1 // SPDX-License-Identifier: GPL-2.0+
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/spinlock.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/list.h>
32 #include <linux/notifier.h>
33 #include <linux/mutex.h>
34 #include <linux/kthread.h>
36 #include <linux/interrupt.h>
37 #include <linux/rcupdate.h>
38 #include <linux/ipmi.h>
39 #include <linux/ipmi_smi.h>
41 #include <linux/string.h>
42 #include <linux/ctype.h>
44 #define PFX "ipmi_si: "
46 /* Measure times between events in the driver. */
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC 10000
51 #define SI_USEC_PER_JIFFY (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
64 /* FIXME - add watchdog stuff. */
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG 2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72 static const char * const si_to_str
[] = { "invalid", "kcs", "smic", "bt" };
74 static int initialized
;
77 * Indexes into stats[] in smi_info below.
79 enum si_stat_indexes
{
81 * Number of times the driver requested a timer while an operation
84 SI_STAT_short_timeouts
= 0,
87 * Number of times the driver requested a timer while nothing was in
90 SI_STAT_long_timeouts
,
92 /* Number of times the interface was idle while being polled. */
95 /* Number of interrupts the driver handled. */
98 /* Number of time the driver got an ATTN from the hardware. */
101 /* Number of times the driver requested flags from the hardware. */
102 SI_STAT_flag_fetches
,
104 /* Number of times the hardware didn't follow the state machine. */
107 /* Number of completed messages. */
108 SI_STAT_complete_transactions
,
110 /* Number of IPMI events received from the hardware. */
113 /* Number of watchdog pretimeouts. */
114 SI_STAT_watchdog_pretimeouts
,
116 /* Number of asynchronous messages received. */
117 SI_STAT_incoming_messages
,
120 /* This *must* remain last, add new values above this. */
126 struct ipmi_smi
*intf
;
127 struct si_sm_data
*si_sm
;
128 const struct si_sm_handlers
*handlers
;
130 struct ipmi_smi_msg
*waiting_msg
;
131 struct ipmi_smi_msg
*curr_msg
;
132 enum si_intf_state si_state
;
135 * Used to handle the various types of I/O that can occur with
141 * Per-OEM handler, called from handle_flags(). Returns 1
142 * when handle_flags() needs to be re-run or 0 indicating it
143 * set si_state itself.
145 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 * is set to hold the flags until we are done handling everything
152 #define RECEIVE_MSG_AVAIL 0x01
153 #define EVENT_MSG_BUFFER_FULL 0x02
154 #define WDT_PRE_TIMEOUT_INT 0x08
155 #define OEM0_DATA_AVAIL 0x20
156 #define OEM1_DATA_AVAIL 0x40
157 #define OEM2_DATA_AVAIL 0x80
158 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
161 unsigned char msg_flags
;
163 /* Does the BMC have an event buffer? */
164 bool has_event_buffer
;
167 * If set to true, this will request events the next time the
168 * state machine is idle.
173 * If true, run the state machine to completion on every send
174 * call. Generally used after a panic to make sure stuff goes
177 bool run_to_completion
;
179 /* The timer for this si. */
180 struct timer_list si_timer
;
182 /* This flag is set, if the timer can be set */
183 bool timer_can_start
;
185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
188 /* The time (in jiffies) the last timeout occurred at. */
189 unsigned long last_timeout_jiffies
;
191 /* Are we waiting for the events, pretimeouts, received msgs? */
195 * The driver will disable interrupts when it gets into a
196 * situation where it cannot handle messages due to lack of
197 * memory. Once that situation clears up, it will re-enable
200 bool interrupt_disabled
;
203 * Does the BMC support events?
205 bool supports_event_msg_buff
;
208 * Can we disable interrupts the global enables receive irq
209 * bit? There are currently two forms of brokenness, some
210 * systems cannot disable the bit (which is technically within
211 * the spec but a bad idea) and some systems have the bit
212 * forced to zero even though interrupts work (which is
213 * clearly outside the spec). The next bool tells which form
214 * of brokenness is present.
216 bool cannot_disable_irq
;
219 * Some systems are broken and cannot set the irq enable
220 * bit, even if they support interrupts.
222 bool irq_enable_broken
;
224 /* Is the driver in maintenance mode? */
225 bool in_maintenance_mode
;
228 * Did we get an attention that we did not handle?
232 /* From the get device id response... */
233 struct ipmi_device_id device_id
;
235 /* Default driver model device. */
236 struct platform_device
*pdev
;
238 /* Have we added the device group to the device? */
239 bool dev_group_added
;
241 /* Have we added the platform device? */
242 bool pdev_registered
;
244 /* Counters and things for the proc filesystem. */
245 atomic_t stats
[SI_NUM_STATS
];
247 struct task_struct
*thread
;
249 struct list_head link
;
252 #define smi_inc_stat(smi, stat) \
253 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
254 #define smi_get_stat(smi, stat) \
255 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
257 #define IPMI_MAX_INTFS 4
258 static int force_kipmid
[IPMI_MAX_INTFS
];
259 static int num_force_kipmid
;
261 static unsigned int kipmid_max_busy_us
[IPMI_MAX_INTFS
];
262 static int num_max_busy_us
;
264 static bool unload_when_empty
= true;
266 static int try_smi_init(struct smi_info
*smi
);
267 static void cleanup_one_si(struct smi_info
*smi_info
);
268 static void cleanup_ipmi_si(void);
271 void debug_timestamp(char *msg
)
275 getnstimeofday64(&t
);
276 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
279 #define debug_timestamp(x)
282 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
283 static int register_xaction_notifier(struct notifier_block
*nb
)
285 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
288 static void deliver_recv_msg(struct smi_info
*smi_info
,
289 struct ipmi_smi_msg
*msg
)
291 /* Deliver the message to the upper layer. */
292 ipmi_smi_msg_received(smi_info
->intf
, msg
);
295 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
297 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
299 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
300 cCode
= IPMI_ERR_UNSPECIFIED
;
301 /* else use it as is */
303 /* Make it a response */
304 msg
->rsp
[0] = msg
->data
[0] | 4;
305 msg
->rsp
[1] = msg
->data
[1];
309 smi_info
->curr_msg
= NULL
;
310 deliver_recv_msg(smi_info
, msg
);
313 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
317 if (!smi_info
->waiting_msg
) {
318 smi_info
->curr_msg
= NULL
;
323 smi_info
->curr_msg
= smi_info
->waiting_msg
;
324 smi_info
->waiting_msg
= NULL
;
325 debug_timestamp("Start2");
326 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
328 if (err
& NOTIFY_STOP_MASK
) {
329 rv
= SI_SM_CALL_WITHOUT_DELAY
;
332 err
= smi_info
->handlers
->start_transaction(
334 smi_info
->curr_msg
->data
,
335 smi_info
->curr_msg
->data_size
);
337 return_hosed_msg(smi_info
, err
);
339 rv
= SI_SM_CALL_WITHOUT_DELAY
;
345 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
347 if (!smi_info
->timer_can_start
)
349 smi_info
->last_timeout_jiffies
= jiffies
;
350 mod_timer(&smi_info
->si_timer
, new_val
);
351 smi_info
->timer_running
= true;
355 * Start a new message and (re)start the timer and thread.
