2 * Copyright © 2005-2009 Samsung Electronics
3 * Copyright © 2007 Nokia Corporation
5 * Kyungmin Park <kyungmin.park@samsung.com>
8 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 * auto-placement support, read-while load support, various fixes
11 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
12 * Flex-OneNAND support
13 * Amul Kumar Saha <amul.saha at samsung.com>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/jiffies.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/onenand.h>
31 #include <linux/mtd/partitions.h>
36 * Multiblock erase if number of blocks to erase is 2 or more.
37 * Maximum number of blocks for simultaneous erase is 64.
39 #define MB_ERASE_MIN_BLK_COUNT 2
40 #define MB_ERASE_MAX_BLK_COUNT 64
42 /* Default Flex-OneNAND boundary and lock respectively */
43 static int flex_bdry
[MAX_DIES
* 2] = { -1, 0, -1, 0 };
45 module_param_array(flex_bdry
, int, NULL
, 0400);
46 MODULE_PARM_DESC(flex_bdry
, "SLC Boundary information for Flex-OneNAND"
47 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
48 "DIE_BDRY: SLC boundary of the die"
49 "LOCK: Locking information for SLC boundary"
50 " : 0->Set boundary in unlocked status"
51 " : 1->Set boundary in locked status");
53 /* Default OneNAND/Flex-OneNAND OTP options*/
56 module_param(otp
, int, 0400);
57 MODULE_PARM_DESC(otp
, "Corresponding behaviour of OneNAND in OTP"
58 "Syntax : otp=LOCK_TYPE"
59 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
60 " : 0 -> Default (No Blocks Locked)"
61 " : 1 -> OTP Block lock"
62 " : 2 -> 1st Block lock"
63 " : 3 -> BOTH OTP Block and 1st Block lock");
66 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
67 * For now, we expose only 64 out of 80 ecc bytes
69 static int flexonenand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
70 struct mtd_oob_region
*oobregion
)
75 oobregion
->offset
= (section
* 16) + 6;
76 oobregion
->length
= 10;
81 static int flexonenand_ooblayout_free(struct mtd_info
*mtd
, int section
,
82 struct mtd_oob_region
*oobregion
)
87 oobregion
->offset
= (section
* 16) + 2;
88 oobregion
->length
= 4;
93 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops
= {
94 .ecc
= flexonenand_ooblayout_ecc
,
95 .free
= flexonenand_ooblayout_free
,
99 * onenand_oob_128 - oob info for OneNAND with 4KB page
101 * Based on specification:
102 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
105 static int onenand_ooblayout_128_ecc(struct mtd_info
*mtd
, int section
,
106 struct mtd_oob_region
*oobregion
)
111 oobregion
->offset
= (section
* 16) + 7;
112 oobregion
->length
= 9;
117 static int onenand_ooblayout_128_free(struct mtd_info
*mtd
, int section
,
118 struct mtd_oob_region
*oobregion
)
124 * free bytes are using the spare area fields marked as
125 * "Managed by internal ECC logic for Logical Sector Number area"
127 oobregion
->offset
= (section
* 16) + 2;
128 oobregion
->length
= 3;
133 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops
= {
134 .ecc
= onenand_ooblayout_128_ecc
,
135 .free
= onenand_ooblayout_128_free
,
139 * onenand_oob_32_64 - oob info for large (2KB) page
141 static int onenand_ooblayout_32_64_ecc(struct mtd_info
*mtd
, int section
,
142 struct mtd_oob_region
*oobregion
)
147 oobregion
->offset
= (section
* 16) + 8;
148 oobregion
->length
= 5;
153 static int onenand_ooblayout_32_64_free(struct mtd_info
*mtd
, int section
,
154 struct mtd_oob_region
*oobregion
)
156 int sections
= (mtd
->oobsize
/ 32) * 2;
158 if (section
>= sections
)
162 oobregion
->offset
= ((section
- 1) * 16) + 14;
163 oobregion
->length
= 2;
165 oobregion
->offset
= (section
* 16) + 2;
166 oobregion
->length
= 3;
172 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops
= {
173 .ecc
= onenand_ooblayout_32_64_ecc
,
174 .free
= onenand_ooblayout_32_64_free
,
177 static const unsigned char ffchars
[] = {
178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
179 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
191 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
192 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
193 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
197 * onenand_readw - [OneNAND Interface] Read OneNAND register
198 * @param addr address to read
200 * Read OneNAND register
202 static unsigned short onenand_readw(void __iomem
*addr
)
208 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
209 * @param value value to write
210 * @param addr address to write
212 * Write OneNAND register with value
214 static void onenand_writew(unsigned short value
, void __iomem
*addr
)
220 * onenand_block_address - [DEFAULT] Get block address
221 * @param this onenand chip data structure
222 * @param block the block
223 * @return translated block address if DDP, otherwise same
225 * Setup Start Address 1 Register (F100h)
227 static int onenand_block_address(struct onenand_chip
*this, int block
)
229 /* Device Flash Core select, NAND Flash Block Address */
230 if (block
& this->density_mask
)
231 return ONENAND_DDP_CHIP1
| (block
^ this->density_mask
);
237 * onenand_bufferram_address - [DEFAULT] Get bufferram address
238 * @param this onenand chip data structure
239 * @param block the block
240 * @return set DBS value if DDP, otherwise 0
242 * Setup Start Address 2 Register (F101h) for DDP
244 static int onenand_bufferram_address(struct onenand_chip
*this, int block
)
246 /* Device BufferRAM Select */
247 if (block
& this->density_mask
)
248 return ONENAND_DDP_CHIP1
;
250 return ONENAND_DDP_CHIP0
;
254 * onenand_page_address - [DEFAULT] Get page address
255 * @param page the page address
256 * @param sector the sector address
257 * @return combined page and sector address
259 * Setup Start Address 8 Register (F107h)
261 static int onenand_page_address(int page
, int sector
)
263 /* Flash Page Address, Flash Sector Address */
266 fpa
= page
& ONENAND_FPA_MASK
;
267 fsa
= sector
& ONENAND_FSA_MASK
;
269 return ((fpa
<< ONENAND_FPA_SHIFT
) | fsa
);
273 * onenand_buffer_address - [DEFAULT] Get buffer address
274 * @param dataram1 DataRAM index
275 * @param sectors the sector address
276 * @param count the number of sectors
277 * @return the start buffer value
279 * Setup Start Buffer Register (F200h)
281 static int onenand_buffer_address(int dataram1
, int sectors
, int count
)
285 /* BufferRAM Sector Address */
286 bsa
= sectors
& ONENAND_BSA_MASK
;
289 bsa
|= ONENAND_BSA_DATARAM1
; /* DataRAM1 */
291 bsa
|= ONENAND_BSA_DATARAM0
; /* DataRAM0 */
