pvrusb2: reduce stack usage pvr2_eeprom_analyze()
[linux/fpc-iii.git] / mm / page_alloc.c
blob56df8c24689db1433a7e0df6ad8903b4b3f8a294
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
100 * Array of node states.
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 [N_CPU] = { { [0] = 1UL } },
114 #endif /* NUMA */
116 EXPORT_SYMBOL(node_states);
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page *page)
138 return page->index;
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143 page->index = migratetype;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
187 static void __free_pages_ok(struct page *page, unsigned int order);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
209 #endif
213 EXPORT_SYMBOL(totalram_pages);
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237 #ifdef CONFIG_CMA
238 "CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242 #endif
245 compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253 #endif
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
284 int page_group_by_mobility_disabled __read_mostly;
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
289 unsigned long max_initialise;
290 unsigned long reserved_lowmem;
293 * Initialise at least 2G of a node but also take into account that
294 * two large system hashes that can take up 1GB for 0.25TB/node.
296 max_initialise = max(2UL << (30 - PAGE_SHIFT),
297 (pgdat->node_spanned_pages >> 8));
300 * Compensate the all the memblock reservations (e.g. crash kernel)
301 * from the initial estimation to make sure we will initialize enough
302 * memory to boot.
304 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
305 pgdat->node_start_pfn + max_initialise);
306 max_initialise += reserved_lowmem;
308 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
309 pgdat->first_deferred_pfn = ULONG_MAX;
312 /* Returns true if the struct page for the pfn is uninitialised */
313 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
315 int nid = early_pfn_to_nid(pfn);
317 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
318 return true;
320 return false;
324 * Returns false when the remaining initialisation should be deferred until
325 * later in the boot cycle when it can be parallelised.
327 static inline bool update_defer_init(pg_data_t *pgdat,
328 unsigned long pfn, unsigned long zone_end,
329 unsigned long *nr_initialised)
331 /* Always populate low zones for address-contrained allocations */
332 if (zone_end < pgdat_end_pfn(pgdat))
333 return true;
334 (*nr_initialised)++;
335 if ((*nr_initialised > pgdat->static_init_size) &&
336 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
337 pgdat->first_deferred_pfn = pfn;
338 return false;
341 return true;
343 #else
344 static inline void reset_deferred_meminit(pg_data_t *pgdat)
348 static inline bool early_page_uninitialised(unsigned long pfn)
350 return false;
353 static inline bool update_defer_init(pg_data_t *pgdat,
354 unsigned long pfn, unsigned long zone_end,
355 unsigned long *nr_initialised)
357 return true;
359 #endif
361 /* Return a pointer to the bitmap storing bits affecting a block of pages */
362 static inline unsigned long *get_pageblock_bitmap(struct page *page,
363 unsigned long pfn)
365 #ifdef CONFIG_SPARSEMEM
366 return __pfn_to_section(pfn)->pageblock_flags;
367 #else
368 return page_zone(page)->pageblock_flags;
369 #endif /* CONFIG_SPARSEMEM */
372 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
374 #ifdef CONFIG_SPARSEMEM
375 pfn &= (PAGES_PER_SECTION-1);
376 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
377 #else
378 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
379 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
380 #endif /* CONFIG_SPARSEMEM */
384 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
385 * @page: The page within the block of interest
386 * @pfn: The target page frame number
387 * @end_bitidx: The last bit of interest to retrieve
388 * @mask: mask of bits that the caller is interested in
390 * Return: pageblock_bits flags
392 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
393 unsigned long pfn,
394 unsigned long end_bitidx,
395 unsigned long mask)
397 unsigned long *bitmap;
398 unsigned long bitidx, word_bitidx;
399 unsigned long word;
401 bitmap = get_pageblock_bitmap(page, pfn);
402 bitidx = pfn_to_bitidx(page, pfn);
403 word_bitidx = bitidx / BITS_PER_LONG;
404 bitidx &= (BITS_PER_LONG-1);
406 word = bitmap[word_bitidx];
407 bitidx += end_bitidx;
408 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
411 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
412 unsigned long end_bitidx,
413 unsigned long mask)
415 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
418 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
420 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
424 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
425 * @page: The page within the block of interest
426 * @flags: The flags to set
427 * @pfn: The target page frame number
428 * @end_bitidx: The last bit of interest
429 * @mask: mask of bits that the caller is interested in
431 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
432 unsigned long pfn,
433 unsigned long end_bitidx,
434 unsigned long mask)
436 unsigned long *bitmap;
437 unsigned long bitidx, word_bitidx;
438 unsigned long old_word, word;
440 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
442 bitmap = get_pageblock_bitmap(page, pfn);
443 bitidx = pfn_to_bitidx(page, pfn);
444 word_bitidx = bitidx / BITS_PER_LONG;
445 bitidx &= (BITS_PER_LONG-1);
447 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
449 bitidx += end_bitidx;
450 mask <<= (BITS_PER_LONG - bitidx - 1);
451 flags <<= (BITS_PER_LONG - bitidx - 1);
453 word = READ_ONCE(bitmap[word_bitidx]);
454 for (;;) {
455 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
456 if (word == old_word)
457 break;
458 word = old_word;
462 void set_pageblock_migratetype(struct page *page, int migratetype)
464 if (unlikely(page_group_by_mobility_disabled &&
465 migratetype < MIGRATE_PCPTYPES))
466 migratetype = MIGRATE_UNMOVABLE;
468 set_pageblock_flags_group(page, (unsigned long)migratetype,
469 PB_migrate, PB_migrate_end);
472 #ifdef CONFIG_DEBUG_VM
473 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
475 int ret = 0;
476 unsigned seq;
477 unsigned long pfn = page_to_pfn(page);
478 unsigned long sp, start_pfn;
480 do {
481 seq = zone_span_seqbegin(zone);
482 start_pfn = zone->zone_start_pfn;
483 sp = zone->spanned_pages;
484 if (!zone_spans_pfn(zone, pfn))
485 ret = 1;
486 } while (zone_span_seqretry(zone, seq));
488 if (ret)
489 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
490 pfn, zone_to_nid(zone), zone->name,
491 start_pfn, start_pfn + sp);
493 return ret;
496 static int page_is_consistent(struct zone *zone, struct page *page)
498 if (!pfn_valid_within(page_to_pfn(page)))
499 return 0;
500 if (zone != page_zone(page))
501 return 0;
503 return 1;
506 * Temporary debugging check for pages not lying within a given zone.
508 static int bad_range(struct zone *zone, struct page *page)
510 if (page_outside_zone_boundaries(zone, page))
511 return 1;
512 if (!page_is_consistent(zone, page))
513 return 1;
515 return 0;
517 #else
518 static inline int bad_range(struct zone *zone, struct page *page)
520 return 0;
522 #endif
524 static void bad_page(struct page *page, const char *reason,
525 unsigned long bad_flags)
527 static unsigned long resume;
528 static unsigned long nr_shown;
529 static unsigned long nr_unshown;
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
540 if (nr_unshown) {
541 pr_alert(
542 "BUG: Bad page state: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
546 nr_shown = 0;
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
552 current->comm, page_to_pfn(page));
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
558 dump_page_owner(page);
560 print_modules();
561 dump_stack();
562 out:
563 /* Leave bad fields for debug, except PageBuddy could make trouble */
564 page_mapcount_reset(page); /* remove PageBuddy */
565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
569 * Higher-order pages are called "compound pages". They are structured thusly:
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
583 void free_compound_page(struct page *page)
585 __free_pages_ok(page, compound_order(page));
588 void prep_compound_page(struct page *page, unsigned int order)
590 int i;
591 int nr_pages = 1 << order;
593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
598 set_page_count(p, 0);
599 p->mapping = TAIL_MAPPING;
600 set_compound_head(p, page);
602 atomic_set(compound_mapcount_ptr(page), -1);
605 #ifdef CONFIG_DEBUG_PAGEALLOC
606 unsigned int _debug_guardpage_minorder;
607 bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
609 EXPORT_SYMBOL(_debug_pagealloc_enabled);
610 bool _debug_guardpage_enabled __read_mostly;
612 static int __init early_debug_pagealloc(char *buf)
614 if (!buf)
615 return -EINVAL;
616 return kstrtobool(buf, &_debug_pagealloc_enabled);
618 early_param("debug_pagealloc", early_debug_pagealloc);
620 static bool need_debug_guardpage(void)
622 /* If we don't use debug_pagealloc, we don't need guard page */
623 if (!debug_pagealloc_enabled())
624 return false;
626 if (!debug_guardpage_minorder())
627 return false;
629 return true;
632 static void init_debug_guardpage(void)
634 if (!debug_pagealloc_enabled())
635 return;
637 if (!debug_guardpage_minorder())
638 return;
640 _debug_guardpage_enabled = true;
643 struct page_ext_operations debug_guardpage_ops = {
644 .need = need_debug_guardpage,
645 .init = init_debug_guardpage,
648 static int __init debug_guardpage_minorder_setup(char *buf)
650 unsigned long res;
652 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
653 pr_err("Bad debug_guardpage_minorder value\n");
654 return 0;
656 _debug_guardpage_minorder = res;
657 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
658 return 0;
660 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
662 static inline bool set_page_guard(struct zone *zone, struct page *page,
663 unsigned int order, int migratetype)
665 struct page_ext *page_ext;
667 if (!debug_guardpage_enabled())
668 return false;
670 if (order >= debug_guardpage_minorder())
671 return false;
673 page_ext = lookup_page_ext(page);
674 if (unlikely(!page_ext))
675 return false;
677 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
679 INIT_LIST_HEAD(&page->lru);
680 set_page_private(page, order);
681 /* Guard pages are not available for any usage */
682 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
684 return true;
687 static inline void clear_page_guard(struct zone *zone, struct page *page,
688 unsigned int order, int migratetype)
690 struct page_ext *page_ext;
692 if (!debug_guardpage_enabled())
693 return;
695 page_ext = lookup_page_ext(page);
696 if (unlikely(!page_ext))
697 return;
699 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
701 set_page_private(page, 0);
702 if (!is_migrate_isolate(migratetype))
703 __mod_zone_freepage_state(zone, (1 << order), migratetype);
705 #else
706 struct page_ext_operations debug_guardpage_ops;
707 static inline bool set_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype) { return false; }
709 static inline void clear_page_guard(struct zone *zone, struct page *page,
710 unsigned int order, int migratetype) {}
711 #endif
713 static inline void set_page_order(struct page *page, unsigned int order)
715 set_page_private(page, order);
716 __SetPageBuddy(page);
719 static inline void rmv_page_order(struct page *page)
721 __ClearPageBuddy(page);
722 set_page_private(page, 0);
726 * This function checks whether a page is free && is the buddy
727 * we can do coalesce a page and its buddy if
728 * (a) the buddy is not in a hole &&
729 * (b) the buddy is in the buddy system &&
730 * (c) a page and its buddy have the same order &&
731 * (d) a page and its buddy are in the same zone.
733 * For recording whether a page is in the buddy system, we set ->_mapcount
734 * PAGE_BUDDY_MAPCOUNT_VALUE.
735 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
736 * serialized by zone->lock.
738 * For recording page's order, we use page_private(page).
740 static inline int page_is_buddy(struct page *page, struct page *buddy,
741 unsigned int order)
743 if (!pfn_valid_within(page_to_pfn(buddy)))
744 return 0;
746 if (page_is_guard(buddy) && page_order(buddy) == order) {
747 if (page_zone_id(page) != page_zone_id(buddy))
748 return 0;
750 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752 return 1;
755 if (PageBuddy(buddy) && page_order(buddy) == order) {
757 * zone check is done late to avoid uselessly
758 * calculating zone/node ids for pages that could
759 * never merge.
761 if (page_zone_id(page) != page_zone_id(buddy))
762 return 0;
764 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
766 return 1;
768 return 0;
772 * Freeing function for a buddy system allocator.
774 * The concept of a buddy system is to maintain direct-mapped table
775 * (containing bit values) for memory blocks of various "orders".
776 * The bottom level table contains the map for the smallest allocatable
777 * units of memory (here, pages), and each level above it describes
778 * pairs of units from the levels below, hence, "buddies".
779 * At a high level, all that happens here is marking the table entry
780 * at the bottom level available, and propagating the changes upward
781 * as necessary, plus some accounting needed to play nicely with other
782 * parts of the VM system.
783 * At each level, we keep a list of pages, which are heads of continuous
784 * free pages of length of (1 << order) and marked with _mapcount
785 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
786 * field.
787 * So when we are allocating or freeing one, we can derive the state of the
788 * other. That is, if we allocate a small block, and both were
789 * free, the remainder of the region must be split into blocks.
790 * If a block is freed, and its buddy is also free, then this
791 * triggers coalescing into a block of larger size.
793 * -- nyc
796 static inline void __free_one_page(struct page *page,
797 unsigned long pfn,
798 struct zone *zone, unsigned int order,
799 int migratetype)
801 unsigned long page_idx;
802 unsigned long combined_idx;
803 unsigned long uninitialized_var(buddy_idx);
804 struct page *buddy;
805 unsigned int max_order;
807 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
809 VM_BUG_ON(!zone_is_initialized(zone));
810 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
812 VM_BUG_ON(migratetype == -1);
813 if (likely(!is_migrate_isolate(migratetype)))
814 __mod_zone_freepage_state(zone, 1 << order, migratetype);
816 page_idx = pfn & ((1 << MAX_ORDER) - 1);
818 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
821 continue_merging:
822 while (order < max_order - 1) {
823 buddy_idx = __find_buddy_index(page_idx, order);
824 buddy = page + (buddy_idx - page_idx);
825 if (!page_is_buddy(page, buddy, order))
826 goto done_merging;
828 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
829 * merge with it and move up one order.
831 if (page_is_guard(buddy)) {
832 clear_page_guard(zone, buddy, order, migratetype);
833 } else {
834 list_del(&buddy->lru);
835 zone->free_area[order].nr_free--;
836 rmv_page_order(buddy);
838 combined_idx = buddy_idx & page_idx;
839 page = page + (combined_idx - page_idx);
840 page_idx = combined_idx;
841 order++;
843 if (max_order < MAX_ORDER) {
844 /* If we are here, it means order is >= pageblock_order.
845 * We want to prevent merge between freepages on isolate
846 * pageblock and normal pageblock. Without this, pageblock
847 * isolation could cause incorrect freepage or CMA accounting.
849 * We don't want to hit this code for the more frequent
850 * low-order merging.
852 if (unlikely(has_isolate_pageblock(zone))) {
853 int buddy_mt;
855 buddy_idx = __find_buddy_index(page_idx, order);
856 buddy = page + (buddy_idx - page_idx);
857 buddy_mt = get_pageblock_migratetype(buddy);
859 if (migratetype != buddy_mt
860 && (is_migrate_isolate(migratetype) ||
861 is_migrate_isolate(buddy_mt)))
862 goto done_merging;
864 max_order++;
865 goto continue_merging;
868 done_merging:
869 set_page_order(page, order);
872 * If this is not the largest possible page, check if the buddy
873 * of the next-highest order is free. If it is, it's possible
874 * that pages are being freed that will coalesce soon. In case,
875 * that is happening, add the free page to the tail of the list
876 * so it's less likely to be used soon and more likely to be merged
877 * as a higher order page
879 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
880 struct page *higher_page, *higher_buddy;
881 combined_idx = buddy_idx & page_idx;
882 higher_page = page + (combined_idx - page_idx);
883 buddy_idx = __find_buddy_index(combined_idx, order + 1);
884 higher_buddy = higher_page + (buddy_idx - combined_idx);
885 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
886 list_add_tail(&page->lru,
887 &zone->free_area[order].free_list[migratetype]);
888 goto out;
892 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
893 out:
894 zone->free_area[order].nr_free++;
898 * A bad page could be due to a number of fields. Instead of multiple branches,
899 * try and check multiple fields with one check. The caller must do a detailed
900 * check if necessary.
902 static inline bool page_expected_state(struct page *page,
903 unsigned long check_flags)
905 if (unlikely(atomic_read(&page->_mapcount) != -1))
906 return false;
908 if (unlikely((unsigned long)page->mapping |
909 page_ref_count(page) |
910 #ifdef CONFIG_MEMCG
911 (unsigned long)page->mem_cgroup |
912 #endif
913 (page->flags & check_flags)))
914 return false;
916 return true;
919 static void free_pages_check_bad(struct page *page)
921 const char *bad_reason;
922 unsigned long bad_flags;
924 bad_reason = NULL;
925 bad_flags = 0;
927 if (unlikely(atomic_read(&page->_mapcount) != -1))
928 bad_reason = "nonzero mapcount";
929 if (unlikely(page->mapping != NULL))
930 bad_reason = "non-NULL mapping";
931 if (unlikely(page_ref_count(page) != 0))
932 bad_reason = "nonzero _refcount";
933 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
934 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
935 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
937 #ifdef CONFIG_MEMCG
938 if (unlikely(page->mem_cgroup))
939 bad_reason = "page still charged to cgroup";
940 #endif
941 bad_page(page, bad_reason, bad_flags);
944 static inline int free_pages_check(struct page *page)
946 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
947 return 0;
949 /* Something has gone sideways, find it */
950 free_pages_check_bad(page);
951 return 1;
954 static int free_tail_pages_check(struct page *head_page, struct page *page)
956 int ret = 1;
959 * We rely page->lru.next never has bit 0 set, unless the page
960 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
962 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
964 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
965 ret = 0;
966 goto out;
968 switch (page - head_page) {
969 case 1:
970 /* the first tail page: ->mapping is compound_mapcount() */
971 if (unlikely(compound_mapcount(page))) {
972 bad_page(page, "nonzero compound_mapcount", 0);
973 goto out;
975 break;
976 case 2:
978 * the second tail page: ->mapping is
979 * page_deferred_list().next -- ignore value.
981 break;
982 default:
983 if (page->mapping != TAIL_MAPPING) {
984 bad_page(page, "corrupted mapping in tail page", 0);
985 goto out;
987 break;
989 if (unlikely(!PageTail(page))) {
990 bad_page(page, "PageTail not set", 0);
991 goto out;
993 if (unlikely(compound_head(page) != head_page)) {
994 bad_page(page, "compound_head not consistent", 0);
995 goto out;
997 ret = 0;
998 out:
999 page->mapping = NULL;
1000 clear_compound_head(page);
1001 return ret;
1004 static __always_inline bool free_pages_prepare(struct page *page,
1005 unsigned int order, bool check_free)
1007 int bad = 0;
1009 VM_BUG_ON_PAGE(PageTail(page), page);
1011 trace_mm_page_free(page, order);
1012 kmemcheck_free_shadow(page, order);
1015 * Check tail pages before head page information is cleared to
1016 * avoid checking PageCompound for order-0 pages.
1018 if (unlikely(order)) {
1019 bool compound = PageCompound(page);
1020 int i;
1022 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1024 if (compound)
1025 ClearPageDoubleMap(page);
1026 for (i = 1; i < (1 << order); i++) {
1027 if (compound)
1028 bad += free_tail_pages_check(page, page + i);
1029 if (unlikely(free_pages_check(page + i))) {
1030 bad++;
1031 continue;
1033 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 if (PageMappingFlags(page))
1037 page->mapping = NULL;
1038 if (memcg_kmem_enabled() && PageKmemcg(page))
1039 memcg_kmem_uncharge(page, order);
1040 if (check_free)
1041 bad += free_pages_check(page);
1042 if (bad)
1043 return false;
1045 page_cpupid_reset_last(page);
1046 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1047 reset_page_owner(page, order);
1049 if (!PageHighMem(page)) {
1050 debug_check_no_locks_freed(page_address(page),
1051 PAGE_SIZE << order);
1052 debug_check_no_obj_freed(page_address(page),
1053 PAGE_SIZE << order);
1055 arch_free_page(page, order);
1056 kernel_poison_pages(page, 1 << order, 0);
1057 kernel_map_pages(page, 1 << order, 0);
1058 kasan_free_pages(page, order);
1060 return true;
1063 #ifdef CONFIG_DEBUG_VM
1064 static inline bool free_pcp_prepare(struct page *page)
1066 return free_pages_prepare(page, 0, true);
1069 static inline bool bulkfree_pcp_prepare(struct page *page)
1071 return false;
1073 #else
1074 static bool free_pcp_prepare(struct page *page)
1076 return free_pages_prepare(page, 0, false);
1079 static bool bulkfree_pcp_prepare(struct page *page)
1081 return free_pages_check(page);
1083 #endif /* CONFIG_DEBUG_VM */
1086 * Frees a number of pages from the PCP lists
1087 * Assumes all pages on list are in same zone, and of same order.
1088 * count is the number of pages to free.
1090 * If the zone was previously in an "all pages pinned" state then look to
1091 * see if this freeing clears that state.
1093 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1094 * pinned" detection logic.
1096 static void free_pcppages_bulk(struct zone *zone, int count,
1097 struct per_cpu_pages *pcp)
1099 int migratetype = 0;
1100 int batch_free = 0;
1101 unsigned long nr_scanned;
1102 bool isolated_pageblocks;
1104 spin_lock(&zone->lock);
1105 isolated_pageblocks = has_isolate_pageblock(zone);
1106 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1107 if (nr_scanned)
1108 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1110 while (count) {
1111 struct page *page;
1112 struct list_head *list;
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1119 * lists
1121 do {
1122 batch_free++;
1123 if (++migratetype == MIGRATE_PCPTYPES)
1124 migratetype = 0;
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
1130 batch_free = count;
1132 do {
1133 int mt; /* migratetype of the to-be-freed page */
1135 page = list_last_entry(list, struct page, lru);
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
1139 mt = get_pcppage_migratetype(page);
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
1143 if (unlikely(isolated_pageblocks))
1144 mt = get_pageblock_migratetype(page);
1146 if (bulkfree_pcp_prepare(page))
1147 continue;
1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1150 trace_mm_page_pcpu_drain(page, 0, mt);
1151 } while (--count && --batch_free && !list_empty(list));
1153 spin_unlock(&zone->lock);
1156 static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
1158 unsigned int order,
1159 int migratetype)
1161 unsigned long nr_scanned;
1162 spin_lock(&zone->lock);
1163 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1164 if (nr_scanned)
1165 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1167 if (unlikely(has_isolate_pageblock(zone) ||
1168 is_migrate_isolate(migratetype))) {
1169 migratetype = get_pfnblock_migratetype(page, pfn);
1171 __free_one_page(page, pfn, zone, order, migratetype);
1172 spin_unlock(&zone->lock);
1175 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1176 unsigned long zone, int nid)
1178 set_page_links(page, zone, nid, pfn);
1179 init_page_count(page);
1180 page_mapcount_reset(page);
1181 page_cpupid_reset_last(page);
1183 INIT_LIST_HEAD(&page->lru);
1184 #ifdef WANT_PAGE_VIRTUAL
1185 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186 if (!is_highmem_idx(zone))
1187 set_page_address(page, __va(pfn << PAGE_SHIFT));
1188 #endif
1191 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1192 int nid)
1194 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1197 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1198 static void init_reserved_page(unsigned long pfn)
1200 pg_data_t *pgdat;
1201 int nid, zid;
1203 if (!early_page_uninitialised(pfn))
1204 return;
1206 nid = early_pfn_to_nid(pfn);
1207 pgdat = NODE_DATA(nid);
1209 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1210 struct zone *zone = &pgdat->node_zones[zid];
1212 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1213 break;
1215 __init_single_pfn(pfn, zid, nid);
1217 #else
1218 static inline void init_reserved_page(unsigned long pfn)
1221 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1224 * Initialised pages do not have PageReserved set. This function is
1225 * called for each range allocated by the bootmem allocator and
1226 * marks the pages PageReserved. The remaining valid pages are later
1227 * sent to the buddy page allocator.
