYPES
)
1125 list
= &pcp
->lists
[migratetype
];
1126 } while (list_empty(list
));
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free
== MIGRATE_PCPTYPES
)
1133 int mt
; /* migratetype of the to-be-freed page */
1135 page
= list_last_entry(list
, struct page
, lru
);
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page
->lru
);
1139 mt
= get_pcppage_migratetype(page
);
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1142 /* Pageblock could have been isolated meanwhile */
1143 if (unlikely(isolated_pageblocks
))
1144 mt
= get_pageblock_migratetype(page
);
1146 if (bulkfree_pcp_prepare(page
))
1149 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1150 trace_mm_page_pcpu_drain(page
, 0, mt
);
1151 } while (--count
&& --batch_free
&& !list_empty(list
));
1153 spin_unlock(&zone
->lock
);
1156 static void free_one_page(struct zone
*zone
,
1157 struct page
*page
, unsigned long pfn
,
1161 unsigned long nr_scanned
;
1162 spin_lock(&zone
->lock
);
1163 nr_scanned
= node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
);
1165 __mod_node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
, -nr_scanned
);
1167 if (unlikely(has_isolate_pageblock(zone
) ||
1168 is_migrate_isolate(migratetype
))) {
1169 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1171 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1172 spin_unlock(&zone
->lock
);
1175 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1176 unsigned long zone
, int nid
)
1178 set_page_links(page
, zone
, nid
, pfn
);
1179 init_page_count(page
);
1180 page_mapcount_reset(page
);
1181 page_cpupid_reset_last(page
);
1183 INIT_LIST_HEAD(&page
->lru
);
1184 #ifdef WANT_PAGE_VIRTUAL
1185 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186 if (!is_highmem_idx(zone
))
1187 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1191 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1194 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1197 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1198 static void init_reserved_page(unsigned long pfn
)
1203 if (!early_page_uninitialised(pfn
))
1206 nid
= early_pfn_to_nid(pfn
);
1207 pgdat
= NODE_DATA(nid
);
1209 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1210 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1212 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1215 __init_single_pfn(pfn
, zid
, nid
);
1218 static inline void init_reserved_page(unsigned long pfn
)
1221 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1224 * Initialised pages do not have PageReserved set. This function is
1225 * called for each range allocated by the bootmem allocator and
1226 * marks the pages PageReserved. The remaining valid pages are later
1227 * sent to the buddy page allocator.
1229 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1231 unsigned long start_pfn
= PFN_DOWN(start
);
1232 unsigned long end_pfn
= PFN_UP(end
);
1234 for (; start_pfn
< end_pfn
; start_pfn
++) {
1235 if (pfn_valid(start_pfn
)) {
1236 struct page
*page
= pfn_to_page(start_pfn
);
1238 init_reserved_page(start_pfn
);
1240 /* Avoid false-positive PageTail() */
1241 INIT_LIST_HEAD(&page
->lru
);
1243 SetPageReserved(page
);
1248 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1250 unsigned long flags
;
1252 unsigned long pfn
= page_to_pfn(page
);
1254 if (!free_pages_prepare(page
, order
, true))
1257 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1258 local_irq_save(flags
);
1259 __count_vm_events(PGFREE
, 1 << order
);
1260 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1261 local_irq_restore(flags
);
1264 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1266 unsigned int nr_pages
= 1 << order
;
1267 struct page
*p
= page
;
1271 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1273 __ClearPageReserved(p
);
1274 set_page_count(p
, 0);
1276 __ClearPageReserved(p
);
1277 set_page_count(p
, 0);
1279 page_zone(page
)->managed_pages
+= nr_pages
;
1280 set_page_refcounted(page
);
1281 __free_pages(page
, order
);
1284 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1285 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1287 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1289 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1291 static DEFINE_SPINLOCK(early_pfn_lock
);
1294 spin_lock(&early_pfn_lock
);
1295 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1297 nid
= first_online_node
;
1298 spin_unlock(&early_pfn_lock
);
1304 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1305 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1306 struct mminit_pfnnid_cache
*state
)
1310 nid
= __early_pfn_to_nid(pfn
, state
);
1311 if (nid
>= 0 && nid
!= node
)
1316 /* Only safe to use early in boot when initialisation is single-threaded */
1317 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1319 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1324 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1328 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1329 struct mminit_pfnnid_cache
*state
)
1336 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1339 if (early_page_uninitialised(pfn
))
1341 return __free_pages_boot_core(page
, order
);
1345 * Check that the whole (or subset of) a pageblock given by the interval of
1346 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1347 * with the migration of free compaction scanner. The scanners then need to
1348 * use only pfn_valid_within() check for arches that allow holes within
1351 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1353 * It's possible on some configurations to have a setup like node0 node1 node0
1354 * i.e. it's possible that all pages within a zones range of pages do not
1355 * belong to a single zone. We assume that a border between node0 and node1
1356 * can occur within a single pageblock, but not a node0 node1 node0
1357 * interleaving within a single pageblock. It is therefore sufficient to check
1358 * the first and last page of a pageblock and avoid checking each individual
1359 * page in a pageblock.
1361 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1362 unsigned long end_pfn
, struct zone
*zone
)
1364 struct page
*start_page
;
1365 struct page
*end_page
;
1367 /* end_pfn is one past the range we are checking */
1370 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1373 start_page
= pfn_to_page(start_pfn
);
1375 if (page_zone(start_page
) != zone
)
1378 end_page
= pfn_to_page(end_pfn
);
1380 /* This gives a shorter code than deriving page_zone(end_page) */
1381 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1387 void set_zone_contiguous(struct zone
*zone
)
1389 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1390 unsigned long block_end_pfn
;
1392 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1393 for (; block_start_pfn
< zone_end_pfn(zone
);
1394 block_start_pfn
= block_end_pfn
,
1395 block_end_pfn
+= pageblock_nr_pages
) {
1397 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1399 if (!__pageblock_pfn_to_page(block_start_pfn
,
1400 block_end_pfn
, zone
))
1404 /* We confirm that there is no hole */
1405 zone
->contiguous
= true;
1408 void clear_zone_contiguous(struct zone
*zone
)
1410 zone
->contiguous
= false;
1413 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1414 static void __init
deferred_free_range(struct page
*page
,
1415 unsigned long pfn
, int nr_pages
)
1422 /* Free a large naturally-aligned chunk if possible */
1423 if (nr_pages
== pageblock_nr_pages
&&
1424 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1425 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1426 __free_pages_boot_core(page
, pageblock_order
);
1430 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1431 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1432 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1433 __free_pages_boot_core(page
, 0);
1437 /* Completion tracking for deferred_init_memmap() threads */
1438 static atomic_t pgdat_init_n_undone __initdata
;
1439 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1441 static inline void __init
pgdat_init_report_one_done(void)
1443 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1444 complete(&pgdat_init_all_done_comp
);
1447 /* Initialise remaining memory on a node */
1448 static int __init
deferred_init_memmap(void *data
)
1450 pg_data_t
*pgdat
= data
;
1451 int nid
= pgdat
->node_id
;
1452 struct mminit_pfnnid_cache nid_init_state
= { };
1453 unsigned long start
= jiffies
;
1454 unsigned long nr_pages
= 0;
1455 unsigned long walk_start
, walk_end
;
1458 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1459 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1461 if (first_init_pfn
== ULONG_MAX
) {
1462 pgdat_init_report_one_done();
1466 /* Bind memory initialisation thread to a local node if possible */
1467 if (!cpumask_empty(cpumask
))
1468 set_cpus_allowed_ptr(current
, cpumask
);
1470 /* Sanity check boundaries */
1471 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1472 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1473 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1475 /* Only the highest zone is deferred so find it */
1476 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1477 zone
= pgdat
->node_zones
+ zid
;
1478 if (first_init_pfn
< zone_end_pfn(zone
))
1482 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1483 unsigned long pfn
, end_pfn
;
1484 struct page
*page
= NULL
;
1485 struct page
*free_base_page
= NULL
;
1486 unsigned long free_base_pfn
= 0;
1489 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1490 pfn
= first_init_pfn
;
1491 if (pfn
< walk_start
)
1493 if (pfn
< zone
->zone_start_pfn
)
1494 pfn
= zone
->zone_start_pfn
;
1496 for (; pfn
< end_pfn
; pfn
++) {
1497 if (!pfn_valid_within(pfn
))
1501 * Ensure pfn_valid is checked every
1502 * pageblock_nr_pages for memory holes
1504 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1505 if (!pfn_valid(pfn
)) {
1511 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1516 /* Minimise pfn page lookups and scheduler checks */
1517 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1520 nr_pages
+= nr_to_free
;
1521 deferred_free_range(free_base_page
,
1522 free_base_pfn
, nr_to_free
);
1523 free_base_page
= NULL
;
1524 free_base_pfn
= nr_to_free
= 0;
1526 page
= pfn_to_page(pfn
);
1531 VM_BUG_ON(page_zone(page
) != zone
);
1535 __init_single_page(page
, pfn
, zid
, nid
);
1536 if (!free_base_page
) {
1537 free_base_page
= page
;
1538 free_base_pfn
= pfn
;
1543 /* Where possible, batch up pages for a single free */
1546 /* Free the current block of pages to allocator */
1547 nr_pages
+= nr_to_free
;
1548 deferred_free_range(free_base_page
, free_base_pfn
,
1550 free_base_page
= NULL
;
1551 free_base_pfn
= nr_to_free
= 0;
1553 /* Free the last block of pages to allocator */
1554 nr_pages
+= nr_to_free
;
1555 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1557 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1560 /* Sanity check that the next zone really is unpopulated */
1561 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1563 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1564 jiffies_to_msecs(jiffies
- start
));
1566 pgdat_init_report_one_done();
1569 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1571 void __init
page_alloc_init_late(void)
1575 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1578 /* There will be num_node_state(N_MEMORY) threads */
1579 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1580 for_each_node_state(nid
, N_MEMORY
) {
1581 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1584 /* Block until all are initialised */
1585 wait_for_completion(&pgdat_init_all_done_comp
);
1587 /* Reinit limits that are based on free pages after the kernel is up */
1588 files_maxfiles_init();
1591 for_each_populated_zone(zone
)
1592 set_zone_contiguous(zone
);
1596 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1597 void __init
init_cma_reserved_pageblock(struct page
*page
)
1599 unsigned i
= pageblock_nr_pages
;
1600 struct page
*p
= page
;
1603 __ClearPageReserved(p
);
1604 set_page_count(p
, 0);
1607 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1609 if (pageblock_order
>= MAX_ORDER
) {
1610 i
= pageblock_nr_pages
;
1613 set_page_refcounted(p
);
1614 __free_pages(p
, MAX_ORDER
- 1);
1615 p
+= MAX_ORDER_NR_PAGES
;
1616 } while (i
-= MAX_ORDER_NR_PAGES
);
1618 set_page_refcounted(page
);
1619 __free_pages(page
, pageblock_order
);
1622 adjust_managed_page_count(page
, pageblock_nr_pages
);
1627 * The order of subdivision here is critical for the IO subsystem.
1628 * Please do not alter this order without good reasons and regression
1629 * testing. Specifically, as large blocks of memory are subdivided,
1630 * the order in which smaller blocks are delivered depends on the order
1631 * they're subdivided in this function. This is the primary factor
1632 * influencing the order in which pages are delivered to the IO
1633 * subsystem according to empirical testing, and this is also justified
1634 * by considering the behavior of a buddy system containing a single
1635 * large block of memory acted on by a series of small allocations.
1636 * This behavior is a critical factor in sglist merging's success.
1640 static inline void expand(struct zone
*zone
, struct page
*page
,
1641 int low
, int high
, struct free_area
*area
,
1644 unsigned long size
= 1 << high
;
1646 while (high
> low
) {
1650 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1653 * Mark as guard pages (or page), that will allow to
1654 * merge back to allocator when buddy will be freed.
1655 * Corresponding page table entries will not be touched,
1656 * pages will stay not present in virtual address space
1658 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1661 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1663 set_page_order(&page
[size
], high
);
1667 static void check_new_page_bad(struct page
*page
)
1669 const char *bad_reason
= NULL
;
1670 unsigned long bad_flags
= 0;
1672 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1673 bad_reason
= "nonzero mapcount";
1674 if (unlikely(page
->mapping
!= NULL
))
1675 bad_reason
= "non-NULL mapping";
1676 if (unlikely(page_ref_count(page
) != 0))
1677 bad_reason
= "nonzero _count";
1678 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1679 bad_reason
= "HWPoisoned (hardware-corrupted)";
1680 bad_flags
= __PG_HWPOISON
;
1681 /* Don't complain about hwpoisoned pages */
1682 page_mapcount_reset(page
); /* remove PageBuddy */
1685 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1686 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1687 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1690 if (unlikely(page
->mem_cgroup
))
1691 bad_reason
= "page still charged to cgroup";
1693 bad_page(page
, bad_reason
, bad_flags
);
1697 * This page is about to be returned from the page allocator
1699 static inline int check_new_page(struct page
*page
)
1701 if (likely(page_expected_state(page
,
1702 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1705 check_new_page_bad(page
);
1709 static inline bool free_pages_prezeroed(bool poisoned
)
1711 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1712 page_poisoning_enabled() && poisoned
;
1715 #ifdef CONFIG_DEBUG_VM
1716 static bool check_pcp_refill(struct page
*page
)
1721 static bool check_new_pcp(struct page
*page
)
1723 return check_new_page(page
);
1726 static bool check_pcp_refill(struct page
*page
)
1728 return check_new_page(page
);
1730 static bool check_new_pcp(struct page
*page
)
1734 #endif /* CONFIG_DEBUG_VM */
1736 static bool check_new_pages(struct page
*page
, unsigned int order
)
1739 for (i
= 0; i
< (1 << order
); i
++) {
1740 struct page
*p
= page
+ i
;
1742 if (unlikely(check_new_page(p
)))
1749 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1752 set_page_private(page
, 0);
1753 set_page_refcounted(page
);
1755 arch_alloc_page(page
, order
);
1756 kernel_map_pages(page
, 1 << order
, 1);
1757 kernel_poison_pages(page
, 1 << order
, 1);
1758 kasan_alloc_pages(page
, order
);
1759 set_page_owner(page
, order
, gfp_flags
);
1762 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1763 unsigned int alloc_flags
)
1766 bool poisoned
= true;
1768 for (i
= 0; i
< (1 << order
); i
++) {
1769 struct page
*p
= page
+ i
;
1771 poisoned
&= page_is_poisoned(p
);
1774 post_alloc_hook(page
, order
, gfp_flags
);
1776 if (!free_pages_prezeroed(poisoned
) && (gfp_flags
& __GFP_ZERO
))
1777 for (i
= 0; i
< (1 << order
); i
++)
1778 clear_highpage(page
+ i
);
1780 if (order
&& (gfp_flags
& __GFP_COMP
))
1781 prep_compound_page(page
, order
);
1784 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1785 * allocate the page. The expectation is that the caller is taking
1786 * steps that will free more memory. The caller should avoid the page
1787 * being used for !PFMEMALLOC purposes.
1789 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1790 set_page_pfmemalloc(page
);
1792 clear_page_pfmemalloc(page
);
1796 * Go through the free lists for the given migratetype and remove
1797 * the smallest available page from the freelists
1800 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1803 unsigned int current_order
;
1804 struct free_area
*area
;
1807 /* Find a page of the appropriate size in the preferred list */
1808 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1809 area
= &(zone
->free_area
[current_order
]);
1810 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1814 list_del(&page
->lru
);
1815 rmv_page_order(page
);
1817 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1818 set_pcppage_migratetype(page
, migratetype
);
1827 * This array describes the order lists are fallen back to when
1828 * the free lists for the desirable migrate type are depleted
1830 static int fallbacks
[MIGRATE_TYPES
][4] = {
1831 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1832 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1833 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1835 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1837 #ifdef CONFIG_MEMORY_ISOLATION
1838 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1843 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1846 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1849 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1850 unsigned int order
) { return NULL
; }
1854 * Move the free pages in a range to the free lists of the requested type.
1855 * Note that start_page and end_pages are not aligned on a pageblock
1856 * boundary. If alignment is required, use move_freepages_block()
1858 int move_freepages(struct zone
*zone
,
1859 struct page
*start_page
, struct page
*end_page
,
1864 int pages_moved
= 0;
1866 #ifndef CONFIG_HOLES_IN_ZONE
1868 * page_zone is not safe to call in this context when
1869 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1870 * anyway as we check zone boundaries in move_freepages_block().
1871 * Remove at a later date when no bug reports exist related to
1872 * grouping pages by mobility
1874 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1877 for (page
= start_page
; page
<= end_page
;) {
1878 /* Make sure we are not inadvertently changing nodes */
1879 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1881 if (!pfn_valid_within(page_to_pfn(page
))) {
1886 if (!PageBuddy(page
)) {
1891 order
= page_order(page
);
1892 list_move(&page
->lru
,
1893 &zone
->free_area
[order
].free_list
[migratetype
]);
1895 pages_moved
+= 1 << order
;
1901 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1904 unsigned long start_pfn
, end_pfn
;
1905 struct page
*start_page
, *end_page
;
1907 start_pfn
= page_to_pfn(page
);
1908 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1909 start_page
= pfn_to_page(start_pfn
);
1910 end_page
= start_page
+ pageblock_nr_pages
- 1;
1911 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1913 /* Do not cross zone boundaries */
1914 if (!zone_spans_pfn(zone
, start_pfn
))
1916 if (!zone_spans_pfn(zone
, end_pfn
))
1919 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1922 static void change_pageblock_range(struct page
*pageblock_page
,
1923 int start_order
, int migratetype
)
1925 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1927 while (nr_pageblocks
--) {
1928 set_pageblock_migratetype(pageblock_page
, migratetype
);
1929 pageblock_page
+= pageblock_nr_pages
;
1934 * When we are falling back to another migratetype during allocation, try to
1935 * steal extra free pages from the same pageblocks to satisfy further
1936 * allocations, instead of polluting multiple pageblocks.