293 /* BufferRAM Sector Count */
294 bsc
= count
& ONENAND_BSC_MASK
;
296 return ((bsa
<< ONENAND_BSA_SHIFT
) | bsc
);
300 * flexonenand_block- For given address return block number
301 * @param this - OneNAND device structure
302 * @param addr - Address for which block number is needed
304 static unsigned flexonenand_block(struct onenand_chip
*this, loff_t addr
)
306 unsigned boundary
, blk
, die
= 0;
308 if (ONENAND_IS_DDP(this) && addr
>= this->diesize
[0]) {
310 addr
-= this->diesize
[0];
313 boundary
= this->boundary
[die
];
315 blk
= addr
>> (this->erase_shift
- 1);
317 blk
= (blk
+ boundary
+ 1) >> 1;
319 blk
+= die
? this->density_mask
: 0;
323 inline unsigned onenand_block(struct onenand_chip
*this, loff_t addr
)
325 if (!FLEXONENAND(this))
326 return addr
>> this->erase_shift
;
327 return flexonenand_block(this, addr
);
331 * flexonenand_addr - Return address of the block
332 * @this: OneNAND device structure
333 * @block: Block number on Flex-OneNAND
335 * Return address of the block
337 static loff_t
flexonenand_addr(struct onenand_chip
*this, int block
)
340 int die
= 0, boundary
;
342 if (ONENAND_IS_DDP(this) && block
>= this->density_mask
) {
343 block
-= this->density_mask
;
345 ofs
= this->diesize
[0];
348 boundary
= this->boundary
[die
];
349 ofs
+= (loff_t
)block
<< (this->erase_shift
- 1);
350 if (block
> (boundary
+ 1))
351 ofs
+= (loff_t
)(block
- boundary
- 1) << (this->erase_shift
- 1);
355 loff_t
onenand_addr(struct onenand_chip
*this, int block
)
357 if (!FLEXONENAND(this))
358 return (loff_t
)block
<< this->erase_shift
;
359 return flexonenand_addr(this, block
);
361 EXPORT_SYMBOL(onenand_addr
);
364 * onenand_get_density - [DEFAULT] Get OneNAND density
365 * @param dev_id OneNAND device ID
367 * Get OneNAND density from device ID
369 static inline int onenand_get_density(int dev_id
)
371 int density
= dev_id
>> ONENAND_DEVICE_DENSITY_SHIFT
;
372 return (density
& ONENAND_DEVICE_DENSITY_MASK
);
376 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
377 * @param mtd MTD device structure
378 * @param addr address whose erase region needs to be identified
380 int flexonenand_region(struct mtd_info
*mtd
, loff_t addr
)
384 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
385 if (addr
< mtd
->eraseregions
[i
].offset
)
389 EXPORT_SYMBOL(flexonenand_region
);
392 * onenand_command - [DEFAULT] Send command to OneNAND device
393 * @param mtd MTD device structure
394 * @param cmd the command to be sent
395 * @param addr offset to read from or write to
396 * @param len number of bytes to read or write
398 * Send command to OneNAND device. This function is used for middle/large page
399 * devices (1KB/2KB Bytes per page)
401 static int onenand_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
, size_t len
)
403 struct onenand_chip
*this = mtd
->priv
;
404 int value
, block
, page
;
406 /* Address translation */
408 case ONENAND_CMD_UNLOCK
:
409 case ONENAND_CMD_LOCK
:
410 case ONENAND_CMD_LOCK_TIGHT
:
411 case ONENAND_CMD_UNLOCK_ALL
:
416 case FLEXONENAND_CMD_PI_ACCESS
:
417 /* addr contains die index */
418 block
= addr
* this->density_mask
;
422 case ONENAND_CMD_ERASE
:
423 case ONENAND_CMD_MULTIBLOCK_ERASE
:
424 case ONENAND_CMD_ERASE_VERIFY
:
425 case ONENAND_CMD_BUFFERRAM
:
426 case ONENAND_CMD_OTP_ACCESS
:
427 block
= onenand_block(this, addr
);
431 case FLEXONENAND_CMD_READ_PI
:
432 cmd
= ONENAND_CMD_READ
;
433 block
= addr
* this->density_mask
;
438 block
= onenand_block(this, addr
);
439 if (FLEXONENAND(this))
440 page
= (int) (addr
- onenand_addr(this, block
))>>\
443 page
= (int) (addr
>> this->page_shift
);
444 if (ONENAND_IS_2PLANE(this)) {
445 /* Make the even block number */
447 /* Is it the odd plane? */
448 if (addr
& this->writesize
)
452 page
&= this->page_mask
;
456 /* NOTE: The setting order of the registers is very important! */
457 if (cmd
== ONENAND_CMD_BUFFERRAM
) {
458 /* Select DataRAM for DDP */
459 value
= onenand_bufferram_address(this, block
);
460 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
462 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
463 /* It is always BufferRAM0 */
464 ONENAND_SET_BUFFERRAM0(this);
466 /* Switch to the next data buffer */
467 ONENAND_SET_NEXT_BUFFERRAM(this);
473 /* Write 'DFS, FBA' of Flash */
474 value
= onenand_block_address(this, block
);
475 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
477 /* Select DataRAM for DDP */
478 value
= onenand_bufferram_address(this, block
);
479 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
483 /* Now we use page size operation */
484 int sectors
= 0, count
= 0;
488 case FLEXONENAND_CMD_RECOVER_LSB
:
489 case ONENAND_CMD_READ
:
490 case ONENAND_CMD_READOOB
:
491 if (ONENAND_IS_4KB_PAGE(this))
492 /* It is always BufferRAM0 */
493 dataram
= ONENAND_SET_BUFFERRAM0(this);
495 dataram
= ONENAND_SET_NEXT_BUFFERRAM(this);
499 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
500 cmd
= ONENAND_CMD_2X_PROG
;
501 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
505 /* Write 'FPA, FSA' of Flash */
506 value
= onenand_page_address(page
, sectors
);
507 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS8
);
509 /* Write 'BSA, BSC' of DataRAM */
510 value
= onenand_buffer_address(dataram
, sectors
, count
);
511 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
514 /* Interrupt clear */
515 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
518 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
524 * onenand_read_ecc - return ecc status
525 * @param this onenand chip structure
527 static inline int onenand_read_ecc(struct onenand_chip
*this)
529 int ecc
, i
, result
= 0;
531 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
532 return this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
);
534 for (i
= 0; i
< 4; i
++) {
535 ecc
= this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
+ i
*2);
538 if (ecc
& FLEXONENAND_UNCORRECTABLE_ERROR
)
539 return ONENAND_ECC_2BIT_ALL
;
541 result
= ONENAND_ECC_1BIT_ALL
;
548 * onenand_wait - [DEFAULT] wait until the command is done
549 * @param mtd MTD device structure
550 * @param state state to select the max. timeout value
552 * Wait for command done. This applies to all OneNAND command
553 * Read can take up to 30us, erase up to 2ms and program up to 350us
554 * according to general OneNAND specs
556 static int onenand_wait(struct mtd_info
*mtd
, int state
)
558 struct onenand_chip
* this = mtd
->priv
;