1229 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1231 unsigned long start_pfn = PFN_DOWN(start);
1232 unsigned long end_pfn = PFN_UP(end);
1234 for (; start_pfn < end_pfn; start_pfn++) {
1235 if (pfn_valid(start_pfn)) {
1236 struct page *page = pfn_to_page(start_pfn);
1238 init_reserved_page(start_pfn);
1240 /* Avoid false-positive PageTail() */
1241 INIT_LIST_HEAD(&page->lru);
1243 SetPageReserved(page);
1248 static void __free_pages_ok(struct page *page, unsigned int order)
1250 unsigned long flags;
1251 int migratetype;
1252 unsigned long pfn = page_to_pfn(page);
1254 if (!free_pages_prepare(page, order, true))
1255 return;
1257 migratetype = get_pfnblock_migratetype(page, pfn);
1258 local_irq_save(flags);
1259 __count_vm_events(PGFREE, 1 << order);
1260 free_one_page(page_zone(page), page, pfn, order, migratetype);
1261 local_irq_restore(flags);
1264 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1266 unsigned int nr_pages = 1 << order;
1267 struct page *p = page;
1268 unsigned int loop;
1270 prefetchw(p);
1271 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1272 prefetchw(p + 1);
1273 __ClearPageReserved(p);
1274 set_page_count(p, 0);
1276 __ClearPageReserved(p);
1277 set_page_count(p, 0);
1279 page_zone(page)->managed_pages += nr_pages;
1280 set_page_refcounted(page);
1281 __free_pages(page, order);
1284 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1285 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1287 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1289 int __meminit early_pfn_to_nid(unsigned long pfn)
1291 static DEFINE_SPINLOCK(early_pfn_lock);
1292 int nid;
1294 spin_lock(&early_pfn_lock);
1295 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1296 if (nid < 0)
1297 nid = first_online_node;
1298 spin_unlock(&early_pfn_lock);
1300 return nid;
1302 #endif
1304 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1305 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1306 struct mminit_pfnnid_cache *state)
1308 int nid;
1310 nid = __early_pfn_to_nid(pfn, state);
1311 if (nid >= 0 && nid != node)
1312 return false;
1313 return true;
1316 /* Only safe to use early in boot when initialisation is single-threaded */
1317 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1322 #else
1324 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1326 return true;
1328 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1329 struct mminit_pfnnid_cache *state)
1331 return true;
1333 #endif
1336 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1337 unsigned int order)
1339 if (early_page_uninitialised(pfn))
1340 return;
1341 return __free_pages_boot_core(page, order);
1345 * Check that the whole (or subset of) a pageblock given by the interval of
1346 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1347 * with the migration of free compaction scanner. The scanners then need to
1348 * use only pfn_valid_within() check for arches that allow holes within
1349 * pageblocks.
1351 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1353 * It's possible on some configurations to have a setup like node0 node1 node0
1354 * i.e. it's possible that all pages within a zones range of pages do not
1355 * belong to a single zone. We assume that a border between node0 and node1
1356 * can occur within a single pageblock, but not a node0 node1 node0
1357 * interleaving within a single pageblock. It is therefore sufficient to check
1358 * the first and last page of a pageblock and avoid checking each individual
1359 * page in a pageblock.
1361 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1362 unsigned long end_pfn, struct zone *zone)
1364 struct page *start_page;
1365 struct page *end_page;
1367 /* end_pfn is one past the range we are checking */
1368 end_pfn--;
1370 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1371 return NULL;
1373 start_page = pfn_to_page(start_pfn);
1375 if (page_zone(start_page) != zone)
1376 return NULL;
1378 end_page = pfn_to_page(end_pfn);
1380 /* This gives a shorter code than deriving page_zone(end_page) */
1381 if (page_zone_id(start_page) != page_zone_id(end_page))
1382 return NULL;
1384 return start_page;
1387 void set_zone_contiguous(struct zone *zone)
1389 unsigned long block_start_pfn = zone->zone_start_pfn;
1390 unsigned long block_end_pfn;
1392 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1393 for (; block_start_pfn < zone_end_pfn(zone);
1394 block_start_pfn = block_end_pfn,
1395 block_end_pfn += pageblock_nr_pages) {
1397 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1399 if (!__pageblock_pfn_to_page(block_start_pfn,
1400 block_end_pfn, zone))
1401 return;
1404 /* We confirm that there is no hole */
1405 zone->contiguous = true;
1408 void clear_zone_contiguous(struct zone *zone)
1410 zone->contiguous = false;
1413 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1414 static void __init deferred_free_range(struct page *page,
1415 unsigned long pfn, int nr_pages)
1417 int i;
1419 if (!page)
1420 return;
1422 /* Free a large naturally-aligned chunk if possible */
1423 if (nr_pages == pageblock_nr_pages &&
1424 (pfn & (pageblock_nr_pages - 1)) == 0) {
1425 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1426 __free_pages_boot_core(page, pageblock_order);
1427 return;
1430 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1431 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1432 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1433 __free_pages_boot_core(page, 0);
1437 /* Completion tracking for deferred_init_memmap() threads */
1438 static atomic_t pgdat_init_n_undone __initdata;
1439 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441 static inline void __init pgdat_init_report_one_done(void)
1443 if (atomic_dec_and_test(&pgdat_init_n_undone))
1444 complete(&pgdat_init_all_done_comp);
1447 /* Initialise remaining memory on a node */
1448 static int __init deferred_init_memmap(void *data)
1450 pg_data_t *pgdat = data;
1451 int nid = pgdat->node_id;
1452 struct mminit_pfnnid_cache nid_init_state = { };
1453 unsigned long start = jiffies;
1454 unsigned long nr_pages = 0;
1455 unsigned long walk_start, walk_end;
1456 int i, zid;
1457 struct zone *zone;
1458 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1459 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1461 if (first_init_pfn == ULONG_MAX) {
1462 pgdat_init_report_one_done();
1463 return 0;
1466 /* Bind memory initialisation thread to a local node if possible */
1467 if (!cpumask_empty(cpumask))
1468 set_cpus_allowed_ptr(current, cpumask);
1470 /* Sanity check boundaries */
1471 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1472 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1473 pgdat->first_deferred_pfn = ULONG_MAX;
1475 /* Only the highest zone is deferred so find it */
1476 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1477 zone = pgdat->node_zones + zid;
1478 if (first_init_pfn < zone_end_pfn(zone))
1479 break;
1482 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1483 unsigned long pfn, end_pfn;
1484 struct page *page = NULL;
1485 struct page *free_base_page = NULL;
1486 unsigned long free_base_pfn = 0;
1487 int nr_to_free = 0;
1489 end_pfn = min(walk_end, zone_end_pfn(zone));
1490 pfn = first_init_pfn;
1491 if (pfn < walk_start)
1492 pfn = walk_start;
1493 if (pfn < zone->zone_start_pfn)
1494 pfn = zone->zone_start_pfn;
1496 for (; pfn < end_pfn; pfn++) {
1497 if (!pfn_valid_within(pfn))
1498 goto free_range;
1501 * Ensure pfn_valid is checked every
1502 * pageblock_nr_pages for memory holes
1504 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1505 if (!pfn_valid(pfn)) {
1506 page = NULL;
1507 goto free_range;
1511 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1512 page = NULL;
1513 goto free_range;
1516 /* Minimise pfn page lookups and scheduler checks */
1517 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1518 page++;
1519 } else {
1520 nr_pages += nr_to_free;
1521 deferred_free_range(free_base_page,
1522 free_base_pfn, nr_to_free);
1523 free_base_page = NULL;
1524 free_base_pfn = nr_to_free = 0;
1526 page = pfn_to_page(pfn);
1527 cond_resched();
1530 if (page->flags) {
1531 VM_BUG_ON(page_zone(page) != zone);
1532 goto free_range;
1535 __init_single_page(page, pfn, zid, nid);
1536 if (!free_base_page) {
1537 free_base_page = page;
1538 free_base_pfn = pfn;
1539 nr_to_free = 0;
1541 nr_to_free++;
1543 /* Where possible, batch up pages for a single free */
1544 continue;
1545 free_range:
1546 /* Free the current block of pages to allocator */
1547 nr_pages += nr_to_free;
1548 deferred_free_range(free_base_page, free_base_pfn,
1549 nr_to_free);
1550 free_base_page = NULL;
1551 free_base_pfn = nr_to_free = 0;
1553 /* Free the last block of pages to allocator */
1554 nr_pages += nr_to_free;
1555 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1557 first_init_pfn = max(end_pfn, first_init_pfn);
1560 /* Sanity check that the next zone really is unpopulated */
1561 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1563 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1564 jiffies_to_msecs(jiffies - start));
1566 pgdat_init_report_one_done();
1567 return 0;
1569 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1571 void __init page_alloc_init_late(void)
1573 struct zone *zone;
1575 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1576 int nid;
1578 /* There will be num_node_state(N_MEMORY) threads */
1579 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1580 for_each_node_state(nid, N_MEMORY) {
1581 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1584 /* Block until all are initialised */
1585 wait_for_completion(&pgdat_init_all_done_comp);
1587 /* Reinit limits that are based on free pages after the kernel is up */
1588 files_maxfiles_init();
1589 #endif
1591 for_each_populated_zone(zone)
1592 set_zone_contiguous(zone);
1595 #ifdef CONFIG_CMA
1596 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1597 void __init init_cma_reserved_pageblock(struct page *page)
1599 unsigned i = pageblock_nr_pages;
1600 struct page *p = page;
1602 do {
1603 __ClearPageReserved(p);
1604 set_page_count(p, 0);
1605 } while (++p, --i);
1607 set_pageblock_migratetype(page, MIGRATE_CMA);
1609 if (pageblock_order >= MAX_ORDER) {
1610 i = pageblock_nr_pages;
1611 p = page;
1612 do {
1613 set_page_refcounted(p);
1614 __free_pages(p, MAX_ORDER - 1);
1615 p += MAX_ORDER_NR_PAGES;
1616 } while (i -= MAX_ORDER_NR_PAGES);
1617 } else {
1618 set_page_refcounted(page);
1619 __free_pages(page, pageblock_order);
1622 adjust_managed_page_count(page, pageblock_nr_pages);
1624 #endif
1627 * The order of subdivision here is critical for the IO subsystem.
1628 * Please do not alter this order without good reasons and regression
1629 * testing. Specifically, as large blocks of memory are subdivided,
1630 * the order in which smaller blocks are delivered depends on the order
1631 * they're subdivided in this function. This is the primary factor
1632 * influencing the order in which pages are delivered to the IO
1633 * subsystem according to empirical testing, and this is also justified
1634 * by considering the behavior of a buddy system containing a single
1635 * large block of memory acted on by a series of small allocations.
1636 * This behavior is a critical factor in sglist merging's success.
1638 * -- nyc
1640 static inline void expand(struct zone *zone, struct page *page,
1641 int low, int high, struct free_area *area,
1642 int migratetype)
1644 unsigned long size = 1 << high;
1646 while (high > low) {
1647 area--;
1648 high--;
1649 size >>= 1;
1650 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1653 * Mark as guard pages (or page), that will allow to
1654 * merge back to allocator when buddy will be freed.
1655 * Corresponding page table entries will not be touched,
1656 * pages will stay not present in virtual address space
1658 if (set_page_guard(zone, &page[size], high, migratetype))
1659 continue;
1661 list_add(&page[size].lru, &area->free_list[migratetype]);
1662 area->nr_free++;
1663 set_page_order(&page[size], high);
1667 static void check_new_page_bad(struct page *page)
1669 const char *bad_reason = NULL;
1670 unsigned long bad_flags = 0;
1672 if (unlikely(atomic_read(&page->_mapcount) != -1))
1673 bad_reason = "nonzero mapcount";
1674 if (unlikely(page->mapping != NULL))
1675 bad_reason = "non-NULL mapping";
1676 if (unlikely(page_ref_count(page) != 0))
1677 bad_reason = "nonzero _count";
1678 if (unlikely(page->flags & __PG_HWPOISON)) {
1679 bad_reason = "HWPoisoned (hardware-corrupted)";
1680 bad_flags = __PG_HWPOISON;
1681 /* Don't complain about hwpoisoned pages */
1682 page_mapcount_reset(page); /* remove PageBuddy */
1683 return;
1685 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1686 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1687 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1689 #ifdef CONFIG_MEMCG
1690 if (unlikely(page->mem_cgroup))
1691 bad_reason = "page still charged to cgroup";
1692 #endif
1693 bad_page(page, bad_reason, bad_flags);
1697 * This page is about to be returned from the page allocator
1699 static inline int check_new_page(struct page *page)
1701 if (likely(page_expected_state(page,
1702 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1703 return 0;
1705 check_new_page_bad(page);
1706 return 1;
1709 static inline bool free_pages_prezeroed(bool poisoned)
1711 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1712 page_poisoning_enabled() && poisoned;
1715 #ifdef CONFIG_DEBUG_VM
1716 static bool check_pcp_refill(struct page *page)
1718 return false;
1721 static bool check_new_pcp(struct page *page)
1723 return check_new_page(page);
1725 #else
1726 static bool check_pcp_refill(struct page *page)
1728 return check_new_page(page);
1730 static bool check_new_pcp(struct page *page)
1732 return false;
1734 #endif /* CONFIG_DEBUG_VM */
1736 static bool check_new_pages(struct page *page, unsigned int order)
1738 int i;
1739 for (i = 0; i < (1 << order); i++) {
1740 struct page *p = page + i;
1742 if (unlikely(check_new_page(p)))
1743 return true;
1746 return false;
1749 inline void post_alloc_hook(struct page *page, unsigned int order,
1750 gfp_t gfp_flags)
1752 set_page_private(page, 0);
1753 set_page_refcounted(page);
1755 arch_alloc_page(page, order);
1756 kernel_map_pages(page, 1 << order, 1);
1757 kernel_poison_pages(page, 1 << order, 1);
1758 kasan_alloc_pages(page, order);
1759 set_page_owner(page, order, gfp_flags);
1762 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1763 unsigned int alloc_flags)
1765 int i;
1766 bool poisoned = true;
1768 for (i = 0; i < (1 << order); i++) {
1769 struct page *p = page + i;
1770 if (poisoned)
1771 poisoned &= page_is_poisoned(p);
1774 post_alloc_hook(page, order, gfp_flags);
1776 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1777 for (i = 0; i < (1 << order); i++)
1778 clear_highpage(page + i);
1780 if (order && (gfp_flags & __GFP_COMP))
1781 prep_compound_page(page, order);
1784 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1785 * allocate the page. The expectation is that the caller is taking
1786 * steps that will free more memory. The caller should avoid the page
1787 * being used for !PFMEMALLOC purposes.
1789 if (alloc_flags & ALLOC_NO_WATERMARKS)
1790 set_page_pfmemalloc(page);
1791 else
1792 clear_page_pfmemalloc(page);
1796 * Go through the free lists for the given migratetype and remove
1797 * the smallest available page from the freelists
1799 static inline
1800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1801 int migratetype)
1803 unsigned int current_order;
1804 struct free_area *area;
1805 struct page *page;
1807 /* Find a page of the appropriate size in the preferred list */
1808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1809 area = &(zone->free_area[current_order]);
1810 page = list_first_entry_or_null(&area->free_list[migratetype],
1811 struct page, lru);
1812 if (!page)
1813 continue;
1814 list_del(&page->lru);
1815 rmv_page_order(page);
1816 area->nr_free--;
1817 expand(zone, page, order, current_order, area, migratetype);
1818 set_pcppage_migratetype(page, migratetype);
1819 return page;
1822 return NULL;
1827 * This array describes the order lists are fallen back to when
1828 * the free lists for the desirable migrate type are depleted
1830 static int fallbacks[MIGRATE_TYPES][4] = {
1831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1834 #ifdef CONFIG_CMA
1835 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1836 #endif
1837 #ifdef CONFIG_MEMORY_ISOLATION
1838 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1839 #endif
1842 #ifdef CONFIG_CMA
1843 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1844 unsigned int order)
1846 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1848 #else
1849 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1850 unsigned int order) { return NULL; }
1851 #endif
1854 * Move the free pages in a range to the free lists of the requested type.
1855 * Note that start_page and end_pages are not aligned on a pageblock
1856 * boundary. If alignment is required, use move_freepages_block()
1858 int move_freepages(struct zone *zone,
1859 struct page *start_page, struct page *end_page,
1860 int migratetype)
1862 struct page *page;
1863 unsigned int order;
1864 int pages_moved = 0;
1866 #ifndef CONFIG_HOLES_IN_ZONE
1868 * page_zone is not safe to call in this context when
1869 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1870 * anyway as we check zone boundaries in move_freepages_block().
1871 * Remove at a later date when no bug reports exist related to
1872 * grouping pages by mobility
1874 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1875 #endif
1877 for (page = start_page; page <= end_page;) {
1878 /* Make sure we are not inadvertently changing nodes */
1879 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1881 if (!pfn_valid_within(page_to_pfn(page))) {
1882 page++;
1883 continue;
1886 if (!PageBuddy(page)) {
1887 page++;
1888 continue;
1891 order = page_order(page);
1892 list_move(&page->lru,
1893 &zone->free_area[order].free_list[migratetype]);
1894 page += 1 << order;
1895 pages_moved += 1 << order;
1898 return pages_moved;
1901 int move_freepages_block(struct zone *zone, struct page *page,
1902 int migratetype)
1904 unsigned long start_pfn, end_pfn;
1905 struct page *start_page, *end_page;
1907 start_pfn = page_to_pfn(page);
1908 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1909 start_page = pfn_to_page(start_pfn);
1910 end_page = start_page + pageblock_nr_pages - 1;
1911 end_pfn = start_pfn + pageblock_nr_pages - 1;
1913 /* Do not cross zone boundaries */
1914 if (!zone_spans_pfn(zone, start_pfn))
1915 start_page = page;
1916 if (!zone_spans_pfn(zone, end_pfn))
1917 return 0;
1919 return move_freepages(zone, start_page, end_page, migratetype);
1922 static void change_pageblock_range(struct page *pageblock_page,
1923 int start_order, int migratetype)
1925 int nr_pageblocks = 1 << (start_order - pageblock_order);
1927 while (nr_pageblocks--) {
1928 set_pageblock_migratetype(pageblock_page, migratetype);
1929 pageblock_page += pageblock_nr_pages;
1934 * When we are falling back to another migratetype during allocation, try to
1935 * steal extra free pages from the same pageblocks to satisfy further
1936 * allocations, instead of polluting multiple pageblocks.
1938 * If we are stealing a relatively large buddy page, it is likely there will
1939 * be more free pages in the pageblock, so try to steal them all. For
1940 * reclaimable and unmovable allocations, we steal regardless of page size,
1941 * as fragmentation caused by those allocations polluting movable pageblocks
1942 * is worse than movable allocations stealing from unmovable and reclaimable
1943 * pageblocks.
1945 static bool can_steal_fallback(unsigned int order, int start_mt)
1948 * Leaving this order check is intended, although there is
1949 * relaxed order check in next check. The reason is that
1950 * we can actually steal whole pageblock if this condition met,
1951 * but, below check doesn't guarantee it and that is just heuristic
1952 * so could be changed anytime.
1954 if (order >= pageblock_order)
1955 return true;
1957 if (order >= pageblock_order / 2 ||
1958 start_mt == MIGRATE_RECLAIMABLE ||
1959 start_mt == MIGRATE_UNMOVABLE ||
1960 page_group_by_mobility_disabled)
1961 return true;
1963 return false;
1967 * This function implements actual steal behaviour. If order is large enough,
1968 * we can steal whole pageblock. If not, we first move freepages in this
1969 * pageblock and check whether half of pages are moved or not. If half of
1970 * pages are moved, we can change migratetype of pageblock and permanently
1971 * use it's pages as requested migratetype in the future.
1973 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1974 int start_type)
1976 unsigned int current_order = page_order(page);
1977 int pages;
1979 /* Take ownership for orders >= pageblock_order */
1980 if (current_order >= pageblock_order) {
1981 change_pageblock_range(page, current_order, start_type);
1982 return;
1985 pages = move_freepages_block(zone, page, start_type);
1987 /* Claim the whole block if over half of it is free */
1988 if (pages >= (1 << (pageblock_order-1)) ||
1989 page_group_by_mobility_disabled)
1990 set_pageblock_migratetype(page, start_type);
1994 * Check whether there is a suitable fallback freepage with requested order.
1995 * If only_stealable is true, this function returns fallback_mt only if
1996 * we can steal other freepages all together. This would help to reduce
1997 * fragmentation due to mixed migratetype pages in one pageblock.
1999 int find_suitable_fallback(struct free_area *area, unsigned int order,
2000 int migratetype, bool only_stealable, bool *can_steal)
2002 int i;
2003 int fallback_mt;
2005 if (area->nr_free == 0)
2006 return -1;
2008 *can_steal = false;
2009 for (i = 0;; i++) {
2010 fallback_mt = fallbacks[migratetype][i];
2011 if (fallback_mt == MIGRATE_TYPES)
2012 break;
2014 if (list_empty(&area->free_list[fallback_mt]))
2015 continue;
2017 if (can_steal_fallback(order, migratetype))
2018 *can_steal = true;
2020 if (!only_stealable)
2021 return fallback_mt;
2023 if (*can_steal)
2024 return fallback_mt;
2027 return -1;
2031 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2032 * there are no empty page blocks that contain a page with a suitable order
2034 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2035 unsigned int alloc_order)
2037 int mt;
2038 unsigned long max_managed, flags;
2041 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2042 * Check is race-prone but harmless.
2044 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2045 if (zone->nr_reserved_highatomic >= max_managed)
2046 return;
2048 spin_lock_irqsave(&zone->lock, flags);
2050 /* Recheck the nr_reserved_highatomic limit under the lock */
2051 if (zone->nr_reserved_highatomic >= max_managed)
2052 goto out_unlock;
2054 /* Yoink! */
2055 mt = get_pageblock_migratetype(page);
2056 if (mt != MIGRATE_HIGHATOMIC &&
2057 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2058 zone->nr_reserved_highatomic += pageblock_nr_pages;
2059 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2060 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2063 out_unlock:
2064 spin_unlock_irqrestore(&zone->lock, flags);
2068 * Used when an allocation is about to fail under memory pressure. This
2069 * potentially hurts the reliability of high-order allocations when under
2070 * intense memory pressure but failed atomic allocations should be easier
2071 * to recover from than an OOM.
2073 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2075 struct zonelist *zonelist = ac->zonelist;
2076 unsigned long flags;
2077 struct zoneref *z;
2078 struct zone *zone;
2079 struct page *page;
2080 int order;
2082 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2083 ac->nodemask) {
2084 /* Preserve at least one pageblock */
2085 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2086 continue;
2088 spin_lock_irqsave(&zone->lock, flags);
2089 for (order = 0; order < MAX_ORDER; order++) {
2090 struct free_area *area = &(zone->free_area[order]);
2092 page = list_first_entry_or_null(
2093 &area->free_list[MIGRATE_HIGHATOMIC],
2094 struct page, lru);
2095 if (!page)
2096 continue;
2099 * It should never happen but changes to locking could
2100 * inadvertently allow a per-cpu drain to add pages
2101 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2102 * and watch for underflows.
2104 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2105 zone->nr_reserved_highatomic);
2108 * Convert to ac->migratetype and avoid the normal
2109 * pageblock stealing heuristics. Minimally, the caller
2110 * is doing the work and needs the pages. More
2111 * importantly, if the block was always converted to
2112 * MIGRATE_UNMOVABLE or another type then the number
2113 * of pageblocks that cannot be completely freed
2114 * may increase.
2116 set_pageblock_migratetype(page, ac->migratetype);
2117 move_freepages_block(zone, page, ac->migratetype);
2118 spin_unlock_irqrestore(&zone->lock, flags);
2119 return;
2121 spin_unlock_irqrestore(&zone->lock, flags);
2125 /* Remove an element from the buddy allocator from the fallback list */
2126 static inline struct page *
2127 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2129 struct free_area *area;
2130 unsigned int current_order;
2131 struct page *page;
2132 int fallback_mt;
2133 bool can_steal;
2135 /* Find the largest possible block of pages in the other list */
2136 for (current_order = MAX_ORDER-1;
2137 current_order >= order && current_order <= MAX_ORDER-1;
2138 --current_order) {
2139 area = &(zone->free_area[current_order]);
2140 fallback_mt = find_suitable_fallback(area, current_order,
2141 start_migratetype, false, &can_steal);
2142 if (fallback_mt == -1)
2143 continue;
2145 page = list_first_entry(&area->free_list[fallback_mt],
2146 struct page, lru);
2147 if (can_steal)
2148 steal_suitable_fallback(zone, page, start_migratetype);
2150 /* Remove the page from the freelists */
2151 area->nr_free--;
2152 list_del(&page->lru);
2153 rmv_page_order(page);
2155 expand(zone, page, order, current_order, area,
2156 start_migratetype);
2158 * The pcppage_migratetype may differ from pageblock's
2159 * migratetype depending on the decisions in
2160 * find_suitable_fallback(). This is OK as long as it does not
2161 * differ for MIGRATE_CMA pageblocks. Those can be used as
2162 * fallback only via special __rmqueue_cma_fallback() function
2164 set_pcppage_migratetype(page, start_migratetype);
2166 trace_mm_page_alloc_extfrag(page, order, current_order,
2167 start_migratetype, fallback_mt);
2169 return page;
2172 return NULL;
2176 * Do the hard work of removing an element from the buddy allocator.
