Linux 4.19.133
[linux/fpc-iii.git] / drivers / dma / ste_dma40.c
blob3d55405c49cacc409c937a0048f31d0de18edd64
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels[] = {
73 DB8500_DMA_MEMCPY_EV_0,
74 DB8500_DMA_MEMCPY_EV_1,
75 DB8500_DMA_MEMCPY_EV_2,
76 DB8500_DMA_MEMCPY_EV_3,
77 DB8500_DMA_MEMCPY_EV_4,
78 DB8500_DMA_MEMCPY_EV_5,
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 .mode = STEDMA40_MODE_PHYSICAL,
84 .dir = DMA_MEM_TO_MEM,
86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 .src_info.psize = STEDMA40_PSIZE_PHY_1,
88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 .mode = STEDMA40_MODE_LOGICAL,
98 .dir = DMA_MEM_TO_MEM,
100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 .src_info.psize = STEDMA40_PSIZE_LOG_1,
102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
117 enum d40_command {
118 D40_DMA_STOP = 0,
119 D40_DMA_RUN = 1,
120 D40_DMA_SUSPEND_REQ = 2,
121 D40_DMA_SUSPENDED = 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
133 enum d40_events {
134 D40_DEACTIVATE_EVENTLINE = 0,
135 D40_ACTIVATE_EVENTLINE = 1,
136 D40_SUSPEND_REQ_EVENTLINE = 2,
137 D40_ROUND_EVENTLINE = 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static __maybe_unused u32 d40_backup_regs[] = {
146 D40_DREG_LCPA,
147 D40_DREG_LCLA,
148 D40_DREG_PRMSE,
149 D40_DREG_PRMSO,
150 D40_DREG_PRMOE,
151 D40_DREG_PRMOO,
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a[] = {
169 D40_DREG_PSEG1,
170 D40_DREG_PSEG2,
171 D40_DREG_PSEG3,
172 D40_DREG_PSEG4,
173 D40_DREG_PCEG1,
174 D40_DREG_PCEG2,
175 D40_DREG_PCEG3,
176 D40_DREG_PCEG4,
177 D40_DREG_RSEG1,
178 D40_DREG_RSEG2,
179 D40_DREG_RSEG3,
180 D40_DREG_RSEG4,
181 D40_DREG_RCEG1,
182 D40_DREG_RCEG2,
183 D40_DREG_RCEG3,
184 D40_DREG_RCEG4,
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b[] = {
190 D40_DREG_CPSEG1,
191 D40_DREG_CPSEG2,
192 D40_DREG_CPSEG3,
193 D40_DREG_CPSEG4,
194 D40_DREG_CPSEG5,
195 D40_DREG_CPCEG1,
196 D40_DREG_CPCEG2,
197 D40_DREG_CPCEG3,
198 D40_DREG_CPCEG4,
199 D40_DREG_CPCEG5,
200 D40_DREG_CRSEG1,
201 D40_DREG_CRSEG2,
202 D40_DREG_CRSEG3,
203 D40_DREG_CRSEG4,
204 D40_DREG_CRSEG5,
205 D40_DREG_CRCEG1,
206 D40_DREG_CRCEG2,
207 D40_DREG_CRCEG3,
208 D40_DREG_CRCEG4,
209 D40_DREG_CRCEG5,
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static __maybe_unused u32 d40_backup_regs_chan[] = {
215 D40_CHAN_REG_SSCFG,
216 D40_CHAN_REG_SSELT,
217 D40_CHAN_REG_SSPTR,
218 D40_CHAN_REG_SSLNK,
219 D40_CHAN_REG_SDCFG,
220 D40_CHAN_REG_SDELT,
221 D40_CHAN_REG_SDPTR,
222 D40_CHAN_REG_SDLNK,
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup {
238 u32 src;
239 u32 clr;
240 bool is_error;
241 int offset;
245 static struct d40_interrupt_lookup il_v4a[] = {
246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
258 static struct d40_interrupt_lookup il_v4b[] = {
259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
279 struct d40_reg_val {
280 unsigned int reg;
281 unsigned int val;
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
288 /* Interrupts on all logical channels */
289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
306 /* Interrupts on all logical channels */
307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool {
336 void *base;
337 int size;
338 dma_addr_t dma_addr;
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
362 struct d40_desc {
363 /* LLI physical */
364 struct d40_phy_lli_bidir lli_phy;
365 /* LLI logical */
366 struct d40_log_lli_bidir lli_log;
368 struct d40_lli_pool lli_pool;
369 int lli_len;
370 int lli_current;
371 int lcla_alloc;
373 struct dma_async_tx_descriptor txd;
374 struct list_head node;
376 bool is_in_client_list;
377 bool cyclic;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
391 struct d40_lcla_pool {
392 void *base;
393 dma_addr_t dma_addr;
394 void *base_unaligned;
395 int pages;
396 spinlock_t lock;
397 struct d40_desc **alloc_map;
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
402 * channels.
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411 * event line number.
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
414 struct d40_phy_res {
415 spinlock_t lock;
416 bool reserved;
417 int num;
418 u32 allocated_src;
419 u32 allocated_dst;
420 bool use_soft_lli;
423 struct d40_base;
426 * struct d40_chan - Struct that describes a channel.
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
431 * and tasklet.
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
454 * This struct can either "be" a logical or a physical channel.
456 struct d40_chan {
457 spinlock_t lock;
458 int log_num;
459 int pending_tx;
460 bool busy;
461 struct d40_phy_res *phy_chan;
462 struct dma_chan chan;
463 struct tasklet_struct tasklet;
464 struct list_head client;
465 struct list_head pending_queue;
466 struct list_head active;
467 struct list_head done;
468 struct list_head queue;
469 struct list_head prepare_queue;
470 struct stedma40_chan_cfg dma_cfg;
471 bool configured;
472 struct d40_base *base;
473 /* Default register configurations */
474 u32 src_def_cfg;
475 u32 dst_def_cfg;
476 struct d40_def_lcsp log_def;
477 struct d40_log_lli_full *lcpa;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr;
480 enum dma_transfer_direction runtime_direction;
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485 * controller
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
500 struct d40_gen_dmac {
501 u32 *backup;
502 u32 backup_size;
503 u32 realtime_en;
504 u32 realtime_clear;
505 u32 high_prio_en;
506 u32 high_prio_clear;
507 u32 interrupt_en;
508 u32 interrupt_clear;
509 struct d40_interrupt_lookup *il;
510 u32 il_size;
511 struct d40_reg_val *init_reg;
512 u32 init_reg_size;
516 * struct d40_base - The big global struct, one for each probe'd instance.
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529 * transfers).
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
534 * num_phy_chans.
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
545 * configuration.
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556 * later
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @regs_interrupt: Scratch space for registers during interrupt.
559 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
561 * DMA controller
563 struct d40_base {
564 spinlock_t interrupt_lock;
565 spinlock_t execmd_lock;
566 struct device *dev;
567 void __iomem *virtbase;
568 u8 rev:4;
569 struct clk *clk;
570 phys_addr_t phy_start;
571 resource_size_t phy_size;
572 int irq;
573 int num_memcpy_chans;
574 int num_phy_chans;
575 int num_log_chans;
576 struct device_dma_parameters dma_parms;
577 struct dma_device dma_both;
578 struct dma_device dma_slave;
579 struct dma_device dma_memcpy;
580 struct d40_chan *phy_chans;
581 struct d40_chan *log_chans;
582 struct d40_chan **lookup_log_chans;
583 struct d40_chan **lookup_phy_chans;
584 struct stedma40_platform_data *plat_data;
585 struct regulator *lcpa_regulator;
586 /* Physical half channels */
587 struct d40_phy_res *phy_res;
588 struct d40_lcla_pool lcla_pool;
589 void *lcpa_base;
590 dma_addr_t phy_lcpa;
591 resource_size_t lcpa_size;
592 struct kmem_cache *desc_slab;
593 u32 reg_val_backup[BACKUP_REGS_SZ];
594 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
595 u32 *reg_val_backup_chan;
596 u32 *regs_interrupt;
597 u16 gcc_pwr_off_mask;
598 struct d40_gen_dmac gen_dmac;
601 static struct device *chan2dev(struct d40_chan *d40c)
603 return &d40c->chan.dev->device;
606 static bool chan_is_physical(struct d40_chan *chan)
608 return chan->log_num == D40_PHY_CHAN;
611 static bool chan_is_logical(struct d40_chan *chan)
613 return !chan_is_physical(chan);
616 static void __iomem *chan_base(struct d40_chan *chan)
618 return chan->base->virtbase + D40_DREG_PCBASE +
619 chan->phy_chan->num * D40_DREG_PCDELTA;
622 #define d40_err(dev, format, arg...) \
623 dev_err(dev, "[%s] " format, __func__, ## arg)
625 #define chan_err(d40c, format, arg...) \
626 d40_err(chan2dev(d40c), format, ## arg)
628 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
629 int lli_len)
631 bool is_log = chan_is_logical(d40c);
632 u32 align;
633 void *base;
635 if (is_log)
636 align = sizeof(struct d40_log_lli);
637 else
638 align = sizeof(struct d40_phy_lli);
640 if (lli_len == 1) {
641 base = d40d->lli_pool.pre_alloc_lli;
642 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
643 d40d->lli_pool.base = NULL;
644 } else {
645 d40d->lli_pool.size = lli_len * 2 * align;
647 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
648 d40d->lli_pool.base = base;
650 if (d40d->lli_pool.base == NULL)
651 return -ENOMEM;
654 if (is_log) {
655 d40d->lli_log.src = PTR_ALIGN(base, align);
656 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
658 d40d->lli_pool.dma_addr = 0;
659 } else {
660 d40d->lli_phy.src = PTR_ALIGN(base, align);
661 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
663 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
664 d40d->lli_phy.src,
665 d40d->lli_pool.size,
666 DMA_TO_DEVICE);
668 if (dma_mapping_error(d40c->base->dev,
669 d40d->lli_pool.dma_addr)) {
670 kfree(d40d->lli_pool.base);
671 d40d->lli_pool.base = NULL;
672 d40d->lli_pool.dma_addr = 0;
673 return -ENOMEM;
677 return 0;
680 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
682 if (d40d->lli_pool.dma_addr)
683 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
684 d40d->lli_pool.size, DMA_TO_DEVICE);
686 kfree(d40d->lli_pool.base);
687 d40d->lli_pool.base = NULL;
688 d40d->lli_pool.size = 0;
689 d40d->lli_log.src = NULL;
690 d40d->lli_log.dst = NULL;
691 d40d->lli_phy.src = NULL;
692 d40d->lli_phy.dst = NULL;
695 static int d40_lcla_alloc_one(struct d40_chan *d40c,
696 struct d40_desc *d40d)
698 unsigned long flags;
699 int i;
700 int ret = -EINVAL;
702 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
705 * Allocate both src and dst at the same time, therefore the half
706 * start on 1 since 0 can't be used since zero is used as end marker.