559 unsigned long timeout
;
560 unsigned int flags
= ONENAND_INT_MASTER
;
561 unsigned int interrupt
= 0;
564 /* The 20 msec is enough */
565 timeout
= jiffies
+ msecs_to_jiffies(20);
566 while (time_before(jiffies
, timeout
)) {
567 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
569 if (interrupt
& flags
)
572 if (state
!= FL_READING
&& state
!= FL_PREPARING_ERASE
)
575 /* To get correct interrupt status in timeout case */
576 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
578 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
581 * In the Spec. it checks the controller status first
582 * However if you get the correct information in case of
583 * power off recovery (POR) test, it should read ECC status first
585 if (interrupt
& ONENAND_INT_READ
) {
586 int ecc
= onenand_read_ecc(this);
588 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
589 printk(KERN_ERR
"%s: ECC error = 0x%04x\n",
591 mtd
->ecc_stats
.failed
++;
593 } else if (ecc
& ONENAND_ECC_1BIT_ALL
) {
594 printk(KERN_DEBUG
"%s: correctable ECC error = 0x%04x\n",
596 mtd
->ecc_stats
.corrected
++;
599 } else if (state
== FL_READING
) {
600 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
601 __func__
, ctrl
, interrupt
);
605 if (state
== FL_PREPARING_ERASE
&& !(interrupt
& ONENAND_INT_ERASE
)) {
606 printk(KERN_ERR
"%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
607 __func__
, ctrl
, interrupt
);
611 if (!(interrupt
& ONENAND_INT_MASTER
)) {
612 printk(KERN_ERR
"%s: timeout! ctrl=0x%04x intr=0x%04x\n",
613 __func__
, ctrl
, interrupt
);
617 /* If there's controller error, it's a real error */
618 if (ctrl
& ONENAND_CTRL_ERROR
) {
619 printk(KERN_ERR
"%s: controller error = 0x%04x\n",
621 if (ctrl
& ONENAND_CTRL_LOCK
)
622 printk(KERN_ERR
"%s: it's locked error.\n", __func__
);
630 * onenand_interrupt - [DEFAULT] onenand interrupt handler
631 * @param irq onenand interrupt number
632 * @param dev_id interrupt data
636 static irqreturn_t
onenand_interrupt(int irq
, void *data
)
638 struct onenand_chip
*this = data
;
640 /* To handle shared interrupt */
641 if (!this->complete
.done
)
642 complete(&this->complete
);
648 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
649 * @param mtd MTD device structure
650 * @param state state to select the max. timeout value
652 * Wait for command done.
654 static int onenand_interrupt_wait(struct mtd_info
*mtd
, int state
)
656 struct onenand_chip
*this = mtd
->priv
;
658 wait_for_completion(&this->complete
);
660 return onenand_wait(mtd
, state
);
664 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
665 * @param mtd MTD device structure
666 * @param state state to select the max. timeout value
668 * Try interrupt based wait (It is used one-time)
670 static int onenand_try_interrupt_wait(struct mtd_info
*mtd
, int state
)
672 struct onenand_chip
*this = mtd
->priv
;
673 unsigned long remain
, timeout
;
675 /* We use interrupt wait first */
676 this->wait
= onenand_interrupt_wait
;
678 timeout
= msecs_to_jiffies(100);
679 remain
= wait_for_completion_timeout(&this->complete
, timeout
);
681 printk(KERN_INFO
"OneNAND: There's no interrupt. "
682 "We use the normal wait\n");
684 /* Release the irq */
685 free_irq(this->irq
, this);
687 this->wait
= onenand_wait
;
690 return onenand_wait(mtd
, state
);
694 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
695 * @param mtd MTD device structure
697 * There's two method to wait onenand work
698 * 1. polling - read interrupt status register
699 * 2. interrupt - use the kernel interrupt method
701 static void onenand_setup_wait(struct mtd_info
*mtd
)
703 struct onenand_chip
*this = mtd
->priv
;
706 init_completion(&this->complete
);
708 if (this->irq
<= 0) {
709 this->wait
= onenand_wait
;
713 if (request_irq(this->irq
, &onenand_interrupt
,
714 IRQF_SHARED
, "onenand", this)) {
715 /* If we can't get irq, use the normal wait */
716 this->wait
= onenand_wait
;
720 /* Enable interrupt */
721 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
722 syscfg
|= ONENAND_SYS_CFG1_IOBE
;
723 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
725 this->wait
= onenand_try_interrupt_wait
;
729 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
730 * @param mtd MTD data structure
731 * @param area BufferRAM area
732 * @return offset given area
734 * Return BufferRAM offset given area
736 static inline int onenand_bufferram_offset(struct mtd_info
*mtd
, int area
)
738 struct onenand_chip
*this = mtd
->priv
;
740 if (ONENAND_CURRENT_BUFFERRAM(this)) {
741 /* Note: the 'this->writesize' is a real page size */
742 if (area
== ONENAND_DATARAM
)
743 return this->writesize
;
744 if (area
== ONENAND_SPARERAM
)
752 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
753 * @param mtd MTD data structure
754 * @param area BufferRAM area
755 * @param buffer the databuffer to put/get data
756 * @param offset offset to read from or write to
757 * @param count number of bytes to read/write
759 * Read the BufferRAM area
761 static int onenand_read_bufferram(struct mtd_info
*mtd
, int area
,
762 unsigned char *buffer
, int offset
, size_t count
)
764 struct onenand_chip
*this = mtd
->priv
;
765 void __iomem
*bufferram
;
767 bufferram
= this->base
+ area
;
769 bufferram
+= onenand_bufferram_offset(mtd
, area
);
771 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
774 /* Align with word(16-bit) size */
777 /* Read word and save byte */
778 word
= this->read_word(bufferram
+ offset
+ count
);
779 buffer
[count
] = (word
& 0xff);
782 memcpy(buffer
, bufferram
+ offset
, count
);
788 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
789 * @param mtd MTD data structure
790 * @param area BufferRAM area
791 * @param buffer the databuffer to put/get data
792 * @param offset offset to read from or write to
793 * @param count number of bytes to read/write
795 * Read the BufferRAM area with Sync. Burst Mode
797 static int onenand_sync_read_bufferram(struct mtd_info
*mtd
, int area
,
798 unsigned char *buffer
, int offset
, size_t count
)
800 struct onenand_chip
*this = mtd
->priv
;
801 void __iomem
*bufferram
;
803 bufferram
= this->base
+ area
;
805 bufferram
+= onenand_bufferram_offset(mtd
, area
);
807 this->mmcontrol(mtd
, ONENAND_SYS_CFG1_SYNC_READ
);
809 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
812 /* Align with word(16-bit) size */
815 /* Read word and save byte */
816 word
= this->read_word(bufferram
+ offset
+ count
);
817 buffer
[count
] = (word