2177 * Call me with the zone->lock already held.
2179 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2180 int migratetype)
2182 struct page *page;
2184 page = __rmqueue_smallest(zone, order, migratetype);
2185 if (unlikely(!page)) {
2186 if (migratetype == MIGRATE_MOVABLE)
2187 page = __rmqueue_cma_fallback(zone, order);
2189 if (!page)
2190 page = __rmqueue_fallback(zone, order, migratetype);
2193 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2194 return page;
2198 * Obtain a specified number of elements from the buddy allocator, all under
2199 * a single hold of the lock, for efficiency. Add them to the supplied list.
2200 * Returns the number of new pages which were placed at *list.
2202 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2203 unsigned long count, struct list_head *list,
2204 int migratetype, bool cold)
2206 int i, alloced = 0;
2208 spin_lock(&zone->lock);
2209 for (i = 0; i < count; ++i) {
2210 struct page *page = __rmqueue(zone, order, migratetype);
2211 if (unlikely(page == NULL))
2212 break;
2214 if (unlikely(check_pcp_refill(page)))
2215 continue;
2218 * Split buddy pages returned by expand() are received here
2219 * in physical page order. The page is added to the callers and
2220 * list and the list head then moves forward. From the callers
2221 * perspective, the linked list is ordered by page number in
2222 * some conditions. This is useful for IO devices that can
2223 * merge IO requests if the physical pages are ordered
2224 * properly.
2226 if (likely(!cold))
2227 list_add(&page->lru, list);
2228 else
2229 list_add_tail(&page->lru, list);
2230 list = &page->lru;
2231 alloced++;
2232 if (is_migrate_cma(get_pcppage_migratetype(page)))
2233 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2234 -(1 << order));
2238 * i pages were removed from the buddy list even if some leak due
2239 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2240 * on i. Do not confuse with 'alloced' which is the number of
2241 * pages added to the pcp list.
2243 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2244 spin_unlock(&zone->lock);
2245 return alloced;
2248 #ifdef CONFIG_NUMA
2250 * Called from the vmstat counter updater to drain pagesets of this
2251 * currently executing processor on remote nodes after they have
2252 * expired.
2254 * Note that this function must be called with the thread pinned to
2255 * a single processor.
2257 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2259 unsigned long flags;
2260 int to_drain, batch;
2262 local_irq_save(flags);
2263 batch = READ_ONCE(pcp->batch);
2264 to_drain = min(pcp->count, batch);
2265 if (to_drain > 0) {
2266 free_pcppages_bulk(zone, to_drain, pcp);
2267 pcp->count -= to_drain;
2269 local_irq_restore(flags);
2271 #endif
2274 * Drain pcplists of the indicated processor and zone.
2276 * The processor must either be the current processor and the
2277 * thread pinned to the current processor or a processor that
2278 * is not online.
2280 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2282 unsigned long flags;
2283 struct per_cpu_pageset *pset;
2284 struct per_cpu_pages *pcp;
2286 local_irq_save(flags);
2287 pset = per_cpu_ptr(zone->pageset, cpu);
2289 pcp = &pset->pcp;
2290 if (pcp->count) {
2291 free_pcppages_bulk(zone, pcp->count, pcp);
2292 pcp->count = 0;
2294 local_irq_restore(flags);
2298 * Drain pcplists of all zones on the indicated processor.
2300 * The processor must either be the current processor and the
2301 * thread pinned to the current processor or a processor that
2302 * is not online.
2304 static void drain_pages(unsigned int cpu)
2306 struct zone *zone;
2308 for_each_populated_zone(zone) {
2309 drain_pages_zone(cpu, zone);
2314 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2316 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2317 * the single zone's pages.
2319 void drain_local_pages(struct zone *zone)
2321 int cpu = smp_processor_id();
2323 if (zone)
2324 drain_pages_zone(cpu, zone);
2325 else
2326 drain_pages(cpu);
2330 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2332 * When zone parameter is non-NULL, spill just the single zone's pages.
2334 * Note that this code is protected against sending an IPI to an offline
2335 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2336 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2337 * nothing keeps CPUs from showing up after we populated the cpumask and
2338 * before the call to on_each_cpu_mask().
2340 void drain_all_pages(struct zone *zone)
2342 int cpu;
2345 * Allocate in the BSS so we wont require allocation in
2346 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2348 static cpumask_t cpus_with_pcps;
2351 * We don't care about racing with CPU hotplug event
2352 * as offline notification will cause the notified
2353 * cpu to drain that CPU pcps and on_each_cpu_mask
2354 * disables preemption as part of its processing
2356 for_each_online_cpu(cpu) {
2357 struct per_cpu_pageset *pcp;
2358 struct zone *z;
2359 bool has_pcps = false;
2361 if (zone) {
2362 pcp = per_cpu_ptr(zone->pageset, cpu);
2363 if (pcp->pcp.count)
2364 has_pcps = true;
2365 } else {
2366 for_each_populated_zone(z) {
2367 pcp = per_cpu_ptr(z->pageset, cpu);
2368 if (pcp->pcp.count) {
2369 has_pcps = true;
2370 break;
2375 if (has_pcps)
2376 cpumask_set_cpu(cpu, &cpus_with_pcps);
2377 else
2378 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2380 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2381 zone, 1);
2384 #ifdef CONFIG_HIBERNATION
2386 void mark_free_pages(struct zone *zone)
2388 unsigned long pfn, max_zone_pfn;
2389 unsigned long flags;
2390 unsigned int order, t;
2391 struct page *page;
2393 if (zone_is_empty(zone))
2394 return;
2396 spin_lock_irqsave(&zone->lock, flags);
2398 max_zone_pfn = zone_end_pfn(zone);
2399 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2400 if (pfn_valid(pfn)) {
2401 page = pfn_to_page(pfn);
2403 if (page_zone(page) != zone)
2404 continue;
2406 if (!swsusp_page_is_forbidden(page))
2407 swsusp_unset_page_free(page);
2410 for_each_migratetype_order(order, t) {
2411 list_for_each_entry(page,
2412 &zone->free_area[order].free_list[t], lru) {
2413 unsigned long i;
2415 pfn = page_to_pfn(page);
2416 for (i = 0; i < (1UL << order); i++)
2417 swsusp_set_page_free(pfn_to_page(pfn + i));
2420 spin_unlock_irqrestore(&zone->lock, flags);
2422 #endif /* CONFIG_PM */
2425 * Free a 0-order page
2426 * cold == true ? free a cold page : free a hot page
2428 void free_hot_cold_page(struct page *page, bool cold)
2430 struct zone *zone = page_zone(page);
2431 struct per_cpu_pages *pcp;
2432 unsigned long flags;
2433 unsigned long pfn = page_to_pfn(page);
2434 int migratetype;
2436 if (!free_pcp_prepare(page))
2437 return;
2439 migratetype = get_pfnblock_migratetype(page, pfn);
2440 set_pcppage_migratetype(page, migratetype);
2441 local_irq_save(flags);
2442 __count_vm_event(PGFREE);
2445 * We only track unmovable, reclaimable and movable on pcp lists.
2446 * Free ISOLATE pages back to the allocator because they are being
2447 * offlined but treat RESERVE as movable pages so we can get those
2448 * areas back if necessary. Otherwise, we may have to free
2449 * excessively into the page allocator
2451 if (migratetype >= MIGRATE_PCPTYPES) {
2452 if (unlikely(is_migrate_isolate(migratetype))) {
2453 free_one_page(zone, page, pfn, 0, migratetype);
2454 goto out;
2456 migratetype = MIGRATE_MOVABLE;
2459 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2460 if (!cold)
2461 list_add(&page->lru, &pcp->lists[migratetype]);
2462 else
2463 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2464 pcp->count++;
2465 if (pcp->count >= pcp->high) {
2466 unsigned long batch = READ_ONCE(pcp->batch);
2467 free_pcppages_bulk(zone, batch, pcp);
2468 pcp->count -= batch;
2471 out:
2472 local_irq_restore(flags);
2476 * Free a list of 0-order pages
2478 void free_hot_cold_page_list(struct list_head *list, bool cold)
2480 struct page *page, *next;
2482 list_for_each_entry_safe(page, next, list, lru) {
2483 trace_mm_page_free_batched(page, cold);
2484 free_hot_cold_page(page, cold);
2489 * split_page takes a non-compound higher-order page, and splits it into
2490 * n (1<<order) sub-pages: page[0..n]
2491 * Each sub-page must be freed individually.
2493 * Note: this is probably too low level an operation for use in drivers.
2494 * Please consult with lkml before using this in your driver.
2496 void split_page(struct page *page, unsigned int order)
2498 int i;
2500 VM_BUG_ON_PAGE(PageCompound(page), page);
2501 VM_BUG_ON_PAGE(!page_count(page), page);
2503 #ifdef CONFIG_KMEMCHECK
2505 * Split shadow pages too, because free(page[0]) would
2506 * otherwise free the whole shadow.
2508 if (kmemcheck_page_is_tracked(page))
2509 split_page(virt_to_page(page[0].shadow), order);
2510 #endif
2512 for (i = 1; i < (1 << order); i++)
2513 set_page_refcounted(page + i);
2514 split_page_owner(page, order);
2516 EXPORT_SYMBOL_GPL(split_page);
2518 int __isolate_free_page(struct page *page, unsigned int order)
2520 unsigned long watermark;
2521 struct zone *zone;
2522 int mt;
2524 BUG_ON(!PageBuddy(page));
2526 zone = page_zone(page);
2527 mt = get_pageblock_migratetype(page);
2529 if (!is_migrate_isolate(mt)) {
2531 * Obey watermarks as if the page was being allocated. We can
2532 * emulate a high-order watermark check with a raised order-0
2533 * watermark, because we already know our high-order page
2534 * exists.
2536 watermark = min_wmark_pages(zone) + (1UL << order);
2537 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2538 return 0;
2540 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2543 /* Remove page from free list */
2544 list_del(&page->lru);
2545 zone->free_area[order].nr_free--;
2546 rmv_page_order(page);
2549 * Set the pageblock if the isolated page is at least half of a
2550 * pageblock
2552 if (order >= pageblock_order - 1) {
2553 struct page *endpage = page + (1 << order) - 1;
2554 for (; page < endpage; page += pageblock_nr_pages) {
2555 int mt = get_pageblock_migratetype(page);
2556 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2557 set_pageblock_migratetype(page,
2558 MIGRATE_MOVABLE);
2563 return 1UL << order;
2567 * Update NUMA hit/miss statistics
2569 * Must be called with interrupts disabled.
2571 * When __GFP_OTHER_NODE is set assume the node of the preferred
2572 * zone is the local node. This is useful for daemons who allocate
2573 * memory on behalf of other processes.
2575 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2576 gfp_t flags)
2578 #ifdef CONFIG_NUMA
2579 int local_nid = numa_node_id();
2580 enum zone_stat_item local_stat = NUMA_LOCAL;
2582 if (unlikely(flags & __GFP_OTHER_NODE)) {
2583 local_stat = NUMA_OTHER;
2584 local_nid = preferred_zone->node;
2587 if (z->node == local_nid) {
2588 __inc_zone_state(z, NUMA_HIT);
2589 __inc_zone_state(z, local_stat);
2590 } else {
2591 __inc_zone_state(z, NUMA_MISS);
2592 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2594 #endif
2598 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2600 static inline
2601 struct page *buffered_rmqueue(struct zone *preferred_zone,
2602 struct zone *zone, unsigned int order,
2603 gfp_t gfp_flags, unsigned int alloc_flags,
2604 int migratetype)
2606 unsigned long flags;
2607 struct page *page;
2608 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2610 if (likely(order == 0)) {
2611 struct per_cpu_pages *pcp;
2612 struct list_head *list;
2614 local_irq_save(flags);
2615 do {
2616 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2617 list = &pcp->lists[migratetype];
2618 if (list_empty(list)) {
2619 pcp->count += rmqueue_bulk(zone, 0,
2620 pcp->batch, list,
2621 migratetype, cold);
2622 if (unlikely(list_empty(list)))
2623 goto failed;
2626 if (cold)
2627 page = list_last_entry(list, struct page, lru);
2628 else
2629 page = list_first_entry(list, struct page, lru);
2631 list_del(&page->lru);
2632 pcp->count--;
2634 } while (check_new_pcp(page));
2635 } else {
2637 * We most definitely don't want callers attempting to
2638 * allocate greater than order-1 page units with __GFP_NOFAIL.
2640 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2641 spin_lock_irqsave(&zone->lock, flags);
2643 do {
2644 page = NULL;
2645 if (alloc_flags & ALLOC_HARDER) {
2646 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2647 if (page)
2648 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2650 if (!page)
2651 page = __rmqueue(zone, order, migratetype);
2652 } while (page && check_new_pages(page, order));
2653 spin_unlock(&zone->lock);
2654 if (!page)
2655 goto failed;
2656 __mod_zone_freepage_state(zone, -(1 << order),
2657 get_pcppage_migratetype(page));
2660 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2661 zone_statistics(preferred_zone, zone, gfp_flags);
2662 local_irq_restore(flags);
2664 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2665 return page;
2667 failed:
2668 local_irq_restore(flags);
2669 return NULL;
2672 #ifdef CONFIG_FAIL_PAGE_ALLOC
2674 static struct {
2675 struct fault_attr attr;
2677 bool ignore_gfp_highmem;
2678 bool ignore_gfp_reclaim;
2679 u32 min_order;
2680 } fail_page_alloc = {
2681 .attr = FAULT_ATTR_INITIALIZER,
2682 .ignore_gfp_reclaim = true,
2683 .ignore_gfp_highmem = true,
2684 .min_order = 1,
2687 static int __init setup_fail_page_alloc(char *str)
2689 return setup_fault_attr(&fail_page_alloc.attr, str);
2691 __setup("fail_page_alloc=", setup_fail_page_alloc);
2693 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2695 if (order < fail_page_alloc.min_order)
2696 return false;
2697 if (gfp_mask & __GFP_NOFAIL)
2698 return false;
2699 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2700 return false;
2701 if (fail_page_alloc.ignore_gfp_reclaim &&
2702 (gfp_mask & __GFP_DIRECT_RECLAIM))
2703 return false;
2705 return should_fail(&fail_page_alloc.attr, 1 << order);
2708 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2710 static int __init fail_page_alloc_debugfs(void)
2712 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2713 struct dentry *dir;
2715 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2716 &fail_page_alloc.attr);
2717 if (IS_ERR(dir))
2718 return PTR_ERR(dir);
2720 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2721 &fail_page_alloc.ignore_gfp_reclaim))
2722 goto fail;
2723 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2724 &fail_page_alloc.ignore_gfp_highmem))
2725 goto fail;
2726 if (!debugfs_create_u32("min-order", mode, dir,
2727 &fail_page_alloc.min_order))
2728 goto fail;
2730 return 0;
2731 fail:
2732 debugfs_remove_recursive(dir);
2734 return -ENOMEM;
2737 late_initcall(fail_page_alloc_debugfs);
2739 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2741 #else /* CONFIG_FAIL_PAGE_ALLOC */
2743 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2745 return false;
2748 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2751 * Return true if free base pages are above 'mark'. For high-order checks it
2752 * will return true of the order-0 watermark is reached and there is at least
2753 * one free page of a suitable size. Checking now avoids taking the zone lock
2754 * to check in the allocation paths if no pages are free.
2756 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2757 int classzone_idx, unsigned int alloc_flags,
2758 long free_pages)
2760 long min = mark;
2761 int o;
2762 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2764 /* free_pages may go negative - that's OK */
2765 free_pages -= (1 << order) - 1;
2767 if (alloc_flags & ALLOC_HIGH)
2768 min -= min / 2;
2771 * If the caller does not have rights to ALLOC_HARDER then subtract
2772 * the high-atomic reserves. This will over-estimate the size of the
2773 * atomic reserve but it avoids a search.
2775 if (likely(!alloc_harder))
2776 free_pages -= z->nr_reserved_highatomic;
2777 else
2778 min -= min / 4;
2780 #ifdef CONFIG_CMA
2781 /* If allocation can't use CMA areas don't use free CMA pages */
2782 if (!(alloc_flags & ALLOC_CMA))
2783 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2784 #endif
2787 * Check watermarks for an order-0 allocation request. If these
2788 * are not met, then a high-order request also cannot go ahead
2789 * even if a suitable page happened to be free.
2791 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2792 return false;
2794 /* If this is an order-0 request then the watermark is fine */
2795 if (!order)
2796 return true;
2798 /* For a high-order request, check at least one suitable page is free */
2799 for (o = order; o < MAX_ORDER; o++) {
2800 struct free_area *area = &z->free_area[o];
2801 int mt;
2803 if (!area->nr_free)
2804 continue;
2806 if (alloc_harder)
2807 return true;
2809 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2810 if (!list_empty(&area->free_list[mt]))
2811 return true;
2814 #ifdef CONFIG_CMA
2815 if ((alloc_flags & ALLOC_CMA) &&
2816 !list_empty(&area->free_list[MIGRATE_CMA])) {
2817 return true;
2819 #endif
2821 return false;
2824 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2825 int classzone_idx, unsigned int alloc_flags)
2827 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2828 zone_page_state(z, NR_FREE_PAGES));
2831 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2832 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2834 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2835 long cma_pages = 0;
2837 #ifdef CONFIG_CMA
2838 /* If allocation can't use CMA areas don't use free CMA pages */
2839 if (!(alloc_flags & ALLOC_CMA))
2840 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2841 #endif
2844 * Fast check for order-0 only. If this fails then the reserves
2845 * need to be calculated. There is a corner case where the check
2846 * passes but only the high-order atomic reserve are free. If
2847 * the caller is !atomic then it'll uselessly search the free
2848 * list. That corner case is then slower but it is harmless.
2850 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2851 return true;
2853 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2854 free_pages);
2857 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2858 unsigned long mark, int classzone_idx)
2860 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2862 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2863 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2865 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2866 free_pages);
2869 #ifdef CONFIG_NUMA
2870 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2872 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2873 RECLAIM_DISTANCE;
2875 #else /* CONFIG_NUMA */
2876 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2878 return true;
2880 #endif /* CONFIG_NUMA */
2883 * get_page_from_freelist goes through the zonelist trying to allocate
2884 * a page.
2886 static struct page *
2887 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2888 const struct alloc_context *ac)
2890 struct zoneref *z = ac->preferred_zoneref;
2891 struct zone *zone;
2892 struct pglist_data *last_pgdat_dirty_limit = NULL;
2895 * Scan zonelist, looking for a zone with enough free.
2896 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2898 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2899 ac->nodemask) {
2900 struct page *page;
2901 unsigned long mark;
2903 if (cpusets_enabled() &&
2904 (alloc_flags & ALLOC_CPUSET) &&
2905 !__cpuset_zone_allowed(zone, gfp_mask))
2906 continue;
2908 * When allocating a page cache page for writing, we
2909 * want to get it from a node that is within its dirty
2910 * limit, such that no single node holds more than its
2911 * proportional share of globally allowed dirty pages.
2912 * The dirty limits take into account the node's
2913 * lowmem reserves and high watermark so that kswapd
2914 * should be able to balance it without having to
2915 * write pages from its LRU list.
2917 * XXX: For now, allow allocations to potentially
2918 * exceed the per-node dirty limit in the slowpath
2919 * (spread_dirty_pages unset) before going into reclaim,
2920 * which is important when on a NUMA setup the allowed
2921 * nodes are together not big enough to reach the
2922 * global limit. The proper fix for these situations
2923 * will require awareness of nodes in the
2924 * dirty-throttling and the flusher threads.
2926 if (ac->spread_dirty_pages) {
2927 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2928 continue;
2930 if (!node_dirty_ok(zone->zone_pgdat)) {
2931 last_pgdat_dirty_limit = zone->zone_pgdat;
2932 continue;
2936 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2937 if (!zone_watermark_fast(zone, order, mark,
2938 ac_classzone_idx(ac), alloc_flags)) {
2939 int ret;
2941 /* Checked here to keep the fast path fast */
2942 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2943 if (alloc_flags & ALLOC_NO_WATERMARKS)
2944 goto try_this_zone;
2946 if (node_reclaim_mode == 0 ||
2947 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2948 continue;
2950 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2951 switch (ret) {
2952 case NODE_RECLAIM_NOSCAN:
2953 /* did not scan */
2954 continue;
2955 case NODE_RECLAIM_FULL:
2956 /* scanned but unreclaimable */
2957 continue;
2958 default:
2959 /* did we reclaim enough */
2960 if (zone_watermark_ok(zone, order, mark,
2961 ac_classzone_idx(ac), alloc_flags))
2962 goto try_this_zone;
2964 continue;
2968 try_this_zone:
2969 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2970 gfp_mask, alloc_flags, ac->migratetype);
2971 if (page) {
2972 prep_new_page(page, order, gfp_mask, alloc_flags);
2975 * If this is a high-order atomic allocation then check
2976 * if the pageblock should be reserved for the future
2978 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2979 reserve_highatomic_pageblock(page, zone, order);
2981 return page;
2985 return NULL;
2989 * Large machines with many possible nodes should not always dump per-node
2990 * meminfo in irq context.
2992 static inline bool should_suppress_show_mem(void)
2994 bool ret = false;
2996 #if NODES_SHIFT > 8
2997 ret = in_interrupt();
2998 #endif
2999 return ret;
3002 static DEFINE_RATELIMIT_STATE(nopage_rs,
3003 DEFAULT_RATELIMIT_INTERVAL,
3004 DEFAULT_RATELIMIT_BURST);
3006 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3008 unsigned int filter = SHOW_MEM_FILTER_NODES;
3009 struct va_format vaf;
3010 va_list args;
3012 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3013 debug_guardpage_minorder() > 0)
3014 return;
3017 * This documents exceptions given to allocations in certain
3018 * contexts that are allowed to allocate outside current's set
3019 * of allowed nodes.
3021 if (!(gfp_mask & __GFP_NOMEMALLOC))
3022 if (test_thread_flag(TIF_MEMDIE) ||
3023 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3024 filter &= ~SHOW_MEM_FILTER_NODES;
3025 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3026 filter &= ~SHOW_MEM_FILTER_NODES;
3028 pr_warn("%s: ", current->comm);
3030 va_start(args, fmt);
3031 vaf.fmt = fmt;
3032 vaf.va = &args;
3033 pr_cont("%pV", &vaf);
3034 va_end(args);
3036 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3038 dump_stack();
3039 if (!should_suppress_show_mem())
3040 show_mem(filter);
3043 static inline struct page *
3044 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3045 const struct alloc_context *ac, unsigned long *did_some_progress)
3047 struct oom_control oc = {
3048 .zonelist = ac->zonelist,
3049 .nodemask = ac->nodemask,
3050 .memcg = NULL,
3051 .gfp_mask = gfp_mask,
3052 .order = order,
3054 struct page *page;
3056 *did_some_progress = 0;
3059 * Acquire the oom lock. If that fails, somebody else is
3060 * making progress for us.
3062 if (!mutex_trylock(&oom_lock)) {
3063 *did_some_progress = 1;
3064 schedule_timeout_uninterruptible(1);
3065 return NULL;
3069 * Go through the zonelist yet one more time, keep very high watermark
3070 * here, this is only to catch a parallel oom killing, we must fail if
3071 * we're still under heavy pressure.
3073 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3074 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3075 if (page)
3076 goto out;
3078 if (!(gfp_mask & __GFP_NOFAIL)) {
3079 /* Coredumps can quickly deplete all memory reserves */
3080 if (current->flags & PF_DUMPCORE)
3081 goto out;
3082 /* The OOM killer will not help higher order allocs */
3083 if (order > PAGE_ALLOC_COSTLY_ORDER)
3084 goto out;
3085 /* The OOM killer does not needlessly kill tasks for lowmem */
3086 if (ac->high_zoneidx < ZONE_NORMAL)
3087 goto out;
3088 if (pm_suspended_storage())
3089 goto out;
3091 * XXX: GFP_NOFS allocations should rather fail than rely on
3092 * other request to make a forward progress.