708 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
709 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
711 if (!d40c->base->lcla_pool.alloc_map[idx]) {
712 d40c->base->lcla_pool.alloc_map[idx] = d40d;
713 d40d->lcla_alloc++;
714 ret = i;
715 break;
719 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
721 return ret;
724 static int d40_lcla_free_all(struct d40_chan *d40c,
725 struct d40_desc *d40d)
727 unsigned long flags;
728 int i;
729 int ret = -EINVAL;
731 if (chan_is_physical(d40c))
732 return 0;
734 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
736 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
737 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
739 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
740 d40c->base->lcla_pool.alloc_map[idx] = NULL;
741 d40d->lcla_alloc--;
742 if (d40d->lcla_alloc == 0) {
743 ret = 0;
744 break;
749 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
751 return ret;
755 static void d40_desc_remove(struct d40_desc *d40d)
757 list_del(&d40d->node);
760 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
762 struct d40_desc *desc = NULL;
764 if (!list_empty(&d40c->client)) {
765 struct d40_desc *d;
766 struct d40_desc *_d;
768 list_for_each_entry_safe(d, _d, &d40c->client, node) {
769 if (async_tx_test_ack(&d->txd)) {
770 d40_desc_remove(d);
771 desc = d;
772 memset(desc, 0, sizeof(*desc));
773 break;
778 if (!desc)
779 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
781 if (desc)
782 INIT_LIST_HEAD(&desc->node);
784 return desc;
787 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
790 d40_pool_lli_free(d40c, d40d);
791 d40_lcla_free_all(d40c, d40d);
792 kmem_cache_free(d40c->base->desc_slab, d40d);
795 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
797 list_add_tail(&desc->node, &d40c->active);
800 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
802 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
803 struct d40_phy_lli *lli_src = desc->lli_phy.src;
804 void __iomem *base = chan_base(chan);
806 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
807 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
808 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
809 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
811 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
812 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
813 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
814 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
817 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
819 list_add_tail(&desc->node, &d40c->done);
822 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
824 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
825 struct d40_log_lli_bidir *lli = &desc->lli_log;
826 int lli_current = desc->lli_current;
827 int lli_len = desc->lli_len;
828 bool cyclic = desc->cyclic;
829 int curr_lcla = -EINVAL;
830 int first_lcla = 0;
831 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
832 bool linkback;
835 * We may have partially running cyclic transfers, in case we did't get
836 * enough LCLA entries.
838 linkback = cyclic && lli_current == 0;
841 * For linkback, we need one LCLA even with only one link, because we
842 * can't link back to the one in LCPA space
844 if (linkback || (lli_len - lli_current > 1)) {
846 * If the channel is expected to use only soft_lli don't
847 * allocate a lcla. This is to avoid a HW issue that exists
848 * in some controller during a peripheral to memory transfer
849 * that uses linked lists.
851 if (!(chan->phy_chan->use_soft_lli &&
852 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
853 curr_lcla = d40_lcla_alloc_one(chan, desc);
855 first_lcla = curr_lcla;
859 * For linkback, we normally load the LCPA in the loop since we need to
860 * link it to the second LCLA and not the first. However, if we
861 * couldn't even get a first LCLA, then we have to run in LCPA and
862 * reload manually.
864 if (!linkback || curr_lcla == -EINVAL) {
865 unsigned int flags = 0;
867 if (curr_lcla == -EINVAL)
868 flags |= LLI_TERM_INT;
870 d40_log_lli_lcpa_write(chan->lcpa,
871 &lli->dst[lli_current],
872 &lli->src[lli_current],
873 curr_lcla,
874 flags);
875 lli_current++;
878 if (curr_lcla < 0)
879 goto set_current;
881 for (; lli_current < lli_len; lli_current++) {
882 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
883 8 * curr_lcla * 2;
884 struct d40_log_lli *lcla = pool->base + lcla_offset;
885 unsigned int flags = 0;
886 int next_lcla;
888 if (lli_current + 1 < lli_len)
889 next_lcla = d40_lcla_alloc_one(chan, desc);
890 else
891 next_lcla = linkback ? first_lcla : -EINVAL;
893 if (cyclic || next_lcla == -EINVAL)
894 flags |= LLI_TERM_INT;
896 if (linkback && curr_lcla == first_lcla) {
897 /* First link goes in both LCPA and LCLA */
898 d40_log_lli_lcpa_write(chan->lcpa,
899 &lli->dst[lli_current],
900 &lli->src[lli_current],
901 next_lcla, flags);
905 * One unused LCLA in the cyclic case if the very first
906 * next_lcla fails...
908 d40_log_lli_lcla_write(lcla,
909 &lli->dst[lli_current],
910 &lli->src[lli_current],
911 next_lcla, flags);
914 * Cache maintenance is not needed if lcla is
915 * mapped in esram
917 if (!use_esram_lcla) {
918 dma_sync_single_range_for_device(chan->base->dev,
919 pool->dma_addr, lcla_offset,
920 2 * sizeof(struct d40_log_lli),
921 DMA_TO_DEVICE);
923 curr_lcla = next_lcla;
925 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
926 lli_current++;
927 break;
930 set_current:
931 desc->lli_current = lli_current;
934 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
936 if (chan_is_physical(d40c)) {
937 d40_phy_lli_load(d40c, d40d);
938 d40d->lli_current = d40d->lli_len;
939 } else
940 d40_log_lli_to_lcxa(d40c, d40d);
943 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
945 return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
948 /* remove desc from current queue and add it to the pending_queue */
949 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
951 d40_desc_remove(desc);
952 desc->is_in_client_list = false;
953 list_add_tail(&desc->node, &d40c->pending_queue);
956 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
958 return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
959 node);
962 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
964 return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
967 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
969 return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
972 static int d40_psize_2_burst_size(bool is_log, int psize)
974 if (is_log) {
975 if (psize == STEDMA40_PSIZE_LOG_1)
976 return 1;
977 } else {
978 if (psize == STEDMA40_PSIZE_PHY_1)
979 return 1;
982 return 2 << psize;
986 * The dma only supports transmitting packages up to
987 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
989 * Calculate the total number of dma elements required to send the entire sg list.
991 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
993 int dmalen;
994 u32 max_w = max(data_width1, data_width2);
995 u32 min_w = min(data_width1, data_width2);
996 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
998 if (seg_max > STEDMA40_MAX_SEG_SIZE)
999 seg_max -= max_w;
1001 if (!IS_ALIGNED(size, max_w))
1002 return -EINVAL;
1004 if (size <= seg_max)
1005 dmalen = 1;
1006 else {
1007 dmalen = size / seg_max;
1008 if (dmalen * seg_max < size)
1009 dmalen++;
1011 return dmalen;
1014 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1015 u32 data_width1, u32 data_width2)
1017 struct scatterlist *sg;
1018 int i;
1019 int len = 0;
1020 int ret;
1022 for_each_sg(sgl, sg, sg_len, i) {
1023 ret = d40_size_2_dmalen(sg_dma_len(sg),
1024 data_width1, data_width2);
1025 if (ret < 0)
1026 return ret;
1027 len += ret;
1029 return len;
1032 static int __d40_execute_command_phy(struct d40_chan *d40c,
1033 enum d40_command command)
1035 u32 status;
1036 int i;
1037 void __iomem *active_reg;
1038 int ret = 0;
1039 unsigned long flags;
1040 u32 wmask;
1042 if (command == D40_DMA_STOP) {
1043 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1044 if (ret)
1045 return ret;
1048 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1050 if (d40c->phy_chan->num % 2 == 0)
1051 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1052 else
1053 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1055 if (command == D40_DMA_SUSPEND_REQ) {
1056 status = (readl(active_reg) &
1057 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1058 D40_CHAN_POS(d40c->phy_chan->num);
1060 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1061 goto unlock;
1064 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1065 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1066 active_reg);
1068 if (command == D40_DMA_SUSPEND_REQ) {
1070 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1071 status = (readl(active_reg) &
1072 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1073 D40_CHAN_POS(d40c->phy_chan->num);
1075 cpu_relax();
1077 * Reduce the number of bus accesses while
1078 * waiting for the DMA to suspend.
1080 udelay(3);
1082 if (status == D40_DMA_STOP ||
1083 status == D40_DMA_SUSPENDED)
1084 break;
1087 if (i == D40_SUSPEND_MAX_IT) {
1088 chan_err(d40c,
1089 "unable to suspend the chl %d (log: %d) status %x\n",
1090 d40c->phy_chan->num, d40c->log_num,
1091 status);
1092 dump_stack();
1093 ret = -EBUSY;
1097 unlock:
1098 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1099 return ret;
1102 static void d40_term_all(struct d40_chan *d40c)
1104 struct d40_desc *d40d;
1105 struct d40_desc *_d;
1107 /* Release completed descriptors */
1108 while ((d40d = d40_first_done(d40c))) {
1109 d40_desc_remove(d40d);
1110 d40_desc_free(d40c, d40d);
1113 /* Release active descriptors */
1114 while ((d40d = d40_first_active_get(d40c))) {
1115 d40_desc_remove(d40d);
1116 d40_desc_free(d40c, d40d);
1119 /* Release queued descriptors waiting for transfer */
1120 while ((d40d = d40_first_queued(d40c))) {
1121 d40_desc_remove(d40d);
1122 d40_desc_free(d40c, d40d);
1125 /* Release pending descriptors */
1126 while ((d40d = d40_first_pending(d40c))) {
1127 d40_desc_remove(d40d);
1128 d40_desc_free(d40c, d40d);
1131 /* Release client owned descriptors */
1132 if (!list_empty(&d40c->client))
1133 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1134 d40_desc_remove(d40d);
1135 d40_desc_free(d40c, d40d);
1138 /* Release descriptors in prepare queue */
1139 if (!list_empty(&d40c->prepare_queue))
1140 list_for_each_entry_safe(d40d, _d,
1141 &d40c->prepare_queue, node) {
1142 d40_desc_remove(d40d);
1143 d40_desc_free(d40c, d40d);
1146 d40c->pending_tx = 0;
1149 static void __d40_config_set_event(struct d40_chan *d40c,
1150 enum d40_events event_type, u32 event,
1151 int reg)
1153 void __iomem *addr = chan_base(d40c) + reg;
1154 int tries;
1155 u32 status;
1157 switch (event_type) {
1159 case D40_DEACTIVATE_EVENTLINE:
1161 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1162 | ~D40_EVENTLINE_MASK(event), addr);
1163 break;
1165 case D40_SUSPEND_REQ_EVENTLINE:
1166 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1167 D40_EVENTLINE_POS(event);
1169 if (status == D40_DEACTIVATE_EVENTLINE ||
1170 status == D40_SUSPEND_REQ_EVENTLINE)
1171 break;
1173 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1174 | ~D40_EVENTLINE_MASK(event), addr);
1176 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1178 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1179 D40_EVENTLINE_POS(event);
1181 cpu_relax();
1183 * Reduce the number of bus accesses while
1184 * waiting for the DMA to suspend.
1186 udelay(3);
1188 if (status == D40_DEACTIVATE_EVENTLINE)
1189 break;
1192 if (tries == D40_SUSPEND_MAX_IT) {
1193 chan_err(d40c,
1194 "unable to stop the event_line chl %d (log: %d)"
1195 "status %x\n", d40c->phy_chan->num,
1196 d40c->log_num, status);
1198 break;
1200 case D40_ACTIVATE_EVENTLINE:
1202 * The hardware sometimes doesn't register the enable when src and dst
1203 * event lines are active on the same logical channel. Retry to ensure
1204 * it does. Usually only one retry is sufficient.
