Linux 4.19.133
[linux/fpc-iii.git] / drivers / mmc / host / dw_mmc.c
blob22c454c7aaca6a6bdaa906d8d17a2a3394ba7dcb
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
43 #include "dw_mmc.h"
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 SDMMC_IDMAC_INT_TI)
65 #define DESC_RING_BUF_SZ PAGE_SIZE
67 struct idmac_desc_64addr {
68 u32 des0; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
72 u32 des1; /* Reserved */
74 u32 des2; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
79 u32 des3; /* Reserved */
81 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
84 u32 des6; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7; /* Upper 32-bits of Next Descriptor Address */
88 struct idmac_desc {
89 __le32 des0; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
98 __le32 des1; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
102 __le32 des2; /* buffer 1 physical address */
104 __le32 des3; /* buffer 2 physical address */
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
121 mrq = slot->mrq;
123 if (mrq) {
124 cmd = mrq->cmd;
125 data = mrq->data;
126 stop = mrq->stop;
128 if (cmd)
129 seq_printf(s,
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
134 if (data)
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
138 if (stop)
139 seq_printf(s,
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
146 spin_unlock_bh(&slot->host->lock);
148 return 0;
150 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
152 static int dw_mci_regs_show(struct seq_file *s, void *v)
154 struct dw_mci *host = s->private;
156 pm_runtime_get_sync(host->dev);
158 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
159 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
160 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
161 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
162 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
163 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
165 pm_runtime_put_autosuspend(host->dev);
167 return 0;
169 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
171 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
173 struct mmc_host *mmc = slot->mmc;
174 struct dw_mci *host = slot->host;
175 struct dentry *root;
176 struct dentry *node;
178 root = mmc->debugfs_root;
179 if (!root)
180 return;
182 node = debugfs_create_file("regs", S_IRUSR, root, host,
183 &dw_mci_regs_fops);
184 if (!node)
185 goto err;
187 node = debugfs_create_file("req", S_IRUSR, root, slot,
188 &dw_mci_req_fops);
189 if (!node)
190 goto err;
192 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
193 if (!node)
194 goto err;
196 node = debugfs_create_x32("pending_events", S_IRUSR, root,
197 (u32 *)&host->pending_events);
198 if (!node)
199 goto err;
201 node = debugfs_create_x32("completed_events", S_IRUSR, root,
202 (u32 *)&host->completed_events);
203 if (!node)
204 goto err;
206 return;
208 err:
209 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
211 #endif /* defined(CONFIG_DEBUG_FS) */
213 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
215 u32 ctrl;
217 ctrl = mci_readl(host, CTRL);
218 ctrl |= reset;
219 mci_writel(host, CTRL, ctrl);
221 /* wait till resets clear */
222 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
223 !(ctrl & reset),
224 1, 500 * USEC_PER_MSEC)) {
225 dev_err(host->dev,
226 "Timeout resetting block (ctrl reset %#x)\n",
227 ctrl & reset);
228 return false;
231 return true;
234 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
236 u32 status;
239 * Databook says that before issuing a new data transfer command
240 * we need to check to see if the card is busy. Data transfer commands
241 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
243 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
244 * expected.
246 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
247 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
248 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
249 status,
250 !(status & SDMMC_STATUS_BUSY),
251 10, 500 * USEC_PER_MSEC))
252 dev_err(host->dev, "Busy; trying anyway\n");
256 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
258 struct dw_mci *host = slot->host;
259 unsigned int cmd_status = 0;
261 mci_writel(host, CMDARG, arg);
262 wmb(); /* drain writebuffer */
263 dw_mci_wait_while_busy(host, cmd);
264 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
266 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
267 !(cmd_status & SDMMC_CMD_START),
268 1, 500 * USEC_PER_MSEC))
269 dev_err(&slot->mmc->class_dev,
270 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
271 cmd, arg, cmd_status);
274 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
276 struct dw_mci_slot *slot = mmc_priv(mmc);
277 struct dw_mci *host = slot->host;
278 u32 cmdr;
280 cmd->error = -EINPROGRESS;
281 cmdr = cmd->opcode;
283 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
284 cmd->opcode == MMC_GO_IDLE_STATE ||
285 cmd->opcode == MMC_GO_INACTIVE_STATE ||
286 (cmd->opcode == SD_IO_RW_DIRECT &&
287 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
288 cmdr |= SDMMC_CMD_STOP;
289 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
290 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
292 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
293 u32 clk_en_a;
295 /* Special bit makes CMD11 not die */
296 cmdr |= SDMMC_CMD_VOLT_SWITCH;
298 /* Change state to continue to handle CMD11 weirdness */
299 WARN_ON(slot->host->state != STATE_SENDING_CMD);
300 slot->host->state = STATE_SENDING_CMD11;
303 * We need to disable low power mode (automatic clock stop)
304 * while doing voltage switch so we don't confuse the card,
305 * since stopping the clock is a specific part of the UHS
306 * voltage change dance.
308 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
309 * unconditionally turned back on in dw_mci_setup_bus() if it's
310 * ever called with a non-zero clock. That shouldn't happen
311 * until the voltage change is all done.
313 clk_en_a = mci_readl(host, CLKENA);
314 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
315 mci_writel(host, CLKENA, clk_en_a);
316 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
317 SDMMC_CMD_PRV_DAT_WAIT, 0);
320 if (cmd->flags & MMC_RSP_PRESENT) {
321 /* We expect a response, so set this bit */
322 cmdr |= SDMMC_CMD_RESP_EXP;
323 if (cmd->flags & MMC_RSP_136)
324 cmdr |= SDMMC_CMD_RESP_LONG;
327 if (cmd->flags & MMC_RSP_CRC)
328 cmdr |= SDMMC_CMD_RESP_CRC;
330 if (cmd->data) {
331 cmdr |= SDMMC_CMD_DAT_EXP;
332 if (cmd->data->flags & MMC_DATA_WRITE)
333 cmdr |= SDMMC_CMD_DAT_WR;
336 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
337 cmdr |= SDMMC_CMD_USE_HOLD_REG;
339 return cmdr;
342 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
344 struct mmc_command *stop;
345 u32 cmdr;
347 if (!cmd->data)
348 return 0;
350 stop = &host->stop_abort;
351 cmdr = cmd->opcode;
352 memset(stop, 0, sizeof(struct mmc_command));
354 if (cmdr == MMC_READ_SINGLE_BLOCK ||
355 cmdr == MMC_READ_MULTIPLE_BLOCK ||
356 cmdr == MMC_WRITE_BLOCK ||
357 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
358 cmdr == MMC_SEND_TUNING_BLOCK ||
359 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
360 stop->opcode = MMC_STOP_TRANSMISSION;
361 stop->arg = 0;
362 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
363 } else if (cmdr == SD_IO_RW_EXTENDED) {
364 stop->opcode = SD_IO_RW_DIRECT;
365 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
366 ((cmd->arg >> 28) & 0x7);
367 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
368 } else {
369 return 0;
372 cmdr = stop->opcode | SDMMC_CMD_STOP |
373 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
375 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
376 cmdr |= SDMMC_CMD_USE_HOLD_REG;
378 return cmdr;
381 static inline void dw_mci_set_cto(struct dw_mci *host)
383 unsigned int cto_clks;
384 unsigned int cto_div;
385 unsigned int cto_ms;
386 unsigned long irqflags;
388 cto_clks = mci_readl(host, TMOUT) & 0xff;
389 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
390 if (cto_div == 0)
391 cto_div = 1;
393 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
394 host->bus_hz);
396 /* add a bit spare time */
397 cto_ms += 10;
400 * The durations we're working with are fairly short so we have to be
401 * extra careful about synchronization here. Specifically in hardware a
402 * command timeout is _at most_ 5.1 ms, so that means we expect an
403 * interrupt (either command done or timeout) to come rather quickly
404 * after the mci_writel. ...but just in case we have a long interrupt
405 * latency let's add a bit of paranoia.
407 * In general we'll assume that at least an interrupt will be asserted
408 * in hardware by the time the cto_timer runs. ...and if it hasn't
409 * been asserted in hardware by that time then we'll assume it'll never
410 * come.
412 spin_lock_irqsave(&host->irq_lock, irqflags);
413 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
414 mod_timer(&host->cto_timer,
415 jiffies + msecs_to_jiffies(cto_ms) + 1);
416 spin_unlock_irqrestore(&host->irq_lock, irqflags);
419 static void dw_mci_start_command(struct dw_mci *host,
420 struct mmc_command *cmd, u32 cmd_flags)
422 host->cmd = cmd;
423 dev_vdbg(host->dev,
424 "start command: ARGR=0x%08x CMDR=0x%08x\n",
425 cmd->arg, cmd_flags);
427 mci_writel(host, CMDARG, cmd->arg);
428 wmb(); /* drain writebuffer */
429 dw_mci_wait_while_busy(host, cmd_flags);
431 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
433 /* response expected command only */
434 if (cmd_flags & SDMMC_CMD_RESP_EXP)
435 dw_mci_set_cto(host);
438 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
440 struct mmc_command *stop = &host->stop_abort;
442 dw_mci_start_command(host, stop, host->stop_cmdr);
445 /* DMA interface functions */
446 static void dw_mci_stop_dma(struct dw_mci *host)
448 if (host->using_dma) {
449 host->dma_ops->stop(host);
450 host->dma_ops->cleanup(host);
453 /* Data transfer was stopped by the interrupt handler */
454 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
457 static void dw_mci_dma_cleanup(struct dw_mci *host)
459 struct mmc_data *data = host->data;
461 if (data && data->host_cookie == COOKIE_MAPPED) {
462 dma_unmap_sg(host->dev,
463 data->sg,
464 data->sg_len,
465 mmc_get_dma_dir(data));
466 data->host_cookie = COOKIE_UNMAPPED;
470 static void dw_mci_idmac_reset(struct dw_mci *host)
472 u32 bmod = mci_readl(host, BMOD);
473 /* Software reset of DMA */
474 bmod |= SDMMC_IDMAC_SWRESET;
475 mci_writel(host, BMOD, bmod);
478 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
480 u32 temp;
482 /* Disable and reset the IDMAC interface */
483 temp = mci_readl(host, CTRL);
484 temp &= ~SDMMC_CTRL_USE_IDMAC;
485 temp |= SDMMC_CTRL_DMA_RESET;
486 mci_writel(host, CTRL, temp);
488 /* Stop the IDMAC running */
489 temp = mci_readl(host, BMOD);
490 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
491 temp |= SDMMC_IDMAC_SWRESET;
492 mci_writel(host, BMOD, temp);
495 static void dw_mci_dmac_complete_dma(void *arg)
497 struct dw_mci *host = arg;
498 struct mmc_data *data = host->data;
500 dev_vdbg(host->dev, "DMA complete\n");
502 if ((host->use_dma == TRANS_MODE_EDMAC) &&
503 data && (data->flags & MMC_DATA_READ))
504 /* Invalidate cache after read */
505 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
506 data->sg,
507 data->sg_len,
508 DMA_FROM_DEVICE);
510 host->dma_ops->cleanup(host);
513 * If the card was removed, data will be NULL. No point in trying to
514 * send the stop command or waiting for NBUSY in this case.