1938 * If we are stealing a relatively large buddy page, it is likely there will
1939 * be more free pages in the pageblock, so try to steal them all. For
1940 * reclaimable and unmovable allocations, we steal regardless of page size,
1941 * as fragmentation caused by those allocations polluting movable pageblocks
1942 * is worse than movable allocations stealing from unmovable and reclaimable
1945 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1948 * Leaving this order check is intended, although there is
1949 * relaxed order check in next check. The reason is that
1950 * we can actually steal whole pageblock if this condition met,
1951 * but, below check doesn't guarantee it and that is just heuristic
1952 * so could be changed anytime.
1954 if (order
>= pageblock_order
)
1957 if (order
>= pageblock_order
/ 2 ||
1958 start_mt
== MIGRATE_RECLAIMABLE
||
1959 start_mt
== MIGRATE_UNMOVABLE
||
1960 page_group_by_mobility_disabled
)
1967 * This function implements actual steal behaviour. If order is large enough,
1968 * we can steal whole pageblock. If not, we first move freepages in this
1969 * pageblock and check whether half of pages are moved or not. If half of
1970 * pages are moved, we can change migratetype of pageblock and permanently
1971 * use it's pages as requested migratetype in the future.
1973 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1976 unsigned int current_order
= page_order(page
);
1979 /* Take ownership for orders >= pageblock_order */
1980 if (current_order
>= pageblock_order
) {
1981 change_pageblock_range(page
, current_order
, start_type
);
1985 pages
= move_freepages_block(zone
, page
, start_type
);
1987 /* Claim the whole block if over half of it is free */
1988 if (pages
>= (1 << (pageblock_order
-1)) ||
1989 page_group_by_mobility_disabled
)
1990 set_pageblock_migratetype(page
, start_type
);
1994 * Check whether there is a suitable fallback freepage with requested order.
1995 * If only_stealable is true, this function returns fallback_mt only if
1996 * we can steal other freepages all together. This would help to reduce
1997 * fragmentation due to mixed migratetype pages in one pageblock.
1999 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2000 int migratetype
, bool only_stealable
, bool *can_steal
)
2005 if (area
->nr_free
== 0)
2010 fallback_mt
= fallbacks
[migratetype
][i
];
2011 if (fallback_mt
== MIGRATE_TYPES
)
2014 if (list_empty(&area
->free_list
[fallback_mt
]))
2017 if (can_steal_fallback(order
, migratetype
))
2020 if (!only_stealable
)
2031 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2032 * there are no empty page blocks that contain a page with a suitable order
2034 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2035 unsigned int alloc_order
)
2038 unsigned long max_managed
, flags
;
2041 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2042 * Check is race-prone but harmless.
2044 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2045 if (zone
->nr_reserved_highatomic
>= max_managed
)
2048 spin_lock_irqsave(&zone
->lock
, flags
);
2050 /* Recheck the nr_reserved_highatomic limit under the lock */
2051 if (zone
->nr_reserved_highatomic
>= max_managed
)
2055 mt
= get_pageblock_migratetype(page
);
2056 if (mt
!= MIGRATE_HIGHATOMIC
&&
2057 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
2058 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2059 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2060 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
2064 spin_unlock_irqrestore(&zone
->lock
, flags
);
2068 * Used when an allocation is about to fail under memory pressure. This
2069 * potentially hurts the reliability of high-order allocations when under
2070 * intense memory pressure but failed atomic allocations should be easier
2071 * to recover from than an OOM.
2073 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
2075 struct zonelist
*zonelist
= ac
->zonelist
;
2076 unsigned long flags
;
2082 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2084 /* Preserve at least one pageblock */
2085 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
2088 spin_lock_irqsave(&zone
->lock
, flags
);
2089 for (order
= 0; order
< MAX_ORDER
; order
++) {
2090 struct free_area
*area
= &(zone
->free_area
[order
]);
2092 page
= list_first_entry_or_null(
2093 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2099 * It should never happen but changes to locking could
2100 * inadvertently allow a per-cpu drain to add pages
2101 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2102 * and watch for underflows.
2104 zone
->nr_reserved_highatomic
-= min(pageblock_nr_pages
,
2105 zone
->nr_reserved_highatomic
);
2108 * Convert to ac->migratetype and avoid the normal
2109 * pageblock stealing heuristics. Minimally, the caller
2110 * is doing the work and needs the pages. More
2111 * importantly, if the block was always converted to
2112 * MIGRATE_UNMOVABLE or another type then the number
2113 * of pageblocks that cannot be completely freed
2116 set_pageblock_migratetype(page
, ac
->migratetype
);
2117 move_freepages_block(zone
, page
, ac
->migratetype
);
2118 spin_unlock_irqrestore(&zone
->lock
, flags
);
2121 spin_unlock_irqrestore(&zone
->lock
, flags
);
2125 /* Remove an element from the buddy allocator from the fallback list */
2126 static inline struct page
*
2127 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
2129 struct free_area
*area
;
2130 unsigned int current_order
;
2135 /* Find the largest possible block of pages in the other list */
2136 for (current_order
= MAX_ORDER
-1;
2137 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
2139 area
= &(zone
->free_area
[current_order
]);
2140 fallback_mt
= find_suitable_fallback(area
, current_order
,
2141 start_migratetype
, false, &can_steal
);
2142 if (fallback_mt
== -1)
2145 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2148 steal_suitable_fallback(zone
, page
, start_migratetype
);
2150 /* Remove the page from the freelists */
2152 list_del(&page
->lru
);
2153 rmv_page_order(page
);
2155 expand(zone
, page
, order
, current_order
, area
,
2158 * The pcppage_migratetype may differ from pageblock's
2159 * migratetype depending on the decisions in
2160 * find_suitable_fallback(). This is OK as long as it does not
2161 * differ for MIGRATE_CMA pageblocks. Those can be used as
2162 * fallback only via special __rmqueue_cma_fallback() function
2164 set_pcppage_migratetype(page
, start_migratetype
);
2166 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2167 start_migratetype
, fallback_mt
);
2176 * Do the hard work of removing an element from the buddy allocator.
2177 * Call me with the zone->lock already held.
2179 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2184 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2185 if (unlikely(!page
)) {
2186 if (migratetype
== MIGRATE_MOVABLE
)
2187 page
= __rmqueue_cma_fallback(zone
, order
);
2190 page
= __rmqueue_fallback(zone
, order
, migratetype
);
2193 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2198 * Obtain a specified number of elements from the buddy allocator, all under
2199 * a single hold of the lock, for efficiency. Add them to the supplied list.
2200 * Returns the number of new pages which were placed at *list.
2202 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2203 unsigned long count
, struct list_head
*list
,
2204 int migratetype
, bool cold
)
2208 spin_lock(&zone
->lock
);
2209 for (i
= 0; i
< count
; ++i
) {
2210 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2211 if (unlikely(page
== NULL
))
2214 if (unlikely(check_pcp_refill(page
)))
2218 * Split buddy pages returned by expand() are received here
2219 * in physical page order. The page is added to the callers and
2220 * list and the list head then moves forward. From the callers
2221 * perspective, the linked list is ordered by page number in
2222 * some conditions. This is useful for IO devices that can
2223 * merge IO requests if the physical pages are ordered
2227 list_add(&page
->lru
, list
);
2229 list_add_tail(&page
->lru
, list
);
2232 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2233 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2238 * i pages were removed from the buddy list even if some leak due
2239 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2240 * on i. Do not confuse with 'alloced' which is the number of
2241 * pages added to the pcp list.
2243 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2244 spin_unlock(&zone
->lock
);
2250 * Called from the vmstat counter updater to drain pagesets of this
2251 * currently executing processor on remote nodes after they have
2254 * Note that this function must be called with the thread pinned to
2255 * a single processor.
2257 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2259 unsigned long flags
;
2260 int to_drain
, batch
;
2262 local_irq_save(flags
);
2263 batch
= READ_ONCE(pcp
->batch
);
2264 to_drain
= min(pcp
->count
, batch
);
2266 free_pcppages_bulk(zone
, to_drain
, pcp
);
2267 pcp
->count
-= to_drain
;
2269 local_irq_restore(flags
);
2274 * Drain pcplists of the indicated processor and zone.
2276 * The processor must either be the current processor and the
2277 * thread pinned to the current processor or a processor that
2280 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2282 unsigned long flags
;
2283 struct per_cpu_pageset
*pset
;
2284 struct per_cpu_pages
*pcp
;
2286 local_irq_save(flags
);
2287 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2291 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2294 local_irq_restore(flags
);
2298 * Drain pcplists of all zones on the indicated processor.
2300 * The processor must either be the current processor and the
2301 * thread pinned to the current processor or a processor that
2304 static void drain_pages(unsigned int cpu
)
2308 for_each_populated_zone(zone
) {
2309 drain_pages_zone(cpu
, zone
);
2314 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2316 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2317 * the single zone's pages.
2319 void drain_local_pages(struct zone
*zone
)
2321 int cpu
= smp_processor_id();
2324 drain_pages_zone(cpu
, zone
);
2330 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2332 * When zone parameter is non-NULL, spill just the single zone's pages.
2334 * Note that this code is protected against sending an IPI to an offline
2335 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2336 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2337 * nothing keeps CPUs from showing up after we populated the cpumask and
2338 * before the call to on_each_cpu_mask().
2340 void drain_all_pages(struct zone
*zone
)
2345 * Allocate in the BSS so we wont require allocation in
2346 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2348 static cpumask_t cpus_with_pcps
;
2351 * We don't care about racing with CPU hotplug event
2352 * as offline notification will cause the notified
2353 * cpu to drain that CPU pcps and on_each_cpu_mask
2354 * disables preemption as part of its processing
2356 for_each_online_cpu(cpu
) {
2357 struct per_cpu_pageset
*pcp
;
2359 bool has_pcps
= false;
2362 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2366 for_each_populated_zone(z
) {
2367 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2368 if (pcp
->pcp
.count
) {
2376 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2378 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2380 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2384 #ifdef CONFIG_HIBERNATION
2386 void mark_free_pages(struct zone
*zone
)
2388 unsigned long pfn
, max_zone_pfn
;
2389 unsigned long flags
;
2390 unsigned int order
, t
;
2393 if (zone_is_empty(zone
))
2396 spin_lock_irqsave(&zone
->lock
, flags
);
2398 max_zone_pfn
= zone_end_pfn(zone
);
2399 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2400 if (pfn_valid(pfn
)) {
2401 page
= pfn_to_page(pfn
);
2403 if (page_zone(page
) != zone
)
2406 if (!swsusp_page_is_forbidden(page
))
2407 swsusp_unset_page_free(page
);
2410 for_each_migratetype_order(order
, t
) {
2411 list_for_each_entry(page
,
2412 &zone
->free_area
[order
].free_list
[t
], lru
) {
2415 pfn
= page_to_pfn(page
);
2416 for (i
= 0; i
< (1UL << order
); i
++)
2417 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2420 spin_unlock_irqrestore(&zone
->lock
, flags
);
2422 #endif /* CONFIG_PM */
2425 * Free a 0-order page
2426 * cold == true ? free a cold page : free a hot page
2428 void free_hot_cold_page(struct page
*page
, bool cold
)
2430 struct zone
*zone
= page_zone(page
);
2431 struct per_cpu_pages
*pcp
;
2432 unsigned long flags
;
2433 unsigned long pfn
= page_to_pfn(page
);
2436 if (!free_pcp_prepare(page
))
2439 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2440 set_pcppage_migratetype(page
, migratetype
);
2441 local_irq_save(flags
);
2442 __count_vm_event(PGFREE
);
2445 * We only track unmovable, reclaimable and movable on pcp lists.
2446 * Free ISOLATE pages back to the allocator because they are being
2447 * offlined but treat RESERVE as movable pages so we can get those
2448 * areas back if necessary. Otherwise, we may have to free
2449 * excessively into the page allocator
2451 if (migratetype
>= MIGRATE_PCPTYPES
) {
2452 if (unlikely(is_migrate_isolate(migratetype
))) {
2453 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2456 migratetype
= MIGRATE_MOVABLE
;
2459 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2461 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2463 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2465 if (pcp
->count
>= pcp
->high
) {
2466 unsigned long batch
= READ_ONCE(pcp
->batch
);
2467 free_pcppages_bulk(zone
, batch
, pcp
);
2468 pcp
->count
-= batch
;
2472 local_irq_restore(flags
);
2476 * Free a list of 0-order pages
2478 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2480 struct page
*page
, *next
;
2482 list_for_each_entry_safe(page
, next
, list
, lru
) {
2483 trace_mm_page_free_batched(page
, cold
);
2484 free_hot_cold_page(page
, cold
);
2489 * split_page takes a non-compound higher-order page, and splits it into
2490 * n (1<<order) sub-pages: page[0..n]
2491 * Each sub-page must be freed individually.
2493 * Note: this is probably too low level an operation for use in drivers.
2494 * Please consult with lkml before using this in your driver.
2496 void split_page(struct page
*page
, unsigned int order
)
2500 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2501 VM_BUG_ON_PAGE(!page_count(page
), page
);
2503 #ifdef CONFIG_KMEMCHECK
2505 * Split shadow pages too, because free(page[0]) would
2506 * otherwise free the whole shadow.
2508 if (kmemcheck_page_is_tracked(page
))
2509 split_page(virt_to_page(page
[0].shadow
), order
);
2512 for (i
= 1; i
< (1 << order
); i
++)
2513 set_page_refcounted(page
+ i
);
2514 split_page_owner(page
, order
);
2516 EXPORT_SYMBOL_GPL(split_page
);
2518 int __isolate_free_page(struct page
*page
, unsigned int order
)
2520 unsigned long watermark
;
2524 BUG_ON(!PageBuddy(page
));
2526 zone
= page_zone(page
);
2527 mt
= get_pageblock_migratetype(page
);
2529 if (!is_migrate_isolate(mt
)) {
2531 * Obey watermarks as if the page was being allocated. We can
2532 * emulate a high-order watermark check with a raised order-0
2533 * watermark, because we already know our high-order page
2536 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2537 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2540 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2543 /* Remove page from free list */
2544 list_del(&page
->lru
);
2545 zone
->free_area
[order
].nr_free
--;
2546 rmv_page_order(page
);
2549 * Set the pageblock if the isolated page is at least half of a
2552 if (order
>= pageblock_order
- 1) {
2553 struct page
*endpage
= page
+ (1 << order
) - 1;
2554 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2555 int mt
= get_pageblock_migratetype(page
);
2556 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2557 set_pageblock_migratetype(page
,
2563 return 1UL << order
;
2567 * Update NUMA hit/miss statistics
2569 * Must be called with interrupts disabled.
2571 * When __GFP_OTHER_NODE is set assume the node of the preferred
2572 * zone is the local node. This is useful for daemons who allocate
2573 * memory on behalf of other processes.
2575 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
,
2579 int local_nid
= numa_node_id();
2580 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2582 if (unlikely(flags
& __GFP_OTHER_NODE
)) {
2583 local_stat
= NUMA_OTHER
;
2584 local_nid
= preferred_zone
->node
;
2587 if (z
->node
== local_nid
) {
2588 __inc_zone_state(z
, NUMA_HIT
);
2589 __inc_zone_state(z
, local_stat
);
2591 __inc_zone_state(z
, NUMA_MISS
);
2592 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2598 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2601 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2602 struct zone
*zone
, unsigned int order
,
2603 gfp_t gfp_flags
, unsigned int alloc_flags
,
2606 unsigned long flags
;
2608 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2610 if (likely(order
== 0)) {
2611 struct per_cpu_pages
*pcp
;
2612 struct list_head
*list
;
2614 local_irq_save(flags
);
2616 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2617 list
= &pcp
->lists
[migratetype
];
2618 if (list_empty(list
)) {
2619 pcp
->count
+= rmqueue_bulk(zone
, 0,
2622 if (unlikely(list_empty(list
)))
2627 page
= list_last_entry(list
, struct page
, lru
);
2629 page
= list_first_entry(list
, struct page
, lru
);
2631 list_del(&page
->lru
);
2634 } while (check_new_pcp(page
));
2637 * We most definitely don't want callers attempting to
2638 * allocate greater than order-1 page units with __GFP_NOFAIL.
2640 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2641 spin_lock_irqsave(&zone
->lock
, flags
);
2645 if (alloc_flags
& ALLOC_HARDER
) {
2646 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2648 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2651 page
= __rmqueue(zone
, order
, migratetype
);
2652 } while (page
&& check_new_pages(page
, order
));
2653 spin_unlock(&zone
->lock
);
2656 __mod_zone_freepage_state(zone
, -(1 << order
),
2657 get_pcppage_migratetype(page
));
2660 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2661 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2662 local_irq_restore(flags
);
2664 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2668 local_irq_restore(flags
);
2672 #ifdef CONFIG_FAIL_PAGE_ALLOC
2675 struct fault_attr attr
;
2677 bool ignore_gfp_highmem
;
2678 bool ignore_gfp_reclaim
;
2680 } fail_page_alloc
= {
2681 .attr
= FAULT_ATTR_INITIALIZER
,
2682 .ignore_gfp_reclaim
= true,
2683 .ignore_gfp_highmem
= true,
2687 static int __init
setup_fail_page_alloc(char *str
)
2689 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2691 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2693 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2695 if (order
< fail_page_alloc
.min_order
)
2697 if (gfp_mask
& __GFP_NOFAIL
)
2699 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2701 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2702 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2705 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2708 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2710 static int __init
fail_page_alloc_debugfs(void)
2712 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2715 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2716 &fail_page_alloc
.attr
);
2718 return PTR_ERR(dir
);
2720 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2721 &fail_page_alloc
.ignore_gfp_reclaim
))
2723 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2724 &fail_page_alloc
.ignore_gfp_highmem
))
2726 if (!debugfs_create_u32("min-order", mode
, dir
,
2727 &fail_page_alloc
.min_order
))
2732 debugfs_remove_recursive(dir
);
2737 late_initcall(fail_page_alloc_debugfs
);
2739 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2741 #else /* CONFIG_FAIL_PAGE_ALLOC */
2743 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2748 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2751 * Return true if free base pages are above 'mark'. For high-order checks it
2752 * will return true of the order-0 watermark is reached and there is at least
2753 * one free page of a suitable size. Checking now avoids taking the zone lock
2754 * to check in the allocation paths if no pages are free.
2756 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2757 int classzone_idx
, unsigned int alloc_flags
,
2762 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2764 /* free_pages may go negative - that's OK */
2765 free_pages
-= (1 << order
) - 1;
2767 if (alloc_flags
& ALLOC_HIGH
)
2771 * If the caller does not have rights to ALLOC_HARDER then subtract
2772 * the high-atomic reserves. This will over-estimate the size of the
2773 * atomic reserve but it avoids a search.