1206 tries = 100;
1207 while (--tries) {
1208 writel((D40_ACTIVATE_EVENTLINE <<
1209 D40_EVENTLINE_POS(event)) |
1210 ~D40_EVENTLINE_MASK(event), addr);
1212 if (readl(addr) & D40_EVENTLINE_MASK(event))
1213 break;
1216 if (tries != 99)
1217 dev_dbg(chan2dev(d40c),
1218 "[%s] workaround enable S%cLNK (%d tries)\n",
1219 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1220 100 - tries);
1222 WARN_ON(!tries);
1223 break;
1225 case D40_ROUND_EVENTLINE:
1226 BUG();
1227 break;
1232 static void d40_config_set_event(struct d40_chan *d40c,
1233 enum d40_events event_type)
1235 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1237 /* Enable event line connected to device (or memcpy) */
1238 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1239 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1240 __d40_config_set_event(d40c, event_type, event,
1241 D40_CHAN_REG_SSLNK);
1243 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1244 __d40_config_set_event(d40c, event_type, event,
1245 D40_CHAN_REG_SDLNK);
1248 static u32 d40_chan_has_events(struct d40_chan *d40c)
1250 void __iomem *chanbase = chan_base(d40c);
1251 u32 val;
1253 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1254 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1256 return val;
1259 static int
1260 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1262 unsigned long flags;
1263 int ret = 0;
1264 u32 active_status;
1265 void __iomem *active_reg;
1267 if (d40c->phy_chan->num % 2 == 0)
1268 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1269 else
1270 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1273 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1275 switch (command) {
1276 case D40_DMA_STOP:
1277 case D40_DMA_SUSPEND_REQ:
1279 active_status = (readl(active_reg) &
1280 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1281 D40_CHAN_POS(d40c->phy_chan->num);
1283 if (active_status == D40_DMA_RUN)
1284 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1285 else
1286 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1288 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1289 ret = __d40_execute_command_phy(d40c, command);
1291 break;
1293 case D40_DMA_RUN:
1295 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1296 ret = __d40_execute_command_phy(d40c, command);
1297 break;
1299 case D40_DMA_SUSPENDED:
1300 BUG();
1301 break;
1304 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1305 return ret;
1308 static int d40_channel_execute_command(struct d40_chan *d40c,
1309 enum d40_command command)
1311 if (chan_is_logical(d40c))
1312 return __d40_execute_command_log(d40c, command);
1313 else
1314 return __d40_execute_command_phy(d40c, command);
1317 static u32 d40_get_prmo(struct d40_chan *d40c)
1319 static const unsigned int phy_map[] = {
1320 [STEDMA40_PCHAN_BASIC_MODE]
1321 = D40_DREG_PRMO_PCHAN_BASIC,
1322 [STEDMA40_PCHAN_MODULO_MODE]
1323 = D40_DREG_PRMO_PCHAN_MODULO,
1324 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1325 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1327 static const unsigned int log_map[] = {
1328 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1329 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1330 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1331 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1332 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1333 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1336 if (chan_is_physical(d40c))
1337 return phy_map[d40c->dma_cfg.mode_opt];
1338 else
1339 return log_map[d40c->dma_cfg.mode_opt];
1342 static void d40_config_write(struct d40_chan *d40c)
1344 u32 addr_base;
1345 u32 var;
1347 /* Odd addresses are even addresses + 4 */
1348 addr_base = (d40c->phy_chan->num % 2) * 4;
1349 /* Setup channel mode to logical or physical */
1350 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1351 D40_CHAN_POS(d40c->phy_chan->num);
1352 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1354 /* Setup operational mode option register */
1355 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1357 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1359 if (chan_is_logical(d40c)) {
1360 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1361 & D40_SREG_ELEM_LOG_LIDX_MASK;
1362 void __iomem *chanbase = chan_base(d40c);
1364 /* Set default config for CFG reg */
1365 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1366 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1368 /* Set LIDX for lcla */
1369 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1370 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1372 /* Clear LNK which will be used by d40_chan_has_events() */
1373 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1374 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1378 static u32 d40_residue(struct d40_chan *d40c)
1380 u32 num_elt;
1382 if (chan_is_logical(d40c))
1383 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1384 >> D40_MEM_LCSP2_ECNT_POS;
1385 else {
1386 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1387 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1388 >> D40_SREG_ELEM_PHY_ECNT_POS;
1391 return num_elt * d40c->dma_cfg.dst_info.data_width;
1394 static bool d40_tx_is_linked(struct d40_chan *d40c)
1396 bool is_link;
1398 if (chan_is_logical(d40c))
1399 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1400 else
1401 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1402 & D40_SREG_LNK_PHYS_LNK_MASK;
1404 return is_link;
1407 static int d40_pause(struct dma_chan *chan)
1409 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1410 int res = 0;
1411 unsigned long flags;
1413 if (d40c->phy_chan == NULL) {
1414 chan_err(d40c, "Channel is not allocated!\n");
1415 return -EINVAL;
1418 if (!d40c->busy)
1419 return 0;
1421 spin_lock_irqsave(&d40c->lock, flags);
1422 pm_runtime_get_sync(d40c->base->dev);
1424 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1426 pm_runtime_mark_last_busy(d40c->base->dev);
1427 pm_runtime_put_autosuspend(d40c->base->dev);
1428 spin_unlock_irqrestore(&d40c->lock, flags);
1429 return res;
1432 static int d40_resume(struct dma_chan *chan)
1434 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1435 int res = 0;
1436 unsigned long flags;
1438 if (d40c->phy_chan == NULL) {
1439 chan_err(d40c, "Channel is not allocated!\n");
1440 return -EINVAL;
1443 if (!d40c->busy)
1444 return 0;
1446 spin_lock_irqsave(&d40c->lock, flags);
1447 pm_runtime_get_sync(d40c->base->dev);
1449 /* If bytes left to transfer or linked tx resume job */
1450 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1451 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1453 pm_runtime_mark_last_busy(d40c->base->dev);
1454 pm_runtime_put_autosuspend(d40c->base->dev);
1455 spin_unlock_irqrestore(&d40c->lock, flags);
1456 return res;
1459 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1461 struct d40_chan *d40c = container_of(tx->chan,
1462 struct d40_chan,
1463 chan);
1464 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1465 unsigned long flags;
1466 dma_cookie_t cookie;
1468 spin_lock_irqsave(&d40c->lock, flags);
1469 cookie = dma_cookie_assign(tx);
1470 d40_desc_queue(d40c, d40d);
1471 spin_unlock_irqrestore(&d40c->lock, flags);
1473 return cookie;
1476 static int d40_start(struct d40_chan *d40c)
1478 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1481 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1483 struct d40_desc *d40d;
1484 int err;
1486 /* Start queued jobs, if any */
1487 d40d = d40_first_queued(d40c);
1489 if (d40d != NULL) {
1490 if (!d40c->busy) {
1491 d40c->busy = true;
1492 pm_runtime_get_sync(d40c->base->dev);
1495 /* Remove from queue */
1496 d40_desc_remove(d40d);
1498 /* Add to active queue */
1499 d40_desc_submit(d40c, d40d);
1501 /* Initiate DMA job */
1502 d40_desc_load(d40c, d40d);
1504 /* Start dma job */
1505 err = d40_start(d40c);
1507 if (err)
1508 return NULL;
1511 return d40d;
1514 /* called from interrupt context */
1515 static void dma_tc_handle(struct d40_chan *d40c)
1517 struct d40_desc *d40d;
1519 /* Get first active entry from list */
1520 d40d = d40_first_active_get(d40c);
1522 if (d40d == NULL)
1523 return;
1525 if (d40d->cyclic) {
1527 * If this was a paritially loaded list, we need to reloaded
1528 * it, and only when the list is completed. We need to check
1529 * for done because the interrupt will hit for every link, and
1530 * not just the last one.
1532 if (d40d->lli_current < d40d->lli_len
1533 && !d40_tx_is_linked(d40c)
1534 && !d40_residue(d40c)) {
1535 d40_lcla_free_all(d40c, d40d);
1536 d40_desc_load(d40c, d40d);
1537 (void) d40_start(d40c);
1539 if (d40d->lli_current == d40d->lli_len)
1540 d40d->lli_current = 0;
1542 } else {
1543 d40_lcla_free_all(d40c, d40d);
1545 if (d40d->lli_current < d40d->lli_len) {
1546 d40_desc_load(d40c, d40d);
1547 /* Start dma job */
1548 (void) d40_start(d40c);
1549 return;
1552 if (d40_queue_start(d40c) == NULL) {
1553 d40c->busy = false;
1555 pm_runtime_mark_last_busy(d40c->base->dev);
1556 pm_runtime_put_autosuspend(d40c->base->dev);
1559 d40_desc_remove(d40d);
1560 d40_desc_done(d40c, d40d);
1563 d40c->pending_tx++;
1564 tasklet_schedule(&d40c->tasklet);
1568 static void dma_tasklet(unsigned long data)
1570 struct d40_chan *d40c = (struct d40_chan *) data;
1571 struct d40_desc *d40d;
1572 unsigned long flags;
1573 bool callback_active;
1574 struct dmaengine_desc_callback cb;
1576 spin_lock_irqsave(&d40c->lock, flags);
1578 /* Get first entry from the done list */
1579 d40d = d40_first_done(d40c);
1580 if (d40d == NULL) {
1581 /* Check if we have reached here for cyclic job */
1582 d40d = d40_first_active_get(d40c);
1583 if (d40d == NULL || !d40d->cyclic)
1584 goto check_pending_tx;
1587 if (!d40d->cyclic)
1588 dma_cookie_complete(&d40d->txd);
1591 * If terminating a channel pending_tx is set to zero.
1592 * This prevents any finished active jobs to return to the client.
1594 if (d40c->pending_tx == 0) {
1595 spin_unlock_irqrestore(&d40c->lock, flags);
1596 return;
1599 /* Callback to client */
1600 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1601 dmaengine_desc_get_callback(&d40d->txd, &cb);
1603 if (!d40d->cyclic) {
1604 if (async_tx_test_ack(&d40d->txd)) {
1605 d40_desc_remove(d40d);
1606 d40_desc_free(d40c, d40d);
1607 } else if (!d40d->is_in_client_list) {
1608 d40_desc_remove(d40d);
1609 d40_lcla_free_all(d40c, d40d);
1610 list_add_tail(&d40d->node, &d40c->client);
1611 d40d->is_in_client_list = true;
1615 d40c->pending_tx--;
1617 if (d40c->pending_tx)
1618 tasklet_schedule(&d40c->tasklet);
1620 spin_unlock_irqrestore(&d40c->lock, flags);
1622 if (callback_active)
1623 dmaengine_desc_callback_invoke(&cb, NULL);
1625 return;
1626 check_pending_tx:
1627 /* Rescue manouver if receiving double interrupts */
1628 if (d40c->pending_tx > 0)
1629 d40c->pending_tx--;
1630 spin_unlock_irqrestore(&d40c->lock, flags);
1633 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1635 int i;
1636 u32 idx;
1637 u32 row;
1638 long chan = -1;
1639 struct d40_chan *d40c;
1640 unsigned long flags;
1641 struct d40_base *base = data;
1642 u32 *regs = base->regs_interrupt;
1643 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1644 u32 il_size = base->gen_dmac.il_size;
1646 spin_lock_irqsave(&base->interrupt_lock, flags);
1648 /* Read interrupt status of both logical and physical channels */
1649 for (i = 0; i < il_size; i++)
1650 regs[i] = readl(base->virtbase + il[i].src);
1652 for (;;) {
1654 chan = find_next_bit((unsigned long *)regs,
1655 BITS_PER_LONG * il_size, chan + 1);
1657 /* No more set bits found? */
1658 if (chan == BITS_PER_LONG * il_size)
1659 break;
1661 row = chan / BITS_PER_LONG;
1662 idx = chan & (BITS_PER_LONG - 1);
1664 if (il[row].offset == D40_PHY_CHAN)
1665 d40c = base->lookup_phy_chans[idx];
1666 else
1667 d40c = base->lookup_log_chans[il[row].offset + idx];
1669 if (!d40c) {
1671 * No error because this can happen if something else
1672 * in the system is using the channel.
