Linux 4.19.133
[linux/fpc-iii.git] / drivers / clk / bcm / clk-kona.c
blobeee64b9e5d10b497d8362acbb92ad8312c9ce4f5
1 /*
2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include "clk-kona.h"
17 #include <linux/delay.h>
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
22 * "Policies" affect the frequencies of bus clocks provided by a
23 * CCU. (I believe these polices are named "Deep Sleep", "Economy",
24 * "Normal", and "Turbo".) A lower policy number has lower power
25 * consumption, and policy 2 is the default.
27 #define CCU_POLICY_COUNT 4
29 #define CCU_ACCESS_PASSWORD 0xA5A500
30 #define CLK_GATE_DELAY_LOOP 2000
32 /* Bitfield operations */
34 /* Produces a mask of set bits covering a range of a 32-bit value */
35 static inline u32 bitfield_mask(u32 shift, u32 width)
37 return ((1 << width) - 1) << shift;
40 /* Extract the value of a bitfield found within a given register value */
41 static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
43 return (reg_val & bitfield_mask(shift, width)) >> shift;
46 /* Replace the value of a bitfield found within a given register value */
47 static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
49 u32 mask = bitfield_mask(shift, width);
51 return (reg_val & ~mask) | (val << shift);
54 /* Divider and scaling helpers */
56 /* Convert a divider into the scaled divisor value it represents. */
57 static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
59 return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
63 * Build a scaled divider value as close as possible to the
64 * given whole part (div_value) and fractional part (expressed
65 * in billionths).
67 u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
69 u64 combined;
71 BUG_ON(!div_value);
72 BUG_ON(billionths >= BILLION);
74 combined = (u64)div_value * BILLION + billionths;
75 combined <<= div->u.s.frac_width;
77 return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
80 /* The scaled minimum divisor representable by a divider */
81 static inline u64
82 scaled_div_min(struct bcm_clk_div *div)
84 if (divider_is_fixed(div))
85 return (u64)div->u.fixed;
87 return scaled_div_value(div, 0);
90 /* The scaled maximum divisor representable by a divider */
91 u64 scaled_div_max(struct bcm_clk_div *div)
93 u32 reg_div;
95 if (divider_is_fixed(div))
96 return (u64)div->u.fixed;
98 reg_div = ((u32)1 << div->u.s.width) - 1;
100 return scaled_div_value(div, reg_div);
104 * Convert a scaled divisor into its divider representation as
105 * stored in a divider register field.
107 static inline u32
108 divider(struct bcm_clk_div *div, u64 scaled_div)
110 BUG_ON(scaled_div < scaled_div_min(div));
111 BUG_ON(scaled_div > scaled_div_max(div));
113 return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
116 /* Return a rate scaled for use when dividing by a scaled divisor. */
117 static inline u64
118 scale_rate(struct bcm_clk_div *div, u32 rate)
120 if (divider_is_fixed(div))
121 return (u64)rate;
123 return (u64)rate << div->u.s.frac_width;
126 /* CCU access */
128 /* Read a 32-bit register value from a CCU's address space. */
129 static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
131 return readl(ccu->base + reg_offset);
134 /* Write a 32-bit register value into a CCU's address space. */
135 static inline void
136 __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
138 writel(reg_val, ccu->base + reg_offset);
141 static inline unsigned long ccu_lock(struct ccu_data *ccu)
143 unsigned long flags;
145 spin_lock_irqsave(&ccu->lock, flags);
147 return flags;
149 static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
151 spin_unlock_irqrestore(&ccu->lock, flags);
155 * Enable/disable write access to CCU protected registers. The
156 * WR_ACCESS register for all CCUs is at offset 0.
158 static inline void __ccu_write_enable(struct ccu_data *ccu)
160 if (ccu->write_enabled) {
161 pr_err("%s: access already enabled for %s\n", __func__,
162 ccu->name);
163 return;
165 ccu->write_enabled = true;
166 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
169 static inline void __ccu_write_disable(struct ccu_data *ccu)
171 if (!ccu->write_enabled) {
172 pr_err("%s: access wasn't enabled for %s\n", __func__,
173 ccu->name);
174 return;
177 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
178 ccu->write_enabled = false;
182 * Poll a register in a CCU's address space, returning when the
183 * specified bit in that register's value is set (or clear). Delay
184 * a microsecond after each read of the register. Returns true if
185 * successful, or false if we gave up trying.