2775 if (likely(!alloc_harder
))
2776 free_pages
-= z
->nr_reserved_highatomic
;
2781 /* If allocation can't use CMA areas don't use free CMA pages */
2782 if (!(alloc_flags
& ALLOC_CMA
))
2783 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2787 * Check watermarks for an order-0 allocation request. If these
2788 * are not met, then a high-order request also cannot go ahead
2789 * even if a suitable page happened to be free.
2791 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2794 /* If this is an order-0 request then the watermark is fine */
2798 /* For a high-order request, check at least one suitable page is free */
2799 for (o
= order
; o
< MAX_ORDER
; o
++) {
2800 struct free_area
*area
= &z
->free_area
[o
];
2809 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2810 if (!list_empty(&area
->free_list
[mt
]))
2815 if ((alloc_flags
& ALLOC_CMA
) &&
2816 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2824 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2825 int classzone_idx
, unsigned int alloc_flags
)
2827 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2828 zone_page_state(z
, NR_FREE_PAGES
));
2831 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
2832 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
2834 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2838 /* If allocation can't use CMA areas don't use free CMA pages */
2839 if (!(alloc_flags
& ALLOC_CMA
))
2840 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2844 * Fast check for order-0 only. If this fails then the reserves
2845 * need to be calculated. There is a corner case where the check
2846 * passes but only the high-order atomic reserve are free. If
2847 * the caller is !atomic then it'll uselessly search the free
2848 * list. That corner case is then slower but it is harmless.
2850 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
2853 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2857 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2858 unsigned long mark
, int classzone_idx
)
2860 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2862 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2863 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2865 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2870 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2872 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
2875 #else /* CONFIG_NUMA */
2876 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2880 #endif /* CONFIG_NUMA */
2883 * get_page_from_freelist goes through the zonelist trying to allocate
2886 static struct page
*
2887 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2888 const struct alloc_context
*ac
)
2890 struct zoneref
*z
= ac
->preferred_zoneref
;
2892 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
2895 * Scan zonelist, looking for a zone with enough free.
2896 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2898 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
2903 if (cpusets_enabled() &&
2904 (alloc_flags
& ALLOC_CPUSET
) &&
2905 !__cpuset_zone_allowed(zone
, gfp_mask
))
2908 * When allocating a page cache page for writing, we
2909 * want to get it from a node that is within its dirty
2910 * limit, such that no single node holds more than its
2911 * proportional share of globally allowed dirty pages.
2912 * The dirty limits take into account the node's
2913 * lowmem reserves and high watermark so that kswapd
2914 * should be able to balance it without having to
2915 * write pages from its LRU list.
2917 * XXX: For now, allow allocations to potentially
2918 * exceed the per-node dirty limit in the slowpath
2919 * (spread_dirty_pages unset) before going into reclaim,
2920 * which is important when on a NUMA setup the allowed
2921 * nodes are together not big enough to reach the
2922 * global limit. The proper fix for these situations
2923 * will require awareness of nodes in the
2924 * dirty-throttling and the flusher threads.
2926 if (ac
->spread_dirty_pages
) {
2927 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
2930 if (!node_dirty_ok(zone
->zone_pgdat
)) {
2931 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
2936 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2937 if (!zone_watermark_fast(zone
, order
, mark
,
2938 ac_classzone_idx(ac
), alloc_flags
)) {
2941 /* Checked here to keep the fast path fast */
2942 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2943 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2946 if (node_reclaim_mode
== 0 ||
2947 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
2950 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
2952 case NODE_RECLAIM_NOSCAN
:
2955 case NODE_RECLAIM_FULL
:
2956 /* scanned but unreclaimable */
2959 /* did we reclaim enough */
2960 if (zone_watermark_ok(zone
, order
, mark
,
2961 ac_classzone_idx(ac
), alloc_flags
))
2969 page
= buffered_rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
2970 gfp_mask
, alloc_flags
, ac
->migratetype
);
2972 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
2975 * If this is a high-order atomic allocation then check
2976 * if the pageblock should be reserved for the future
2978 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2979 reserve_highatomic_pageblock(page
, zone
, order
);
2989 * Large machines with many possible nodes should not always dump per-node
2990 * meminfo in irq context.
2992 static inline bool should_suppress_show_mem(void)
2997 ret
= in_interrupt();
3002 static DEFINE_RATELIMIT_STATE(nopage_rs
,
3003 DEFAULT_RATELIMIT_INTERVAL
,
3004 DEFAULT_RATELIMIT_BURST
);
3006 void warn_alloc(gfp_t gfp_mask
, const char *fmt
, ...)
3008 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3009 struct va_format vaf
;
3012 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
3013 debug_guardpage_minorder() > 0)
3017 * This documents exceptions given to allocations in certain
3018 * contexts that are allowed to allocate outside current's set
3021 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3022 if (test_thread_flag(TIF_MEMDIE
) ||
3023 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3024 filter
&= ~SHOW_MEM_FILTER_NODES
;
3025 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3026 filter
&= ~SHOW_MEM_FILTER_NODES
;
3028 pr_warn("%s: ", current
->comm
);
3030 va_start(args
, fmt
);
3033 pr_cont("%pV", &vaf
);
3036 pr_cont(", mode:%#x(%pGg)\n", gfp_mask
, &gfp_mask
);
3039 if (!should_suppress_show_mem())
3043 static inline struct page
*
3044 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3045 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3047 struct oom_control oc
= {
3048 .zonelist
= ac
->zonelist
,
3049 .nodemask
= ac
->nodemask
,
3051 .gfp_mask
= gfp_mask
,
3056 *did_some_progress
= 0;
3059 * Acquire the oom lock. If that fails, somebody else is
3060 * making progress for us.
3062 if (!mutex_trylock(&oom_lock
)) {
3063 *did_some_progress
= 1;
3064 schedule_timeout_uninterruptible(1);
3069 * Go through the zonelist yet one more time, keep very high watermark
3070 * here, this is only to catch a parallel oom killing, we must fail if
3071 * we're still under heavy pressure.
3073 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
3074 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3078 if (!(gfp_mask
& __GFP_NOFAIL
)) {
3079 /* Coredumps can quickly deplete all memory reserves */
3080 if (current
->flags
& PF_DUMPCORE
)
3082 /* The OOM killer will not help higher order allocs */
3083 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3085 /* The OOM killer does not needlessly kill tasks for lowmem */
3086 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3088 if (pm_suspended_storage())
3091 * XXX: GFP_NOFS allocations should rather fail than rely on
3092 * other request to make a forward progress.
3093 * We are in an unfortunate situation where out_of_memory cannot
3094 * do much for this context but let's try it to at least get
3095 * access to memory reserved if the current task is killed (see
3096 * out_of_memory). Once filesystems are ready to handle allocation
3097 * failures more gracefully we should just bail out here.
3100 /* The OOM killer may not free memory on a specific node */
3101 if (gfp_mask
& __GFP_THISNODE
)
3104 /* Exhausted what can be done so it's blamo time */
3105 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3106 *did_some_progress
= 1;
3108 if (gfp_mask
& __GFP_NOFAIL
) {
3109 page
= get_page_from_freelist(gfp_mask
, order
,
3110 ALLOC_NO_WATERMARKS
|ALLOC_CPUSET
, ac
);
3112 * fallback to ignore cpuset restriction if our nodes
3116 page
= get_page_from_freelist(gfp_mask
, order
,
3117 ALLOC_NO_WATERMARKS
, ac
);
3121 mutex_unlock(&oom_lock
);
3126 * Maximum number of compaction retries wit a progress before OOM
3127 * killer is consider as the only way to move forward.
3129 #define MAX_COMPACT_RETRIES 16
3131 #ifdef CONFIG_COMPACTION
3132 /* Try memory compaction for high-order allocations before reclaim */
3133 static struct page
*
3134 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3135 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3136 enum compact_priority prio
, enum compact_result
*compact_result
)
3139 unsigned int noreclaim_flag
= current
->flags
& PF_MEMALLOC
;
3144 current
->flags
|= PF_MEMALLOC
;
3145 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3147 current
->flags
= (current
->flags
& ~PF_MEMALLOC
) | noreclaim_flag
;
3149 if (*compact_result
<= COMPACT_INACTIVE
)
3153 * At least in one zone compaction wasn't deferred or skipped, so let's
3154 * count a compaction stall
3156 count_vm_event(COMPACTSTALL
);
3158 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3161 struct zone
*zone
= page_zone(page
);
3163 zone
->compact_blockskip_flush
= false;
3164 compaction_defer_reset(zone
, order
, true);
3165 count_vm_event(COMPACTSUCCESS
);
3170 * It's bad if compaction run occurs and fails. The most likely reason
3171 * is that pages exist, but not enough to satisfy watermarks.
3173 count_vm_event(COMPACTFAIL
);
3181 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3182 enum compact_result compact_result
,
3183 enum compact_priority
*compact_priority
,
3184 int *compaction_retries
)
3186 int max_retries
= MAX_COMPACT_RETRIES
;
3192 if (compaction_made_progress(compact_result
))
3193 (*compaction_retries
)++;
3196 * compaction considers all the zone as desperately out of memory
3197 * so it doesn't really make much sense to retry except when the
3198 * failure could be caused by insufficient priority
3200 if (compaction_failed(compact_result
))
3201 goto check_priority
;
3204 * make sure the compaction wasn't deferred or didn't bail out early
3205 * due to locks contention before we declare that we should give up.
3206 * But do not retry if the given zonelist is not suitable for
3209 if (compaction_withdrawn(compact_result
))
3210 return compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3213 * !costly requests are much more important than __GFP_REPEAT
3214 * costly ones because they are de facto nofail and invoke OOM
3215 * killer to move on while costly can fail and users are ready
3216 * to cope with that. 1/4 retries is rather arbitrary but we
3217 * would need much more detailed feedback from compaction to
3218 * make a better decision.
3220 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3222 if (*compaction_retries
<= max_retries
)
3226 * Make sure there are attempts at the highest priority if we exhausted
3227 * all retries or failed at the lower priorities.
3230 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3231 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3232 if (*compact_priority
> min_priority
) {
3233 (*compact_priority
)--;
3234 *compaction_retries
= 0;
3240 static inline struct page
*
3241 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3242 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3243 enum compact_priority prio
, enum compact_result
*compact_result
)
3245 *compact_result
= COMPACT_SKIPPED
;
3250 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3251 enum compact_result compact_result
,
3252 enum compact_priority
*compact_priority
,
3253 int *compaction_retries
)
3258 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3262 * There are setups with compaction disabled which would prefer to loop
3263 * inside the allocator rather than hit the oom killer prematurely.
3264 * Let's give them a good hope and keep retrying while the order-0
3265 * watermarks are OK.
3267 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3269 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3270 ac_classzone_idx(ac
), alloc_flags
))
3275 #endif /* CONFIG_COMPACTION */
3277 /* Perform direct synchronous page reclaim */
3279 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3280 const struct alloc_context
*ac
)
3282 struct reclaim_state reclaim_state
;
3287 /* We now go into synchronous reclaim */
3288 cpuset_memory_pressure_bump();
3289 current
->flags
|= PF_MEMALLOC
;
3290 lockdep_set_current_reclaim_state(gfp_mask
);
3291 reclaim_state
.reclaimed_slab
= 0;
3292 current
->reclaim_state
= &reclaim_state
;
3294 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3297 current
->reclaim_state
= NULL
;
3298 lockdep_clear_current_reclaim_state();
3299 current
->flags
&= ~PF_MEMALLOC
;
3306 /* The really slow allocator path where we enter direct reclaim */
3307 static inline struct page
*
3308 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3309 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3310 unsigned long *did_some_progress
)
3312 struct page
*page
= NULL
;
3313 bool drained
= false;
3315 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3316 if (unlikely(!(*did_some_progress
)))
3320 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3323 * If an allocation failed after direct reclaim, it could be because
3324 * pages are pinned on the per-cpu lists or in high alloc reserves.
3325 * Shrink them them and try again
3327 if (!page
&& !drained
) {
3328 unreserve_highatomic_pageblock(ac
);
3329 drain_all_pages(NULL
);
3337 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3341 pg_data_t
*last_pgdat
= NULL
;
3343 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3344 ac
->high_zoneidx
, ac
->nodemask
) {
3345 if (last_pgdat
!= zone
->zone_pgdat
)
3346 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3347 last_pgdat
= zone
->zone_pgdat
;
3351 static inline unsigned int
3352 gfp_to_alloc_flags(gfp_t gfp_mask
)
3354 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3356 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3357 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3360 * The caller may dip into page reserves a bit more if the caller
3361 * cannot run direct reclaim, or if the caller has realtime scheduling
3362 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3363 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3365 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3367 if (gfp_mask
& __GFP_ATOMIC
) {
3369 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3370 * if it can't schedule.
3372 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3373 alloc_flags
|= ALLOC_HARDER
;
3375 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3376 * comment for __cpuset_node_allowed().
3378 alloc_flags
&= ~ALLOC_CPUSET
;
3379 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3380 alloc_flags
|= ALLOC_HARDER
;
3383 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3384 alloc_flags
|= ALLOC_CMA
;
3389 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3391 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3394 if (gfp_mask
& __GFP_MEMALLOC
)
3396 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3398 if (!in_interrupt() &&
3399 ((current
->flags
& PF_MEMALLOC
) ||
3400 unlikely(test_thread_flag(TIF_MEMDIE
))))
3407 * Maximum number of reclaim retries without any progress before OOM killer
3408 * is consider as the only way to move forward.
3410 #define MAX_RECLAIM_RETRIES 16
3413 * Checks whether it makes sense to retry the reclaim to make a forward progress
3414 * for the given allocation request.
3415 * The reclaim feedback represented by did_some_progress (any progress during
3416 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3417 * any progress in a row) is considered as well as the reclaimable pages on the
3418 * applicable zone list (with a backoff mechanism which is a function of
3419 * no_progress_loops).
3421 * Returns true if a retry is viable or false to enter the oom path.
3424 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3425 struct alloc_context
*ac
, int alloc_flags
,
3426 bool did_some_progress
, int *no_progress_loops
)
3432 * Costly allocations might have made a progress but this doesn't mean
3433 * their order will become available due to high fragmentation so
3434 * always increment the no progress counter for them
3436 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3437 *no_progress_loops
= 0;
3439 (*no_progress_loops
)++;
3442 * Make sure we converge to OOM if we cannot make any progress
3443 * several times in the row.
3445 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
)
3449 * Keep reclaiming pages while there is a chance this will lead
3450 * somewhere. If none of the target zones can satisfy our allocation
3451 * request even if all reclaimable pages are considered then we are
3452 * screwed and have to go OOM.
3454 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3456 unsigned long available
;
3457 unsigned long reclaimable
;
3459 available
= reclaimable
= zone_reclaimable_pages(zone
);
3460 available
-= DIV_ROUND_UP((*no_progress_loops
) * available
,
3461 MAX_RECLAIM_RETRIES
);
3462 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3465 * Would the allocation succeed if we reclaimed the whole
3468 if (__zone_watermark_ok(zone
, order
, min_wmark_pages(zone
),
3469 ac_classzone_idx(ac
), alloc_flags
, available
)) {
3471 * If we didn't make any progress and have a lot of
3472 * dirty + writeback pages then we should wait for
3473 * an IO to complete to slow down the reclaim and
3474 * prevent from pre mature OOM
3476 if (!did_some_progress
) {
3477 unsigned long write_pending
;
3479 write_pending
= zone_page_state_snapshot(zone
,
3480 NR_ZONE_WRITE_PENDING
);
3482 if (2 * write_pending
> reclaimable
) {
3483 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3489 * Memory allocation/reclaim might be called from a WQ
3490 * context and the current implementation of the WQ
3491 * concurrency control doesn't recognize that
3492 * a particular WQ is congested if the worker thread is
3493 * looping without ever sleeping. Therefore we have to
3494 * do a short sleep here rather than calling
3497 if (current
->flags
& PF_WQ_WORKER
)
3498 schedule_timeout_uninterruptible(1);
3509 static inline struct page
*
3510 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3511 struct alloc_context
*ac
)
3513 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3514 struct page
*page
= NULL
;
3515 unsigned int alloc_flags
;
3516 unsigned long did_some_progress
;
3517 enum compact_priority compact_priority
;
3518 enum compact_result compact_result
;
3519 int compaction_retries
;
3520 int no_progress_loops
;
3521 unsigned long alloc_start
= jiffies
;
3522 unsigned int stall_timeout
= 10 * HZ
;
3523 unsigned int cpuset_mems_cookie
;
3526 * In the slowpath, we sanity check order to avoid ever trying to
3527 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3528 * be using allocators in order of preference for an area that is
3531 if (order
>= MAX_ORDER
) {
3532 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3537 * We also sanity check to catch abuse of atomic reserves being used by
3538 * callers that are not in atomic context.
3540 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3541 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3542 gfp_mask
&= ~__GFP_ATOMIC
;
3545 compaction_retries
= 0;
3546 no_progress_loops
= 0;
3547 compact_priority
= DEF_COMPACT_PRIORITY
;
3548 cpuset_mems_cookie
= read_mems_allowed_begin();
3550 * We need to recalculate the starting point for the zonelist iterator
3551 * because we might have used different nodemask in the fast path, or
3552 * there was a cpuset modification and we are retrying - otherwise we
3553 * could end up iterating over non-eligible zones endlessly.
3555 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3556 ac
->high_zoneidx
, ac
->nodemask
);
3557 if (!ac
->preferred_zoneref
->zone
)
3562 * The fast path uses conservative alloc_flags to succeed only until
3563 * kswapd needs to be woken up, and to avoid the cost of setting up
3564 * alloc_flags precisely. So we do that now.