357 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
360 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
362 if (smi_info
->thread
)
363 wake_up_process(smi_info
->thread
);
365 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
368 static void start_check_enables(struct smi_info
*smi_info
)
370 unsigned char msg
[2];
372 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
373 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
375 start_new_msg(smi_info
, msg
, 2);
376 smi_info
->si_state
= SI_CHECKING_ENABLES
;
379 static void start_clear_flags(struct smi_info
*smi_info
)
381 unsigned char msg
[3];
383 /* Make sure the watchdog pre-timeout flag is not set at startup. */
384 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
385 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
386 msg
[2] = WDT_PRE_TIMEOUT_INT
;
388 start_new_msg(smi_info
, msg
, 3);
389 smi_info
->si_state
= SI_CLEARING_FLAGS
;
392 static void start_getting_msg_queue(struct smi_info
*smi_info
)
394 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
395 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
396 smi_info
->curr_msg
->data_size
= 2;
398 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
399 smi_info
->curr_msg
->data_size
);
400 smi_info
->si_state
= SI_GETTING_MESSAGES
;
403 static void start_getting_events(struct smi_info
*smi_info
)
405 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
406 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
407 smi_info
->curr_msg
->data_size
= 2;
409 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
410 smi_info
->curr_msg
->data_size
);
411 smi_info
->si_state
= SI_GETTING_EVENTS
;
415 * When we have a situtaion where we run out of memory and cannot
416 * allocate messages, we just leave them in the BMC and run the system
417 * polled until we can allocate some memory. Once we have some
418 * memory, we will re-enable the interrupt.
420 * Note that we cannot just use disable_irq(), since the interrupt may
423 static inline bool disable_si_irq(struct smi_info
*smi_info
)
425 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
426 smi_info
->interrupt_disabled
= true;
427 start_check_enables(smi_info
);
433 static inline bool enable_si_irq(struct smi_info
*smi_info
)
435 if ((smi_info
->io
.irq
) && (smi_info
->interrupt_disabled
)) {
436 smi_info
->interrupt_disabled
= false;
437 start_check_enables(smi_info
);
444 * Allocate a message. If unable to allocate, start the interrupt
445 * disable process and return NULL. If able to allocate but
446 * interrupts are disabled, free the message and return NULL after
447 * starting the interrupt enable process.
449 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
451 struct ipmi_smi_msg
*msg
;
453 msg
= ipmi_alloc_smi_msg();
455 if (!disable_si_irq(smi_info
))
456 smi_info
->si_state
= SI_NORMAL
;
457 } else if (enable_si_irq(smi_info
)) {
458 ipmi_free_smi_msg(msg
);
464 static void handle_flags(struct smi_info
*smi_info
)
467 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
468 /* Watchdog pre-timeout */
469 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
471 start_clear_flags(smi_info
);
472 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
473 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
474 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
475 /* Messages available. */
476 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
477 if (!smi_info
->curr_msg
)
480 start_getting_msg_queue(smi_info
);
481 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
482 /* Events available. */
483 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
484 if (!smi_info
->curr_msg
)
487 start_getting_events(smi_info
);
488 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
489 smi_info
->oem_data_avail_handler
) {
490 if (smi_info
->oem_data_avail_handler(smi_info
))
493 smi_info
->si_state
= SI_NORMAL
;
497 * Global enables we care about.
499 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
500 IPMI_BMC_EVT_MSG_INTR)
502 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
507 if (smi_info
->supports_event_msg_buff
)
508 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
510 if (((smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
) ||
511 smi_info
->cannot_disable_irq
) &&
512 !smi_info
->irq_enable_broken
)
513 enables
|= IPMI_BMC_RCV_MSG_INTR
;
515 if (smi_info
->supports_event_msg_buff
&&
516 smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
&&
517 !smi_info
->irq_enable_broken
)
518 enables
|= IPMI_BMC_EVT_MSG_INTR
;
520 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
525 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
527 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
529 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
531 if ((bool)irqstate
== irq_on
)
535 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
536 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
538 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
541 static void handle_transaction_done(struct smi_info
*smi_info
)
543 struct ipmi_smi_msg
*msg
;
545 debug_timestamp("Done");
546 switch (smi_info
->si_state
) {
548 if (!smi_info
->curr_msg
)
551 smi_info
->curr_msg
->rsp_size
552 = smi_info
->handlers
->get_result(
554 smi_info
->curr_msg
->rsp
,
555 IPMI_MAX_MSG_LENGTH
);
558 * Do this here becase deliver_recv_msg() releases the
559 * lock, and a new message can be put in during the
560 * time the lock is released.
562 msg
= smi_info
->curr_msg
;
563 smi_info
->curr_msg
= NULL
;
564 deliver_recv_msg(smi_info
, msg
);
567 case SI_GETTING_FLAGS
:
569 unsigned char msg
[4];
572 /* We got the flags from the SMI, now handle them. */
573 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
575 /* Error fetching flags, just give up for now. */
576 smi_info
->si_state
= SI_NORMAL
;
577 } else if (len
< 4) {
579 * Hmm, no flags. That's technically illegal, but
580 * don't use uninitialized data.
582 smi_info
->si_state
= SI_NORMAL
;
584 smi_info
->msg_flags
= msg
[3];
585 handle_flags(smi_info
);
590 case SI_CLEARING_FLAGS
:
592 unsigned char msg
[3];
594 /* We cleared the flags. */
595 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
597 /* Error clearing flags */
598 dev_warn(smi_info
->io
.dev
,
599 "Error clearing flags: %2.2x\n", msg
[2]);
601 smi_info
->si_state
= SI_NORMAL
;
605 case SI_GETTING_EVENTS
:
607 smi_info
->curr_msg
->rsp_size
608 = smi_info
->handlers
->get_result(
610 smi_info
->curr_msg
->rsp
,
611 IPMI_MAX_MSG_LENGTH
);
614 * Do this here becase deliver_recv_msg() releases the
615 * lock, and a new message can be put in during the
616 * time the lock is released.
618 msg
= smi_info
->curr_msg
;
619 smi_info
->curr_msg
= NULL
;
620 if (msg
->rsp
[2] != 0) {
621 /* Error getting event, probably done. */
624 /* Take off the event flag. */
625 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
626 handle_flags(smi_info
);
628 smi_inc_stat(smi_info
, events
);
631 * Do this before we deliver the message
632 * because delivering the message releases the
633 * lock and something else can mess with the
636 handle_flags(smi_info
);
638 deliver_recv_msg(smi_info
, msg
);
643 case SI_GETTING_MESSAGES
:
645 smi_info
->curr_msg
->rsp_size
646 = smi_info
->handlers
->get_result(
648 smi_info
->curr_msg
->rsp
,
649 IPMI_MAX_MSG_LENGTH
);
652 * Do this here becase deliver_recv_msg() releases the
653 * lock, and a new message can be put in during the
654 * time the lock is released.