187 * Caller must ensure the CCU lock is held.
189 static inline bool
190 __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
192 unsigned int tries;
193 u32 bit_mask = 1 << bit;
195 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
196 u32 val;
197 bool bit_val;
199 val = __ccu_read(ccu, reg_offset);
200 bit_val = (val & bit_mask) != 0;
201 if (bit_val == want)
202 return true;
203 udelay(1);
205 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
206 ccu->name, reg_offset, bit, want ? "set" : "clear");
208 return false;
211 /* Policy operations */
213 static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
215 struct bcm_policy_ctl *control = &ccu->policy.control;
216 u32 offset;
217 u32 go_bit;
218 u32 mask;
219 bool ret;
221 /* If we don't need to control policy for this CCU, we're done. */
222 if (!policy_ctl_exists(control))
223 return true;
225 offset = control->offset;
226 go_bit = control->go_bit;
228 /* Ensure we're not busy before we start */
229 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
230 if (!ret) {
231 pr_err("%s: ccu %s policy engine wouldn't go idle\n",
232 __func__, ccu->name);
233 return false;
237 * If it's a synchronous request, we'll wait for the voltage
238 * and frequency of the active load to stabilize before
239 * returning. To do this we select the active load by
240 * setting the ATL bit.
242 * An asynchronous request instead ramps the voltage in the
243 * background, and when that process stabilizes, the target
244 * load is copied to the active load and the CCU frequency
245 * is switched. We do this by selecting the target load
246 * (ATL bit clear) and setting the request auto-copy (AC bit
247 * set).
249 * Note, we do NOT read-modify-write this register.
251 mask = (u32)1 << go_bit;
252 if (sync)
253 mask |= 1 << control->atl_bit;
254 else
255 mask |= 1 << control->ac_bit;
256 __ccu_write(ccu, offset, mask);
258 /* Wait for indication that operation is complete. */
259 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
260 if (!ret)
261 pr_err("%s: ccu %s policy engine never started\n",
262 __func__, ccu->name);
264 return ret;
267 static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
269 struct bcm_lvm_en *enable = &ccu->policy.enable;
270 u32 offset;
271 u32 enable_bit;
272 bool ret;
274 /* If we don't need to control policy for this CCU, we're done. */
275 if (!policy_lvm_en_exists(enable))
276 return true;
278 /* Ensure we're not busy before we start */
279 offset = enable->offset;
280 enable_bit = enable->bit;
281 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
282 if (!ret) {
283 pr_err("%s: ccu %s policy engine already stopped\n",
284 __func__, ccu->name);
285 return false;
288 /* Now set the bit to stop the engine (NO read-modify-write) */
289 __ccu_write(ccu, offset, (u32)1 << enable_bit);
291 /* Wait for indication that it has stopped. */
292 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
293 if (!ret)
294 pr_err("%s: ccu %s policy engine never stopped\n",
295 __func__, ccu->name);
297 return ret;
301 * A CCU has four operating conditions ("policies"), and some clocks
302 * can be disabled or enabled based on which policy is currently in
303 * effect. Such clocks have a bit in a "policy mask" register for
304 * each policy indicating whether the clock is enabled for that
305 * policy or not. The bit position for a clock is the same for all
306 * four registers, and the 32-bit registers are at consecutive
307 * addresses.
309 static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
311 u32 offset;
312 u32 mask;
313 int i;
314 bool ret;
316 if (!policy_exists(policy))
317 return true;
320 * We need to stop the CCU policy engine to allow update
321 * of our policy bits.
323 if (!__ccu_policy_engine_stop(ccu)) {
324 pr_err("%s: unable to stop CCU %s policy engine\n",
325 __func__, ccu->name);
326 return false;
330 * For now, if a clock defines its policy bit we just mark
331 * it "enabled" for all four policies.