516 if (data) {
517 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
518 tasklet_schedule(&host->tasklet);
522 static int dw_mci_idmac_init(struct dw_mci *host)
524 int i;
526 if (host->dma_64bit_address == 1) {
527 struct idmac_desc_64addr *p;
528 /* Number of descriptors in the ring buffer */
529 host->ring_size =
530 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
532 /* Forward link the descriptor list */
533 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
534 i++, p++) {
535 p->des6 = (host->sg_dma +
536 (sizeof(struct idmac_desc_64addr) *
537 (i + 1))) & 0xffffffff;
539 p->des7 = (u64)(host->sg_dma +
540 (sizeof(struct idmac_desc_64addr) *
541 (i + 1))) >> 32;
542 /* Initialize reserved and buffer size fields to "0" */
543 p->des0 = 0;
544 p->des1 = 0;
545 p->des2 = 0;
546 p->des3 = 0;
549 /* Set the last descriptor as the end-of-ring descriptor */
550 p->des6 = host->sg_dma & 0xffffffff;
551 p->des7 = (u64)host->sg_dma >> 32;
552 p->des0 = IDMAC_DES0_ER;
554 } else {
555 struct idmac_desc *p;
556 /* Number of descriptors in the ring buffer */
557 host->ring_size =
558 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
560 /* Forward link the descriptor list */
561 for (i = 0, p = host->sg_cpu;
562 i < host->ring_size - 1;
563 i++, p++) {
564 p->des3 = cpu_to_le32(host->sg_dma +
565 (sizeof(struct idmac_desc) * (i + 1)));
566 p->des0 = 0;
567 p->des1 = 0;
570 /* Set the last descriptor as the end-of-ring descriptor */
571 p->des3 = cpu_to_le32(host->sg_dma);
572 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
575 dw_mci_idmac_reset(host);
577 if (host->dma_64bit_address == 1) {
578 /* Mask out interrupts - get Tx & Rx complete only */
579 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
580 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
581 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
583 /* Set the descriptor base address */
584 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
585 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
587 } else {
588 /* Mask out interrupts - get Tx & Rx complete only */
589 mci_writel(host, IDSTS, IDMAC_INT_CLR);
590 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
591 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
593 /* Set the descriptor base address */
594 mci_writel(host, DBADDR, host->sg_dma);
597 return 0;
600 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
601 struct mmc_data *data,
602 unsigned int sg_len)
604 unsigned int desc_len;
605 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
606 u32 val;
607 int i;
609 desc_first = desc_last = desc = host->sg_cpu;
611 for (i = 0; i < sg_len; i++) {
612 unsigned int length = sg_dma_len(&data->sg[i]);
614 u64 mem_addr = sg_dma_address(&data->sg[i]);
616 for ( ; length ; desc++) {
617 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
618 length : DW_MCI_DESC_DATA_LENGTH;
620 length -= desc_len;
623 * Wait for the former clear OWN bit operation
624 * of IDMAC to make sure that this descriptor
625 * isn't still owned by IDMAC as IDMAC's write
626 * ops and CPU's read ops are asynchronous.
628 if (readl_poll_timeout_atomic(&desc->des0, val,
629 !(val & IDMAC_DES0_OWN),
630 10, 100 * USEC_PER_MSEC))
631 goto err_own_bit;
634 * Set the OWN bit and disable interrupts
635 * for this descriptor
637 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
638 IDMAC_DES0_CH;
640 /* Buffer length */
641 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
643 /* Physical address to DMA to/from */
644 desc->des4 = mem_addr & 0xffffffff;
645 desc->des5 = mem_addr >> 32;
647 /* Update physical address for the next desc */
648 mem_addr += desc_len;
650 /* Save pointer to the last descriptor */
651 desc_last = desc;
655 /* Set first descriptor */
656 desc_first->des0 |= IDMAC_DES0_FD;
658 /* Set last descriptor */
659 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
660 desc_last->des0 |= IDMAC_DES0_LD;
662 return 0;
663 err_own_bit:
664 /* restore the descriptor chain as it's polluted */
665 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
666 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
667 dw_mci_idmac_init(host);
668 return -EINVAL;
672 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
673 struct mmc_data *data,
674 unsigned int sg_len)
676 unsigned int desc_len;
677 struct idmac_desc *desc_first, *desc_last, *desc;
678 u32 val;
679 int i;
681 desc_first = desc_last = desc = host->sg_cpu;
683 for (i = 0; i < sg_len; i++) {
684 unsigned int length = sg_dma_len(&data->sg[i]);
686 u32 mem_addr = sg_dma_address(&data->sg[i]);
688 for ( ; length ; desc++) {
689 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
690 length : DW_MCI_DESC_DATA_LENGTH;
692 length -= desc_len;
695 * Wait for the former clear OWN bit operation
696 * of IDMAC to make sure that this descriptor
697 * isn't still owned by IDMAC as IDMAC's write
698 * ops and CPU's read ops are asynchronous.
700 if (readl_poll_timeout_atomic(&desc->des0, val,
701 IDMAC_OWN_CLR64(val),
703 100 * USEC_PER_MSEC))
704 goto err_own_bit;
707 * Set the OWN bit and disable interrupts
708 * for this descriptor
710 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
711 IDMAC_DES0_DIC |
712 IDMAC_DES0_CH);
714 /* Buffer length */
715 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
717 /* Physical address to DMA to/from */
718 desc->des2 = cpu_to_le32(mem_addr);
720 /* Update physical address for the next desc */
721 mem_addr += desc_len;
723 /* Save pointer to the last descriptor */
724 desc_last = desc;
728 /* Set first descriptor */
729 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
731 /* Set last descriptor */
732 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
733 IDMAC_DES0_DIC));
734 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
736 return 0;
737 err_own_bit:
738 /* restore the descriptor chain as it's polluted */
739 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
740 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
741 dw_mci_idmac_init(host);
742 return -EINVAL;
745 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
747 u32 temp;
748 int ret;
750 if (host->dma_64bit_address == 1)
751 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
752 else
753 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
755 if (ret)
756 goto out;
758 /* drain writebuffer */
759 wmb();
761 /* Make sure to reset DMA in case we did PIO before this */
762 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
763 dw_mci_idmac_reset(host);
765 /* Select IDMAC interface */
766 temp = mci_readl(host, CTRL);
767 temp |= SDMMC_CTRL_USE_IDMAC;
768 mci_writel(host, CTRL, temp);
770 /* drain writebuffer */
771 wmb();
773 /* Enable the IDMAC */
774 temp = mci_readl(host, BMOD);
775 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
776 mci_writel(host, BMOD, temp);
778 /* Start it running */
779 mci_writel(host, PLDMND, 1);
781 out:
782 return ret;
785 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
786 .init = dw_mci_idmac_init,
787 .start = dw_mci_idmac_start_dma,
788 .stop = dw_mci_idmac_stop_dma,
789 .complete = dw_mci_dmac_complete_dma,
790 .cleanup = dw_mci_dma_cleanup,
793 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
795 dmaengine_terminate_async(host->dms->ch);
798 static int dw_mci_edmac_start_dma(struct dw_mci *host,
799 unsigned int sg_len)
801 struct dma_slave_config cfg;
802 struct dma_async_tx_descriptor *desc = NULL;
803 struct scatterlist *sgl = host->data->sg;
804 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
805 u32 sg_elems = host->data->sg_len;
806 u32 fifoth_val;
807 u32 fifo_offset = host->fifo_reg - host->regs;
808 int ret = 0;
810 /* Set external dma config: burst size, burst width */
811 cfg.dst_addr = host->phy_regs + fifo_offset;
812 cfg.src_addr = cfg.dst_addr;
813 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
814 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
816 /* Match burst msize with external dma config */
817 fifoth_val = mci_readl(host, FIFOTH);
818 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
819 cfg.src_maxburst = cfg.dst_maxburst;
821 if (host->data->flags & MMC_DATA_WRITE)
822 cfg.direction = DMA_MEM_TO_DEV;
823 else
824 cfg.direction = DMA_DEV_TO_MEM;
826 ret = dmaengine_slave_config(host->dms->ch, &cfg);
827 if (ret) {
828 dev_err(host->dev, "Failed to config edmac.\n");
829 return -EBUSY;
832 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
833 sg_len, cfg.direction,
834 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
835 if (!desc) {
836 dev_err(host->dev, "Can't prepare slave sg.\n");
837 return -EBUSY;
840 /* Set dw_mci_dmac_complete_dma as callback */
841 desc->callback = dw_mci_dmac_complete_dma;
842 desc->callback_param = (void *)host;
843 dmaengine_submit(desc);
845 /* Flush cache before write */
846 if (host->data->flags & MMC_DATA_WRITE)
847 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
848 sg_elems, DMA_TO_DEVICE);
850 dma_async_issue_pending(host->dms->ch);
852 return 0;
855 static int dw_mci_edmac_init(struct dw_mci *host)
857 /* Request external dma channel */
858 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
859 if (!host->dms)
860 return -ENOMEM;
862 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
863 if (!host->dms->ch) {
864 dev_err(host->dev, "Failed to get external DMA channel.\n");
865 kfree(host->dms);
866 host->dms = NULL;
867 return -ENXIO;
870 return 0;
873 static void dw_mci_edmac_exit(struct dw_mci *host)
875 if (host->dms) {
876 if (host->dms->ch) {
877 dma_release_channel(host->dms->ch);
878 host->dms->ch = NULL;
880 kfree(host->dms);
881 host->dms = NULL;
885 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
886 .init = dw_mci_edmac_init,
887 .exit = dw_mci_edmac_exit,
888 .start = dw_mci_edmac_start_dma,
889 .stop = dw_mci_edmac_stop_dma,
890 .complete = dw_mci_dmac_complete_dma,
891 .cleanup = dw_mci_dma_cleanup,
894 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
895 struct mmc_data *data,
896 int cookie)
898 struct scatterlist *sg;
899 unsigned int i, sg_len;
901 if (data->host_cookie == COOKIE_PRE_MAPPED)
902 return data->sg_len;
905 * We don't do DMA on "complex" transfers, i.e. with
906 * non-word-aligned buffers or lengths. Also, we don't bother
907 * with all the DMA setup overhead for short transfers.
909 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
910 return -EINVAL;
912 if (data->blksz & 3)
913 return -EINVAL;
915 for_each_sg(data->sg, sg, data->sg_len, i) {
916 if (sg->offset & 3 || sg->length & 3)
917 return -EINVAL;
920 sg_len = dma_map_sg(host->dev,
921 data->sg,
922 data->sg_len,
923 mmc_get_dma_dir(data));
924 if (sg_len == 0)
925 return -EINVAL;
927 data->host_cookie = cookie;
929 return sg_len;
932 static void dw_mci_pre_req(struct mmc_host *mmc,
933 struct mmc_request *mrq)
935 struct dw_mci_slot *slot = mmc_priv(mmc);
936 struct mmc_data *data = mrq->data;
938 if (!slot->host->use_dma || !data)
939 return;
941 /* This data might be unmapped at this time */
942 data->host_cookie = COOKIE_UNMAPPED;
944 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
945 COOKIE_PRE_MAPPED) < 0)
946 data->host_cookie = COOKIE_UNMAPPED;
949 static void dw_mci_post_req(struct mmc_host *mmc,
950 struct mmc_request *mrq,
951 int err)
953 struct dw_mci_slot *slot = mmc_priv(mmc);
954 struct mmc_data *data = mrq->data;
956 if (!slot->host->use_dma || !data)
957 return;
959 if (data->host_cookie != COOKIE_UNMAPPED)
960 dma_unmap_sg(slot->host->dev,
961 data->sg,
962 data->sg_len,
963 mmc_get_dma_dir(data));
964 data->host_cookie = COOKIE_UNMAPPED;
967 static int dw_mci_get_cd(struct mmc_host *mmc)
969 int present;
970 struct dw_mci_slot *slot = mmc_priv(mmc);
971 struct dw_mci *host = slot->host;
972 int gpio_cd = mmc_gpio_get_cd(mmc);
974 /* Use platform get_cd function, else try onboard card detect */
975 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
976 || !mmc_card_is_removable(mmc))) {
977 present = 1;
979 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
980 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
981 dev_info(&mmc->class_dev,
982 "card is polling.\n");
983 } else {
984 dev_info(&mmc->class_dev,
985 "card is non-removable.\n");
987 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
990 return present;
991 } else if (gpio_cd >= 0)
992 present = gpio_cd;
993 else
994 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
995 == 0 ? 1 : 0;
997 spin_lock_bh(&host->lock);
998 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
999 dev_dbg(&mmc->class_dev, "card is present\n");
1000 else if (!present &&
1001 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1002 dev_dbg(&mmc->class_dev, "card is not present\n");
1003 spin_unlock_bh(&host->lock);
1005 return present;
1008 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
1010 unsigned int blksz = data->blksz;
1011 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
1012 u32 fifo_width = 1 << host->data_shift;
1013 u32 blksz_depth = blksz / fifo_width, fifoth_val;
1014 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
1015 int idx = ARRAY_SIZE(mszs) - 1;
1017 /* pio should ship this scenario */
1018 if (!host->use_dma)
1019 return;
1021 tx_wmark = (host->fifo_depth) / 2;
1022 tx_wmark_invers = host->fifo_depth - tx_wmark;
1025 * MSIZE is '1',
1026 * if blksz is not a multiple of the FIFO width
1028 if (blksz % fifo_width)
1029 goto done;
1031 do {
1032 if (!((blksz_depth % mszs[idx]) ||
1033 (tx_wmark_invers % mszs[idx]))) {
1034 msize = idx;
1035 rx_wmark = mszs[idx] - 1;
1036 break;
1038 } while (--idx > 0);
1040 * If idx is '0', it won't be tried
1041 * Thus, initial values are uesed
1043 done:
1044 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1045 mci_writel(host, FIFOTH, fifoth_val);
1048 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1050 unsigned int blksz = data->blksz;
1051 u32 blksz_depth, fifo_depth;
1052 u16 thld_size;
1053 u8 enable;
1056 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1057 * in the FIFO region, so we really shouldn't access it).