656 msg
= smi_info
->curr_msg
;
657 smi_info
->curr_msg
= NULL
;
658 if (msg
->rsp
[2] != 0) {
659 /* Error getting event, probably done. */
662 /* Take off the msg flag. */
663 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
664 handle_flags(smi_info
);
666 smi_inc_stat(smi_info
, incoming_messages
);
669 * Do this before we deliver the message
670 * because delivering the message releases the
671 * lock and something else can mess with the
674 handle_flags(smi_info
);
676 deliver_recv_msg(smi_info
, msg
);
681 case SI_CHECKING_ENABLES
:
683 unsigned char msg
[4];
687 /* We got the flags from the SMI, now handle them. */
688 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
690 dev_warn(smi_info
->io
.dev
,
691 "Couldn't get irq info: %x.\n", msg
[2]);
692 dev_warn(smi_info
->io
.dev
,
693 "Maybe ok, but ipmi might run very slowly.\n");
694 smi_info
->si_state
= SI_NORMAL
;
697 enables
= current_global_enables(smi_info
, 0, &irq_on
);
698 if (smi_info
->io
.si_type
== SI_BT
)
699 /* BT has its own interrupt enable bit. */
700 check_bt_irq(smi_info
, irq_on
);
701 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
702 /* Enables are not correct, fix them. */
703 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
704 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
705 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
706 smi_info
->handlers
->start_transaction(
707 smi_info
->si_sm
, msg
, 3);
708 smi_info
->si_state
= SI_SETTING_ENABLES
;
709 } else if (smi_info
->supports_event_msg_buff
) {
710 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
711 if (!smi_info
->curr_msg
) {
712 smi_info
->si_state
= SI_NORMAL
;
715 start_getting_events(smi_info
);
717 smi_info
->si_state
= SI_NORMAL
;
722 case SI_SETTING_ENABLES
:
724 unsigned char msg
[4];
726 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
728 dev_warn(smi_info
->io
.dev
,
729 "Could not set the global enables: 0x%x.\n",
732 if (smi_info
->supports_event_msg_buff
) {
733 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
734 if (!smi_info
->curr_msg
) {
735 smi_info
->si_state
= SI_NORMAL
;
738 start_getting_events(smi_info
);
740 smi_info
->si_state
= SI_NORMAL
;
748 * Called on timeouts and events. Timeouts should pass the elapsed
749 * time, interrupts should pass in zero. Must be called with
750 * si_lock held and interrupts disabled.
752 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
755 enum si_sm_result si_sm_result
;
759 * There used to be a loop here that waited a little while
760 * (around 25us) before giving up. That turned out to be
761 * pointless, the minimum delays I was seeing were in the 300us
762 * range, which is far too long to wait in an interrupt. So
763 * we just run until the state machine tells us something
764 * happened or it needs a delay.
766 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
768 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
769 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
771 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
772 smi_inc_stat(smi_info
, complete_transactions
);
774 handle_transaction_done(smi_info
);
776 } else if (si_sm_result
== SI_SM_HOSED
) {
777 smi_inc_stat(smi_info
, hosed_count
);
780 * Do the before return_hosed_msg, because that
783 smi_info
->si_state
= SI_NORMAL
;
784 if (smi_info
->curr_msg
!= NULL
) {
786 * If we were handling a user message, format
787 * a response to send to the upper layer to
788 * tell it about the error.
790 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
796 * We prefer handling attn over new messages. But don't do
797 * this if there is not yet an upper layer to handle anything.
799 if (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
) {
800 unsigned char msg
[2];
802 if (smi_info
->si_state
!= SI_NORMAL
) {
804 * We got an ATTN, but we are doing something else.
805 * Handle the ATTN later.
807 smi_info
->got_attn
= true;
809 smi_info
->got_attn
= false;
810 smi_inc_stat(smi_info
, attentions
);
813 * Got a attn, send down a get message flags to see
814 * what's causing it. It would be better to handle
815 * this in the upper layer, but due to the way
816 * interrupts work with the SMI, that's not really
819 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
820 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
822 start_new_msg(smi_info
, msg
, 2);
823 smi_info
->si_state
= SI_GETTING_FLAGS
;
828 /* If we are currently idle, try to start the next message. */
829 if (si_sm_result
== SI_SM_IDLE
) {
830 smi_inc_stat(smi_info
, idles
);
832 si_sm_result
= start_next_msg(smi_info
);
833 if (si_sm_result
!= SI_SM_IDLE
)
837 if ((si_sm_result
== SI_SM_IDLE
)
838 && (atomic_read(&smi_info
->req_events
))) {
840 * We are idle and the upper layer requested that I fetch
843 atomic_set(&smi_info
->req_events
, 0);
846 * Take this opportunity to check the interrupt and
847 * message enable state for the BMC. The BMC can be
848 * asynchronously reset, and may thus get interrupts
849 * disable and messages disabled.
851 if (smi_info
->supports_event_msg_buff
|| smi_info
->io
.irq
) {
852 start_check_enables(smi_info
);
854 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
855 if (!smi_info
->curr_msg
)
858 start_getting_events(smi_info
);
863 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
864 /* Ok it if fails, the timer will just go off. */
865 if (del_timer(&smi_info
->si_timer
))
866 smi_info
->timer_running
= false;
873 static void check_start_timer_thread(struct smi_info
*smi_info
)
875 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
876 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
878 if (smi_info
->thread
)
879 wake_up_process(smi_info
->thread
);
881 start_next_msg(smi_info
);
882 smi_event_handler(smi_info
, 0);
886 static void flush_messages(void *send_info
)
888 struct smi_info
*smi_info
= send_info
;
889 enum si_sm_result result
;
892 * Currently, this function is called only in run-to-completion
893 * mode. This means we are single-threaded, no need for locks.
895 result
= smi_event_handler(smi_info
, 0);
896 while (result
!= SI_SM_IDLE
) {
897 udelay(SI_SHORT_TIMEOUT_USEC
);
898 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
902 static void sender(void *send_info
,
903 struct ipmi_smi_msg
*msg
)
905 struct smi_info
*smi_info
= send_info
;
908 debug_timestamp("Enqueue");
910 if (smi_info
->run_to_completion
) {
912 * If we are running to completion, start it. Upper
913 * layer will call flush_messages to clear it out.
915 smi_info
->waiting_msg
= msg
;
919 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
921 * The following two lines don't need to be under the lock for
922 * the lock's sake, but they do need SMP memory barriers to
923 * avoid getting things out of order. We are already claiming
924 * the lock, anyway, so just do it under the lock to avoid the
927 BUG_ON(smi_info
->waiting_msg
);
928 smi_info
->waiting_msg
= msg
;
929 check_start_timer_thread(smi_info
);
930 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
933 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
935 struct smi_info
*smi_info
= send_info
;
937 smi_info
->run_to_completion
= i_run_to_completion
;
938 if (i_run_to_completion
)
939 flush_messages(smi_info
);
943 * Use -1 in the nsec value of the busy waiting timespec to tell that
944 * we are spinning in kipmid looking for something and not delaying
947 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
951 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
953 return ts
->tv_nsec
!= -1;
956 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
957 const struct smi_info
*smi_info
,
958 struct timespec64
*busy_until
)
960 unsigned int max_busy_us
= 0;
962 if (smi_info
->si_num
< num_max_busy_us
)
963 max_busy_us
= kipmid_max_busy_us
[smi_info
->si_num
];
964 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
965 ipmi_si_set_not_busy(busy_until
);
966 else if (!ipmi_si_is_busy(busy_until
)) {
967 getnstimeofday64(busy_until
);
968 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
970 struct timespec64 now
;
972 getnstimeofday64(&now
);
973 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
974 ipmi_si_set_not_busy(busy_until
);
983 * A busy-waiting loop for speeding up IPMI operation.
