2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels
[] = {
73 DB8500_DMA_MEMCPY_EV_0
,
74 DB8500_DMA_MEMCPY_EV_1
,
75 DB8500_DMA_MEMCPY_EV_2
,
76 DB8500_DMA_MEMCPY_EV_3
,
77 DB8500_DMA_MEMCPY_EV_4
,
78 DB8500_DMA_MEMCPY_EV_5
,
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy
= {
83 .mode
= STEDMA40_MODE_PHYSICAL
,
84 .dir
= DMA_MEM_TO_MEM
,
86 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
87 .src_info
.psize
= STEDMA40_PSIZE_PHY_1
,
88 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
90 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
91 .dst_info
.psize
= STEDMA40_PSIZE_PHY_1
,
92 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log
= {
97 .mode
= STEDMA40_MODE_LOGICAL
,
98 .dir
= DMA_MEM_TO_MEM
,
100 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
101 .src_info
.psize
= STEDMA40_PSIZE_LOG_1
,
102 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
104 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
105 .dst_info
.psize
= STEDMA40_PSIZE_LOG_1
,
106 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
120 D40_DMA_SUSPEND_REQ
= 2,
121 D40_DMA_SUSPENDED
= 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
134 D40_DEACTIVATE_EVENTLINE
= 0,
135 D40_ACTIVATE_EVENTLINE
= 1,
136 D40_SUSPEND_REQ_EVENTLINE
= 2,
137 D40_ROUND_EVENTLINE
= 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static __maybe_unused u32 d40_backup_regs
[] = {
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a
[] = {
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b
[] = {
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static __maybe_unused u32 d40_backup_regs_chan
[] = {
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup
{
245 static struct d40_interrupt_lookup il_v4a
[] = {
246 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
247 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
248 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
249 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
250 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
251 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
252 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
253 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
254 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
255 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
258 static struct d40_interrupt_lookup il_v4b
[] = {
259 {D40_DREG_CLCTIS1
, D40_DREG_CLCICR1
, false, 0},
260 {D40_DREG_CLCTIS2
, D40_DREG_CLCICR2
, false, 32},
261 {D40_DREG_CLCTIS3
, D40_DREG_CLCICR3
, false, 64},
262 {D40_DREG_CLCTIS4
, D40_DREG_CLCICR4
, false, 96},
263 {D40_DREG_CLCTIS5
, D40_DREG_CLCICR5
, false, 128},
264 {D40_DREG_CLCEIS1
, D40_DREG_CLCICR1
, true, 0},
265 {D40_DREG_CLCEIS2
, D40_DREG_CLCICR2
, true, 32},
266 {D40_DREG_CLCEIS3
, D40_DREG_CLCICR3
, true, 64},
267 {D40_DREG_CLCEIS4
, D40_DREG_CLCICR4
, true, 96},
268 {D40_DREG_CLCEIS5
, D40_DREG_CLCICR5
, true, 128},
269 {D40_DREG_CPCTIS
, D40_DREG_CPCICR
, false, D40_PHY_CHAN
},
270 {D40_DREG_CPCEIS
, D40_DREG_CPCICR
, true, D40_PHY_CHAN
},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
284 static __initdata
struct d40_reg_val dma_init_reg_v4a
[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
288 /* Interrupts on all logical channels */
289 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
290 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
291 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
292 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
293 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
294 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
295 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
296 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
297 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
298 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
299 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
300 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
302 static __initdata
struct d40_reg_val dma_init_reg_v4b
[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
306 /* Interrupts on all logical channels */
307 { .reg
= D40_DREG_CLCMIS1
, .val
= 0xFFFFFFFF},
308 { .reg
= D40_DREG_CLCMIS2
, .val
= 0xFFFFFFFF},
309 { .reg
= D40_DREG_CLCMIS3
, .val
= 0xFFFFFFFF},
310 { .reg
= D40_DREG_CLCMIS4
, .val
= 0xFFFFFFFF},
311 { .reg
= D40_DREG_CLCMIS5
, .val
= 0xFFFFFFFF},
312 { .reg
= D40_DREG_CLCICR1
, .val
= 0xFFFFFFFF},
313 { .reg
= D40_DREG_CLCICR2
, .val
= 0xFFFFFFFF},
314 { .reg
= D40_DREG_CLCICR3
, .val
= 0xFFFFFFFF},
315 { .reg
= D40_DREG_CLCICR4
, .val
= 0xFFFFFFFF},
316 { .reg
= D40_DREG_CLCICR5
, .val
= 0xFFFFFFFF},
317 { .reg
= D40_DREG_CLCTIS1
, .val
= 0xFFFFFFFF},
318 { .reg
= D40_DREG_CLCTIS2
, .val
= 0xFFFFFFFF},
319 { .reg
= D40_DREG_CLCTIS3
, .val
= 0xFFFFFFFF},
320 { .reg
= D40_DREG_CLCTIS4
, .val
= 0xFFFFFFFF},
321 { .reg
= D40_DREG_CLCTIS5
, .val
= 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool
{
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
364 struct d40_phy_lli_bidir lli_phy
;
366 struct d40_log_lli_bidir lli_log
;
368 struct d40_lli_pool lli_pool
;
373 struct dma_async_tx_descriptor txd
;
374 struct list_head node
;
376 bool is_in_client_list
;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
391 struct d40_lcla_pool
{
394 void *base_unaligned
;
397 struct d40_desc
**alloc_map
;
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
426 * struct d40_chan - Struct that describes a channel.
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
454 * This struct can either "be" a logical or a physical channel.
461 struct d40_phy_res
*phy_chan
;
462 struct dma_chan chan
;
463 struct tasklet_struct tasklet
;
464 struct list_head client
;
465 struct list_head pending_queue
;
466 struct list_head active
;
467 struct list_head done
;
468 struct list_head queue
;
469 struct list_head prepare_queue
;
470 struct stedma40_chan_cfg dma_cfg
;
472 struct d40_base
*base
;
473 /* Default register configurations */
476 struct d40_def_lcsp log_def
;
477 struct d40_log_lli_full
*lcpa
;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr
;
480 enum dma_transfer_direction runtime_direction
;
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
500 struct d40_gen_dmac
{
509 struct d40_interrupt_lookup
*il
;
511 struct d40_reg_val
*init_reg
;
516 * struct d40_base - The big global struct, one for each probe'd instance.
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @regs_interrupt: Scratch space for registers during interrupt.
559 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
564 spinlock_t interrupt_lock
;
565 spinlock_t execmd_lock
;
567 void __iomem
*virtbase
;
570 phys_addr_t phy_start
;
571 resource_size_t phy_size
;
573 int num_memcpy_chans
;
576 struct device_dma_parameters dma_parms
;
577 struct dma_device dma_both
;
578 struct dma_device dma_slave
;
579 struct dma_device dma_memcpy
;
580 struct d40_chan
*phy_chans
;
581 struct d40_chan
*log_chans
;
582 struct d40_chan
**lookup_log_chans
;
583 struct d40_chan
**lookup_phy_chans
;
584 struct stedma40_platform_data
*plat_data
;
585 struct regulator
*lcpa_regulator
;
586 /* Physical half channels */
587 struct d40_phy_res
*phy_res
;
588 struct d40_lcla_pool lcla_pool
;
591 resource_size_t lcpa_size
;
592 struct kmem_cache
*desc_slab
;
593 u32 reg_val_backup
[BACKUP_REGS_SZ
];
594 u32 reg_val_backup_v4
[BACKUP_REGS_SZ_MAX
];
595 u32
*reg_val_backup_chan
;
597 u16 gcc_pwr_off_mask
;
598 struct d40_gen_dmac gen_dmac
;
601 static struct device
*chan2dev(struct d40_chan
*d40c
)
603 return &d40c
->chan
.dev
->device
;
606 static bool chan_is_physical(struct d40_chan
*chan
)
608 return chan
->log_num
== D40_PHY_CHAN
;
611 static bool chan_is_logical(struct d40_chan
*chan
)
613 return !chan_is_physical(chan
);
616 static void __iomem
*chan_base(struct d40_chan
*chan
)
618 return chan
->base
->virtbase
+ D40_DREG_PCBASE
+
619 chan
->phy_chan
->num
* D40_DREG_PCDELTA
;
622 #define d40_err(dev, format, arg...) \
623 dev_err(dev, "[%s] " format, __func__, ## arg)
625 #define chan_err(d40c, format, arg...) \
626 d40_err(chan2dev(d40c), format, ## arg)
628 static int d40_pool_lli_alloc(struct d40_chan
*d40c
, struct d40_desc
*d40d
,
631 bool is_log
= chan_is_logical(d40c
);
636 align
= sizeof(struct d40_log_lli
);
638 align
= sizeof(struct d40_phy_lli
);
641 base
= d40d
->lli_pool
.pre_alloc_lli
;
642 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
643 d40d
->lli_pool
.base
= NULL
;
645 d40d
->lli_pool
.size
= lli_len
* 2 * align
;
647 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
648 d40d
->lli_pool
.base
= base
;
650 if (d40d
->lli_pool
.base
== NULL
)
655 d40d
->lli_log
.src
= PTR_ALIGN(base
, align
);
656 d40d
->lli_log
.dst
= d40d
->lli_log
.src
+ lli_len
;
658 d40d
->lli_pool
.dma_addr
= 0;
660 d40d
->lli_phy
.src
= PTR_ALIGN(base
, align
);
661 d40d
->lli_phy
.dst
= d40d
->lli_phy
.src
+ lli_len
;
663 d40d
->lli_pool
.dma_addr
= dma_map_single(d40c
->base
->dev
,
668 if (dma_mapping_error(d40c
->base
->dev
,
669 d40d
->lli_pool
.dma_addr
)) {
670 kfree(d40d
->lli_pool
.base
);
671 d40d
->lli_pool
.base
= NULL
;
672 d40d
->lli_pool
.dma_addr
= 0;
680 static void d40_pool_lli_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
682 if (d40d
->lli_pool
.dma_addr
)
683 dma_unmap_single(d40c
->base
->dev
, d40d
->lli_pool
.dma_addr
,
684 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
686 kfree(d40d
->lli_pool
.base
);
687 d40d
->lli_pool
.base
= NULL
;
688 d40d
->lli_pool
.size
= 0;
689 d40d
->lli_log
.src
= NULL
;
690 d40d
->lli_log
.dst
= NULL
;
691 d40d
->lli_phy
.src
= NULL
;
692 d40d
->lli_phy
.dst
= NULL
;
695 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
696 struct d40_desc
*d40d
)
702 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
705 * Allocate both src and dst at the same time, therefore the half
706 * start on 1 since 0 can't be used since zero is used as end marker.