1674 continue;
1677 /* ACK interrupt */
1678 writel(BIT(idx), base->virtbase + il[row].clr);
1680 spin_lock(&d40c->lock);
1682 if (!il[row].is_error)
1683 dma_tc_handle(d40c);
1684 else
1685 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1686 chan, il[row].offset, idx);
1688 spin_unlock(&d40c->lock);
1691 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1693 return IRQ_HANDLED;
1696 static int d40_validate_conf(struct d40_chan *d40c,
1697 struct stedma40_chan_cfg *conf)
1699 int res = 0;
1700 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1702 if (!conf->dir) {
1703 chan_err(d40c, "Invalid direction.\n");
1704 res = -EINVAL;
1707 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1708 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1709 (conf->dev_type < 0)) {
1710 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1711 res = -EINVAL;
1714 if (conf->dir == DMA_DEV_TO_DEV) {
1716 * DMAC HW supports it. Will be added to this driver,
1717 * in case any dma client requires it.
1719 chan_err(d40c, "periph to periph not supported\n");
1720 res = -EINVAL;
1723 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1724 conf->src_info.data_width !=
1725 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1726 conf->dst_info.data_width) {
1728 * The DMAC hardware only supports
1729 * src (burst x width) == dst (burst x width)
1732 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1733 res = -EINVAL;
1736 return res;
1739 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1740 bool is_src, int log_event_line, bool is_log,
1741 bool *first_user)
1743 unsigned long flags;
1744 spin_lock_irqsave(&phy->lock, flags);
1746 *first_user = ((phy->allocated_src | phy->allocated_dst)
1747 == D40_ALLOC_FREE);
1749 if (!is_log) {
1750 /* Physical interrupts are masked per physical full channel */
1751 if (phy->allocated_src == D40_ALLOC_FREE &&
1752 phy->allocated_dst == D40_ALLOC_FREE) {
1753 phy->allocated_dst = D40_ALLOC_PHY;
1754 phy->allocated_src = D40_ALLOC_PHY;
1755 goto found_unlock;
1756 } else
1757 goto not_found_unlock;
1760 /* Logical channel */
1761 if (is_src) {
1762 if (phy->allocated_src == D40_ALLOC_PHY)
1763 goto not_found_unlock;
1765 if (phy->allocated_src == D40_ALLOC_FREE)
1766 phy->allocated_src = D40_ALLOC_LOG_FREE;
1768 if (!(phy->allocated_src & BIT(log_event_line))) {
1769 phy->allocated_src |= BIT(log_event_line);
1770 goto found_unlock;
1771 } else
1772 goto not_found_unlock;
1773 } else {
1774 if (phy->allocated_dst == D40_ALLOC_PHY)
1775 goto not_found_unlock;
1777 if (phy->allocated_dst == D40_ALLOC_FREE)
1778 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1780 if (!(phy->allocated_dst & BIT(log_event_line))) {
1781 phy->allocated_dst |= BIT(log_event_line);
1782 goto found_unlock;
1785 not_found_unlock:
1786 spin_unlock_irqrestore(&phy->lock, flags);
1787 return false;
1788 found_unlock:
1789 spin_unlock_irqrestore(&phy->lock, flags);
1790 return true;
1793 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1794 int log_event_line)
1796 unsigned long flags;
1797 bool is_free = false;
1799 spin_lock_irqsave(&phy->lock, flags);
1800 if (!log_event_line) {
1801 phy->allocated_dst = D40_ALLOC_FREE;
1802 phy->allocated_src = D40_ALLOC_FREE;
1803 is_free = true;
1804 goto unlock;
1807 /* Logical channel */
1808 if (is_src) {
1809 phy->allocated_src &= ~BIT(log_event_line);
1810 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1811 phy->allocated_src = D40_ALLOC_FREE;
1812 } else {
1813 phy->allocated_dst &= ~BIT(log_event_line);
1814 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1815 phy->allocated_dst = D40_ALLOC_FREE;
1818 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1819 D40_ALLOC_FREE);
1820 unlock:
1821 spin_unlock_irqrestore(&phy->lock, flags);
1823 return is_free;
1826 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1828 int dev_type = d40c->dma_cfg.dev_type;
1829 int event_group;
1830 int event_line;
1831 struct d40_phy_res *phys;
1832 int i;
1833 int j;
1834 int log_num;
1835 int num_phy_chans;
1836 bool is_src;
1837 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1839 phys = d40c->base->phy_res;
1840 num_phy_chans = d40c->base->num_phy_chans;
1842 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1843 log_num = 2 * dev_type;
1844 is_src = true;
1845 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1846 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1847 /* dst event lines are used for logical memcpy */
1848 log_num = 2 * dev_type + 1;
1849 is_src = false;
1850 } else
1851 return -EINVAL;
1853 event_group = D40_TYPE_TO_GROUP(dev_type);
1854 event_line = D40_TYPE_TO_EVENT(dev_type);
1856 if (!is_log) {
1857 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1858 /* Find physical half channel */
1859 if (d40c->dma_cfg.use_fixed_channel) {
1860 i = d40c->dma_cfg.phy_channel;
1861 if (d40_alloc_mask_set(&phys[i], is_src,
1862 0, is_log,
1863 first_phy_user))
1864 goto found_phy;
1865 } else {
1866 for (i = 0; i < num_phy_chans; i++) {
1867 if (d40_alloc_mask_set(&phys[i], is_src,
1868 0, is_log,
1869 first_phy_user))
1870 goto found_phy;
1873 } else
1874 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1875 int phy_num = j + event_group * 2;
1876 for (i = phy_num; i < phy_num + 2; i++) {
1877 if (d40_alloc_mask_set(&phys[i],
1878 is_src,
1880 is_log,
1881 first_phy_user))
1882 goto found_phy;
1885 return -EINVAL;
1886 found_phy:
1887 d40c->phy_chan = &phys[i];
1888 d40c->log_num = D40_PHY_CHAN;
1889 goto out;
1891 if (dev_type == -1)
1892 return -EINVAL;
1894 /* Find logical channel */
1895 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1896 int phy_num = j + event_group * 2;
1898 if (d40c->dma_cfg.use_fixed_channel) {
1899 i = d40c->dma_cfg.phy_channel;
1901 if ((i != phy_num) && (i != phy_num + 1)) {
1902 dev_err(chan2dev(d40c),
1903 "invalid fixed phy channel %d\n", i);
1904 return -EINVAL;
1907 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1908 is_log, first_phy_user))
1909 goto found_log;
1911 dev_err(chan2dev(d40c),
1912 "could not allocate fixed phy channel %d\n", i);
1913 return -EINVAL;
1917 * Spread logical channels across all available physical rather
1918 * than pack every logical channel at the first available phy
1919 * channels.
1921 if (is_src) {
1922 for (i = phy_num; i < phy_num + 2; i++) {
1923 if (d40_alloc_mask_set(&phys[i], is_src,
1924 event_line, is_log,
1925 first_phy_user))
1926 goto found_log;
1928 } else {
1929 for (i = phy_num + 1; i >= phy_num; i--) {
1930 if (d40_alloc_mask_set(&phys[i], is_src,
1931 event_line, is_log,
1932 first_phy_user))
1933 goto found_log;
1937 return -EINVAL;
1939 found_log:
1940 d40c->phy_chan = &phys[i];
1941 d40c->log_num = log_num;
1942 out:
1944 if (is_log)
1945 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1946 else
1947 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1949 return 0;
1953 static int d40_config_memcpy(struct d40_chan *d40c)
1955 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1957 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1958 d40c->dma_cfg = dma40_memcpy_conf_log;
1959 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1961 d40_log_cfg(&d40c->dma_cfg,
1962 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1964 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1965 dma_has_cap(DMA_SLAVE, cap)) {
1966 d40c->dma_cfg = dma40_memcpy_conf_phy;
1968 /* Generate interrrupt at end of transfer or relink. */
1969 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1971 /* Generate interrupt on error. */
1972 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1973 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1975 } else {
1976 chan_err(d40c, "No memcpy\n");
1977 return -EINVAL;
1980 return 0;
1983 static int d40_free_dma(struct d40_chan *d40c)
1986 int res = 0;
1987 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1988 struct d40_phy_res *phy = d40c->phy_chan;
1989 bool is_src;
1991 /* Terminate all queued and active transfers */
1992 d40_term_all(d40c);
1994 if (phy == NULL) {
1995 chan_err(d40c, "phy == null\n");
1996 return -EINVAL;
1999 if (phy->allocated_src == D40_ALLOC_FREE &&
2000 phy->allocated_dst == D40_ALLOC_FREE) {
2001 chan_err(d40c, "channel already free\n");
2002 return -EINVAL;
2005 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2006 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2007 is_src = false;
2008 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2009 is_src = true;
2010 else {
2011 chan_err(d40c, "Unknown direction\n");
2012 return -EINVAL;
2015 pm_runtime_get_sync(d40c->base->dev);
2016 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2017 if (res) {
2018 chan_err(d40c, "stop failed\n");
2019 goto mark_last_busy;
2022 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2024 if (chan_is_logical(d40c))
2025 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2026 else
2027 d40c->base->lookup_phy_chans[phy->num] = NULL;
2029 if (d40c->busy) {
2030 pm_runtime_mark_last_busy(d40c->base->dev);
2031 pm_runtime_put_autosuspend(d40c->base->dev);
2034 d40c->busy = false;
2035 d40c->phy_chan = NULL;
2036 d40c->configured = false;
2037 mark_last_busy:
2038 pm_runtime_mark_last_busy(d40c->base->dev);
2039 pm_runtime_put_autosuspend(d40c->base->dev);
2040 return res;
2043 static bool d40_is_paused(struct d40_chan *d40c)
2045 void __iomem *chanbase = chan_base(d40c);
2046 bool is_paused = false;
2047 unsigned long flags;
2048 void __iomem *active_reg;
2049 u32 status;
2050 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2052 spin_lock_irqsave(&d40c->lock, flags);
2054 if (chan_is_physical(d40c)) {
2055 if (d40c->phy_chan->num % 2 == 0)
2056 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2057 else
2058 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2060 status = (readl(active_reg) &
2061 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2062 D40_CHAN_POS(d40c->phy_chan->num);
2063 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2064 is_paused = true;
2065 goto unlock;
