Linux 4.19.133
[linux/fpc-iii.git] / drivers / crypto / qce / sha.c
blobd8a5db11b7ea1f3b3fec471b2cca1e11a84d6d1e
1 /*
2 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <crypto/internal/hash.h>
18 #include "common.h"
19 #include "core.h"
20 #include "sha.h"
22 /* crypto hw padding constant for first operation */
23 #define SHA_PADDING 64
24 #define SHA_PADDING_MASK (SHA_PADDING - 1)
26 static LIST_HEAD(ahash_algs);
28 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
29 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
32 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
33 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
34 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
37 static void qce_ahash_done(void *data)
39 struct crypto_async_request *async_req = data;
40 struct ahash_request *req = ahash_request_cast(async_req);
41 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
42 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
43 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
44 struct qce_device *qce = tmpl->qce;
45 struct qce_result_dump *result = qce->dma.result_buf;
46 unsigned int digestsize = crypto_ahash_digestsize(ahash);
47 int error;
48 u32 status;
50 error = qce_dma_terminate_all(&qce->dma);
51 if (error)
52 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
54 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
55 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
57 memcpy(rctx->digest, result->auth_iv, digestsize);
58 if (req->result)
59 memcpy(req->result, result->auth_iv, digestsize);
61 rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
62 rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
64 error = qce_check_status(qce, &status);
65 if (error < 0)
66 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
68 req->src = rctx->src_orig;
69 req->nbytes = rctx->nbytes_orig;
70 rctx->last_blk = false;
71 rctx->first_blk = false;
73 qce->async_req_done(tmpl->qce, error);
76 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
78 struct ahash_request *req = ahash_request_cast(async_req);
79 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
80 struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
81 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
82 struct qce_device *qce = tmpl->qce;
83 unsigned long flags = rctx->flags;
84 int ret;
86 if (IS_SHA_HMAC(flags)) {
87 rctx->authkey = ctx->authkey;
88 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
89 } else if (IS_CMAC(flags)) {
90 rctx->authkey = ctx->authkey;
91 rctx->authklen = AES_KEYSIZE_128;
94 rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
95 if (rctx->src_nents < 0) {
96 dev_err(qce->dev, "Invalid numbers of src SG.\n");
97 return rctx->src_nents;
100 ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
101 if (ret < 0)
102 return ret;
104 sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
106 ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
107 if (ret < 0)
108 goto error_unmap_src;
110 ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
111 &rctx->result_sg, 1, qce_ahash_done, async_req);
112 if (ret)
113 goto error_unmap_dst;
115 qce_dma_issue_pending(&qce->dma);
117 ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
118 if (ret)
119 goto error_terminate;
121 return 0;
123 error_terminate:
124 qce_dma_terminate_all(&qce->dma);
125 error_unmap_dst:
126 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
127 error_unmap_src:
128 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
129 return ret;
132 static int qce_ahash_init(struct ahash_request *req)
134 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
135 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
136 const u32 *std_iv = tmpl->std_iv;
138 memset(rctx, 0, sizeof(*rctx));
139 rctx->first_blk = true;
140 rctx->last_blk = false;
141 rctx->flags = tmpl->alg_flags;
142 memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
144 return 0;
147 static int qce_ahash_export(struct ahash_request *req, void *out)
149 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
150 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
151 unsigned long flags = rctx->flags;
152 unsigned int digestsize = crypto_ahash_digestsize(ahash);
153 unsigned int blocksize =
154 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
156 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
157 struct sha1_state *out_state = out;
159 out_state->count = rctx->count;
160 qce_cpu_to_be32p_array((__be32 *)out_state->state,
161 rctx->digest, digestsize);
162 memcpy(out_state->buffer, rctx->buf, blocksize);
163 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
164 struct sha256_state *out_state = out;
166 out_state->count = rctx->count;
167 qce_cpu_to_be32p_array((__be32 *)out_state->state,
168 rctx->digest, digestsize);
169 memcpy(out_state->buf, rctx->buf, blocksize);
170 } else {
171 return -EINVAL;
174 return 0;
177 static int qce_import_common(struct ahash_request *req, u64 in_count,
178 const u32 *state, const u8 *buffer, bool hmac)
180 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
181 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
182 unsigned int digestsize = crypto_ahash_digestsize(ahash);
183 unsigned int blocksize;
184 u64 count = in_count;
186 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
187 rctx->count = in_count;
188 memcpy(rctx->buf, buffer, blocksize);
190 if (in_count <= blocksize) {
191 rctx->first_blk = 1;
192 } else {
193 rctx->first_blk = 0;
195 * For HMAC, there is a hardware padding done when first block
196 * is set. Therefore the byte_count must be incremened by 64
197 * after the first block operation.