985 * Lousy hardware makes this hard. This is only enabled for systems
986 * that are not BT and do not have interrupts. It starts spinning
987 * when an operation is complete or until max_busy tells it to stop
988 * (if that is enabled). See the paragraph on kimid_max_busy_us in
989 * Documentation/IPMI.txt for details.
991 static int ipmi_thread(void *data
)
993 struct smi_info
*smi_info
= data
;
995 enum si_sm_result smi_result
;
996 struct timespec64 busy_until
;
998 ipmi_si_set_not_busy(&busy_until
);
999 set_user_nice(current
, MAX_NICE
);
1000 while (!kthread_should_stop()) {
1003 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1004 smi_result
= smi_event_handler(smi_info
, 0);
1007 * If the driver is doing something, there is a possible
1008 * race with the timer. If the timer handler see idle,
1009 * and the thread here sees something else, the timer
1010 * handler won't restart the timer even though it is
1011 * required. So start it here if necessary.
1013 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1014 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1016 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1017 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1019 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1021 } else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
) {
1023 * In maintenance mode we run as fast as
1024 * possible to allow firmware updates to
1025 * complete as fast as possible, but normally
1026 * don't bang on the scheduler.
1028 if (smi_info
->in_maintenance_mode
)
1031 usleep_range(100, 200);
1032 } else if (smi_result
== SI_SM_IDLE
) {
1033 if (atomic_read(&smi_info
->need_watch
)) {
1034 schedule_timeout_interruptible(100);
1036 /* Wait to be woken up when we are needed. */
1037 __set_current_state(TASK_INTERRUPTIBLE
);
1041 schedule_timeout_interruptible(1);
1048 static void poll(void *send_info
)
1050 struct smi_info
*smi_info
= send_info
;
1051 unsigned long flags
= 0;
1052 bool run_to_completion
= smi_info
->run_to_completion
;
1055 * Make sure there is some delay in the poll loop so we can
1056 * drive time forward and timeout things.
1059 if (!run_to_completion
)
1060 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1061 smi_event_handler(smi_info
, 10);
1062 if (!run_to_completion
)
1063 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1066 static void request_events(void *send_info
)
1068 struct smi_info
*smi_info
= send_info
;
1070 if (!smi_info
->has_event_buffer
)
1073 atomic_set(&smi_info
->req_events
, 1);
1076 static void set_need_watch(void *send_info
, bool enable
)
1078 struct smi_info
*smi_info
= send_info
;
1079 unsigned long flags
;
1081 atomic_set(&smi_info
->need_watch
, enable
);
1082 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1083 check_start_timer_thread(smi_info
);
1084 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1087 static void smi_timeout(struct timer_list
*t
)
1089 struct smi_info
*smi_info
= from_timer(smi_info
, t
, si_timer
);
1090 enum si_sm_result smi_result
;
1091 unsigned long flags
;
1092 unsigned long jiffies_now
;
1096 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1097 debug_timestamp("Timer");
1099 jiffies_now
= jiffies
;
1100 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1101 * SI_USEC_PER_JIFFY
);
1102 smi_result
= smi_event_handler(smi_info
, time_diff
);
1104 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
1105 /* Running with interrupts, only do long timeouts. */
1106 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1107 smi_inc_stat(smi_info
, long_timeouts
);
1112 * If the state machine asks for a short delay, then shorten
1113 * the timer timeout.
1115 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1116 smi_inc_stat(smi_info
, short_timeouts
);
1117 timeout
= jiffies
+ 1;
1119 smi_inc_stat(smi_info
, long_timeouts
);
1120 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1124 if (smi_result
!= SI_SM_IDLE
)
1125 smi_mod_timer(smi_info
, timeout
);
1127 smi_info
->timer_running
= false;
1128 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1131 irqreturn_t
ipmi_si_irq_handler(int irq
, void *data
)
1133 struct smi_info
*smi_info
= data
;
1134 unsigned long flags
;
1136 if (smi_info
->io
.si_type
== SI_BT
)
1137 /* We need to clear the IRQ flag for the BT interface. */
1138 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1139 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1140 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1142 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1144 smi_inc_stat(smi_info
, interrupts
);
1146 debug_timestamp("Interrupt");
1148 smi_event_handler(smi_info
, 0);
1149 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1153 static int smi_start_processing(void *send_info
,
1154 struct ipmi_smi
*intf
)
1156 struct smi_info
*new_smi
= send_info
;
1159 new_smi
->intf
= intf
;
1161 /* Set up the timer that drives the interface. */
1162 timer_setup(&new_smi
->si_timer
, smi_timeout
, 0);
1163 new_smi
->timer_can_start
= true;
1164 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1166 /* Try to claim any interrupts. */
1167 if (new_smi
->io
.irq_setup
) {
1168 new_smi
->io
.irq_handler_data
= new_smi
;
1169 new_smi
->io
.irq_setup(&new_smi
->io
);
1173 * Check if the user forcefully enabled the daemon.
1175 if (new_smi
->si_num
< num_force_kipmid
)
1176 enable
= force_kipmid
[new_smi
->si_num
];
1178 * The BT interface is efficient enough to not need a thread,
1179 * and there is no need for a thread if we have interrupts.