1059 if (host->verid < DW_MMC_240A ||
1060 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1061 return;
1064 * Card write Threshold is introduced since 2.80a
1065 * It's used when HS400 mode is enabled.
1067 if (data->flags & MMC_DATA_WRITE &&
1068 host->timing != MMC_TIMING_MMC_HS400)
1069 goto disable;
1071 if (data->flags & MMC_DATA_WRITE)
1072 enable = SDMMC_CARD_WR_THR_EN;
1073 else
1074 enable = SDMMC_CARD_RD_THR_EN;
1076 if (host->timing != MMC_TIMING_MMC_HS200 &&
1077 host->timing != MMC_TIMING_UHS_SDR104 &&
1078 host->timing != MMC_TIMING_MMC_HS400)
1079 goto disable;
1081 blksz_depth = blksz / (1 << host->data_shift);
1082 fifo_depth = host->fifo_depth;
1084 if (blksz_depth > fifo_depth)
1085 goto disable;
1088 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1089 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1090 * Currently just choose blksz.
1092 thld_size = blksz;
1093 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1094 return;
1096 disable:
1097 mci_writel(host, CDTHRCTL, 0);
1100 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1102 unsigned long irqflags;
1103 int sg_len;
1104 u32 temp;
1106 host->using_dma = 0;
1108 /* If we don't have a channel, we can't do DMA */
1109 if (!host->use_dma)
1110 return -ENODEV;
1112 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1113 if (sg_len < 0) {
1114 host->dma_ops->stop(host);
1115 return sg_len;
1118 host->using_dma = 1;
1120 if (host->use_dma == TRANS_MODE_IDMAC)
1121 dev_vdbg(host->dev,
1122 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1123 (unsigned long)host->sg_cpu,
1124 (unsigned long)host->sg_dma,
1125 sg_len);
1128 * Decide the MSIZE and RX/TX Watermark.
1129 * If current block size is same with previous size,
1130 * no need to update fifoth.
1132 if (host->prev_blksz != data->blksz)
1133 dw_mci_adjust_fifoth(host, data);
1135 /* Enable the DMA interface */
1136 temp = mci_readl(host, CTRL);
1137 temp |= SDMMC_CTRL_DMA_ENABLE;
1138 mci_writel(host, CTRL, temp);
1140 /* Disable RX/TX IRQs, let DMA handle it */
1141 spin_lock_irqsave(&host->irq_lock, irqflags);
1142 temp = mci_readl(host, INTMASK);
1143 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1144 mci_writel(host, INTMASK, temp);
1145 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1147 if (host->dma_ops->start(host, sg_len)) {
1148 host->dma_ops->stop(host);
1149 /* We can't do DMA, try PIO for this one */
1150 dev_dbg(host->dev,
1151 "%s: fall back to PIO mode for current transfer\n",
1152 __func__);
1153 return -ENODEV;
1156 return 0;
1159 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1161 unsigned long irqflags;
1162 int flags = SG_MITER_ATOMIC;
1163 u32 temp;
1165 data->error = -EINPROGRESS;
1167 WARN_ON(host->data);
1168 host->sg = NULL;
1169 host->data = data;
1171 if (data->flags & MMC_DATA_READ)
1172 host->dir_status = DW_MCI_RECV_STATUS;
1173 else
1174 host->dir_status = DW_MCI_SEND_STATUS;
1176 dw_mci_ctrl_thld(host, data);
1178 if (dw_mci_submit_data_dma(host, data)) {
1179 if (host->data->flags & MMC_DATA_READ)
1180 flags |= SG_MITER_TO_SG;
1181 else
1182 flags |= SG_MITER_FROM_SG;
1184 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1185 host->sg = data->sg;
1186 host->part_buf_start = 0;
1187 host->part_buf_count = 0;
1189 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1191 spin_lock_irqsave(&host->irq_lock, irqflags);
1192 temp = mci_readl(host, INTMASK);
1193 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1194 mci_writel(host, INTMASK, temp);
1195 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1197 temp = mci_readl(host, CTRL);
1198 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1199 mci_writel(host, CTRL, temp);
1202 * Use the initial fifoth_val for PIO mode. If wm_algined
1203 * is set, we set watermark same as data size.
1204 * If next issued data may be transfered by DMA mode,
1205 * prev_blksz should be invalidated.
1207 if (host->wm_aligned)
1208 dw_mci_adjust_fifoth(host, data);
1209 else
1210 mci_writel(host, FIFOTH, host->fifoth_val);
1211 host->prev_blksz = 0;
1212 } else {
1214 * Keep the current block size.
1215 * It will be used to decide whether to update
1216 * fifoth register next time.
1218 host->prev_blksz = data->blksz;
1222 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1224 struct dw_mci *host = slot->host;
1225 unsigned int clock = slot->clock;
1226 u32 div;
1227 u32 clk_en_a;
1228 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1230 /* We must continue to set bit 28 in CMD until the change is complete */
1231 if (host->state == STATE_WAITING_CMD11_DONE)
1232 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1234 slot->mmc->actual_clock = 0;
1236 if (!clock) {
1237 mci_writel(host, CLKENA, 0);
1238 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1239 } else if (clock != host->current_speed || force_clkinit) {
1240 div = host->bus_hz / clock;
1241 if (host->bus_hz % clock && host->bus_hz > clock)
1243 * move the + 1 after the divide to prevent
1244 * over-clocking the card.
1246 div += 1;
1248 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1250 if ((clock != slot->__clk_old &&
1251 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1252 force_clkinit) {
1253 /* Silent the verbose log if calling from PM context */
1254 if (!force_clkinit)
1255 dev_info(&slot->mmc->class_dev,
1256 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1257 slot->id, host->bus_hz, clock,
1258 div ? ((host->bus_hz / div) >> 1) :
1259 host->bus_hz, div);
1262 * If card is polling, display the message only
1263 * one time at boot time.
1265 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1266 slot->mmc->f_min == clock)
1267 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1270 /* disable clock */
1271 mci_writel(host, CLKENA, 0);
1272 mci_writel(host, CLKSRC, 0);
1274 /* inform CIU */
1275 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1277 /* set clock to desired speed */
1278 mci_writel(host, CLKDIV, div);
1280 /* inform CIU */
1281 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1283 /* enable clock; only low power if no SDIO */
1284 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1285 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1286 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1287 mci_writel(host, CLKENA, clk_en_a);
1289 /* inform CIU */
1290 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1292 /* keep the last clock value that was requested from core */
1293 slot->__clk_old = clock;
1294 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1295 host->bus_hz;
1298 host->current_speed = clock;
1300 /* Set the current slot bus width */
1301 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1304 static void __dw_mci_start_request(struct dw_mci *host,
1305 struct dw_mci_slot *slot,
1306 struct mmc_command *cmd)
1308 struct mmc_request *mrq;
1309 struct mmc_data *data;
1310 u32 cmdflags;
1312 mrq = slot->mrq;
1314 host->mrq = mrq;
1316 host->pending_events = 0;
1317 host->completed_events = 0;
1318 host->cmd_status = 0;
1319 host->data_status = 0;
1320 host->dir_status = 0;
1322 data = cmd->data;
1323 if (data) {
1324 mci_writel(host, TMOUT, 0xFFFFFFFF);
1325 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1326 mci_writel(host, BLKSIZ, data->blksz);
1329 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1331 /* this is the first command, send the initialization clock */
1332 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1333 cmdflags |= SDMMC_CMD_INIT;
1335 if (data) {
1336 dw_mci_submit_data(host, data);
1337 wmb(); /* drain writebuffer */
1340 dw_mci_start_command(host, cmd, cmdflags);
1342 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1343 unsigned long irqflags;
1346 * Databook says to fail after 2ms w/ no response, but evidence
1347 * shows that sometimes the cmd11 interrupt takes over 130ms.
1348 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1349 * is just about to roll over.
1351 * We do this whole thing under spinlock and only if the
1352 * command hasn't already completed (indicating the the irq
1353 * already ran so we don't want the timeout).
1355 spin_lock_irqsave(&host->irq_lock, irqflags);
1356 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1357 mod_timer(&host->cmd11_timer,
1358 jiffies + msecs_to_jiffies(500) + 1);
1359 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1362 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1365 static void dw_mci_start_request(struct dw_mci *host,
1366 struct dw_mci_slot *slot)
1368 struct mmc_request *mrq = slot->mrq;
1369 struct mmc_command *cmd;
1371 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1372 __dw_mci_start_request(host, slot, cmd);
1375 /* must be called with host->lock held */
1376 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1377 struct mmc_request *mrq)
1379 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1380 host->state);
1382 slot->mrq = mrq;
1384 if (host->state == STATE_WAITING_CMD11_DONE) {
1385 dev_warn(&slot->mmc->class_dev,
1386 "Voltage change didn't complete\n");
1388 * this case isn't expected to happen, so we can
1389 * either crash here or just try to continue on
1390 * in the closest possible state
1392 host->state = STATE_IDLE;
1395 if (host->state == STATE_IDLE) {
1396 host->state = STATE_SENDING_CMD;
1397 dw_mci_start_request(host, slot);
1398 } else {
1399 list_add_tail(&slot->queue_node, &host->queue);
1403 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1405 struct dw_mci_slot *slot = mmc_priv(mmc);
1406 struct dw_mci *host = slot->host;
1408 WARN_ON(slot->mrq);
1411 * The check for card presence and queueing of the request must be
1412 * atomic, otherwise the card could be removed in between and the
1413 * request wouldn't fail until another card was inserted.