199 if (hmac)
200 count += SHA_PADDING;
203 rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
204 rctx->byte_count[1] = (__force __be32)(count >> 32);
205 qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
206 digestsize);
207 rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
209 return 0;
212 static int qce_ahash_import(struct ahash_request *req, const void *in)
214 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
215 unsigned long flags = rctx->flags;
216 bool hmac = IS_SHA_HMAC(flags);
217 int ret = -EINVAL;
219 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
220 const struct sha1_state *state = in;
222 ret = qce_import_common(req, state->count, state->state,
223 state->buffer, hmac);
224 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
225 const struct sha256_state *state = in;
227 ret = qce_import_common(req, state->count, state->state,
228 state->buf, hmac);
231 return ret;
234 static int qce_ahash_update(struct ahash_request *req)
236 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
237 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
238 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
239 struct qce_device *qce = tmpl->qce;
240 struct scatterlist *sg_last, *sg;
241 unsigned int total, len;
242 unsigned int hash_later;
243 unsigned int nbytes;
244 unsigned int blocksize;
246 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247 rctx->count += req->nbytes;
249 /* check for buffer from previous updates and append it */
250 total = req->nbytes + rctx->buflen;
252 if (total <= blocksize) {
253 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
254 0, req->nbytes, 0);
255 rctx->buflen += req->nbytes;
256 return 0;
259 /* save the original req structure fields */
260 rctx->src_orig = req->src;
261 rctx->nbytes_orig = req->nbytes;
264 * if we have data from previous update copy them on buffer. The old
265 * data will be combined with current request bytes.
267 if (rctx->buflen)
268 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
270 /* calculate how many bytes will be hashed later */
271 hash_later = total % blocksize;
272 if (hash_later) {
273 unsigned int src_offset = req->nbytes - hash_later;
274 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
275 hash_later, 0);
278 /* here nbytes is multiple of blocksize */
279 nbytes = total - hash_later;
281 len = rctx->buflen;
282 sg = sg_last = req->src;
284 while (len < nbytes && sg) {
285 if (len + sg_dma_len(sg) > nbytes)
286 break;
287 len += sg_dma_len(sg);
288 sg_last = sg;
289 sg = sg_next(sg);
292 if (!sg_last)
293 return -EINVAL;
295 sg_mark_end(sg_last);
297 if (rctx->buflen) {
298 sg_init_table(rctx->sg, 2);
299 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
300 sg_chain(rctx->sg, 2, req->src);
301 req->src = rctx->sg;
304 req->nbytes = nbytes;
305 rctx->buflen = hash_later;
307 return qce->async_req_enqueue(tmpl->qce, &req->base);
310 static int qce_ahash_final(struct ahash_request *req)
312 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
313 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
314 struct qce_device *qce = tmpl->qce;
316 if (!rctx->buflen)
317 return 0;
319 rctx->last_blk = true;
321 rctx->src_orig = req->src;
322 rctx->nbytes_orig = req->nbytes;
324 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
325 sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
327 req->src = rctx->sg;
328 req->nbytes = rctx->buflen;
330 return qce->async_req_enqueue(tmpl->qce, &req->base);
333 static int qce_ahash_digest(struct ahash_request *req)
335 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
336 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
337 struct qce_device *qce = tmpl->qce;
338 int ret;
340 ret = qce_ahash_init(req);
341 if (ret)
342 return ret;
344 rctx->src_orig = req->src;
345 rctx->nbytes_orig = req->nbytes;
346 rctx->first_blk = true;
347 rctx->last_blk = true;
349 return qce->async_req_enqueue(tmpl->qce, &req->base);
352 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
353 unsigned int keylen)
355 unsigned int digestsize = crypto_ahash_digestsize(tfm);
356 struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
357 struct crypto_wait wait;
358 struct ahash_request *req;
359 struct scatterlist sg;
360 unsigned int blocksize;
361 struct crypto_ahash *ahash_tfm;
362 u8 *buf;
363 int ret;
364 const char *alg_name;
366 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
367 memset(ctx->authkey, 0, sizeof(ctx->authkey));
369 if (keylen <= blocksize) {
370 memcpy(ctx->authkey, key, keylen);
371 return 0;
374 if (digestsize == SHA1_DIGEST_SIZE)
375 alg_name = "sha1-qce";
376 else if (digestsize == SHA256_DIGEST_SIZE)
377 alg_name = "sha256-qce";
378 else
379 return -EINVAL;