3566 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3568 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3569 wake_all_kswapds(order
, ac
);
3572 * The adjusted alloc_flags might result in immediate success, so try
3575 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3580 * For costly allocations, try direct compaction first, as it's likely
3581 * that we have enough base pages and don't need to reclaim. Don't try
3582 * that for allocations that are allowed to ignore watermarks, as the
3583 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3585 if (can_direct_reclaim
&& order
> PAGE_ALLOC_COSTLY_ORDER
&&
3586 !gfp_pfmemalloc_allowed(gfp_mask
)) {
3587 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3589 INIT_COMPACT_PRIORITY
,
3595 * Checks for costly allocations with __GFP_NORETRY, which
3596 * includes THP page fault allocations
3598 if (gfp_mask
& __GFP_NORETRY
) {
3600 * If compaction is deferred for high-order allocations,
3601 * it is because sync compaction recently failed. If
3602 * this is the case and the caller requested a THP
3603 * allocation, we do not want to heavily disrupt the
3604 * system, so we fail the allocation instead of entering
3607 if (compact_result
== COMPACT_DEFERRED
)
3611 * Looks like reclaim/compaction is worth trying, but
3612 * sync compaction could be very expensive, so keep
3613 * using async compaction.
3615 compact_priority
= INIT_COMPACT_PRIORITY
;
3620 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3621 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3622 wake_all_kswapds(order
, ac
);
3624 if (gfp_pfmemalloc_allowed(gfp_mask
))
3625 alloc_flags
= ALLOC_NO_WATERMARKS
;
3628 * Reset the zonelist iterators if memory policies can be ignored.
3629 * These allocations are high priority and system rather than user
3632 if (!(alloc_flags
& ALLOC_CPUSET
) || (alloc_flags
& ALLOC_NO_WATERMARKS
)) {
3633 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3634 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3635 ac
->high_zoneidx
, ac
->nodemask
);
3638 /* Attempt with potentially adjusted zonelist and alloc_flags */
3639 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3643 /* Caller is not willing to reclaim, we can't balance anything */
3644 if (!can_direct_reclaim
) {
3646 * All existing users of the __GFP_NOFAIL are blockable, so warn
3647 * of any new users that actually allow this type of allocation
3650 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3654 /* Avoid recursion of direct reclaim */
3655 if (current
->flags
& PF_MEMALLOC
) {
3657 * __GFP_NOFAIL request from this context is rather bizarre
3658 * because we cannot reclaim anything and only can loop waiting
3659 * for somebody to do a work for us.
3661 if (WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3668 /* Avoid allocations with no watermarks from looping endlessly */
3669 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3673 /* Try direct reclaim and then allocating */
3674 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3675 &did_some_progress
);
3679 /* Try direct compaction and then allocating */
3680 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3681 compact_priority
, &compact_result
);
3685 /* Do not loop if specifically requested */
3686 if (gfp_mask
& __GFP_NORETRY
)
3690 * Do not retry costly high order allocations unless they are
3693 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_REPEAT
))
3696 /* Make sure we know about allocations which stall for too long */
3697 if (time_after(jiffies
, alloc_start
+ stall_timeout
)) {
3698 warn_alloc(gfp_mask
,
3699 "page allocation stalls for %ums, order:%u",
3700 jiffies_to_msecs(jiffies
-alloc_start
), order
);
3701 stall_timeout
+= 10 * HZ
;
3704 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3705 did_some_progress
> 0, &no_progress_loops
))
3709 * It doesn't make any sense to retry for the compaction if the order-0
3710 * reclaim is not able to make any progress because the current
3711 * implementation of the compaction depends on the sufficient amount
3712 * of free memory (see __compaction_suitable)
3714 if (did_some_progress
> 0 &&
3715 should_compact_retry(ac
, order
, alloc_flags
,
3716 compact_result
, &compact_priority
,
3717 &compaction_retries
))
3721 * It's possible we raced with cpuset update so the OOM would be
3722 * premature (see below the nopage: label for full explanation).
3724 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3727 /* Reclaim has failed us, start killing things */
3728 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3732 /* Retry as long as the OOM killer is making progress */
3733 if (did_some_progress
) {
3734 no_progress_loops
= 0;
3740 * When updating a task's mems_allowed or mempolicy nodemask, it is
3741 * possible to race with parallel threads in such a way that our
3742 * allocation can fail while the mask is being updated. If we are about
3743 * to fail, check if the cpuset changed during allocation and if so,
3746 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3749 warn_alloc(gfp_mask
,
3750 "page allocation failure: order:%u", order
);
3756 * This is the 'heart' of the zoned buddy allocator.
3759 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3760 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3763 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
3764 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
3765 struct alloc_context ac
= {
3766 .high_zoneidx
= gfp_zone(gfp_mask
),
3767 .zonelist
= zonelist
,
3768 .nodemask
= nodemask
,
3769 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3772 if (cpusets_enabled()) {
3773 alloc_mask
|= __GFP_HARDWALL
;
3774 alloc_flags
|= ALLOC_CPUSET
;
3776 ac
.nodemask
= &cpuset_current_mems_allowed
;
3779 gfp_mask
&= gfp_allowed_mask
;
3781 lockdep_trace_alloc(gfp_mask
);
3783 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3785 if (should_fail_alloc_page(gfp_mask
, order
))
3789 * Check the zones suitable for the gfp_mask contain at least one
3790 * valid zone. It's possible to have an empty zonelist as a result
3791 * of __GFP_THISNODE and a memoryless node
3793 if (unlikely(!zonelist
->_zonerefs
->zone
))
3796 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3797 alloc_flags
|= ALLOC_CMA
;
3799 /* Dirty zone balancing only done in the fast path */
3800 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3803 * The preferred zone is used for statistics but crucially it is
3804 * also used as the starting point for the zonelist iterator. It
3805 * may get reset for allocations that ignore memory policies.
3807 ac
.preferred_zoneref
= first_zones_zonelist(ac
.zonelist
,
3808 ac
.high_zoneidx
, ac
.nodemask
);
3809 if (!ac
.preferred_zoneref
->zone
) {
3812 * This might be due to race with cpuset_current_mems_allowed
3813 * update, so make sure we retry with original nodemask in the
3819 /* First allocation attempt */
3820 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3826 * Runtime PM, block IO and its error handling path can deadlock
3827 * because I/O on the device might not complete.
3829 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3830 ac
.spread_dirty_pages
= false;
3833 * Restore the original nodemask if it was potentially replaced with
3834 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3836 if (unlikely(ac
.nodemask
!= nodemask
))
3837 ac
.nodemask
= nodemask
;
3839 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3842 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
3843 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
3844 __free_pages(page
, order
);
3848 if (kmemcheck_enabled
&& page
)
3849 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3851 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3855 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3858 * Common helper functions.
3860 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3865 * __get_free_pages() returns a 32-bit address, which cannot represent
3868 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3870 page
= alloc_pages(gfp_mask
, order
);
3873 return (unsigned long) page_address(page
);
3875 EXPORT_SYMBOL(__get_free_pages
);
3877 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3879 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3881 EXPORT_SYMBOL(get_zeroed_page
);
3883 void __free_pages(struct page
*page
, unsigned int order
)
3885 if (put_page_testzero(page
)) {
3887 free_hot_cold_page(page
, false);
3889 __free_pages_ok(page
, order
);
3893 EXPORT_SYMBOL(__free_pages
);
3895 void free_pages(unsigned long addr
, unsigned int order
)
3898 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3899 __free_pages(virt_to_page((void *)addr
), order
);
3903 EXPORT_SYMBOL(free_pages
);
3907 * An arbitrary-length arbitrary-offset area of memory which resides
3908 * within a 0 or higher order page. Multiple fragments within that page
3909 * are individually refcounted, in the page's reference counter.
3911 * The page_frag functions below provide a simple allocation framework for
3912 * page fragments. This is used by the network stack and network device
3913 * drivers to provide a backing region of memory for use as either an
3914 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3916 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3919 struct page
*page
= NULL
;
3920 gfp_t gfp
= gfp_mask
;
3922 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3923 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3925 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3926 PAGE_FRAG_CACHE_MAX_ORDER
);
3927 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3929 if (unlikely(!page
))
3930 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3932 nc
->va
= page
? page_address(page
) : NULL
;
3937 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3938 unsigned int fragsz
, gfp_t gfp_mask
)
3940 unsigned int size
= PAGE_SIZE
;
3944 if (unlikely(!nc
->va
)) {
3946 page
= __page_frag_refill(nc
, gfp_mask
);
3950 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3951 /* if size can vary use size else just use PAGE_SIZE */
3954 /* Even if we own the page, we do not use atomic_set().
3955 * This would break get_page_unless_zero() users.
3957 page_ref_add(page
, size
- 1);
3959 /* reset page count bias and offset to start of new frag */
3960 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3961 nc
->pagecnt_bias
= size
;
3965 offset
= nc
->offset
- fragsz
;
3966 if (unlikely(offset
< 0)) {
3967 page
= virt_to_page(nc
->va
);
3969 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
3972 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3973 /* if size can vary use size else just use PAGE_SIZE */
3976 /* OK, page count is 0, we can safely set it */
3977 set_page_count(page
, size
);
3979 /* reset page count bias and offset to start of new frag */
3980 nc
->pagecnt_bias
= size
;
3981 offset
= size
- fragsz
;
3985 nc
->offset
= offset
;
3987 return nc
->va
+ offset
;
3989 EXPORT_SYMBOL(__alloc_page_frag
);
3992 * Frees a page fragment allocated out of either a compound or order 0 page.
3994 void __free_page_frag(void *addr
)
3996 struct page
*page
= virt_to_head_page(addr
);
3998 if (unlikely(put_page_testzero(page
)))
3999 __free_pages_ok(page
, compound_order(page
));
4001 EXPORT_SYMBOL(__free_page_frag
);
4003 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4007 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4008 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4010 split_page(virt_to_page((void *)addr
), order
);
4011 while (used
< alloc_end
) {
4016 return (void *)addr
;
4020 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4021 * @size: the number of bytes to allocate
4022 * @gfp_mask: GFP flags for the allocation
4024 * This function is similar to alloc_pages(), except that it allocates the
4025 * minimum number of pages to satisfy the request. alloc_pages() can only
4026 * allocate memory in power-of-two pages.
4028 * This function is also limited by MAX_ORDER.
4030 * Memory allocated by this function must be released by free_pages_exact().
4032 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4034 unsigned int order
= get_order(size
);
4037 addr
= __get_free_pages(gfp_mask
, order
);
4038 return make_alloc_exact(addr
, order
, size
);
4040 EXPORT_SYMBOL(alloc_pages_exact
);
4043 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4045 * @nid: the preferred node ID where memory should be allocated
4046 * @size: the number of bytes to allocate
4047 * @gfp_mask: GFP flags for the allocation
4049 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4052 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4054 unsigned int order
= get_order(size
);
4055 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4058 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4062 * free_pages_exact - release memory allocated via alloc_pages_exact()
4063 * @virt: the value returned by alloc_pages_exact.
4064 * @size: size of allocation, same value as passed to alloc_pages_exact().
4066 * Release the memory allocated by a previous call to alloc_pages_exact.
4068 void free_pages_exact(void *virt
, size_t size
)
4070 unsigned long addr
= (unsigned long)virt
;
4071 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4073 while (addr
< end
) {
4078 EXPORT_SYMBOL(free_pages_exact
);
4081 * nr_free_zone_pages - count number of pages beyond high watermark
4082 * @offset: The zone index of the highest zone
4084 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4085 * high watermark within all zones at or below a given zone index. For each
4086 * zone, the number of pages is calculated as:
4087 * managed_pages - high_pages
4089 static unsigned long nr_free_zone_pages(int offset
)
4094 /* Just pick one node, since fallback list is circular */
4095 unsigned long sum
= 0;
4097 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4099 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4100 unsigned long size
= zone
->managed_pages
;
4101 unsigned long high
= high_wmark_pages(zone
);
4110 * nr_free_buffer_pages - count number of pages beyond high watermark
4112 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4113 * watermark within ZONE_DMA and ZONE_NORMAL.
4115 unsigned long nr_free_buffer_pages(void)
4117 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4119 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4122 * nr_free_pagecache_pages - count number of pages beyond high watermark
4124 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4125 * high watermark within all zones.
4127 unsigned long nr_free_pagecache_pages(void)
4129 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4132 static inline void show_node(struct zone
*zone
)
4134 if (IS_ENABLED(CONFIG_NUMA
))
4135 printk("Node %d ", zone_to_nid(zone
));
4138 long si_mem_available(void)
4141 unsigned long pagecache
;
4142 unsigned long wmark_low
= 0;
4143 unsigned long pages
[NR_LRU_LISTS
];
4147 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4148 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4151 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4154 * Estimate the amount of memory available for userspace allocations,
4155 * without causing swapping.
4157 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4160 * Not all the page cache can be freed, otherwise the system will
4161 * start swapping. Assume at least half of the page cache, or the
4162 * low watermark worth of cache, needs to stay.
4164 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4165 pagecache
-= min(pagecache
/ 2, wmark_low
);
4166 available
+= pagecache
;
4169 * Part of the reclaimable slab consists of items that are in use,
4170 * and cannot be freed. Cap this estimate at the low watermark.
4172 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
4173 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
4179 EXPORT_SYMBOL_GPL(si_mem_available
);
4181 void si_meminfo(struct sysinfo
*val
)
4183 val
->totalram
= totalram_pages
;
4184 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4185 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4186 val
->bufferram
= nr_blockdev_pages();
4187 val
->totalhigh
= totalhigh_pages
;
4188 val
->freehigh
= nr_free_highpages();
4189 val
->mem_unit
= PAGE_SIZE
;
4192 EXPORT_SYMBOL(si_meminfo
);
4195 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4197 int zone_type
; /* needs to be signed */
4198 unsigned long managed_pages
= 0;
4199 unsigned long managed_highpages
= 0;
4200 unsigned long free_highpages
= 0;
4201 pg_data_t
*pgdat
= NODE_DATA(nid
);
4203 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4204 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4205 val
->totalram
= managed_pages
;
4206 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4207 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4208 #ifdef CONFIG_HIGHMEM
4209 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4210 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4212 if (is_highmem(zone
)) {
4213 managed_highpages
+= zone
->managed_pages
;
4214 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4217 val
->totalhigh
= managed_highpages
;
4218 val
->freehigh
= free_highpages
;
4220 val
->totalhigh
= managed_highpages
;
4221 val
->freehigh
= free_highpages
;
4223 val
->mem_unit
= PAGE_SIZE
;
4228 * Determine whether the node should be displayed or not, depending on whether
4229 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4231 bool skip_free_areas_node(unsigned int flags
, int nid
)
4234 unsigned int cpuset_mems_cookie
;
4236 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4240 cpuset_mems_cookie
= read_mems_allowed_begin();
4241 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
4242 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
4247 #define K(x) ((x) << (PAGE_SHIFT-10))
4249 static void show_migration_types(unsigned char type
)
4251 static const char types
[MIGRATE_TYPES
] = {
4252 [MIGRATE_UNMOVABLE
] = 'U',
4253 [MIGRATE_MOVABLE
] = 'M',
4254 [MIGRATE_RECLAIMABLE
] = 'E',
4255 [MIGRATE_HIGHATOMIC
] = 'H',
4257 [MIGRATE_CMA
] = 'C',
4259 #ifdef CONFIG_MEMORY_ISOLATION
4260 [MIGRATE_ISOLATE
] = 'I',
4263 char tmp
[MIGRATE_TYPES
+ 1];
4267 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4268 if (type
& (1 << i
))
4273 printk(KERN_CONT
"(%s) ", tmp
);
4277 * Show free area list (used inside shift_scroll-lock stuff)
4278 * We also calculate the percentage fragmentation. We do this by counting the
4279 * memory on each free list with the exception of the first item on the list.
4282 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4285 void show_free_areas(unsigned int filter
)
4287 unsigned long free_pcp
= 0;
4292 for_each_populated_zone(zone
) {
4293 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4296 for_each_online_cpu(cpu
)
4297 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4300 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4301 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4302 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4303 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4304 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4305 " free:%lu free_pcp:%lu free_cma:%lu\n",
4306 global_node_page_state(NR_ACTIVE_ANON
),
4307 global_node_page_state(NR_INACTIVE_ANON
),
4308 global_node_page_state(NR_ISOLATED_ANON
),
4309 global_node_page_state(NR_ACTIVE_FILE
),
4310 global_node_page_state(NR_INACTIVE_FILE
),
4311 global_node_page_state(NR_ISOLATED_FILE
),
4312 global_node_page_state(NR_UNEVICTABLE
),
4313 global_node_page_state(NR_FILE_DIRTY
),
4314 global_node_page_state(NR_WRITEBACK
),
4315 global_node_page_state(NR_UNSTABLE_NFS
),
4316 global_page_state(NR_SLAB_RECLAIMABLE
),
4317 global_page_state(NR_SLAB_UNRECLAIMABLE
),
4318 global_node_page_state(NR_FILE_MAPPED
),
4319 global_node_page_state(NR_SHMEM
),
4320 global_page_state(NR_PAGETABLE
),
4321 global_page_state(NR_BOUNCE
),
4322 global_page_state(NR_FREE_PAGES
),
4324 global_page_state(NR_FREE_CMA_PAGES
));
4326 for_each_online_pgdat(pgdat
) {
4328 " active_anon:%lukB"
4329 " inactive_anon:%lukB"
4330 " active_file:%lukB"
4331 " inactive_file:%lukB"
4332 " unevictable:%lukB"
4333 " isolated(anon):%lukB"
4334 " isolated(file):%lukB"
4339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4341 " shmem_pmdmapped: %lukB"
4344 " writeback_tmp:%lukB"
4346 " pages_scanned:%lu"
4347 " all_unreclaimable? %s"
4350 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4351 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4352 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4353 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4354 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4355 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4356 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4357 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4358 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4359 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4360 K(node_page_state(pgdat
, NR_SHMEM
)),
4361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4362 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4363 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4365 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4367 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4368 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4369 node_page_state(pgdat
, NR_PAGES_SCANNED
),
4370 !pgdat_reclaimable(pgdat
) ? "yes" : "no");
4373 for_each_populated_zone(zone
) {
4376 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4380 for_each_online_cpu(cpu
)
4381 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4390 " active_anon:%lukB"
4391 " inactive_anon:%lukB"
4392 " active_file:%lukB"
4393 " inactive_file:%lukB"
4394 " unevictable:%lukB"
4395 " writepending:%lukB"
4399 " slab_reclaimable:%lukB"
4400 " slab_unreclaimable:%lukB"
4401 " kernel_stack:%lukB"
4409 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4410 K(min_wmark_pages(zone
)),
4411 K(low_wmark_pages(zone
)),
4412 K(high_wmark_pages(zone
)),
4413 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4414 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4415 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4416 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4417 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4418 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4419 K(zone
->present_pages
),
4420 K(zone
->managed_pages
),
4421 K(zone_page_state(zone
, NR_MLOCK
)),
4422 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
4423 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
4424 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4425 K(zone_page_state(zone
, NR_PAGETABLE
)),
4426 K(zone_page_state(zone
, NR_BOUNCE
)),
4428 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4429 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4430 printk("lowmem_reserve[]:");
4431 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4432 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4433 printk(KERN_CONT
"\n");
4436 for_each_populated_zone(zone
) {
4438 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4439 unsigned char types
[MAX_ORDER
];
4441 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4444 printk(KERN_CONT
"%s: ", zone
->name
);
4446 spin_lock_irqsave(&zone
->lock
, flags
);
4447 for (order
= 0; order
< MAX_ORDER
; order
++) {
4448 struct free_area
*area
= &zone
->free_area
[order
];
4451 nr
[order
] = area
->nr_free
;
4452 total
+= nr
[order
] << order
;
4455 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4456 if (!list_empty(&area
->free_list
[type
]))
4457 types
[order
] |= 1 << type
;
4460 spin_unlock_irqrestore(&zone
->lock
, flags
);
4461 for (order
= 0; order
< MAX_ORDER
; order
++) {
4462 printk(KERN_CONT
"%lu*%lukB ",
4463 nr
[order
], K(1UL) << order
);
4465 show_migration_types(types
[order
]);
4467 printk(KERN_CONT
"= %lukB\n", K(total
));
4470 hugetlb_show_meminfo();
4472 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4474 show_swap_cache_info();
4477 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4479 zoneref
->zone
= zone
;
4480 zoneref
->zone_idx
= zone_idx(zone
);
4484 * Builds allocation fallback zone lists.