1416 if (!dw_mci_get_cd(mmc)) {
1417 mrq->cmd->error = -ENOMEDIUM;
1418 mmc_request_done(mmc, mrq);
1419 return;
1422 spin_lock_bh(&host->lock);
1424 dw_mci_queue_request(host, slot, mrq);
1426 spin_unlock_bh(&host->lock);
1429 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1431 struct dw_mci_slot *slot = mmc_priv(mmc);
1432 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1433 u32 regs;
1434 int ret;
1436 switch (ios->bus_width) {
1437 case MMC_BUS_WIDTH_4:
1438 slot->ctype = SDMMC_CTYPE_4BIT;
1439 break;
1440 case MMC_BUS_WIDTH_8:
1441 slot->ctype = SDMMC_CTYPE_8BIT;
1442 break;
1443 default:
1444 /* set default 1 bit mode */
1445 slot->ctype = SDMMC_CTYPE_1BIT;
1448 regs = mci_readl(slot->host, UHS_REG);
1450 /* DDR mode set */
1451 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1452 ios->timing == MMC_TIMING_UHS_DDR50 ||
1453 ios->timing == MMC_TIMING_MMC_HS400)
1454 regs |= ((0x1 << slot->id) << 16);
1455 else
1456 regs &= ~((0x1 << slot->id) << 16);
1458 mci_writel(slot->host, UHS_REG, regs);
1459 slot->host->timing = ios->timing;
1462 * Use mirror of ios->clock to prevent race with mmc
1463 * core ios update when finding the minimum.
1465 slot->clock = ios->clock;
1467 if (drv_data && drv_data->set_ios)
1468 drv_data->set_ios(slot->host, ios);
1470 switch (ios->power_mode) {
1471 case MMC_POWER_UP:
1472 if (!IS_ERR(mmc->supply.vmmc)) {
1473 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1474 ios->vdd);
1475 if (ret) {
1476 dev_err(slot->host->dev,
1477 "failed to enable vmmc regulator\n");
1478 /*return, if failed turn on vmmc*/
1479 return;
1482 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1483 regs = mci_readl(slot->host, PWREN);
1484 regs |= (1 << slot->id);
1485 mci_writel(slot->host, PWREN, regs);
1486 break;
1487 case MMC_POWER_ON:
1488 if (!slot->host->vqmmc_enabled) {
1489 if (!IS_ERR(mmc->supply.vqmmc)) {
1490 ret = regulator_enable(mmc->supply.vqmmc);
1491 if (ret < 0)
1492 dev_err(slot->host->dev,
1493 "failed to enable vqmmc\n");
1494 else
1495 slot->host->vqmmc_enabled = true;
1497 } else {
1498 /* Keep track so we don't reset again */
1499 slot->host->vqmmc_enabled = true;
1502 /* Reset our state machine after powering on */
1503 dw_mci_ctrl_reset(slot->host,
1504 SDMMC_CTRL_ALL_RESET_FLAGS);
1507 /* Adjust clock / bus width after power is up */
1508 dw_mci_setup_bus(slot, false);
1510 break;
1511 case MMC_POWER_OFF:
1512 /* Turn clock off before power goes down */
1513 dw_mci_setup_bus(slot, false);
1515 if (!IS_ERR(mmc->supply.vmmc))
1516 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1518 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1519 regulator_disable(mmc->supply.vqmmc);
1520 slot->host->vqmmc_enabled = false;
1522 regs = mci_readl(slot->host, PWREN);
1523 regs &= ~(1 << slot->id);
1524 mci_writel(slot->host, PWREN, regs);
1525 break;
1526 default:
1527 break;
1530 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1531 slot->host->state = STATE_IDLE;
1534 static int dw_mci_card_busy(struct mmc_host *mmc)
1536 struct dw_mci_slot *slot = mmc_priv(mmc);
1537 u32 status;
1540 * Check the busy bit which is low when DAT[3:0]
1541 * (the data lines) are 0000
1543 status = mci_readl(slot->host, STATUS);
1545 return !!(status & SDMMC_STATUS_BUSY);
1548 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1550 struct dw_mci_slot *slot = mmc_priv(mmc);
1551 struct dw_mci *host = slot->host;
1552 const struct dw_mci_drv_data *drv_data = host->drv_data;
1553 u32 uhs;
1554 u32 v18 = SDMMC_UHS_18V << slot->id;
1555 int ret;
1557 if (drv_data && drv_data->switch_voltage)
1558 return drv_data->switch_voltage(mmc, ios);
1561 * Program the voltage. Note that some instances of dw_mmc may use
1562 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1563 * does no harm but you need to set the regulator directly. Try both.
1565 uhs = mci_readl(host, UHS_REG);
1566 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1567 uhs &= ~v18;
1568 else
1569 uhs |= v18;
1571 if (!IS_ERR(mmc->supply.vqmmc)) {
1572 ret = mmc_regulator_set_vqmmc(mmc, ios);
1574 if (ret) {
1575 dev_dbg(&mmc->class_dev,
1576 "Regulator set error %d - %s V\n",
1577 ret, uhs & v18 ? "1.8" : "3.3");
1578 return ret;
1581 mci_writel(host, UHS_REG, uhs);
1583 return 0;
1586 static int dw_mci_get_ro(struct mmc_host *mmc)
1588 int read_only;
1589 struct dw_mci_slot *slot = mmc_priv(mmc);
1590 int gpio_ro = mmc_gpio_get_ro(mmc);
1592 /* Use platform get_ro function, else try on board write protect */
1593 if (gpio_ro >= 0)
1594 read_only = gpio_ro;
1595 else
1596 read_only =
1597 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1599 dev_dbg(&mmc->class_dev, "card is %s\n",
1600 read_only ? "read-only" : "read-write");
1602 return read_only;
1605 static void dw_mci_hw_reset(struct mmc_host *mmc)
1607 struct dw_mci_slot *slot = mmc_priv(mmc);
1608 struct dw_mci *host = slot->host;
1609 int reset;
1611 if (host->use_dma == TRANS_MODE_IDMAC)
1612 dw_mci_idmac_reset(host);
1614 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1615 SDMMC_CTRL_FIFO_RESET))
1616 return;
1619 * According to eMMC spec, card reset procedure:
1620 * tRstW >= 1us: RST_n pulse width
1621 * tRSCA >= 200us: RST_n to Command time
1622 * tRSTH >= 1us: RST_n high period
1624 reset = mci_readl(host, RST_N);
1625 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1626 mci_writel(host, RST_N, reset);
1627 usleep_range(1, 2);
1628 reset |= SDMMC_RST_HWACTIVE << slot->id;
1629 mci_writel(host, RST_N, reset);
1630 usleep_range(200, 300);
1633 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1635 struct dw_mci_slot *slot = mmc_priv(mmc);
1636 struct dw_mci *host = slot->host;
1639 * Low power mode will stop the card clock when idle. According to the
1640 * description of the CLKENA register we should disable low power mode
1641 * for SDIO cards if we need SDIO interrupts to work.
1643 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1644 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1645 u32 clk_en_a_old;
1646 u32 clk_en_a;
1648 clk_en_a_old = mci_readl(host, CLKENA);
1650 if (card->type == MMC_TYPE_SDIO ||
1651 card->type == MMC_TYPE_SD_COMBO) {
1652 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1653 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1654 } else {
1655 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1656 clk_en_a = clk_en_a_old | clken_low_pwr;
1659 if (clk_en_a != clk_en_a_old) {
1660 mci_writel(host, CLKENA, clk_en_a);
1661 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1662 SDMMC_CMD_PRV_DAT_WAIT, 0);
1667 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1669 struct dw_mci *host = slot->host;
1670 unsigned long irqflags;
1671 u32 int_mask;
1673 spin_lock_irqsave(&host->irq_lock, irqflags);
1675 /* Enable/disable Slot Specific SDIO interrupt */
1676 int_mask = mci_readl(host, INTMASK);
1677 if (enb)
1678 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1679 else
1680 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1681 mci_writel(host, INTMASK, int_mask);
1683 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1686 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1688 struct dw_mci_slot *slot = mmc_priv(mmc);
1689 struct dw_mci *host = slot->host;
1691 __dw_mci_enable_sdio_irq(slot, enb);
1693 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1694 if (enb)
1695 pm_runtime_get_noresume(host->dev);
1696 else
1697 pm_runtime_put_noidle(host->dev);
1700 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1702 struct dw_mci_slot *slot = mmc_priv(mmc);
1704 __dw_mci_enable_sdio_irq(slot, 1);
1707 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1709 struct dw_mci_slot *slot = mmc_priv(mmc);
1710 struct dw_mci *host = slot->host;
1711 const struct dw_mci_drv_data *drv_data = host->drv_data;
1712 int err = -EINVAL;
1714 if (drv_data && drv_data->execute_tuning)
1715 err = drv_data->execute_tuning(slot, opcode);
1716 return err;
1719 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1720 struct mmc_ios *ios)
1722 struct dw_mci_slot *slot = mmc_priv(mmc);
1723 struct dw_mci *host = slot->host;
1724 const struct dw_mci_drv_data *drv_data = host->drv_data;
1726 if (drv_data && drv_data->prepare_hs400_tuning)
1727 return drv_data->prepare_hs400_tuning(host, ios);
1729 return 0;
1732 static bool dw_mci_reset(struct dw_mci *host)
1734 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1735 bool ret = false;
1736 u32 status = 0;
1739 * Resetting generates a block interrupt, hence setting
1740 * the scatter-gather pointer to NULL.
1742 if (host->sg) {
1743 sg_miter_stop(&host->sg_miter);
1744 host->sg = NULL;
1747 if (host->use_dma)
1748 flags |= SDMMC_CTRL_DMA_RESET;
1750 if (dw_mci_ctrl_reset(host, flags)) {
1752 * In all cases we clear the RAWINTS
1753 * register to clear any interrupts.
1755 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1757 if (!host->use_dma) {
1758 ret = true;
1759 goto ciu_out;
1762 /* Wait for dma_req to be cleared */
1763 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1764 status,
1765 !(status & SDMMC_STATUS_DMA_REQ),
1766 1, 500 * USEC_PER_MSEC)) {
1767 dev_err(host->dev,
1768 "%s: Timeout waiting for dma_req to be cleared\n",
1769 __func__);
1770 goto ciu_out;
1773 /* when using DMA next we reset the fifo again */
1774 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1775 goto ciu_out;
1776 } else {
1777 /* if the controller reset bit did clear, then set clock regs */
1778 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1779 dev_err(host->dev,
1780 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1781 __func__);
1782 goto ciu_out;
1786 if (host->use_dma == TRANS_MODE_IDMAC)
1787 /* It is also required that we reinit idmac */
1788 dw_mci_idmac_init(host);
1790 ret = true;
1792 ciu_out:
1793 /* After a CTRL reset we need to have CIU set clock registers */
1794 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1796 return ret;
1799 static const struct mmc_host_ops dw_mci_ops = {
1800 .request = dw_mci_request,
1801 .pre_req = dw_mci_pre_req,
1802 .post_req = dw_mci_post_req,
1803 .set_ios = dw_mci_set_ios,
1804 .get_ro = dw_mci_get_ro,
1805 .get_cd = dw_mci_get_cd,
1806 .hw_reset = dw_mci_hw_reset,
1807 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1808 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1809 .execute_tuning = dw_mci_execute_tuning,
1810 .card_busy = dw_mci_card_busy,
1811 .start_signal_voltage_switch = dw_mci_switch_voltage,
1812 .init_card = dw_mci_init_card,
1813 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1816 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1817 __releases(&host->lock)
1818 __acquires(&host->lock)
1820 struct dw_mci_slot *slot;
1821 struct mmc_host *prev_mmc = host->slot->mmc;
1823 WARN_ON(host->cmd || host->data);
1825 host->slot->mrq = NULL;
1826 host->mrq = NULL;
1827 if (!list_empty(&host->queue)) {
1828 slot = list_entry(host->queue.next,
1829 struct dw_mci_slot, queue_node);
1830 list_del(&slot->queue_node);
1831 dev_vdbg(host->dev, "list not empty: %s is next\n",
1832 mmc_hostname(slot->mmc));
1833 host->state = STATE_SENDING_CMD;
1834 dw_mci_start_request(host, slot);
1835 } else {
1836 dev_vdbg(host->dev, "list empty\n");
1838 if (host->state == STATE_SENDING_CMD11)
1839 host->state = STATE_WAITING_CMD11_DONE;
1840 else
1841 host->state = STATE_IDLE;
1844 spin_unlock(&host->lock);
1845 mmc_request_done(prev_mmc, mrq);
1846 spin_lock(&host->lock);
1849 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1851 u32 status = host->cmd_status;
1853 host->cmd_status = 0;
1855 /* Read the response from the card (up to 16 bytes) */
1856 if (cmd->flags & MMC_RSP_PRESENT) {
1857 if (cmd->flags & MMC_RSP_136) {
1858 cmd->resp[3] = mci_readl(host, RESP0);
1859 cmd->resp[2] = mci_readl(host, RESP1);
1860 cmd->resp[1] = mci_readl(host, RESP2);
1861 cmd->resp[0] = mci_readl(host, RESP3);
1862 } else {
1863 cmd->resp[0] = mci_readl(host, RESP0);
1864 cmd->resp[1] = 0;
1865 cmd->resp[2] = 0;
1866 cmd->resp[3] = 0;
1870 if (status & SDMMC_INT_RTO)
1871 cmd->error = -ETIMEDOUT;
1872 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1873 cmd->error = -EILSEQ;
1874 else if (status & SDMMC_INT_RESP_ERR)
1875 cmd->error = -EIO;
1876 else
1877 cmd->error = 0;
1879 return cmd->error;
1882 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1884 u32 status = host->data_status;
1886 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1887 if (status & SDMMC_INT_DRTO) {
1888 data->error = -ETIMEDOUT;
1889 } else if (status & SDMMC_INT_DCRC) {
1890 data->error = -EILSEQ;
1891 } else if (status & SDMMC_INT_EBE) {
1892 if (host->dir_status ==
1893 DW_MCI_SEND_STATUS) {
1895 * No data CRC status was returned.