708 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
709 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
711 if (!d40c
->base
->lcla_pool
.alloc_map
[idx
]) {
712 d40c
->base
->lcla_pool
.alloc_map
[idx
] = d40d
;
719 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
724 static int d40_lcla_free_all(struct d40_chan
*d40c
,
725 struct d40_desc
*d40d
)
731 if (chan_is_physical(d40c
))
734 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
736 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
737 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
739 if (d40c
->base
->lcla_pool
.alloc_map
[idx
] == d40d
) {
740 d40c
->base
->lcla_pool
.alloc_map
[idx
] = NULL
;
742 if (d40d
->lcla_alloc
== 0) {
749 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
755 static void d40_desc_remove(struct d40_desc
*d40d
)
757 list_del(&d40d
->node
);
760 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
762 struct d40_desc
*desc
= NULL
;
764 if (!list_empty(&d40c
->client
)) {
768 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
769 if (async_tx_test_ack(&d
->txd
)) {
772 memset(desc
, 0, sizeof(*desc
));
779 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
782 INIT_LIST_HEAD(&desc
->node
);
787 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
790 d40_pool_lli_free(d40c
, d40d
);
791 d40_lcla_free_all(d40c
, d40d
);
792 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
795 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
797 list_add_tail(&desc
->node
, &d40c
->active
);
800 static void d40_phy_lli_load(struct d40_chan
*chan
, struct d40_desc
*desc
)
802 struct d40_phy_lli
*lli_dst
= desc
->lli_phy
.dst
;
803 struct d40_phy_lli
*lli_src
= desc
->lli_phy
.src
;
804 void __iomem
*base
= chan_base(chan
);
806 writel(lli_src
->reg_cfg
, base
+ D40_CHAN_REG_SSCFG
);
807 writel(lli_src
->reg_elt
, base
+ D40_CHAN_REG_SSELT
);
808 writel(lli_src
->reg_ptr
, base
+ D40_CHAN_REG_SSPTR
);
809 writel(lli_src
->reg_lnk
, base
+ D40_CHAN_REG_SSLNK
);
811 writel(lli_dst
->reg_cfg
, base
+ D40_CHAN_REG_SDCFG
);
812 writel(lli_dst
->reg_elt
, base
+ D40_CHAN_REG_SDELT
);
813 writel(lli_dst
->reg_ptr
, base
+ D40_CHAN_REG_SDPTR
);
814 writel(lli_dst
->reg_lnk
, base
+ D40_CHAN_REG_SDLNK
);
817 static void d40_desc_done(struct d40_chan
*d40c
, struct d40_desc
*desc
)
819 list_add_tail(&desc
->node
, &d40c
->done
);
822 static void d40_log_lli_to_lcxa(struct d40_chan
*chan
, struct d40_desc
*desc
)
824 struct d40_lcla_pool
*pool
= &chan
->base
->lcla_pool
;
825 struct d40_log_lli_bidir
*lli
= &desc
->lli_log
;
826 int lli_current
= desc
->lli_current
;
827 int lli_len
= desc
->lli_len
;
828 bool cyclic
= desc
->cyclic
;
829 int curr_lcla
= -EINVAL
;
831 bool use_esram_lcla
= chan
->base
->plat_data
->use_esram_lcla
;
835 * We may have partially running cyclic transfers, in case we did't get
836 * enough LCLA entries.
838 linkback
= cyclic
&& lli_current
== 0;
841 * For linkback, we need one LCLA even with only one link, because we
842 * can't link back to the one in LCPA space
844 if (linkback
|| (lli_len
- lli_current
> 1)) {
846 * If the channel is expected to use only soft_lli don't
847 * allocate a lcla. This is to avoid a HW issue that exists
848 * in some controller during a peripheral to memory transfer
849 * that uses linked lists.
851 if (!(chan
->phy_chan
->use_soft_lli
&&
852 chan
->dma_cfg
.dir
== DMA_DEV_TO_MEM
))
853 curr_lcla
= d40_lcla_alloc_one(chan
, desc
);
855 first_lcla
= curr_lcla
;
859 * For linkback, we normally load the LCPA in the loop since we need to
860 * link it to the second LCLA and not the first. However, if we
861 * couldn't even get a first LCLA, then we have to run in LCPA and
864 if (!linkback
|| curr_lcla
== -EINVAL
) {
865 unsigned int flags
= 0;
867 if (curr_lcla
== -EINVAL
)
868 flags
|= LLI_TERM_INT
;
870 d40_log_lli_lcpa_write(chan
->lcpa
,
871 &lli
->dst
[lli_current
],
872 &lli
->src
[lli_current
],
881 for (; lli_current
< lli_len
; lli_current
++) {
882 unsigned int lcla_offset
= chan
->phy_chan
->num
* 1024 +
884 struct d40_log_lli
*lcla
= pool
->base
+ lcla_offset
;
885 unsigned int flags
= 0;
888 if (lli_current
+ 1 < lli_len
)
889 next_lcla
= d40_lcla_alloc_one(chan
, desc
);
891 next_lcla
= linkback
? first_lcla
: -EINVAL
;
893 if (cyclic
|| next_lcla
== -EINVAL
)
894 flags
|= LLI_TERM_INT
;
896 if (linkback
&& curr_lcla
== first_lcla
) {
897 /* First link goes in both LCPA and LCLA */
898 d40_log_lli_lcpa_write(chan
->lcpa
,
899 &lli
->dst
[lli_current
],
900 &lli
->src
[lli_current
],
905 * One unused LCLA in the cyclic case if the very first
908 d40_log_lli_lcla_write(lcla
,
909 &lli
->dst
[lli_current
],
910 &lli
->src
[lli_current
],
914 * Cache maintenance is not needed if lcla is
917 if (!use_esram_lcla
) {
918 dma_sync_single_range_for_device(chan
->base
->dev
,
919 pool
->dma_addr
, lcla_offset
,
920 2 * sizeof(struct d40_log_lli
),
923 curr_lcla
= next_lcla
;
925 if (curr_lcla
== -EINVAL
|| curr_lcla
== first_lcla
) {
931 desc
->lli_current
= lli_current
;
934 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
936 if (chan_is_physical(d40c
)) {
937 d40_phy_lli_load(d40c
, d40d
);
938 d40d
->lli_current
= d40d
->lli_len
;
940 d40_log_lli_to_lcxa(d40c
, d40d
);
943 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
945 return list_first_entry_or_null(&d40c
->active
, struct d40_desc
, node
);
948 /* remove desc from current queue and add it to the pending_queue */
949 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
951 d40_desc_remove(desc
);
952 desc
->is_in_client_list
= false;
953 list_add_tail(&desc
->node
, &d40c
->pending_queue
);
956 static struct d40_desc
*d40_first_pending(struct d40_chan
*d40c
)
958 return list_first_entry_or_null(&d40c
->pending_queue
, struct d40_desc
,
962 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
964 return list_first_entry_or_null(&d40c
->queue
, struct d40_desc
, node
);
967 static struct d40_desc
*d40_first_done(struct d40_chan
*d40c
)
969 return list_first_entry_or_null(&d40c
->done
, struct d40_desc
, node
);
972 static int d40_psize_2_burst_size(bool is_log
, int psize
)
975 if (psize
== STEDMA40_PSIZE_LOG_1
)
978 if (psize
== STEDMA40_PSIZE_PHY_1
)
986 * The dma only supports transmitting packages up to
987 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
989 * Calculate the total number of dma elements required to send the entire sg list.
991 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
994 u32 max_w
= max(data_width1
, data_width2
);
995 u32 min_w
= min(data_width1
, data_width2
);
996 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
* min_w
, max_w
);
998 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
1001 if (!IS_ALIGNED(size
, max_w
))
1004 if (size
<= seg_max
)
1007 dmalen
= size
/ seg_max
;
1008 if (dmalen
* seg_max
< size
)
1014 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
1015 u32 data_width1
, u32 data_width2
)
1017 struct scatterlist
*sg
;
1022 for_each_sg(sgl
, sg
, sg_len
, i
) {
1023 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
1024 data_width1
, data_width2
);
1032 static int __d40_execute_command_phy(struct d40_chan
*d40c
,
1033 enum d40_command command
)
1037 void __iomem
*active_reg
;
1039 unsigned long flags
;
1042 if (command
== D40_DMA_STOP
) {
1043 ret
= __d40_execute_command_phy(d40c
, D40_DMA_SUSPEND_REQ
);
1048 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
1050 if (d40c
->phy_chan
->num
% 2 == 0)
1051 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1053 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1055 if (command
== D40_DMA_SUSPEND_REQ
) {
1056 status
= (readl(active_reg
) &
1057 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1058 D40_CHAN_POS(d40c
->phy_chan
->num
);
1060 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1064 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
1065 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
1068 if (command
== D40_DMA_SUSPEND_REQ
) {
1070 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
1071 status
= (readl(active_reg
) &
1072 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1073 D40_CHAN_POS(d40c
->phy_chan
->num
);
1077 * Reduce the number of bus accesses while
1078 * waiting for the DMA to suspend.
1082 if (status
== D40_DMA_STOP
||
1083 status
== D40_DMA_SUSPENDED
)
1087 if (i
== D40_SUSPEND_MAX_IT
) {
1089 "unable to suspend the chl %d (log: %d) status %x\n",
1090 d40c
->phy_chan
->num
, d40c
->log_num
,
1098 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
1102 static void d40_term_all(struct d40_chan
*d40c
)
1104 struct d40_desc
*d40d
;
1105 struct d40_desc
*_d
;
1107 /* Release completed descriptors */
1108 while ((d40d
= d40_first_done(d40c
))) {
1109 d40_desc_remove(d40d
);
1110 d40_desc_free(d40c
, d40d
);
1113 /* Release active descriptors */
1114 while ((d40d
= d40_first_active_get(d40c
))) {
1115 d40_desc_remove(d40d
);
1116 d40_desc_free(d40c
, d40d
);
1119 /* Release queued descriptors waiting for transfer */
1120 while ((d40d
= d40_first_queued(d40c
))) {
1121 d40_desc_remove(d40d
);
1122 d40_desc_free(d40c
, d40d
);
1125 /* Release pending descriptors */
1126 while ((d40d
= d40_first_pending(d40c
))) {
1127 d40_desc_remove(d40d
);
1128 d40_desc_free(d40c
, d40d
);
1131 /* Release client owned descriptors */
1132 if (!list_empty(&d40c
->client
))
1133 list_for_each_entry_safe(d40d
, _d
, &d40c
->client
, node
) {
1134 d40_desc_remove(d40d
);
1135 d40_desc_free(d40c
, d40d
);
1138 /* Release descriptors in prepare queue */
1139 if (!list_empty(&d40c
->prepare_queue
))
1140 list_for_each_entry_safe(d40d
, _d
,
1141 &d40c
->prepare_queue
, node
) {
1142 d40_desc_remove(d40d
);
1143 d40_desc_free(d40c
, d40d
);
1146 d40c
->pending_tx
= 0;
1149 static void __d40_config_set_event(struct d40_chan
*d40c
,
1150 enum d40_events event_type
, u32 event
,
1153 void __iomem
*addr
= chan_base(d40c
) + reg
;
1157 switch (event_type
) {
1159 case D40_DEACTIVATE_EVENTLINE
:
1161 writel((D40_DEACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1162 | ~D40_EVENTLINE_MASK(event
), addr
);
1165 case D40_SUSPEND_REQ_EVENTLINE
:
1166 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1167 D40_EVENTLINE_POS(event
);
1169 if (status
== D40_DEACTIVATE_EVENTLINE
||
1170 status
== D40_SUSPEND_REQ_EVENTLINE
)
1173 writel((D40_SUSPEND_REQ_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1174 | ~D40_EVENTLINE_MASK(event
), addr
);
1176 for (tries
= 0 ; tries
< D40_SUSPEND_MAX_IT
; tries
++) {
1178 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1179 D40_EVENTLINE_POS(event
);
1183 * Reduce the number of bus accesses while
1184 * waiting for the DMA to suspend.