2068 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2069 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2070 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2071 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2072 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2073 } else {
2074 chan_err(d40c, "Unknown direction\n");
2075 goto unlock;
2078 status = (status & D40_EVENTLINE_MASK(event)) >>
2079 D40_EVENTLINE_POS(event);
2081 if (status != D40_DMA_RUN)
2082 is_paused = true;
2083 unlock:
2084 spin_unlock_irqrestore(&d40c->lock, flags);
2085 return is_paused;
2089 static u32 stedma40_residue(struct dma_chan *chan)
2091 struct d40_chan *d40c =
2092 container_of(chan, struct d40_chan, chan);
2093 u32 bytes_left;
2094 unsigned long flags;
2096 spin_lock_irqsave(&d40c->lock, flags);
2097 bytes_left = d40_residue(d40c);
2098 spin_unlock_irqrestore(&d40c->lock, flags);
2100 return bytes_left;
2103 static int
2104 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2105 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2106 unsigned int sg_len, dma_addr_t src_dev_addr,
2107 dma_addr_t dst_dev_addr)
2109 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2110 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2111 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2112 int ret;
2114 ret = d40_log_sg_to_lli(sg_src, sg_len,
2115 src_dev_addr,
2116 desc->lli_log.src,
2117 chan->log_def.lcsp1,
2118 src_info->data_width,
2119 dst_info->data_width);
2121 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2122 dst_dev_addr,
2123 desc->lli_log.dst,
2124 chan->log_def.lcsp3,
2125 dst_info->data_width,
2126 src_info->data_width);
2128 return ret < 0 ? ret : 0;
2131 static int
2132 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2133 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2134 unsigned int sg_len, dma_addr_t src_dev_addr,
2135 dma_addr_t dst_dev_addr)
2137 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2138 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2139 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2140 unsigned long flags = 0;
2141 int ret;
2143 if (desc->cyclic)
2144 flags |= LLI_CYCLIC | LLI_TERM_INT;
2146 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2147 desc->lli_phy.src,
2148 virt_to_phys(desc->lli_phy.src),
2149 chan->src_def_cfg,
2150 src_info, dst_info, flags);
2152 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2153 desc->lli_phy.dst,
2154 virt_to_phys(desc->lli_phy.dst),
2155 chan->dst_def_cfg,
2156 dst_info, src_info, flags);
2158 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2159 desc->lli_pool.size, DMA_TO_DEVICE);
2161 return ret < 0 ? ret : 0;
2164 static struct d40_desc *
2165 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2166 unsigned int sg_len, unsigned long dma_flags)
2168 struct stedma40_chan_cfg *cfg;
2169 struct d40_desc *desc;
2170 int ret;
2172 desc = d40_desc_get(chan);
2173 if (!desc)
2174 return NULL;
2176 cfg = &chan->dma_cfg;
2177 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2178 cfg->dst_info.data_width);
2179 if (desc->lli_len < 0) {
2180 chan_err(chan, "Unaligned size\n");
2181 goto free_desc;
2184 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2185 if (ret < 0) {
2186 chan_err(chan, "Could not allocate lli\n");
2187 goto free_desc;
2190 desc->lli_current = 0;
2191 desc->txd.flags = dma_flags;
2192 desc->txd.tx_submit = d40_tx_submit;
2194 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2196 return desc;
2197 free_desc:
2198 d40_desc_free(chan, desc);
2199 return NULL;
2202 static struct dma_async_tx_descriptor *
2203 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2204 struct scatterlist *sg_dst, unsigned int sg_len,
2205 enum dma_transfer_direction direction, unsigned long dma_flags)
2207 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2208 dma_addr_t src_dev_addr;
2209 dma_addr_t dst_dev_addr;
2210 struct d40_desc *desc;
2211 unsigned long flags;
2212 int ret;
2214 if (!chan->phy_chan) {
2215 chan_err(chan, "Cannot prepare unallocated channel\n");
2216 return NULL;
2219 spin_lock_irqsave(&chan->lock, flags);
2221 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2222 if (desc == NULL)
2223 goto unlock;
2225 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2226 desc->cyclic = true;
2228 src_dev_addr = 0;
2229 dst_dev_addr = 0;
2230 if (direction == DMA_DEV_TO_MEM)
2231 src_dev_addr = chan->runtime_addr;
2232 else if (direction == DMA_MEM_TO_DEV)
2233 dst_dev_addr = chan->runtime_addr;
2235 if (chan_is_logical(chan))
2236 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2237 sg_len, src_dev_addr, dst_dev_addr);
2238 else
2239 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2240 sg_len, src_dev_addr, dst_dev_addr);
2242 if (ret) {
2243 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2244 chan_is_logical(chan) ? "log" : "phy", ret);
2245 goto free_desc;
2249 * add descriptor to the prepare queue in order to be able
2250 * to free them later in terminate_all
2252 list_add_tail(&desc->node, &chan->prepare_queue);
2254 spin_unlock_irqrestore(&chan->lock, flags);
2256 return &desc->txd;
2257 free_desc:
2258 d40_desc_free(chan, desc);
2259 unlock:
2260 spin_unlock_irqrestore(&chan->lock, flags);
2261 return NULL;
2264 bool stedma40_filter(struct dma_chan *chan, void *data)
2266 struct stedma40_chan_cfg *info = data;
2267 struct d40_chan *d40c =
2268 container_of(chan, struct d40_chan, chan);
2269 int err;
2271 if (data) {
2272 err = d40_validate_conf(d40c, info);
2273 if (!err)
2274 d40c->dma_cfg = *info;
2275 } else
2276 err = d40_config_memcpy(d40c);
2278 if (!err)
2279 d40c->configured = true;
2281 return err == 0;
2283 EXPORT_SYMBOL(stedma40_filter);
2285 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2287 bool realtime = d40c->dma_cfg.realtime;
2288 bool highprio = d40c->dma_cfg.high_priority;
2289 u32 rtreg;
2290 u32 event = D40_TYPE_TO_EVENT(dev_type);
2291 u32 group = D40_TYPE_TO_GROUP(dev_type);
2292 u32 bit = BIT(event);
2293 u32 prioreg;
2294 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2296 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2298 * Due to a hardware bug, in some cases a logical channel triggered by
2299 * a high priority destination event line can generate extra packet
2300 * transactions.
2302 * The workaround is to not set the high priority level for the
2303 * destination event lines that trigger logical channels.
2305 if (!src && chan_is_logical(d40c))
2306 highprio = false;
2308 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2310 /* Destination event lines are stored in the upper halfword */
2311 if (!src)
2312 bit <<= 16;
2314 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2315 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2318 static void d40_set_prio_realtime(struct d40_chan *d40c)
2320 if (d40c->base->rev < 3)
2321 return;
2323 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2324 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2325 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2327 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2328 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2329 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2332 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2333 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2334 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2335 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2336 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2338 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2339 struct of_dma *ofdma)
2341 struct stedma40_chan_cfg cfg;
2342 dma_cap_mask_t cap;
2343 u32 flags;
2345 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2347 dma_cap_zero(cap);
2348 dma_cap_set(DMA_SLAVE, cap);
2350 cfg.dev_type = dma_spec->args[0];
2351 flags = dma_spec->args[2];
2353 switch (D40_DT_FLAGS_MODE(flags)) {
2354 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2355 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2358 switch (D40_DT_FLAGS_DIR(flags)) {
2359 case 0:
2360 cfg.dir = DMA_MEM_TO_DEV;
2361 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2362 break;
2363 case 1:
2364 cfg.dir = DMA_DEV_TO_MEM;
2365 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2366 break;
2369 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2370 cfg.phy_channel = dma_spec->args[1];
2371 cfg.use_fixed_channel = true;
2374 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2375 cfg.high_priority = true;
2377 return dma_request_channel(cap, stedma40_filter, &cfg);
2380 /* DMA ENGINE functions */
2381 static int d40_alloc_chan_resources(struct dma_chan *chan)
2383 int err;
2384 unsigned long flags;
2385 struct d40_chan *d40c =
2386 container_of(chan, struct d40_chan, chan);
2387 bool is_free_phy;
2388 spin_lock_irqsave(&d40c->lock, flags);
2390 dma_cookie_init(chan);
2392 /* If no dma configuration is set use default configuration (memcpy) */
2393 if (!d40c->configured) {
2394 err = d40_config_memcpy(d40c);
2395 if (err) {
2396 chan_err(d40c, "Failed to configure memcpy channel\n");
2397 goto mark_last_busy;
2401 err = d40_allocate_channel(d40c, &is_free_phy);
2402 if (err) {
2403 chan_err(d40c, "Failed to allocate channel\n");
2404 d40c->configured = false;
2405 goto mark_last_busy;
2408 pm_runtime_get_sync(d40c->base->dev);
2410 d40_set_prio_realtime(d40c);
2412 if (chan_is_logical(d40c)) {
2413 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2414 d40c->lcpa = d40c->base->lcpa_base +
2415 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2416 else
2417 d40c->lcpa = d40c->base->lcpa_base +
2418 d40c->dma_cfg.dev_type *
2419 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2421 /* Unmask the Global Interrupt Mask. */
2422 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2423 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2426 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2427 chan_is_logical(d40c) ? "logical" : "physical",
2428 d40c->phy_chan->num,
2429 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2433 * Only write channel configuration to the DMA if the physical
2434 * resource is free. In case of multiple logical channels
2435 * on the same physical resource, only the first write is necessary.