1181 else if ((new_smi
->io
.si_type
!= SI_BT
) && (!new_smi
->io
.irq
))
1185 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1186 "kipmi%d", new_smi
->si_num
);
1187 if (IS_ERR(new_smi
->thread
)) {
1188 dev_notice(new_smi
->io
.dev
, "Could not start"
1189 " kernel thread due to error %ld, only using"
1190 " timers to drive the interface\n",
1191 PTR_ERR(new_smi
->thread
));
1192 new_smi
->thread
= NULL
;
1199 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1201 struct smi_info
*smi
= send_info
;
1203 data
->addr_src
= smi
->io
.addr_source
;
1204 data
->dev
= smi
->io
.dev
;
1205 data
->addr_info
= smi
->io
.addr_info
;
1206 get_device(smi
->io
.dev
);
1211 static void set_maintenance_mode(void *send_info
, bool enable
)
1213 struct smi_info
*smi_info
= send_info
;
1216 atomic_set(&smi_info
->req_events
, 0);
1217 smi_info
->in_maintenance_mode
= enable
;
1220 static void shutdown_smi(void *send_info
);
1221 static const struct ipmi_smi_handlers handlers
= {
1222 .owner
= THIS_MODULE
,
1223 .start_processing
= smi_start_processing
,
1224 .shutdown
= shutdown_smi
,
1225 .get_smi_info
= get_smi_info
,
1227 .request_events
= request_events
,
1228 .set_need_watch
= set_need_watch
,
1229 .set_maintenance_mode
= set_maintenance_mode
,
1230 .set_run_to_completion
= set_run_to_completion
,
1231 .flush_messages
= flush_messages
,
1235 static LIST_HEAD(smi_infos
);
1236 static DEFINE_MUTEX(smi_infos_lock
);
1237 static int smi_num
; /* Used to sequence the SMIs */
1239 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1241 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1242 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1243 " disabled(0). Normally the IPMI driver auto-detects"
1244 " this, but the value may be overridden by this parm.");
1245 module_param(unload_when_empty
, bool, 0);
1246 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1247 " specified or found, default is 1. Setting to 0"
1248 " is useful for hot add of devices using hotmod.");
1249 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1250 MODULE_PARM_DESC(kipmid_max_busy_us
,
1251 "Max time (in microseconds) to busy-wait for IPMI data before"
1252 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1253 " if kipmid is using up a lot of CPU time.");
1255 void ipmi_irq_finish_setup(struct si_sm_io
*io
)
1257 if (io
->si_type
== SI_BT
)
1258 /* Enable the interrupt in the BT interface. */
1259 io
->outputb(io
, IPMI_BT_INTMASK_REG
,
1260 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1263 void ipmi_irq_start_cleanup(struct si_sm_io
*io
)
1265 if (io
->si_type
== SI_BT
)
1266 /* Disable the interrupt in the BT interface. */
1267 io
->outputb(io
, IPMI_BT_INTMASK_REG
, 0);
1270 static void std_irq_cleanup(struct si_sm_io
*io
)
1272 ipmi_irq_start_cleanup(io
);
1273 free_irq(io
->irq
, io
->irq_handler_data
);
1276 int ipmi_std_irq_setup(struct si_sm_io
*io
)
1283 rv
= request_irq(io
->irq
,
1284 ipmi_si_irq_handler
,
1287 io
->irq_handler_data
);
1289 dev_warn(io
->dev
, "%s unable to claim interrupt %d,"
1290 " running polled\n",
1291 DEVICE_NAME
, io
->irq
);
1294 io
->irq_cleanup
= std_irq_cleanup
;
1295 ipmi_irq_finish_setup(io
);
1296 dev_info(io
->dev
, "Using irq %d\n", io
->irq
);
1302 static int wait_for_msg_done(struct smi_info
*smi_info
)
1304 enum si_sm_result smi_result
;
1306 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
1308 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
1309 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
1310 schedule_timeout_uninterruptible(1);
1311 smi_result
= smi_info
->handlers
->event(
1312 smi_info
->si_sm
, jiffies_to_usecs(1));
1313 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1314 smi_result
= smi_info
->handlers
->event(
1315 smi_info
->si_sm
, 0);
1319 if (smi_result
== SI_SM_HOSED
)
1321 * We couldn't get the state machine to run, so whatever's at
1322 * the port is probably not an IPMI SMI interface.
1329 static int try_get_dev_id(struct smi_info
*smi_info
)
1331 unsigned char msg
[2];
1332 unsigned char *resp
;
1333 unsigned long resp_len
;
1336 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1341 * Do a Get Device ID command, since it comes back with some
1344 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1345 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
1346 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1348 rv
= wait_for_msg_done(smi_info
);
1352 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1353 resp
, IPMI_MAX_MSG_LENGTH
);
1355 /* Check and record info from the get device id, in case we need it. */
1356 rv
= ipmi_demangle_device_id(resp
[0] >> 2, resp
[1],
1357 resp
+ 2, resp_len
- 2, &smi_info
->device_id
);
1364 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
1366 unsigned char msg
[3];
1367 unsigned char *resp
;
1368 unsigned long resp_len
;
1371 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1375 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1376 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1377 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1379 rv
= wait_for_msg_done(smi_info
);
1381 dev_warn(smi_info
->io
.dev
,
1382 "Error getting response from get global enables command: %d\n",
1387 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1388 resp
, IPMI_MAX_MSG_LENGTH
);
1391 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1392 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1394 dev_warn(smi_info
->io
.dev
,
1395 "Invalid return from get global enables command: %ld %x %x %x\n",
1396 resp_len
, resp
[0], resp
[1], resp
[2]);
1409 * Returns 1 if it gets an error from the command.
1411 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
1413 unsigned char msg
[3];
1414 unsigned char *resp
;
1415 unsigned long resp_len
;
1418 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1422 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1423 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1425 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1427 rv
= wait_for_msg_done(smi_info
);
1429 dev_warn(smi_info
->io
.dev
,
1430 "Error getting response from set global enables command: %d\n",
1435 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1436 resp
, IPMI_MAX_MSG_LENGTH
);
1439 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1440 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1441 dev_warn(smi_info
->io
.dev
,
1442 "Invalid return from set global enables command: %ld %x %x\n",
1443 resp_len
, resp
[0], resp
[1]);
1457 * Some BMCs do not support clearing the receive irq bit in the global
1458 * enables (even if they don't support interrupts on the BMC). Check
1459 * for this and handle it properly.
1461 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
1466 rv
= get_global_enables(smi_info
, &enables
);
1468 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
1469 /* Already clear, should work ok. */
1472 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
1473 rv
= set_global_enables(smi_info
, enables
);
1477 dev_err(smi_info
->io
.dev
,
1478 "Cannot check clearing the rcv irq: %d\n", rv
);
1484 * An error when setting the event buffer bit means
1485 * clearing the bit is not supported.
1487 dev_warn(smi_info
->io
.dev
,
1488 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1489 smi_info
->cannot_disable_irq
= true;
1494 * Some BMCs do not support setting the interrupt bits in the global
1495 * enables even if they support interrupts. Clearly bad, but we can
1498 static void check_set_rcv_irq(struct smi_info
*smi_info
)
1503 if (!smi_info
->io
.irq
)
1506 rv
= get_global_enables(smi_info
, &enables
);
1508 enables
|= IPMI_BMC_RCV_MSG_INTR
;
1509 rv
= set_global_enables(smi_info
, enables
);
1513 dev_err(smi_info
->io
.dev
,
1514 "Cannot check setting the rcv irq: %d\n", rv
);
1520 * An error when setting the event buffer bit means
1521 * setting the bit is not supported.
1523 dev_warn(smi_info
->io
.dev
,
1524 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1525 smi_info
->cannot_disable_irq
= true;
1526 smi_info
->irq_enable_broken
= true;
1530 static int try_enable_event_buffer(struct smi_info
*smi_info
)
1532 unsigned char msg
[3];
1533 unsigned char *resp
;
1534 unsigned long resp_len
;
1537 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1541 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1542 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1543 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1545 rv
= wait_for_msg_done(smi_info
);
1547 pr_warn(PFX
"Error getting response from get global enables command, the event buffer is not enabled.\n");
1551 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1552 resp
, IPMI_MAX_MSG_LENGTH
);
1555 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1556 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1558 pr_warn(PFX
"Invalid return from get global enables command, cannot enable the event buffer.\n");
1563 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
1564 /* buffer is already enabled, nothing to do. */
1565 smi_info
->supports_event_msg_buff
= true;
1569 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1570 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1571 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
1572 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1574 rv
= wait_for_msg_done(smi_info
);
1576 pr_warn(PFX
"Error getting response from set global, enables command, the event buffer is not enabled.\n");
1580 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1581 resp
, IPMI_MAX_MSG_LENGTH
);
1584 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1585 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1586 pr_warn(PFX
"Invalid return from get global, enables command, not enable the event buffer.\n");
1593 * An error when setting the event buffer bit means
1594 * that the event buffer is not supported.