3093 * We are in an unfortunate situation where out_of_memory cannot
3094 * do much for this context but let's try it to at least get
3095 * access to memory reserved if the current task is killed (see
3096 * out_of_memory). Once filesystems are ready to handle allocation
3097 * failures more gracefully we should just bail out here.
3100 /* The OOM killer may not free memory on a specific node */
3101 if (gfp_mask & __GFP_THISNODE)
3102 goto out;
3104 /* Exhausted what can be done so it's blamo time */
3105 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3106 *did_some_progress = 1;
3108 if (gfp_mask & __GFP_NOFAIL) {
3109 page = get_page_from_freelist(gfp_mask, order,
3110 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3112 * fallback to ignore cpuset restriction if our nodes
3113 * are depleted
3115 if (!page)
3116 page = get_page_from_freelist(gfp_mask, order,
3117 ALLOC_NO_WATERMARKS, ac);
3120 out:
3121 mutex_unlock(&oom_lock);
3122 return page;
3126 * Maximum number of compaction retries wit a progress before OOM
3127 * killer is consider as the only way to move forward.
3129 #define MAX_COMPACT_RETRIES 16
3131 #ifdef CONFIG_COMPACTION
3132 /* Try memory compaction for high-order allocations before reclaim */
3133 static struct page *
3134 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3135 unsigned int alloc_flags, const struct alloc_context *ac,
3136 enum compact_priority prio, enum compact_result *compact_result)
3138 struct page *page;
3139 unsigned int noreclaim_flag = current->flags & PF_MEMALLOC;
3141 if (!order)
3142 return NULL;
3144 current->flags |= PF_MEMALLOC;
3145 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3146 prio);
3147 current->flags = (current->flags & ~PF_MEMALLOC) | noreclaim_flag;
3149 if (*compact_result <= COMPACT_INACTIVE)
3150 return NULL;
3153 * At least in one zone compaction wasn't deferred or skipped, so let's
3154 * count a compaction stall
3156 count_vm_event(COMPACTSTALL);
3158 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3160 if (page) {
3161 struct zone *zone = page_zone(page);
3163 zone->compact_blockskip_flush = false;
3164 compaction_defer_reset(zone, order, true);
3165 count_vm_event(COMPACTSUCCESS);
3166 return page;
3170 * It's bad if compaction run occurs and fails. The most likely reason
3171 * is that pages exist, but not enough to satisfy watermarks.
3173 count_vm_event(COMPACTFAIL);
3175 cond_resched();
3177 return NULL;
3180 static inline bool
3181 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3182 enum compact_result compact_result,
3183 enum compact_priority *compact_priority,
3184 int *compaction_retries)
3186 int max_retries = MAX_COMPACT_RETRIES;
3187 int min_priority;
3189 if (!order)
3190 return false;
3192 if (compaction_made_progress(compact_result))
3193 (*compaction_retries)++;
3196 * compaction considers all the zone as desperately out of memory
3197 * so it doesn't really make much sense to retry except when the
3198 * failure could be caused by insufficient priority
3200 if (compaction_failed(compact_result))
3201 goto check_priority;
3204 * make sure the compaction wasn't deferred or didn't bail out early
3205 * due to locks contention before we declare that we should give up.
3206 * But do not retry if the given zonelist is not suitable for
3207 * compaction.
3209 if (compaction_withdrawn(compact_result))
3210 return compaction_zonelist_suitable(ac, order, alloc_flags);
3213 * !costly requests are much more important than __GFP_REPEAT
3214 * costly ones because they are de facto nofail and invoke OOM
3215 * killer to move on while costly can fail and users are ready
3216 * to cope with that. 1/4 retries is rather arbitrary but we
3217 * would need much more detailed feedback from compaction to
3218 * make a better decision.
3220 if (order > PAGE_ALLOC_COSTLY_ORDER)
3221 max_retries /= 4;
3222 if (*compaction_retries <= max_retries)
3223 return true;
3226 * Make sure there are attempts at the highest priority if we exhausted
3227 * all retries or failed at the lower priorities.
3229 check_priority:
3230 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3231 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3232 if (*compact_priority > min_priority) {
3233 (*compact_priority)--;
3234 *compaction_retries = 0;
3235 return true;
3237 return false;
3239 #else
3240 static inline struct page *
3241 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3242 unsigned int alloc_flags, const struct alloc_context *ac,
3243 enum compact_priority prio, enum compact_result *compact_result)
3245 *compact_result = COMPACT_SKIPPED;
3246 return NULL;
3249 static inline bool
3250 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3251 enum compact_result compact_result,
3252 enum compact_priority *compact_priority,
3253 int *compaction_retries)
3255 struct zone *zone;
3256 struct zoneref *z;
3258 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3259 return false;
3262 * There are setups with compaction disabled which would prefer to loop
3263 * inside the allocator rather than hit the oom killer prematurely.
3264 * Let's give them a good hope and keep retrying while the order-0
3265 * watermarks are OK.
3267 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3268 ac->nodemask) {
3269 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3270 ac_classzone_idx(ac), alloc_flags))
3271 return true;
3273 return false;
3275 #endif /* CONFIG_COMPACTION */
3277 /* Perform direct synchronous page reclaim */
3278 static int
3279 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3280 const struct alloc_context *ac)
3282 struct reclaim_state reclaim_state;
3283 int progress;
3285 cond_resched();
3287 /* We now go into synchronous reclaim */
3288 cpuset_memory_pressure_bump();
3289 current->flags |= PF_MEMALLOC;
3290 lockdep_set_current_reclaim_state(gfp_mask);
3291 reclaim_state.reclaimed_slab = 0;
3292 current->reclaim_state = &reclaim_state;
3294 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3295 ac->nodemask);
3297 current->reclaim_state = NULL;
3298 lockdep_clear_current_reclaim_state();
3299 current->flags &= ~PF_MEMALLOC;
3301 cond_resched();
3303 return progress;
3306 /* The really slow allocator path where we enter direct reclaim */
3307 static inline struct page *
3308 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3309 unsigned int alloc_flags, const struct alloc_context *ac,
3310 unsigned long *did_some_progress)
3312 struct page *page = NULL;
3313 bool drained = false;
3315 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3316 if (unlikely(!(*did_some_progress)))
3317 return NULL;
3319 retry:
3320 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3323 * If an allocation failed after direct reclaim, it could be because
3324 * pages are pinned on the per-cpu lists or in high alloc reserves.
3325 * Shrink them them and try again
3327 if (!page && !drained) {
3328 unreserve_highatomic_pageblock(ac);
3329 drain_all_pages(NULL);
3330 drained = true;
3331 goto retry;
3334 return page;
3337 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3339 struct zoneref *z;
3340 struct zone *zone;
3341 pg_data_t *last_pgdat = NULL;
3343 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3344 ac->high_zoneidx, ac->nodemask) {
3345 if (last_pgdat != zone->zone_pgdat)
3346 wakeup_kswapd(zone, order, ac->high_zoneidx);
3347 last_pgdat = zone->zone_pgdat;
3351 static inline unsigned int
3352 gfp_to_alloc_flags(gfp_t gfp_mask)
3354 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3356 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3357 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3360 * The caller may dip into page reserves a bit more if the caller
3361 * cannot run direct reclaim, or if the caller has realtime scheduling
3362 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3363 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3365 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3367 if (gfp_mask & __GFP_ATOMIC) {
3369 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3370 * if it can't schedule.
3372 if (!(gfp_mask & __GFP_NOMEMALLOC))
3373 alloc_flags |= ALLOC_HARDER;
3375 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3376 * comment for __cpuset_node_allowed().
3378 alloc_flags &= ~ALLOC_CPUSET;
3379 } else if (unlikely(rt_task(current)) && !in_interrupt())
3380 alloc_flags |= ALLOC_HARDER;
3382 #ifdef CONFIG_CMA
3383 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3384 alloc_flags |= ALLOC_CMA;
3385 #endif
3386 return alloc_flags;
3389 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3391 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3392 return false;
3394 if (gfp_mask & __GFP_MEMALLOC)
3395 return true;
3396 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3397 return true;
3398 if (!in_interrupt() &&
3399 ((current->flags & PF_MEMALLOC) ||
3400 unlikely(test_thread_flag(TIF_MEMDIE))))
3401 return true;
3403 return false;
3407 * Maximum number of reclaim retries without any progress before OOM killer
3408 * is consider as the only way to move forward.
3410 #define MAX_RECLAIM_RETRIES 16
3413 * Checks whether it makes sense to retry the reclaim to make a forward progress
3414 * for the given allocation request.
3415 * The reclaim feedback represented by did_some_progress (any progress during
3416 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3417 * any progress in a row) is considered as well as the reclaimable pages on the
3418 * applicable zone list (with a backoff mechanism which is a function of
3419 * no_progress_loops).
3421 * Returns true if a retry is viable or false to enter the oom path.
3423 static inline bool
3424 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3425 struct alloc_context *ac, int alloc_flags,
3426 bool did_some_progress, int *no_progress_loops)
3428 struct zone *zone;
3429 struct zoneref *z;
3432 * Costly allocations might have made a progress but this doesn't mean
3433 * their order will become available due to high fragmentation so
3434 * always increment the no progress counter for them
3436 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3437 *no_progress_loops = 0;
3438 else
3439 (*no_progress_loops)++;
3442 * Make sure we converge to OOM if we cannot make any progress
3443 * several times in the row.
3445 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3446 return false;
3449 * Keep reclaiming pages while there is a chance this will lead
3450 * somewhere. If none of the target zones can satisfy our allocation
3451 * request even if all reclaimable pages are considered then we are
3452 * screwed and have to go OOM.
3454 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3455 ac->nodemask) {
3456 unsigned long available;
3457 unsigned long reclaimable;
3459 available = reclaimable = zone_reclaimable_pages(zone);
3460 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3461 MAX_RECLAIM_RETRIES);
3462 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3465 * Would the allocation succeed if we reclaimed the whole
3466 * available?
3468 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3469 ac_classzone_idx(ac), alloc_flags, available)) {
3471 * If we didn't make any progress and have a lot of
3472 * dirty + writeback pages then we should wait for
3473 * an IO to complete to slow down the reclaim and
3474 * prevent from pre mature OOM
3476 if (!did_some_progress) {
3477 unsigned long write_pending;
3479 write_pending = zone_page_state_snapshot(zone,
3480 NR_ZONE_WRITE_PENDING);
3482 if (2 * write_pending > reclaimable) {
3483 congestion_wait(BLK_RW_ASYNC, HZ/10);
3484 return true;
3489 * Memory allocation/reclaim might be called from a WQ
3490 * context and the current implementation of the WQ
3491 * concurrency control doesn't recognize that
3492 * a particular WQ is congested if the worker thread is
3493 * looping without ever sleeping. Therefore we have to
3494 * do a short sleep here rather than calling
3495 * cond_resched().
3497 if (current->flags & PF_WQ_WORKER)
3498 schedule_timeout_uninterruptible(1);
3499 else
3500 cond_resched();
3502 return true;
3506 return false;
3509 static inline struct page *
3510 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3511 struct alloc_context *ac)
3513 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3514 struct page *page = NULL;
3515 unsigned int alloc_flags;
3516 unsigned long did_some_progress;
3517 enum compact_priority compact_priority;
3518 enum compact_result compact_result;
3519 int compaction_retries;
3520 int no_progress_loops;
3521 unsigned long alloc_start = jiffies;
3522 unsigned int stall_timeout = 10 * HZ;
3523 unsigned int cpuset_mems_cookie;
3526 * In the slowpath, we sanity check order to avoid ever trying to
3527 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3528 * be using allocators in order of preference for an area that is
3529 * too large.
3531 if (order >= MAX_ORDER) {
3532 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3533 return NULL;
3537 * We also sanity check to catch abuse of atomic reserves being used by
3538 * callers that are not in atomic context.
3540 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3541 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3542 gfp_mask &= ~__GFP_ATOMIC;
3544 retry_cpuset:
3545 compaction_retries = 0;
3546 no_progress_loops = 0;
3547 compact_priority = DEF_COMPACT_PRIORITY;
3548 cpuset_mems_cookie = read_mems_allowed_begin();
3550 * We need to recalculate the starting point for the zonelist iterator
3551 * because we might have used different nodemask in the fast path, or
3552 * there was a cpuset modification and we are retrying - otherwise we
3553 * could end up iterating over non-eligible zones endlessly.
3555 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3556 ac->high_zoneidx, ac->nodemask);
3557 if (!ac->preferred_zoneref->zone)
3558 goto nopage;
3562 * The fast path uses conservative alloc_flags to succeed only until
3563 * kswapd needs to be woken up, and to avoid the cost of setting up
3564 * alloc_flags precisely. So we do that now.
3566 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3568 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3569 wake_all_kswapds(order, ac);
3572 * The adjusted alloc_flags might result in immediate success, so try
3573 * that first
3575 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3576 if (page)
3577 goto got_pg;
3580 * For costly allocations, try direct compaction first, as it's likely
3581 * that we have enough base pages and don't need to reclaim. Don't try
3582 * that for allocations that are allowed to ignore watermarks, as the
3583 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3585 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3586 !gfp_pfmemalloc_allowed(gfp_mask)) {
3587 page = __alloc_pages_direct_compact(gfp_mask, order,
3588 alloc_flags, ac,
3589 INIT_COMPACT_PRIORITY,
3590 &compact_result);
3591 if (page)
3592 goto got_pg;
3595 * Checks for costly allocations with __GFP_NORETRY, which
3596 * includes THP page fault allocations
3598 if (gfp_mask & __GFP_NORETRY) {
3600 * If compaction is deferred for high-order allocations,
3601 * it is because sync compaction recently failed. If
3602 * this is the case and the caller requested a THP
3603 * allocation, we do not want to heavily disrupt the
3604 * system, so we fail the allocation instead of entering
3605 * direct reclaim.
3607 if (compact_result == COMPACT_DEFERRED)
3608 goto nopage;
3611 * Looks like reclaim/compaction is worth trying, but
3612 * sync compaction could be very expensive, so keep
3613 * using async compaction.
3615 compact_priority = INIT_COMPACT_PRIORITY;
3619 retry:
3620 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3621 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3622 wake_all_kswapds(order, ac);
3624 if (gfp_pfmemalloc_allowed(gfp_mask))
3625 alloc_flags = ALLOC_NO_WATERMARKS;
3628 * Reset the zonelist iterators if memory policies can be ignored.
3629 * These allocations are high priority and system rather than user
3630 * orientated.
3632 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3633 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3634 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3635 ac->high_zoneidx, ac->nodemask);
3638 /* Attempt with potentially adjusted zonelist and alloc_flags */
3639 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3640 if (page)
3641 goto got_pg;
3643 /* Caller is not willing to reclaim, we can't balance anything */
3644 if (!can_direct_reclaim) {
3646 * All existing users of the __GFP_NOFAIL are blockable, so warn
3647 * of any new users that actually allow this type of allocation
3648 * to fail.
3650 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3651 goto nopage;
3654 /* Avoid recursion of direct reclaim */
3655 if (current->flags & PF_MEMALLOC) {
3657 * __GFP_NOFAIL request from this context is rather bizarre
3658 * because we cannot reclaim anything and only can loop waiting
3659 * for somebody to do a work for us.
3661 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3662 cond_resched();
3663 goto retry;
3665 goto nopage;
3668 /* Avoid allocations with no watermarks from looping endlessly */
3669 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3670 goto nopage;
3673 /* Try direct reclaim and then allocating */
3674 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3675 &did_some_progress);
3676 if (page)
3677 goto got_pg;
3679 /* Try direct compaction and then allocating */
3680 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3681 compact_priority, &compact_result);
3682 if (page)
3683 goto got_pg;
3685 /* Do not loop if specifically requested */
3686 if (gfp_mask & __GFP_NORETRY)
3687 goto nopage;
3690 * Do not retry costly high order allocations unless they are
3691 * __GFP_REPEAT
3693 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3694 goto nopage;
3696 /* Make sure we know about allocations which stall for too long */
3697 if (time_after(jiffies, alloc_start + stall_timeout)) {
3698 warn_alloc(gfp_mask,
3699 "page allocation stalls for %ums, order:%u",
3700 jiffies_to_msecs(jiffies-alloc_start), order);
3701 stall_timeout += 10 * HZ;
3704 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3705 did_some_progress > 0, &no_progress_loops))
3706 goto retry;
3709 * It doesn't make any sense to retry for the compaction if the order-0
3710 * reclaim is not able to make any progress because the current
3711 * implementation of the compaction depends on the sufficient amount
3712 * of free memory (see __compaction_suitable)
3714 if (did_some_progress > 0 &&
3715 should_compact_retry(ac, order, alloc_flags,
3716 compact_result, &compact_priority,
3717 &compaction_retries))
3718 goto retry;
3721 * It's possible we raced with cpuset update so the OOM would be
3722 * premature (see below the nopage: label for full explanation).
3724 if (read_mems_allowed_retry(cpuset_mems_cookie))
3725 goto retry_cpuset;
3727 /* Reclaim has failed us, start killing things */
3728 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3729 if (page)
3730 goto got_pg;
3732 /* Retry as long as the OOM killer is making progress */
3733 if (did_some_progress) {
3734 no_progress_loops = 0;
3735 goto retry;
3738 nopage:
3740 * When updating a task's mems_allowed or mempolicy nodemask, it is
3741 * possible to race with parallel threads in such a way that our
3742 * allocation can fail while the mask is being updated. If we are about
3743 * to fail, check if the cpuset changed during allocation and if so,
3744 * retry.
3746 if (read_mems_allowed_retry(cpuset_mems_cookie))
3747 goto retry_cpuset;
3749 warn_alloc(gfp_mask,
3750 "page allocation failure: order:%u", order);
3751 got_pg:
3752 return page;
3756 * This is the 'heart' of the zoned buddy allocator.
3758 struct page *
3759 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3760 struct zonelist *zonelist, nodemask_t *nodemask)
3762 struct page *page;
3763 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3764 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3765 struct alloc_context ac = {
3766 .high_zoneidx = gfp_zone(gfp_mask),
3767 .zonelist = zonelist,
3768 .nodemask = nodemask,
3769 .migratetype = gfpflags_to_migratetype(gfp_mask),
3772 if (cpusets_enabled()) {
3773 alloc_mask |= __GFP_HARDWALL;
3774 alloc_flags |= ALLOC_CPUSET;
3775 if (!ac.nodemask)
3776 ac.nodemask = &cpuset_current_mems_allowed;
3779 gfp_mask &= gfp_allowed_mask;
3781 lockdep_trace_alloc(gfp_mask);
3783 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3785 if (should_fail_alloc_page(gfp_mask, order))
3786 return NULL;
3789 * Check the zones suitable for the gfp_mask contain at least one
3790 * valid zone. It's possible to have an empty zonelist as a result
3791 * of __GFP_THISNODE and a memoryless node
3793 if (unlikely(!zonelist->_zonerefs->zone))
3794 return NULL;
3796 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3797 alloc_flags |= ALLOC_CMA;
3799 /* Dirty zone balancing only done in the fast path */
3800 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3803 * The preferred zone is used for statistics but crucially it is
3804 * also used as the starting point for the zonelist iterator. It
3805 * may get reset for allocations that ignore memory policies.
3807 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3808 ac.high_zoneidx, ac.nodemask);
3809 if (!ac.preferred_zoneref->zone) {
3810 page = NULL;
3812 * This might be due to race with cpuset_current_mems_allowed
3813 * update, so make sure we retry with original nodemask in the
3814 * slow path.
3816 goto no_zone;
3819 /* First allocation attempt */
3820 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3821 if (likely(page))
3822 goto out;
3824 no_zone:
3826 * Runtime PM, block IO and its error handling path can deadlock
3827 * because I/O on the device might not complete.
3829 alloc_mask = memalloc_noio_flags(gfp_mask);
3830 ac.spread_dirty_pages = false;
3833 * Restore the original nodemask if it was potentially replaced with
3834 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3836 if (unlikely(ac.nodemask != nodemask))
3837 ac.nodemask = nodemask;
3839 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3841 out:
3842 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3843 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3844 __free_pages(page, order);
3845 page = NULL;
3848 if (kmemcheck_enabled && page)
3849 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3851 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3853 return page;
3855 EXPORT_SYMBOL(__alloc_pages_nodemask);
3858 * Common helper functions.
3860 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3862 struct page *page;
3865 * __get_free_pages() returns a 32-bit address, which cannot represent
3866 * a highmem page
3868 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3870 page = alloc_pages(gfp_mask, order);
3871 if (!page)
3872 return 0;
3873 return (unsigned long) page_address(page);
3875 EXPORT_SYMBOL(__get_free_pages);
3877 unsigned long get_zeroed_page(gfp_t gfp_mask)
3879 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3881 EXPORT_SYMBOL(get_zeroed_page);
3883 void __free_pages(struct page *page, unsigned int order)
3885 if (put_page_testzero(page)) {
3886 if (order == 0)
3887 free_hot_cold_page(page, false);
3888 else
3889 __free_pages_ok(page, order);
3893 EXPORT_SYMBOL(__free_pages);
3895 void free_pages(unsigned long addr, unsigned int order)
3897 if (addr != 0) {
3898 VM_BUG_ON(!virt_addr_valid((void *)addr));
3899 __free_pages(virt_to_page((void *)addr), order);
3903 EXPORT_SYMBOL(free_pages);
3906 * Page Fragment:
3907 * An arbitrary-length arbitrary-offset area of memory which resides
3908 * within a 0 or higher order page. Multiple fragments within that page
3909 * are individually refcounted, in the page's reference counter.
3911 * The page_frag functions below provide a simple allocation framework for
3912 * page fragments. This is used by the network stack and network device
3913 * drivers to provide a backing region of memory for use as either an
3914 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3916 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3917 gfp_t gfp_mask)
3919 struct page *page = NULL;
3920 gfp_t gfp = gfp_mask;
3922 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3923 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3924 __GFP_NOMEMALLOC;
3925 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3926 PAGE_FRAG_CACHE_MAX_ORDER);
3927 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3928 #endif
3929 if (unlikely(!page))
3930 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3932 nc->va = page ? page_address(page) : NULL;
3934 return page;
3937 void *__alloc_page_frag(struct page_frag_cache *nc,
3938 unsigned int fragsz, gfp_t gfp_mask)
3940 unsigned int size = PAGE_SIZE;
3941 struct page *page;
3942 int offset;
3944 if (unlikely(!nc->va)) {
3945 refill:
3946 page = __page_frag_refill(nc, gfp_mask);
3947 if (!page)
3948 return NULL;
3950 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3951 /* if size can vary use size else just use PAGE_SIZE */
3952 size = nc->size;
3953 #endif
3954 /* Even if we own the page, we do not use atomic_set().
3955 * This would break get_page_unless_zero() users.
3957 page_ref_add(page, size - 1);
3959 /* reset page count bias and offset to start of new frag */
3960 nc->pfmemalloc = page_is_pfmemalloc(page);
3961 nc->pagecnt_bias = size;
3962 nc->offset = size;
3965 offset = nc->offset - fragsz;
3966 if (unlikely(offset < 0)) {
3967 page = virt_to_page(nc->va);
3969 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3970 goto refill;
3972 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3973 /* if size can vary use size else just use PAGE_SIZE */
3974 size = nc->size;
3975 #endif
3976 /* OK, page count is 0, we can safely set it */
3977 set_page_count(page, size);
3979 /* reset page count bias and offset to start of new frag */
3980 nc->pagecnt_bias = size;
3981 offset = size - fragsz;
3984 nc->pagecnt_bias--;
3985 nc->offset = offset;
3987 return nc->va + offset;
3989 EXPORT_SYMBOL(__alloc_page_frag);
3992 * Frees a page fragment allocated out of either a compound or order 0 page.