2437 if (is_free_phy)
2438 d40_config_write(d40c);
2439 mark_last_busy:
2440 pm_runtime_mark_last_busy(d40c->base->dev);
2441 pm_runtime_put_autosuspend(d40c->base->dev);
2442 spin_unlock_irqrestore(&d40c->lock, flags);
2443 return err;
2446 static void d40_free_chan_resources(struct dma_chan *chan)
2448 struct d40_chan *d40c =
2449 container_of(chan, struct d40_chan, chan);
2450 int err;
2451 unsigned long flags;
2453 if (d40c->phy_chan == NULL) {
2454 chan_err(d40c, "Cannot free unallocated channel\n");
2455 return;
2458 spin_lock_irqsave(&d40c->lock, flags);
2460 err = d40_free_dma(d40c);
2462 if (err)
2463 chan_err(d40c, "Failed to free channel\n");
2464 spin_unlock_irqrestore(&d40c->lock, flags);
2467 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2468 dma_addr_t dst,
2469 dma_addr_t src,
2470 size_t size,
2471 unsigned long dma_flags)
2473 struct scatterlist dst_sg;
2474 struct scatterlist src_sg;
2476 sg_init_table(&dst_sg, 1);
2477 sg_init_table(&src_sg, 1);
2479 sg_dma_address(&dst_sg) = dst;
2480 sg_dma_address(&src_sg) = src;
2482 sg_dma_len(&dst_sg) = size;
2483 sg_dma_len(&src_sg) = size;
2485 return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2486 DMA_MEM_TO_MEM, dma_flags);
2489 static struct dma_async_tx_descriptor *
2490 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2491 unsigned int sg_len, enum dma_transfer_direction direction,
2492 unsigned long dma_flags, void *context)
2494 if (!is_slave_direction(direction))
2495 return NULL;
2497 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2500 static struct dma_async_tx_descriptor *
2501 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2502 size_t buf_len, size_t period_len,
2503 enum dma_transfer_direction direction, unsigned long flags)
2505 unsigned int periods = buf_len / period_len;
2506 struct dma_async_tx_descriptor *txd;
2507 struct scatterlist *sg;
2508 int i;
2510 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2511 if (!sg)
2512 return NULL;
2514 for (i = 0; i < periods; i++) {
2515 sg_dma_address(&sg[i]) = dma_addr;
2516 sg_dma_len(&sg[i]) = period_len;
2517 dma_addr += period_len;
2520 sg_chain(sg, periods + 1, sg);
2522 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2523 DMA_PREP_INTERRUPT);
2525 kfree(sg);
2527 return txd;
2530 static enum dma_status d40_tx_status(struct dma_chan *chan,
2531 dma_cookie_t cookie,
2532 struct dma_tx_state *txstate)
2534 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2535 enum dma_status ret;
2537 if (d40c->phy_chan == NULL) {
2538 chan_err(d40c, "Cannot read status of unallocated channel\n");
2539 return -EINVAL;
2542 ret = dma_cookie_status(chan, cookie, txstate);
2543 if (ret != DMA_COMPLETE && txstate)
2544 dma_set_residue(txstate, stedma40_residue(chan));
2546 if (d40_is_paused(d40c))
2547 ret = DMA_PAUSED;
2549 return ret;
2552 static void d40_issue_pending(struct dma_chan *chan)
2554 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2555 unsigned long flags;
2557 if (d40c->phy_chan == NULL) {
2558 chan_err(d40c, "Channel is not allocated!\n");
2559 return;
2562 spin_lock_irqsave(&d40c->lock, flags);
2564 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2566 /* Busy means that queued jobs are already being processed */
2567 if (!d40c->busy)
2568 (void) d40_queue_start(d40c);
2570 spin_unlock_irqrestore(&d40c->lock, flags);
2573 static int d40_terminate_all(struct dma_chan *chan)
2575 unsigned long flags;
2576 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2577 int ret;
2579 if (d40c->phy_chan == NULL) {
2580 chan_err(d40c, "Channel is not allocated!\n");
2581 return -EINVAL;
2584 spin_lock_irqsave(&d40c->lock, flags);
2586 pm_runtime_get_sync(d40c->base->dev);
2587 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2588 if (ret)
2589 chan_err(d40c, "Failed to stop channel\n");
2591 d40_term_all(d40c);
2592 pm_runtime_mark_last_busy(d40c->base->dev);
2593 pm_runtime_put_autosuspend(d40c->base->dev);
2594 if (d40c->busy) {
2595 pm_runtime_mark_last_busy(d40c->base->dev);
2596 pm_runtime_put_autosuspend(d40c->base->dev);
2598 d40c->busy = false;
2600 spin_unlock_irqrestore(&d40c->lock, flags);
2601 return 0;
2604 static int
2605 dma40_config_to_halfchannel(struct d40_chan *d40c,
2606 struct stedma40_half_channel_info *info,
2607 u32 maxburst)
2609 int psize;
2611 if (chan_is_logical(d40c)) {
2612 if (maxburst >= 16)
2613 psize = STEDMA40_PSIZE_LOG_16;
2614 else if (maxburst >= 8)
2615 psize = STEDMA40_PSIZE_LOG_8;
2616 else if (maxburst >= 4)
2617 psize = STEDMA40_PSIZE_LOG_4;
2618 else
2619 psize = STEDMA40_PSIZE_LOG_1;
2620 } else {
2621 if (maxburst >= 16)
2622 psize = STEDMA40_PSIZE_PHY_16;
2623 else if (maxburst >= 8)
2624 psize = STEDMA40_PSIZE_PHY_8;
2625 else if (maxburst >= 4)
2626 psize = STEDMA40_PSIZE_PHY_4;
2627 else
2628 psize = STEDMA40_PSIZE_PHY_1;
2631 info->psize = psize;
2632 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2634 return 0;
2637 /* Runtime reconfiguration extension */
2638 static int d40_set_runtime_config(struct dma_chan *chan,
2639 struct dma_slave_config *config)
2641 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2642 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2643 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2644 dma_addr_t config_addr;
2645 u32 src_maxburst, dst_maxburst;
2646 int ret;
2648 if (d40c->phy_chan == NULL) {
2649 chan_err(d40c, "Channel is not allocated!\n");
2650 return -EINVAL;
2653 src_addr_width = config->src_addr_width;
2654 src_maxburst = config->src_maxburst;
2655 dst_addr_width = config->dst_addr_width;
2656 dst_maxburst = config->dst_maxburst;
2658 if (config->direction == DMA_DEV_TO_MEM) {
2659 config_addr = config->src_addr;
2661 if (cfg->dir != DMA_DEV_TO_MEM)
2662 dev_dbg(d40c->base->dev,
2663 "channel was not configured for peripheral "
2664 "to memory transfer (%d) overriding\n",
2665 cfg->dir);
2666 cfg->dir = DMA_DEV_TO_MEM;
2668 /* Configure the memory side */
2669 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2670 dst_addr_width = src_addr_width;
2671 if (dst_maxburst == 0)
2672 dst_maxburst = src_maxburst;
2674 } else if (config->direction == DMA_MEM_TO_DEV) {
2675 config_addr = config->dst_addr;
2677 if (cfg->dir != DMA_MEM_TO_DEV)
2678 dev_dbg(d40c->base->dev,
2679 "channel was not configured for memory "
2680 "to peripheral transfer (%d) overriding\n",
2681 cfg->dir);
2682 cfg->dir = DMA_MEM_TO_DEV;
2684 /* Configure the memory side */
2685 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2686 src_addr_width = dst_addr_width;
2687 if (src_maxburst == 0)
2688 src_maxburst = dst_maxburst;
2689 } else {
2690 dev_err(d40c->base->dev,
2691 "unrecognized channel direction %d\n",
2692 config->direction);
2693 return -EINVAL;
2696 if (config_addr <= 0) {
2697 dev_err(d40c->base->dev, "no address supplied\n");
2698 return -EINVAL;
2701 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2702 dev_err(d40c->base->dev,
2703 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2704 src_maxburst,
2705 src_addr_width,
2706 dst_maxburst,
2707 dst_addr_width);
2708 return -EINVAL;
2711 if (src_maxburst > 16) {
2712 src_maxburst = 16;
2713 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2714 } else if (dst_maxburst > 16) {
2715 dst_maxburst = 16;
2716 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2719 /* Only valid widths are; 1, 2, 4 and 8. */
2720 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2721 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2722 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2723 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2724 !is_power_of_2(src_addr_width) ||
2725 !is_power_of_2(dst_addr_width))
2726 return -EINVAL;
2728 cfg->src_info.data_width = src_addr_width;
2729 cfg->dst_info.data_width = dst_addr_width;
2731 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2732 src_maxburst);
2733 if (ret)
2734 return ret;
2736 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2737 dst_maxburst);
2738 if (ret)
2739 return ret;
2741 /* Fill in register values */
2742 if (chan_is_logical(d40c))
2743 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2744 else
2745 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2747 /* These settings will take precedence later */
2748 d40c->runtime_addr = config_addr;
2749 d40c->runtime_direction = config->direction;
2750 dev_dbg(d40c->base->dev,
2751 "configured channel %s for %s, data width %d/%d, "
2752 "maxburst %d/%d elements, LE, no flow control\n",
2753 dma_chan_name(chan),
2754 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2755 src_addr_width, dst_addr_width,
2756 src_maxburst, dst_maxburst);
2758 return 0;
2761 /* Initialization functions */
2763 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2764 struct d40_chan *chans, int offset,
2765 int num_chans)
2767 int i = 0;
2768 struct d40_chan *d40c;
2770 INIT_LIST_HEAD(&dma->channels);
2772 for (i = offset; i < offset + num_chans; i++) {
2773 d40c = &chans[i];
2774 d40c->base = base;
2775 d40c->chan.device = dma;
2777 spin_lock_init(&d40c->lock);
2779 d40c->log_num = D40_PHY_CHAN;
2781 INIT_LIST_HEAD(&d40c->done);
2782 INIT_LIST_HEAD(&d40c->active);
2783 INIT_LIST_HEAD(&d40c->queue);
2784 INIT_LIST_HEAD(&d40c->pending_queue);
2785 INIT_LIST_HEAD(&d40c->client);
2786 INIT_LIST_HEAD(&d40c->prepare_queue);
2788 tasklet_init(&d40c->tasklet, dma_tasklet,
2789 (unsigned long) d40c);
2791 list_add_tail(&d40c->chan.device_node,
2792 &dma->channels);
2796 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2798 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2799 dev->device_prep_slave_sg = d40_prep_slave_sg;
2800 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2803 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2804 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2805 dev->directions = BIT(DMA_MEM_TO_MEM);
2807 * This controller can only access address at even
2808 * 32bit boundaries, i.e. 2^2
2810 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2813 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2814 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2816 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2817 dev->device_free_chan_resources = d40_free_chan_resources;
2818 dev->device_issue_pending = d40_issue_pending;
2819 dev->device_tx_status = d40_tx_status;
2820 dev->device_config = d40_set_runtime_config;
2821 dev->device_pause = d40_pause;
2822 dev->device_resume = d40_resume;
2823 dev->device_terminate_all = d40_terminate_all;
2824 dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2825 dev->dev = base->dev;
2828 static int __init d40_dmaengine_init(struct d40_base *base,
2829 int num_reserved_chans)
2831 int err ;
2833 d40_chan_init(base, &base->dma_slave, base->log_chans,
2834 0, base->num_log_chans);
2836 dma_cap_zero(base->dma_slave.cap_mask);
2837 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2838 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2840 d40_ops_init(base, &base->dma_slave);
2842 err = dma_async_device_register(&base->dma_slave);
2844 if (err) {
2845 d40_err(base->dev, "Failed to register slave channels\n");
2846 goto exit;
2849 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2850 base->num_log_chans, base->num_memcpy_chans);
2852 dma_cap_zero(base->dma_memcpy.cap_mask);
2853 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2855 d40_ops_init(base, &base->dma_memcpy);
2857 err = dma_async_device_register(&base->dma_memcpy);
2859 if (err) {
2860 d40_err(base->dev,
2861 "Failed to register memcpy only channels\n");
2862 goto unregister_slave;
2865 d40_chan_init(base, &base->dma_both, base->phy_chans,
2866 0, num_reserved_chans);
2868 dma_cap_zero(base->dma_both.cap_mask);
2869 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2870 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2871 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2873 d40_ops_init(base, &base->dma_both);
2874 err = dma_async_device_register(&base->dma_both);
2876 if (err) {
2877 d40_err(base->dev,
2878 "Failed to register logical and physical capable channels\n");
2879 goto unregister_memcpy;
2881 return 0;
2882 unregister_memcpy:
2883 dma_async_device_unregister(&base->dma_memcpy);
2884 unregister_slave:
2885 dma_async_device_unregister(&base->dma_slave);
2886 exit:
2887 return err;
2890 /* Suspend resume functionality */
2891 #ifdef CONFIG_PM_SLEEP
2892 static int dma40_suspend(struct device *dev)
2894 struct d40_base *base = dev_get_drvdata(dev);
2895 int ret;
2897 ret = pm_runtime_force_suspend(dev);
2898 if (ret)
2899 return ret;
2901 if (base->lcpa_regulator)
2902 ret = regulator_disable(base->lcpa_regulator);
2903 return ret;
2906 static int dma40_resume(struct device *dev)
2908 struct d40_base *base = dev_get_drvdata(dev);
2909 int ret = 0;
2911 if (base->lcpa_regulator) {
2912 ret = regulator_enable(base->lcpa_regulator);
2913 if (ret)
2914 return ret;
2917 return pm_runtime_force_resume(dev);
2919 #endif
2921 #ifdef CONFIG_PM
2922 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2923 u32 *regaddr, int num, bool save)