1598 smi_info
->supports_event_msg_buff
= true;
1605 #define IPMI_SI_ATTR(name) \
1606 static ssize_t ipmi_##name##_show(struct device *dev, \
1607 struct device_attribute *attr, \
1610 struct smi_info *smi_info = dev_get_drvdata(dev); \
1612 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1614 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1616 static ssize_t
ipmi_type_show(struct device
*dev
,
1617 struct device_attribute
*attr
,
1620 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1622 return snprintf(buf
, 10, "%s\n", si_to_str
[smi_info
->io
.si_type
]);
1624 static DEVICE_ATTR(type
, S_IRUGO
, ipmi_type_show
, NULL
);
1626 static ssize_t
ipmi_interrupts_enabled_show(struct device
*dev
,
1627 struct device_attribute
*attr
,
1630 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1631 int enabled
= smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
;
1633 return snprintf(buf
, 10, "%d\n", enabled
);
1635 static DEVICE_ATTR(interrupts_enabled
, S_IRUGO
,
1636 ipmi_interrupts_enabled_show
, NULL
);
1638 IPMI_SI_ATTR(short_timeouts
);
1639 IPMI_SI_ATTR(long_timeouts
);
1640 IPMI_SI_ATTR(idles
);
1641 IPMI_SI_ATTR(interrupts
);
1642 IPMI_SI_ATTR(attentions
);
1643 IPMI_SI_ATTR(flag_fetches
);
1644 IPMI_SI_ATTR(hosed_count
);
1645 IPMI_SI_ATTR(complete_transactions
);
1646 IPMI_SI_ATTR(events
);
1647 IPMI_SI_ATTR(watchdog_pretimeouts
);
1648 IPMI_SI_ATTR(incoming_messages
);
1650 static ssize_t
ipmi_params_show(struct device
*dev
,
1651 struct device_attribute
*attr
,
1654 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1656 return snprintf(buf
, 200,
1657 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1658 si_to_str
[smi_info
->io
.si_type
],
1659 addr_space_to_str
[smi_info
->io
.addr_type
],
1660 smi_info
->io
.addr_data
,
1661 smi_info
->io
.regspacing
,
1662 smi_info
->io
.regsize
,
1663 smi_info
->io
.regshift
,
1665 smi_info
->io
.slave_addr
);
1667 static DEVICE_ATTR(params
, S_IRUGO
, ipmi_params_show
, NULL
);
1669 static struct attribute
*ipmi_si_dev_attrs
[] = {
1670 &dev_attr_type
.attr
,
1671 &dev_attr_interrupts_enabled
.attr
,
1672 &dev_attr_short_timeouts
.attr
,
1673 &dev_attr_long_timeouts
.attr
,
1674 &dev_attr_idles
.attr
,
1675 &dev_attr_interrupts
.attr
,
1676 &dev_attr_attentions
.attr
,
1677 &dev_attr_flag_fetches
.attr
,
1678 &dev_attr_hosed_count
.attr
,
1679 &dev_attr_complete_transactions
.attr
,
1680 &dev_attr_events
.attr
,
1681 &dev_attr_watchdog_pretimeouts
.attr
,
1682 &dev_attr_incoming_messages
.attr
,
1683 &dev_attr_params
.attr
,
1687 static const struct attribute_group ipmi_si_dev_attr_group
= {
1688 .attrs
= ipmi_si_dev_attrs
,
1692 * oem_data_avail_to_receive_msg_avail
1693 * @info - smi_info structure with msg_flags set
1695 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1696 * Returns 1 indicating need to re-run handle_flags().
1698 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
1700 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
1706 * setup_dell_poweredge_oem_data_handler
1707 * @info - smi_info.device_id must be populated
1709 * Systems that match, but have firmware version < 1.40 may assert
1710 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1711 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1712 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1713 * as RECEIVE_MSG_AVAIL instead.
1715 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1716 * assert the OEM[012] bits, and if it did, the driver would have to
1717 * change to handle that properly, we don't actually check for the
1719 * Device ID = 0x20 BMC on PowerEdge 8G servers
1720 * Device Revision = 0x80
1721 * Firmware Revision1 = 0x01 BMC version 1.40
1722 * Firmware Revision2 = 0x40 BCD encoded
1723 * IPMI Version = 0x51 IPMI 1.5
1724 * Manufacturer ID = A2 02 00 Dell IANA
1726 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1727 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1730 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1731 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1732 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1733 #define DELL_IANA_MFR_ID 0x0002a2
1734 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
1736 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1737 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
1738 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
1739 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
1740 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
1741 smi_info
->oem_data_avail_handler
=
1742 oem_data_avail_to_receive_msg_avail
;
1743 } else if (ipmi_version_major(id
) < 1 ||
1744 (ipmi_version_major(id
) == 1 &&
1745 ipmi_version_minor(id
) < 5)) {
1746 smi_info
->oem_data_avail_handler
=
1747 oem_data_avail_to_receive_msg_avail
;
1752 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1753 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
1755 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
1757 /* Make it a response */
1758 msg
->rsp
[0] = msg
->data
[0] | 4;
1759 msg
->rsp
[1] = msg
->data
[1];
1760 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
1762 smi_info
->curr_msg
= NULL
;
1763 deliver_recv_msg(smi_info
, msg
);
1767 * dell_poweredge_bt_xaction_handler
1768 * @info - smi_info.device_id must be populated
1770 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1771 * not respond to a Get SDR command if the length of the data
1772 * requested is exactly 0x3A, which leads to command timeouts and no
1773 * data returned. This intercepts such commands, and causes userspace
1774 * callers to try again with a different-sized buffer, which succeeds.
1777 #define STORAGE_NETFN 0x0A
1778 #define STORAGE_CMD_GET_SDR 0x23
1779 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
1780 unsigned long unused
,
1783 struct smi_info
*smi_info
= in
;
1784 unsigned char *data
= smi_info
->curr_msg
->data
;
1785 unsigned int size
= smi_info
->curr_msg
->data_size
;
1787 (data
[0]>>2) == STORAGE_NETFN
&&
1788 data
[1] == STORAGE_CMD_GET_SDR
&&
1790 return_hosed_msg_badsize(smi_info
);
1796 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
1797 .notifier_call
= dell_poweredge_bt_xaction_handler
,
1801 * setup_dell_poweredge_bt_xaction_handler
1802 * @info - smi_info.device_id must be filled in already
1804 * Fills in smi_info.device_id.start_transaction_pre_hook
1805 * when we know what function to use there.
1808 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
1810 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1811 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
1812 smi_info
->io
.si_type
== SI_BT
)
1813 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
1817 * setup_oem_data_handler
1818 * @info - smi_info.device_id must be filled in already
1820 * Fills in smi_info.device_id.oem_data_available_handler
1821 * when we know what function to use there.