333 offset = policy->offset;
334 mask = (u32)1 << policy->bit;
335 for (i = 0; i < CCU_POLICY_COUNT; i++) {
336 u32 reg_val;
338 reg_val = __ccu_read(ccu, offset);
339 reg_val |= mask;
340 __ccu_write(ccu, offset, reg_val);
341 offset += sizeof(u32);
344 /* We're done updating; fire up the policy engine again. */
345 ret = __ccu_policy_engine_start(ccu, true);
346 if (!ret)
347 pr_err("%s: unable to restart CCU %s policy engine\n",
348 __func__, ccu->name);
350 return ret;
353 /* Gate operations */
355 /* Determine whether a clock is gated. CCU lock must be held. */
356 static bool
357 __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
359 u32 bit_mask;
360 u32 reg_val;
362 /* If there is no gate we can assume it's enabled. */
363 if (!gate_exists(gate))
364 return true;
366 bit_mask = 1 << gate->status_bit;
367 reg_val = __ccu_read(ccu, gate->offset);
369 return (reg_val & bit_mask) != 0;
372 /* Determine whether a clock is gated. */
373 static bool
374 is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
376 long flags;
377 bool ret;
379 /* Avoid taking the lock if we can */
380 if (!gate_exists(gate))
381 return true;
383 flags = ccu_lock(ccu);
384 ret = __is_clk_gate_enabled(ccu, gate);
385 ccu_unlock(ccu, flags);
387 return ret;
391 * Commit our desired gate state to the hardware.
392 * Returns true if successful, false otherwise.
394 static bool
395 __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
397 u32 reg_val;
398 u32 mask;
399 bool enabled = false;
401 BUG_ON(!gate_exists(gate));
402 if (!gate_is_sw_controllable(gate))
403 return true; /* Nothing we can change */
405 reg_val = __ccu_read(ccu, gate->offset);
407 /* For a hardware/software gate, set which is in control */
408 if (gate_is_hw_controllable(gate)) {
409 mask = (u32)1 << gate->hw_sw_sel_bit;
410 if (gate_is_sw_managed(gate))
411 reg_val |= mask;
412 else
413 reg_val &= ~mask;
417 * If software is in control, enable or disable the gate.
418 * If hardware is, clear the enabled bit for good measure.
419 * If a software controlled gate can't be disabled, we're
420 * required to write a 0 into the enable bit (but the gate
421 * will be enabled).
423 mask = (u32)1 << gate->en_bit;
424 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
425 !gate_is_no_disable(gate))
426 reg_val |= mask;
427 else
428 reg_val &= ~mask;
430 __ccu_write(ccu, gate->offset, reg_val);
432 /* For a hardware controlled gate, we're done */
433 if (!gate_is_sw_managed(gate))
434 return true;
436 /* Otherwise wait for the gate to be in desired state */
437 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
441 * Initialize a gate. Our desired state (hardware/software select,
442 * and if software, its enable state) is committed to hardware
443 * without the usual checks to see if it's already set up that way.
444 * Returns true if successful, false otherwise.
446 static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
448 if (!gate_exists(gate))
449 return true;
450 return __gate_commit(ccu, gate);
454 * Set a gate to enabled or disabled state. Does nothing if the
455 * gate is not currently under software control, or if it is already
456 * in the requested state. Returns true if successful, false
457 * otherwise. CCU lock must be held.
459 static bool
460 __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
462 bool ret;
464 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
465 return true; /* Nothing to do */
467 if (!enable && gate_is_no_disable(gate)) {
468 pr_warn("%s: invalid gate disable request (ignoring)\n",
469 __func__);
470 return true;
473 if (enable == gate_is_enabled(gate))
474 return true; /* No change */
476 gate_flip_enabled(gate);
477 ret = __gate_commit(ccu, gate);
478 if (!ret)
479 gate_flip_enabled(gate); /* Revert the change */
481 return ret;
484 /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
485 static int clk_gate(struct ccu_data *ccu, const char *name,
486 struct bcm_clk_gate *gate, bool enable)
488 unsigned long flags;
489 bool success;
492 * Avoid taking the lock if we can. We quietly ignore
493 * requests to change state that don't make sense.
495 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
496 return 0;
497 if (!enable && gate_is_no_disable(gate))
498 return 0;
500 flags = ccu_lock(ccu);
501 __ccu_write_enable(ccu);
503 success = __clk_gate(ccu, gate, enable);
505 __ccu_write_disable(ccu);
506 ccu_unlock(ccu, flags);
508 if (success)
509 return 0;
511 pr_err("%s: failed to %s gate for %s\n", __func__,
512 enable ? "enable" : "disable", name);
514 return -EIO;
517 /* Hysteresis operations */
520 * If a clock gate requires a turn-off delay it will have
521 * "hysteresis" register bits defined. The first, if set, enables
522 * the delay; and if enabled, the second bit determines whether the
523 * delay is "low" or "high" (1 means high). For now, if it's
524 * defined for a clock, we set it.