1188 if (status
== D40_DEACTIVATE_EVENTLINE
)
1192 if (tries
== D40_SUSPEND_MAX_IT
) {
1194 "unable to stop the event_line chl %d (log: %d)"
1195 "status %x\n", d40c
->phy_chan
->num
,
1196 d40c
->log_num
, status
);
1200 case D40_ACTIVATE_EVENTLINE
:
1202 * The hardware sometimes doesn't register the enable when src and dst
1203 * event lines are active on the same logical channel. Retry to ensure
1204 * it does. Usually only one retry is sufficient.
1208 writel((D40_ACTIVATE_EVENTLINE
<<
1209 D40_EVENTLINE_POS(event
)) |
1210 ~D40_EVENTLINE_MASK(event
), addr
);
1212 if (readl(addr
) & D40_EVENTLINE_MASK(event
))
1217 dev_dbg(chan2dev(d40c
),
1218 "[%s] workaround enable S%cLNK (%d tries)\n",
1219 __func__
, reg
== D40_CHAN_REG_SSLNK
? 'S' : 'D',
1225 case D40_ROUND_EVENTLINE
:
1232 static void d40_config_set_event(struct d40_chan
*d40c
,
1233 enum d40_events event_type
)
1235 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1237 /* Enable event line connected to device (or memcpy) */
1238 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
1239 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
1240 __d40_config_set_event(d40c
, event_type
, event
,
1241 D40_CHAN_REG_SSLNK
);
1243 if (d40c
->dma_cfg
.dir
!= DMA_DEV_TO_MEM
)
1244 __d40_config_set_event(d40c
, event_type
, event
,
1245 D40_CHAN_REG_SDLNK
);
1248 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
1250 void __iomem
*chanbase
= chan_base(d40c
);
1253 val
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
1254 val
|= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
1260 __d40_execute_command_log(struct d40_chan
*d40c
, enum d40_command command
)
1262 unsigned long flags
;
1265 void __iomem
*active_reg
;
1267 if (d40c
->phy_chan
->num
% 2 == 0)
1268 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1270 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1273 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
1277 case D40_DMA_SUSPEND_REQ
:
1279 active_status
= (readl(active_reg
) &
1280 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1281 D40_CHAN_POS(d40c
->phy_chan
->num
);
1283 if (active_status
== D40_DMA_RUN
)
1284 d40_config_set_event(d40c
, D40_SUSPEND_REQ_EVENTLINE
);
1286 d40_config_set_event(d40c
, D40_DEACTIVATE_EVENTLINE
);
1288 if (!d40_chan_has_events(d40c
) && (command
== D40_DMA_STOP
))
1289 ret
= __d40_execute_command_phy(d40c
, command
);
1295 d40_config_set_event(d40c
, D40_ACTIVATE_EVENTLINE
);
1296 ret
= __d40_execute_command_phy(d40c
, command
);
1299 case D40_DMA_SUSPENDED
:
1304 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
1308 static int d40_channel_execute_command(struct d40_chan
*d40c
,
1309 enum d40_command command
)
1311 if (chan_is_logical(d40c
))
1312 return __d40_execute_command_log(d40c
, command
);
1314 return __d40_execute_command_phy(d40c
, command
);
1317 static u32
d40_get_prmo(struct d40_chan
*d40c
)
1319 static const unsigned int phy_map
[] = {
1320 [STEDMA40_PCHAN_BASIC_MODE
]
1321 = D40_DREG_PRMO_PCHAN_BASIC
,
1322 [STEDMA40_PCHAN_MODULO_MODE
]
1323 = D40_DREG_PRMO_PCHAN_MODULO
,
1324 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
1325 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
1327 static const unsigned int log_map
[] = {
1328 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
1329 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
1330 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
1331 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
1332 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
1333 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
1336 if (chan_is_physical(d40c
))
1337 return phy_map
[d40c
->dma_cfg
.mode_opt
];
1339 return log_map
[d40c
->dma_cfg
.mode_opt
];
1342 static void d40_config_write(struct d40_chan
*d40c
)
1347 /* Odd addresses are even addresses + 4 */
1348 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
1349 /* Setup channel mode to logical or physical */
1350 var
= ((u32
)(chan_is_logical(d40c
)) + 1) <<
1351 D40_CHAN_POS(d40c
->phy_chan
->num
);
1352 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
1354 /* Setup operational mode option register */
1355 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
1357 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
1359 if (chan_is_logical(d40c
)) {
1360 int lidx
= (d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
)
1361 & D40_SREG_ELEM_LOG_LIDX_MASK
;
1362 void __iomem
*chanbase
= chan_base(d40c
);
1364 /* Set default config for CFG reg */
1365 writel(d40c
->src_def_cfg
, chanbase
+ D40_CHAN_REG_SSCFG
);
1366 writel(d40c
->dst_def_cfg
, chanbase
+ D40_CHAN_REG_SDCFG
);
1368 /* Set LIDX for lcla */
1369 writel(lidx
, chanbase
+ D40_CHAN_REG_SSELT
);
1370 writel(lidx
, chanbase
+ D40_CHAN_REG_SDELT
);
1372 /* Clear LNK which will be used by d40_chan_has_events() */
1373 writel(0, chanbase
+ D40_CHAN_REG_SSLNK
);
1374 writel(0, chanbase
+ D40_CHAN_REG_SDLNK
);
1378 static u32
d40_residue(struct d40_chan
*d40c
)
1382 if (chan_is_logical(d40c
))
1383 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
1384 >> D40_MEM_LCSP2_ECNT_POS
;
1386 u32 val
= readl(chan_base(d40c
) + D40_CHAN_REG_SDELT
);
1387 num_elt
= (val
& D40_SREG_ELEM_PHY_ECNT_MASK
)
1388 >> D40_SREG_ELEM_PHY_ECNT_POS
;
1391 return num_elt
* d40c
->dma_cfg
.dst_info
.data_width
;
1394 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
1398 if (chan_is_logical(d40c
))
1399 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
1401 is_link
= readl(chan_base(d40c
) + D40_CHAN_REG_SDLNK
)
1402 & D40_SREG_LNK_PHYS_LNK_MASK
;
1407 static int d40_pause(struct dma_chan
*chan
)
1409 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1411 unsigned long flags
;
1413 if (d40c
->phy_chan
== NULL
) {
1414 chan_err(d40c
, "Channel is not allocated!\n");
1421 spin_lock_irqsave(&d40c
->lock
, flags
);
1422 pm_runtime_get_sync(d40c
->base
->dev
);
1424 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1426 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1427 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1428 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1432 static int d40_resume(struct dma_chan
*chan
)
1434 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1436 unsigned long flags
;
1438 if (d40c
->phy_chan
== NULL
) {
1439 chan_err(d40c
, "Channel is not allocated!\n");
1446 spin_lock_irqsave(&d40c
->lock
, flags
);
1447 pm_runtime_get_sync(d40c
->base
->dev
);
1449 /* If bytes left to transfer or linked tx resume job */
1450 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
))
1451 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1453 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1454 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1455 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1459 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
1461 struct d40_chan
*d40c
= container_of(tx
->chan
,
1464 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
1465 unsigned long flags
;
1466 dma_cookie_t cookie
;
1468 spin_lock_irqsave(&d40c
->lock
, flags
);
1469 cookie
= dma_cookie_assign(tx
);
1470 d40_desc_queue(d40c
, d40d
);
1471 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1476 static int d40_start(struct d40_chan
*d40c
)
1478 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1481 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1483 struct d40_desc
*d40d
;
1486 /* Start queued jobs, if any */
1487 d40d
= d40_first_queued(d40c
);
1492 pm_runtime_get_sync(d40c
->base
->dev
);
1495 /* Remove from queue */
1496 d40_desc_remove(d40d
);
1498 /* Add to active queue */
1499 d40_desc_submit(d40c
, d40d
);
1501 /* Initiate DMA job */
1502 d40_desc_load(d40c
, d40d
);
1505 err
= d40_start(d40c
);
1514 /* called from interrupt context */
1515 static void dma_tc_handle(struct d40_chan
*d40c
)
1517 struct d40_desc
*d40d
;
1519 /* Get first active entry from list */
1520 d40d
= d40_first_active_get(d40c
);
1527 * If this was a paritially loaded list, we need to reloaded
1528 * it, and only when the list is completed. We need to check
1529 * for done because the interrupt will hit for every link, and
1530 * not just the last one.
1532 if (d40d
->lli_current
< d40d
->lli_len
1533 && !d40_tx_is_linked(d40c
)
1534 && !d40_residue(d40c
)) {
1535 d40_lcla_free_all(d40c
, d40d
);
1536 d40_desc_load(d40c
, d40d
);
1537 (void) d40_start(d40c
);
1539 if (d40d
->lli_current
== d40d
->lli_len
)
1540 d40d
->lli_current
= 0;
1543 d40_lcla_free_all(d40c
, d40d
);
1545 if (d40d
->lli_current
< d40d
->lli_len
) {
1546 d40_desc_load(d40c
, d40d
);
1548 (void) d40_start(d40c
);
1552 if (d40_queue_start(d40c
) == NULL
) {
1555 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1556 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1559 d40_desc_remove(d40d
);
1560 d40_desc_done(d40c
, d40d
);
1564 tasklet_schedule(&d40c
->tasklet
);
1568 static void dma_tasklet(unsigned long data
)
1570 struct d40_chan
*d40c
= (struct d40_chan
*) data
;
1571 struct d40_desc
*d40d
;
1572 unsigned long flags
;
1573 bool callback_active
;
1574 struct dmaengine_desc_callback cb
;
1576 spin_lock_irqsave(&d40c
->lock
, flags
);
1578 /* Get first entry from the done list */
1579 d40d
= d40_first_done(d40c
);
1581 /* Check if we have reached here for cyclic job */
1582 d40d
= d40_first_active_get(d40c
);
1583 if (d40d
== NULL
|| !d40d
->cyclic
)
1584 goto check_pending_tx
;
1588 dma_cookie_complete(&d40d
->txd
);
1591 * If terminating a channel pending_tx is set to zero.
1592 * This prevents any finished active jobs to return to the client.