381 ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
382 if (IS_ERR(ahash_tfm))
383 return PTR_ERR(ahash_tfm);
385 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
386 if (!req) {
387 ret = -ENOMEM;
388 goto err_free_ahash;
391 crypto_init_wait(&wait);
392 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
393 crypto_req_done, &wait);
394 crypto_ahash_clear_flags(ahash_tfm, ~0);
396 buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
397 if (!buf) {
398 ret = -ENOMEM;
399 goto err_free_req;
402 memcpy(buf, key, keylen);
403 sg_init_one(&sg, buf, keylen);
404 ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
406 ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
407 if (ret)
408 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
410 kfree(buf);
411 err_free_req:
412 ahash_request_free(req);
413 err_free_ahash:
414 crypto_free_ahash(ahash_tfm);
415 return ret;
418 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
420 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
421 struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
423 crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
424 memset(ctx, 0, sizeof(*ctx));
425 return 0;
428 struct qce_ahash_def {
429 unsigned long flags;
430 const char *name;
431 const char *drv_name;
432 unsigned int digestsize;
433 unsigned int blocksize;
434 unsigned int statesize;
435 const u32 *std_iv;
438 static const struct qce_ahash_def ahash_def[] = {
440 .flags = QCE_HASH_SHA1,
441 .name = "sha1",
442 .drv_name = "sha1-qce",
443 .digestsize = SHA1_DIGEST_SIZE,
444 .blocksize = SHA1_BLOCK_SIZE,
445 .statesize = sizeof(struct sha1_state),
446 .std_iv = std_iv_sha1,
449 .flags = QCE_HASH_SHA256,
450 .name = "sha256",
451 .drv_name = "sha256-qce",
452 .digestsize = SHA256_DIGEST_SIZE,
453 .blocksize = SHA256_BLOCK_SIZE,
454 .statesize = sizeof(struct sha256_state),
455 .std_iv = std_iv_sha256,
458 .flags = QCE_HASH_SHA1_HMAC,
459 .name = "hmac(sha1)",
460 .drv_name = "hmac-sha1-qce",
461 .digestsize = SHA1_DIGEST_SIZE,
462 .blocksize = SHA1_BLOCK_SIZE,
463 .statesize = sizeof(struct sha1_state),
464 .std_iv = std_iv_sha1,
467 .flags = QCE_HASH_SHA256_HMAC,
468 .name = "hmac(sha256)",
469 .drv_name = "hmac-sha256-qce",
470 .digestsize = SHA256_DIGEST_SIZE,
471 .blocksize = SHA256_BLOCK_SIZE,
472 .statesize = sizeof(struct sha256_state),
473 .std_iv = std_iv_sha256,
477 static int qce_ahash_register_one(const struct qce_ahash_def *def,
478 struct qce_device *qce)
480 struct qce_alg_template *tmpl;
481 struct ahash_alg *alg;
482 struct crypto_alg *base;
483 int ret;
485 tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
486 if (!tmpl)
487 return -ENOMEM;
489 tmpl->std_iv = def->std_iv;
491 alg = &tmpl->alg.ahash;
492 alg->init = qce_ahash_init;
493 alg->update = qce_ahash_update;
494 alg->final = qce_ahash_final;
495 alg->digest = qce_ahash_digest;
496 alg->export = qce_ahash_export;
497 alg->import = qce_ahash_import;
498 if (IS_SHA_HMAC(def->flags))
499 alg->setkey = qce_ahash_hmac_setkey;
500 alg->halg.digestsize = def->digestsize;
501 alg->halg.statesize = def->statesize;
503 base = &alg->halg.base;
504 base->cra_blocksize = def->blocksize;
505 base->cra_priority = 300;
506 base->cra_flags = CRYPTO_ALG_ASYNC;
507 base->cra_ctxsize = sizeof(struct qce_sha_ctx);
508 base->cra_alignmask = 0;
509 base->cra_module = THIS_MODULE;
510 base->cra_init = qce_ahash_cra_init;
511 INIT_LIST_HEAD(&base->cra_list);
513 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
514 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
515 def->drv_name);
517 INIT_LIST_HEAD(&tmpl->entry);
518 tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
519 tmpl->alg_flags = def->flags;
520 tmpl->qce = qce;
522 ret = crypto_register_ahash(alg);
523 if (ret) {
524 kfree(tmpl);
525 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
526 return ret;
529 list_add_tail(&tmpl->entry, &ahash_algs);
530 dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
531 return 0;
534 static void qce_ahash_unregister(struct qce_device *qce)
536 struct qce_alg_template *tmpl, *n;
538 list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
539 crypto_unregister_ahash(&tmpl->alg.ahash);
540 list_del(&tmpl->entry);
541 kfree(tmpl);
545 static int qce_ahash_register(struct qce_device *qce)
547 int ret, i;
549 for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
550 ret = qce_ahash_register_one(&ahash_def[i], qce);
551 if (ret)
552 goto err;
555 return 0;
556 err:
557 qce_ahash_unregister(qce);
558 return ret;
561 const struct qce_algo_ops ahash_ops = {
562 .type = CRYPTO_ALG_TYPE_AHASH,
563 .register_algs = qce_ahash_register,
564 .unregister_algs = qce_ahash_unregister,
565 .async_req_handle = qce_ahash_async_req_handle,