3994 void __free_page_frag(void *addr)
3996 struct page *page = virt_to_head_page(addr);
3998 if (unlikely(put_page_testzero(page)))
3999 __free_pages_ok(page, compound_order(page));
4001 EXPORT_SYMBOL(__free_page_frag);
4003 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4004 size_t size)
4006 if (addr) {
4007 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4008 unsigned long used = addr + PAGE_ALIGN(size);
4010 split_page(virt_to_page((void *)addr), order);
4011 while (used < alloc_end) {
4012 free_page(used);
4013 used += PAGE_SIZE;
4016 return (void *)addr;
4020 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4021 * @size: the number of bytes to allocate
4022 * @gfp_mask: GFP flags for the allocation
4024 * This function is similar to alloc_pages(), except that it allocates the
4025 * minimum number of pages to satisfy the request. alloc_pages() can only
4026 * allocate memory in power-of-two pages.
4028 * This function is also limited by MAX_ORDER.
4030 * Memory allocated by this function must be released by free_pages_exact().
4032 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4034 unsigned int order = get_order(size);
4035 unsigned long addr;
4037 addr = __get_free_pages(gfp_mask, order);
4038 return make_alloc_exact(addr, order, size);
4040 EXPORT_SYMBOL(alloc_pages_exact);
4043 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4044 * pages on a node.
4045 * @nid: the preferred node ID where memory should be allocated
4046 * @size: the number of bytes to allocate
4047 * @gfp_mask: GFP flags for the allocation
4049 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4050 * back.
4052 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4054 unsigned int order = get_order(size);
4055 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4056 if (!p)
4057 return NULL;
4058 return make_alloc_exact((unsigned long)page_address(p), order, size);
4062 * free_pages_exact - release memory allocated via alloc_pages_exact()
4063 * @virt: the value returned by alloc_pages_exact.
4064 * @size: size of allocation, same value as passed to alloc_pages_exact().
4066 * Release the memory allocated by a previous call to alloc_pages_exact.
4068 void free_pages_exact(void *virt, size_t size)
4070 unsigned long addr = (unsigned long)virt;
4071 unsigned long end = addr + PAGE_ALIGN(size);
4073 while (addr < end) {
4074 free_page(addr);
4075 addr += PAGE_SIZE;
4078 EXPORT_SYMBOL(free_pages_exact);
4081 * nr_free_zone_pages - count number of pages beyond high watermark
4082 * @offset: The zone index of the highest zone
4084 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4085 * high watermark within all zones at or below a given zone index. For each
4086 * zone, the number of pages is calculated as:
4087 * managed_pages - high_pages
4089 static unsigned long nr_free_zone_pages(int offset)
4091 struct zoneref *z;
4092 struct zone *zone;
4094 /* Just pick one node, since fallback list is circular */
4095 unsigned long sum = 0;
4097 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4099 for_each_zone_zonelist(zone, z, zonelist, offset) {
4100 unsigned long size = zone->managed_pages;
4101 unsigned long high = high_wmark_pages(zone);
4102 if (size > high)
4103 sum += size - high;
4106 return sum;
4110 * nr_free_buffer_pages - count number of pages beyond high watermark
4112 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4113 * watermark within ZONE_DMA and ZONE_NORMAL.
4115 unsigned long nr_free_buffer_pages(void)
4117 return nr_free_zone_pages(gfp_zone(GFP_USER));
4119 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4122 * nr_free_pagecache_pages - count number of pages beyond high watermark
4124 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4125 * high watermark within all zones.
4127 unsigned long nr_free_pagecache_pages(void)
4129 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4132 static inline void show_node(struct zone *zone)
4134 if (IS_ENABLED(CONFIG_NUMA))
4135 printk("Node %d ", zone_to_nid(zone));
4138 long si_mem_available(void)
4140 long available;
4141 unsigned long pagecache;
4142 unsigned long wmark_low = 0;
4143 unsigned long pages[NR_LRU_LISTS];
4144 struct zone *zone;
4145 int lru;
4147 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4148 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4150 for_each_zone(zone)
4151 wmark_low += zone->watermark[WMARK_LOW];
4154 * Estimate the amount of memory available for userspace allocations,
4155 * without causing swapping.
4157 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4160 * Not all the page cache can be freed, otherwise the system will
4161 * start swapping. Assume at least half of the page cache, or the
4162 * low watermark worth of cache, needs to stay.
4164 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4165 pagecache -= min(pagecache / 2, wmark_low);
4166 available += pagecache;
4169 * Part of the reclaimable slab consists of items that are in use,
4170 * and cannot be freed. Cap this estimate at the low watermark.
4172 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4173 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4175 if (available < 0)
4176 available = 0;
4177 return available;
4179 EXPORT_SYMBOL_GPL(si_mem_available);
4181 void si_meminfo(struct sysinfo *val)
4183 val->totalram = totalram_pages;
4184 val->sharedram = global_node_page_state(NR_SHMEM);
4185 val->freeram = global_page_state(NR_FREE_PAGES);
4186 val->bufferram = nr_blockdev_pages();
4187 val->totalhigh = totalhigh_pages;
4188 val->freehigh = nr_free_highpages();
4189 val->mem_unit = PAGE_SIZE;
4192 EXPORT_SYMBOL(si_meminfo);
4194 #ifdef CONFIG_NUMA
4195 void si_meminfo_node(struct sysinfo *val, int nid)
4197 int zone_type; /* needs to be signed */
4198 unsigned long managed_pages = 0;
4199 unsigned long managed_highpages = 0;
4200 unsigned long free_highpages = 0;
4201 pg_data_t *pgdat = NODE_DATA(nid);
4203 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4204 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4205 val->totalram = managed_pages;
4206 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4207 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4208 #ifdef CONFIG_HIGHMEM
4209 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4210 struct zone *zone = &pgdat->node_zones[zone_type];
4212 if (is_highmem(zone)) {
4213 managed_highpages += zone->managed_pages;
4214 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4217 val->totalhigh = managed_highpages;
4218 val->freehigh = free_highpages;
4219 #else
4220 val->totalhigh = managed_highpages;
4221 val->freehigh = free_highpages;
4222 #endif
4223 val->mem_unit = PAGE_SIZE;
4225 #endif
4228 * Determine whether the node should be displayed or not, depending on whether
4229 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4231 bool skip_free_areas_node(unsigned int flags, int nid)
4233 bool ret = false;
4234 unsigned int cpuset_mems_cookie;
4236 if (!(flags & SHOW_MEM_FILTER_NODES))
4237 goto out;
4239 do {
4240 cpuset_mems_cookie = read_mems_allowed_begin();
4241 ret = !node_isset(nid, cpuset_current_mems_allowed);
4242 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4243 out:
4244 return ret;
4247 #define K(x) ((x) << (PAGE_SHIFT-10))
4249 static void show_migration_types(unsigned char type)
4251 static const char types[MIGRATE_TYPES] = {
4252 [MIGRATE_UNMOVABLE] = 'U',
4253 [MIGRATE_MOVABLE] = 'M',
4254 [MIGRATE_RECLAIMABLE] = 'E',
4255 [MIGRATE_HIGHATOMIC] = 'H',
4256 #ifdef CONFIG_CMA
4257 [MIGRATE_CMA] = 'C',
4258 #endif
4259 #ifdef CONFIG_MEMORY_ISOLATION
4260 [MIGRATE_ISOLATE] = 'I',
4261 #endif
4263 char tmp[MIGRATE_TYPES + 1];
4264 char *p = tmp;
4265 int i;
4267 for (i = 0; i < MIGRATE_TYPES; i++) {
4268 if (type & (1 << i))
4269 *p++ = types[i];
4272 *p = '\0';
4273 printk(KERN_CONT "(%s) ", tmp);
4277 * Show free area list (used inside shift_scroll-lock stuff)
4278 * We also calculate the percentage fragmentation. We do this by counting the
4279 * memory on each free list with the exception of the first item on the list.
4281 * Bits in @filter:
4282 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4283 * cpuset.
4285 void show_free_areas(unsigned int filter)
4287 unsigned long free_pcp = 0;
4288 int cpu;
4289 struct zone *zone;
4290 pg_data_t *pgdat;
4292 for_each_populated_zone(zone) {
4293 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4294 continue;
4296 for_each_online_cpu(cpu)
4297 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4300 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4301 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4302 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4303 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4304 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4305 " free:%lu free_pcp:%lu free_cma:%lu\n",
4306 global_node_page_state(NR_ACTIVE_ANON),
4307 global_node_page_state(NR_INACTIVE_ANON),
4308 global_node_page_state(NR_ISOLATED_ANON),
4309 global_node_page_state(NR_ACTIVE_FILE),
4310 global_node_page_state(NR_INACTIVE_FILE),
4311 global_node_page_state(NR_ISOLATED_FILE),
4312 global_node_page_state(NR_UNEVICTABLE),
4313 global_node_page_state(NR_FILE_DIRTY),
4314 global_node_page_state(NR_WRITEBACK),
4315 global_node_page_state(NR_UNSTABLE_NFS),
4316 global_page_state(NR_SLAB_RECLAIMABLE),
4317 global_page_state(NR_SLAB_UNRECLAIMABLE),
4318 global_node_page_state(NR_FILE_MAPPED),
4319 global_node_page_state(NR_SHMEM),
4320 global_page_state(NR_PAGETABLE),
4321 global_page_state(NR_BOUNCE),
4322 global_page_state(NR_FREE_PAGES),
4323 free_pcp,
4324 global_page_state(NR_FREE_CMA_PAGES));
4326 for_each_online_pgdat(pgdat) {
4327 printk("Node %d"
4328 " active_anon:%lukB"
4329 " inactive_anon:%lukB"
4330 " active_file:%lukB"
4331 " inactive_file:%lukB"
4332 " unevictable:%lukB"
4333 " isolated(anon):%lukB"
4334 " isolated(file):%lukB"
4335 " mapped:%lukB"
4336 " dirty:%lukB"
4337 " writeback:%lukB"
4338 " shmem:%lukB"
4339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4340 " shmem_thp: %lukB"
4341 " shmem_pmdmapped: %lukB"
4342 " anon_thp: %lukB"
4343 #endif
4344 " writeback_tmp:%lukB"
4345 " unstable:%lukB"
4346 " pages_scanned:%lu"
4347 " all_unreclaimable? %s"
4348 "\n",
4349 pgdat->node_id,
4350 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4351 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4352 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4353 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4354 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4355 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4356 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4357 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4358 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4359 K(node_page_state(pgdat, NR_WRITEBACK)),
4360 K(node_page_state(pgdat, NR_SHMEM)),
4361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4362 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4363 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4364 * HPAGE_PMD_NR),
4365 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4366 #endif
4367 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4368 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4369 node_page_state(pgdat, NR_PAGES_SCANNED),
4370 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4373 for_each_populated_zone(zone) {
4374 int i;
4376 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4377 continue;
4379 free_pcp = 0;
4380 for_each_online_cpu(cpu)
4381 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4383 show_node(zone);
4384 printk(KERN_CONT
4385 "%s"
4386 " free:%lukB"
4387 " min:%lukB"
4388 " low:%lukB"
4389 " high:%lukB"
4390 " active_anon:%lukB"
4391 " inactive_anon:%lukB"
4392 " active_file:%lukB"
4393 " inactive_file:%lukB"
4394 " unevictable:%lukB"
4395 " writepending:%lukB"
4396 " present:%lukB"
4397 " managed:%lukB"
4398 " mlocked:%lukB"
4399 " slab_reclaimable:%lukB"
4400 " slab_unreclaimable:%lukB"
4401 " kernel_stack:%lukB"
4402 " pagetables:%lukB"
4403 " bounce:%lukB"
4404 " free_pcp:%lukB"
4405 " local_pcp:%ukB"
4406 " free_cma:%lukB"
4407 "\n",
4408 zone->name,
4409 K(zone_page_state(zone, NR_FREE_PAGES)),
4410 K(min_wmark_pages(zone)),
4411 K(low_wmark_pages(zone)),
4412 K(high_wmark_pages(zone)),
4413 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4414 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4415 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4416 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4417 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4418 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4419 K(zone->present_pages),
4420 K(zone->managed_pages),
4421 K(zone_page_state(zone, NR_MLOCK)),
4422 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4423 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4424 zone_page_state(zone, NR_KERNEL_STACK_KB),
4425 K(zone_page_state(zone, NR_PAGETABLE)),
4426 K(zone_page_state(zone, NR_BOUNCE)),
4427 K(free_pcp),
4428 K(this_cpu_read(zone->pageset->pcp.count)),
4429 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4430 printk("lowmem_reserve[]:");
4431 for (i = 0; i < MAX_NR_ZONES; i++)
4432 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4433 printk(KERN_CONT "\n");
4436 for_each_populated_zone(zone) {
4437 unsigned int order;
4438 unsigned long nr[MAX_ORDER], flags, total = 0;
4439 unsigned char types[MAX_ORDER];
4441 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4442 continue;
4443 show_node(zone);
4444 printk(KERN_CONT "%s: ", zone->name);
4446 spin_lock_irqsave(&zone->lock, flags);
4447 for (order = 0; order < MAX_ORDER; order++) {
4448 struct free_area *area = &zone->free_area[order];
4449 int type;
4451 nr[order] = area->nr_free;
4452 total += nr[order] << order;
4454 types[order] = 0;
4455 for (type = 0; type < MIGRATE_TYPES; type++) {
4456 if (!list_empty(&area->free_list[type]))
4457 types[order] |= 1 << type;
4460 spin_unlock_irqrestore(&zone->lock, flags);
4461 for (order = 0; order < MAX_ORDER; order++) {
4462 printk(KERN_CONT "%lu*%lukB ",
4463 nr[order], K(1UL) << order);
4464 if (nr[order])
4465 show_migration_types(types[order]);
4467 printk(KERN_CONT "= %lukB\n", K(total));
4470 hugetlb_show_meminfo();
4472 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4474 show_swap_cache_info();
4477 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4479 zoneref->zone = zone;
4480 zoneref->zone_idx = zone_idx(zone);
4484 * Builds allocation fallback zone lists.
4486 * Add all populated zones of a node to the zonelist.
4488 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4489 int nr_zones)
4491 struct zone *zone;
4492 enum zone_type zone_type = MAX_NR_ZONES;
4494 do {
4495 zone_type--;
4496 zone = pgdat->node_zones + zone_type;
4497 if (managed_zone(zone)) {
4498 zoneref_set_zone(zone,
4499 &zonelist->_zonerefs[nr_zones++]);
4500 check_highest_zone(zone_type);
4502 } while (zone_type);
4504 return nr_zones;
4509 * zonelist_order:
4510 * 0 = automatic detection of better ordering.
4511 * 1 = order by ([node] distance, -zonetype)
4512 * 2 = order by (-zonetype, [node] distance)
4514 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4515 * the same zonelist. So only NUMA can configure this param.
4517 #define ZONELIST_ORDER_DEFAULT 0
4518 #define ZONELIST_ORDER_NODE 1
4519 #define ZONELIST_ORDER_ZONE 2
4521 /* zonelist order in the kernel.
4522 * set_zonelist_order() will set this to NODE or ZONE.
4524 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4525 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4528 #ifdef CONFIG_NUMA
4529 /* The value user specified ....changed by config */
4530 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4531 /* string for sysctl */
4532 #define NUMA_ZONELIST_ORDER_LEN 16
4533 char numa_zonelist_order[16] = "default";
4536 * interface for configure zonelist ordering.
4537 * command line option "numa_zonelist_order"
4538 * = "[dD]efault - default, automatic configuration.
4539 * = "[nN]ode - order by node locality, then by zone within node
4540 * = "[zZ]one - order by zone, then by locality within zone
4543 static int __parse_numa_zonelist_order(char *s)
4545 if (*s == 'd' || *s == 'D') {
4546 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4547 } else if (*s == 'n' || *s == 'N') {
4548 user_zonelist_order = ZONELIST_ORDER_NODE;
4549 } else if (*s == 'z' || *s == 'Z') {
4550 user_zonelist_order = ZONELIST_ORDER_ZONE;
4551 } else {
4552 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4553 return -EINVAL;
4555 return 0;
4558 static __init int setup_numa_zonelist_order(char *s)
4560 int ret;
4562 if (!s)
4563 return 0;
4565 ret = __parse_numa_zonelist_order(s);
4566 if (ret == 0)
4567 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4569 return ret;
4571 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4574 * sysctl handler for numa_zonelist_order
4576 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4577 void __user *buffer, size_t *length,
4578 loff_t *ppos)
4580 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4581 int ret;
4582 static DEFINE_MUTEX(zl_order_mutex);
4584 mutex_lock(&zl_order_mutex);
4585 if (write) {
4586 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4587 ret = -EINVAL;
4588 goto out;
4590 strcpy(saved_string, (char *)table->data);
4592 ret = proc_dostring(table, write, buffer, length, ppos);
4593 if (ret)
4594 goto out;
4595 if (write) {
4596 int oldval = user_zonelist_order;
4598 ret = __parse_numa_zonelist_order((char *)table->data);
4599 if (ret) {
4601 * bogus value. restore saved string
4603 strncpy((char *)table->data, saved_string,
4604 NUMA_ZONELIST_ORDER_LEN);
4605 user_zonelist_order = oldval;
4606 } else if (oldval != user_zonelist_order) {
4607 mutex_lock(&zonelists_mutex);
4608 build_all_zonelists(NULL, NULL);
4609 mutex_unlock(&zonelists_mutex);
4612 out:
4613 mutex_unlock(&zl_order_mutex);
4614 return ret;
4618 #define MAX_NODE_LOAD (nr_online_nodes)
4619 static int node_load[MAX_NUMNODES];
4622 * find_next_best_node - find the next node that should appear in a given node's fallback list
4623 * @node: node whose fallback list we're appending
4624 * @used_node_mask: nodemask_t of already used nodes
4626 * We use a number of factors to determine which is the next node that should
4627 * appear on a given node's fallback list. The node should not have appeared
4628 * already in @node's fallback list, and it should be the next closest node
4629 * according to the distance array (which contains arbitrary distance values
4630 * from each node to each node in the system), and should also prefer nodes
4631 * with no CPUs, since presumably they'll have very little allocation pressure
4632 * on them otherwise.
4633 * It returns -1 if no node is found.
4635 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4637 int n, val;
4638 int min_val = INT_MAX;
4639 int best_node = NUMA_NO_NODE;
4640 const struct cpumask *tmp = cpumask_of_node(0);
4642 /* Use the local node if we haven't already */
4643 if (!node_isset(node, *used_node_mask)) {
4644 node_set(node, *used_node_mask);
4645 return node;
4648 for_each_node_state(n, N_MEMORY) {
4650 /* Don't want a node to appear more than once */
4651 if (node_isset(n, *used_node_mask))
4652 continue;
4654 /* Use the distance array to find the distance */
4655 val = node_distance(node, n);
4657 /* Penalize nodes under us ("prefer the next node") */
4658 val += (n < node);
4660 /* Give preference to headless and unused nodes */
4661 tmp = cpumask_of_node(n);
4662 if (!cpumask_empty(tmp))
4663 val += PENALTY_FOR_NODE_WITH_CPUS;
4665 /* Slight preference for less loaded node */
4666 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4667 val += node_load[n];
4669 if (val < min_val) {
4670 min_val = val;
4671 best_node = n;
4675 if (best_node >= 0)
4676 node_set(best_node, *used_node_mask);
4678 return best_node;
4683 * Build zonelists ordered by node and zones within node.
4684 * This results in maximum locality--normal zone overflows into local
4685 * DMA zone, if any--but risks exhausting DMA zone.
4687 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4689 int j;
4690 struct zonelist *zonelist;
4692 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4693 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4695 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4696 zonelist->_zonerefs[j].zone = NULL;
4697 zonelist->_zonerefs[j].zone_idx = 0;
4701 * Build gfp_thisnode zonelists
4703 static void build_thisnode_zonelists(pg_data_t *pgdat)
4705 int j;
4706 struct zonelist *zonelist;
4708 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4709 j = build_zonelists_node(pgdat, zonelist, 0);
4710 zonelist->_zonerefs[j].zone = NULL;
4711 zonelist->_zonerefs[j].zone_idx = 0;
4715 * Build zonelists ordered by zone and nodes within zones.
4716 * This results in conserving DMA zone[s] until all Normal memory is
4717 * exhausted, but results in overflowing to remote node while memory
4718 * may still exist in local DMA zone.
4720 static int node_order[MAX_NUMNODES];
4722 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4724 int pos, j, node;
4725 int zone_type; /* needs to be signed */
4726 struct zone *z;
4727 struct zonelist *zonelist;
4729 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4730 pos = 0;
4731 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4732 for (j = 0; j < nr_nodes; j++) {
4733 node = node_order[j];
4734 z = &NODE_DATA(node)->node_zones[zone_type];
4735 if (managed_zone(z)) {
4736 zoneref_set_zone(z,
4737 &zonelist->_zonerefs[pos++]);
4738 check_highest_zone(zone_type);
4742 zonelist->_zonerefs[pos].zone = NULL;
4743 zonelist->_zonerefs[pos].zone_idx = 0;
4746 #if defined(CONFIG_64BIT)
4748 * Devices that require DMA32/DMA are relatively rare and do not justify a
4749 * penalty to every machine in case the specialised case applies. Default
4750 * to Node-ordering on 64-bit NUMA machines
4752 static int default_zonelist_order(void)
4754 return ZONELIST_ORDER_NODE;
4756 #else
4758 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4759 * by the kernel. If processes running on node 0 deplete the low memory zone
4760 * then reclaim will occur more frequency increasing stalls and potentially
4761 * be easier to OOM if a large percentage of the zone is under writeback or
4762 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4763 * Hence, default to zone ordering on 32-bit.
4765 static int default_zonelist_order(void)
4767 return ZONELIST_ORDER_ZONE;
4769 #endif /* CONFIG_64BIT */
4771 static void set_zonelist_order(void)
4773 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4774 current_zonelist_order = default_zonelist_order();
4775 else
4776 current_zonelist_order = user_zonelist_order;
4779 static void build_zonelists(pg_data_t *pgdat)
4781 int i, node, load;
4782 nodemask_t used_mask;
4783 int local_node, prev_node;
4784 struct zonelist *zonelist;
4785 unsigned int order = current_zonelist_order;
4787 /* initialize zonelists */
4788 for (i = 0; i < MAX_ZONELISTS; i++) {
4789 zonelist = pgdat->node_zonelists + i;
4790 zonelist->_zonerefs[0].zone = NULL;
4791 zonelist->_zonerefs[0].zone_idx = 0;
4794 /* NUMA-aware ordering of nodes */
4795 local_node = pgdat->node_id;
4796 load = nr_online_nodes;
4797 prev_node = local_node;
4798 nodes_clear(used_mask);
4800 memset(node_order, 0, sizeof(node_order));
4801 i = 0;
4803 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4805 * We don't want to pressure a particular node.
4806 * So adding penalty to the first node in same
4807 * distance group to make it round-robin.
4809 if (node_distance(local_node, node) !=
4810 node_distance(local_node, prev_node))
4811 node_load[node] = load;
4813 prev_node = node;
4814 load--;
4815 if (order == ZONELIST_ORDER_NODE)
4816 build_zonelists_in_node_order(pgdat, node);
4817 else
4818 node_order[i++] = node; /* remember order */
4821 if (order == ZONELIST_ORDER_ZONE) {
4822 /* calculate node order -- i.e., DMA last! */
4823 build_zonelists_in_zone_order(pgdat, i);
4826 build_thisnode_zonelists(pgdat);
4829 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4831 * Return node id of node used for "local" allocations.
4832 * I.e., first node id of first zone in arg node's generic zonelist.
4833 * Used for initializing percpu 'numa_mem', which is used primarily
4834 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4836 int local_memory_node(int node)
4838 struct zoneref *z;
4840 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4841 gfp_zone(GFP_KERNEL),
4842 NULL);
4843 return z->zone->node;
4845 #endif
4847 static void setup_min_unmapped_ratio(void);
4848 static void setup_min_slab_ratio(void);
4849 #else /* CONFIG_NUMA */
4851 static void set_zonelist_order(void)
4853 current_zonelist_order = ZONELIST_ORDER_ZONE;
4856 static void build_zonelists(pg_data_t *pgdat)
4858 int node, local_node;
4859 enum zone_type j;
4860 struct zonelist *zonelist;
4862 local_node = pgdat->node_id;
4864 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4865 j = build_zonelists_node(pgdat, zonelist, 0);
4868 * Now we build the zonelist so that it contains the zones
4869 * of all the other nodes.