1594 if (d40c
->pending_tx
== 0) {
1595 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1599 /* Callback to client */
1600 callback_active
= !!(d40d
->txd
.flags
& DMA_PREP_INTERRUPT
);
1601 dmaengine_desc_get_callback(&d40d
->txd
, &cb
);
1603 if (!d40d
->cyclic
) {
1604 if (async_tx_test_ack(&d40d
->txd
)) {
1605 d40_desc_remove(d40d
);
1606 d40_desc_free(d40c
, d40d
);
1607 } else if (!d40d
->is_in_client_list
) {
1608 d40_desc_remove(d40d
);
1609 d40_lcla_free_all(d40c
, d40d
);
1610 list_add_tail(&d40d
->node
, &d40c
->client
);
1611 d40d
->is_in_client_list
= true;
1617 if (d40c
->pending_tx
)
1618 tasklet_schedule(&d40c
->tasklet
);
1620 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1622 if (callback_active
)
1623 dmaengine_desc_callback_invoke(&cb
, NULL
);
1627 /* Rescue manouver if receiving double interrupts */
1628 if (d40c
->pending_tx
> 0)
1630 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1633 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1639 struct d40_chan
*d40c
;
1640 unsigned long flags
;
1641 struct d40_base
*base
= data
;
1642 u32
*regs
= base
->regs_interrupt
;
1643 struct d40_interrupt_lookup
*il
= base
->gen_dmac
.il
;
1644 u32 il_size
= base
->gen_dmac
.il_size
;
1646 spin_lock_irqsave(&base
->interrupt_lock
, flags
);
1648 /* Read interrupt status of both logical and physical channels */
1649 for (i
= 0; i
< il_size
; i
++)
1650 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1654 chan
= find_next_bit((unsigned long *)regs
,
1655 BITS_PER_LONG
* il_size
, chan
+ 1);
1657 /* No more set bits found? */
1658 if (chan
== BITS_PER_LONG
* il_size
)
1661 row
= chan
/ BITS_PER_LONG
;
1662 idx
= chan
& (BITS_PER_LONG
- 1);
1664 if (il
[row
].offset
== D40_PHY_CHAN
)
1665 d40c
= base
->lookup_phy_chans
[idx
];
1667 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1671 * No error because this can happen if something else
1672 * in the system is using the channel.
1678 writel(BIT(idx
), base
->virtbase
+ il
[row
].clr
);
1680 spin_lock(&d40c
->lock
);
1682 if (!il
[row
].is_error
)
1683 dma_tc_handle(d40c
);
1685 d40_err(base
->dev
, "IRQ chan: %ld offset %d idx %d\n",
1686 chan
, il
[row
].offset
, idx
);
1688 spin_unlock(&d40c
->lock
);
1691 spin_unlock_irqrestore(&base
->interrupt_lock
, flags
);
1696 static int d40_validate_conf(struct d40_chan
*d40c
,
1697 struct stedma40_chan_cfg
*conf
)
1700 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1703 chan_err(d40c
, "Invalid direction.\n");
1707 if ((is_log
&& conf
->dev_type
> d40c
->base
->num_log_chans
) ||
1708 (!is_log
&& conf
->dev_type
> d40c
->base
->num_phy_chans
) ||
1709 (conf
->dev_type
< 0)) {
1710 chan_err(d40c
, "Invalid device type (%d)\n", conf
->dev_type
);
1714 if (conf
->dir
== DMA_DEV_TO_DEV
) {
1716 * DMAC HW supports it. Will be added to this driver,
1717 * in case any dma client requires it.
1719 chan_err(d40c
, "periph to periph not supported\n");
1723 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1724 conf
->src_info
.data_width
!=
1725 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1726 conf
->dst_info
.data_width
) {
1728 * The DMAC hardware only supports
1729 * src (burst x width) == dst (burst x width)
1732 chan_err(d40c
, "src (burst x width) != dst (burst x width)\n");
1739 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
,
1740 bool is_src
, int log_event_line
, bool is_log
,
1743 unsigned long flags
;
1744 spin_lock_irqsave(&phy
->lock
, flags
);
1746 *first_user
= ((phy
->allocated_src
| phy
->allocated_dst
)
1750 /* Physical interrupts are masked per physical full channel */
1751 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1752 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1753 phy
->allocated_dst
= D40_ALLOC_PHY
;
1754 phy
->allocated_src
= D40_ALLOC_PHY
;
1757 goto not_found_unlock
;
1760 /* Logical channel */
1762 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1763 goto not_found_unlock
;
1765 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1766 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1768 if (!(phy
->allocated_src
& BIT(log_event_line
))) {
1769 phy
->allocated_src
|= BIT(log_event_line
);
1772 goto not_found_unlock
;
1774 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1775 goto not_found_unlock
;
1777 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1778 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1780 if (!(phy
->allocated_dst
& BIT(log_event_line
))) {
1781 phy
->allocated_dst
|= BIT(log_event_line
);
1786 spin_unlock_irqrestore(&phy
->lock
, flags
);
1789 spin_unlock_irqrestore(&phy
->lock
, flags
);
1793 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1796 unsigned long flags
;
1797 bool is_free
= false;
1799 spin_lock_irqsave(&phy
->lock
, flags
);
1800 if (!log_event_line
) {
1801 phy
->allocated_dst
= D40_ALLOC_FREE
;
1802 phy
->allocated_src
= D40_ALLOC_FREE
;
1807 /* Logical channel */
1809 phy
->allocated_src
&= ~BIT(log_event_line
);
1810 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1811 phy
->allocated_src
= D40_ALLOC_FREE
;
1813 phy
->allocated_dst
&= ~BIT(log_event_line
);
1814 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1815 phy
->allocated_dst
= D40_ALLOC_FREE
;
1818 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1821 spin_unlock_irqrestore(&phy
->lock
, flags
);
1826 static int d40_allocate_channel(struct d40_chan
*d40c
, bool *first_phy_user
)
1828 int dev_type
= d40c
->dma_cfg
.dev_type
;
1831 struct d40_phy_res
*phys
;
1837 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1839 phys
= d40c
->base
->phy_res
;
1840 num_phy_chans
= d40c
->base
->num_phy_chans
;
1842 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
1843 log_num
= 2 * dev_type
;
1845 } else if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
1846 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1847 /* dst event lines are used for logical memcpy */
1848 log_num
= 2 * dev_type
+ 1;
1853 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1854 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1857 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1858 /* Find physical half channel */
1859 if (d40c
->dma_cfg
.use_fixed_channel
) {
1860 i
= d40c
->dma_cfg
.phy_channel
;
1861 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1866 for (i
= 0; i
< num_phy_chans
; i
++) {
1867 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1874 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1875 int phy_num
= j
+ event_group
* 2;
1876 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1877 if (d40_alloc_mask_set(&phys
[i
],
1887 d40c
->phy_chan
= &phys
[i
];
1888 d40c
->log_num
= D40_PHY_CHAN
;
1894 /* Find logical channel */
1895 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1896 int phy_num
= j
+ event_group
* 2;
1898 if (d40c
->dma_cfg
.use_fixed_channel
) {
1899 i
= d40c
->dma_cfg
.phy_channel
;
1901 if ((i
!= phy_num
) && (i
!= phy_num
+ 1)) {
1902 dev_err(chan2dev(d40c
),
1903 "invalid fixed phy channel %d\n", i
);
1907 if (d40_alloc_mask_set(&phys
[i
], is_src
, event_line
,
1908 is_log
, first_phy_user
))
1911 dev_err(chan2dev(d40c
),
1912 "could not allocate fixed phy channel %d\n", i
);
1917 * Spread logical channels across all available physical rather
1918 * than pack every logical channel at the first available phy
1922 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1923 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1929 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
1930 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1940 d40c
->phy_chan
= &phys
[i
];
1941 d40c
->log_num
= log_num
;
1945 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
1947 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
1953 static int d40_config_memcpy(struct d40_chan
*d40c
)
1955 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
1957 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
1958 d40c
->dma_cfg
= dma40_memcpy_conf_log
;
1959 d40c
->dma_cfg
.dev_type
= dma40_memcpy_channels
[d40c
->chan
.chan_id
];
1961 d40_log_cfg(&d40c
->dma_cfg
,
1962 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
1964 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
1965 dma_has_cap(DMA_SLAVE
, cap
)) {
1966 d40c
->dma_cfg
= dma40_memcpy_conf_phy
;
1968 /* Generate interrrupt at end of transfer or relink. */
1969 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_TIM_POS
);
1971 /* Generate interrupt on error. */
1972 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
1973 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
1976 chan_err(d40c
, "No memcpy\n");
1983 static int d40_free_dma(struct d40_chan
*d40c
)
1987 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1988 struct d40_phy_res
*phy
= d40c
->phy_chan
;
1991 /* Terminate all queued and active transfers */
1995 chan_err(d40c
, "phy == null\n");
1999 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
2000 phy
->allocated_dst
== D40_ALLOC_FREE
) {
2001 chan_err(d40c
, "channel already free\n");
2005 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2006 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
)
2008 else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2011 chan_err(d40c
, "Unknown direction\n");
2015 pm_runtime_get_sync(d40c
->base
->dev
);
2016 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2018 chan_err(d40c
, "stop failed\n");
2019 goto mark_last_busy
;
2022 d40_alloc_mask_free(phy
, is_src
, chan_is_logical(d40c
) ? event
: 0);
2024 if (chan_is_logical(d40c
))
2025 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
2027 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
2030 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2031 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2035 d40c
->phy_chan
= NULL
;
2036 d40c
->configured
= false;
2038 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2039 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2043 static bool d40_is_paused(struct d40_chan
*d40c
)
2045 void __iomem
*chanbase
= chan_base(d40c
);
2046 bool is_paused
= false;
2047 unsigned long flags
;