1824 static void setup_oem_data_handler(struct smi_info
*smi_info
)
1826 setup_dell_poweredge_oem_data_handler(smi_info
);
1829 static void setup_xaction_handlers(struct smi_info
*smi_info
)
1831 setup_dell_poweredge_bt_xaction_handler(smi_info
);
1834 static void check_for_broken_irqs(struct smi_info
*smi_info
)
1836 check_clr_rcv_irq(smi_info
);
1837 check_set_rcv_irq(smi_info
);
1840 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
1842 if (smi_info
->thread
!= NULL
) {
1843 kthread_stop(smi_info
->thread
);
1844 smi_info
->thread
= NULL
;
1847 smi_info
->timer_can_start
= false;
1848 if (smi_info
->timer_running
)
1849 del_timer_sync(&smi_info
->si_timer
);
1852 static struct smi_info
*find_dup_si(struct smi_info
*info
)
1856 list_for_each_entry(e
, &smi_infos
, link
) {
1857 if (e
->io
.addr_type
!= info
->io
.addr_type
)
1859 if (e
->io
.addr_data
== info
->io
.addr_data
) {
1861 * This is a cheap hack, ACPI doesn't have a defined
1862 * slave address but SMBIOS does. Pick it up from
1863 * any source that has it available.
1865 if (info
->io
.slave_addr
&& !e
->io
.slave_addr
)
1866 e
->io
.slave_addr
= info
->io
.slave_addr
;
1874 int ipmi_si_add_smi(struct si_sm_io
*io
)
1877 struct smi_info
*new_smi
, *dup
;
1880 * If the user gave us a hard-coded device at the same
1881 * address, they presumably want us to use it and not what is
1884 if (io
->addr_source
!= SI_HARDCODED
&&
1885 ipmi_si_hardcode_match(io
->addr_type
, io
->addr_data
)) {
1887 "Hard-coded device at this address already exists");
1891 if (!io
->io_setup
) {
1892 if (io
->addr_type
== IPMI_IO_ADDR_SPACE
) {
1893 io
->io_setup
= ipmi_si_port_setup
;
1894 } else if (io
->addr_type
== IPMI_MEM_ADDR_SPACE
) {
1895 io
->io_setup
= ipmi_si_mem_setup
;
1901 new_smi
= kzalloc(sizeof(*new_smi
), GFP_KERNEL
);
1904 spin_lock_init(&new_smi
->si_lock
);
1908 mutex_lock(&smi_infos_lock
);
1909 dup
= find_dup_si(new_smi
);
1911 if (new_smi
->io
.addr_source
== SI_ACPI
&&
1912 dup
->io
.addr_source
== SI_SMBIOS
) {
1913 /* We prefer ACPI over SMBIOS. */
1914 dev_info(dup
->io
.dev
,
1915 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1916 si_to_str
[new_smi
->io
.si_type
]);
1917 cleanup_one_si(dup
);
1919 dev_info(new_smi
->io
.dev
,
1920 "%s-specified %s state machine: duplicate\n",
1921 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1922 si_to_str
[new_smi
->io
.si_type
]);
1929 pr_info(PFX
"Adding %s-specified %s state machine\n",
1930 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1931 si_to_str
[new_smi
->io
.si_type
]);
1933 list_add_tail(&new_smi
->link
, &smi_infos
);
1936 rv
= try_smi_init(new_smi
);
1938 mutex_unlock(&smi_infos_lock
);
1943 * Try to start up an interface. Must be called with smi_infos_lock
1944 * held, primarily to keep smi_num consistent, we only one to do these
1947 static int try_smi_init(struct smi_info
*new_smi
)
1951 char *init_name
= NULL
;
1953 pr_info(PFX
"Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1954 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
1955 si_to_str
[new_smi
->io
.si_type
],
1956 addr_space_to_str
[new_smi
->io
.addr_type
],
1957 new_smi
->io
.addr_data
,
1958 new_smi
->io
.slave_addr
, new_smi
->io
.irq
);
1960 switch (new_smi
->io
.si_type
) {
1962 new_smi
->handlers
= &kcs_smi_handlers
;
1966 new_smi
->handlers
= &smic_smi_handlers
;
1970 new_smi
->handlers
= &bt_smi_handlers
;
1974 /* No support for anything else yet. */
1979 new_smi
->si_num
= smi_num
;
1981 /* Do this early so it's available for logs. */
1982 if (!new_smi
->io
.dev
) {
1983 init_name
= kasprintf(GFP_KERNEL
, "ipmi_si.%d",
1987 * If we don't already have a device from something
1988 * else (like PCI), then register a new one.
1990 new_smi
->pdev
= platform_device_alloc("ipmi_si",
1992 if (!new_smi
->pdev
) {
1993 pr_err(PFX
"Unable to allocate platform device\n");
1997 new_smi
->io
.dev
= &new_smi
->pdev
->dev
;
1998 new_smi
->io
.dev
->driver
= &ipmi_platform_driver
.driver
;
1999 /* Nulled by device_add() */
2000 new_smi
->io
.dev
->init_name
= init_name
;
2003 /* Allocate the state machine's data and initialize it. */
2004 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
2005 if (!new_smi
->si_sm
) {
2009 new_smi
->io
.io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
2012 /* Now that we know the I/O size, we can set up the I/O. */
2013 rv
= new_smi
->io
.io_setup(&new_smi
->io
);
2015 dev_err(new_smi
->io
.dev
, "Could not set up I/O space\n");
2019 /* Do low-level detection first. */
2020 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
2021 if (new_smi
->io
.addr_source
)
2022 dev_err(new_smi
->io
.dev
,
2023 "Interface detection failed\n");
2029 * Attempt a get device id command. If it fails, we probably
2030 * don't have a BMC here.
2032 rv
= try_get_dev_id(new_smi
);
2034 if (new_smi
->io
.addr_source
)
2035 dev_err(new_smi
->io
.dev
,
2036 "There appears to be no BMC at this location\n");
2040 setup_oem_data_handler(new_smi
);
2041 setup_xaction_handlers(new_smi
);
2042 check_for_broken_irqs(new_smi
);
2044 new_smi
->waiting_msg
= NULL
;
2045 new_smi
->curr_msg
= NULL
;
2046 atomic_set(&new_smi
->req_events
, 0);
2047 new_smi
->run_to_completion
= false;
2048 for (i
= 0; i
< SI_NUM_STATS
; i
++)
2049 atomic_set(&new_smi
->stats
[i
], 0);
2051 new_smi
->interrupt_disabled
= true;
2052 atomic_set(&new_smi
->need_watch
, 0);
2054 rv
= try_enable_event_buffer(new_smi
);
2056 new_smi
->has_event_buffer
= true;
2059 * Start clearing the flags before we enable interrupts or the
2060 * timer to avoid racing with the timer.
2062 start_clear_flags(new_smi
);
2065 * IRQ is defined to be set when non-zero. req_events will
2066 * cause a global flags check that will enable interrupts.