4486 * Add all populated zones of a node to the zonelist.
4488 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4492 enum zone_type zone_type
= MAX_NR_ZONES
;
4496 zone
= pgdat
->node_zones
+ zone_type
;
4497 if (managed_zone(zone
)) {
4498 zoneref_set_zone(zone
,
4499 &zonelist
->_zonerefs
[nr_zones
++]);
4500 check_highest_zone(zone_type
);
4502 } while (zone_type
);
4510 * 0 = automatic detection of better ordering.
4511 * 1 = order by ([node] distance, -zonetype)
4512 * 2 = order by (-zonetype, [node] distance)
4514 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4515 * the same zonelist. So only NUMA can configure this param.
4517 #define ZONELIST_ORDER_DEFAULT 0
4518 #define ZONELIST_ORDER_NODE 1
4519 #define ZONELIST_ORDER_ZONE 2
4521 /* zonelist order in the kernel.
4522 * set_zonelist_order() will set this to NODE or ZONE.
4524 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4525 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4529 /* The value user specified ....changed by config */
4530 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4531 /* string for sysctl */
4532 #define NUMA_ZONELIST_ORDER_LEN 16
4533 char numa_zonelist_order
[16] = "default";
4536 * interface for configure zonelist ordering.
4537 * command line option "numa_zonelist_order"
4538 * = "[dD]efault - default, automatic configuration.
4539 * = "[nN]ode - order by node locality, then by zone within node
4540 * = "[zZ]one - order by zone, then by locality within zone
4543 static int __parse_numa_zonelist_order(char *s
)
4545 if (*s
== 'd' || *s
== 'D') {
4546 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4547 } else if (*s
== 'n' || *s
== 'N') {
4548 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4549 } else if (*s
== 'z' || *s
== 'Z') {
4550 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4552 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4558 static __init
int setup_numa_zonelist_order(char *s
)
4565 ret
= __parse_numa_zonelist_order(s
);
4567 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4571 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4574 * sysctl handler for numa_zonelist_order
4576 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4577 void __user
*buffer
, size_t *length
,
4580 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4582 static DEFINE_MUTEX(zl_order_mutex
);
4584 mutex_lock(&zl_order_mutex
);
4586 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4590 strcpy(saved_string
, (char *)table
->data
);
4592 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4596 int oldval
= user_zonelist_order
;
4598 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4601 * bogus value. restore saved string
4603 strncpy((char *)table
->data
, saved_string
,
4604 NUMA_ZONELIST_ORDER_LEN
);
4605 user_zonelist_order
= oldval
;
4606 } else if (oldval
!= user_zonelist_order
) {
4607 mutex_lock(&zonelists_mutex
);
4608 build_all_zonelists(NULL
, NULL
);
4609 mutex_unlock(&zonelists_mutex
);
4613 mutex_unlock(&zl_order_mutex
);
4618 #define MAX_NODE_LOAD (nr_online_nodes)
4619 static int node_load
[MAX_NUMNODES
];
4622 * find_next_best_node - find the next node that should appear in a given node's fallback list
4623 * @node: node whose fallback list we're appending
4624 * @used_node_mask: nodemask_t of already used nodes
4626 * We use a number of factors to determine which is the next node that should
4627 * appear on a given node's fallback list. The node should not have appeared
4628 * already in @node's fallback list, and it should be the next closest node
4629 * according to the distance array (which contains arbitrary distance values
4630 * from each node to each node in the system), and should also prefer nodes
4631 * with no CPUs, since presumably they'll have very little allocation pressure
4632 * on them otherwise.
4633 * It returns -1 if no node is found.
4635 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4638 int min_val
= INT_MAX
;
4639 int best_node
= NUMA_NO_NODE
;
4640 const struct cpumask
*tmp
= cpumask_of_node(0);
4642 /* Use the local node if we haven't already */
4643 if (!node_isset(node
, *used_node_mask
)) {
4644 node_set(node
, *used_node_mask
);
4648 for_each_node_state(n
, N_MEMORY
) {
4650 /* Don't want a node to appear more than once */
4651 if (node_isset(n
, *used_node_mask
))
4654 /* Use the distance array to find the distance */
4655 val
= node_distance(node
, n
);
4657 /* Penalize nodes under us ("prefer the next node") */
4660 /* Give preference to headless and unused nodes */
4661 tmp
= cpumask_of_node(n
);
4662 if (!cpumask_empty(tmp
))
4663 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4665 /* Slight preference for less loaded node */
4666 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4667 val
+= node_load
[n
];
4669 if (val
< min_val
) {
4676 node_set(best_node
, *used_node_mask
);
4683 * Build zonelists ordered by node and zones within node.
4684 * This results in maximum locality--normal zone overflows into local
4685 * DMA zone, if any--but risks exhausting DMA zone.
4687 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4690 struct zonelist
*zonelist
;
4692 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4693 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4695 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4696 zonelist
->_zonerefs
[j
].zone
= NULL
;
4697 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4701 * Build gfp_thisnode zonelists
4703 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4706 struct zonelist
*zonelist
;
4708 zonelist
= &pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
];
4709 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4710 zonelist
->_zonerefs
[j
].zone
= NULL
;
4711 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4715 * Build zonelists ordered by zone and nodes within zones.
4716 * This results in conserving DMA zone[s] until all Normal memory is
4717 * exhausted, but results in overflowing to remote node while memory
4718 * may still exist in local DMA zone.
4720 static int node_order
[MAX_NUMNODES
];
4722 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4725 int zone_type
; /* needs to be signed */
4727 struct zonelist
*zonelist
;
4729 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4731 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4732 for (j
= 0; j
< nr_nodes
; j
++) {
4733 node
= node_order
[j
];
4734 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4735 if (managed_zone(z
)) {
4737 &zonelist
->_zonerefs
[pos
++]);
4738 check_highest_zone(zone_type
);
4742 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4743 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4746 #if defined(CONFIG_64BIT)
4748 * Devices that require DMA32/DMA are relatively rare and do not justify a
4749 * penalty to every machine in case the specialised case applies. Default
4750 * to Node-ordering on 64-bit NUMA machines
4752 static int default_zonelist_order(void)
4754 return ZONELIST_ORDER_NODE
;
4758 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4759 * by the kernel. If processes running on node 0 deplete the low memory zone
4760 * then reclaim will occur more frequency increasing stalls and potentially
4761 * be easier to OOM if a large percentage of the zone is under writeback or
4762 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4763 * Hence, default to zone ordering on 32-bit.
4765 static int default_zonelist_order(void)
4767 return ZONELIST_ORDER_ZONE
;
4769 #endif /* CONFIG_64BIT */
4771 static void set_zonelist_order(void)
4773 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4774 current_zonelist_order
= default_zonelist_order();
4776 current_zonelist_order
= user_zonelist_order
;
4779 static void build_zonelists(pg_data_t
*pgdat
)
4782 nodemask_t used_mask
;
4783 int local_node
, prev_node
;
4784 struct zonelist
*zonelist
;
4785 unsigned int order
= current_zonelist_order
;
4787 /* initialize zonelists */
4788 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4789 zonelist
= pgdat
->node_zonelists
+ i
;
4790 zonelist
->_zonerefs
[0].zone
= NULL
;
4791 zonelist
->_zonerefs
[0].zone_idx
= 0;
4794 /* NUMA-aware ordering of nodes */
4795 local_node
= pgdat
->node_id
;
4796 load
= nr_online_nodes
;
4797 prev_node
= local_node
;
4798 nodes_clear(used_mask
);
4800 memset(node_order
, 0, sizeof(node_order
));
4803 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4805 * We don't want to pressure a particular node.
4806 * So adding penalty to the first node in same
4807 * distance group to make it round-robin.
4809 if (node_distance(local_node
, node
) !=
4810 node_distance(local_node
, prev_node
))
4811 node_load
[node
] = load
;
4815 if (order
== ZONELIST_ORDER_NODE
)
4816 build_zonelists_in_node_order(pgdat
, node
);
4818 node_order
[i
++] = node
; /* remember order */
4821 if (order
== ZONELIST_ORDER_ZONE
) {
4822 /* calculate node order -- i.e., DMA last! */
4823 build_zonelists_in_zone_order(pgdat
, i
);
4826 build_thisnode_zonelists(pgdat
);
4829 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4831 * Return node id of node used for "local" allocations.
4832 * I.e., first node id of first zone in arg node's generic zonelist.
4833 * Used for initializing percpu 'numa_mem', which is used primarily
4834 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4836 int local_memory_node(int node
)
4840 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4841 gfp_zone(GFP_KERNEL
),
4843 return z
->zone
->node
;
4847 static void setup_min_unmapped_ratio(void);
4848 static void setup_min_slab_ratio(void);
4849 #else /* CONFIG_NUMA */
4851 static void set_zonelist_order(void)
4853 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4856 static void build_zonelists(pg_data_t
*pgdat
)
4858 int node
, local_node
;
4860 struct zonelist
*zonelist
;
4862 local_node
= pgdat
->node_id
;
4864 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4865 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4868 * Now we build the zonelist so that it contains the zones
4869 * of all the other nodes.
4870 * We don't want to pressure a particular node, so when
4871 * building the zones for node N, we make sure that the
4872 * zones coming right after the local ones are those from
4873 * node N+1 (modulo N)
4875 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4876 if (!node_online(node
))
4878 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4880 for (node
= 0; node
< local_node
; node
++) {
4881 if (!node_online(node
))
4883 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4886 zonelist
->_zonerefs
[j
].zone
= NULL
;
4887 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4890 #endif /* CONFIG_NUMA */
4893 * Boot pageset table. One per cpu which is going to be used for all
4894 * zones and all nodes. The parameters will be set in such a way
4895 * that an item put on a list will immediately be handed over to
4896 * the buddy list. This is safe since pageset manipulation is done
4897 * with interrupts disabled.
4899 * The boot_pagesets must be kept even after bootup is complete for
4900 * unused processors and/or zones. They do play a role for bootstrapping
4901 * hotplugged processors.
4903 * zoneinfo_show() and maybe other functions do
4904 * not check if the processor is online before following the pageset pointer.
4905 * Other parts of the kernel may not check if the zone is available.
4907 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4908 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4909 static void setup_zone_pageset(struct zone
*zone
);
4912 * Global mutex to protect against size modification of zonelists
4913 * as well as to serialize pageset setup for the new populated zone.
4915 DEFINE_MUTEX(zonelists_mutex
);
4917 /* return values int ....just for stop_machine() */
4918 static int __build_all_zonelists(void *data
)
4922 pg_data_t
*self
= data
;
4925 memset(node_load
, 0, sizeof(node_load
));
4928 if (self
&& !node_online(self
->node_id
)) {
4929 build_zonelists(self
);
4932 for_each_online_node(nid
) {
4933 pg_data_t
*pgdat
= NODE_DATA(nid
);
4935 build_zonelists(pgdat
);
4939 * Initialize the boot_pagesets that are going to be used
4940 * for bootstrapping processors. The real pagesets for
4941 * each zone will be allocated later when the per cpu
4942 * allocator is available.
4944 * boot_pagesets are used also for bootstrapping offline
4945 * cpus if the system is already booted because the pagesets
4946 * are needed to initialize allocators on a specific cpu too.
4947 * F.e. the percpu allocator needs the page allocator which
4948 * needs the percpu allocator in order to allocate its pagesets
4949 * (a chicken-egg dilemma).
4951 for_each_possible_cpu(cpu
) {
4952 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4954 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4956 * We now know the "local memory node" for each node--
4957 * i.e., the node of the first zone in the generic zonelist.
4958 * Set up numa_mem percpu variable for on-line cpus. During
4959 * boot, only the boot cpu should be on-line; we'll init the
4960 * secondary cpus' numa_mem as they come on-line. During
4961 * node/memory hotplug, we'll fixup all on-line cpus.
4963 if (cpu_online(cpu
))
4964 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4971 static noinline
void __init
4972 build_all_zonelists_init(void)
4974 __build_all_zonelists(NULL
);
4975 mminit_verify_zonelist();
4976 cpuset_init_current_mems_allowed();
4980 * Called with zonelists_mutex held always
4981 * unless system_state == SYSTEM_BOOTING.
4983 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4984 * [we're only called with non-NULL zone through __meminit paths] and
4985 * (2) call of __init annotated helper build_all_zonelists_init
4986 * [protected by SYSTEM_BOOTING].
4988 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4990 set_zonelist_order();
4992 if (system_state
== SYSTEM_BOOTING
) {
4993 build_all_zonelists_init();
4995 #ifdef CONFIG_MEMORY_HOTPLUG
4997 setup_zone_pageset(zone
);
4999 /* we have to stop all cpus to guarantee there is no user
5001 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
5002 /* cpuset refresh routine should be here */
5004 vm_total_pages
= nr_free_pagecache_pages();
5006 * Disable grouping by mobility if the number of pages in the
5007 * system is too low to allow the mechanism to work. It would be
5008 * more accurate, but expensive to check per-zone. This check is
5009 * made on memory-hotadd so a system can start with mobility
5010 * disabled and enable it later
5012 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5013 page_group_by_mobility_disabled
= 1;
5015 page_group_by_mobility_disabled
= 0;
5017 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5019 zonelist_order_name
[current_zonelist_order
],
5020 page_group_by_mobility_disabled
? "off" : "on",
5023 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5028 * Initially all pages are reserved - free ones are freed
5029 * up by free_all_bootmem() once the early boot process is
5030 * done. Non-atomic initialization, single-pass.
5032 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5033 unsigned long start_pfn
, enum memmap_context context
)
5035 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5036 unsigned long end_pfn
= start_pfn
+ size
;
5037 pg_data_t
*pgdat
= NODE_DATA(nid
);
5039 unsigned long nr_initialised
= 0;
5040 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5041 struct memblock_region
*r
= NULL
, *tmp
;
5044 if (highest_memmap_pfn
< end_pfn
- 1)
5045 highest_memmap_pfn
= end_pfn
- 1;
5048 * Honor reservation requested by the driver for this ZONE_DEVICE
5051 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5052 start_pfn
+= altmap
->reserve
;
5054 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5056 * There can be holes in boot-time mem_map[]s handed to this
5057 * function. They do not exist on hotplugged memory.
5059 if (context
!= MEMMAP_EARLY
)
5062 if (!early_pfn_valid(pfn
))
5064 if (!early_pfn_in_nid(pfn
, nid
))
5066 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5069 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5071 * Check given memblock attribute by firmware which can affect
5072 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5073 * mirrored, it's an overlapped memmap init. skip it.
5075 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5076 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5077 for_each_memblock(memory
, tmp
)
5078 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5082 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5083 memblock_is_mirror(r
)) {
5084 /* already initialized as NORMAL */
5085 pfn
= memblock_region_memory_end_pfn(r
);
5093 * Mark the block movable so that blocks are reserved for
5094 * movable at startup. This will force kernel allocations
5095 * to reserve their blocks rather than leaking throughout
5096 * the address space during boot when many long-lived
5097 * kernel allocations are made.
5099 * bitmap is created for zone's valid pfn range. but memmap
5100 * can be created for invalid pages (for alignment)
5101 * check here not to call set_pageblock_migratetype() against
5104 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5105 struct page
*page
= pfn_to_page(pfn
);
5107 __init_single_page(page
, pfn
, zone
, nid
);
5108 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5110 __init_single_pfn(pfn
, zone
, nid
);
5115 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5117 unsigned int order
, t
;
5118 for_each_migratetype_order(order
, t
) {
5119 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5120 zone
->free_area
[order
].nr_free
= 0;
5124 #ifndef __HAVE_ARCH_MEMMAP_INIT
5125 #define memmap_init(size, nid, zone, start_pfn) \
5126 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5129 static int zone_batchsize(struct zone
*zone
)
5135 * The per-cpu-pages pools are set to around 1000th of the
5136 * size of the zone. But no more than 1/2 of a meg.
5138 * OK, so we don't know how big the cache is. So guess.
5140 batch
= zone
->managed_pages
/ 1024;
5141 if (batch
* PAGE_SIZE
> 512 * 1024)
5142 batch
= (512 * 1024) / PAGE_SIZE
;
5143 batch
/= 4; /* We effectively *= 4 below */
5148 * Clamp the batch to a 2^n - 1 value. Having a power
5149 * of 2 value was found to be more likely to have
5150 * suboptimal cache aliasing properties in some cases.
5152 * For example if 2 tasks are alternately allocating
5153 * batches of pages, one task can end up with a lot
5154 * of pages of one half of the possible page colors
5155 * and the other with pages of the other colors.