1896 * The number of bytes transferred
1897 * will be exaggerated in PIO mode.
1899 data->bytes_xfered = 0;
1900 data->error = -ETIMEDOUT;
1901 } else if (host->dir_status ==
1902 DW_MCI_RECV_STATUS) {
1903 data->error = -EILSEQ;
1905 } else {
1906 /* SDMMC_INT_SBE is included */
1907 data->error = -EILSEQ;
1910 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1913 * After an error, there may be data lingering
1914 * in the FIFO
1916 dw_mci_reset(host);
1917 } else {
1918 data->bytes_xfered = data->blocks * data->blksz;
1919 data->error = 0;
1922 return data->error;
1925 static void dw_mci_set_drto(struct dw_mci *host)
1927 unsigned int drto_clks;
1928 unsigned int drto_div;
1929 unsigned int drto_ms;
1930 unsigned long irqflags;
1932 drto_clks = mci_readl(host, TMOUT) >> 8;
1933 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1934 if (drto_div == 0)
1935 drto_div = 1;
1937 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1938 host->bus_hz);
1940 /* add a bit spare time */
1941 drto_ms += 10;
1943 spin_lock_irqsave(&host->irq_lock, irqflags);
1944 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1945 mod_timer(&host->dto_timer,
1946 jiffies + msecs_to_jiffies(drto_ms));
1947 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1950 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1952 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1953 return false;
1956 * Really be certain that the timer has stopped. This is a bit of
1957 * paranoia and could only really happen if we had really bad
1958 * interrupt latency and the interrupt routine and timeout were
1959 * running concurrently so that the del_timer() in the interrupt
1960 * handler couldn't run.
1962 WARN_ON(del_timer_sync(&host->cto_timer));
1963 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1965 return true;
1968 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1970 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1971 return false;
1973 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1974 WARN_ON(del_timer_sync(&host->dto_timer));
1975 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1977 return true;
1980 static void dw_mci_tasklet_func(unsigned long priv)
1982 struct dw_mci *host = (struct dw_mci *)priv;
1983 struct mmc_data *data;
1984 struct mmc_command *cmd;
1985 struct mmc_request *mrq;
1986 enum dw_mci_state state;
1987 enum dw_mci_state prev_state;
1988 unsigned int err;
1990 spin_lock(&host->lock);
1992 state = host->state;
1993 data = host->data;
1994 mrq = host->mrq;
1996 do {
1997 prev_state = state;
1999 switch (state) {
2000 case STATE_IDLE:
2001 case STATE_WAITING_CMD11_DONE:
2002 break;
2004 case STATE_SENDING_CMD11:
2005 case STATE_SENDING_CMD:
2006 if (!dw_mci_clear_pending_cmd_complete(host))
2007 break;
2009 cmd = host->cmd;
2010 host->cmd = NULL;
2011 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2012 err = dw_mci_command_complete(host, cmd);
2013 if (cmd == mrq->sbc && !err) {
2014 __dw_mci_start_request(host, host->slot,
2015 mrq->cmd);
2016 goto unlock;
2019 if (cmd->data && err) {
2021 * During UHS tuning sequence, sending the stop
2022 * command after the response CRC error would
2023 * throw the system into a confused state
2024 * causing all future tuning phases to report
2025 * failure.
2027 * In such case controller will move into a data
2028 * transfer state after a response error or
2029 * response CRC error. Let's let that finish
2030 * before trying to send a stop, so we'll go to
2031 * STATE_SENDING_DATA.
2033 * Although letting the data transfer take place
2034 * will waste a bit of time (we already know
2035 * the command was bad), it can't cause any
2036 * errors since it's possible it would have
2037 * taken place anyway if this tasklet got
2038 * delayed. Allowing the transfer to take place
2039 * avoids races and keeps things simple.
2041 if (err != -ETIMEDOUT) {
2042 state = STATE_SENDING_DATA;
2043 continue;
2046 dw_mci_stop_dma(host);
2047 send_stop_abort(host, data);
2048 state = STATE_SENDING_STOP;
2049 break;
2052 if (!cmd->data || err) {
2053 dw_mci_request_end(host, mrq);
2054 goto unlock;
2057 prev_state = state = STATE_SENDING_DATA;
2058 /* fall through */
2060 case STATE_SENDING_DATA:
2062 * We could get a data error and never a transfer
2063 * complete so we'd better check for it here.
2065 * Note that we don't really care if we also got a
2066 * transfer complete; stopping the DMA and sending an
2067 * abort won't hurt.
2069 if (test_and_clear_bit(EVENT_DATA_ERROR,
2070 &host->pending_events)) {
2071 dw_mci_stop_dma(host);
2072 if (!(host->data_status & (SDMMC_INT_DRTO |
2073 SDMMC_INT_EBE)))
2074 send_stop_abort(host, data);
2075 state = STATE_DATA_ERROR;
2076 break;
2079 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2080 &host->pending_events)) {
2082 * If all data-related interrupts don't come
2083 * within the given time in reading data state.
2085 if (host->dir_status == DW_MCI_RECV_STATUS)
2086 dw_mci_set_drto(host);
2087 break;
2090 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2093 * Handle an EVENT_DATA_ERROR that might have shown up
2094 * before the transfer completed. This might not have
2095 * been caught by the check above because the interrupt
2096 * could have gone off between the previous check and
2097 * the check for transfer complete.
2099 * Technically this ought not be needed assuming we
2100 * get a DATA_COMPLETE eventually (we'll notice the
2101 * error and end the request), but it shouldn't hurt.
2103 * This has the advantage of sending the stop command.
2105 if (test_and_clear_bit(EVENT_DATA_ERROR,
2106 &host->pending_events)) {
2107 dw_mci_stop_dma(host);
2108 if (!(host->data_status & (SDMMC_INT_DRTO |
2109 SDMMC_INT_EBE)))
2110 send_stop_abort(host, data);
2111 state = STATE_DATA_ERROR;
2112 break;
2114 prev_state = state = STATE_DATA_BUSY;
2116 /* fall through */
2118 case STATE_DATA_BUSY:
2119 if (!dw_mci_clear_pending_data_complete(host)) {
2121 * If data error interrupt comes but data over
2122 * interrupt doesn't come within the given time.
2123 * in reading data state.
2125 if (host->dir_status == DW_MCI_RECV_STATUS)
2126 dw_mci_set_drto(host);
2127 break;
2130 host->data = NULL;
2131 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2132 err = dw_mci_data_complete(host, data);
2134 if (!err) {
2135 if (!data->stop || mrq->sbc) {
2136 if (mrq->sbc && data->stop)
2137 data->stop->error = 0;
2138 dw_mci_request_end(host, mrq);
2139 goto unlock;
2142 /* stop command for open-ended transfer*/
2143 if (data->stop)
2144 send_stop_abort(host, data);
2145 } else {
2147 * If we don't have a command complete now we'll
2148 * never get one since we just reset everything;
2149 * better end the request.
2151 * If we do have a command complete we'll fall
2152 * through to the SENDING_STOP command and
2153 * everything will be peachy keen.
2155 if (!test_bit(EVENT_CMD_COMPLETE,
2156 &host->pending_events)) {
2157 host->cmd = NULL;
2158 dw_mci_request_end(host, mrq);
2159 goto unlock;
2164 * If err has non-zero,
2165 * stop-abort command has been already issued.