4870 * We don't want to pressure a particular node, so when
4871 * building the zones for node N, we make sure that the
4872 * zones coming right after the local ones are those from
4873 * node N+1 (modulo N)
4875 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4876 if (!node_online(node))
4877 continue;
4878 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4880 for (node = 0; node < local_node; node++) {
4881 if (!node_online(node))
4882 continue;
4883 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4886 zonelist->_zonerefs[j].zone = NULL;
4887 zonelist->_zonerefs[j].zone_idx = 0;
4890 #endif /* CONFIG_NUMA */
4893 * Boot pageset table. One per cpu which is going to be used for all
4894 * zones and all nodes. The parameters will be set in such a way
4895 * that an item put on a list will immediately be handed over to
4896 * the buddy list. This is safe since pageset manipulation is done
4897 * with interrupts disabled.
4899 * The boot_pagesets must be kept even after bootup is complete for
4900 * unused processors and/or zones. They do play a role for bootstrapping
4901 * hotplugged processors.
4903 * zoneinfo_show() and maybe other functions do
4904 * not check if the processor is online before following the pageset pointer.
4905 * Other parts of the kernel may not check if the zone is available.
4907 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4908 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4909 static void setup_zone_pageset(struct zone *zone);
4912 * Global mutex to protect against size modification of zonelists
4913 * as well as to serialize pageset setup for the new populated zone.
4915 DEFINE_MUTEX(zonelists_mutex);
4917 /* return values int ....just for stop_machine() */
4918 static int __build_all_zonelists(void *data)
4920 int nid;
4921 int cpu;
4922 pg_data_t *self = data;
4924 #ifdef CONFIG_NUMA
4925 memset(node_load, 0, sizeof(node_load));
4926 #endif
4928 if (self && !node_online(self->node_id)) {
4929 build_zonelists(self);
4932 for_each_online_node(nid) {
4933 pg_data_t *pgdat = NODE_DATA(nid);
4935 build_zonelists(pgdat);
4939 * Initialize the boot_pagesets that are going to be used
4940 * for bootstrapping processors. The real pagesets for
4941 * each zone will be allocated later when the per cpu
4942 * allocator is available.
4944 * boot_pagesets are used also for bootstrapping offline
4945 * cpus if the system is already booted because the pagesets
4946 * are needed to initialize allocators on a specific cpu too.
4947 * F.e. the percpu allocator needs the page allocator which
4948 * needs the percpu allocator in order to allocate its pagesets
4949 * (a chicken-egg dilemma).
4951 for_each_possible_cpu(cpu) {
4952 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4954 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4956 * We now know the "local memory node" for each node--
4957 * i.e., the node of the first zone in the generic zonelist.
4958 * Set up numa_mem percpu variable for on-line cpus. During
4959 * boot, only the boot cpu should be on-line; we'll init the
4960 * secondary cpus' numa_mem as they come on-line. During
4961 * node/memory hotplug, we'll fixup all on-line cpus.
4963 if (cpu_online(cpu))
4964 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4965 #endif
4968 return 0;
4971 static noinline void __init
4972 build_all_zonelists_init(void)
4974 __build_all_zonelists(NULL);
4975 mminit_verify_zonelist();
4976 cpuset_init_current_mems_allowed();
4980 * Called with zonelists_mutex held always
4981 * unless system_state == SYSTEM_BOOTING.
4983 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4984 * [we're only called with non-NULL zone through __meminit paths] and
4985 * (2) call of __init annotated helper build_all_zonelists_init
4986 * [protected by SYSTEM_BOOTING].
4988 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4990 set_zonelist_order();
4992 if (system_state == SYSTEM_BOOTING) {
4993 build_all_zonelists_init();
4994 } else {
4995 #ifdef CONFIG_MEMORY_HOTPLUG
4996 if (zone)
4997 setup_zone_pageset(zone);
4998 #endif
4999 /* we have to stop all cpus to guarantee there is no user
5000 of zonelist */
5001 stop_machine(__build_all_zonelists, pgdat, NULL);
5002 /* cpuset refresh routine should be here */
5004 vm_total_pages = nr_free_pagecache_pages();
5006 * Disable grouping by mobility if the number of pages in the
5007 * system is too low to allow the mechanism to work. It would be
5008 * more accurate, but expensive to check per-zone. This check is
5009 * made on memory-hotadd so a system can start with mobility
5010 * disabled and enable it later
5012 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5013 page_group_by_mobility_disabled = 1;
5014 else
5015 page_group_by_mobility_disabled = 0;
5017 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5018 nr_online_nodes,
5019 zonelist_order_name[current_zonelist_order],
5020 page_group_by_mobility_disabled ? "off" : "on",
5021 vm_total_pages);
5022 #ifdef CONFIG_NUMA
5023 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5024 #endif
5028 * Initially all pages are reserved - free ones are freed
5029 * up by free_all_bootmem() once the early boot process is
5030 * done. Non-atomic initialization, single-pass.
5032 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5033 unsigned long start_pfn, enum memmap_context context)
5035 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5036 unsigned long end_pfn = start_pfn + size;
5037 pg_data_t *pgdat = NODE_DATA(nid);
5038 unsigned long pfn;
5039 unsigned long nr_initialised = 0;
5040 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5041 struct memblock_region *r = NULL, *tmp;
5042 #endif
5044 if (highest_memmap_pfn < end_pfn - 1)
5045 highest_memmap_pfn = end_pfn - 1;
5048 * Honor reservation requested by the driver for this ZONE_DEVICE
5049 * memory
5051 if (altmap && start_pfn == altmap->base_pfn)
5052 start_pfn += altmap->reserve;
5054 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5056 * There can be holes in boot-time mem_map[]s handed to this
5057 * function. They do not exist on hotplugged memory.
5059 if (context != MEMMAP_EARLY)
5060 goto not_early;
5062 if (!early_pfn_valid(pfn))
5063 continue;
5064 if (!early_pfn_in_nid(pfn, nid))
5065 continue;
5066 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5067 break;
5069 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5071 * Check given memblock attribute by firmware which can affect
5072 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5073 * mirrored, it's an overlapped memmap init. skip it.
5075 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5076 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5077 for_each_memblock(memory, tmp)
5078 if (pfn < memblock_region_memory_end_pfn(tmp))
5079 break;
5080 r = tmp;
5082 if (pfn >= memblock_region_memory_base_pfn(r) &&
5083 memblock_is_mirror(r)) {
5084 /* already initialized as NORMAL */
5085 pfn = memblock_region_memory_end_pfn(r);
5086 continue;
5089 #endif
5091 not_early:
5093 * Mark the block movable so that blocks are reserved for
5094 * movable at startup. This will force kernel allocations
5095 * to reserve their blocks rather than leaking throughout
5096 * the address space during boot when many long-lived
5097 * kernel allocations are made.
5099 * bitmap is created for zone's valid pfn range. but memmap
5100 * can be created for invalid pages (for alignment)
5101 * check here not to call set_pageblock_migratetype() against
5102 * pfn out of zone.
5104 if (!(pfn & (pageblock_nr_pages - 1))) {
5105 struct page *page = pfn_to_page(pfn);
5107 __init_single_page(page, pfn, zone, nid);
5108 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5109 } else {
5110 __init_single_pfn(pfn, zone, nid);
5115 static void __meminit zone_init_free_lists(struct zone *zone)
5117 unsigned int order, t;
5118 for_each_migratetype_order(order, t) {
5119 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5120 zone->free_area[order].nr_free = 0;
5124 #ifndef __HAVE_ARCH_MEMMAP_INIT
5125 #define memmap_init(size, nid, zone, start_pfn) \
5126 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5127 #endif
5129 static int zone_batchsize(struct zone *zone)
5131 #ifdef CONFIG_MMU
5132 int batch;
5135 * The per-cpu-pages pools are set to around 1000th of the
5136 * size of the zone. But no more than 1/2 of a meg.
5138 * OK, so we don't know how big the cache is. So guess.
5140 batch = zone->managed_pages / 1024;
5141 if (batch * PAGE_SIZE > 512 * 1024)
5142 batch = (512 * 1024) / PAGE_SIZE;
5143 batch /= 4; /* We effectively *= 4 below */
5144 if (batch < 1)
5145 batch = 1;
5148 * Clamp the batch to a 2^n - 1 value. Having a power
5149 * of 2 value was found to be more likely to have
5150 * suboptimal cache aliasing properties in some cases.
5152 * For example if 2 tasks are alternately allocating
5153 * batches of pages, one task can end up with a lot
5154 * of pages of one half of the possible page colors
5155 * and the other with pages of the other colors.
5157 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5159 return batch;
5161 #else
5162 /* The deferral and batching of frees should be suppressed under NOMMU
5163 * conditions.
5165 * The problem is that NOMMU needs to be able to allocate large chunks
5166 * of contiguous memory as there's no hardware page translation to
5167 * assemble apparent contiguous memory from discontiguous pages.
5169 * Queueing large contiguous runs of pages for batching, however,
5170 * causes the pages to actually be freed in smaller chunks. As there
5171 * can be a significant delay between the individual batches being
5172 * recycled, this leads to the once large chunks of space being
5173 * fragmented and becoming unavailable for high-order allocations.
5175 return 0;
5176 #endif
5180 * pcp->high and pcp->batch values are related and dependent on one another:
5181 * ->batch must never be higher then ->high.
5182 * The following function updates them in a safe manner without read side
5183 * locking.
5185 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5186 * those fields changing asynchronously (acording the the above rule).
5188 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5189 * outside of boot time (or some other assurance that no concurrent updaters
5190 * exist).
5192 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5193 unsigned long batch)
5195 /* start with a fail safe value for batch */
5196 pcp->batch = 1;
5197 smp_wmb();
5199 /* Update high, then batch, in order */
5200 pcp->high = high;
5201 smp_wmb();
5203 pcp->batch = batch;
5206 /* a companion to pageset_set_high() */
5207 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5209 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5212 static void pageset_init(struct per_cpu_pageset *p)
5214 struct per_cpu_pages *pcp;
5215 int migratetype;
5217 memset(p, 0, sizeof(*p));
5219 pcp = &p->pcp;
5220 pcp->count = 0;
5221 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5222 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5225 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5227 pageset_init(p);
5228 pageset_set_batch(p, batch);
5232 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5233 * to the value high for the pageset p.
5235 static void pageset_set_high(struct per_cpu_pageset *p,
5236 unsigned long high)
5238 unsigned long batch = max(1UL, high / 4);
5239 if ((high / 4) > (PAGE_SHIFT * 8))
5240 batch = PAGE_SHIFT * 8;
5242 pageset_update(&p->pcp, high, batch);
5245 static void pageset_set_high_and_batch(struct zone *zone,
5246 struct per_cpu_pageset *pcp)
5248 if (percpu_pagelist_fraction)
5249 pageset_set_high(pcp,
5250 (zone->managed_pages /
5251 percpu_pagelist_fraction));
5252 else
5253 pageset_set_batch(pcp, zone_batchsize(zone));
5256 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5258 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5260 pageset_init(pcp);
5261 pageset_set_high_and_batch(zone, pcp);
5264 static void __meminit setup_zone_pageset(struct zone *zone)
5266 int cpu;
5267 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5268 for_each_possible_cpu(cpu)
5269 zone_pageset_init(zone, cpu);
5273 * Allocate per cpu pagesets and initialize them.
5274 * Before this call only boot pagesets were available.
5276 void __init setup_per_cpu_pageset(void)
5278 struct pglist_data *pgdat;
5279 struct zone *zone;
5281 for_each_populated_zone(zone)
5282 setup_zone_pageset(zone);
5284 for_each_online_pgdat(pgdat)
5285 pgdat->per_cpu_nodestats =
5286 alloc_percpu(struct per_cpu_nodestat);
5289 static __meminit void zone_pcp_init(struct zone *zone)
5292 * per cpu subsystem is not up at this point. The following code
5293 * relies on the ability of the linker to provide the
5294 * offset of a (static) per cpu variable into the per cpu area.
5296 zone->pageset = &boot_pageset;
5298 if (populated_zone(zone))
5299 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5300 zone->name, zone->present_pages,
5301 zone_batchsize(zone));
5304 int __meminit init_currently_empty_zone(struct zone *zone,
5305 unsigned long zone_start_pfn,
5306 unsigned long size)
5308 struct pglist_data *pgdat = zone->zone_pgdat;
5310 pgdat->nr_zones = zone_idx(zone) + 1;
5312 zone->zone_start_pfn = zone_start_pfn;
5314 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5315 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5316 pgdat->node_id,
5317 (unsigned long)zone_idx(zone),
5318 zone_start_pfn, (zone_start_pfn + size));
5320 zone_init_free_lists(zone);
5321 zone->initialized = 1;
5323 return 0;
5326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5327 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5330 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5332 int __meminit __early_pfn_to_nid(unsigned long pfn,
5333 struct mminit_pfnnid_cache *state)
5335 unsigned long start_pfn, end_pfn;
5336 int nid;
5338 if (state->last_start <= pfn && pfn < state->last_end)
5339 return state->last_nid;
5341 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5342 if (nid != -1) {
5343 state->last_start = start_pfn;
5344 state->last_end = end_pfn;
5345 state->last_nid = nid;
5348 return nid;
5350 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5353 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5354 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5355 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5357 * If an architecture guarantees that all ranges registered contain no holes
5358 * and may be freed, this this function may be used instead of calling
5359 * memblock_free_early_nid() manually.
5361 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5363 unsigned long start_pfn, end_pfn;
5364 int i, this_nid;
5366 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5367 start_pfn = min(start_pfn, max_low_pfn);
5368 end_pfn = min(end_pfn, max_low_pfn);
5370 if (start_pfn < end_pfn)
5371 memblock_free_early_nid(PFN_PHYS(start_pfn),
5372 (end_pfn - start_pfn) << PAGE_SHIFT,
5373 this_nid);
5378 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5379 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5381 * If an architecture guarantees that all ranges registered contain no holes and may
5382 * be freed, this function may be used instead of calling memory_present() manually.
5384 void __init sparse_memory_present_with_active_regions(int nid)
5386 unsigned long start_pfn, end_pfn;
5387 int i, this_nid;
5389 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5390 memory_present(this_nid, start_pfn, end_pfn);
5394 * get_pfn_range_for_nid - Return the start and end page frames for a node
5395 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5396 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5397 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5399 * It returns the start and end page frame of a node based on information
5400 * provided by memblock_set_node(). If called for a node
5401 * with no available memory, a warning is printed and the start and end
5402 * PFNs will be 0.
5404 void __meminit get_pfn_range_for_nid(unsigned int nid,
5405 unsigned long *start_pfn, unsigned long *end_pfn)
5407 unsigned long this_start_pfn, this_end_pfn;
5408 int i;
5410 *start_pfn = -1UL;
5411 *end_pfn = 0;
5413 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5414 *start_pfn = min(*start_pfn, this_start_pfn);
5415 *end_pfn = max(*end_pfn, this_end_pfn);
5418 if (*start_pfn == -1UL)
5419 *start_pfn = 0;
5423 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5424 * assumption is made that zones within a node are ordered in monotonic
5425 * increasing memory addresses so that the "highest" populated zone is used
5427 static void __init find_usable_zone_for_movable(void)
5429 int zone_index;
5430 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5431 if (zone_index == ZONE_MOVABLE)
5432 continue;
5434 if (arch_zone_highest_possible_pfn[zone_index] >
5435 arch_zone_lowest_possible_pfn[zone_index])
5436 break;
5439 VM_BUG_ON(zone_index == -1);
5440 movable_zone = zone_index;
5444 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5445 * because it is sized independent of architecture. Unlike the other zones,
5446 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5447 * in each node depending on the size of each node and how evenly kernelcore
5448 * is distributed. This helper function adjusts the zone ranges
5449 * provided by the architecture for a given node by using the end of the
5450 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5451 * zones within a node are in order of monotonic increases memory addresses
5453 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5454 unsigned long zone_type,
5455 unsigned long node_start_pfn,
5456 unsigned long node_end_pfn,
5457 unsigned long *zone_start_pfn,
5458 unsigned long *zone_end_pfn)
5460 /* Only adjust if ZONE_MOVABLE is on this node */
5461 if (zone_movable_pfn[nid]) {
5462 /* Size ZONE_MOVABLE */
5463 if (zone_type == ZONE_MOVABLE) {
5464 *zone_start_pfn = zone_movable_pfn[nid];
5465 *zone_end_pfn = min(node_end_pfn,
5466 arch_zone_highest_possible_pfn[movable_zone]);
5468 /* Adjust for ZONE_MOVABLE starting within this range */
5469 } else if (!mirrored_kernelcore &&
5470 *zone_start_pfn < zone_movable_pfn[nid] &&
5471 *zone_end_pfn > zone_movable_pfn[nid]) {
5472 *zone_end_pfn = zone_movable_pfn[nid];
5474 /* Check if this whole range is within ZONE_MOVABLE */
5475 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5476 *zone_start_pfn = *zone_end_pfn;
5481 * Return the number of pages a zone spans in a node, including holes
5482 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5484 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5485 unsigned long zone_type,
5486 unsigned long node_start_pfn,
5487 unsigned long node_end_pfn,
5488 unsigned long *zone_start_pfn,
5489 unsigned long *zone_end_pfn,
5490 unsigned long *ignored)
5492 /* When hotadd a new node from cpu_up(), the node should be empty */
5493 if (!node_start_pfn && !node_end_pfn)
5494 return 0;
5496 /* Get the start and end of the zone */
5497 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5498 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5499 adjust_zone_range_for_zone_movable(nid, zone_type,
5500 node_start_pfn, node_end_pfn,
5501 zone_start_pfn, zone_end_pfn);
5503 /* Check that this node has pages within the zone's required range */
5504 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5505 return 0;
5507 /* Move the zone boundaries inside the node if necessary */
5508 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5509 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5511 /* Return the spanned pages */
5512 return *zone_end_pfn - *zone_start_pfn;
5516 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5517 * then all holes in the requested range will be accounted for.
5519 unsigned long __meminit __absent_pages_in_range(int nid,
5520 unsigned long range_start_pfn,
5521 unsigned long range_end_pfn)
5523 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5524 unsigned long start_pfn, end_pfn;
5525 int i;
5527 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5528 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5529 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5530 nr_absent -= end_pfn - start_pfn;
5532 return nr_absent;
5536 * absent_pages_in_range - Return number of page frames in holes within a range
5537 * @start_pfn: The start PFN to start searching for holes
5538 * @end_pfn: The end PFN to stop searching for holes
5540 * It returns the number of pages frames in memory holes within a range.
5542 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5543 unsigned long end_pfn)
5545 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5548 /* Return the number of page frames in holes in a zone on a node */
5549 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5550 unsigned long zone_type,
5551 unsigned long node_start_pfn,
5552 unsigned long node_end_pfn,
5553 unsigned long *ignored)
5555 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5556 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5557 unsigned long zone_start_pfn, zone_end_pfn;
5558 unsigned long nr_absent;
5560 /* When hotadd a new node from cpu_up(), the node should be empty */
5561 if (!node_start_pfn && !node_end_pfn)
5562 return 0;
5564 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5565 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5567 adjust_zone_range_for_zone_movable(nid, zone_type,
5568 node_start_pfn, node_end_pfn,
5569 &zone_start_pfn, &zone_end_pfn);
5570 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5573 * ZONE_MOVABLE handling.
5574 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5575 * and vice versa.
5577 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5578 unsigned long start_pfn, end_pfn;
5579 struct memblock_region *r;
5581 for_each_memblock(memory, r) {
5582 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5583 zone_start_pfn, zone_end_pfn);
5584 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5585 zone_start_pfn, zone_end_pfn);
5587 if (zone_type == ZONE_MOVABLE &&
5588 memblock_is_mirror(r))
5589 nr_absent += end_pfn - start_pfn;
5591 if (zone_type == ZONE_NORMAL &&
5592 !memblock_is_mirror(r))
5593 nr_absent += end_pfn - start_pfn;
5597 return nr_absent;
5600 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5601 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5602 unsigned long zone_type,
5603 unsigned long node_start_pfn,
5604 unsigned long node_end_pfn,
5605 unsigned long *zone_start_pfn,
5606 unsigned long *zone_end_pfn,
5607 unsigned long *zones_size)
5609 unsigned int zone;
5611 *zone_start_pfn = node_start_pfn;
5612 for (zone = 0; zone < zone_type; zone++)
5613 *zone_start_pfn += zones_size[zone];
5615 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5617 return zones_size[zone_type];
5620 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5621 unsigned long zone_type,
5622 unsigned long node_start_pfn,
5623 unsigned long node_end_pfn,
5624 unsigned long *zholes_size)
5626 if (!zholes_size)
5627 return 0;
5629 return zholes_size[zone_type];
5632 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5634 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5635 unsigned long node_start_pfn,
5636 unsigned long node_end_pfn,
5637 unsigned long *zones_size,
5638 unsigned long *zholes_size)
5640 unsigned long realtotalpages = 0, totalpages = 0;
5641 enum zone_type i;
5643 for (i = 0; i < MAX_NR_ZONES; i++) {
5644 struct zone *zone = pgdat->node_zones + i;
5645 unsigned long zone_start_pfn, zone_end_pfn;
5646 unsigned long size, real_size;
5648 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5649 node_start_pfn,
5650 node_end_pfn,
5651 &zone_start_pfn,
5652 &zone_end_pfn,
5653 zones_size);
5654 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5655 node_start_pfn, node_end_pfn,
5656 zholes_size);
5657 if (size)
5658 zone->zone_start_pfn = zone_start_pfn;
5659 else
5660 zone->zone_start_pfn = 0;
5661 zone->spanned_pages = size;
5662 zone->present_pages = real_size;
5664 totalpages += size;
5665 realtotalpages += real_size;
5668 pgdat->node_spanned_pages = totalpages;
5669 pgdat->node_present_pages = realtotalpages;
5670 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5671 realtotalpages);
5674 #ifndef CONFIG_SPARSEMEM
5676 * Calculate the size of the zone->blockflags rounded to an unsigned long
5677 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5678 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5679 * round what is now in bits to nearest long in bits, then return it in
5680 * bytes.
5682 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5684 unsigned long usemapsize;
5686 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5687 usemapsize = roundup(zonesize, pageblock_nr_pages);
5688 usemapsize = usemapsize >> pageblock_order;
5689 usemapsize *= NR_PAGEBLOCK_BITS;
5690 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5692 return usemapsize / 8;
5695 static void __init setup_usemap(struct pglist_data *pgdat,
5696 struct zone *zone,
5697 unsigned long zone_start_pfn,
5698 unsigned long zonesize)
5700 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5701 zone->pageblock_flags = NULL;
5702 if (usemapsize)
5703 zone->pageblock_flags =
5704 memblock_virt_alloc_node_nopanic(usemapsize,
5705 pgdat->node_id);
5707 #else
5708 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5709 unsigned long zone_start_pfn, unsigned long zonesize) {}
5710 #endif /* CONFIG_SPARSEMEM */
5712 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5714 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5715 void __paginginit set_pageblock_order(void)
5717 unsigned int order;
5719 /* Check that pageblock_nr_pages has not already been setup */
5720 if (pageblock_order)
5721 return;
5723 if (HPAGE_SHIFT > PAGE_SHIFT)
5724 order = HUGETLB_PAGE_ORDER;
5725 else
5726 order = MAX_ORDER - 1;
5729 * Assume the largest contiguous order of interest is a huge page.
5730 * This value may be variable depending on boot parameters on IA64 and
5731 * powerpc.
5733 pageblock_order = order;
5735 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5738 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5739 * is unused as pageblock_order is set at compile-time. See
5740 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5741 * the kernel config
5743 void __paginginit set_pageblock_order(void)
5747 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5749 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5750 unsigned long present_pages)
5752 unsigned long pages = spanned_pages;
5755 * Provide a more accurate estimation if there are holes within
5756 * the zone and SPARSEMEM is in use. If there are holes within the
5757 * zone, each populated memory region may cost us one or two extra
5758 * memmap pages due to alignment because memmap pages for each
5759 * populated regions may not naturally algined on page boundary.