5157 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5162 /* The deferral and batching of frees should be suppressed under NOMMU
5165 * The problem is that NOMMU needs to be able to allocate large chunks
5166 * of contiguous memory as there's no hardware page translation to
5167 * assemble apparent contiguous memory from discontiguous pages.
5169 * Queueing large contiguous runs of pages for batching, however,
5170 * causes the pages to actually be freed in smaller chunks. As there
5171 * can be a significant delay between the individual batches being
5172 * recycled, this leads to the once large chunks of space being
5173 * fragmented and becoming unavailable for high-order allocations.
5180 * pcp->high and pcp->batch values are related and dependent on one another:
5181 * ->batch must never be higher then ->high.
5182 * The following function updates them in a safe manner without read side
5185 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5186 * those fields changing asynchronously (acording the the above rule).
5188 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5189 * outside of boot time (or some other assurance that no concurrent updaters
5192 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5193 unsigned long batch
)
5195 /* start with a fail safe value for batch */
5199 /* Update high, then batch, in order */
5206 /* a companion to pageset_set_high() */
5207 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5209 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5212 static void pageset_init(struct per_cpu_pageset
*p
)
5214 struct per_cpu_pages
*pcp
;
5217 memset(p
, 0, sizeof(*p
));
5221 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5222 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5225 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5228 pageset_set_batch(p
, batch
);
5232 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5233 * to the value high for the pageset p.
5235 static void pageset_set_high(struct per_cpu_pageset
*p
,
5238 unsigned long batch
= max(1UL, high
/ 4);
5239 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5240 batch
= PAGE_SHIFT
* 8;
5242 pageset_update(&p
->pcp
, high
, batch
);
5245 static void pageset_set_high_and_batch(struct zone
*zone
,
5246 struct per_cpu_pageset
*pcp
)
5248 if (percpu_pagelist_fraction
)
5249 pageset_set_high(pcp
,
5250 (zone
->managed_pages
/
5251 percpu_pagelist_fraction
));
5253 pageset_set_batch(pcp
, zone_batchsize(zone
));
5256 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5258 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5261 pageset_set_high_and_batch(zone
, pcp
);
5264 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5267 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5268 for_each_possible_cpu(cpu
)
5269 zone_pageset_init(zone
, cpu
);
5273 * Allocate per cpu pagesets and initialize them.
5274 * Before this call only boot pagesets were available.
5276 void __init
setup_per_cpu_pageset(void)
5278 struct pglist_data
*pgdat
;
5281 for_each_populated_zone(zone
)
5282 setup_zone_pageset(zone
);
5284 for_each_online_pgdat(pgdat
)
5285 pgdat
->per_cpu_nodestats
=
5286 alloc_percpu(struct per_cpu_nodestat
);
5289 static __meminit
void zone_pcp_init(struct zone
*zone
)
5292 * per cpu subsystem is not up at this point. The following code
5293 * relies on the ability of the linker to provide the
5294 * offset of a (static) per cpu variable into the per cpu area.
5296 zone
->pageset
= &boot_pageset
;
5298 if (populated_zone(zone
))
5299 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5300 zone
->name
, zone
->present_pages
,
5301 zone_batchsize(zone
));
5304 int __meminit
init_currently_empty_zone(struct zone
*zone
,
5305 unsigned long zone_start_pfn
,
5308 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5310 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5312 zone
->zone_start_pfn
= zone_start_pfn
;
5314 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5315 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5317 (unsigned long)zone_idx(zone
),
5318 zone_start_pfn
, (zone_start_pfn
+ size
));
5320 zone_init_free_lists(zone
);
5321 zone
->initialized
= 1;
5326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5327 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5330 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5332 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5333 struct mminit_pfnnid_cache
*state
)
5335 unsigned long start_pfn
, end_pfn
;
5338 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5339 return state
->last_nid
;
5341 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5343 state
->last_start
= start_pfn
;
5344 state
->last_end
= end_pfn
;
5345 state
->last_nid
= nid
;
5350 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5353 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5354 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5355 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5357 * If an architecture guarantees that all ranges registered contain no holes
5358 * and may be freed, this this function may be used instead of calling
5359 * memblock_free_early_nid() manually.
5361 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5363 unsigned long start_pfn
, end_pfn
;
5366 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5367 start_pfn
= min(start_pfn
, max_low_pfn
);
5368 end_pfn
= min(end_pfn
, max_low_pfn
);
5370 if (start_pfn
< end_pfn
)
5371 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5372 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5378 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5379 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5381 * If an architecture guarantees that all ranges registered contain no holes and may
5382 * be freed, this function may be used instead of calling memory_present() manually.
5384 void __init
sparse_memory_present_with_active_regions(int nid
)
5386 unsigned long start_pfn
, end_pfn
;
5389 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5390 memory_present(this_nid
, start_pfn
, end_pfn
);
5394 * get_pfn_range_for_nid - Return the start and end page frames for a node
5395 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5396 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5397 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5399 * It returns the start and end page frame of a node based on information
5400 * provided by memblock_set_node(). If called for a node
5401 * with no available memory, a warning is printed and the start and end
5404 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5405 unsigned long *start_pfn
, unsigned long *end_pfn
)
5407 unsigned long this_start_pfn
, this_end_pfn
;
5413 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5414 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5415 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5418 if (*start_pfn
== -1UL)
5423 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5424 * assumption is made that zones within a node are ordered in monotonic
5425 * increasing memory addresses so that the "highest" populated zone is used
5427 static void __init
find_usable_zone_for_movable(void)
5430 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5431 if (zone_index
== ZONE_MOVABLE
)
5434 if (arch_zone_highest_possible_pfn
[zone_index
] >
5435 arch_zone_lowest_possible_pfn
[zone_index
])
5439 VM_BUG_ON(zone_index
== -1);
5440 movable_zone
= zone_index
;
5444 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5445 * because it is sized independent of architecture. Unlike the other zones,
5446 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5447 * in each node depending on the size of each node and how evenly kernelcore
5448 * is distributed. This helper function adjusts the zone ranges
5449 * provided by the architecture for a given node by using the end of the
5450 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5451 * zones within a node are in order of monotonic increases memory addresses
5453 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5454 unsigned long zone_type
,
5455 unsigned long node_start_pfn
,
5456 unsigned long node_end_pfn
,
5457 unsigned long *zone_start_pfn
,
5458 unsigned long *zone_end_pfn
)
5460 /* Only adjust if ZONE_MOVABLE is on this node */
5461 if (zone_movable_pfn
[nid
]) {
5462 /* Size ZONE_MOVABLE */
5463 if (zone_type
== ZONE_MOVABLE
) {
5464 *zone_start_pfn
= zone_movable_pfn
[nid
];
5465 *zone_end_pfn
= min(node_end_pfn
,
5466 arch_zone_highest_possible_pfn
[movable_zone
]);
5468 /* Adjust for ZONE_MOVABLE starting within this range */
5469 } else if (!mirrored_kernelcore
&&
5470 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5471 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5472 *zone_end_pfn
= zone_movable_pfn
[nid
];
5474 /* Check if this whole range is within ZONE_MOVABLE */
5475 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5476 *zone_start_pfn
= *zone_end_pfn
;
5481 * Return the number of pages a zone spans in a node, including holes
5482 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5484 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5485 unsigned long zone_type
,
5486 unsigned long node_start_pfn
,
5487 unsigned long node_end_pfn
,
5488 unsigned long *zone_start_pfn
,
5489 unsigned long *zone_end_pfn
,
5490 unsigned long *ignored
)
5492 /* When hotadd a new node from cpu_up(), the node should be empty */
5493 if (!node_start_pfn
&& !node_end_pfn
)
5496 /* Get the start and end of the zone */
5497 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5498 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5499 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5500 node_start_pfn
, node_end_pfn
,
5501 zone_start_pfn
, zone_end_pfn
);
5503 /* Check that this node has pages within the zone's required range */
5504 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5507 /* Move the zone boundaries inside the node if necessary */
5508 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5509 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5511 /* Return the spanned pages */
5512 return *zone_end_pfn
- *zone_start_pfn
;
5516 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5517 * then all holes in the requested range will be accounted for.
5519 unsigned long __meminit
__absent_pages_in_range(int nid
,
5520 unsigned long range_start_pfn
,
5521 unsigned long range_end_pfn
)
5523 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5524 unsigned long start_pfn
, end_pfn
;
5527 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5528 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5529 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5530 nr_absent
-= end_pfn
- start_pfn
;
5536 * absent_pages_in_range - Return number of page frames in holes within a range
5537 * @start_pfn: The start PFN to start searching for holes
5538 * @end_pfn: The end PFN to stop searching for holes
5540 * It returns the number of pages frames in memory holes within a range.
5542 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5543 unsigned long end_pfn
)
5545 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5548 /* Return the number of page frames in holes in a zone on a node */
5549 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5550 unsigned long zone_type
,
5551 unsigned long node_start_pfn
,
5552 unsigned long node_end_pfn
,
5553 unsigned long *ignored
)
5555 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5556 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5557 unsigned long zone_start_pfn
, zone_end_pfn
;
5558 unsigned long nr_absent
;
5560 /* When hotadd a new node from cpu_up(), the node should be empty */
5561 if (!node_start_pfn
&& !node_end_pfn
)
5564 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5565 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5567 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5568 node_start_pfn
, node_end_pfn
,
5569 &zone_start_pfn
, &zone_end_pfn
);
5570 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5573 * ZONE_MOVABLE handling.
5574 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5577 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5578 unsigned long start_pfn
, end_pfn
;
5579 struct memblock_region
*r
;
5581 for_each_memblock(memory
, r
) {
5582 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5583 zone_start_pfn
, zone_end_pfn
);
5584 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5585 zone_start_pfn
, zone_end_pfn
);
5587 if (zone_type
== ZONE_MOVABLE
&&
5588 memblock_is_mirror(r
))
5589 nr_absent
+= end_pfn
- start_pfn
;
5591 if (zone_type
== ZONE_NORMAL
&&
5592 !memblock_is_mirror(r
))
5593 nr_absent
+= end_pfn
- start_pfn
;
5600 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5601 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5602 unsigned long zone_type
,
5603 unsigned long node_start_pfn
,
5604 unsigned long node_end_pfn
,
5605 unsigned long *zone_start_pfn
,
5606 unsigned long *zone_end_pfn
,
5607 unsigned long *zones_size
)
5611 *zone_start_pfn
= node_start_pfn
;
5612 for (zone
= 0; zone
< zone_type
; zone
++)
5613 *zone_start_pfn
+= zones_size
[zone
];
5615 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5617 return zones_size
[zone_type
];
5620 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5621 unsigned long zone_type
,
5622 unsigned long node_start_pfn
,
5623 unsigned long node_end_pfn
,
5624 unsigned long *zholes_size
)
5629 return zholes_size
[zone_type
];
5632 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5634 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5635 unsigned long node_start_pfn
,
5636 unsigned long node_end_pfn
,
5637 unsigned long *zones_size
,
5638 unsigned long *zholes_size
)
5640 unsigned long realtotalpages
= 0, totalpages
= 0;
5643 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5644 struct zone
*zone
= pgdat
->node_zones
+ i
;
5645 unsigned long zone_start_pfn
, zone_end_pfn
;
5646 unsigned long size
, real_size
;
5648 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5654 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5655 node_start_pfn
, node_end_pfn
,
5658 zone
->zone_start_pfn
= zone_start_pfn
;
5660 zone
->zone_start_pfn
= 0;
5661 zone
->spanned_pages
= size
;
5662 zone
->present_pages
= real_size
;
5665 realtotalpages
+= real_size
;
5668 pgdat
->node_spanned_pages
= totalpages
;
5669 pgdat
->node_present_pages
= realtotalpages
;
5670 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5674 #ifndef CONFIG_SPARSEMEM
5676 * Calculate the size of the zone->blockflags rounded to an unsigned long
5677 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5678 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5679 * round what is now in bits to nearest long in bits, then return it in
5682 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5684 unsigned long usemapsize
;
5686 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5687 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5688 usemapsize
= usemapsize
>> pageblock_order
;
5689 usemapsize
*= NR_PAGEBLOCK_BITS
;
5690 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5692 return usemapsize
/ 8;
5695 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5697 unsigned long zone_start_pfn
,
5698 unsigned long zonesize
)
5700 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5701 zone
->pageblock_flags
= NULL
;
5703 zone
->pageblock_flags
=
5704 memblock_virt_alloc_node_nopanic(usemapsize
,
5708 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5709 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5710 #endif /* CONFIG_SPARSEMEM */
5712 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5714 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5715 void __paginginit
set_pageblock_order(void)
5719 /* Check that pageblock_nr_pages has not already been setup */
5720 if (pageblock_order
)
5723 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5724 order
= HUGETLB_PAGE_ORDER
;
5726 order
= MAX_ORDER
- 1;
5729 * Assume the largest contiguous order of interest is a huge page.
5730 * This value may be variable depending on boot parameters on IA64 and
5733 pageblock_order
= order
;
5735 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5738 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5739 * is unused as pageblock_order is set at compile-time. See
5740 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5743 void __paginginit
set_pageblock_order(void)
5747 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5749 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5750 unsigned long present_pages
)
5752 unsigned long pages
= spanned_pages
;
5755 * Provide a more accurate estimation if there are holes within
5756 * the zone and SPARSEMEM is in use. If there are holes within the
5757 * zone, each populated memory region may cost us one or two extra
5758 * memmap pages due to alignment because memmap pages for each
5759 * populated regions may not naturally algined on page boundary.
5760 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5762 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5763 IS_ENABLED(CONFIG_SPARSEMEM
))
5764 pages
= present_pages
;
5766 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5770 * Set up the zone data structures:
5771 * - mark all pages reserved
5772 * - mark all memory queues empty
5773 * - clear the memory bitmaps
5775 * NOTE: pgdat should get zeroed by caller.
5777 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5780 int nid
= pgdat
->node_id
;
5783 pgdat_resize_init(pgdat
);
5784 #ifdef CONFIG_NUMA_BALANCING
5785 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5786 pgdat
->numabalancing_migrate_nr_pages
= 0;
5787 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5790 spin_lock_init(&pgdat
->split_queue_lock
);
5791 INIT_LIST_HEAD(&pgdat
->split_queue
);
5792 pgdat
->split_queue_len
= 0;
5794 init_waitqueue_head(&pgdat
->kswapd_wait
);
5795 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5796 #ifdef CONFIG_COMPACTION
5797 init_waitqueue_head(&pgdat
->kcompactd_wait
);
5799 pgdat_page_ext_init(pgdat
);
5800 spin_lock_init(&pgdat
->lru_lock
);
5801 lruvec_init(node_lruvec(pgdat
));
5803 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5804 struct zone
*zone
= pgdat
->node_zones
+ j
;
5805 unsigned long size
, realsize
, freesize
, memmap_pages
;
5806 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
5808 size
= zone
->spanned_pages
;
5809 realsize
= freesize
= zone
->present_pages
;
5812 * Adjust freesize so that it accounts for how much memory
5813 * is used by this zone for memmap. This affects the watermark
5814 * and per-cpu initialisations
5816 memmap_pages
= calc_memmap_size(size
, realsize
);
5817 if (!is_highmem_idx(j
)) {
5818 if (freesize
>= memmap_pages
) {
5819 freesize
-= memmap_pages
;
5822 " %s zone: %lu pages used for memmap\n",
5823 zone_names
[j
], memmap_pages
);
5825 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5826 zone_names
[j
], memmap_pages
, freesize
);
5829 /* Account for reserved pages */
5830 if (j
== 0 && freesize
> dma_reserve
) {
5831 freesize
-= dma_reserve
;
5832 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5833 zone_names
[0], dma_reserve
);
5836 if (!is_highmem_idx(j
))
5837 nr_kernel_pages
+= freesize
;
5838 /* Charge for highmem memmap if there are enough kernel pages */
5839 else if (nr_kernel_pages
> memmap_pages
* 2)
5840 nr_kernel_pages
-= memmap_pages
;
5841 nr_all_pages
+= freesize
;
5844 * Set an approximate value for lowmem here, it will be adjusted
5845 * when the bootmem allocator frees pages into the buddy system.
5846 * And all highmem pages will be managed by the buddy system.
5848 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5852 zone
->name
= zone_names
[j
];
5853 zone
->zone_pgdat
= pgdat
;
5854 spin_lock_init(&zone
->lock
);
5855 zone_seqlock_init(zone
);
5856 zone_pcp_init(zone
);
5861 set_pageblock_order();
5862 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5863 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5865 memmap_init(size
, nid
, j
, zone_start_pfn
);
5869 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
5871 unsigned long __maybe_unused start
= 0;
5872 unsigned long __maybe_unused offset
= 0;
5874 /* Skip empty nodes */
5875 if (!pgdat
->node_spanned_pages
)
5878 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5879 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5880 offset
= pgdat
->node_start_pfn
- start
;
5881 /* ia64 gets its own node_mem_map, before this, without bootmem */
5882 if (!pgdat
->node_mem_map
) {
5883 unsigned long size
, end
;
5887 * The zone's endpoints aren't required to be MAX_ORDER
5888 * aligned but the node_mem_map endpoints must be in order
5889 * for the buddy allocator to function correctly.
5891 end
= pgdat_end_pfn(pgdat
);
5892 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5893 size
= (end
- start
) * sizeof(struct page
);
5894 map
= alloc_remap(pgdat
->node_id
, size
);
5896 map
= memblock_virt_alloc_node_nopanic(size
,
5898 pgdat
->node_mem_map
= map
+ offset
;
5900 #ifndef CONFIG_NEED_MULTIPLE_NODES
5902 * With no DISCONTIG, the global mem_map is just set as node 0's
5904 if (pgdat
== NODE_DATA(0)) {
5905 mem_map
= NODE_DATA(0)->node_mem_map
;
5906 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5907 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5909 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5912 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5915 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5916 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5918 pg_data_t
*pgdat
= NODE_DATA(nid
);
5919 unsigned long start_pfn
= 0;
5920 unsigned long end_pfn
= 0;
5922 /* pg_data_t should be reset to zero when it's allocated */
5923 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
5925 pgdat
->node_id
= nid
;
5926 pgdat
->node_start_pfn
= node_start_pfn
;
5927 pgdat
->per_cpu_nodestats
= NULL
;
5928 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5929 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5930 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5931 (u64
)start_pfn
<< PAGE_SHIFT
,
5932 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5934 start_pfn
= node_start_pfn
;
5936 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5937 zones_size
, zholes_size
);
5939 alloc_node_mem_map(pgdat
);
5940 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5941 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5942 nid
, (unsigned long)pgdat
,
5943 (unsigned long)pgdat
->node_mem_map
);
5946 reset_deferred_meminit(pgdat
);
5947 free_area_init_core(pgdat
);
5950 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5952 #if MAX_NUMNODES > 1
5954 * Figure out the number of possible node ids.