& 0xff);
820 memcpy(buffer
, bufferram
+ offset
, count
);
822 this->mmcontrol(mtd
, 0);
828 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
829 * @param mtd MTD data structure
830 * @param area BufferRAM area
831 * @param buffer the databuffer to put/get data
832 * @param offset offset to read from or write to
833 * @param count number of bytes to read/write
835 * Write the BufferRAM area
837 static int onenand_write_bufferram(struct mtd_info
*mtd
, int area
,
838 const unsigned char *buffer
, int offset
, size_t count
)
840 struct onenand_chip
*this = mtd
->priv
;
841 void __iomem
*bufferram
;
843 bufferram
= this->base
+ area
;
845 bufferram
+= onenand_bufferram_offset(mtd
, area
);
847 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
851 /* Align with word(16-bit) size */
854 /* Calculate byte access offset */
855 byte_offset
= offset
+ count
;
857 /* Read word and save byte */
858 word
= this->read_word(bufferram
+ byte_offset
);
859 word
= (word
& ~0xff) | buffer
[count
];
860 this->write_word(word
, bufferram
+ byte_offset
);
863 memcpy(bufferram
+ offset
, buffer
, count
);
869 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
870 * @param mtd MTD data structure
871 * @param addr address to check
872 * @return blockpage address
874 * Get blockpage address at 2x program mode
876 static int onenand_get_2x_blockpage(struct mtd_info
*mtd
, loff_t addr
)
878 struct onenand_chip
*this = mtd
->priv
;
879 int blockpage
, block
, page
;
881 /* Calculate the even block number */
882 block
= (int) (addr
>> this->erase_shift
) & ~1;
883 /* Is it the odd plane? */
884 if (addr
& this->writesize
)
886 page
= (int) (addr
>> (this->page_shift
+ 1)) & this->page_mask
;
887 blockpage
= (block
<< 7) | page
;
893 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
894 * @param mtd MTD data structure
895 * @param addr address to check
896 * @return 1 if there are valid data, otherwise 0
898 * Check bufferram if there is data we required
900 static int onenand_check_bufferram(struct mtd_info
*mtd
, loff_t addr
)
902 struct onenand_chip
*this = mtd
->priv
;
903 int blockpage
, found
= 0;
906 if (ONENAND_IS_2PLANE(this))
907 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
909 blockpage
= (int) (addr
>> this->page_shift
);
911 /* Is there valid data? */
912 i
= ONENAND_CURRENT_BUFFERRAM(this);
913 if (this->bufferram
[i
].blockpage
== blockpage
)
916 /* Check another BufferRAM */
917 i
= ONENAND_NEXT_BUFFERRAM(this);
918 if (this->bufferram
[i
].blockpage
== blockpage
) {
919 ONENAND_SET_NEXT_BUFFERRAM(this);
924 if (found
&& ONENAND_IS_DDP(this)) {
925 /* Select DataRAM for DDP */
926 int block
= onenand_block(this, addr
);
927 int value
= onenand_bufferram_address(this, block
);
928 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
935 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
936 * @param mtd MTD data structure
937 * @param addr address to update
938 * @param valid valid flag
940 * Update BufferRAM information
942 static void onenand_update_bufferram(struct mtd_info
*mtd
, loff_t addr
,
945 struct onenand_chip
*this = mtd
->priv
;
949 if (ONENAND_IS_2PLANE(this))
950 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
952 blockpage
= (int) (addr
>> this->page_shift
);
954 /* Invalidate another BufferRAM */
955 i
= ONENAND_NEXT_BUFFERRAM(this);
956 if (this->bufferram
[i
].blockpage
== blockpage
)
957 this->bufferram
[i
].blockpage
= -1;
959 /* Update BufferRAM */
960 i
= ONENAND_CURRENT_BUFFERRAM(this);
962 this->bufferram
[i
].blockpage
= blockpage
;
964 this->bufferram
[i
].blockpage
= -1;
968 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
969 * @param mtd MTD data structure
970 * @param addr start address to invalidate
971 * @param len length to invalidate
973 * Invalidate BufferRAM information
975 static void onenand_invalidate_bufferram(struct mtd_info
*mtd
, loff_t addr
,
978 struct onenand_chip
*this = mtd
->priv
;
980 loff_t end_addr
= addr
+ len
;
982 /* Invalidate BufferRAM */
983 for (i
= 0; i
< MAX_BUFFERRAM
; i
++) {
984 loff_t buf_addr
= this->bufferram
[i
].blockpage
<< this->page_shift
;
985 if (buf_addr
>= addr
&& buf_addr
< end_addr
)
986 this->bufferram
[i
].blockpage
= -1;
991 * onenand_get_device - [GENERIC] Get chip for selected access
992 * @param mtd MTD device structure
993 * @param new_state the state which is requested
995 * Get the device and lock it for exclusive access
997 static int onenand_get_device(struct mtd_info
*mtd
, int new_state
)
999 struct onenand_chip
*this = mtd
->priv
;
1000 DECLARE_WAITQUEUE(wait
, current
);
1003 * Grab the lock and see if the device is available
1006 spin_lock(&this->chip_lock
);
1007 if (this->state
== FL_READY
) {
1008 this->state
= new_state
;
1009 spin_unlock(&this->chip_lock
);
1010 if (new_state
!= FL_PM_SUSPENDED
&& this->enable
)
1014 if (new_state
== FL_PM_SUSPENDED
) {
1015 spin_unlock(&this->chip_lock
);
1016 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
1018 set_current_state(TASK_UNINTERRUPTIBLE
);
1019 add_wait_queue(&this->wq
, &wait
);
1020 spin_unlock(&this->chip_lock
);
1022 remove_wait_queue(&this->wq
, &wait
);
1029 * onenand_release_device - [GENERIC] release chip
1030 * @param mtd MTD device structure
1032 * Deselect, release chip lock and wake up anyone waiting on the device
1034 static void onenand_release_device(struct mtd_info
*mtd
)
1036 struct onenand_chip
*this = mtd
->priv
;
1038 if (this->state
!= FL_PM_SUSPENDED
&& this->disable
)
1040 /* Release the chip */
1041 spin_lock(&this->chip_lock
);
1042 this->state
= FL_READY
;
1044 spin_unlock(&this->chip_lock
);
1048 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1049 * @param mtd MTD device structure
1050 * @param buf destination address
1051 * @param column oob offset to read from
1052 * @param thislen oob length to read
1054 static int onenand_transfer_auto_oob(struct mtd_info
*mtd
, uint8_t *buf
, int column
,
1057 struct onenand_chip
*this = mtd
->priv
;
1060 this->read_bufferram(mtd
, ONENAND_SPARERAM
, this->oob_buf
, 0,
1062 ret
= mtd_ooblayout_get_databytes(mtd
, buf
, this->oob_buf
,
1071 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1072 * @param mtd MTD device structure
1073 * @param addr address to recover
1074 * @param status return value from onenand_wait / onenand_bbt_wait
1076 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1077 * lower page address and MSB page has higher page address in paired pages.