2925 int i;
2927 for (i = 0; i < num; i++) {
2928 void __iomem *addr = baseaddr + regaddr[i];
2930 if (save)
2931 backup[i] = readl_relaxed(addr);
2932 else
2933 writel_relaxed(backup[i], addr);
2937 static void d40_save_restore_registers(struct d40_base *base, bool save)
2939 int i;
2941 /* Save/Restore channel specific registers */
2942 for (i = 0; i < base->num_phy_chans; i++) {
2943 void __iomem *addr;
2944 int idx;
2946 if (base->phy_res[i].reserved)
2947 continue;
2949 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2950 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2952 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2953 d40_backup_regs_chan,
2954 ARRAY_SIZE(d40_backup_regs_chan),
2955 save);
2958 /* Save/Restore global registers */
2959 dma40_backup(base->virtbase, base->reg_val_backup,
2960 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2961 save);
2963 /* Save/Restore registers only existing on dma40 v3 and later */
2964 if (base->gen_dmac.backup)
2965 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2966 base->gen_dmac.backup,
2967 base->gen_dmac.backup_size,
2968 save);
2971 static int dma40_runtime_suspend(struct device *dev)
2973 struct d40_base *base = dev_get_drvdata(dev);
2975 d40_save_restore_registers(base, true);
2977 /* Don't disable/enable clocks for v1 due to HW bugs */
2978 if (base->rev != 1)
2979 writel_relaxed(base->gcc_pwr_off_mask,
2980 base->virtbase + D40_DREG_GCC);
2982 return 0;
2985 static int dma40_runtime_resume(struct device *dev)
2987 struct d40_base *base = dev_get_drvdata(dev);
2989 d40_save_restore_registers(base, false);
2991 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2992 base->virtbase + D40_DREG_GCC);
2993 return 0;
2995 #endif
2997 static const struct dev_pm_ops dma40_pm_ops = {
2998 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
2999 SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3000 dma40_runtime_resume,
3001 NULL)
3004 /* Initialization functions. */
3006 static int __init d40_phy_res_init(struct d40_base *base)
3008 int i;
3009 int num_phy_chans_avail = 0;
3010 u32 val[2];
3011 int odd_even_bit = -2;
3012 int gcc = D40_DREG_GCC_ENA;
3014 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3015 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3017 for (i = 0; i < base->num_phy_chans; i++) {
3018 base->phy_res[i].num = i;
3019 odd_even_bit += 2 * ((i % 2) == 0);
3020 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3021 /* Mark security only channels as occupied */
3022 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3023 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3024 base->phy_res[i].reserved = true;
3025 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3026 D40_DREG_GCC_SRC);
3027 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3028 D40_DREG_GCC_DST);
3031 } else {
3032 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3033 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3034 base->phy_res[i].reserved = false;
3035 num_phy_chans_avail++;
3037 spin_lock_init(&base->phy_res[i].lock);
3040 /* Mark disabled channels as occupied */
3041 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3042 int chan = base->plat_data->disabled_channels[i];
3044 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3045 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3046 base->phy_res[chan].reserved = true;
3047 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3048 D40_DREG_GCC_SRC);
3049 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3050 D40_DREG_GCC_DST);
3051 num_phy_chans_avail--;
3054 /* Mark soft_lli channels */
3055 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3056 int chan = base->plat_data->soft_lli_chans[i];
3058 base->phy_res[chan].use_soft_lli = true;
3061 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3062 num_phy_chans_avail, base->num_phy_chans);
3064 /* Verify settings extended vs standard */
3065 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3067 for (i = 0; i < base->num_phy_chans; i++) {
3069 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3070 (val[0] & 0x3) != 1)
3071 dev_info(base->dev,
3072 "[%s] INFO: channel %d is misconfigured (%d)\n",
3073 __func__, i, val[0] & 0x3);
3075 val[0] = val[0] >> 2;
3079 * To keep things simple, Enable all clocks initially.
3080 * The clocks will get managed later post channel allocation.
3081 * The clocks for the event lines on which reserved channels exists
3082 * are not managed here.
3084 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3085 base->gcc_pwr_off_mask = gcc;
3087 return num_phy_chans_avail;
3090 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3092 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3093 struct clk *clk;
3094 void __iomem *virtbase;
3095 struct resource *res;
3096 struct d40_base *base;
3097 int num_log_chans;
3098 int num_phy_chans;
3099 int num_memcpy_chans;
3100 int clk_ret = -EINVAL;
3101 int i;
3102 u32 pid;
3103 u32 cid;
3104 u8 rev;
3106 clk = clk_get(&pdev->dev, NULL);
3107 if (IS_ERR(clk)) {
3108 d40_err(&pdev->dev, "No matching clock found\n");
3109 goto check_prepare_enabled;
3112 clk_ret = clk_prepare_enable(clk);
3113 if (clk_ret) {
3114 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3115 goto disable_unprepare;
3118 /* Get IO for DMAC base address */
3119 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3120 if (!res)
3121 goto disable_unprepare;
3123 if (request_mem_region(res->start, resource_size(res),
3124 D40_NAME " I/O base") == NULL)
3125 goto release_region;
3127 virtbase = ioremap(res->start, resource_size(res));
3128 if (!virtbase)
3129 goto release_region;
3131 /* This is just a regular AMBA PrimeCell ID actually */
3132 for (pid = 0, i = 0; i < 4; i++)
3133 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3134 & 255) << (i * 8);
3135 for (cid = 0, i = 0; i < 4; i++)
3136 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3137 & 255) << (i * 8);
3139 if (cid != AMBA_CID) {
3140 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3141 goto unmap_io;
3143 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3144 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3145 AMBA_MANF_BITS(pid),
3146 AMBA_VENDOR_ST);
3147 goto unmap_io;
3150 * HW revision:
3151 * DB8500ed has revision 0
3152 * ? has revision 1
3153 * DB8500v1 has revision 2
3154 * DB8500v2 has revision 3
3155 * AP9540v1 has revision 4
3156 * DB8540v1 has revision 4
3158 rev = AMBA_REV_BITS(pid);
3159 if (rev < 2) {
3160 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3161 goto unmap_io;
3164 /* The number of physical channels on this HW */
3165 if (plat_data->num_of_phy_chans)
3166 num_phy_chans = plat_data->num_of_phy_chans;
3167 else
3168 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3170 /* The number of channels used for memcpy */
3171 if (plat_data->num_of_memcpy_chans)
3172 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3173 else
3174 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3176 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3178 dev_info(&pdev->dev,
3179 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3180 rev, &res->start, num_phy_chans, num_log_chans);
3182 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3183 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3184 sizeof(struct d40_chan), GFP_KERNEL);
3186 if (base == NULL)
3187 goto unmap_io;
3189 base->rev = rev;
3190 base->clk = clk;
3191 base->num_memcpy_chans = num_memcpy_chans;
3192 base->num_phy_chans = num_phy_chans;
3193 base->num_log_chans = num_log_chans;
3194 base->phy_start = res->start;
3195 base->phy_size = resource_size(res);
3196 base->virtbase = virtbase;
3197 base->plat_data = plat_data;
3198 base->dev = &pdev->dev;
3199 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3200 base->log_chans = &base->phy_chans[num_phy_chans];
3202 if (base->plat_data->num_of_phy_chans == 14) {
3203 base->gen_dmac.backup = d40_backup_regs_v4b;
3204 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3205 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3206 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3207 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3208 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3209 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3210 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3211 base->gen_dmac.il = il_v4b;
3212 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3213 base->gen_dmac.init_reg = dma_init_reg_v4b;
3214 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3215 } else {
3216 if (base->rev >= 3) {
3217 base->gen_dmac.backup = d40_backup_regs_v4a;
3218 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3220 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3221 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3222 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3223 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3224 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3225 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3226 base->gen_dmac.il = il_v4a;
3227 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3228 base->gen_dmac.init_reg = dma_init_reg_v4a;
3229 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3232 base->phy_res = kcalloc(num_phy_chans,
3233 sizeof(*base->phy_res),
3234 GFP_KERNEL);
3235 if (!base->phy_res)
3236 goto free_base;
3238 base->lookup_phy_chans = kcalloc(num_phy_chans,
3239 sizeof(*base->lookup_phy_chans),
3240 GFP_KERNEL);
3241 if (!base->lookup_phy_chans)
3242 goto free_phy_res;
3244 base->lookup_log_chans = kcalloc(num_log_chans,
3245 sizeof(*base->lookup_log_chans),
3246 GFP_KERNEL);
3247 if (!base->lookup_log_chans)
3248 goto free_phy_chans;
3250 base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3251 sizeof(d40_backup_regs_chan),
3252 GFP_KERNEL);
3253 if (!base->reg_val_backup_chan)
3254 goto free_log_chans;
3256 base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3257 * D40_LCLA_LINK_PER_EVENT_GRP,
3258 sizeof(*base->lcla_pool.alloc_map),
3259 GFP_KERNEL);
3260 if (!base->lcla_pool.alloc_map)
3261 goto free_backup_chan;
3263 base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3264 sizeof(*base->regs_interrupt),
3265 GFP_KERNEL);
3266 if (!base->regs_interrupt)
3267 goto free_map;
3269 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3270 0, SLAB_HWCACHE_ALIGN,
3271 NULL);
3272 if (base->desc_slab == NULL)
3273 goto free_regs;
3276 return base;
3277 free_regs:
3278 kfree(base->regs_interrupt);
3279 free_map:
3280 kfree(base->lcla_pool.alloc_map);
3281 free_backup_chan:
3282 kfree(base->reg_val_backup_chan);
3283 free_log_chans:
3284 kfree(base->lookup_log_chans);
3285 free_phy_chans:
3286 kfree(base->lookup_phy_chans);
3287 free_phy_res:
3288 kfree(base->phy_res);
3289 free_base:
3290 kfree(base);
3291 unmap_io:
3292 iounmap(virtbase);
3293 release_region:
3294 release_mem_region(res->start, resource_size(res));
3295 check_prepare_enabled:
3296 if (!clk_ret)
3297 disable_unprepare:
3298 clk_disable_unprepare(clk);
3299 if (!IS_ERR(clk))
3300 clk_put(clk);
3301 return NULL;
3304 static void __init d40_hw_init(struct d40_base *base)
3307 int i;
3308 u32 prmseo[2] = {0, 0};
3309 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3310 u32 pcmis = 0;
3311 u32 pcicr = 0;
3312 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3313 u32 reg_size = base->gen_dmac.init_reg_size;
3315 for (i = 0; i < reg_size; i++)
3316 writel(dma_init_reg[i].val,
3317 base->virtbase + dma_init_reg[i].reg);
3319 /* Configure all our dma channels to default settings */
3320 for (i = 0; i < base->num_phy_chans; i++) {
3322 activeo[i % 2] = activeo[i % 2] << 2;
3324 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3325 == D40_ALLOC_PHY) {
3326 activeo[i % 2] |= 3;
3327 continue;
3330 /* Enable interrupt # */
3331 pcmis = (pcmis << 1) | 1;
3333 /* Clear interrupt # */
3334 pcicr = (pcicr << 1) | 1;
3336 /* Set channel to physical mode */
3337 prmseo[i % 2] = prmseo[i % 2] << 2;
3338 prmseo[i % 2] |= 1;
3342 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3343 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3344 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3345 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3347 /* Write which interrupt to enable */
3348 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3350 /* Write which interrupt to clear */
3351 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3353 /* These are __initdata and cannot be accessed after init */
3354 base->gen_dmac.init_reg = NULL;
3355 base->gen_dmac.init_reg_size = 0;
3358 static int __init d40_lcla_allocate(struct d40_base *base)
3360 struct d40_lcla_pool *pool = &base->lcla_pool;
3361 unsigned long *page_list;
3362 int i, j;
3363 int ret;
3366 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3367 * To full fill this hardware requirement without wasting 256 kb
3368 * we allocate pages until we get an aligned one.