5956 void __init
setup_nr_node_ids(void)
5958 unsigned int highest
;
5960 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5961 nr_node_ids
= highest
+ 1;
5966 * node_map_pfn_alignment - determine the maximum internode alignment
5968 * This function should be called after node map is populated and sorted.
5969 * It calculates the maximum power of two alignment which can distinguish
5972 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5973 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5974 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5975 * shifted, 1GiB is enough and this function will indicate so.
5977 * This is used to test whether pfn -> nid mapping of the chosen memory
5978 * model has fine enough granularity to avoid incorrect mapping for the
5979 * populated node map.
5981 * Returns the determined alignment in pfn's. 0 if there is no alignment
5982 * requirement (single node).
5984 unsigned long __init
node_map_pfn_alignment(void)
5986 unsigned long accl_mask
= 0, last_end
= 0;
5987 unsigned long start
, end
, mask
;
5991 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5992 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5999 * Start with a mask granular enough to pin-point to the
6000 * start pfn and tick off bits one-by-one until it becomes
6001 * too coarse to separate the current node from the last.
6003 mask
= ~((1 << __ffs(start
)) - 1);
6004 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6007 /* accumulate all internode masks */
6011 /* convert mask to number of pages */
6012 return ~accl_mask
+ 1;
6015 /* Find the lowest pfn for a node */
6016 static unsigned long __init
find_min_pfn_for_node(int nid
)
6018 unsigned long min_pfn
= ULONG_MAX
;
6019 unsigned long start_pfn
;
6022 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6023 min_pfn
= min(min_pfn
, start_pfn
);
6025 if (min_pfn
== ULONG_MAX
) {
6026 pr_warn("Could not find start_pfn for node %d\n", nid
);
6034 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6036 * It returns the minimum PFN based on information provided via
6037 * memblock_set_node().
6039 unsigned long __init
find_min_pfn_with_active_regions(void)
6041 return find_min_pfn_for_node(MAX_NUMNODES
);
6045 * early_calculate_totalpages()
6046 * Sum pages in active regions for movable zone.
6047 * Populate N_MEMORY for calculating usable_nodes.
6049 static unsigned long __init
early_calculate_totalpages(void)
6051 unsigned long totalpages
= 0;
6052 unsigned long start_pfn
, end_pfn
;
6055 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6056 unsigned long pages
= end_pfn
- start_pfn
;
6058 totalpages
+= pages
;
6060 node_set_state(nid
, N_MEMORY
);
6066 * Find the PFN the Movable zone begins in each node. Kernel memory
6067 * is spread evenly between nodes as long as the nodes have enough
6068 * memory. When they don't, some nodes will have more kernelcore than
6071 static void __init
find_zone_movable_pfns_for_nodes(void)
6074 unsigned long usable_startpfn
;
6075 unsigned long kernelcore_node
, kernelcore_remaining
;
6076 /* save the state before borrow the nodemask */
6077 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6078 unsigned long totalpages
= early_calculate_totalpages();
6079 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6080 struct memblock_region
*r
;
6082 /* Need to find movable_zone earlier when movable_node is specified. */
6083 find_usable_zone_for_movable();
6086 * If movable_node is specified, ignore kernelcore and movablecore
6089 if (movable_node_is_enabled()) {
6090 for_each_memblock(memory
, r
) {
6091 if (!memblock_is_hotpluggable(r
))
6096 usable_startpfn
= PFN_DOWN(r
->base
);
6097 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6098 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6106 * If kernelcore=mirror is specified, ignore movablecore option
6108 if (mirrored_kernelcore
) {
6109 bool mem_below_4gb_not_mirrored
= false;
6111 for_each_memblock(memory
, r
) {
6112 if (memblock_is_mirror(r
))
6117 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6119 if (usable_startpfn
< 0x100000) {
6120 mem_below_4gb_not_mirrored
= true;
6124 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6125 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6129 if (mem_below_4gb_not_mirrored
)
6130 pr_warn("This configuration results in unmirrored kernel memory.");
6136 * If movablecore=nn[KMG] was specified, calculate what size of
6137 * kernelcore that corresponds so that memory usable for
6138 * any allocation type is evenly spread. If both kernelcore
6139 * and movablecore are specified, then the value of kernelcore
6140 * will be used for required_kernelcore if it's greater than
6141 * what movablecore would have allowed.
6143 if (required_movablecore
) {
6144 unsigned long corepages
;
6147 * Round-up so that ZONE_MOVABLE is at least as large as what
6148 * was requested by the user
6150 required_movablecore
=
6151 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6152 required_movablecore
= min(totalpages
, required_movablecore
);
6153 corepages
= totalpages
- required_movablecore
;
6155 required_kernelcore
= max(required_kernelcore
, corepages
);
6159 * If kernelcore was not specified or kernelcore size is larger
6160 * than totalpages, there is no ZONE_MOVABLE.
6162 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6165 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6166 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6169 /* Spread kernelcore memory as evenly as possible throughout nodes */
6170 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6171 for_each_node_state(nid
, N_MEMORY
) {
6172 unsigned long start_pfn
, end_pfn
;
6175 * Recalculate kernelcore_node if the division per node
6176 * now exceeds what is necessary to satisfy the requested
6177 * amount of memory for the kernel
6179 if (required_kernelcore
< kernelcore_node
)
6180 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6183 * As the map is walked, we track how much memory is usable
6184 * by the kernel using kernelcore_remaining. When it is
6185 * 0, the rest of the node is usable by ZONE_MOVABLE
6187 kernelcore_remaining
= kernelcore_node
;
6189 /* Go through each range of PFNs within this node */
6190 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6191 unsigned long size_pages
;
6193 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6194 if (start_pfn
>= end_pfn
)
6197 /* Account for what is only usable for kernelcore */
6198 if (start_pfn
< usable_startpfn
) {
6199 unsigned long kernel_pages
;
6200 kernel_pages
= min(end_pfn
, usable_startpfn
)
6203 kernelcore_remaining
-= min(kernel_pages
,
6204 kernelcore_remaining
);
6205 required_kernelcore
-= min(kernel_pages
,
6206 required_kernelcore
);
6208 /* Continue if range is now fully accounted */
6209 if (end_pfn
<= usable_startpfn
) {
6212 * Push zone_movable_pfn to the end so
6213 * that if we have to rebalance
6214 * kernelcore across nodes, we will
6215 * not double account here
6217 zone_movable_pfn
[nid
] = end_pfn
;
6220 start_pfn
= usable_startpfn
;
6224 * The usable PFN range for ZONE_MOVABLE is from
6225 * start_pfn->end_pfn. Calculate size_pages as the
6226 * number of pages used as kernelcore
6228 size_pages
= end_pfn
- start_pfn
;
6229 if (size_pages
> kernelcore_remaining
)
6230 size_pages
= kernelcore_remaining
;
6231 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6234 * Some kernelcore has been met, update counts and
6235 * break if the kernelcore for this node has been
6238 required_kernelcore
-= min(required_kernelcore
,
6240 kernelcore_remaining
-= size_pages
;
6241 if (!kernelcore_remaining
)
6247 * If there is still required_kernelcore, we do another pass with one
6248 * less node in the count. This will push zone_movable_pfn[nid] further
6249 * along on the nodes that still have memory until kernelcore is
6253 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6257 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6258 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6259 zone_movable_pfn
[nid
] =
6260 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6263 /* restore the node_state */
6264 node_states
[N_MEMORY
] = saved_node_state
;
6267 /* Any regular or high memory on that node ? */
6268 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6270 enum zone_type zone_type
;
6272 if (N_MEMORY
== N_NORMAL_MEMORY
)
6275 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6276 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6277 if (populated_zone(zone
)) {
6278 node_set_state(nid
, N_HIGH_MEMORY
);
6279 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6280 zone_type
<= ZONE_NORMAL
)
6281 node_set_state(nid
, N_NORMAL_MEMORY
);
6288 * free_area_init_nodes - Initialise all pg_data_t and zone data
6289 * @max_zone_pfn: an array of max PFNs for each zone
6291 * This will call free_area_init_node() for each active node in the system.
6292 * Using the page ranges provided by memblock_set_node(), the size of each
6293 * zone in each node and their holes is calculated. If the maximum PFN
6294 * between two adjacent zones match, it is assumed that the zone is empty.
6295 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6296 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6297 * starts where the previous one ended. For example, ZONE_DMA32 starts
6298 * at arch_max_dma_pfn.
6300 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6302 unsigned long start_pfn
, end_pfn
;
6305 /* Record where the zone boundaries are */
6306 memset(arch_zone_lowest_possible_pfn
, 0,
6307 sizeof(arch_zone_lowest_possible_pfn
));
6308 memset(arch_zone_highest_possible_pfn
, 0,
6309 sizeof(arch_zone_highest_possible_pfn
));
6311 start_pfn
= find_min_pfn_with_active_regions();
6313 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6314 if (i
== ZONE_MOVABLE
)
6317 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6318 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6319 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6321 start_pfn
= end_pfn
;
6323 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
6324 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
6326 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6327 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6328 find_zone_movable_pfns_for_nodes();
6330 /* Print out the zone ranges */
6331 pr_info("Zone ranges:\n");
6332 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6333 if (i
== ZONE_MOVABLE
)
6335 pr_info(" %-8s ", zone_names
[i
]);
6336 if (arch_zone_lowest_possible_pfn
[i
] ==
6337 arch_zone_highest_possible_pfn
[i
])
6340 pr_cont("[mem %#018Lx-%#018Lx]\n",
6341 (u64
)arch_zone_lowest_possible_pfn
[i
]
6343 ((u64
)arch_zone_highest_possible_pfn
[i
]
6344 << PAGE_SHIFT
) - 1);
6347 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6348 pr_info("Movable zone start for each node\n");
6349 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6350 if (zone_movable_pfn
[i
])
6351 pr_info(" Node %d: %#018Lx\n", i
,
6352 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6355 /* Print out the early node map */
6356 pr_info("Early memory node ranges\n");
6357 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6358 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6359 (u64
)start_pfn
<< PAGE_SHIFT
,
6360 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6362 /* Initialise every node */
6363 mminit_verify_pageflags_layout();
6364 setup_nr_node_ids();
6365 for_each_online_node(nid
) {
6366 pg_data_t
*pgdat
= NODE_DATA(nid
);
6367 free_area_init_node(nid
, NULL
,
6368 find_min_pfn_for_node(nid
), NULL
);
6370 /* Any memory on that node */
6371 if (pgdat
->node_present_pages
)
6372 node_set_state(nid
, N_MEMORY
);
6373 check_for_memory(pgdat
, nid
);
6377 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6379 unsigned long long coremem
;
6383 coremem
= memparse(p
, &p
);
6384 *core
= coremem
>> PAGE_SHIFT
;
6386 /* Paranoid check that UL is enough for the coremem value */
6387 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6393 * kernelcore=size sets the amount of memory for use for allocations that
6394 * cannot be reclaimed or migrated.
6396 static int __init
cmdline_parse_kernelcore(char *p
)
6398 /* parse kernelcore=mirror */
6399 if (parse_option_str(p
, "mirror")) {
6400 mirrored_kernelcore
= true;
6404 return cmdline_parse_core(p
, &required_kernelcore
);
6408 * movablecore=size sets the amount of memory for use for allocations that
6409 * can be reclaimed or migrated.
6411 static int __init
cmdline_parse_movablecore(char *p
)
6413 return cmdline_parse_core(p
, &required_movablecore
);
6416 early_param("kernelcore", cmdline_parse_kernelcore
);
6417 early_param("movablecore", cmdline_parse_movablecore
);
6419 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6421 void adjust_managed_page_count(struct page
*page
, long count
)
6423 spin_lock(&managed_page_count_lock
);
6424 page_zone(page
)->managed_pages
+= count
;
6425 totalram_pages
+= count
;
6426 #ifdef CONFIG_HIGHMEM
6427 if (PageHighMem(page
))
6428 totalhigh_pages
+= count
;
6430 spin_unlock(&managed_page_count_lock
);
6432 EXPORT_SYMBOL(adjust_managed_page_count
);
6434 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6437 unsigned long pages
= 0;
6439 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6440 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6441 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6442 if ((unsigned int)poison
<= 0xFF)
6443 memset(pos
, poison
, PAGE_SIZE
);
6444 free_reserved_page(virt_to_page(pos
));
6448 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6449 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
6453 EXPORT_SYMBOL(free_reserved_area
);
6455 #ifdef CONFIG_HIGHMEM
6456 void free_highmem_page(struct page
*page
)
6458 __free_reserved_page(page
);
6460 page_zone(page
)->managed_pages
++;
6466 void __init
mem_init_print_info(const char *str
)
6468 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6469 unsigned long init_code_size
, init_data_size
;
6471 physpages
= get_num_physpages();
6472 codesize
= _etext
- _stext
;
6473 datasize
= _edata
- _sdata
;
6474 rosize
= __end_rodata
- __start_rodata
;
6475 bss_size
= __bss_stop
- __bss_start
;
6476 init_data_size
= __init_end
- __init_begin
;
6477 init_code_size
= _einittext
- _sinittext
;
6480 * Detect special cases and adjust section sizes accordingly:
6481 * 1) .init.* may be embedded into .data sections
6482 * 2) .init.text.* may be out of [__init_begin, __init_end],
6483 * please refer to arch/tile/kernel/vmlinux.lds.S.
6484 * 3) .rodata.* may be embedded into .text or .data sections.
6486 #define adj_init_size(start, end, size, pos, adj) \
6488 if (start <= pos && pos < end && size > adj) \
6492 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6493 _sinittext
, init_code_size
);
6494 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6495 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6496 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6497 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6499 #undef adj_init_size
6501 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6502 #ifdef CONFIG_HIGHMEM
6506 nr_free_pages() << (PAGE_SHIFT
- 10),
6507 physpages
<< (PAGE_SHIFT
- 10),
6508 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6509 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6510 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6511 totalcma_pages
<< (PAGE_SHIFT
- 10),
6512 #ifdef CONFIG_HIGHMEM
6513 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6515 str
? ", " : "", str
? str
: "");
6519 * set_dma_reserve - set the specified number of pages reserved in the first zone
6520 * @new_dma_reserve: The number of pages to mark reserved
6522 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6523 * In the DMA zone, a significant percentage may be consumed by kernel image
6524 * and other unfreeable allocations which can skew the watermarks badly. This
6525 * function may optionally be used to account for unfreeable pages in the
6526 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6527 * smaller per-cpu batchsize.
6529 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6531 dma_reserve
= new_dma_reserve
;
6534 void __init
free_area_init(unsigned long *zones_size
)
6536 free_area_init_node(0, zones_size
,
6537 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6540 static int page_alloc_cpu_notify(struct notifier_block
*self
,
6541 unsigned long action
, void *hcpu
)
6543 int cpu
= (unsigned long)hcpu
;
6545 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
6546 lru_add_drain_cpu(cpu
);
6550 * Spill the event counters of the dead processor
6551 * into the current processors event counters.
6552 * This artificially elevates the count of the current
6555 vm_events_fold_cpu(cpu
);
6558 * Zero the differential counters of the dead processor
6559 * so that the vm statistics are consistent.
6561 * This is only okay since the processor is dead and cannot
6562 * race with what we are doing.
6564 cpu_vm_stats_fold(cpu
);
6569 void __init
page_alloc_init(void)
6571 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6575 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6576 * or min_free_kbytes changes.
6578 static void calculate_totalreserve_pages(void)
6580 struct pglist_data
*pgdat
;
6581 unsigned long reserve_pages
= 0;
6582 enum zone_type i
, j
;
6584 for_each_online_pgdat(pgdat
) {
6586 pgdat
->totalreserve_pages
= 0;
6588 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6589 struct zone
*zone
= pgdat
->node_zones
+ i
;
6592 /* Find valid and maximum lowmem_reserve in the zone */
6593 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6594 if (zone
->lowmem_reserve
[j
] > max
)
6595 max
= zone
->lowmem_reserve
[j
];
6598 /* we treat the high watermark as reserved pages. */
6599 max
+= high_wmark_pages(zone
);
6601 if (max
> zone
->managed_pages
)
6602 max
= zone
->managed_pages
;
6604 pgdat
->totalreserve_pages
+= max
;
6606 reserve_pages
+= max
;
6609 totalreserve_pages
= reserve_pages
;
6613 * setup_per_zone_lowmem_reserve - called whenever
6614 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6615 * has a correct pages reserved value, so an adequate number of
6616 * pages are left in the zone after a successful __alloc_pages().
6618 static void setup_per_zone_lowmem_reserve(void)
6620 struct pglist_data
*pgdat
;
6621 enum zone_type j
, idx
;
6623 for_each_online_pgdat(pgdat
) {
6624 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6625 struct zone
*zone
= pgdat
->node_zones
+ j
;
6626 unsigned long managed_pages
= zone
->managed_pages
;
6628 zone
->lowmem_reserve
[j
] = 0;
6632 struct zone
*lower_zone
;
6636 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6637 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6639 lower_zone
= pgdat
->node_zones
+ idx
;
6640 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6641 sysctl_lowmem_reserve_ratio
[idx
];
6642 managed_pages
+= lower_zone
->managed_pages
;
6647 /* update totalreserve_pages */
6648 calculate_totalreserve_pages();
6651 static void __setup_per_zone_wmarks(void)
6653 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6654 unsigned long lowmem_pages
= 0;
6656 unsigned long flags
;
6658 /* Calculate total number of !ZONE_HIGHMEM pages */
6659 for_each_zone(zone
) {
6660 if (!is_highmem(zone
))
6661 lowmem_pages
+= zone
->managed_pages
;
6664 for_each_zone(zone
) {
6667 spin_lock_irqsave(&zone
->lock
, flags
);
6668 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6669 do_div(tmp
, lowmem_pages
);
6670 if (is_highmem(zone
)) {
6672 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6673 * need highmem pages, so cap pages_min to a small
6676 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6677 * deltas control asynch page reclaim, and so should
6678 * not be capped for highmem.