1078 * If power off occurs during MSB page program, the paired LSB page data can
1079 * become corrupt. LSB page recovery read is a way to read LSB page though page
1080 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1081 * read after power up, issue LSB page recovery read.
1083 static int onenand_recover_lsb(struct mtd_info
*mtd
, loff_t addr
, int status
)
1085 struct onenand_chip
*this = mtd
->priv
;
1088 /* Recovery is only for Flex-OneNAND */
1089 if (!FLEXONENAND(this))
1092 /* check if we failed due to uncorrectable error */
1093 if (!mtd_is_eccerr(status
) && status
!= ONENAND_BBT_READ_ECC_ERROR
)
1096 /* check if address lies in MLC region */
1097 i
= flexonenand_region(mtd
, addr
);
1098 if (mtd
->eraseregions
[i
].erasesize
< (1 << this->erase_shift
))
1101 /* We are attempting to reread, so decrement stats.failed
1102 * which was incremented by onenand_wait due to read failure
1104 printk(KERN_INFO
"%s: Attempting to recover from uncorrectable read\n",
1106 mtd
->ecc_stats
.failed
--;
1108 /* Issue the LSB page recovery command */
1109 this->command(mtd
, FLEXONENAND_CMD_RECOVER_LSB
, addr
, this->writesize
);
1110 return this->wait(mtd
, FL_READING
);
1114 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1115 * @param mtd MTD device structure
1116 * @param from offset to read from
1117 * @param ops: oob operation description structure
1119 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1120 * So, read-while-load is not present.
1122 static int onenand_mlc_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1123 struct mtd_oob_ops
*ops
)
1125 struct onenand_chip
*this = mtd
->priv
;
1126 struct mtd_ecc_stats stats
;
1127 size_t len
= ops
->len
;
1128 size_t ooblen
= ops
->ooblen
;
1129 u_char
*buf
= ops
->datbuf
;
1130 u_char
*oobbuf
= ops
->oobbuf
;
1131 int read
= 0, column
, thislen
;
1132 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1134 int writesize
= this->writesize
;
1136 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1139 oobsize
= mtd_oobavail(mtd
, ops
);
1140 oobcolumn
= from
& (mtd
->oobsize
- 1);
1142 /* Do not allow reads past end of device */
1143 if (from
+ len
> mtd
->size
) {
1144 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1151 stats
= mtd
->ecc_stats
;
1153 while (read
< len
) {
1156 thislen
= min_t(int, writesize
, len
- read
);
1158 column
= from
& (writesize
- 1);
1159 if (column
+ thislen
> writesize
)
1160 thislen
= writesize
- column
;
1162 if (!onenand_check_bufferram(mtd
, from
)) {
1163 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1165 ret
= this->wait(mtd
, FL_READING
);
1167 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1168 onenand_update_bufferram(mtd
, from
, !ret
);
1169 if (mtd_is_eccerr(ret
))
1175 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1177 thisooblen
= oobsize
- oobcolumn
;
1178 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1180 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1181 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1183 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1184 oobread
+= thisooblen
;
1185 oobbuf
+= thisooblen
;
1198 * Return success, if no ECC failures, else -EBADMSG
1199 * fs driver will take care of that, because
1200 * retlen == desired len and result == -EBADMSG
1203 ops
->oobretlen
= oobread
;
1208 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1211 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1212 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1216 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1217 * @param mtd MTD device structure
1218 * @param from offset to read from
1219 * @param ops: oob operation description structure
1221 * OneNAND read main and/or out-of-band data
1223 static int onenand_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1224 struct mtd_oob_ops
*ops
)
1226 struct onenand_chip
*this = mtd
->priv
;
1227 struct mtd_ecc_stats stats
;
1228 size_t len
= ops
->len
;
1229 size_t ooblen
= ops
->ooblen
;
1230 u_char
*buf
= ops
->datbuf
;
1231 u_char
*oobbuf
= ops
->oobbuf
;
1232 int read
= 0, column
, thislen
;
1233 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1234 int ret
= 0, boundary
= 0;
1235 int writesize
= this->writesize
;
1237 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1240 oobsize
= mtd_oobavail(mtd
, ops
);
1241 oobcolumn
= from
& (mtd
->oobsize
- 1);
1243 /* Do not allow reads past end of device */
1244 if ((from
+ len
) > mtd
->size
) {
1245 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1252 stats
= mtd
->ecc_stats
;
1254 /* Read-while-load method */
1256 /* Do first load to bufferRAM */
1258 if (!onenand_check_bufferram(mtd
, from
)) {
1259 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1260 ret
= this->wait(mtd
, FL_READING
);
1261 onenand_update_bufferram(mtd
, from
, !ret
);
1262 if (mtd_is_eccerr(ret
))
1267 thislen
= min_t(int, writesize
, len
- read
);
1268 column
= from
& (writesize
- 1);
1269 if (column
+ thislen
> writesize
)
1270 thislen
= writesize
- column
;
1273 /* If there is more to load then start next load */
1275 if (read
+ thislen
< len
) {
1276 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1278 * Chip boundary handling in DDP
1279 * Now we issued chip 1 read and pointed chip 1
1280 * bufferram so we have to point chip 0 bufferram.