5760 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5762 if (spanned_pages > present_pages + (present_pages >> 4) &&
5763 IS_ENABLED(CONFIG_SPARSEMEM))
5764 pages = present_pages;
5766 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5770 * Set up the zone data structures:
5771 * - mark all pages reserved
5772 * - mark all memory queues empty
5773 * - clear the memory bitmaps
5775 * NOTE: pgdat should get zeroed by caller.
5777 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5779 enum zone_type j;
5780 int nid = pgdat->node_id;
5781 int ret;
5783 pgdat_resize_init(pgdat);
5784 #ifdef CONFIG_NUMA_BALANCING
5785 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5786 pgdat->numabalancing_migrate_nr_pages = 0;
5787 pgdat->numabalancing_migrate_next_window = jiffies;
5788 #endif
5789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5790 spin_lock_init(&pgdat->split_queue_lock);
5791 INIT_LIST_HEAD(&pgdat->split_queue);
5792 pgdat->split_queue_len = 0;
5793 #endif
5794 init_waitqueue_head(&pgdat->kswapd_wait);
5795 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5796 #ifdef CONFIG_COMPACTION
5797 init_waitqueue_head(&pgdat->kcompactd_wait);
5798 #endif
5799 pgdat_page_ext_init(pgdat);
5800 spin_lock_init(&pgdat->lru_lock);
5801 lruvec_init(node_lruvec(pgdat));
5803 for (j = 0; j < MAX_NR_ZONES; j++) {
5804 struct zone *zone = pgdat->node_zones + j;
5805 unsigned long size, realsize, freesize, memmap_pages;
5806 unsigned long zone_start_pfn = zone->zone_start_pfn;
5808 size = zone->spanned_pages;
5809 realsize = freesize = zone->present_pages;
5812 * Adjust freesize so that it accounts for how much memory
5813 * is used by this zone for memmap. This affects the watermark
5814 * and per-cpu initialisations
5816 memmap_pages = calc_memmap_size(size, realsize);
5817 if (!is_highmem_idx(j)) {
5818 if (freesize >= memmap_pages) {
5819 freesize -= memmap_pages;
5820 if (memmap_pages)
5821 printk(KERN_DEBUG
5822 " %s zone: %lu pages used for memmap\n",
5823 zone_names[j], memmap_pages);
5824 } else
5825 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5826 zone_names[j], memmap_pages, freesize);
5829 /* Account for reserved pages */
5830 if (j == 0 && freesize > dma_reserve) {
5831 freesize -= dma_reserve;
5832 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5833 zone_names[0], dma_reserve);
5836 if (!is_highmem_idx(j))
5837 nr_kernel_pages += freesize;
5838 /* Charge for highmem memmap if there are enough kernel pages */
5839 else if (nr_kernel_pages > memmap_pages * 2)
5840 nr_kernel_pages -= memmap_pages;
5841 nr_all_pages += freesize;
5844 * Set an approximate value for lowmem here, it will be adjusted
5845 * when the bootmem allocator frees pages into the buddy system.
5846 * And all highmem pages will be managed by the buddy system.
5848 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5849 #ifdef CONFIG_NUMA
5850 zone->node = nid;
5851 #endif
5852 zone->name = zone_names[j];
5853 zone->zone_pgdat = pgdat;
5854 spin_lock_init(&zone->lock);
5855 zone_seqlock_init(zone);
5856 zone_pcp_init(zone);
5858 if (!size)
5859 continue;
5861 set_pageblock_order();
5862 setup_usemap(pgdat, zone, zone_start_pfn, size);
5863 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5864 BUG_ON(ret);
5865 memmap_init(size, nid, j, zone_start_pfn);
5869 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5871 unsigned long __maybe_unused start = 0;
5872 unsigned long __maybe_unused offset = 0;
5874 /* Skip empty nodes */
5875 if (!pgdat->node_spanned_pages)
5876 return;
5878 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5879 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5880 offset = pgdat->node_start_pfn - start;
5881 /* ia64 gets its own node_mem_map, before this, without bootmem */
5882 if (!pgdat->node_mem_map) {
5883 unsigned long size, end;
5884 struct page *map;
5887 * The zone's endpoints aren't required to be MAX_ORDER
5888 * aligned but the node_mem_map endpoints must be in order
5889 * for the buddy allocator to function correctly.
5891 end = pgdat_end_pfn(pgdat);
5892 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5893 size = (end - start) * sizeof(struct page);
5894 map = alloc_remap(pgdat->node_id, size);
5895 if (!map)
5896 map = memblock_virt_alloc_node_nopanic(size,
5897 pgdat->node_id);
5898 pgdat->node_mem_map = map + offset;
5900 #ifndef CONFIG_NEED_MULTIPLE_NODES
5902 * With no DISCONTIG, the global mem_map is just set as node 0's
5904 if (pgdat == NODE_DATA(0)) {
5905 mem_map = NODE_DATA(0)->node_mem_map;
5906 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5907 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5908 mem_map -= offset;
5909 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5911 #endif
5912 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5915 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5916 unsigned long node_start_pfn, unsigned long *zholes_size)
5918 pg_data_t *pgdat = NODE_DATA(nid);
5919 unsigned long start_pfn = 0;
5920 unsigned long end_pfn = 0;
5922 /* pg_data_t should be reset to zero when it's allocated */
5923 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5925 pgdat->node_id = nid;
5926 pgdat->node_start_pfn = node_start_pfn;
5927 pgdat->per_cpu_nodestats = NULL;
5928 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5929 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5930 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5931 (u64)start_pfn << PAGE_SHIFT,
5932 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5933 #else
5934 start_pfn = node_start_pfn;
5935 #endif
5936 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5937 zones_size, zholes_size);
5939 alloc_node_mem_map(pgdat);
5940 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5941 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5942 nid, (unsigned long)pgdat,
5943 (unsigned long)pgdat->node_mem_map);
5944 #endif
5946 reset_deferred_meminit(pgdat);
5947 free_area_init_core(pgdat);
5950 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5952 #if MAX_NUMNODES > 1
5954 * Figure out the number of possible node ids.
5956 void __init setup_nr_node_ids(void)
5958 unsigned int highest;
5960 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5961 nr_node_ids = highest + 1;
5963 #endif
5966 * node_map_pfn_alignment - determine the maximum internode alignment
5968 * This function should be called after node map is populated and sorted.
5969 * It calculates the maximum power of two alignment which can distinguish
5970 * all the nodes.
5972 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5973 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5974 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5975 * shifted, 1GiB is enough and this function will indicate so.
5977 * This is used to test whether pfn -> nid mapping of the chosen memory
5978 * model has fine enough granularity to avoid incorrect mapping for the
5979 * populated node map.
5981 * Returns the determined alignment in pfn's. 0 if there is no alignment
5982 * requirement (single node).
5984 unsigned long __init node_map_pfn_alignment(void)
5986 unsigned long accl_mask = 0, last_end = 0;
5987 unsigned long start, end, mask;
5988 int last_nid = -1;
5989 int i, nid;
5991 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5992 if (!start || last_nid < 0 || last_nid == nid) {
5993 last_nid = nid;
5994 last_end = end;
5995 continue;
5999 * Start with a mask granular enough to pin-point to the
6000 * start pfn and tick off bits one-by-one until it becomes
6001 * too coarse to separate the current node from the last.
6003 mask = ~((1 << __ffs(start)) - 1);
6004 while (mask && last_end <= (start & (mask << 1)))
6005 mask <<= 1;
6007 /* accumulate all internode masks */
6008 accl_mask |= mask;
6011 /* convert mask to number of pages */
6012 return ~accl_mask + 1;
6015 /* Find the lowest pfn for a node */
6016 static unsigned long __init find_min_pfn_for_node(int nid)
6018 unsigned long min_pfn = ULONG_MAX;
6019 unsigned long start_pfn;
6020 int i;
6022 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6023 min_pfn = min(min_pfn, start_pfn);
6025 if (min_pfn == ULONG_MAX) {
6026 pr_warn("Could not find start_pfn for node %d\n", nid);
6027 return 0;
6030 return min_pfn;
6034 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6036 * It returns the minimum PFN based on information provided via
6037 * memblock_set_node().
6039 unsigned long __init find_min_pfn_with_active_regions(void)
6041 return find_min_pfn_for_node(MAX_NUMNODES);
6045 * early_calculate_totalpages()
6046 * Sum pages in active regions for movable zone.
6047 * Populate N_MEMORY for calculating usable_nodes.
6049 static unsigned long __init early_calculate_totalpages(void)
6051 unsigned long totalpages = 0;
6052 unsigned long start_pfn, end_pfn;
6053 int i, nid;
6055 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6056 unsigned long pages = end_pfn - start_pfn;
6058 totalpages += pages;
6059 if (pages)
6060 node_set_state(nid, N_MEMORY);
6062 return totalpages;
6066 * Find the PFN the Movable zone begins in each node. Kernel memory
6067 * is spread evenly between nodes as long as the nodes have enough
6068 * memory. When they don't, some nodes will have more kernelcore than
6069 * others
6071 static void __init find_zone_movable_pfns_for_nodes(void)
6073 int i, nid;
6074 unsigned long usable_startpfn;
6075 unsigned long kernelcore_node, kernelcore_remaining;
6076 /* save the state before borrow the nodemask */
6077 nodemask_t saved_node_state = node_states[N_MEMORY];
6078 unsigned long totalpages = early_calculate_totalpages();
6079 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6080 struct memblock_region *r;
6082 /* Need to find movable_zone earlier when movable_node is specified. */
6083 find_usable_zone_for_movable();
6086 * If movable_node is specified, ignore kernelcore and movablecore
6087 * options.
6089 if (movable_node_is_enabled()) {
6090 for_each_memblock(memory, r) {
6091 if (!memblock_is_hotpluggable(r))
6092 continue;
6094 nid = r->nid;
6096 usable_startpfn = PFN_DOWN(r->base);
6097 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6098 min(usable_startpfn, zone_movable_pfn[nid]) :
6099 usable_startpfn;
6102 goto out2;
6106 * If kernelcore=mirror is specified, ignore movablecore option
6108 if (mirrored_kernelcore) {
6109 bool mem_below_4gb_not_mirrored = false;
6111 for_each_memblock(memory, r) {
6112 if (memblock_is_mirror(r))
6113 continue;
6115 nid = r->nid;
6117 usable_startpfn = memblock_region_memory_base_pfn(r);
6119 if (usable_startpfn < 0x100000) {
6120 mem_below_4gb_not_mirrored = true;
6121 continue;
6124 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6125 min(usable_startpfn, zone_movable_pfn[nid]) :
6126 usable_startpfn;
6129 if (mem_below_4gb_not_mirrored)
6130 pr_warn("This configuration results in unmirrored kernel memory.");
6132 goto out2;
6136 * If movablecore=nn[KMG] was specified, calculate what size of
6137 * kernelcore that corresponds so that memory usable for
6138 * any allocation type is evenly spread. If both kernelcore
6139 * and movablecore are specified, then the value of kernelcore
6140 * will be used for required_kernelcore if it's greater than
6141 * what movablecore would have allowed.
6143 if (required_movablecore) {
6144 unsigned long corepages;
6147 * Round-up so that ZONE_MOVABLE is at least as large as what
6148 * was requested by the user
6150 required_movablecore =
6151 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6152 required_movablecore = min(totalpages, required_movablecore);
6153 corepages = totalpages - required_movablecore;
6155 required_kernelcore = max(required_kernelcore, corepages);
6159 * If kernelcore was not specified or kernelcore size is larger
6160 * than totalpages, there is no ZONE_MOVABLE.
6162 if (!required_kernelcore || required_kernelcore >= totalpages)
6163 goto out;
6165 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6166 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6168 restart:
6169 /* Spread kernelcore memory as evenly as possible throughout nodes */
6170 kernelcore_node = required_kernelcore / usable_nodes;
6171 for_each_node_state(nid, N_MEMORY) {
6172 unsigned long start_pfn, end_pfn;
6175 * Recalculate kernelcore_node if the division per node
6176 * now exceeds what is necessary to satisfy the requested
6177 * amount of memory for the kernel
6179 if (required_kernelcore < kernelcore_node)
6180 kernelcore_node = required_kernelcore / usable_nodes;
6183 * As the map is walked, we track how much memory is usable
6184 * by the kernel using kernelcore_remaining. When it is
6185 * 0, the rest of the node is usable by ZONE_MOVABLE
6187 kernelcore_remaining = kernelcore_node;
6189 /* Go through each range of PFNs within this node */
6190 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6191 unsigned long size_pages;
6193 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6194 if (start_pfn >= end_pfn)
6195 continue;
6197 /* Account for what is only usable for kernelcore */
6198 if (start_pfn < usable_startpfn) {
6199 unsigned long kernel_pages;
6200 kernel_pages = min(end_pfn, usable_startpfn)
6201 - start_pfn;
6203 kernelcore_remaining -= min(kernel_pages,
6204 kernelcore_remaining);
6205 required_kernelcore -= min(kernel_pages,
6206 required_kernelcore);
6208 /* Continue if range is now fully accounted */
6209 if (end_pfn <= usable_startpfn) {
6212 * Push zone_movable_pfn to the end so
6213 * that if we have to rebalance
6214 * kernelcore across nodes, we will
6215 * not double account here
6217 zone_movable_pfn[nid] = end_pfn;
6218 continue;
6220 start_pfn = usable_startpfn;
6224 * The usable PFN range for ZONE_MOVABLE is from
6225 * start_pfn->end_pfn. Calculate size_pages as the
6226 * number of pages used as kernelcore
6228 size_pages = end_pfn - start_pfn;
6229 if (size_pages > kernelcore_remaining)
6230 size_pages = kernelcore_remaining;
6231 zone_movable_pfn[nid] = start_pfn + size_pages;
6234 * Some kernelcore has been met, update counts and
6235 * break if the kernelcore for this node has been
6236 * satisfied
6238 required_kernelcore -= min(required_kernelcore,
6239 size_pages);
6240 kernelcore_remaining -= size_pages;
6241 if (!kernelcore_remaining)
6242 break;
6247 * If there is still required_kernelcore, we do another pass with one
6248 * less node in the count. This will push zone_movable_pfn[nid] further
6249 * along on the nodes that still have memory until kernelcore is
6250 * satisfied
6252 usable_nodes--;
6253 if (usable_nodes && required_kernelcore > usable_nodes)
6254 goto restart;
6256 out2:
6257 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6258 for (nid = 0; nid < MAX_NUMNODES; nid++)
6259 zone_movable_pfn[nid] =
6260 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6262 out:
6263 /* restore the node_state */
6264 node_states[N_MEMORY] = saved_node_state;
6267 /* Any regular or high memory on that node ? */
6268 static void check_for_memory(pg_data_t *pgdat, int nid)
6270 enum zone_type zone_type;
6272 if (N_MEMORY == N_NORMAL_MEMORY)
6273 return;
6275 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6276 struct zone *zone = &pgdat->node_zones[zone_type];
6277 if (populated_zone(zone)) {
6278 node_set_state(nid, N_HIGH_MEMORY);
6279 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6280 zone_type <= ZONE_NORMAL)
6281 node_set_state(nid, N_NORMAL_MEMORY);
6282 break;
6288 * free_area_init_nodes - Initialise all pg_data_t and zone data
6289 * @max_zone_pfn: an array of max PFNs for each zone
6291 * This will call free_area_init_node() for each active node in the system.
6292 * Using the page ranges provided by memblock_set_node(), the size of each
6293 * zone in each node and their holes is calculated. If the maximum PFN
6294 * between two adjacent zones match, it is assumed that the zone is empty.
6295 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6296 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6297 * starts where the previous one ended. For example, ZONE_DMA32 starts
6298 * at arch_max_dma_pfn.
6300 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6302 unsigned long start_pfn, end_pfn;
6303 int i, nid;
6305 /* Record where the zone boundaries are */
6306 memset(arch_zone_lowest_possible_pfn, 0,
6307 sizeof(arch_zone_lowest_possible_pfn));
6308 memset(arch_zone_highest_possible_pfn, 0,
6309 sizeof(arch_zone_highest_possible_pfn));
6311 start_pfn = find_min_pfn_with_active_regions();
6313 for (i = 0; i < MAX_NR_ZONES; i++) {
6314 if (i == ZONE_MOVABLE)
6315 continue;
6317 end_pfn = max(max_zone_pfn[i], start_pfn);
6318 arch_zone_lowest_possible_pfn[i] = start_pfn;
6319 arch_zone_highest_possible_pfn[i] = end_pfn;
6321 start_pfn = end_pfn;
6323 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6324 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6326 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6327 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6328 find_zone_movable_pfns_for_nodes();
6330 /* Print out the zone ranges */
6331 pr_info("Zone ranges:\n");
6332 for (i = 0; i < MAX_NR_ZONES; i++) {
6333 if (i == ZONE_MOVABLE)
6334 continue;
6335 pr_info(" %-8s ", zone_names[i]);
6336 if (arch_zone_lowest_possible_pfn[i] ==
6337 arch_zone_highest_possible_pfn[i])
6338 pr_cont("empty\n");
6339 else
6340 pr_cont("[mem %#018Lx-%#018Lx]\n",
6341 (u64)arch_zone_lowest_possible_pfn[i]
6342 << PAGE_SHIFT,
6343 ((u64)arch_zone_highest_possible_pfn[i]
6344 << PAGE_SHIFT) - 1);
6347 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6348 pr_info("Movable zone start for each node\n");
6349 for (i = 0; i < MAX_NUMNODES; i++) {
6350 if (zone_movable_pfn[i])
6351 pr_info(" Node %d: %#018Lx\n", i,
6352 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6355 /* Print out the early node map */
6356 pr_info("Early memory node ranges\n");
6357 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6358 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6359 (u64)start_pfn << PAGE_SHIFT,
6360 ((u64)end_pfn << PAGE_SHIFT) - 1);
6362 /* Initialise every node */
6363 mminit_verify_pageflags_layout();
6364 setup_nr_node_ids();
6365 for_each_online_node(nid) {
6366 pg_data_t *pgdat = NODE_DATA(nid);
6367 free_area_init_node(nid, NULL,
6368 find_min_pfn_for_node(nid), NULL);
6370 /* Any memory on that node */
6371 if (pgdat->node_present_pages)
6372 node_set_state(nid, N_MEMORY);
6373 check_for_memory(pgdat, nid);
6377 static int __init cmdline_parse_core(char *p, unsigned long *core)
6379 unsigned long long coremem;
6380 if (!p)
6381 return -EINVAL;
6383 coremem = memparse(p, &p);
6384 *core = coremem >> PAGE_SHIFT;
6386 /* Paranoid check that UL is enough for the coremem value */
6387 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6389 return 0;
6393 * kernelcore=size sets the amount of memory for use for allocations that
6394 * cannot be reclaimed or migrated.
6396 static int __init cmdline_parse_kernelcore(char *p)
6398 /* parse kernelcore=mirror */
6399 if (parse_option_str(p, "mirror")) {
6400 mirrored_kernelcore = true;
6401 return 0;
6404 return cmdline_parse_core(p, &required_kernelcore);
6408 * movablecore=size sets the amount of memory for use for allocations that
6409 * can be reclaimed or migrated.
6411 static int __init cmdline_parse_movablecore(char *p)
6413 return cmdline_parse_core(p, &required_movablecore);
6416 early_param("kernelcore", cmdline_parse_kernelcore);
6417 early_param("movablecore", cmdline_parse_movablecore);
6419 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6421 void adjust_managed_page_count(struct page *page, long count)
6423 spin_lock(&managed_page_count_lock);
6424 page_zone(page)->managed_pages += count;
6425 totalram_pages += count;
6426 #ifdef CONFIG_HIGHMEM
6427 if (PageHighMem(page))
6428 totalhigh_pages += count;
6429 #endif
6430 spin_unlock(&managed_page_count_lock);
6432 EXPORT_SYMBOL(adjust_managed_page_count);
6434 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6436 void *pos;
6437 unsigned long pages = 0;
6439 start = (void *)PAGE_ALIGN((unsigned long)start);
6440 end = (void *)((unsigned long)end & PAGE_MASK);
6441 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6442 if ((unsigned int)poison <= 0xFF)
6443 memset(pos, poison, PAGE_SIZE);
6444 free_reserved_page(virt_to_page(pos));
6447 if (pages && s)
6448 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6449 s, pages << (PAGE_SHIFT - 10), start, end);
6451 return pages;
6453 EXPORT_SYMBOL(free_reserved_area);
6455 #ifdef CONFIG_HIGHMEM
6456 void free_highmem_page(struct page *page)
6458 __free_reserved_page(page);
6459 totalram_pages++;
6460 page_zone(page)->managed_pages++;
6461 totalhigh_pages++;
6463 #endif
6466 void __init mem_init_print_info(const char *str)
6468 unsigned long physpages, codesize, datasize, rosize, bss_size;
6469 unsigned long init_code_size, init_data_size;
6471 physpages = get_num_physpages();
6472 codesize = _etext - _stext;
6473 datasize = _edata - _sdata;
6474 rosize = __end_rodata - __start_rodata;
6475 bss_size = __bss_stop - __bss_start;
6476 init_data_size = __init_end - __init_begin;
6477 init_code_size = _einittext - _sinittext;
6480 * Detect special cases and adjust section sizes accordingly:
6481 * 1) .init.* may be embedded into .data sections
6482 * 2) .init.text.* may be out of [__init_begin, __init_end],
6483 * please refer to arch/tile/kernel/vmlinux.lds.S.
6484 * 3) .rodata.* may be embedded into .text or .data sections.
6486 #define adj_init_size(start, end, size, pos, adj) \
6487 do { \
6488 if (start <= pos && pos < end && size > adj) \
6489 size -= adj; \
6490 } while (0)
6492 adj_init_size(__init_begin, __init_end, init_data_size,
6493 _sinittext, init_code_size);
6494 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6495 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6496 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6497 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6499 #undef adj_init_size
6501 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6502 #ifdef CONFIG_HIGHMEM
6503 ", %luK highmem"
6504 #endif
6505 "%s%s)\n",
6506 nr_free_pages() << (PAGE_SHIFT - 10),
6507 physpages << (PAGE_SHIFT - 10),
6508 codesize >> 10, datasize >> 10, rosize >> 10,
6509 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6510 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6511 totalcma_pages << (PAGE_SHIFT - 10),
6512 #ifdef CONFIG_HIGHMEM
6513 totalhigh_pages << (PAGE_SHIFT - 10),
6514 #endif
6515 str ? ", " : "", str ? str : "");
6519 * set_dma_reserve - set the specified number of pages reserved in the first zone
6520 * @new_dma_reserve: The number of pages to mark reserved
6522 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6523 * In the DMA zone, a significant percentage may be consumed by kernel image
6524 * and other unfreeable allocations which can skew the watermarks badly. This
6525 * function may optionally be used to account for unfreeable pages in the
6526 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6527 * smaller per-cpu batchsize.
6529 void __init set_dma_reserve(unsigned long new_dma_reserve)
6531 dma_reserve = new_dma_reserve;
6534 void __init free_area_init(unsigned long *zones_size)
6536 free_area_init_node(0, zones_size,
6537 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6540 static int page_alloc_cpu_notify(struct notifier_block *self,
6541 unsigned long action, void *hcpu)
6543 int cpu = (unsigned long)hcpu;
6545 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6546 lru_add_drain_cpu(cpu);
6547 drain_pages(cpu);
6550 * Spill the event counters of the dead processor
6551 * into the current processors event counters.
6552 * This artificially elevates the count of the current
6553 * processor.
6555 vm_events_fold_cpu(cpu);
6558 * Zero the differential counters of the dead processor
6559 * so that the vm statistics are consistent.
6561 * This is only okay since the processor is dead and cannot
6562 * race with what we are doing.
6564 cpu_vm_stats_fold(cpu);
6566 return NOTIFY_OK;
6569 void __init page_alloc_init(void)
6571 hotcpu_notifier(page_alloc_cpu_notify, 0);
6575 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6576 * or min_free_kbytes changes.