6680 unsigned long min_pages
;
6682 min_pages
= zone
->managed_pages
/ 1024;
6683 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6684 zone
->watermark
[WMARK_MIN
] = min_pages
;
6687 * If it's a lowmem zone, reserve a number of pages
6688 * proportionate to the zone's size.
6690 zone
->watermark
[WMARK_MIN
] = tmp
;
6694 * Set the kswapd watermarks distance according to the
6695 * scale factor in proportion to available memory, but
6696 * ensure a minimum size on small systems.
6698 tmp
= max_t(u64
, tmp
>> 2,
6699 mult_frac(zone
->managed_pages
,
6700 watermark_scale_factor
, 10000));
6702 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6703 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6705 spin_unlock_irqrestore(&zone
->lock
, flags
);
6708 /* update totalreserve_pages */
6709 calculate_totalreserve_pages();
6713 * setup_per_zone_wmarks - called when min_free_kbytes changes
6714 * or when memory is hot-{added|removed}
6716 * Ensures that the watermark[min,low,high] values for each zone are set
6717 * correctly with respect to min_free_kbytes.
6719 void setup_per_zone_wmarks(void)
6721 mutex_lock(&zonelists_mutex
);
6722 __setup_per_zone_wmarks();
6723 mutex_unlock(&zonelists_mutex
);
6727 * Initialise min_free_kbytes.
6729 * For small machines we want it small (128k min). For large machines
6730 * we want it large (64MB max). But it is not linear, because network
6731 * bandwidth does not increase linearly with machine size. We use
6733 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6734 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6750 int __meminit
init_per_zone_wmark_min(void)
6752 unsigned long lowmem_kbytes
;
6753 int new_min_free_kbytes
;
6755 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6756 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6758 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6759 min_free_kbytes
= new_min_free_kbytes
;
6760 if (min_free_kbytes
< 128)
6761 min_free_kbytes
= 128;
6762 if (min_free_kbytes
> 65536)
6763 min_free_kbytes
= 65536;
6765 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6766 new_min_free_kbytes
, user_min_free_kbytes
);
6768 setup_per_zone_wmarks();
6769 refresh_zone_stat_thresholds();
6770 setup_per_zone_lowmem_reserve();
6773 setup_min_unmapped_ratio();
6774 setup_min_slab_ratio();
6779 core_initcall(init_per_zone_wmark_min
)
6782 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6783 * that we can call two helper functions whenever min_free_kbytes
6786 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6787 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6791 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6796 user_min_free_kbytes
= min_free_kbytes
;
6797 setup_per_zone_wmarks();
6802 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
6803 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6807 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6812 setup_per_zone_wmarks();
6818 static void setup_min_unmapped_ratio(void)
6823 for_each_online_pgdat(pgdat
)
6824 pgdat
->min_unmapped_pages
= 0;
6827 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
6828 sysctl_min_unmapped_ratio
) / 100;
6832 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6833 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6837 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6841 setup_min_unmapped_ratio();
6846 static void setup_min_slab_ratio(void)
6851 for_each_online_pgdat(pgdat
)
6852 pgdat
->min_slab_pages
= 0;
6855 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
6856 sysctl_min_slab_ratio
) / 100;
6859 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6860 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6864 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6868 setup_min_slab_ratio();
6875 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6876 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6877 * whenever sysctl_lowmem_reserve_ratio changes.
6879 * The reserve ratio obviously has absolutely no relation with the
6880 * minimum watermarks. The lowmem reserve ratio can only make sense
6881 * if in function of the boot time zone sizes.
6883 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6884 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6886 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6887 setup_per_zone_lowmem_reserve();
6892 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6893 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6894 * pagelist can have before it gets flushed back to buddy allocator.
6896 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6897 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6900 int old_percpu_pagelist_fraction
;
6903 mutex_lock(&pcp_batch_high_lock
);
6904 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6906 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6907 if (!write
|| ret
< 0)
6910 /* Sanity checking to avoid pcp imbalance */
6911 if (percpu_pagelist_fraction
&&
6912 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6913 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6919 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6922 for_each_populated_zone(zone
) {
6925 for_each_possible_cpu(cpu
)
6926 pageset_set_high_and_batch(zone
,
6927 per_cpu_ptr(zone
->pageset
, cpu
));
6930 mutex_unlock(&pcp_batch_high_lock
);
6935 int hashdist
= HASHDIST_DEFAULT
;
6937 static int __init
set_hashdist(char *str
)
6941 hashdist
= simple_strtoul(str
, &str
, 0);
6944 __setup("hashdist=", set_hashdist
);
6947 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6949 * Returns the number of pages that arch has reserved but
6950 * is not known to alloc_large_system_hash().
6952 static unsigned long __init
arch_reserved_kernel_pages(void)
6959 * allocate a large system hash table from bootmem
6960 * - it is assumed that the hash table must contain an exact power-of-2
6961 * quantity of entries
6962 * - limit is the number of hash buckets, not the total allocation size
6964 void *__init
alloc_large_system_hash(const char *tablename
,
6965 unsigned long bucketsize
,
6966 unsigned long numentries
,
6969 unsigned int *_hash_shift
,
6970 unsigned int *_hash_mask
,
6971 unsigned long low_limit
,
6972 unsigned long high_limit
)
6974 unsigned long long max
= high_limit
;
6975 unsigned long log2qty
, size
;
6978 /* allow the kernel cmdline to have a say */
6980 /* round applicable memory size up to nearest megabyte */
6981 numentries
= nr_kernel_pages
;
6982 numentries
-= arch_reserved_kernel_pages();
6984 /* It isn't necessary when PAGE_SIZE >= 1MB */
6985 if (PAGE_SHIFT
< 20)
6986 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6988 /* limit to 1 bucket per 2^scale bytes of low memory */
6989 if (scale
> PAGE_SHIFT
)
6990 numentries
>>= (scale
- PAGE_SHIFT
);
6992 numentries
<<= (PAGE_SHIFT
- scale
);
6994 /* Make sure we've got at least a 0-order allocation.. */
6995 if (unlikely(flags
& HASH_SMALL
)) {
6996 /* Makes no sense without HASH_EARLY */
6997 WARN_ON(!(flags
& HASH_EARLY
));
6998 if (!(numentries
>> *_hash_shift
)) {
6999 numentries
= 1UL << *_hash_shift
;
7000 BUG_ON(!numentries
);
7002 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7003 numentries
= PAGE_SIZE
/ bucketsize
;
7005 numentries
= roundup_pow_of_two(numentries
);
7007 /* limit allocation size to 1/16 total memory by default */
7009 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7010 do_div(max
, bucketsize
);
7012 max
= min(max
, 0x80000000ULL
);
7014 if (numentries
< low_limit
)
7015 numentries
= low_limit
;
7016 if (numentries
> max
)
7019 log2qty
= ilog2(numentries
);
7022 size
= bucketsize
<< log2qty
;
7023 if (flags
& HASH_EARLY
)
7024 table
= memblock_virt_alloc_nopanic(size
, 0);
7026 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
7029 * If bucketsize is not a power-of-two, we may free
7030 * some pages at the end of hash table which
7031 * alloc_pages_exact() automatically does
7033 if (get_order(size
) < MAX_ORDER
) {
7034 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
7035 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
7038 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7041 panic("Failed to allocate %s hash table\n", tablename
);
7043 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7044 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7047 *_hash_shift
= log2qty
;
7049 *_hash_mask
= (1 << log2qty
) - 1;
7055 * This function checks whether pageblock includes unmovable pages or not.
7056 * If @count is not zero, it is okay to include less @count unmovable pages
7058 * PageLRU check without isolation or lru_lock could race so that
7059 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7060 * expect this function should be exact.
7062 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7063 bool skip_hwpoisoned_pages
)
7065 unsigned long pfn
, iter
, found
;
7069 * For avoiding noise data, lru_add_drain_all() should be called
7070 * If ZONE_MOVABLE, the zone never contains unmovable pages
7072 if (zone_idx(zone
) == ZONE_MOVABLE
)
7074 mt
= get_pageblock_migratetype(page
);
7075 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7078 pfn
= page_to_pfn(page
);
7079 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7080 unsigned long check
= pfn
+ iter
;
7082 if (!pfn_valid_within(check
))
7085 page
= pfn_to_page(check
);
7088 * Hugepages are not in LRU lists, but they're movable.
7089 * We need not scan over tail pages bacause we don't
7090 * handle each tail page individually in migration.
7092 if (PageHuge(page
)) {
7093 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7098 * We can't use page_count without pin a page
7099 * because another CPU can free compound page.
7100 * This check already skips compound tails of THP
7101 * because their page->_refcount is zero at all time.
7103 if (!page_ref_count(page
)) {
7104 if (PageBuddy(page
))
7105 iter
+= (1 << page_order(page
)) - 1;
7110 * The HWPoisoned page may be not in buddy system, and
7111 * page_count() is not 0.
7113 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7119 * If there are RECLAIMABLE pages, we need to check
7120 * it. But now, memory offline itself doesn't call
7121 * shrink_node_slabs() and it still to be fixed.
7124 * If the page is not RAM, page_count()should be 0.
7125 * we don't need more check. This is an _used_ not-movable page.
7127 * The problematic thing here is PG_reserved pages. PG_reserved
7128 * is set to both of a memory hole page and a _used_ kernel
7137 bool is_pageblock_removable_nolock(struct page
*page
)
7143 * We have to be careful here because we are iterating over memory
7144 * sections which are not zone aware so we might end up outside of
7145 * the zone but still within the section.
7146 * We have to take care about the node as well. If the node is offline
7147 * its NODE_DATA will be NULL - see page_zone.
7149 if (!node_online(page_to_nid(page
)))
7152 zone
= page_zone(page
);
7153 pfn
= page_to_pfn(page
);
7154 if (!zone_spans_pfn(zone
, pfn
))
7157 return !has_unmovable_pages(zone
, page
, 0, true);
7160 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7162 static unsigned long pfn_max_align_down(unsigned long pfn
)
7164 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7165 pageblock_nr_pages
) - 1);
7168 static unsigned long pfn_max_align_up(unsigned long pfn
)
7170 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7171 pageblock_nr_pages
));
7174 /* [start, end) must belong to a single zone. */
7175 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7176 unsigned long start
, unsigned long end
)
7178 /* This function is based on compact_zone() from compaction.c. */
7179 unsigned long nr_reclaimed
;
7180 unsigned long pfn
= start
;
7181 unsigned int tries
= 0;
7186 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7187 if (fatal_signal_pending(current
)) {
7192 if (list_empty(&cc
->migratepages
)) {
7193 cc
->nr_migratepages
= 0;
7194 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7200 } else if (++tries
== 5) {
7201 ret
= ret
< 0 ? ret
: -EBUSY
;
7205 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7207 cc
->nr_migratepages
-= nr_reclaimed
;
7209 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7210 NULL
, 0, cc
->mode
, MR_CMA
);
7213 putback_movable_pages(&cc
->migratepages
);
7220 * alloc_contig_range() -- tries to allocate given range of pages
7221 * @start: start PFN to allocate
7222 * @end: one-past-the-last PFN to allocate
7223 * @migratetype: migratetype of the underlaying pageblocks (either
7224 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7225 * in range must have the same migratetype and it must
7226 * be either of the two.
7228 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7229 * aligned, however it's the caller's responsibility to guarantee that
7230 * we are the only thread that changes migrate type of pageblocks the
7233 * The PFN range must belong to a single zone.
7235 * Returns zero on success or negative error code. On success all
7236 * pages which PFN is in [start, end) are allocated for the caller and
7237 * need to be freed with free_contig_range().
7239 int alloc_contig_range(unsigned long start
, unsigned long end
,
7240 unsigned migratetype
)
7242 unsigned long outer_start
, outer_end
;
7246 struct compact_control cc
= {
7247 .nr_migratepages
= 0,
7249 .zone
= page_zone(pfn_to_page(start
)),
7250 .mode
= MIGRATE_SYNC
,
7251 .ignore_skip_hint
= true,
7253 INIT_LIST_HEAD(&cc
.migratepages
);
7256 * What we do here is we mark all pageblocks in range as
7257 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7258 * have different sizes, and due to the way page allocator
7259 * work, we align the range to biggest of the two pages so
7260 * that page allocator won't try to merge buddies from
7261 * different pageblocks and change MIGRATE_ISOLATE to some
7262 * other migration type.
7264 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7265 * migrate the pages from an unaligned range (ie. pages that
7266 * we are interested in). This will put all the pages in
7267 * range back to page allocator as MIGRATE_ISOLATE.
7269 * When this is done, we take the pages in range from page
7270 * allocator removing them from the buddy system. This way
7271 * page allocator will never consider using them.
7273 * This lets us mark the pageblocks back as
7274 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7275 * aligned range but not in the unaligned, original range are
7276 * put back to page allocator so that buddy can use them.
7279 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7280 pfn_max_align_up(end
), migratetype
,
7286 * In case of -EBUSY, we'd like to know which page causes problem.
7287 * So, just fall through. We will check it in test_pages_isolated().
7289 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7290 if (ret
&& ret
!= -EBUSY
)
7294 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7295 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7296 * more, all pages in [start, end) are free in page allocator.
7297 * What we are going to do is to allocate all pages from
7298 * [start, end) (that is remove them from page allocator).
7300 * The only problem is that pages at the beginning and at the
7301 * end of interesting range may be not aligned with pages that
7302 * page allocator holds, ie. they can be part of higher order
7303 * pages. Because of this, we reserve the bigger range and
7304 * once this is done free the pages we are not interested in.
7306 * We don't have to hold zone->lock here because the pages are
7307 * isolated thus they won't get removed from buddy.
7310 lru_add_drain_all();
7311 drain_all_pages(cc
.zone
);
7314 outer_start
= start
;
7315 while (!PageBuddy(pfn_to_page(outer_start
))) {
7316 if (++order
>= MAX_ORDER
) {
7317 outer_start
= start
;
7320 outer_start
&= ~0UL << order
;
7323 if (outer_start
!= start
) {
7324 order
= page_order(pfn_to_page(outer_start
));
7327 * outer_start page could be small order buddy page and
7328 * it doesn't include start page. Adjust outer_start
7329 * in this case to report failed page properly
7330 * on tracepoint in test_pages_isolated()
7332 if (outer_start
+ (1UL << order
) <= start
)
7333 outer_start
= start
;
7336 /* Make sure the range is really isolated. */
7337 if (test_pages_isolated(outer_start
, end
, false)) {
7338 pr_info("%s: [%lx, %lx) PFNs busy\n",
7339 __func__
, outer_start
, end
);
7344 /* Grab isolated pages from freelists. */
7345 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7351 /* Free head and tail (if any) */
7352 if (start
!= outer_start
)
7353 free_contig_range(outer_start
, start
- outer_start
);
7354 if (end
!= outer_end
)
7355 free_contig_range(end
, outer_end
- end
);
7358 undo_isolate_page_range(pfn_max_align_down(start
),
7359 pfn_max_align_up(end
), migratetype
);
7363 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7365 unsigned int count
= 0;
7367 for (; nr_pages
--; pfn
++) {
7368 struct page
*page
= pfn_to_page(pfn
);
7370 count
+= page_count(page
) != 1;
7373 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7377 #ifdef CONFIG_MEMORY_HOTPLUG
7379 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7380 * page high values need to be recalulated.
7382 void __meminit
zone_pcp_update(struct zone
*zone
)
7385 mutex_lock(&pcp_batch_high_lock
);
7386 for_each_possible_cpu(cpu
)
7387 pageset_set_high_and_batch(zone
,
7388 per_cpu_ptr(zone
->pageset
, cpu
));
7389 mutex_unlock(&pcp_batch_high_lock
);
7393 void zone_pcp_reset(struct zone
*zone
)
7395 unsigned long flags
;
7397 struct per_cpu_pageset
*pset
;
7399 /* avoid races with drain_pages() */
7400 local_irq_save(flags
);
7401 if (zone
->pageset
!= &boot_pageset
) {
7402 for_each_online_cpu(cpu
) {
7403 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7404 drain_zonestat(zone
, pset
);
7406 free_percpu(zone
->pageset
);
7407 zone
->pageset
= &boot_pageset
;
7409 local_irq_restore(flags
);
7412 #ifdef CONFIG_MEMORY_HOTREMOVE
7414 * All pages in the range must be in a single zone and isolated
7415 * before calling this.
7418 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7422 unsigned int order
, i
;
7424 unsigned long flags
;
7425 /* find the first valid pfn */
7426 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7431 zone
= page_zone(pfn_to_page(pfn
));
7432 spin_lock_irqsave(&zone
->lock
, flags
);
7434 while (pfn
< end_pfn
) {
7435 if (!pfn_valid(pfn
)) {
7439 page
= pfn_to_page(pfn
);
7441 * The HWPoisoned page may be not in buddy system, and
7442 * page_count() is not 0.
7444 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7446 SetPageReserved(page
);
7450 BUG_ON(page_count(page
));
7451 BUG_ON(!PageBuddy(page
));
7452 order
= page_order(page
);
7453 #ifdef CONFIG_DEBUG_VM
7454 pr_info("remove from free list %lx %d %lx\n",
7455 pfn
, 1 << order
, end_pfn
);
7457 list_del(&page
->lru
);
7458 rmv_page_order(page
);
7459 zone
->free_area
[order
].nr_free
--;
7460 for (i
= 0; i
< (1 << order
); i
++)
7461 SetPageReserved((page
+i
));
7462 pfn
+= (1 << order
);
7464 spin_unlock_irqrestore(&zone
->lock
, flags
);
7468 bool is_free_buddy_page(struct page
*page
)
7470 struct zone
*zone
= page_zone(page
);
7471 unsigned long pfn
= page_to_pfn(page
);
7472 unsigned long flags
;
7475 spin_lock_irqsave(&zone
->lock
, flags
);
7476 for (order
= 0; order
< MAX_ORDER
; order
++) {
7477 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7479 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7482 spin_unlock_irqrestore(&zone
->lock
, flags
);
7484 return order
< MAX_ORDER
;