2048 void __iomem
*active_reg
;
2050 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2052 spin_lock_irqsave(&d40c
->lock
, flags
);
2054 if (chan_is_physical(d40c
)) {
2055 if (d40c
->phy_chan
->num
% 2 == 0)
2056 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
2058 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
2060 status
= (readl(active_reg
) &
2061 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
2062 D40_CHAN_POS(d40c
->phy_chan
->num
);
2063 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
2068 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2069 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
2070 status
= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
2071 } else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
2072 status
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
2074 chan_err(d40c
, "Unknown direction\n");
2078 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
2079 D40_EVENTLINE_POS(event
);
2081 if (status
!= D40_DMA_RUN
)
2084 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2089 static u32
stedma40_residue(struct dma_chan
*chan
)
2091 struct d40_chan
*d40c
=
2092 container_of(chan
, struct d40_chan
, chan
);
2094 unsigned long flags
;
2096 spin_lock_irqsave(&d40c
->lock
, flags
);
2097 bytes_left
= d40_residue(d40c
);
2098 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2104 d40_prep_sg_log(struct d40_chan
*chan
, struct d40_desc
*desc
,
2105 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2106 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2107 dma_addr_t dst_dev_addr
)
2109 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2110 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2111 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2114 ret
= d40_log_sg_to_lli(sg_src
, sg_len
,
2117 chan
->log_def
.lcsp1
,
2118 src_info
->data_width
,
2119 dst_info
->data_width
);
2121 ret
= d40_log_sg_to_lli(sg_dst
, sg_len
,
2124 chan
->log_def
.lcsp3
,
2125 dst_info
->data_width
,
2126 src_info
->data_width
);
2128 return ret
< 0 ? ret
: 0;
2132 d40_prep_sg_phy(struct d40_chan
*chan
, struct d40_desc
*desc
,
2133 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2134 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2135 dma_addr_t dst_dev_addr
)
2137 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2138 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2139 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2140 unsigned long flags
= 0;
2144 flags
|= LLI_CYCLIC
| LLI_TERM_INT
;
2146 ret
= d40_phy_sg_to_lli(sg_src
, sg_len
, src_dev_addr
,
2148 virt_to_phys(desc
->lli_phy
.src
),
2150 src_info
, dst_info
, flags
);
2152 ret
= d40_phy_sg_to_lli(sg_dst
, sg_len
, dst_dev_addr
,
2154 virt_to_phys(desc
->lli_phy
.dst
),
2156 dst_info
, src_info
, flags
);
2158 dma_sync_single_for_device(chan
->base
->dev
, desc
->lli_pool
.dma_addr
,
2159 desc
->lli_pool
.size
, DMA_TO_DEVICE
);
2161 return ret
< 0 ? ret
: 0;
2164 static struct d40_desc
*
2165 d40_prep_desc(struct d40_chan
*chan
, struct scatterlist
*sg
,
2166 unsigned int sg_len
, unsigned long dma_flags
)
2168 struct stedma40_chan_cfg
*cfg
;
2169 struct d40_desc
*desc
;
2172 desc
= d40_desc_get(chan
);
2176 cfg
= &chan
->dma_cfg
;
2177 desc
->lli_len
= d40_sg_2_dmalen(sg
, sg_len
, cfg
->src_info
.data_width
,
2178 cfg
->dst_info
.data_width
);
2179 if (desc
->lli_len
< 0) {
2180 chan_err(chan
, "Unaligned size\n");
2184 ret
= d40_pool_lli_alloc(chan
, desc
, desc
->lli_len
);
2186 chan_err(chan
, "Could not allocate lli\n");
2190 desc
->lli_current
= 0;
2191 desc
->txd
.flags
= dma_flags
;
2192 desc
->txd
.tx_submit
= d40_tx_submit
;
2194 dma_async_tx_descriptor_init(&desc
->txd
, &chan
->chan
);
2198 d40_desc_free(chan
, desc
);
2202 static struct dma_async_tx_descriptor
*
2203 d40_prep_sg(struct dma_chan
*dchan
, struct scatterlist
*sg_src
,
2204 struct scatterlist
*sg_dst
, unsigned int sg_len
,
2205 enum dma_transfer_direction direction
, unsigned long dma_flags
)
2207 struct d40_chan
*chan
= container_of(dchan
, struct d40_chan
, chan
);
2208 dma_addr_t src_dev_addr
;
2209 dma_addr_t dst_dev_addr
;
2210 struct d40_desc
*desc
;
2211 unsigned long flags
;
2214 if (!chan
->phy_chan
) {
2215 chan_err(chan
, "Cannot prepare unallocated channel\n");
2219 spin_lock_irqsave(&chan
->lock
, flags
);
2221 desc
= d40_prep_desc(chan
, sg_src
, sg_len
, dma_flags
);
2225 if (sg_next(&sg_src
[sg_len
- 1]) == sg_src
)
2226 desc
->cyclic
= true;
2230 if (direction
== DMA_DEV_TO_MEM
)
2231 src_dev_addr
= chan
->runtime_addr
;
2232 else if (direction
== DMA_MEM_TO_DEV
)
2233 dst_dev_addr
= chan
->runtime_addr
;
2235 if (chan_is_logical(chan
))
2236 ret
= d40_prep_sg_log(chan
, desc
, sg_src
, sg_dst
,
2237 sg_len
, src_dev_addr
, dst_dev_addr
);
2239 ret
= d40_prep_sg_phy(chan
, desc
, sg_src
, sg_dst
,
2240 sg_len
, src_dev_addr
, dst_dev_addr
);
2243 chan_err(chan
, "Failed to prepare %s sg job: %d\n",
2244 chan_is_logical(chan
) ? "log" : "phy", ret
);
2249 * add descriptor to the prepare queue in order to be able
2250 * to free them later in terminate_all
2252 list_add_tail(&desc
->node
, &chan
->prepare_queue
);
2254 spin_unlock_irqrestore(&chan
->lock
, flags
);
2258 d40_desc_free(chan
, desc
);
2260 spin_unlock_irqrestore(&chan
->lock
, flags
);
2264 bool stedma40_filter(struct dma_chan
*chan
, void *data
)
2266 struct stedma40_chan_cfg
*info
= data
;
2267 struct d40_chan
*d40c
=
2268 container_of(chan
, struct d40_chan
, chan
);
2272 err
= d40_validate_conf(d40c
, info
);
2274 d40c
->dma_cfg
= *info
;
2276 err
= d40_config_memcpy(d40c
);
2279 d40c
->configured
= true;
2283 EXPORT_SYMBOL(stedma40_filter
);
2285 static void __d40_set_prio_rt(struct d40_chan
*d40c
, int dev_type
, bool src
)
2287 bool realtime
= d40c
->dma_cfg
.realtime
;
2288 bool highprio
= d40c
->dma_cfg
.high_priority
;
2290 u32 event
= D40_TYPE_TO_EVENT(dev_type
);
2291 u32 group
= D40_TYPE_TO_GROUP(dev_type
);
2292 u32 bit
= BIT(event
);
2294 struct d40_gen_dmac
*dmac
= &d40c
->base
->gen_dmac
;
2296 rtreg
= realtime
? dmac
->realtime_en
: dmac
->realtime_clear
;
2298 * Due to a hardware bug, in some cases a logical channel triggered by
2299 * a high priority destination event line can generate extra packet
2302 * The workaround is to not set the high priority level for the
2303 * destination event lines that trigger logical channels.
2305 if (!src
&& chan_is_logical(d40c
))
2308 prioreg
= highprio
? dmac
->high_prio_en
: dmac
->high_prio_clear
;
2310 /* Destination event lines are stored in the upper halfword */
2314 writel(bit
, d40c
->base
->virtbase
+ prioreg
+ group
* 4);
2315 writel(bit
, d40c
->base
->virtbase
+ rtreg
+ group
* 4);
2318 static void d40_set_prio_realtime(struct d40_chan
*d40c
)
2320 if (d40c
->base
->rev
< 3)
2323 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
2324 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2325 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, true);
2327 if ((d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
) ||
2328 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2329 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, false);
2332 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2333 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2334 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2335 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2336 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2338 static struct dma_chan
*d40_xlate(struct of_phandle_args
*dma_spec
,
2339 struct of_dma
*ofdma
)
2341 struct stedma40_chan_cfg cfg
;
2345 memset(&cfg
, 0, sizeof(struct stedma40_chan_cfg
));
2348 dma_cap_set(DMA_SLAVE
, cap
);
2350 cfg
.dev_type
= dma_spec
->args
[0];
2351 flags
= dma_spec
->args
[2];
2353 switch (D40_DT_FLAGS_MODE(flags
)) {
2354 case 0: cfg
.mode
= STEDMA40_MODE_LOGICAL
; break;
2355 case 1: cfg
.mode
= STEDMA40_MODE_PHYSICAL
; break;
2358 switch (D40_DT_FLAGS_DIR(flags
)) {
2360 cfg
.dir
= DMA_MEM_TO_DEV
;
2361 cfg
.dst_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2364 cfg
.dir
= DMA_DEV_TO_MEM
;
2365 cfg
.src_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2369 if (D40_DT_FLAGS_FIXED_CHAN(flags
)) {
2370 cfg
.phy_channel
= dma_spec
->args
[1];
2371 cfg
.use_fixed_channel
= true;
2374 if (D40_DT_FLAGS_HIGH_PRIO(flags
))
2375 cfg
.high_priority
= true;
2377 return dma_request_channel(cap
, stedma40_filter
, &cfg
);
2380 /* DMA ENGINE functions */
2381 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
2384 unsigned long flags
;
2385 struct d40_chan
*d40c
=
2386 container_of(chan
, struct d40_chan
, chan
);
2388 spin_lock_irqsave(&d40c
->lock
, flags
);
2390 dma_cookie_init(chan
);
2392 /* If no dma configuration is set use default configuration (memcpy) */
2393 if (!d40c
->configured
) {
2394 err
= d40_config_memcpy(d40c
);
2396 chan_err(d40c
, "Failed to configure memcpy channel\n");
2397 goto mark_last_busy
;
2401 err
= d40_allocate_channel(d40c
, &is_free_phy
);
2403 chan_err(d40c
, "Failed to allocate channel\n");
2404 d40c
->configured
= false;
2405 goto mark_last_busy
;
2408 pm_runtime_get_sync(d40c
->base
->dev
);
2410 d40_set_prio_realtime(d40c
);
2412 if (chan_is_logical(d40c
)) {
2413 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2414 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2415 d40c
->dma_cfg
.dev_type
* D40_LCPA_CHAN_SIZE
;
2417 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2418 d40c
->dma_cfg
.dev_type
*
2419 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
2421 /* Unmask the Global Interrupt Mask. */
2422 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2423 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2426 dev_dbg(chan2dev(d40c
), "allocated %s channel (phy %d%s)\n",
2427 chan_is_logical(d40c
) ? "logical" : "physical",
2428 d40c
->phy_chan
->num
,
2429 d40c
->dma_cfg
.use_fixed_channel
? ", fixed" : "");
2433 * Only write channel configuration to the DMA if the physical
2434 * resource is free. In case of multiple logical channels
2435 * on the same physical resource, only the first write is necessary.