2068 if (new_smi
->io
.irq
) {
2069 new_smi
->interrupt_disabled
= false;
2070 atomic_set(&new_smi
->req_events
, 1);
2073 if (new_smi
->pdev
&& !new_smi
->pdev_registered
) {
2074 rv
= platform_device_add(new_smi
->pdev
);
2076 dev_err(new_smi
->io
.dev
,
2077 "Unable to register system interface device: %d\n",
2081 new_smi
->pdev_registered
= true;
2084 dev_set_drvdata(new_smi
->io
.dev
, new_smi
);
2085 rv
= device_add_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2087 dev_err(new_smi
->io
.dev
,
2088 "Unable to add device attributes: error %d\n",
2092 new_smi
->dev_group_added
= true;
2094 rv
= ipmi_register_smi(&handlers
,
2097 new_smi
->io
.slave_addr
);
2099 dev_err(new_smi
->io
.dev
,
2100 "Unable to register device: error %d\n",
2105 /* Don't increment till we know we have succeeded. */
2108 dev_info(new_smi
->io
.dev
, "IPMI %s interface initialized\n",
2109 si_to_str
[new_smi
->io
.si_type
]);
2111 WARN_ON(new_smi
->io
.dev
->init_name
!= NULL
);
2114 if (rv
&& new_smi
->io
.io_cleanup
) {
2115 new_smi
->io
.io_cleanup(&new_smi
->io
);
2116 new_smi
->io
.io_cleanup
= NULL
;
2123 static int __init
init_ipmi_si(void)
2126 enum ipmi_addr_src type
= SI_INVALID
;
2131 ipmi_hardcode_init();
2132 pr_info("IPMI System Interface driver.\n");
2134 ipmi_si_platform_init();
2138 ipmi_si_parisc_init();
2140 /* We prefer devices with interrupts, but in the case of a machine
2141 with multiple BMCs we assume that there will be several instances
2142 of a given type so if we succeed in registering a type then also
2143 try to register everything else of the same type */
2144 mutex_lock(&smi_infos_lock
);
2145 list_for_each_entry(e
, &smi_infos
, link
) {
2146 /* Try to register a device if it has an IRQ and we either
2147 haven't successfully registered a device yet or this
2148 device has the same type as one we successfully registered */
2149 if (e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2150 if (!try_smi_init(e
)) {
2151 type
= e
->io
.addr_source
;
2156 /* type will only have been set if we successfully registered an si */
2158 goto skip_fallback_noirq
;
2160 /* Fall back to the preferred device */
2162 list_for_each_entry(e
, &smi_infos
, link
) {
2163 if (!e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2164 if (!try_smi_init(e
)) {
2165 type
= e
->io
.addr_source
;
2170 skip_fallback_noirq
:
2172 mutex_unlock(&smi_infos_lock
);
2177 mutex_lock(&smi_infos_lock
);
2178 if (unload_when_empty
&& list_empty(&smi_infos
)) {
2179 mutex_unlock(&smi_infos_lock
);
2181 pr_warn(PFX
"Unable to find any System Interface(s)\n");
2184 mutex_unlock(&smi_infos_lock
);
2188 module_init(init_ipmi_si
);
2190 static void shutdown_smi(void *send_info
)
2192 struct smi_info
*smi_info
= send_info
;
2194 if (smi_info
->dev_group_added
) {
2195 device_remove_group(smi_info
->io
.dev
, &ipmi_si_dev_attr_group
);
2196 smi_info
->dev_group_added
= false;
2198 if (smi_info
->io
.dev
)
2199 dev_set_drvdata(smi_info
->io
.dev
, NULL
);
2202 * Make sure that interrupts, the timer and the thread are
2203 * stopped and will not run again.
2205 smi_info
->interrupt_disabled
= true;
2206 if (smi_info
->io
.irq_cleanup
) {
2207 smi_info
->io
.irq_cleanup(&smi_info
->io
);
2208 smi_info
->io
.irq_cleanup
= NULL
;
2210 stop_timer_and_thread(smi_info
);
2213 * Wait until we know that we are out of any interrupt
2214 * handlers might have been running before we freed the
2217 synchronize_sched();
2220 * Timeouts are stopped, now make sure the interrupts are off
2221 * in the BMC. Note that timers and CPU interrupts are off,
2222 * so no need for locks.
2224 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2226 schedule_timeout_uninterruptible(1);
2228 if (smi_info
->handlers
)
2229 disable_si_irq(smi_info
);
2230 while (smi_info
->curr_msg
|| (smi_info
->si_state
!= SI_NORMAL
)) {
2232 schedule_timeout_uninterruptible(1);
2234 if (smi_info
->handlers
)
2235 smi_info
->handlers
->cleanup(smi_info
->si_sm
);
2237 if (smi_info
->io
.addr_source_cleanup
) {
2238 smi_info
->io
.addr_source_cleanup(&smi_info
->io
);
2239 smi_info
->io
.addr_source_cleanup
= NULL
;
2241 if (smi_info
->io
.io_cleanup
) {
2242 smi_info
->io
.io_cleanup(&smi_info
->io
);
2243 smi_info
->io
.io_cleanup
= NULL
;
2246 kfree(smi_info
->si_sm
);
2247 smi_info
->si_sm
= NULL
;
2249 smi_info
->intf
= NULL
;
2253 * Must be called with smi_infos_lock held, to serialize the
2254 * smi_info->intf check.
2256 static void cleanup_one_si(struct smi_info
*smi_info
)
2261 list_del(&smi_info
->link
);
2264 ipmi_unregister_smi(smi_info
->intf
);
2266 if (smi_info
->pdev
) {
2267 if (smi_info
->pdev_registered
)
2268 platform_device_unregister(smi_info
->pdev
);
2270 platform_device_put(smi_info
->pdev
);
2276 int ipmi_si_remove_by_dev(struct device
*dev
)
2281 mutex_lock(&smi_infos_lock
);
2282 list_for_each_entry(e
, &smi_infos
, link
) {
2283 if (e
->io
.dev
== dev
) {
2289 mutex_unlock(&smi_infos_lock
);
2294 void ipmi_si_remove_by_data(int addr_space
, enum si_type si_type
,
2298 struct smi_info
*e
, *tmp_e
;
2300 mutex_lock(&smi_infos_lock
);
2301 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
2302 if (e
->io
.addr_type
!= addr_space
)
2304 if (e
->io
.si_type
!= si_type
)
2306 if (e
->io
.addr_data
== addr
)
2309 mutex_unlock(&smi_infos_lock
);
2312 static void cleanup_ipmi_si(void)
2314 struct smi_info
*e
, *tmp_e
;
2319 ipmi_si_pci_shutdown();
2321 ipmi_si_parisc_shutdown();
2323 ipmi_si_platform_shutdown();
2325 mutex_lock(&smi_infos_lock
);
2326 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
2328 mutex_unlock(&smi_infos_lock
);
2330 ipmi_si_hardcode_exit();
2332 module_exit(cleanup_ipmi_si
);
2334 MODULE_ALIAS("platform:dmi-ipmi-si");
2335 MODULE_LICENSE("GPL");
2336 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2337 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2338 " system interfaces.");