526 static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
528 u32 offset;
529 u32 reg_val;
530 u32 mask;
532 if (!hyst_exists(hyst))
533 return true;
535 offset = hyst->offset;
536 mask = (u32)1 << hyst->en_bit;
537 mask |= (u32)1 << hyst->val_bit;
539 reg_val = __ccu_read(ccu, offset);
540 reg_val |= mask;
541 __ccu_write(ccu, offset, reg_val);
543 return true;
546 /* Trigger operations */
549 * Caller must ensure CCU lock is held and access is enabled.
550 * Returns true if successful, false otherwise.
552 static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
554 /* Trigger the clock and wait for it to finish */
555 __ccu_write(ccu, trig->offset, 1 << trig->bit);
557 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
560 /* Divider operations */
562 /* Read a divider value and return the scaled divisor it represents. */
563 static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
565 unsigned long flags;
566 u32 reg_val;
567 u32 reg_div;
569 if (divider_is_fixed(div))
570 return (u64)div->u.fixed;
572 flags = ccu_lock(ccu);
573 reg_val = __ccu_read(ccu, div->u.s.offset);
574 ccu_unlock(ccu, flags);
576 /* Extract the full divider field from the register value */
577 reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
579 /* Return the scaled divisor value it represents */
580 return scaled_div_value(div, reg_div);
584 * Convert a divider's scaled divisor value into its recorded form
585 * and commit it into the hardware divider register.
587 * Returns 0 on success. Returns -EINVAL for invalid arguments.
588 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
590 static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
591 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
593 bool enabled;
594 u32 reg_div;
595 u32 reg_val;
596 int ret = 0;
598 BUG_ON(divider_is_fixed(div));
601 * If we're just initializing the divider, and no initial
602 * state was defined in the device tree, we just find out
603 * what its current value is rather than updating it.
605 if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
606 reg_val = __ccu_read(ccu, div->u.s.offset);
607 reg_div = bitfield_extract(reg_val, div->u.s.shift,
608 div->u.s.width);
609 div->u.s.scaled_div = scaled_div_value(div, reg_div);
611 return 0;
614 /* Convert the scaled divisor to the value we need to record */
615 reg_div = divider(div, div->u.s.scaled_div);
617 /* Clock needs to be enabled before changing the rate */
618 enabled = __is_clk_gate_enabled(ccu, gate);
619 if (!enabled && !__clk_gate(ccu, gate, true)) {
620 ret = -ENXIO;
621 goto out;
624 /* Replace the divider value and record the result */
625 reg_val = __ccu_read(ccu, div->u.s.offset);
626 reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
627 reg_div);
628 __ccu_write(ccu, div->u.s.offset, reg_val);
630 /* If the trigger fails we still want to disable the gate */
631 if (!__clk_trigger(ccu, trig))
632 ret = -EIO;
634 /* Disable the clock again if it was disabled to begin with */
635 if (!enabled && !__clk_gate(ccu, gate, false))
636 ret = ret ? ret : -ENXIO; /* return first error */
637 out:
638 return ret;
642 * Initialize a divider by committing our desired state to hardware
643 * without the usual checks to see if it's already set up that way.
644 * Returns true if successful, false otherwise.
646 static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
647 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
649 if (!divider_exists(div) || divider_is_fixed(div))
650 return true;
651 return !__div_commit(ccu, gate, div, trig);
654 static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
655 struct bcm_clk_div *div, struct bcm_clk_trig *trig,
656 u64 scaled_div)
658 unsigned long flags;
659 u64 previous;
660 int ret;
662 BUG_ON(divider_is_fixed(div));
664 previous = div->u.s.scaled_div;
665 if (previous == scaled_div)
666 return 0; /* No change */
668 div->u.s.scaled_div = scaled_div;
670 flags = ccu_lock(ccu);
671 __ccu_write_enable(ccu);
673 ret = __div_commit(ccu, gate, div, trig);
675 __ccu_write_disable(ccu);
676 ccu_unlock(ccu, flags);
678 if (ret)
679 div->u.s.scaled_div = previous; /* Revert the change */
681 return ret;
685 /* Common clock rate helpers */
688 * Implement the common clock framework recalc_rate method, taking
689 * into account a divider and an optional pre-divider. The
690 * pre-divider register pointer may be NULL.