2438 d40_config_write(d40c
);
2440 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2441 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2442 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2446 static void d40_free_chan_resources(struct dma_chan
*chan
)
2448 struct d40_chan
*d40c
=
2449 container_of(chan
, struct d40_chan
, chan
);
2451 unsigned long flags
;
2453 if (d40c
->phy_chan
== NULL
) {
2454 chan_err(d40c
, "Cannot free unallocated channel\n");
2458 spin_lock_irqsave(&d40c
->lock
, flags
);
2460 err
= d40_free_dma(d40c
);
2463 chan_err(d40c
, "Failed to free channel\n");
2464 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2467 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
2471 unsigned long dma_flags
)
2473 struct scatterlist dst_sg
;
2474 struct scatterlist src_sg
;
2476 sg_init_table(&dst_sg
, 1);
2477 sg_init_table(&src_sg
, 1);
2479 sg_dma_address(&dst_sg
) = dst
;
2480 sg_dma_address(&src_sg
) = src
;
2482 sg_dma_len(&dst_sg
) = size
;
2483 sg_dma_len(&src_sg
) = size
;
2485 return d40_prep_sg(chan
, &src_sg
, &dst_sg
, 1,
2486 DMA_MEM_TO_MEM
, dma_flags
);
2489 static struct dma_async_tx_descriptor
*
2490 d40_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
2491 unsigned int sg_len
, enum dma_transfer_direction direction
,
2492 unsigned long dma_flags
, void *context
)
2494 if (!is_slave_direction(direction
))
2497 return d40_prep_sg(chan
, sgl
, sgl
, sg_len
, direction
, dma_flags
);
2500 static struct dma_async_tx_descriptor
*
2501 dma40_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
2502 size_t buf_len
, size_t period_len
,
2503 enum dma_transfer_direction direction
, unsigned long flags
)
2505 unsigned int periods
= buf_len
/ period_len
;
2506 struct dma_async_tx_descriptor
*txd
;
2507 struct scatterlist
*sg
;
2510 sg
= kcalloc(periods
+ 1, sizeof(struct scatterlist
), GFP_NOWAIT
);
2514 for (i
= 0; i
< periods
; i
++) {
2515 sg_dma_address(&sg
[i
]) = dma_addr
;
2516 sg_dma_len(&sg
[i
]) = period_len
;
2517 dma_addr
+= period_len
;
2520 sg_chain(sg
, periods
+ 1, sg
);
2522 txd
= d40_prep_sg(chan
, sg
, sg
, periods
, direction
,
2523 DMA_PREP_INTERRUPT
);
2530 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2531 dma_cookie_t cookie
,
2532 struct dma_tx_state
*txstate
)
2534 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2535 enum dma_status ret
;
2537 if (d40c
->phy_chan
== NULL
) {
2538 chan_err(d40c
, "Cannot read status of unallocated channel\n");
2542 ret
= dma_cookie_status(chan
, cookie
, txstate
);
2543 if (ret
!= DMA_COMPLETE
&& txstate
)
2544 dma_set_residue(txstate
, stedma40_residue(chan
));
2546 if (d40_is_paused(d40c
))
2552 static void d40_issue_pending(struct dma_chan
*chan
)
2554 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2555 unsigned long flags
;
2557 if (d40c
->phy_chan
== NULL
) {
2558 chan_err(d40c
, "Channel is not allocated!\n");
2562 spin_lock_irqsave(&d40c
->lock
, flags
);
2564 list_splice_tail_init(&d40c
->pending_queue
, &d40c
->queue
);
2566 /* Busy means that queued jobs are already being processed */
2568 (void) d40_queue_start(d40c
);
2570 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2573 static int d40_terminate_all(struct dma_chan
*chan
)
2575 unsigned long flags
;
2576 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2579 if (d40c
->phy_chan
== NULL
) {
2580 chan_err(d40c
, "Channel is not allocated!\n");
2584 spin_lock_irqsave(&d40c
->lock
, flags
);
2586 pm_runtime_get_sync(d40c
->base
->dev
);
2587 ret
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2589 chan_err(d40c
, "Failed to stop channel\n");
2592 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2593 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2595 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2596 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2600 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2605 dma40_config_to_halfchannel(struct d40_chan
*d40c
,
2606 struct stedma40_half_channel_info
*info
,
2611 if (chan_is_logical(d40c
)) {
2613 psize
= STEDMA40_PSIZE_LOG_16
;
2614 else if (maxburst
>= 8)
2615 psize
= STEDMA40_PSIZE_LOG_8
;
2616 else if (maxburst
>= 4)
2617 psize
= STEDMA40_PSIZE_LOG_4
;
2619 psize
= STEDMA40_PSIZE_LOG_1
;
2622 psize
= STEDMA40_PSIZE_PHY_16
;
2623 else if (maxburst
>= 8)
2624 psize
= STEDMA40_PSIZE_PHY_8
;
2625 else if (maxburst
>= 4)
2626 psize
= STEDMA40_PSIZE_PHY_4
;
2628 psize
= STEDMA40_PSIZE_PHY_1
;
2631 info
->psize
= psize
;
2632 info
->flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2637 /* Runtime reconfiguration extension */
2638 static int d40_set_runtime_config(struct dma_chan
*chan
,
2639 struct dma_slave_config
*config
)
2641 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2642 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2643 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
2644 dma_addr_t config_addr
;
2645 u32 src_maxburst
, dst_maxburst
;
2648 if (d40c
->phy_chan
== NULL
) {
2649 chan_err(d40c
, "Channel is not allocated!\n");
2653 src_addr_width
= config
->src_addr_width
;
2654 src_maxburst
= config
->src_maxburst
;
2655 dst_addr_width
= config
->dst_addr_width
;
2656 dst_maxburst
= config
->dst_maxburst
;
2658 if (config
->direction
== DMA_DEV_TO_MEM
) {
2659 config_addr
= config
->src_addr
;
2661 if (cfg
->dir
!= DMA_DEV_TO_MEM
)
2662 dev_dbg(d40c
->base
->dev
,
2663 "channel was not configured for peripheral "
2664 "to memory transfer (%d) overriding\n",
2666 cfg
->dir
= DMA_DEV_TO_MEM
;
2668 /* Configure the memory side */
2669 if (dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2670 dst_addr_width
= src_addr_width
;
2671 if (dst_maxburst
== 0)
2672 dst_maxburst
= src_maxburst
;
2674 } else if (config
->direction
== DMA_MEM_TO_DEV
) {
2675 config_addr
= config
->dst_addr
;
2677 if (cfg
->dir
!= DMA_MEM_TO_DEV
)
2678 dev_dbg(d40c
->base
->dev
,
2679 "channel was not configured for memory "
2680 "to peripheral transfer (%d) overriding\n",
2682 cfg
->dir
= DMA_MEM_TO_DEV
;
2684 /* Configure the memory side */
2685 if (src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2686 src_addr_width
= dst_addr_width
;
2687 if (src_maxburst
== 0)
2688 src_maxburst
= dst_maxburst
;
2690 dev_err(d40c
->base
->dev
,
2691 "unrecognized channel direction %d\n",
2696 if (config_addr
<= 0) {
2697 dev_err(d40c
->base
->dev
, "no address supplied\n");
2701 if (src_maxburst
* src_addr_width
!= dst_maxburst
* dst_addr_width
) {
2702 dev_err(d40c
->base
->dev
,
2703 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2711 if (src_maxburst
> 16) {
2713 dst_maxburst
= src_maxburst
* src_addr_width
/ dst_addr_width
;
2714 } else if (dst_maxburst
> 16) {
2716 src_maxburst
= dst_maxburst
* dst_addr_width
/ src_addr_width
;
2719 /* Only valid widths are; 1, 2, 4 and 8. */
2720 if (src_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2721 src_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2722 dst_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2723 dst_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2724 !is_power_of_2(src_addr_width
) ||
2725 !is_power_of_2(dst_addr_width
))
2728 cfg
->src_info
.data_width
= src_addr_width
;
2729 cfg
->dst_info
.data_width
= dst_addr_width
;
2731 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->src_info
,
2736 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->dst_info
,
2741 /* Fill in register values */
2742 if (chan_is_logical(d40c
))
2743 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2745 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
, &d40c
->dst_def_cfg
);
2747 /* These settings will take precedence later */
2748 d40c
->runtime_addr
= config_addr
;
2749 d40c
->runtime_direction
= config
->direction
;
2750 dev_dbg(d40c
->base
->dev
,
2751 "configured channel %s for %s, data width %d/%d, "
2752 "maxburst %d/%d elements, LE, no flow control\n",
2753 dma_chan_name(chan
),
2754 (config
->direction
== DMA_DEV_TO_MEM
) ? "RX" : "TX",
2755 src_addr_width
, dst_addr_width
,
2756 src_maxburst
, dst_maxburst
);
2761 /* Initialization functions */
2763 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2764 struct d40_chan
*chans
, int offset
,
2768 struct d40_chan
*d40c
;
2770 INIT_LIST_HEAD(&dma
->channels
);
2772 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2775 d40c
->chan
.device
= dma
;
2777 spin_lock_init(&d40c
->lock
);
2779 d40c
->log_num
= D40_PHY_CHAN
;
2781 INIT_LIST_HEAD(&d40c
->done
);
2782 INIT_LIST_HEAD(&d40c
->active
);
2783 INIT_LIST_HEAD(&d40c
->queue
);
2784 INIT_LIST_HEAD(&d40c
->pending_queue
);
2785 INIT_LIST_HEAD(&d40c
->client
);
2786 INIT_LIST_HEAD(&d40c
->prepare_queue
);
2788 tasklet_init(&d40c
->tasklet
, dma_tasklet
,
2789 (unsigned long) d40c
);
2791 list_add_tail(&d40c
->chan
.device_node
,
2796 static void d40_ops_init(struct d40_base
*base
, struct dma_device
*dev
)
2798 if (dma_has_cap(DMA_SLAVE
, dev
->cap_mask
)) {
2799 dev
->device_prep_slave_sg
= d40_prep_slave_sg
;
2800 dev
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
2803 if (dma_has_cap(DMA_MEMCPY
, dev
->cap_mask
)) {
2804 dev
->device_prep_dma_memcpy
= d40_prep_memcpy
;
2805 dev
->directions
= BIT(DMA_MEM_TO_MEM
);
2807 * This controller can only access address at even
2808 * 32bit boundaries, i.e. 2^2
2810 dev
->copy_align
= DMAENGINE_ALIGN_4_BYTES
;
2813 if (dma_has_cap(DMA_CYCLIC
, dev
->cap_mask
))
2814 dev
->device_prep_dma_cyclic
= dma40_prep_dma_cyclic
;
2816 dev
->device_alloc_chan_resources
= d40_alloc_chan_resources
;
2817 dev
->device_free_chan_resources
= d40_free_chan_resources
;
2818 dev
->device_issue_pending
= d40_issue_pending
;
2819 dev
->device_tx_status
= d40_tx_status
;
2820 dev
->device_config
= d40_set_runtime_config
;
2821 dev
->device_pause
= d40_pause
;
2822 dev
->device_resume
= d40_resume
;
2823 dev
->device_terminate_all
= d40_terminate_all
;
2824 dev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
2825 dev
->dev
= base
->dev
;
2828 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2829 int num_reserved_chans
)
2833 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2834 0, base
->num_log_chans
);
2836 dma_cap_zero(base
->dma_slave
.cap_mask
);
2837 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2838 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2840 d40_ops_init(base
, &base
->dma_slave
);
2842 err
= dma_async_device_register(&base
->dma_slave
);
2845 d40_err(base
->dev
, "Failed to register slave channels\n");
2849 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2850 base
->num_log_chans
, base
->num_memcpy_chans
);
2852 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2853 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2855 d40_ops_init(base
, &base
->dma_memcpy
);
2857 err
= dma_async_device_register(&base
->dma_memcpy
);
2861 "Failed to register memcpy only channels\n");
2862 goto unregister_slave
;
2865 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2866 0, num_reserved_chans
);
2868 dma_cap_zero(base
->dma_both
.cap_mask
);
2869 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2870 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2871 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2873 d40_ops_init(base
, &base
->dma_both
);
2874 err
= dma_async_device_register(&base
->dma_both
);
2878 "Failed to register logical and physical capable channels\n");
2879 goto unregister_memcpy
;
2883 dma_async_device_unregister(&base
->dma_memcpy
);
2885 dma_async_device_unregister(&base
->dma_slave
);
2890 /* Suspend resume functionality */
2891 #ifdef CONFIG_PM_SLEEP
2892 static int dma40_suspend(struct device
*dev
)
2894 struct d40_base
*base
= dev_get_drvdata(dev
);
2897 ret
= pm_runtime_force_suspend(dev
);
2901 if (base
->lcpa_regulator
)
2902 ret
= regulator_disable(base
->lcpa_regulator
);
2906 static int dma40_resume(struct device
*dev
)
2908 struct d40_base
*base
= dev_get_drvdata(dev
);
2911 if (base
->lcpa_regulator
) {
2912 ret
= regulator_enable(base
->lcpa_regulator
);
2917 return pm_runtime_force_resume(dev