3370 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3371 sizeof(*page_list),
3372 GFP_KERNEL);
3373 if (!page_list)
3374 return -ENOMEM;
3376 /* Calculating how many pages that are required */
3377 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3379 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3380 page_list[i] = __get_free_pages(GFP_KERNEL,
3381 base->lcla_pool.pages);
3382 if (!page_list[i]) {
3384 d40_err(base->dev, "Failed to allocate %d pages.\n",
3385 base->lcla_pool.pages);
3386 ret = -ENOMEM;
3388 for (j = 0; j < i; j++)
3389 free_pages(page_list[j], base->lcla_pool.pages);
3390 goto free_page_list;
3393 if ((virt_to_phys((void *)page_list[i]) &
3394 (LCLA_ALIGNMENT - 1)) == 0)
3395 break;
3398 for (j = 0; j < i; j++)
3399 free_pages(page_list[j], base->lcla_pool.pages);
3401 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3402 base->lcla_pool.base = (void *)page_list[i];
3403 } else {
3405 * After many attempts and no succees with finding the correct
3406 * alignment, try with allocating a big buffer.
3408 dev_warn(base->dev,
3409 "[%s] Failed to get %d pages @ 18 bit align.\n",
3410 __func__, base->lcla_pool.pages);
3411 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3412 base->num_phy_chans +
3413 LCLA_ALIGNMENT,
3414 GFP_KERNEL);
3415 if (!base->lcla_pool.base_unaligned) {
3416 ret = -ENOMEM;
3417 goto free_page_list;
3420 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3421 LCLA_ALIGNMENT);
3424 pool->dma_addr = dma_map_single(base->dev, pool->base,
3425 SZ_1K * base->num_phy_chans,
3426 DMA_TO_DEVICE);
3427 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3428 pool->dma_addr = 0;
3429 ret = -ENOMEM;
3430 goto free_page_list;
3433 writel(virt_to_phys(base->lcla_pool.base),
3434 base->virtbase + D40_DREG_LCLA);
3435 ret = 0;
3436 free_page_list:
3437 kfree(page_list);
3438 return ret;
3441 static int __init d40_of_probe(struct platform_device *pdev,
3442 struct device_node *np)
3444 struct stedma40_platform_data *pdata;
3445 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3446 const __be32 *list;
3448 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3449 if (!pdata)
3450 return -ENOMEM;
3452 /* If absent this value will be obtained from h/w. */
3453 of_property_read_u32(np, "dma-channels", &num_phy);
3454 if (num_phy > 0)
3455 pdata->num_of_phy_chans = num_phy;
3457 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3458 num_memcpy /= sizeof(*list);
3460 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3461 d40_err(&pdev->dev,
3462 "Invalid number of memcpy channels specified (%d)\n",
3463 num_memcpy);
3464 return -EINVAL;
3466 pdata->num_of_memcpy_chans = num_memcpy;
3468 of_property_read_u32_array(np, "memcpy-channels",
3469 dma40_memcpy_channels,
3470 num_memcpy);
3472 list = of_get_property(np, "disabled-channels", &num_disabled);
3473 num_disabled /= sizeof(*list);
3475 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3476 d40_err(&pdev->dev,
3477 "Invalid number of disabled channels specified (%d)\n",
3478 num_disabled);
3479 return -EINVAL;
3482 of_property_read_u32_array(np, "disabled-channels",
3483 pdata->disabled_channels,
3484 num_disabled);
3485 pdata->disabled_channels[num_disabled] = -1;
3487 pdev->dev.platform_data = pdata;
3489 return 0;
3492 static int __init d40_probe(struct platform_device *pdev)
3494 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3495 struct device_node *np = pdev->dev.of_node;
3496 int ret = -ENOENT;
3497 struct d40_base *base;
3498 struct resource *res;
3499 int num_reserved_chans;
3500 u32 val;
3502 if (!plat_data) {
3503 if (np) {
3504 if (d40_of_probe(pdev, np)) {
3505 ret = -ENOMEM;
3506 goto report_failure;
3508 } else {
3509 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3510 goto report_failure;
3514 base = d40_hw_detect_init(pdev);
3515 if (!base)
3516 goto report_failure;
3518 num_reserved_chans = d40_phy_res_init(base);
3520 platform_set_drvdata(pdev, base);
3522 spin_lock_init(&base->interrupt_lock);
3523 spin_lock_init(&base->execmd_lock);
3525 /* Get IO for logical channel parameter address */
3526 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3527 if (!res) {
3528 ret = -ENOENT;
3529 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3530 goto destroy_cache;
3532 base->lcpa_size = resource_size(res);
3533 base->phy_lcpa = res->start;
3535 if (request_mem_region(res->start, resource_size(res),
3536 D40_NAME " I/O lcpa") == NULL) {
3537 ret = -EBUSY;
3538 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3539 goto destroy_cache;
3542 /* We make use of ESRAM memory for this. */
3543 val = readl(base->virtbase + D40_DREG_LCPA);
3544 if (res->start != val && val != 0) {
3545 dev_warn(&pdev->dev,
3546 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3547 __func__, val, &res->start);
3548 } else
3549 writel(res->start, base->virtbase + D40_DREG_LCPA);
3551 base->lcpa_base = ioremap(res->start, resource_size(res));
3552 if (!base->lcpa_base) {
3553 ret = -ENOMEM;
3554 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3555 goto destroy_cache;
3557 /* If lcla has to be located in ESRAM we don't need to allocate */
3558 if (base->plat_data->use_esram_lcla) {
3559 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3560 "lcla_esram");
3561 if (!res) {
3562 ret = -ENOENT;
3563 d40_err(&pdev->dev,
3564 "No \"lcla_esram\" memory resource\n");
3565 goto destroy_cache;
3567 base->lcla_pool.base = ioremap(res->start,
3568 resource_size(res));
3569 if (!base->lcla_pool.base) {
3570 ret = -ENOMEM;
3571 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3572 goto destroy_cache;
3574 writel(res->start, base->virtbase + D40_DREG_LCLA);
3576 } else {
3577 ret = d40_lcla_allocate(base);
3578 if (ret) {
3579 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3580 goto destroy_cache;
3584 spin_lock_init(&base->lcla_pool.lock);
3586 base->irq = platform_get_irq(pdev, 0);
3588 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3589 if (ret) {
3590 d40_err(&pdev->dev, "No IRQ defined\n");
3591 goto destroy_cache;
3594 if (base->plat_data->use_esram_lcla) {
3596 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3597 if (IS_ERR(base->lcpa_regulator)) {
3598 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3599 ret = PTR_ERR(base->lcpa_regulator);
3600 base->lcpa_regulator = NULL;
3601 goto destroy_cache;
3604 ret = regulator_enable(base->lcpa_regulator);
3605 if (ret) {
3606 d40_err(&pdev->dev,
3607 "Failed to enable lcpa_regulator\n");
3608 regulator_put(base->lcpa_regulator);
3609 base->lcpa_regulator = NULL;
3610 goto destroy_cache;
3614 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3616 pm_runtime_irq_safe(base->dev);
3617 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3618 pm_runtime_use_autosuspend(base->dev);
3619 pm_runtime_mark_last_busy(base->dev);
3620 pm_runtime_set_active(base->dev);
3621 pm_runtime_enable(base->dev);
3623 ret = d40_dmaengine_init(base, num_reserved_chans);
3624 if (ret)
3625 goto destroy_cache;
3627 base->dev->dma_parms = &base->dma_parms;
3628 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3629 if (ret) {
3630 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3631 goto destroy_cache;
3634 d40_hw_init(base);
3636 if (np) {
3637 ret = of_dma_controller_register(np, d40_xlate, NULL);
3638 if (ret)
3639 dev_err(&pdev->dev,
3640 "could not register of_dma_controller\n");
3643 dev_info(base->dev, "initialized\n");
3644 return 0;
3645 destroy_cache:
3646 kmem_cache_destroy(base->desc_slab);
3647 if (base->virtbase)
3648 iounmap(base->virtbase);
3650 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3651 iounmap(base->lcla_pool.base);
3652 base->lcla_pool.base = NULL;
3655 if (base->lcla_pool.dma_addr)
3656 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3657 SZ_1K * base->num_phy_chans,
3658 DMA_TO_DEVICE);
3660 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3661 free_pages((unsigned long)base->lcla_pool.base,
3662 base->lcla_pool.pages);
3664 kfree(base->lcla_pool.base_unaligned);
3666 if (base->phy_lcpa)
3667 release_mem_region(base->phy_lcpa,
3668 base->lcpa_size);
3669 if (base->phy_start)
3670 release_mem_region(base->phy_start,
3671 base->phy_size);
3672 if (base->clk) {
3673 clk_disable_unprepare(base->clk);
3674 clk_put(base->clk);
3677 if (base->lcpa_regulator) {
3678 regulator_disable(base->lcpa_regulator);
3679 regulator_put(base->lcpa_regulator);
3682 kfree(base->lcla_pool.alloc_map);
3683 kfree(base->lookup_log_chans);
3684 kfree(base->lookup_phy_chans);
3685 kfree(base->phy_res);
3686 kfree(base);
3687 report_failure:
3688 d40_err(&pdev->dev, "probe failed\n");
3689 return ret;
3692 static const struct of_device_id d40_match[] = {
3693 { .compatible = "stericsson,dma40", },
3697 static struct platform_driver d40_driver = {
3698 .driver = {
3699 .name = D40_NAME,
3700 .pm = &dma40_pm_ops,
3701 .of_match_table = d40_match,
3705 static int __init stedma40_init(void)
3707 return platform_driver_probe(&d40_driver, d40_probe);
3709 subsys_initcall(stedma40_init);