2167 prev_state = state = STATE_SENDING_STOP;
2169 /* fall through */
2171 case STATE_SENDING_STOP:
2172 if (!dw_mci_clear_pending_cmd_complete(host))
2173 break;
2175 /* CMD error in data command */
2176 if (mrq->cmd->error && mrq->data)
2177 dw_mci_reset(host);
2179 host->cmd = NULL;
2180 host->data = NULL;
2182 if (!mrq->sbc && mrq->stop)
2183 dw_mci_command_complete(host, mrq->stop);
2184 else
2185 host->cmd_status = 0;
2187 dw_mci_request_end(host, mrq);
2188 goto unlock;
2190 case STATE_DATA_ERROR:
2191 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2192 &host->pending_events))
2193 break;
2195 state = STATE_DATA_BUSY;
2196 break;
2198 } while (state != prev_state);
2200 host->state = state;
2201 unlock:
2202 spin_unlock(&host->lock);
2206 /* push final bytes to part_buf, only use during push */
2207 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2209 memcpy((void *)&host->part_buf, buf, cnt);
2210 host->part_buf_count = cnt;
2213 /* append bytes to part_buf, only use during push */
2214 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2216 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2217 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2218 host->part_buf_count += cnt;
2219 return cnt;
2222 /* pull first bytes from part_buf, only use during pull */
2223 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2225 cnt = min_t(int, cnt, host->part_buf_count);
2226 if (cnt) {
2227 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2228 cnt);
2229 host->part_buf_count -= cnt;
2230 host->part_buf_start += cnt;
2232 return cnt;
2235 /* pull final bytes from the part_buf, assuming it's just been filled */
2236 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2238 memcpy(buf, &host->part_buf, cnt);
2239 host->part_buf_start = cnt;
2240 host->part_buf_count = (1 << host->data_shift) - cnt;
2243 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2245 struct mmc_data *data = host->data;
2246 int init_cnt = cnt;
2248 /* try and push anything in the part_buf */
2249 if (unlikely(host->part_buf_count)) {
2250 int len = dw_mci_push_part_bytes(host, buf, cnt);
2252 buf += len;
2253 cnt -= len;
2254 if (host->part_buf_count == 2) {
2255 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2256 host->part_buf_count = 0;
2259 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2260 if (unlikely((unsigned long)buf & 0x1)) {
2261 while (cnt >= 2) {
2262 u16 aligned_buf[64];
2263 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2264 int items = len >> 1;
2265 int i;
2266 /* memcpy from input buffer into aligned buffer */
2267 memcpy(aligned_buf, buf, len);
2268 buf += len;
2269 cnt -= len;
2270 /* push data from aligned buffer into fifo */
2271 for (i = 0; i < items; ++i)
2272 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2274 } else
2275 #endif
2277 u16 *pdata = buf;
2279 for (; cnt >= 2; cnt -= 2)
2280 mci_fifo_writew(host->fifo_reg, *pdata++);
2281 buf = pdata;
2283 /* put anything remaining in the part_buf */
2284 if (cnt) {
2285 dw_mci_set_part_bytes(host, buf, cnt);
2286 /* Push data if we have reached the expected data length */
2287 if ((data->bytes_xfered + init_cnt) ==
2288 (data->blksz * data->blocks))
2289 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2293 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2295 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2296 if (unlikely((unsigned long)buf & 0x1)) {
2297 while (cnt >= 2) {
2298 /* pull data from fifo into aligned buffer */
2299 u16 aligned_buf[64];
2300 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2301 int items = len >> 1;
2302 int i;
2304 for (i = 0; i < items; ++i)
2305 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2306 /* memcpy from aligned buffer into output buffer */
2307 memcpy(buf, aligned_buf, len);
2308 buf += len;
2309 cnt -= len;
2311 } else
2312 #endif
2314 u16 *pdata = buf;
2316 for (; cnt >= 2; cnt -= 2)
2317 *pdata++ = mci_fifo_readw(host->fifo_reg);
2318 buf = pdata;
2320 if (cnt) {
2321 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2322 dw_mci_pull_final_bytes(host, buf, cnt);
2326 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2328 struct mmc_data *data = host->data;
2329 int init_cnt = cnt;
2331 /* try and push anything in the part_buf */
2332 if (unlikely(host->part_buf_count)) {
2333 int len = dw_mci_push_part_bytes(host, buf, cnt);
2335 buf += len;
2336 cnt -= len;
2337 if (host->part_buf_count == 4) {
2338 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2339 host->part_buf_count = 0;
2342 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2343 if (unlikely((unsigned long)buf & 0x3)) {
2344 while (cnt >= 4) {
2345 u32 aligned_buf[32];
2346 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2347 int items = len >> 2;
2348 int i;
2349 /* memcpy from input buffer into aligned buffer */
2350 memcpy(aligned_buf, buf, len);
2351 buf += len;
2352 cnt -= len;
2353 /* push data from aligned buffer into fifo */
2354 for (i = 0; i < items; ++i)
2355 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2357 } else
2358 #endif
2360 u32 *pdata = buf;
2362 for (; cnt >= 4; cnt -= 4)
2363 mci_fifo_writel(host->fifo_reg, *pdata++);
2364 buf = pdata;
2366 /* put anything remaining in the part_buf */
2367 if (cnt) {
2368 dw_mci_set_part_bytes(host, buf, cnt);
2369 /* Push data if we have reached the expected data length */
2370 if ((data->bytes_xfered + init_cnt) ==
2371 (data->blksz * data->blocks))
2372 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2376 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2378 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2379 if (unlikely((unsigned long)buf & 0x3)) {
2380 while (cnt >= 4) {
2381 /* pull data from fifo into aligned buffer */
2382 u32 aligned_buf[32];
2383 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2384 int items = len >> 2;
2385 int i;
2387 for (i = 0; i < items; ++i)
2388 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2389 /* memcpy from aligned buffer into output buffer */
2390 memcpy(buf, aligned_buf, len);
2391 buf += len;
2392 cnt -= len;
2394 } else
2395 #endif
2397 u32 *pdata = buf;
2399 for (; cnt >= 4; cnt -= 4)
2400 *pdata++ = mci_fifo_readl(host->fifo_reg);
2401 buf = pdata;
2403 if (cnt) {
2404 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2405 dw_mci_pull_final_bytes(host, buf, cnt);
2409 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2411 struct mmc_data *data = host->data;
2412 int init_cnt = cnt;
2414 /* try and push anything in the part_buf */
2415 if (unlikely(host->part_buf_count)) {
2416 int len = dw_mci_push_part_bytes(host, buf, cnt);
2418 buf += len;
2419 cnt -= len;
2421 if (host->part_buf_count == 8) {
2422 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2423 host->part_buf_count = 0;
2426 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2427 if (unlikely((unsigned long)buf & 0x7)) {
2428 while (cnt >= 8) {
2429 u64 aligned_buf[16];
2430 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2431 int items = len >> 3;
2432 int i;
2433 /* memcpy from input buffer into aligned buffer */
2434 memcpy(aligned_buf, buf, len);
2435 buf += len;
2436 cnt -= len;
2437 /* push data from aligned buffer into fifo */
2438 for (i = 0; i < items; ++i)
2439 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2441 } else
2442 #endif
2444 u64 *pdata = buf;
2446 for (; cnt >= 8; cnt -= 8)
2447 mci_fifo_writeq(host->fifo_reg, *pdata++);
2448 buf = pdata;
2450 /* put anything remaining in the part_buf */
2451 if (cnt) {
2452 dw_mci_set_part_bytes(host, buf, cnt);
2453 /* Push data if we have reached the expected data length */
2454 if ((data->bytes_xfered + init_cnt) ==
2455 (data->blksz * data->blocks))
2456 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2460 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2462 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2463 if (unlikely((unsigned long)buf & 0x7)) {
2464 while (cnt >= 8) {
2465 /* pull data from fifo into aligned buffer */
2466 u64 aligned_buf[16];
2467 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2468 int items = len >> 3;
2469 int i;
2471 for (i = 0; i < items; ++i)
2472 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2474 /* memcpy from aligned buffer into output buffer */
2475 memcpy(buf, aligned_buf, len);
2476 buf += len;
2477 cnt -= len;
2479 } else
2480 #endif
2482 u64 *pdata = buf;
2484 for (; cnt >= 8; cnt -= 8)
2485 *pdata++ = mci_fifo_readq(host->fifo_reg);
2486 buf = pdata;
2488 if (cnt) {
2489 host->part_buf = mci_fifo_readq(host->fifo_reg);
2490 dw_mci_pull_final_bytes(host, buf, cnt);
2494 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2496 int len;
2498 /* get remaining partial bytes */
2499 len = dw_mci_pull_part_bytes(host, buf, cnt);
2500 if (unlikely(len == cnt))
2501 return;
2502 buf += len;
2503 cnt -= len;
2505 /* get the rest of the data */
2506 host->pull_data(host, buf, cnt);
2509 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2511 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2512 void *buf;
2513 unsigned int offset;
2514 struct mmc_data *data = host->data;
2515 int shift = host->data_shift;
2516 u32 status;
2517 unsigned int len;
2518 unsigned int remain, fcnt;
2520 do {
2521 if (!sg_miter_next(sg_miter))
2522 goto done;
2524 host->sg = sg_miter->piter.sg;
2525 buf = sg_miter->addr;
2526 remain = sg_miter->length;
2527 offset = 0;
2529 do {
2530 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2531 << shift) + host->part_buf_count;
2532 len = min(remain, fcnt);
2533 if (!len)
2534 break;
2535 dw_mci_pull_data(host, (void *)(buf + offset), len);
2536 data->bytes_xfered += len;
2537 offset += len;
2538 remain -= len;
2539 } while (remain);
2541 sg_miter->consumed = offset;
2542 status = mci_readl(host, MINTSTS);
2543 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2544 /* if the RXDR is ready read again */
2545 } while ((status & SDMMC_INT_RXDR) ||
2546 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2548 if (!remain) {
2549 if (!sg_miter_next(sg_miter))
2550 goto done;
2551 sg_miter->consumed = 0;
2553 sg_miter_stop(sg_miter);
2554 return;
2556 done:
2557 sg_miter_stop(sg_miter);
2558 host->sg = NULL;
2559 smp_wmb(); /* drain writebuffer */
2560 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2563 static void dw_mci_write_data_pio(struct dw_mci *host)
2565 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2566 void *buf;
2567 unsigned int offset;
2568 struct mmc_data *data = host->data;
2569 int shift = host->data_shift;
2570 u32 status;
2571 unsigned int len;
2572 unsigned int fifo_depth = host->fifo_depth;
2573 unsigned int remain, fcnt;
2575 do {
2576 if (!sg_miter_next(sg_miter))
2577 goto done;
2579 host->sg = sg_miter->piter.sg;
2580 buf = sg_miter->addr;
2581 remain = sg_miter->length;
2582 offset = 0;
2584 do {
2585 fcnt = ((fifo_depth -
2586 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2587 << shift) - host->part_buf_count;
2588 len = min(remain, fcnt);
2589 if (!len)
2590 break;
2591 host->push_data(host, (void *)(buf + offset), len);
2592 data->bytes_xfered += len;
2593 offset += len;
2594 remain -= len;
2595 } while (remain);
2597 sg_miter->consumed = offset;
2598 status = mci_readl(host, MINTSTS);
2599 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2600 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2602 if (!remain) {
2603 if (!sg_miter_next(sg_miter))
2604 goto done;
2605 sg_miter->consumed = 0;
2607 sg_miter_stop(sg_miter);
2608 return;
2610 done:
2611 sg_miter_stop(sg_miter);
2612 host->sg = NULL;
2613 smp_wmb(); /* drain writebuffer */
2614 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2617 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2619 del_timer(&host->cto_timer);
2621 if (!host->cmd_status)
2622 host->cmd_status = status;
2624 smp_wmb(); /* drain writebuffer */
2626 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2627 tasklet_schedule(&host->tasklet);
2630 static void dw_mci_handle_cd(struct dw_mci *host)
2632 struct dw_mci_slot *slot = host->slot;
2634 if (slot->mmc->ops->card_event)
2635 slot->mmc->ops->card_event(slot->mmc);
2636 mmc_detect_change(slot->mmc,
2637 msecs_to_jiffies(host->pdata->detect_delay_ms));
2640 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2642 struct dw_mci *host = dev_id;
2643 u32 pending;
2644 struct dw_mci_slot *slot = host->slot;
2645 unsigned long irqflags;
2647 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2649 if (pending) {
2650 /* Check volt switch first, since it can look like an error */
2651 if ((host->state == STATE_SENDING_CMD11) &&
2652 (pending & SDMMC_INT_VOLT_SWITCH)) {
2653 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2654 pending &= ~SDMMC_INT_VOLT_SWITCH;
2657 * Hold the lock; we know cmd11_timer can't be kicked
2658 * off after the lock is released, so safe to delete.