6578 static void calculate_totalreserve_pages(void)
6580 struct pglist_data *pgdat;
6581 unsigned long reserve_pages = 0;
6582 enum zone_type i, j;
6584 for_each_online_pgdat(pgdat) {
6586 pgdat->totalreserve_pages = 0;
6588 for (i = 0; i < MAX_NR_ZONES; i++) {
6589 struct zone *zone = pgdat->node_zones + i;
6590 long max = 0;
6592 /* Find valid and maximum lowmem_reserve in the zone */
6593 for (j = i; j < MAX_NR_ZONES; j++) {
6594 if (zone->lowmem_reserve[j] > max)
6595 max = zone->lowmem_reserve[j];
6598 /* we treat the high watermark as reserved pages. */
6599 max += high_wmark_pages(zone);
6601 if (max > zone->managed_pages)
6602 max = zone->managed_pages;
6604 pgdat->totalreserve_pages += max;
6606 reserve_pages += max;
6609 totalreserve_pages = reserve_pages;
6613 * setup_per_zone_lowmem_reserve - called whenever
6614 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6615 * has a correct pages reserved value, so an adequate number of
6616 * pages are left in the zone after a successful __alloc_pages().
6618 static void setup_per_zone_lowmem_reserve(void)
6620 struct pglist_data *pgdat;
6621 enum zone_type j, idx;
6623 for_each_online_pgdat(pgdat) {
6624 for (j = 0; j < MAX_NR_ZONES; j++) {
6625 struct zone *zone = pgdat->node_zones + j;
6626 unsigned long managed_pages = zone->managed_pages;
6628 zone->lowmem_reserve[j] = 0;
6630 idx = j;
6631 while (idx) {
6632 struct zone *lower_zone;
6634 idx--;
6636 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6637 sysctl_lowmem_reserve_ratio[idx] = 1;
6639 lower_zone = pgdat->node_zones + idx;
6640 lower_zone->lowmem_reserve[j] = managed_pages /
6641 sysctl_lowmem_reserve_ratio[idx];
6642 managed_pages += lower_zone->managed_pages;
6647 /* update totalreserve_pages */
6648 calculate_totalreserve_pages();
6651 static void __setup_per_zone_wmarks(void)
6653 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6654 unsigned long lowmem_pages = 0;
6655 struct zone *zone;
6656 unsigned long flags;
6658 /* Calculate total number of !ZONE_HIGHMEM pages */
6659 for_each_zone(zone) {
6660 if (!is_highmem(zone))
6661 lowmem_pages += zone->managed_pages;
6664 for_each_zone(zone) {
6665 u64 tmp;
6667 spin_lock_irqsave(&zone->lock, flags);
6668 tmp = (u64)pages_min * zone->managed_pages;
6669 do_div(tmp, lowmem_pages);
6670 if (is_highmem(zone)) {
6672 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6673 * need highmem pages, so cap pages_min to a small
6674 * value here.
6676 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6677 * deltas control asynch page reclaim, and so should
6678 * not be capped for highmem.
6680 unsigned long min_pages;
6682 min_pages = zone->managed_pages / 1024;
6683 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6684 zone->watermark[WMARK_MIN] = min_pages;
6685 } else {
6687 * If it's a lowmem zone, reserve a number of pages
6688 * proportionate to the zone's size.
6690 zone->watermark[WMARK_MIN] = tmp;
6694 * Set the kswapd watermarks distance according to the
6695 * scale factor in proportion to available memory, but
6696 * ensure a minimum size on small systems.
6698 tmp = max_t(u64, tmp >> 2,
6699 mult_frac(zone->managed_pages,
6700 watermark_scale_factor, 10000));
6702 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6703 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6705 spin_unlock_irqrestore(&zone->lock, flags);
6708 /* update totalreserve_pages */
6709 calculate_totalreserve_pages();
6713 * setup_per_zone_wmarks - called when min_free_kbytes changes
6714 * or when memory is hot-{added|removed}
6716 * Ensures that the watermark[min,low,high] values for each zone are set
6717 * correctly with respect to min_free_kbytes.
6719 void setup_per_zone_wmarks(void)
6721 mutex_lock(&zonelists_mutex);
6722 __setup_per_zone_wmarks();
6723 mutex_unlock(&zonelists_mutex);
6727 * Initialise min_free_kbytes.
6729 * For small machines we want it small (128k min). For large machines
6730 * we want it large (64MB max). But it is not linear, because network
6731 * bandwidth does not increase linearly with machine size. We use
6733 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6734 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6736 * which yields
6738 * 16MB: 512k
6739 * 32MB: 724k
6740 * 64MB: 1024k
6741 * 128MB: 1448k
6742 * 256MB: 2048k
6743 * 512MB: 2896k
6744 * 1024MB: 4096k
6745 * 2048MB: 5792k
6746 * 4096MB: 8192k
6747 * 8192MB: 11584k
6748 * 16384MB: 16384k
6750 int __meminit init_per_zone_wmark_min(void)
6752 unsigned long lowmem_kbytes;
6753 int new_min_free_kbytes;
6755 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6756 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6758 if (new_min_free_kbytes > user_min_free_kbytes) {
6759 min_free_kbytes = new_min_free_kbytes;
6760 if (min_free_kbytes < 128)
6761 min_free_kbytes = 128;
6762 if (min_free_kbytes > 65536)
6763 min_free_kbytes = 65536;
6764 } else {
6765 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6766 new_min_free_kbytes, user_min_free_kbytes);
6768 setup_per_zone_wmarks();
6769 refresh_zone_stat_thresholds();
6770 setup_per_zone_lowmem_reserve();
6772 #ifdef CONFIG_NUMA
6773 setup_min_unmapped_ratio();
6774 setup_min_slab_ratio();
6775 #endif
6777 return 0;
6779 core_initcall(init_per_zone_wmark_min)
6782 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6783 * that we can call two helper functions whenever min_free_kbytes
6784 * changes.
6786 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6787 void __user *buffer, size_t *length, loff_t *ppos)
6789 int rc;
6791 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6792 if (rc)
6793 return rc;
6795 if (write) {
6796 user_min_free_kbytes = min_free_kbytes;
6797 setup_per_zone_wmarks();
6799 return 0;
6802 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6803 void __user *buffer, size_t *length, loff_t *ppos)
6805 int rc;
6807 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6808 if (rc)
6809 return rc;
6811 if (write)
6812 setup_per_zone_wmarks();
6814 return 0;
6817 #ifdef CONFIG_NUMA
6818 static void setup_min_unmapped_ratio(void)
6820 pg_data_t *pgdat;
6821 struct zone *zone;
6823 for_each_online_pgdat(pgdat)
6824 pgdat->min_unmapped_pages = 0;
6826 for_each_zone(zone)
6827 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6828 sysctl_min_unmapped_ratio) / 100;
6832 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6833 void __user *buffer, size_t *length, loff_t *ppos)
6835 int rc;
6837 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6838 if (rc)
6839 return rc;
6841 setup_min_unmapped_ratio();
6843 return 0;
6846 static void setup_min_slab_ratio(void)
6848 pg_data_t *pgdat;
6849 struct zone *zone;
6851 for_each_online_pgdat(pgdat)
6852 pgdat->min_slab_pages = 0;
6854 for_each_zone(zone)
6855 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6856 sysctl_min_slab_ratio) / 100;
6859 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6860 void __user *buffer, size_t *length, loff_t *ppos)
6862 int rc;
6864 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6865 if (rc)
6866 return rc;
6868 setup_min_slab_ratio();
6870 return 0;
6872 #endif
6875 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6876 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6877 * whenever sysctl_lowmem_reserve_ratio changes.
6879 * The reserve ratio obviously has absolutely no relation with the
6880 * minimum watermarks. The lowmem reserve ratio can only make sense
6881 * if in function of the boot time zone sizes.
6883 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6884 void __user *buffer, size_t *length, loff_t *ppos)
6886 proc_dointvec_minmax(table, write, buffer, length, ppos);
6887 setup_per_zone_lowmem_reserve();
6888 return 0;
6892 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6893 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6894 * pagelist can have before it gets flushed back to buddy allocator.
6896 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6897 void __user *buffer, size_t *length, loff_t *ppos)
6899 struct zone *zone;
6900 int old_percpu_pagelist_fraction;
6901 int ret;
6903 mutex_lock(&pcp_batch_high_lock);
6904 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6906 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6907 if (!write || ret < 0)
6908 goto out;
6910 /* Sanity checking to avoid pcp imbalance */
6911 if (percpu_pagelist_fraction &&
6912 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6913 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6914 ret = -EINVAL;
6915 goto out;
6918 /* No change? */
6919 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6920 goto out;
6922 for_each_populated_zone(zone) {
6923 unsigned int cpu;
6925 for_each_possible_cpu(cpu)
6926 pageset_set_high_and_batch(zone,
6927 per_cpu_ptr(zone->pageset, cpu));
6929 out:
6930 mutex_unlock(&pcp_batch_high_lock);
6931 return ret;
6934 #ifdef CONFIG_NUMA
6935 int hashdist = HASHDIST_DEFAULT;
6937 static int __init set_hashdist(char *str)
6939 if (!str)
6940 return 0;
6941 hashdist = simple_strtoul(str, &str, 0);
6942 return 1;
6944 __setup("hashdist=", set_hashdist);
6945 #endif
6947 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6949 * Returns the number of pages that arch has reserved but
6950 * is not known to alloc_large_system_hash().
6952 static unsigned long __init arch_reserved_kernel_pages(void)
6954 return 0;
6956 #endif
6959 * allocate a large system hash table from bootmem
6960 * - it is assumed that the hash table must contain an exact power-of-2
6961 * quantity of entries
6962 * - limit is the number of hash buckets, not the total allocation size
6964 void *__init alloc_large_system_hash(const char *tablename,
6965 unsigned long bucketsize,
6966 unsigned long numentries,
6967 int scale,
6968 int flags,
6969 unsigned int *_hash_shift,
6970 unsigned int *_hash_mask,
6971 unsigned long low_limit,
6972 unsigned long high_limit)
6974 unsigned long long max = high_limit;
6975 unsigned long log2qty, size;
6976 void *table = NULL;
6978 /* allow the kernel cmdline to have a say */
6979 if (!numentries) {
6980 /* round applicable memory size up to nearest megabyte */
6981 numentries = nr_kernel_pages;
6982 numentries -= arch_reserved_kernel_pages();
6984 /* It isn't necessary when PAGE_SIZE >= 1MB */
6985 if (PAGE_SHIFT < 20)
6986 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6988 /* limit to 1 bucket per 2^scale bytes of low memory */
6989 if (scale > PAGE_SHIFT)
6990 numentries >>= (scale - PAGE_SHIFT);
6991 else
6992 numentries <<= (PAGE_SHIFT - scale);
6994 /* Make sure we've got at least a 0-order allocation.. */
6995 if (unlikely(flags & HASH_SMALL)) {
6996 /* Makes no sense without HASH_EARLY */
6997 WARN_ON(!(flags & HASH_EARLY));
6998 if (!(numentries >> *_hash_shift)) {
6999 numentries = 1UL << *_hash_shift;
7000 BUG_ON(!numentries);
7002 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7003 numentries = PAGE_SIZE / bucketsize;
7005 numentries = roundup_pow_of_two(numentries);
7007 /* limit allocation size to 1/16 total memory by default */
7008 if (max == 0) {
7009 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7010 do_div(max, bucketsize);
7012 max = min(max, 0x80000000ULL);
7014 if (numentries < low_limit)
7015 numentries = low_limit;
7016 if (numentries > max)
7017 numentries = max;
7019 log2qty = ilog2(numentries);
7021 do {
7022 size = bucketsize << log2qty;
7023 if (flags & HASH_EARLY)
7024 table = memblock_virt_alloc_nopanic(size, 0);
7025 else if (hashdist)
7026 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7027 else {
7029 * If bucketsize is not a power-of-two, we may free
7030 * some pages at the end of hash table which
7031 * alloc_pages_exact() automatically does
7033 if (get_order(size) < MAX_ORDER) {
7034 table = alloc_pages_exact(size, GFP_ATOMIC);
7035 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7038 } while (!table && size > PAGE_SIZE && --log2qty);
7040 if (!table)
7041 panic("Failed to allocate %s hash table\n", tablename);
7043 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7044 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7046 if (_hash_shift)
7047 *_hash_shift = log2qty;
7048 if (_hash_mask)
7049 *_hash_mask = (1 << log2qty) - 1;
7051 return table;
7055 * This function checks whether pageblock includes unmovable pages or not.
7056 * If @count is not zero, it is okay to include less @count unmovable pages
7058 * PageLRU check without isolation or lru_lock could race so that
7059 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7060 * expect this function should be exact.
7062 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7063 bool skip_hwpoisoned_pages)
7065 unsigned long pfn, iter, found;
7066 int mt;
7069 * For avoiding noise data, lru_add_drain_all() should be called
7070 * If ZONE_MOVABLE, the zone never contains unmovable pages
7072 if (zone_idx(zone) == ZONE_MOVABLE)
7073 return false;
7074 mt = get_pageblock_migratetype(page);
7075 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7076 return false;
7078 pfn = page_to_pfn(page);
7079 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7080 unsigned long check = pfn + iter;
7082 if (!pfn_valid_within(check))
7083 continue;
7085 page = pfn_to_page(check);
7088 * Hugepages are not in LRU lists, but they're movable.
7089 * We need not scan over tail pages bacause we don't
7090 * handle each tail page individually in migration.
7092 if (PageHuge(page)) {
7093 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7094 continue;
7098 * We can't use page_count without pin a page
7099 * because another CPU can free compound page.
7100 * This check already skips compound tails of THP
7101 * because their page->_refcount is zero at all time.
7103 if (!page_ref_count(page)) {
7104 if (PageBuddy(page))
7105 iter += (1 << page_order(page)) - 1;
7106 continue;
7110 * The HWPoisoned page may be not in buddy system, and
7111 * page_count() is not 0.
7113 if (skip_hwpoisoned_pages && PageHWPoison(page))
7114 continue;
7116 if (!PageLRU(page))
7117 found++;
7119 * If there are RECLAIMABLE pages, we need to check
7120 * it. But now, memory offline itself doesn't call
7121 * shrink_node_slabs() and it still to be fixed.
7124 * If the page is not RAM, page_count()should be 0.
7125 * we don't need more check. This is an _used_ not-movable page.
7127 * The problematic thing here is PG_reserved pages. PG_reserved
7128 * is set to both of a memory hole page and a _used_ kernel
7129 * page at boot.
7131 if (found > count)
7132 return true;
7134 return false;
7137 bool is_pageblock_removable_nolock(struct page *page)
7139 struct zone *zone;
7140 unsigned long pfn;
7143 * We have to be careful here because we are iterating over memory
7144 * sections which are not zone aware so we might end up outside of
7145 * the zone but still within the section.
7146 * We have to take care about the node as well. If the node is offline
7147 * its NODE_DATA will be NULL - see page_zone.
7149 if (!node_online(page_to_nid(page)))
7150 return false;
7152 zone = page_zone(page);
7153 pfn = page_to_pfn(page);
7154 if (!zone_spans_pfn(zone, pfn))
7155 return false;
7157 return !has_unmovable_pages(zone, page, 0, true);
7160 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7162 static unsigned long pfn_max_align_down(unsigned long pfn)
7164 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7165 pageblock_nr_pages) - 1);
7168 static unsigned long pfn_max_align_up(unsigned long pfn)
7170 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7171 pageblock_nr_pages));
7174 /* [start, end) must belong to a single zone. */
7175 static int __alloc_contig_migrate_range(struct compact_control *cc,
7176 unsigned long start, unsigned long end)
7178 /* This function is based on compact_zone() from compaction.c. */
7179 unsigned long nr_reclaimed;
7180 unsigned long pfn = start;
7181 unsigned int tries = 0;
7182 int ret = 0;
7184 migrate_prep();
7186 while (pfn < end || !list_empty(&cc->migratepages)) {
7187 if (fatal_signal_pending(current)) {
7188 ret = -EINTR;
7189 break;
7192 if (list_empty(&cc->migratepages)) {
7193 cc->nr_migratepages = 0;
7194 pfn = isolate_migratepages_range(cc, pfn, end);
7195 if (!pfn) {
7196 ret = -EINTR;
7197 break;
7199 tries = 0;
7200 } else if (++tries == 5) {
7201 ret = ret < 0 ? ret : -EBUSY;
7202 break;
7205 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7206 &cc->migratepages);
7207 cc->nr_migratepages -= nr_reclaimed;
7209 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7210 NULL, 0, cc->mode, MR_CMA);
7212 if (ret < 0) {
7213 putback_movable_pages(&cc->migratepages);
7214 return ret;
7216 return 0;
7220 * alloc_contig_range() -- tries to allocate given range of pages
7221 * @start: start PFN to allocate
7222 * @end: one-past-the-last PFN to allocate
7223 * @migratetype: migratetype of the underlaying pageblocks (either
7224 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7225 * in range must have the same migratetype and it must
7226 * be either of the two.
7228 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7229 * aligned, however it's the caller's responsibility to guarantee that
7230 * we are the only thread that changes migrate type of pageblocks the
7231 * pages fall in.
7233 * The PFN range must belong to a single zone.
7235 * Returns zero on success or negative error code. On success all
7236 * pages which PFN is in [start, end) are allocated for the caller and
7237 * need to be freed with free_contig_range().
7239 int alloc_contig_range(unsigned long start, unsigned long end,
7240 unsigned migratetype)
7242 unsigned long outer_start, outer_end;
7243 unsigned int order;
7244 int ret = 0;
7246 struct compact_control cc = {
7247 .nr_migratepages = 0,
7248 .order = -1,
7249 .zone = page_zone(pfn_to_page(start)),
7250 .mode = MIGRATE_SYNC,
7251 .ignore_skip_hint = true,
7253 INIT_LIST_HEAD(&cc.migratepages);
7256 * What we do here is we mark all pageblocks in range as
7257 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7258 * have different sizes, and due to the way page allocator
7259 * work, we align the range to biggest of the two pages so
7260 * that page allocator won't try to merge buddies from
7261 * different pageblocks and change MIGRATE_ISOLATE to some
7262 * other migration type.
7264 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7265 * migrate the pages from an unaligned range (ie. pages that
7266 * we are interested in). This will put all the pages in
7267 * range back to page allocator as MIGRATE_ISOLATE.
7269 * When this is done, we take the pages in range from page
7270 * allocator removing them from the buddy system. This way
7271 * page allocator will never consider using them.
7273 * This lets us mark the pageblocks back as
7274 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7275 * aligned range but not in the unaligned, original range are
7276 * put back to page allocator so that buddy can use them.
7279 ret = start_isolate_page_range(pfn_max_align_down(start),
7280 pfn_max_align_up(end), migratetype,
7281 false);
7282 if (ret)
7283 return ret;
7286 * In case of -EBUSY, we'd like to know which page causes problem.
7287 * So, just fall through. We will check it in test_pages_isolated().
7289 ret = __alloc_contig_migrate_range(&cc, start, end);
7290 if (ret && ret != -EBUSY)
7291 goto done;
7294 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7295 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7296 * more, all pages in [start, end) are free in page allocator.
7297 * What we are going to do is to allocate all pages from
7298 * [start, end) (that is remove them from page allocator).
7300 * The only problem is that pages at the beginning and at the
7301 * end of interesting range may be not aligned with pages that
7302 * page allocator holds, ie. they can be part of higher order
7303 * pages. Because of this, we reserve the bigger range and
7304 * once this is done free the pages we are not interested in.
7306 * We don't have to hold zone->lock here because the pages are
7307 * isolated thus they won't get removed from buddy.
7310 lru_add_drain_all();
7311 drain_all_pages(cc.zone);
7313 order = 0;
7314 outer_start = start;
7315 while (!PageBuddy(pfn_to_page(outer_start))) {
7316 if (++order >= MAX_ORDER) {
7317 outer_start = start;
7318 break;
7320 outer_start &= ~0UL << order;
7323 if (outer_start != start) {
7324 order = page_order(pfn_to_page(outer_start));
7327 * outer_start page could be small order buddy page and
7328 * it doesn't include start page. Adjust outer_start
7329 * in this case to report failed page properly
7330 * on tracepoint in test_pages_isolated()
7332 if (outer_start + (1UL << order) <= start)
7333 outer_start = start;
7336 /* Make sure the range is really isolated. */
7337 if (test_pages_isolated(outer_start, end, false)) {
7338 pr_info("%s: [%lx, %lx) PFNs busy\n",
7339 __func__, outer_start, end);
7340 ret = -EBUSY;
7341 goto done;
7344 /* Grab isolated pages from freelists. */
7345 outer_end = isolate_freepages_range(&cc, outer_start, end);
7346 if (!outer_end) {
7347 ret = -EBUSY;
7348 goto done;
7351 /* Free head and tail (if any) */
7352 if (start != outer_start)
7353 free_contig_range(outer_start, start - outer_start);
7354 if (end != outer_end)
7355 free_contig_range(end, outer_end - end);
7357 done:
7358 undo_isolate_page_range(pfn_max_align_down(start),
7359 pfn_max_align_up(end), migratetype);
7360 return ret;
7363 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7365 unsigned int count = 0;
7367 for (; nr_pages--; pfn++) {
7368 struct page *page = pfn_to_page(pfn);
7370 count += page_count(page) != 1;
7371 __free_page(page);
7373 WARN(count != 0, "%d pages are still in use!\n", count);
7375 #endif
7377 #ifdef CONFIG_MEMORY_HOTPLUG
7379 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7380 * page high values need to be recalulated.
7382 void __meminit zone_pcp_update(struct zone *zone)
7384 unsigned cpu;
7385 mutex_lock(&pcp_batch_high_lock);
7386 for_each_possible_cpu(cpu)
7387 pageset_set_high_and_batch(zone,
7388 per_cpu_ptr(zone->pageset, cpu));
7389 mutex_unlock(&pcp_batch_high_lock);
7391 #endif
7393 void zone_pcp_reset(struct zone *zone)
7395 unsigned long flags;
7396 int cpu;
7397 struct per_cpu_pageset *pset;
7399 /* avoid races with drain_pages() */
7400 local_irq_save(flags);
7401 if (zone->pageset != &boot_pageset) {
7402 for_each_online_cpu(cpu) {
7403 pset = per_cpu_ptr(zone->pageset, cpu);
7404 drain_zonestat(zone, pset);
7406 free_percpu(zone->pageset);
7407 zone->pageset = &boot_pageset;
7409 local_irq_restore(flags);
7412 #ifdef CONFIG_MEMORY_HOTREMOVE
7414 * All pages in the range must be in a single zone and isolated
7415 * before calling this.
7417 void
7418 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7420 struct page *page;
7421 struct zone *zone;
7422 unsigned int order, i;
7423 unsigned long pfn;
7424 unsigned long flags;
7425 /* find the first valid pfn */
7426 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7427 if (pfn_valid(pfn))
7428 break;
7429 if (pfn == end_pfn)
7430 return;
7431 zone = page_zone(pfn_to_page(pfn));
7432 spin_lock_irqsave(&zone->lock, flags);
7433 pfn = start_pfn;
7434 while (pfn < end_pfn) {
7435 if (!pfn_valid(pfn)) {
7436 pfn++;
7437 continue;
7439 page = pfn_to_page(pfn);
7441 * The HWPoisoned page may be not in buddy system, and
7442 * page_count() is not 0.
7444 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7445 pfn++;
7446 SetPageReserved(page);
7447 continue;
7450 BUG_ON(page_count(page));
7451 BUG_ON(!PageBuddy(page));
7452 order = page_order(page);
7453 #ifdef CONFIG_DEBUG_VM
7454 pr_info("remove from free list %lx %d %lx\n",
7455 pfn, 1 << order, end_pfn);
7456 #endif
7457 list_del(&page->lru);
7458 rmv_page_order(page);
7459 zone->free_area[order].nr_free--;
7460 for (i = 0; i < (1 << order); i++)
7461 SetPageReserved((page+i));
7462 pfn += (1 << order);
7464 spin_unlock_irqrestore(&zone->lock, flags);
7466 #endif
7468 bool is_free_buddy_page(struct page *page)
7470 struct zone *zone = page_zone(page);
7471 unsigned long pfn = page_to_pfn(page);
7472 unsigned long flags;
7473 unsigned int order;
7475 spin_lock_irqsave(&zone->lock, flags);
7476 for (order = 0; order < MAX_ORDER; order++) {
7477 struct page *page_head = page - (pfn & ((1 << order) - 1));
7479 if (PageBuddy(page_head) && page_order(page_head) >= order)
7480 break;
7482 spin_unlock_irqrestore(&zone->lock, flags);
7484 return order < MAX_ORDER;