692 static unsigned long clk_recalc_rate(struct ccu_data *ccu,
693 struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
694 unsigned long parent_rate)
696 u64 scaled_parent_rate;
697 u64 scaled_div;
698 u64 result;
700 if (!divider_exists(div))
701 return parent_rate;
703 if (parent_rate > (unsigned long)LONG_MAX)
704 return 0; /* actually this would be a caller bug */
707 * If there is a pre-divider, divide the scaled parent rate
708 * by the pre-divider value first. In this case--to improve
709 * accuracy--scale the parent rate by *both* the pre-divider
710 * value and the divider before actually computing the
711 * result of the pre-divider.
713 * If there's only one divider, just scale the parent rate.
715 if (pre_div && divider_exists(pre_div)) {
716 u64 scaled_rate;
718 scaled_rate = scale_rate(pre_div, parent_rate);
719 scaled_rate = scale_rate(div, scaled_rate);
720 scaled_div = divider_read_scaled(ccu, pre_div);
721 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
722 scaled_div);
723 } else {
724 scaled_parent_rate = scale_rate(div, parent_rate);
728 * Get the scaled divisor value, and divide the scaled
729 * parent rate by that to determine this clock's resulting
730 * rate.
732 scaled_div = divider_read_scaled(ccu, div);
733 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
735 return (unsigned long)result;
739 * Compute the output rate produced when a given parent rate is fed
740 * into two dividers. The pre-divider can be NULL, and even if it's
741 * non-null it may be nonexistent. It's also OK for the divider to
742 * be nonexistent, and in that case the pre-divider is also ignored.
744 * If scaled_div is non-null, it is used to return the scaled divisor
745 * value used by the (downstream) divider to produce that rate.
747 static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
748 struct bcm_clk_div *pre_div,
749 unsigned long rate, unsigned long parent_rate,
750 u64 *scaled_div)
752 u64 scaled_parent_rate;
753 u64 min_scaled_div;
754 u64 max_scaled_div;
755 u64 best_scaled_div;
756 u64 result;
758 BUG_ON(!divider_exists(div));
759 BUG_ON(!rate);
760 BUG_ON(parent_rate > (u64)LONG_MAX);
763 * If there is a pre-divider, divide the scaled parent rate
764 * by the pre-divider value first. In this case--to improve
765 * accuracy--scale the parent rate by *both* the pre-divider
766 * value and the divider before actually computing the
767 * result of the pre-divider.
769 * If there's only one divider, just scale the parent rate.
771 * For simplicity we treat the pre-divider as fixed (for now).
773 if (divider_exists(pre_div)) {
774 u64 scaled_rate;
775 u64 scaled_pre_div;
777 scaled_rate = scale_rate(pre_div, parent_rate);
778 scaled_rate = scale_rate(div, scaled_rate);
779 scaled_pre_div = divider_read_scaled(ccu, pre_div);
780 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
781 scaled_pre_div);
782 } else {
783 scaled_parent_rate = scale_rate(div, parent_rate);
787 * Compute the best possible divider and ensure it is in
788 * range. A fixed divider can't be changed, so just report
789 * the best we can do.
791 if (!divider_is_fixed(div)) {
792 best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
793 rate);
794 min_scaled_div = scaled_div_min(div);
795 max_scaled_div = scaled_div_max(div);
796 if (best_scaled_div > max_scaled_div)
797 best_scaled_div = max_scaled_div;
798 else if (best_scaled_div < min_scaled_div)
799 best_scaled_div = min_scaled_div;
800 } else {
801 best_scaled_div = divider_read_scaled(ccu, div);
804 /* OK, figure out the resulting rate */
805 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
807 if (scaled_div)
808 *scaled_div = best_scaled_div;
810 return (long)result;
813 /* Common clock parent helpers */
816 * For a given parent selector (register field) value, find the
817 * index into a selector's parent_sel array that contains it.
818 * Returns the index, or BAD_CLK_INDEX if it's not found.