2660 spin_lock_irqsave(&host->irq_lock, irqflags);
2661 dw_mci_cmd_interrupt(host, pending);
2662 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2664 del_timer(&host->cmd11_timer);
2667 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2668 spin_lock_irqsave(&host->irq_lock, irqflags);
2670 del_timer(&host->cto_timer);
2671 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2672 host->cmd_status = pending;
2673 smp_wmb(); /* drain writebuffer */
2674 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2676 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2679 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2680 /* if there is an error report DATA_ERROR */
2681 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2682 host->data_status = pending;
2683 smp_wmb(); /* drain writebuffer */
2684 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2685 tasklet_schedule(&host->tasklet);
2688 if (pending & SDMMC_INT_DATA_OVER) {
2689 spin_lock_irqsave(&host->irq_lock, irqflags);
2691 del_timer(&host->dto_timer);
2693 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2694 if (!host->data_status)
2695 host->data_status = pending;
2696 smp_wmb(); /* drain writebuffer */
2697 if (host->dir_status == DW_MCI_RECV_STATUS) {
2698 if (host->sg != NULL)
2699 dw_mci_read_data_pio(host, true);
2701 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2702 tasklet_schedule(&host->tasklet);
2704 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2707 if (pending & SDMMC_INT_RXDR) {
2708 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2709 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2710 dw_mci_read_data_pio(host, false);
2713 if (pending & SDMMC_INT_TXDR) {
2714 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2715 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2716 dw_mci_write_data_pio(host);
2719 if (pending & SDMMC_INT_CMD_DONE) {
2720 spin_lock_irqsave(&host->irq_lock, irqflags);
2722 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2723 dw_mci_cmd_interrupt(host, pending);
2725 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2728 if (pending & SDMMC_INT_CD) {
2729 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2730 dw_mci_handle_cd(host);
2733 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2734 mci_writel(host, RINTSTS,
2735 SDMMC_INT_SDIO(slot->sdio_id));
2736 __dw_mci_enable_sdio_irq(slot, 0);
2737 sdio_signal_irq(slot->mmc);
2742 if (host->use_dma != TRANS_MODE_IDMAC)
2743 return IRQ_HANDLED;
2745 /* Handle IDMA interrupts */
2746 if (host->dma_64bit_address == 1) {
2747 pending = mci_readl(host, IDSTS64);
2748 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2749 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2750 SDMMC_IDMAC_INT_RI);
2751 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2752 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2753 host->dma_ops->complete((void *)host);
2755 } else {
2756 pending = mci_readl(host, IDSTS);
2757 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2758 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2759 SDMMC_IDMAC_INT_RI);
2760 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2761 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2762 host->dma_ops->complete((void *)host);
2766 return IRQ_HANDLED;
2769 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2771 struct dw_mci *host = slot->host;
2772 const struct dw_mci_drv_data *drv_data = host->drv_data;
2773 struct mmc_host *mmc = slot->mmc;
2774 int ctrl_id;
2776 if (host->pdata->caps)
2777 mmc->caps = host->pdata->caps;
2780 * Support MMC_CAP_ERASE by default.
2781 * It needs to use trim/discard/erase commands.
2783 mmc->caps |= MMC_CAP_ERASE;
2785 if (host->pdata->pm_caps)
2786 mmc->pm_caps = host->pdata->pm_caps;
2788 if (host->dev->of_node) {
2789 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2790 if (ctrl_id < 0)
2791 ctrl_id = 0;
2792 } else {
2793 ctrl_id = to_platform_device(host->dev)->id;
2796 if (drv_data && drv_data->caps) {
2797 if (ctrl_id >= drv_data->num_caps) {
2798 dev_err(host->dev, "invalid controller id %d\n",
2799 ctrl_id);
2800 return -EINVAL;
2802 mmc->caps |= drv_data->caps[ctrl_id];
2805 if (host->pdata->caps2)
2806 mmc->caps2 = host->pdata->caps2;
2808 mmc->f_min = DW_MCI_FREQ_MIN;
2809 if (!mmc->f_max)
2810 mmc->f_max = DW_MCI_FREQ_MAX;
2812 /* Process SDIO IRQs through the sdio_irq_work. */
2813 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2814 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2816 return 0;
2819 static int dw_mci_init_slot(struct dw_mci *host)
2821 struct mmc_host *mmc;
2822 struct dw_mci_slot *slot;
2823 int ret;
2825 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2826 if (!mmc)
2827 return -ENOMEM;
2829 slot = mmc_priv(mmc);
2830 slot->id = 0;
2831 slot->sdio_id = host->sdio_id0 + slot->id;
2832 slot->mmc = mmc;
2833 slot->host = host;
2834 host->slot = slot;
2836 mmc->ops = &dw_mci_ops;
2838 /*if there are external regulators, get them*/
2839 ret = mmc_regulator_get_supply(mmc);
2840 if (ret)
2841 goto err_host_allocated;
2843 if (!mmc->ocr_avail)
2844 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2846 ret = mmc_of_parse(mmc);
2847 if (ret)
2848 goto err_host_allocated;
2850 ret = dw_mci_init_slot_caps(slot);
2851 if (ret)
2852 goto err_host_allocated;
2854 /* Useful defaults if platform data is unset. */
2855 if (host->use_dma == TRANS_MODE_IDMAC) {
2856 mmc->max_segs = host->ring_size;
2857 mmc->max_blk_size = 65535;
2858 mmc->max_seg_size = 0x1000;
2859 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2860 mmc->max_blk_count = mmc->max_req_size / 512;
2861 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2862 mmc->max_segs = 64;
2863 mmc->max_blk_size = 65535;
2864 mmc->max_blk_count = 65535;
2865 mmc->max_req_size =
2866 mmc->max_blk_size * mmc->max_blk_count;
2867 mmc->max_seg_size = mmc->max_req_size;
2868 } else {
2869 /* TRANS_MODE_PIO */
2870 mmc->max_segs = 64;
2871 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2872 mmc->max_blk_count = 512;
2873 mmc->max_req_size = mmc->max_blk_size *
2874 mmc->max_blk_count;
2875 mmc->max_seg_size = mmc->max_req_size;
2878 dw_mci_get_cd(mmc);
2880 ret = mmc_add_host(mmc);
2881 if (ret)
2882 goto err_host_allocated;
2884 #if defined(CONFIG_DEBUG_FS)
2885 dw_mci_init_debugfs(slot);
2886 #endif
2888 return 0;
2890 err_host_allocated:
2891 mmc_free_host(mmc);
2892 return ret;
2895 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2897 /* Debugfs stuff is cleaned up by mmc core */
2898 mmc_remove_host(slot->mmc);
2899 slot->host->slot = NULL;
2900 mmc_free_host(slot->mmc);
2903 static void dw_mci_init_dma(struct dw_mci *host)
2905 int addr_config;
2906 struct device *dev = host->dev;
2909 * Check tansfer mode from HCON[17:16]
2910 * Clear the ambiguous description of dw_mmc databook:
2911 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2912 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2913 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2914 * 2b'11: Non DW DMA Interface -> pio only
2915 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2916 * simpler request/acknowledge handshake mechanism and both of them
2917 * are regarded as external dma master for dw_mmc.
2919 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2920 if (host->use_dma == DMA_INTERFACE_IDMA) {
2921 host->use_dma = TRANS_MODE_IDMAC;
2922 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2923 host->use_dma == DMA_INTERFACE_GDMA) {
2924 host->use_dma = TRANS_MODE_EDMAC;
2925 } else {
2926 goto no_dma;
2929 /* Determine which DMA interface to use */
2930 if (host->use_dma == TRANS_MODE_IDMAC) {
2932 * Check ADDR_CONFIG bit in HCON to find
2933 * IDMAC address bus width
2935 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2937 if (addr_config == 1) {
2938 /* host supports IDMAC in 64-bit address mode */
2939 host->dma_64bit_address = 1;
2940 dev_info(host->dev,
2941 "IDMAC supports 64-bit address mode.\n");
2942 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2943 dma_set_coherent_mask(host->dev,
2944 DMA_BIT_MASK(64));
2945 } else {
2946 /* host supports IDMAC in 32-bit address mode */
2947 host->dma_64bit_address = 0;
2948 dev_info(host->dev,
2949 "IDMAC supports 32-bit address mode.\n");
2952 /* Alloc memory for sg translation */
2953 host->sg_cpu = dmam_alloc_coherent(host->dev,
2954 DESC_RING_BUF_SZ,
2955 &host->sg_dma, GFP_KERNEL);
2956 if (!host->sg_cpu) {
2957 dev_err(host->dev,
2958 "%s: could not alloc DMA memory\n",
2959 __func__);
2960 goto no_dma;
2963 host->dma_ops = &dw_mci_idmac_ops;
2964 dev_info(host->dev, "Using internal DMA controller.\n");
2965 } else {
2966 /* TRANS_MODE_EDMAC: check dma bindings again */
2967 if ((device_property_read_string_array(dev, "dma-names",
2968 NULL, 0) < 0) ||
2969 !device_property_present(dev, "dmas")) {
2970 goto no_dma;
2972 host->dma_ops = &dw_mci_edmac_ops;
2973 dev_info(host->dev, "Using external DMA controller.\n");
2976 if (host->dma_ops->init && host->dma_ops->start &&
2977 host->dma_ops->stop && host->dma_ops->cleanup) {
2978 if (host->dma_ops->init(host)) {
2979 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2980 __func__);
2981 goto no_dma;
2983 } else {
2984 dev_err(host->dev, "DMA initialization not found.\n");
2985 goto no_dma;
2988 return;
2990 no_dma:
2991 dev_info(host->dev, "Using PIO mode.\n");
2992 host->use_dma = TRANS_MODE_PIO;
2995 static void dw_mci_cmd11_timer(struct timer_list *t)
2997 struct dw_mci *host = from_timer(host, t, cmd11_timer);
2999 if (host->state != STATE_SENDING_CMD11) {
3000 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3001 return;
3004 host->cmd_status = SDMMC_INT_RTO;
3005 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3006 tasklet_schedule(&host->tasklet);
3009 static void dw_mci_cto_timer(struct timer_list *t)
3011 struct dw_mci *host = from_timer(host, t, cto_timer);
3012 unsigned long irqflags;
3013 u32 pending;
3015 spin_lock_irqsave(&host->irq_lock, irqflags);
3018 * If somehow we have very bad interrupt latency it's remotely possible
3019 * that the timer could fire while the interrupt is still pending or
3020 * while the interrupt is midway through running. Let's be paranoid
3021 * and detect those two cases. Note that this is paranoia is somewhat
3022 * justified because in this function we don't actually cancel the
3023 * pending command in the controller--we just assume it will never come.
3025 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3026 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3027 /* The interrupt should fire; no need to act but we can warn */
3028 dev_warn(host->dev, "Unexpected interrupt latency\n");
3029 goto exit;
3031 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3032 /* Presumably interrupt handler couldn't delete the timer */
3033 dev_warn(host->dev, "CTO timeout when already completed\n");
3034 goto exit;
3038 * Continued paranoia to make sure we're in the state we expect.
3039 * This paranoia isn't really justified but it seems good to be safe.
3041 switch (host->state) {
3042 case STATE_SENDING_CMD11:
3043 case STATE_SENDING_CMD:
3044 case STATE_SENDING_STOP:
3046 * If CMD_DONE interrupt does NOT come in sending command
3047 * state, we should notify the driver to terminate current
3048 * transfer and report a command timeout to the core.
3050 host->cmd_status = SDMMC_INT_RTO;
3051 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3052 tasklet_schedule(&host->tasklet);
3053 break;
3054 default:
3055 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3056 host->state);
3057 break;
3060 exit:
3061 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3064 static void dw_mci_dto_timer(struct timer_list *t)
3066 struct dw_mci *host = from_timer(host, t, dto_timer);
3067 unsigned long irqflags;
3068 u32 pending;
3070 spin_lock_irqsave(&host->irq_lock, irqflags);
3073 * The DTO timer is much longer than the CTO timer, so it's even less
3074 * likely that we'll these cases, but it pays to be paranoid.
3076 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3077 if (pending & SDMMC_INT_DATA_OVER) {
3078 /* The interrupt should fire; no need to act but we can warn */
3079 dev_warn(host->dev, "Unexpected data interrupt latency\n");
3080 goto exit;
3082 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3083 /* Presumably interrupt handler couldn't delete the timer */
3084 dev_warn(host->dev, "DTO timeout when already completed\n");
3085 goto exit;
3089 * Continued paranoia to make sure we're in the state we expect.
3090 * This paranoia isn't really justified but it seems good to be safe.
3092 switch (host->state) {
3093 case STATE_SENDING_DATA:
3094 case STATE_DATA_BUSY:
3096 * If DTO interrupt does NOT come in sending data state,
3097 * we should notify the driver to terminate current transfer
3098 * and report a data timeout to the core.