);
2922 static void dma40_backup(void __iomem
*baseaddr
, u32
*backup
,
2923 u32
*regaddr
, int num
, bool save
)
2927 for (i
= 0; i
< num
; i
++) {
2928 void __iomem
*addr
= baseaddr
+ regaddr
[i
];
2931 backup
[i
] = readl_relaxed(addr
);
2933 writel_relaxed(backup
[i
], addr
);
2937 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
2941 /* Save/Restore channel specific registers */
2942 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2946 if (base
->phy_res
[i
].reserved
)
2949 addr
= base
->virtbase
+ D40_DREG_PCBASE
+ i
* D40_DREG_PCDELTA
;
2950 idx
= i
* ARRAY_SIZE(d40_backup_regs_chan
);
2952 dma40_backup(addr
, &base
->reg_val_backup_chan
[idx
],
2953 d40_backup_regs_chan
,
2954 ARRAY_SIZE(d40_backup_regs_chan
),
2958 /* Save/Restore global registers */
2959 dma40_backup(base
->virtbase
, base
->reg_val_backup
,
2960 d40_backup_regs
, ARRAY_SIZE(d40_backup_regs
),
2963 /* Save/Restore registers only existing on dma40 v3 and later */
2964 if (base
->gen_dmac
.backup
)
2965 dma40_backup(base
->virtbase
, base
->reg_val_backup_v4
,
2966 base
->gen_dmac
.backup
,
2967 base
->gen_dmac
.backup_size
,
2971 static int dma40_runtime_suspend(struct device
*dev
)
2973 struct d40_base
*base
= dev_get_drvdata(dev
);
2975 d40_save_restore_registers(base
, true);
2977 /* Don't disable/enable clocks for v1 due to HW bugs */
2979 writel_relaxed(base
->gcc_pwr_off_mask
,
2980 base
->virtbase
+ D40_DREG_GCC
);
2985 static int dma40_runtime_resume(struct device
*dev
)
2987 struct d40_base
*base
= dev_get_drvdata(dev
);
2989 d40_save_restore_registers(base
, false);
2991 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
,
2992 base
->virtbase
+ D40_DREG_GCC
);
2997 static const struct dev_pm_ops dma40_pm_ops
= {
2998 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend
, dma40_resume
)
2999 SET_RUNTIME_PM_OPS(dma40_runtime_suspend
,
3000 dma40_runtime_resume
,
3004 /* Initialization functions. */
3006 static int __init
d40_phy_res_init(struct d40_base
*base
)
3009 int num_phy_chans_avail
= 0;
3011 int odd_even_bit
= -2;
3012 int gcc
= D40_DREG_GCC_ENA
;
3014 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
3015 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
3017 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3018 base
->phy_res
[i
].num
= i
;
3019 odd_even_bit
+= 2 * ((i
% 2) == 0);
3020 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
3021 /* Mark security only channels as occupied */
3022 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
3023 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
3024 base
->phy_res
[i
].reserved
= true;
3025 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3027 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3032 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
3033 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
3034 base
->phy_res
[i
].reserved
= false;
3035 num_phy_chans_avail
++;
3037 spin_lock_init(&base
->phy_res
[i
].lock
);
3040 /* Mark disabled channels as occupied */
3041 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
3042 int chan
= base
->plat_data
->disabled_channels
[i
];
3044 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
3045 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
3046 base
->phy_res
[chan
].reserved
= true;
3047 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3049 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3051 num_phy_chans_avail
--;
3054 /* Mark soft_lli channels */
3055 for (i
= 0; i
< base
->plat_data
->num_of_soft_lli_chans
; i
++) {
3056 int chan
= base
->plat_data
->soft_lli_chans
[i
];
3058 base
->phy_res
[chan
].use_soft_lli
= true;
3061 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
3062 num_phy_chans_avail
, base
->num_phy_chans
);
3064 /* Verify settings extended vs standard */
3065 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
3067 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3069 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
3070 (val
[0] & 0x3) != 1)
3072 "[%s] INFO: channel %d is misconfigured (%d)\n",
3073 __func__
, i
, val
[0] & 0x3);
3075 val
[0] = val
[0] >> 2;
3079 * To keep things simple, Enable all clocks initially.
3080 * The clocks will get managed later post channel allocation.
3081 * The clocks for the event lines on which reserved channels exists
3082 * are not managed here.
3084 writel(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3085 base
->gcc_pwr_off_mask
= gcc
;
3087 return num_phy_chans_avail
;
3090 static struct d40_base
* __init
d40_hw_detect_init(struct platform_device
*pdev
)
3092 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3094 void __iomem
*virtbase
;
3095 struct resource
*res
;
3096 struct d40_base
*base
;
3099 int num_memcpy_chans
;
3100 int clk_ret
= -EINVAL
;
3106 clk
= clk_get(&pdev
->dev
, NULL
);
3108 d40_err(&pdev
->dev
, "No matching clock found\n");
3109 goto check_prepare_enabled
;
3112 clk_ret
= clk_prepare_enable(clk
);
3114 d40_err(&pdev
->dev
, "Failed to prepare/enable clock\n");
3115 goto disable_unprepare
;
3118 /* Get IO for DMAC base address */
3119 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "base");
3121 goto disable_unprepare
;
3123 if (request_mem_region(res
->start
, resource_size(res
),
3124 D40_NAME
" I/O base") == NULL
)
3125 goto release_region
;
3127 virtbase
= ioremap(res
->start
, resource_size(res
));
3129 goto release_region
;
3131 /* This is just a regular AMBA PrimeCell ID actually */
3132 for (pid
= 0, i
= 0; i
< 4; i
++)
3133 pid
|= (readl(virtbase
+ resource_size(res
) - 0x20 + 4 * i
)
3135 for (cid
= 0, i
= 0; i
< 4; i
++)
3136 cid
|= (readl(virtbase
+ resource_size(res
) - 0x10 + 4 * i
)
3139 if (cid
!= AMBA_CID
) {
3140 d40_err(&pdev
->dev
, "Unknown hardware! No PrimeCell ID\n");
3143 if (AMBA_MANF_BITS(pid
) != AMBA_VENDOR_ST
) {
3144 d40_err(&pdev
->dev
, "Unknown designer! Got %x wanted %x\n",
3145 AMBA_MANF_BITS(pid
),
3151 * DB8500ed has revision 0
3153 * DB8500v1 has revision 2
3154 * DB8500v2 has revision 3
3155 * AP9540v1 has revision 4
3156 * DB8540v1 has revision 4
3158 rev
= AMBA_REV_BITS(pid
);
3160 d40_err(&pdev
->dev
, "hardware revision: %d is not supported", rev
);
3164 /* The number of physical channels on this HW */
3165 if (plat_data
->num_of_phy_chans
)
3166 num_phy_chans
= plat_data
->num_of_phy_chans
;
3168 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
3170 /* The number of channels used for memcpy */
3171 if (plat_data
->num_of_memcpy_chans
)
3172 num_memcpy_chans
= plat_data
->num_of_memcpy_chans
;
3174 num_memcpy_chans
= ARRAY_SIZE(dma40_memcpy_channels
);
3176 num_log_chans
= num_phy_chans
* D40_MAX_LOG_CHAN_PER_PHY
;
3178 dev_info(&pdev
->dev
,
3179 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3180 rev
, &res
->start
, num_phy_chans
, num_log_chans
);
3182 base
= kzalloc(ALIGN(sizeof(struct d40_base
), 4) +
3183 (num_phy_chans
+ num_log_chans
+ num_memcpy_chans
) *
3184 sizeof(struct d40_chan
), GFP_KERNEL
);
3191 base
->num_memcpy_chans
= num_memcpy_chans
;
3192 base
->num_phy_chans
= num_phy_chans
;
3193 base
->num_log_chans
= num_log_chans
;
3194 base
->phy_start
= res
->start
;
3195 base
->phy_size
= resource_size(res
);
3196 base
->virtbase
= virtbase
;
3197 base
->plat_data
= plat_data
;
3198 base
->dev
= &pdev
->dev
;
3199 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
3200 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
3202 if (base
->plat_data
->num_of_phy_chans
== 14) {
3203 base
->gen_dmac
.backup
= d40_backup_regs_v4b
;
3204 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4B
;
3205 base
->gen_dmac
.interrupt_en
= D40_DREG_CPCMIS
;
3206 base
->gen_dmac
.interrupt_clear
= D40_DREG_CPCICR
;
3207 base
->gen_dmac
.realtime_en
= D40_DREG_CRSEG1
;
3208 base
->gen_dmac
.realtime_clear
= D40_DREG_CRCEG1
;
3209 base
->gen_dmac
.high_prio_en
= D40_DREG_CPSEG1
;
3210 base
->gen_dmac
.high_prio_clear
= D40_DREG_CPCEG1
;
3211 base
->gen_dmac
.il
= il_v4b
;
3212 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4b
);
3213 base
->gen_dmac
.init_reg
= dma_init_reg_v4b
;
3214 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4b
);
3216 if (base
->rev
>= 3) {
3217 base
->gen_dmac
.backup
= d40_backup_regs_v4a
;
3218 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4A
;
3220 base
->gen_dmac
.interrupt_en
= D40_DREG_PCMIS
;
3221 base
->gen_dmac
.interrupt_clear
= D40_DREG_PCICR
;
3222 base
->gen_dmac
.realtime_en
= D40_DREG_RSEG1
;
3223 base
->gen_dmac
.realtime_clear
= D40_DREG_RCEG1
;
3224 base
->gen_dmac
.high_prio_en
= D40_DREG_PSEG1
;
3225 base
->gen_dmac
.high_prio_clear
= D40_DREG_PCEG1
;
3226 base
->gen_dmac
.il
= il_v4a
;
3227 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4a
);
3228 base
->gen_dmac
.init_reg
= dma_init_reg_v4a
;
3229 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4a
);
3232 base
->phy_res
= kcalloc(num_phy_chans
,
3233 sizeof(*base
->phy_res
),
3238 base
->lookup_phy_chans
= kcalloc(num_phy_chans
,
3239 sizeof(*base
->lookup_phy_chans
),
3241 if (!base
->lookup_phy_chans
)
3244 base
->lookup_log_chans
= kcalloc(num_log_chans
,
3245 sizeof(*base
->lookup_log_chans
),
3247 if (!base
->lookup_log_chans
)
3248 goto free_phy_chans
;
3250 base
->reg_val_backup_chan
= kmalloc_array(base
->num_phy_chans
,
3251 sizeof(d40_backup_regs_chan
),
3253 if (!base
->reg_val_backup_chan
)
3254 goto free_log_chans
;
3256 base
->lcla_pool
.alloc_map
= kcalloc(num_phy_chans
3257 * D40_LCLA_LINK_PER_EVENT_GRP
,
3258 sizeof(*base
->lcla_pool
.alloc_map
),
3260 if (!base
->lcla_pool
.alloc_map
)
3261 goto free_backup_chan
;
3263 base
->regs_interrupt
= kmalloc_array(base
->gen_dmac
.il_size
,
3264 sizeof(*base
->regs_interrupt
),
3266 if (!base
->regs_interrupt
)
3269 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
3270 0, SLAB_HWCACHE_ALIGN
,
3272 if (base
->desc_slab
== NULL
)
3278 kfree(base
->regs_interrupt
);
3280 kfree(base
->lcla_pool
.alloc_map
);
3282 kfree(base
->reg_val_backup_chan
);
3284 kfree(base
->lookup_log_chans
);
3286 kfree(base
->lookup_phy_chans
);
3288 kfree(base
->phy_res
);
3294 release_mem_region(res
->start
, resource_size(res
));
3295 check_prepare_enabled
:
3298 clk_disable_unprepare(clk
);
3304 static void __init
d40_hw_init(struct d40_base
*base
)
3308 u32 prmseo
[2] = {0, 0};
3309 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3312 struct d40_reg_val
*dma_init_reg
= base
->gen_dmac
.init_reg
;
3313 u32 reg_size
= base
->gen_dmac
.init_reg_size
;
3315 for (i
= 0; i
< reg_size
; i
++)
3316 writel(dma_init_reg
[i
].val
,
3317 base
->virtbase
+ dma_init_reg
[i
].reg
);
3319 /* Configure all our dma channels to default settings */
3320 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3322 activeo
[i
% 2] = activeo
[i
% 2] << 2;
3324 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
3326 activeo
[i
% 2] |= 3;
3330 /* Enable interrupt # */
3331 pcmis
= (pcmis
<< 1) | 1;
3333 /* Clear interrupt # */
3334 pcicr
= (pcicr
<< 1) | 1;
3336 /* Set channel to physical mode */
3337 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
3342 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
3343 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
3344 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
3345 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
3347 /* Write which interrupt to enable */
3348 writel(pcmis
, base
->virtbase
+ base
->gen_dmac
.interrupt_en
);
3350 /* Write which interrupt to clear */
3351 writel(pcicr
, base
->virtbase
+ base
->gen_dmac
.interrupt_clear
);
3353 /* These are __initdata and cannot be accessed after init */
3354 base
->gen_dmac
.init_reg
= NULL
;
3355 base
->gen_dmac
.init_reg_size
= 0;
3358 static int __init
d40_lcla_allocate(struct d40_base
*base
)
3360 struct d40_lcla_pool
*pool
= &base
->lcla_pool
;
3361 unsigned long *page_list
;
3366 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3367 * To full fill this hardware requirement without wasting 256 kb
3368 * we allocate pages until we get an aligned one.