820 static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
822 u8 i;
824 BUG_ON(sel->parent_count > (u32)U8_MAX);
825 for (i = 0; i < sel->parent_count; i++)
826 if (sel->parent_sel[i] == parent_sel)
827 return i;
828 return BAD_CLK_INDEX;
832 * Fetch the current value of the selector, and translate that into
833 * its corresponding index in the parent array we registered with
834 * the clock framework.
836 * Returns parent array index that corresponds with the value found,
837 * or BAD_CLK_INDEX if the found value is out of range.
839 static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
841 unsigned long flags;
842 u32 reg_val;
843 u32 parent_sel;
844 u8 index;
846 /* If there's no selector, there's only one parent */
847 if (!selector_exists(sel))
848 return 0;
850 /* Get the value in the selector register */
851 flags = ccu_lock(ccu);
852 reg_val = __ccu_read(ccu, sel->offset);
853 ccu_unlock(ccu, flags);
855 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
857 /* Look up that selector's parent array index and return it */
858 index = parent_index(sel, parent_sel);
859 if (index == BAD_CLK_INDEX)
860 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
861 __func__, parent_sel, ccu->name, sel->offset);
863 return index;
867 * Commit our desired selector value to the hardware.
869 * Returns 0 on success. Returns -EINVAL for invalid arguments.
870 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
872 static int
873 __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
874 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
876 u32 parent_sel;
877 u32 reg_val;
878 bool enabled;
879 int ret = 0;
881 BUG_ON(!selector_exists(sel));
884 * If we're just initializing the selector, and no initial
885 * state was defined in the device tree, we just find out
886 * what its current value is rather than updating it.
888 if (sel->clk_index == BAD_CLK_INDEX) {
889 u8 index;
891 reg_val = __ccu_read(ccu, sel->offset);
892 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
893 index = parent_index(sel, parent_sel);
894 if (index == BAD_CLK_INDEX)
895 return -EINVAL;
896 sel->clk_index = index;
898 return 0;
901 BUG_ON((u32)sel->clk_index >= sel->parent_count);
902 parent_sel = sel->parent_sel[sel->clk_index];
904 /* Clock needs to be enabled before changing the parent */
905 enabled = __is_clk_gate_enabled(ccu, gate);
906 if (!enabled && !__clk_gate(ccu, gate, true))
907 return -ENXIO;
909 /* Replace the selector value and record the result */
910 reg_val = __ccu_read(ccu, sel->offset);
911 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
912 __ccu_write(ccu, sel->offset, reg_val);
914 /* If the trigger fails we still want to disable the gate */
915 if (!__clk_trigger(ccu, trig))
916 ret = -EIO;
918 /* Disable the clock again if it was disabled to begin with */
919 if (!enabled && !__clk_gate(ccu, gate, false))
920 ret = ret ? ret : -ENXIO; /* return first error */
922 return ret;
926 * Initialize a selector by committing our desired state to hardware
927 * without the usual checks to see if it's already set up that way.
928 * Returns true if successful, false otherwise.
930 static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
931 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
933 if (!selector_exists(sel))
934 return true;
935 return !__sel_commit(ccu, gate, sel, trig);
939 * Write a new value into a selector register to switch to a
940 * different parent clock. Returns 0 on success, or an error code
941 * (from __sel_commit()) otherwise.