1282 if (ONENAND_IS_DDP(this) &&
1283 unlikely(from
== (this->chipsize
>> 1))) {
1284 this->write_word(ONENAND_DDP_CHIP0
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1288 ONENAND_SET_PREV_BUFFERRAM(this);
1290 /* While load is going, read from last bufferRAM */
1291 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1293 /* Read oob area if needed */
1295 thisooblen
= oobsize
- oobcolumn
;
1296 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1298 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1299 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1301 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1302 oobread
+= thisooblen
;
1303 oobbuf
+= thisooblen
;
1307 /* See if we are done */
1311 /* Set up for next read from bufferRAM */
1312 if (unlikely(boundary
))
1313 this->write_word(ONENAND_DDP_CHIP1
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1314 ONENAND_SET_NEXT_BUFFERRAM(this);
1316 thislen
= min_t(int, writesize
, len
- read
);
1319 /* Now wait for load */
1320 ret
= this->wait(mtd
, FL_READING
);
1321 onenand_update_bufferram(mtd
, from
, !ret
);
1322 if (mtd_is_eccerr(ret
))
1327 * Return success, if no ECC failures, else -EBADMSG
1328 * fs driver will take care of that, because
1329 * retlen == desired len and result == -EBADMSG
1332 ops
->oobretlen
= oobread
;
1337 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1340 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1341 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1345 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1346 * @param mtd MTD device structure
1347 * @param from offset to read from
1348 * @param ops: oob operation description structure
1350 * OneNAND read out-of-band data from the spare area
1352 static int onenand_read_oob_nolock(struct mtd_info
*mtd
, loff_t from
,
1353 struct mtd_oob_ops
*ops
)
1355 struct onenand_chip
*this = mtd
->priv
;
1356 struct mtd_ecc_stats stats
;
1357 int read
= 0, thislen
, column
, oobsize
;
1358 size_t len
= ops
->ooblen
;
1359 unsigned int mode
= ops
->mode
;
1360 u_char
*buf
= ops
->oobbuf
;
1361 int ret
= 0, readcmd
;
1363 from
+= ops
->ooboffs
;
1365 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1368 /* Initialize return length value */
1371 if (mode
== MTD_OPS_AUTO_OOB
)
1372 oobsize
= mtd
->oobavail
;
1374 oobsize
= mtd
->oobsize
;
1376 column
= from
& (mtd
->oobsize
- 1);
1378 if (unlikely(column
>= oobsize
)) {
1379 printk(KERN_ERR
"%s: Attempted to start read outside oob\n",
1384 stats
= mtd
->ecc_stats
;
1386 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1388 while (read
< len
) {
1391 thislen
= oobsize
- column
;
1392 thislen
= min_t(int, thislen
, len
);
1394 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1396 onenand_update_bufferram(mtd
, from
, 0);
1398 ret
= this->wait(mtd
, FL_READING
);
1400 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1402 if (ret
&& !mtd_is_eccerr(ret
)) {
1403 printk(KERN_ERR
"%s: read failed = 0x%x\n",
1408 if (mode
== MTD_OPS_AUTO_OOB
)
1409 onenand_transfer_auto_oob(mtd
, buf
, column
, thislen
);
1411 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1423 from
+= mtd
->writesize
;
1428 ops
->oobretlen
= read
;
1433 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1440 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1441 * @param mtd: MTD device structure
1442 * @param from: offset to read from
1443 * @param ops: oob operation description structure
1445 * Read main and/or out-of-band
1447 static int onenand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1448 struct mtd_oob_ops
*ops
)
1450 struct onenand_chip
*this = mtd
->priv
;
1453 switch (ops
->mode
) {
1454 case MTD_OPS_PLACE_OOB
:
1455 case MTD_OPS_AUTO_OOB
:
1458 /* Not implemented yet */
1463 onenand_get_device(mtd
, FL_READING
);
1465 ret
= ONENAND_IS_4KB_PAGE(this) ?
1466 onenand_mlc_read_ops_nolock(mtd
, from
, ops
) :
1467 onenand_read_ops_nolock(mtd
, from
, ops
);
1469 ret
= onenand_read_oob_nolock(mtd
, from
, ops
);
1470 onenand_release_device(mtd
);
1476 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1477 * @param mtd MTD device structure
1478 * @param state state to select the max. timeout value
1480 * Wait for command done.
1482 static int onenand_bbt_wait(struct mtd_info
*mtd
, int state
)
1484 struct onenand_chip
*this = mtd
->priv
;
1485 unsigned long timeout
;
1486 unsigned int interrupt
, ctrl
, ecc
, addr1
, addr8
;
1488 /* The 20 msec is enough */
1489 timeout
= jiffies
+ msecs_to_jiffies(20);
1490 while (time_before(jiffies
, timeout
)) {
1491 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1492 if (interrupt
& ONENAND_INT_MASTER
)
1495 /* To get correct interrupt status in timeout case */
1496 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1497 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
1498 addr1
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS1
);
1499 addr8
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS8
);
1501 if (interrupt
& ONENAND_INT_READ
) {
1502 ecc
= onenand_read_ecc(this);
1503 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
1504 printk(KERN_DEBUG
"%s: ecc 0x%04x ctrl 0x%04x "
1505 "intr 0x%04x addr1 %#x addr8 %#x\n",
1506 __func__
, ecc
, ctrl
, interrupt
, addr1
, addr8
);
1507 return ONENAND_BBT_READ_ECC_ERROR
;
1510 printk(KERN_ERR
"%s: read timeout! ctrl 0x%04x "
1511 "intr 0x%04x addr1 %#x addr8 %#x\n",
1512 __func__
, ctrl
, interrupt
, addr1
, addr8
);
1513 return ONENAND_BBT_READ_FATAL_ERROR
;
1516 /* Initial bad block case: 0x2400 or 0x0400 */
1517 if (ctrl
& ONENAND_CTRL_ERROR
) {
1518 printk(KERN_DEBUG
"%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1519 "addr8 %#x\n", __func__
, ctrl
, interrupt
, addr1
, addr8
);
1520 return ONENAND_BBT_READ_ERROR
;
1527 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1528 * @param mtd MTD device structure
1529 * @param from offset to read from
1530 * @param ops oob operation description structure
1532 * OneNAND read out-of-band data from the spare area for bbt scan
1534 int onenand_bbt_read_oob(struct mtd_info
*mtd
, loff_t from
,
1535 struct mtd_oob_ops
*ops
)
1537 struct onenand_chip
*this = mtd
->priv
;
1538 int read
= 0, thislen
, column
;
1539 int ret
= 0, readcmd
;
1540 size_t len
= ops
->ooblen
;
1541 u_char
*buf
= ops
->oobbuf
;
1543 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__
, (unsigned int)from
,
1546 /* Initialize return value */
1549 /* Do not allow reads past end of device */
1550 if (unlikely((from
+ len
) > mtd
->size
)) {
1551 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1553 return ONENAND_BBT_READ_FATAL_ERROR
;
1556 /* Grab the lock and see if the device is available */
1557 onenand_get_device(mtd
, FL_READING
);
1559 column
= from
& (mtd
->oobsize
- 1);
1561 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1563 while (read
< len
) {
1566 thislen
= mtd
->oobsize
- column
;
1567 thislen
= min_t(int, thislen
, len
);
1569 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1571 onenand_update_bufferram(mtd