3100 host->data_status = SDMMC_INT_DRTO;
3101 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3102 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3103 tasklet_schedule(&host->tasklet);
3104 break;
3105 default:
3106 dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3107 host->state);
3108 break;
3111 exit:
3112 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3115 #ifdef CONFIG_OF
3116 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3118 struct dw_mci_board *pdata;
3119 struct device *dev = host->dev;
3120 const struct dw_mci_drv_data *drv_data = host->drv_data;
3121 int ret;
3122 u32 clock_frequency;
3124 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3125 if (!pdata)
3126 return ERR_PTR(-ENOMEM);
3128 /* find reset controller when exist */
3129 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3130 if (IS_ERR(pdata->rstc)) {
3131 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3132 return ERR_PTR(-EPROBE_DEFER);
3135 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3136 dev_info(dev,
3137 "fifo-depth property not found, using value of FIFOTH register as default\n");
3139 device_property_read_u32(dev, "card-detect-delay",
3140 &pdata->detect_delay_ms);
3142 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3144 if (device_property_present(dev, "fifo-watermark-aligned"))
3145 host->wm_aligned = true;
3147 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3148 pdata->bus_hz = clock_frequency;
3150 if (drv_data && drv_data->parse_dt) {
3151 ret = drv_data->parse_dt(host);
3152 if (ret)
3153 return ERR_PTR(ret);
3156 return pdata;
3159 #else /* CONFIG_OF */
3160 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3162 return ERR_PTR(-EINVAL);
3164 #endif /* CONFIG_OF */
3166 static void dw_mci_enable_cd(struct dw_mci *host)
3168 unsigned long irqflags;
3169 u32 temp;
3172 * No need for CD if all slots have a non-error GPIO
3173 * as well as broken card detection is found.
3175 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3176 return;
3178 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3179 spin_lock_irqsave(&host->irq_lock, irqflags);
3180 temp = mci_readl(host, INTMASK);
3181 temp |= SDMMC_INT_CD;
3182 mci_writel(host, INTMASK, temp);
3183 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3187 int dw_mci_probe(struct dw_mci *host)
3189 const struct dw_mci_drv_data *drv_data = host->drv_data;
3190 int width, i, ret = 0;
3191 u32 fifo_size;
3193 if (!host->pdata) {
3194 host->pdata = dw_mci_parse_dt(host);
3195 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3196 return -EPROBE_DEFER;
3197 } else if (IS_ERR(host->pdata)) {
3198 dev_err(host->dev, "platform data not available\n");
3199 return -EINVAL;
3203 host->biu_clk = devm_clk_get(host->dev, "biu");
3204 if (IS_ERR(host->biu_clk)) {
3205 dev_dbg(host->dev, "biu clock not available\n");
3206 } else {
3207 ret = clk_prepare_enable(host->biu_clk);
3208 if (ret) {
3209 dev_err(host->dev, "failed to enable biu clock\n");
3210 return ret;
3214 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3215 if (IS_ERR(host->ciu_clk)) {
3216 dev_dbg(host->dev, "ciu clock not available\n");
3217 host->bus_hz = host->pdata->bus_hz;
3218 } else {
3219 ret = clk_prepare_enable(host->ciu_clk);
3220 if (ret) {
3221 dev_err(host->dev, "failed to enable ciu clock\n");
3222 goto err_clk_biu;
3225 if (host->pdata->bus_hz) {
3226 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3227 if (ret)
3228 dev_warn(host->dev,
3229 "Unable to set bus rate to %uHz\n",
3230 host->pdata->bus_hz);
3232 host->bus_hz = clk_get_rate(host->ciu_clk);
3235 if (!host->bus_hz) {
3236 dev_err(host->dev,
3237 "Platform data must supply bus speed\n");
3238 ret = -ENODEV;
3239 goto err_clk_ciu;
3242 if (!IS_ERR(host->pdata->rstc)) {
3243 reset_control_assert(host->pdata->rstc);
3244 usleep_range(10, 50);
3245 reset_control_deassert(host->pdata->rstc);
3248 if (drv_data && drv_data->init) {
3249 ret = drv_data->init(host);
3250 if (ret) {
3251 dev_err(host->dev,
3252 "implementation specific init failed\n");
3253 goto err_clk_ciu;
3257 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3258 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3259 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3261 spin_lock_init(&host->lock);
3262 spin_lock_init(&host->irq_lock);
3263 INIT_LIST_HEAD(&host->queue);
3266 * Get the host data width - this assumes that HCON has been set with
3267 * the correct values.
3269 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3270 if (!i) {
3271 host->push_data = dw_mci_push_data16;
3272 host->pull_data = dw_mci_pull_data16;
3273 width = 16;
3274 host->data_shift = 1;
3275 } else if (i == 2) {
3276 host->push_data = dw_mci_push_data64;
3277 host->pull_data = dw_mci_pull_data64;
3278 width = 64;
3279 host->data_shift = 3;
3280 } else {
3281 /* Check for a reserved value, and warn if it is */
3282 WARN((i != 1),
3283 "HCON reports a reserved host data width!\n"
3284 "Defaulting to 32-bit access.\n");
3285 host->push_data = dw_mci_push_data32;
3286 host->pull_data = dw_mci_pull_data32;
3287 width = 32;
3288 host->data_shift = 2;
3291 /* Reset all blocks */
3292 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3293 ret = -ENODEV;
3294 goto err_clk_ciu;
3297 host->dma_ops = host->pdata->dma_ops;
3298 dw_mci_init_dma(host);
3300 /* Clear the interrupts for the host controller */
3301 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3302 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3304 /* Put in max timeout */
3305 mci_writel(host, TMOUT, 0xFFFFFFFF);
3308 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3309 * Tx Mark = fifo_size / 2 DMA Size = 8
3311 if (!host->pdata->fifo_depth) {
3313 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3314 * have been overwritten by the bootloader, just like we're
3315 * about to do, so if you know the value for your hardware, you
3316 * should put it in the platform data.
3318 fifo_size = mci_readl(host, FIFOTH);
3319 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3320 } else {
3321 fifo_size = host->pdata->fifo_depth;
3323 host->fifo_depth = fifo_size;
3324 host->fifoth_val =
3325 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3326 mci_writel(host, FIFOTH, host->fifoth_val);
3328 /* disable clock to CIU */
3329 mci_writel(host, CLKENA, 0);
3330 mci_writel(host, CLKSRC, 0);
3333 * In 2.40a spec, Data offset is changed.
3334 * Need to check the version-id and set data-offset for DATA register.
3336 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3337 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3339 if (host->data_addr_override)
3340 host->fifo_reg = host->regs + host->data_addr_override;
3341 else if (host->verid < DW_MMC_240A)
3342 host->fifo_reg = host->regs + DATA_OFFSET;
3343 else
3344 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3346 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3347 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3348 host->irq_flags, "dw-mci", host);
3349 if (ret)
3350 goto err_dmaunmap;
3353 * Enable interrupts for command done, data over, data empty,
3354 * receive ready and error such as transmit, receive timeout, crc error
3356 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3357 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3358 DW_MCI_ERROR_FLAGS);
3359 /* Enable mci interrupt */
3360 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3362 dev_info(host->dev,
3363 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3364 host->irq, width, fifo_size);
3366 /* We need at least one slot to succeed */
3367 ret = dw_mci_init_slot(host);
3368 if (ret) {
3369 dev_dbg(host->dev, "slot %d init failed\n", i);
3370 goto err_dmaunmap;
3373 /* Now that slots are all setup, we can enable card detect */
3374 dw_mci_enable_cd(host);
3376 return 0;
3378 err_dmaunmap:
3379 if (host->use_dma && host->dma_ops->exit)
3380 host->dma_ops->exit(host);
3382 if (!IS_ERR(host->pdata->rstc))
3383 reset_control_assert(host->pdata->rstc);
3385 err_clk_ciu:
3386 clk_disable_unprepare(host->ciu_clk);
3388 err_clk_biu:
3389 clk_disable_unprepare(host->biu_clk);
3391 return ret;
3393 EXPORT_SYMBOL(dw_mci_probe);
3395 void dw_mci_remove(struct dw_mci *host)
3397 dev_dbg(host->dev, "remove slot\n");
3398 if (host->slot)
3399 dw_mci_cleanup_slot(host->slot);
3401 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3402 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3404 /* disable clock to CIU */
3405 mci_writel(host, CLKENA, 0);
3406 mci_writel(host, CLKSRC, 0);
3408 if (host->use_dma && host->dma_ops->exit)
3409 host->dma_ops->exit(host);
3411 if (!IS_ERR(host->pdata->rstc))
3412 reset_control_assert(host->pdata->rstc);
3414 clk_disable_unprepare(host->ciu_clk);
3415 clk_disable_unprepare(host->biu_clk);
3417 EXPORT_SYMBOL(dw_mci_remove);
3421 #ifdef CONFIG_PM
3422 int dw_mci_runtime_suspend(struct device *dev)
3424 struct dw_mci *host = dev_get_drvdata(dev);
3426 if (host->use_dma && host->dma_ops->exit)
3427 host->dma_ops->exit(host);
3429 clk_disable_unprepare(host->ciu_clk);
3431 if (host->slot &&
3432 (mmc_can_gpio_cd(host->slot->mmc) ||
3433 !mmc_card_is_removable(host->slot->mmc)))
3434 clk_disable_unprepare(host->biu_clk);
3436 return 0;
3438 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3440 int dw_mci_runtime_resume(struct device *dev)
3442 int ret = 0;
3443 struct dw_mci *host = dev_get_drvdata(dev);
3445 if (host->slot &&
3446 (mmc_can_gpio_cd(host->slot->mmc) ||
3447 !mmc_card_is_removable(host->slot->mmc))) {
3448 ret = clk_prepare_enable(host->biu_clk);
3449 if (ret)
3450 return ret;
3453 ret = clk_prepare_enable(host->ciu_clk);
3454 if (ret)
3455 goto err;
3457 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3458 clk_disable_unprepare(host->ciu_clk);
3459 ret = -ENODEV;
3460 goto err;
3463 if (host->use_dma && host->dma_ops->init)
3464 host->dma_ops->init(host);
3467 * Restore the initial value at FIFOTH register
3468 * And Invalidate the prev_blksz with zero
3470 mci_writel(host, FIFOTH, host->fifoth_val);
3471 host->prev_blksz = 0;
3473 /* Put in max timeout */
3474 mci_writel(host, TMOUT, 0xFFFFFFFF);
3476 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3477 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3478 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3479 DW_MCI_ERROR_FLAGS);
3480 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3483 if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3484 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3486 /* Force setup bus to guarantee available clock output */
3487 dw_mci_setup_bus(host->slot, true);
3489 /* Re-enable SDIO interrupts. */
3490 if (sdio_irq_claimed(host->slot->mmc))
3491 __dw_mci_enable_sdio_irq(host->slot, 1);
3493 /* Now that slots are all setup, we can enable card detect */
3494 dw_mci_enable_cd(host);
3496 return 0;
3498 err:
3499 if (host->slot &&
3500 (mmc_can_gpio_cd(host->slot->mmc) ||
3501 !mmc_card_is_removable(host->slot->mmc)))
3502 clk_disable_unprepare(host->biu_clk);
3504 return ret;
3506 EXPORT_SYMBOL(dw_mci_runtime_resume);
3507 #endif /* CONFIG_PM */
3509 static int __init dw_mci_init(void)
3511 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3512 return 0;
3515 static void __exit dw_mci_exit(void)
3519 module_init(dw_mci_init);
3520 module_exit(dw_mci_exit);
3522 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3523 MODULE_AUTHOR("NXP Semiconductor VietNam");
3524 MODULE_AUTHOR("Imagination Technologies Ltd");
3525 MODULE_LICENSE("GPL v2");