3370 page_list
= kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS
,
3376 /* Calculating how many pages that are required */
3377 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
3379 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
3380 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
3381 base
->lcla_pool
.pages
);
3382 if (!page_list
[i
]) {
3384 d40_err(base
->dev
, "Failed to allocate %d pages.\n",
3385 base
->lcla_pool
.pages
);
3388 for (j
= 0; j
< i
; j
++)
3389 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3390 goto free_page_list
;
3393 if ((virt_to_phys((void *)page_list
[i
]) &
3394 (LCLA_ALIGNMENT
- 1)) == 0)
3398 for (j
= 0; j
< i
; j
++)
3399 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3401 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
3402 base
->lcla_pool
.base
= (void *)page_list
[i
];
3405 * After many attempts and no succees with finding the correct
3406 * alignment, try with allocating a big buffer.
3409 "[%s] Failed to get %d pages @ 18 bit align.\n",
3410 __func__
, base
->lcla_pool
.pages
);
3411 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
3412 base
->num_phy_chans
+
3415 if (!base
->lcla_pool
.base_unaligned
) {
3417 goto free_page_list
;
3420 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
3424 pool
->dma_addr
= dma_map_single(base
->dev
, pool
->base
,
3425 SZ_1K
* base
->num_phy_chans
,
3427 if (dma_mapping_error(base
->dev
, pool
->dma_addr
)) {
3430 goto free_page_list
;
3433 writel(virt_to_phys(base
->lcla_pool
.base
),
3434 base
->virtbase
+ D40_DREG_LCLA
);
3441 static int __init
d40_of_probe(struct platform_device
*pdev
,
3442 struct device_node
*np
)
3444 struct stedma40_platform_data
*pdata
;
3445 int num_phy
= 0, num_memcpy
= 0, num_disabled
= 0;
3448 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
3452 /* If absent this value will be obtained from h/w. */
3453 of_property_read_u32(np
, "dma-channels", &num_phy
);
3455 pdata
->num_of_phy_chans
= num_phy
;
3457 list
= of_get_property(np
, "memcpy-channels", &num_memcpy
);
3458 num_memcpy
/= sizeof(*list
);
3460 if (num_memcpy
> D40_MEMCPY_MAX_CHANS
|| num_memcpy
<= 0) {
3462 "Invalid number of memcpy channels specified (%d)\n",
3466 pdata
->num_of_memcpy_chans
= num_memcpy
;
3468 of_property_read_u32_array(np
, "memcpy-channels",
3469 dma40_memcpy_channels
,
3472 list
= of_get_property(np
, "disabled-channels", &num_disabled
);
3473 num_disabled
/= sizeof(*list
);
3475 if (num_disabled
>= STEDMA40_MAX_PHYS
|| num_disabled
< 0) {
3477 "Invalid number of disabled channels specified (%d)\n",
3482 of_property_read_u32_array(np
, "disabled-channels",
3483 pdata
->disabled_channels
,
3485 pdata
->disabled_channels
[num_disabled
] = -1;
3487 pdev
->dev
.platform_data
= pdata
;
3492 static int __init
d40_probe(struct platform_device
*pdev
)
3494 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3495 struct device_node
*np
= pdev
->dev
.of_node
;
3497 struct d40_base
*base
;
3498 struct resource
*res
;
3499 int num_reserved_chans
;
3504 if (d40_of_probe(pdev
, np
)) {
3506 goto report_failure
;
3509 d40_err(&pdev
->dev
, "No pdata or Device Tree provided\n");
3510 goto report_failure
;
3514 base
= d40_hw_detect_init(pdev
);
3516 goto report_failure
;
3518 num_reserved_chans
= d40_phy_res_init(base
);
3520 platform_set_drvdata(pdev
, base
);
3522 spin_lock_init(&base
->interrupt_lock
);
3523 spin_lock_init(&base
->execmd_lock
);
3525 /* Get IO for logical channel parameter address */
3526 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "lcpa");
3529 d40_err(&pdev
->dev
, "No \"lcpa\" memory resource\n");
3532 base
->lcpa_size
= resource_size(res
);
3533 base
->phy_lcpa
= res
->start
;
3535 if (request_mem_region(res
->start
, resource_size(res
),
3536 D40_NAME
" I/O lcpa") == NULL
) {
3538 d40_err(&pdev
->dev
, "Failed to request LCPA region %pR\n", res
);
3542 /* We make use of ESRAM memory for this. */
3543 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
3544 if (res
->start
!= val
&& val
!= 0) {
3545 dev_warn(&pdev
->dev
,
3546 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3547 __func__
, val
, &res
->start
);
3549 writel(res
->start
, base
->virtbase
+ D40_DREG_LCPA
);
3551 base
->lcpa_base
= ioremap(res
->start
, resource_size(res
));
3552 if (!base
->lcpa_base
) {
3554 d40_err(&pdev
->dev
, "Failed to ioremap LCPA region\n");
3557 /* If lcla has to be located in ESRAM we don't need to allocate */
3558 if (base
->plat_data
->use_esram_lcla
) {
3559 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
3564 "No \"lcla_esram\" memory resource\n");
3567 base
->lcla_pool
.base
= ioremap(res
->start
,
3568 resource_size(res
));
3569 if (!base
->lcla_pool
.base
) {
3571 d40_err(&pdev
->dev
, "Failed to ioremap LCLA region\n");
3574 writel(res
->start
, base
->virtbase
+ D40_DREG_LCLA
);
3577 ret
= d40_lcla_allocate(base
);
3579 d40_err(&pdev
->dev
, "Failed to allocate LCLA area\n");
3584 spin_lock_init(&base
->lcla_pool
.lock
);
3586 base
->irq
= platform_get_irq(pdev
, 0);
3588 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
3590 d40_err(&pdev
->dev
, "No IRQ defined\n");
3594 if (base
->plat_data
->use_esram_lcla
) {
3596 base
->lcpa_regulator
= regulator_get(base
->dev
, "lcla_esram");
3597 if (IS_ERR(base
->lcpa_regulator
)) {
3598 d40_err(&pdev
->dev
, "Failed to get lcpa_regulator\n");
3599 ret
= PTR_ERR(base
->lcpa_regulator
);
3600 base
->lcpa_regulator
= NULL
;
3604 ret
= regulator_enable(base
->lcpa_regulator
);
3607 "Failed to enable lcpa_regulator\n");
3608 regulator_put(base
->lcpa_regulator
);
3609 base
->lcpa_regulator
= NULL
;
3614 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3616 pm_runtime_irq_safe(base
->dev
);
3617 pm_runtime_set_autosuspend_delay(base
->dev
, DMA40_AUTOSUSPEND_DELAY
);
3618 pm_runtime_use_autosuspend(base
->dev
);
3619 pm_runtime_mark_last_busy(base
->dev
);
3620 pm_runtime_set_active(base
->dev
);
3621 pm_runtime_enable(base
->dev
);
3623 ret
= d40_dmaengine_init(base
, num_reserved_chans
);
3627 base
->dev
->dma_parms
= &base
->dma_parms
;
3628 ret
= dma_set_max_seg_size(base
->dev
, STEDMA40_MAX_SEG_SIZE
);
3630 d40_err(&pdev
->dev
, "Failed to set dma max seg size\n");
3637 ret
= of_dma_controller_register(np
, d40_xlate
, NULL
);
3640 "could not register of_dma_controller\n");
3643 dev_info(base
->dev
, "initialized\n");
3646 kmem_cache_destroy(base
->desc_slab
);
3648 iounmap(base
->virtbase
);
3650 if (base
->lcla_pool
.base
&& base
->plat_data
->use_esram_lcla
) {
3651 iounmap(base
->lcla_pool
.base
);
3652 base
->lcla_pool
.base
= NULL
;
3655 if (base
->lcla_pool
.dma_addr
)
3656 dma_unmap_single(base
->dev
, base
->lcla_pool
.dma_addr
,
3657 SZ_1K
* base
->num_phy_chans
,
3660 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
3661 free_pages((unsigned long)base
->lcla_pool
.base
,
3662 base
->lcla_pool
.pages
);
3664 kfree(base
->lcla_pool
.base_unaligned
);
3667 release_mem_region(base
->phy_lcpa
,
3669 if (base
->phy_start
)
3670 release_mem_region(base
->phy_start
,
3673 clk_disable_unprepare(base
->clk
);
3677 if (base
->lcpa_regulator
) {
3678 regulator_disable(base
->lcpa_regulator
);
3679 regulator_put(base
->lcpa_regulator
);
3682 kfree(base
->lcla_pool
.alloc_map
);
3683 kfree(base
->lookup_log_chans
);
3684 kfree(base
->lookup_phy_chans
);
3685 kfree(base
->phy_res
);
3688 d40_err(&pdev
->dev
, "probe failed\n");
3692 static const struct of_device_id d40_match
[] = {
3693 { .compatible
= "stericsson,dma40", },
3697 static struct platform_driver d40_driver
= {
3700 .pm
= &dma40_pm_ops
,
3701 .of_match_table
= d40_match
,
3705 static int __init
stedma40_init(void)
3707 return platform_driver_probe(&d40_driver
, d40_probe
);
3709 subsys_initcall(stedma40_init
);