, from
, 0);
1573 ret
= this->bbt_wait(mtd
, FL_READING
);
1575 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1580 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1589 /* Update Page size */
1590 from
+= this->writesize
;
1595 /* Deselect and wake up anyone waiting on the device */
1596 onenand_release_device(mtd
);
1598 ops
->oobretlen
= read
;
1602 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1604 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1605 * @param mtd MTD device structure
1606 * @param buf the databuffer to verify
1607 * @param to offset to read from
1609 static int onenand_verify_oob(struct mtd_info
*mtd
, const u_char
*buf
, loff_t to
)
1611 struct onenand_chip
*this = mtd
->priv
;
1612 u_char
*oob_buf
= this->oob_buf
;
1613 int status
, i
, readcmd
;
1615 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1617 this->command(mtd
, readcmd
, to
, mtd
->oobsize
);
1618 onenand_update_bufferram(mtd
, to
, 0);
1619 status
= this->wait(mtd
, FL_READING
);
1623 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1624 for (i
= 0; i
< mtd
->oobsize
; i
++)
1625 if (buf
[i
] != 0xFF && buf
[i
] != oob_buf
[i
])
1632 * onenand_verify - [GENERIC] verify the chip contents after a write
1633 * @param mtd MTD device structure
1634 * @param buf the databuffer to verify
1635 * @param addr offset to read from
1636 * @param len number of bytes to read and compare
1638 static int onenand_verify(struct mtd_info
*mtd
, const u_char
*buf
, loff_t addr
, size_t len
)
1640 struct onenand_chip
*this = mtd
->priv
;
1642 int thislen
, column
;
1644 column
= addr
& (this->writesize
- 1);
1647 thislen
= min_t(int, this->writesize
- column
, len
);
1649 this->command(mtd
, ONENAND_CMD_READ
, addr
, this->writesize
);
1651 onenand_update_bufferram(mtd
, addr
, 0);
1653 ret
= this->wait(mtd
, FL_READING
);
1657 onenand_update_bufferram(mtd
, addr
, 1);
1659 this->read_bufferram(mtd
, ONENAND_DATARAM
, this->verify_buf
, 0, mtd
->writesize
);
1661 if (memcmp(buf
, this->verify_buf
+ column
, thislen
))
1673 #define onenand_verify(...) (0)
1674 #define onenand_verify_oob(...) (0)
1677 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1679 static void onenand_panic_wait(struct mtd_info
*mtd
)
1681 struct onenand_chip
*this = mtd
->priv
;
1682 unsigned int interrupt
;
1685 for (i
= 0; i
< 2000; i
++) {
1686 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1687 if (interrupt
& ONENAND_INT_MASTER
)
1694 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1695 * @param mtd MTD device structure
1696 * @param to offset to write to
1697 * @param len number of bytes to write
1698 * @param retlen pointer to variable to store the number of written bytes
1699 * @param buf the data to write
1703 static int onenand_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1704 size_t *retlen
, const u_char
*buf
)
1706 struct onenand_chip
*this = mtd
->priv
;
1707 int column
, subpage
;
1710 if (this->state
== FL_PM_SUSPENDED
)
1713 /* Wait for any existing operation to clear */
1714 onenand_panic_wait(mtd
);
1716 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1719 /* Reject writes, which are not page aligned */
1720 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1721 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1726 column
= to
& (mtd
->writesize
- 1);
1728 /* Loop until all data write */
1729 while (written
< len
) {
1730 int thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1731 u_char
*wbuf
= (u_char
*) buf
;
1733 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1735 /* Partial page write */
1736 subpage
= thislen
< mtd
->writesize
;
1738 memset(this->page_buf
, 0xff, mtd
->writesize
);
1739 memcpy(this->page_buf
+ column
, buf
, thislen
);
1740 wbuf
= this->page_buf
;
1743 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1744 this->write_bufferram(mtd
, ONENAND_SPARERAM
, ffchars
, 0, mtd
->oobsize
);
1746 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1748 onenand_panic_wait(mtd
);
1750 /* In partial page write we don't update bufferram */
1751 onenand_update_bufferram(mtd
, to
, !subpage
);
1752 if (ONENAND_IS_2PLANE(this)) {
1753 ONENAND_SET_BUFFERRAM1(this);
1754 onenand_update_bufferram(mtd
, to
+ this->writesize
, !subpage
);
1772 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1773 * @param mtd MTD device structure
1774 * @param oob_buf oob buffer
1775 * @param buf source address
1776 * @param column oob offset to write to
1777 * @param thislen oob length to write
1779 static int onenand_fill_auto_oob(struct mtd_info
*mtd
, u_char
*oob_buf
,
1780 const u_char
*buf
, int column
, int thislen
)
1782 return mtd_ooblayout_set_databytes(mtd
, buf
, oob_buf
, column
, thislen
);
1786 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1787 * @param mtd MTD device structure
1788 * @param to offset to write to
1789 * @param ops oob operation description structure
1791 * Write main and/or oob with ECC
1793 static int onenand_write_ops_nolock(struct mtd_info
*mtd
, loff_t to
,
1794 struct mtd_oob_ops
*ops
)
1796 struct onenand_chip
*this = mtd
->priv
;
1797 int written
= 0, column
, thislen
= 0, subpage
= 0;
1798 int prev
= 0, prevlen
= 0, prev_subpage
= 0, first
= 1;
1799 int oobwritten
= 0, oobcolumn
, thisooblen
, oobsize
;
1800 size_t len
= ops
->len
;
1801 size_t ooblen
= ops
->ooblen
;
1802 const u_char
*buf
= ops
->datbuf
;
1803 const u_char
*oob
= ops
->oobbuf
;
1807 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1810 /* Initialize retlen, in case of early exit */
1814 /* Reject writes, which are not page aligned */
1815 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1816 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1821 /* Check zero length */
1824 oobsize
= mtd_oobavail(mtd
, ops
);
1825 oobcolumn
= to
& (mtd
->oobsize
- 1);
1827 column
= to
& (mtd
->writesize
- 1);
1829 /* Loop until all data write */
1831 if (written
< len
) {
1832 u_char
*wbuf
= (u_char
*) buf
;
1834 thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1835 thisooblen
= min_t(int, oobsize
- oobcolumn
, ooblen
- oobwritten
);
1839 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1841 /* Partial page write */
1842 subpage
= thislen
< mtd
->writesize
;
1844 memset(this->page_buf
, 0xff, mtd
->writesize
);
1845 memcpy(this->page_buf
+ column
, buf
, thislen
);
1846 wbuf
= this->page_buf
;
1849 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1852 oobbuf
= this->oob_buf
;
1854 /* We send data to spare ram with oobsize
1855 * to prevent byte access */
1856 memset(oobbuf
, 0xff, mtd
->oobsize
);
1857 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1858 onenand_fill_auto_oob(mtd
, oobbuf
, oob
, oobcolumn
, thisooblen
);
1860 memcpy(oobbuf
+ oobcolumn
, oob
, thisooblen
);
1862 oobwritten
+= thisooblen
;
1866 oobbuf
= (u_char
*) ffchars
;
1868 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
1870 ONENAND_SET_NEXT_BUFFERRAM(this);
1873 * 2 PLANE, MLC, and Flex-OneNAND do not support
1874 * write-while-program feature.