943 static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
944 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
945 u8 index)
947 unsigned long flags;
948 u8 previous;
949 int ret;
951 previous = sel->clk_index;
952 if (previous == index)
953 return 0; /* No change */
955 sel->clk_index = index;
957 flags = ccu_lock(ccu);
958 __ccu_write_enable(ccu);
960 ret = __sel_commit(ccu, gate, sel, trig);
962 __ccu_write_disable(ccu);
963 ccu_unlock(ccu, flags);
965 if (ret)
966 sel->clk_index = previous; /* Revert the change */
968 return ret;
971 /* Clock operations */
973 static int kona_peri_clk_enable(struct clk_hw *hw)
975 struct kona_clk *bcm_clk = to_kona_clk(hw);
976 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
978 return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
981 static void kona_peri_clk_disable(struct clk_hw *hw)
983 struct kona_clk *bcm_clk = to_kona_clk(hw);
984 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
986 (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
989 static int kona_peri_clk_is_enabled(struct clk_hw *hw)
991 struct kona_clk *bcm_clk = to_kona_clk(hw);
992 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
994 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
997 static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
998 unsigned long parent_rate)
1000 struct kona_clk *bcm_clk = to_kona_clk(hw);
1001 struct peri_clk_data *data = bcm_clk->u.peri;
1003 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1004 parent_rate);
1007 static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1008 unsigned long *parent_rate)
1010 struct kona_clk *bcm_clk = to_kona_clk(hw);
1011 struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1013 if (!divider_exists(div))
1014 return clk_hw_get_rate(hw);
1016 /* Quietly avoid a zero rate */
1017 return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1018 rate ? rate : 1, *parent_rate, NULL);
1021 static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1022 struct clk_rate_request *req)
1024 struct kona_clk *bcm_clk = to_kona_clk(hw);
1025 struct clk_hw *current_parent;
1026 unsigned long parent_rate;
1027 unsigned long best_delta;
1028 unsigned long best_rate;
1029 u32 parent_count;
1030 long rate;
1031 u32 which;
1034 * If there is no other parent to choose, use the current one.
1035 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1037 WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1038 parent_count = (u32)bcm_clk->init_data.num_parents;
1039 if (parent_count < 2) {
1040 rate = kona_peri_clk_round_rate(hw, req->rate,
1041 &req->best_parent_rate);
1042 if (rate < 0)
1043 return rate;
1045 req->rate = rate;
1046 return 0;
1049 /* Unless we can do better, stick with current parent */
1050 current_parent = clk_hw_get_parent(hw);
1051 parent_rate = clk_hw_get_rate(current_parent);
1052 best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1053 best_delta = abs(best_rate - req->rate);
1055 /* Check whether any other parent clock can produce a better result */
1056 for (which = 0; which < parent_count; which++) {
1057 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1058 unsigned long delta;
1059 unsigned long other_rate;
1061 BUG_ON(!parent);
1062 if (parent == current_parent)
1063 continue;
1065 /* We don't support CLK_SET_RATE_PARENT */
1066 parent_rate = clk_hw_get_rate(parent);
1067 other_rate = kona_peri_clk_round_rate(hw, req->rate,
1068 &parent_rate);
1069 delta = abs(other_rate - req->rate);
1070 if (delta < best_delta) {
1071 best_delta = delta;
1072 best_rate = other_rate;
1073 req->best_parent_hw = parent;
1074 req->best_parent_rate = parent_rate;
1078 req->rate = best_rate;
1079 return 0;
1082 static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1084 struct kona_clk *bcm_clk = to_kona_clk(hw);
1085 struct peri_clk_data *data = bcm_clk->u.peri;
1086 struct bcm_clk_sel *sel = &data->sel;
1087 struct bcm_clk_trig *trig;
1088 int ret;
1090 BUG_ON(index >= sel->parent_count);
1092 /* If there's only one parent we don't require a selector */
1093 if (!selector_exists(sel))
1094 return 0;
1097 * The regular trigger is used by default, but if there's a
1098 * pre-trigger we want to use that instead.
1100 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1101 : &data->trig;
1103 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1104 if (ret == -ENXIO) {
1105 pr_err("%s: gating failure for %s\n", __func__,
1106 bcm_clk->init_data.name);
1107 ret = -EIO; /* Don't proliferate weird errors */
1108 } else if (ret == -EIO) {
1109 pr_err("%s: %strigger failed for %s\n", __func__,
1110 trig == &data->pre_trig ? "pre-" : "",
1111 bcm_clk->init_data.name);
1114 return ret;
1117 static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1119 struct kona_clk *bcm_clk = to_kona_clk(hw);
1120 struct peri_clk_data *data = bcm_clk->u.peri;
1121 u8 index;
1123 index = selector_read_index(bcm_clk->ccu, &data->sel);
1125 /* Not all callers would handle an out-of-range value gracefully */
1126 return index == BAD_CLK_INDEX ? 0 : index;
1129 static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1130 unsigned long parent_rate)
1132 struct kona_clk *bcm_clk = to_kona_clk(hw);
1133 struct peri_clk_data *data = bcm_clk->u.peri;
1134 struct bcm_clk_div *div = &data->div;
1135 u64 scaled_div = 0;
1136 int ret;
1138 if (parent_rate > (unsigned long)LONG_MAX)
1139 return -EINVAL;
1141 if (rate == clk_hw_get_rate(hw))
1142 return 0;
1144 if (!divider_exists(div))
1145 return rate == parent_rate ? 0 : -EINVAL;
1148 * A fixed divider can't be changed. (Nor can a fixed
1149 * pre-divider be, but for now we never actually try to
1150 * change that.) Tolerate a request for a no-op change.
1152 if (divider_is_fixed(&data->div))
1153 return rate == parent_rate ? 0 : -EINVAL;
1156 * Get the scaled divisor value needed to achieve a clock
1157 * rate as close as possible to what was requested, given
1158 * the parent clock rate supplied.
1160 (void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1161 rate ? rate : 1, parent_rate, &scaled_div);
1164 * We aren't updating any pre-divider at this point, so
1165 * we'll use the regular trigger.
1167 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1168 &data->trig, scaled_div);
1169 if (ret == -ENXIO) {
1170 pr_err("%s: gating failure for %s\n", __func__,
1171 bcm_clk->init_data.name);
1172 ret = -EIO; /* Don't proliferate weird errors */
1173 } else if (ret == -EIO) {
1174 pr_err("%s: trigger failed for %s\n", __func__,
1175 bcm_clk->init_data.name);
1178 return ret;
1181 struct clk_ops kona_peri_clk_ops = {
1182 .enable = kona_peri_clk_enable,
1183 .disable = kona_peri_clk_disable,
1184 .is_enabled = kona_peri_clk_is_enabled,
1185 .recalc_rate = kona_peri_clk_recalc_rate,
1186 .determine_rate = kona_peri_clk_determine_rate,
1187 .set_parent = kona_peri_clk_set_parent,
1188 .get_parent = kona_peri_clk_get_parent,
1189 .set_rate = kona_peri_clk_set_rate,
1192 /* Put a peripheral clock into its initial state */
1193 static bool __peri_clk_init(struct kona_clk *bcm_clk)
1195 struct ccu_data *ccu = bcm_clk->ccu;
1196 struct peri_clk_data *peri = bcm_clk->u.peri;
1197 const char *name = bcm_clk->init_data.name;
1198 struct bcm_clk_trig *trig;
1200 BUG_ON(bcm_clk->type != bcm_clk_peri);
1202 if (!policy_init(ccu, &peri->policy)) {
1203 pr_err("%s: error initializing policy for %s\n",
1204 __func__, name);
1205 return false;
1207 if (!gate_init(ccu, &peri->gate)) {
1208 pr_err("%s: error initializing gate for %s\n", __func__, name);
1209 return false;
1211 if (!hyst_init(ccu, &peri->hyst)) {
1212 pr_err("%s: error initializing hyst for %s\n", __func__, name);
1213 return false;
1215 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1216 pr_err("%s: error initializing divider for %s\n", __func__,
1217 name);
1218 return false;
1222 * For the pre-divider and selector, the pre-trigger is used
1223 * if it's present, otherwise we just use the regular trigger.
1225 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1226 : &peri->trig;
1228 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1229 pr_err("%s: error initializing pre-divider for %s\n", __func__,
1230 name);
1231 return false;
1234 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1235 pr_err("%s: error initializing selector for %s\n", __func__,
1236 name);
1237 return false;
1240 return true;
1243 static bool __kona_clk_init(struct kona_clk *bcm_clk)
1245 switch (bcm_clk->type) {
1246 case bcm_clk_peri:
1247 return __peri_clk_init(bcm_clk);
1248 default:
1249 BUG();
1251 return false;
1254 /* Set a CCU and all its clocks into their desired initial state */
1255 bool __init kona_ccu_init(struct ccu_data *ccu)
1257 unsigned long flags;
1258 unsigned int which;
1259 struct kona_clk *kona_clks = ccu->kona_clks;
1260 bool success = true;
1262 flags = ccu_lock(ccu);
1263 __ccu_write_enable(ccu);
1265 for (which = 0; which < ccu->clk_num; which++) {
1266 struct kona_clk *bcm_clk = &kona_clks[which];
1268 if (!bcm_clk->ccu)
1269 continue;
1271 success &= __kona_clk_init(bcm_clk);
1274 __ccu_write_disable(ccu);
1275 ccu_unlock(ccu, flags);
1276 return success;