1876 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first
) {
1877 ONENAND_SET_PREV_BUFFERRAM(this);
1879 ret
= this->wait(mtd
, FL_WRITING
);
1881 /* In partial page write we don't update bufferram */
1882 onenand_update_bufferram(mtd
, prev
, !ret
&& !prev_subpage
);
1885 printk(KERN_ERR
"%s: write failed %d\n",
1890 if (written
== len
) {
1891 /* Only check verify write turn on */
1892 ret
= onenand_verify(mtd
, buf
- len
, to
- len
, len
);
1894 printk(KERN_ERR
"%s: verify failed %d\n",
1899 ONENAND_SET_NEXT_BUFFERRAM(this);
1903 cmd
= ONENAND_CMD_PROG
;
1905 /* Exclude 1st OTP and OTP blocks for cache program feature */
1906 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1907 likely(onenand_block(this, to
) != 0) &&
1908 ONENAND_IS_4KB_PAGE(this) &&
1909 ((written
+ thislen
) < len
)) {
1910 cmd
= ONENAND_CMD_2X_CACHE_PROG
;
1914 this->command(mtd
, cmd
, to
, mtd
->writesize
);
1917 * 2 PLANE, MLC, and Flex-OneNAND wait here
1919 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1920 ret
= this->wait(mtd
, FL_WRITING
);
1922 /* In partial page write we don't update bufferram */
1923 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1925 printk(KERN_ERR
"%s: write failed %d\n",
1930 /* Only check verify write turn on */
1931 ret
= onenand_verify(mtd
, buf
, to
, thislen
);
1933 printk(KERN_ERR
"%s: verify failed %d\n",
1947 prev_subpage
= subpage
;
1955 /* In error case, clear all bufferrams */
1957 onenand_invalidate_bufferram(mtd
, 0, -1);
1959 ops
->retlen
= written
;
1960 ops
->oobretlen
= oobwritten
;
1967 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1968 * @param mtd MTD device structure
1969 * @param to offset to write to
1970 * @param len number of bytes to write
1971 * @param retlen pointer to variable to store the number of written bytes
1972 * @param buf the data to write
1973 * @param mode operation mode
1975 * OneNAND write out-of-band
1977 static int onenand_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
1978 struct mtd_oob_ops
*ops
)
1980 struct onenand_chip
*this = mtd
->priv
;
1981 int column
, ret
= 0, oobsize
;
1982 int written
= 0, oobcmd
;
1984 size_t len
= ops
->ooblen
;
1985 const u_char
*buf
= ops
->oobbuf
;
1986 unsigned int mode
= ops
->mode
;
1990 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1993 /* Initialize retlen, in case of early exit */
1996 if (mode
== MTD_OPS_AUTO_OOB
)
1997 oobsize
= mtd
->oobavail
;
1999 oobsize
= mtd
->oobsize
;
2001 column
= to
& (mtd
->oobsize
- 1);
2003 if (unlikely(column
>= oobsize
)) {
2004 printk(KERN_ERR
"%s: Attempted to start write outside oob\n",
2009 /* For compatibility with NAND: Do not allow write past end of page */
2010 if (unlikely(column
+ len
> oobsize
)) {
2011 printk(KERN_ERR
"%s: Attempt to write past end of page\n",
2016 oobbuf
= this->oob_buf
;
2018 oobcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG
: ONENAND_CMD_PROGOOB
;
2020 /* Loop until all data write */
2021 while (written
< len
) {
2022 int thislen
= min_t(int, oobsize
, len
- written
);
2026 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, mtd
->oobsize
);
2028 /* We send data to spare ram with oobsize
2029 * to prevent byte access */
2030 memset(oobbuf
, 0xff, mtd
->oobsize
);
2031 if (mode
== MTD_OPS_AUTO_OOB
)
2032 onenand_fill_auto_oob(mtd
, oobbuf
, buf
, column
, thislen
);
2034 memcpy(oobbuf
+ column
, buf
, thislen
);
2035 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
2037 if (ONENAND_IS_4KB_PAGE(this)) {
2038 /* Set main area of DataRAM to 0xff*/
2039 memset(this->page_buf
, 0xff, mtd
->writesize
);
2040 this->write_bufferram(mtd
, ONENAND_DATARAM
,
2041 this->page_buf
, 0, mtd
->writesize
);
2044 this->command(mtd
, oobcmd
, to
, mtd
->oobsize
);
2046 onenand_update_bufferram(mtd
, to
, 0);
2047 if (ONENAND_IS_2PLANE(this)) {
2048 ONENAND_SET_BUFFERRAM1(this);
2049 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2052 ret
= this->wait(mtd
, FL_WRITING
);
2054 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2058 ret
= onenand_verify_oob(mtd
, oobbuf
, to
);
2060 printk(KERN_ERR
"%s: verify failed %d\n",
2069 to
+= mtd
->writesize
;
2074 ops
->oobretlen
= written
;
2080 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2081 * @param mtd: MTD device structure
2082 * @param to: offset to write
2083 * @param ops: oob operation description structure
2085 static int onenand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2086 struct mtd_oob_ops
*ops
)
2090 switch (ops
->mode
) {
2091 case MTD_OPS_PLACE_OOB
:
2092 case MTD_OPS_AUTO_OOB
:
2095 /* Not implemented yet */
2100 onenand_get_device(mtd
, FL_WRITING
);
2102 ret
= onenand_write_ops_nolock(mtd
, to
, ops
);
2104 ret
= onenand_write_oob_nolock(mtd
, to
, ops
);
2105 onenand_release_device(mtd
);
2111 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2112 * @param mtd MTD device structure
2113 * @param ofs offset from device start
2114 * @param allowbbt 1, if its allowed to access the bbt area
2116 * Check, if the block is bad. Either by reading the bad block table or
2117 * calling of the scan function.
2119 static int onenand_block_isbad_nolock(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
2121 struct onenand_chip
*this = mtd
->priv
;
2122 struct bbm_info
*bbm
= this->bbm
;
2124 /* Return info from the table */
2125 return bbm
->isbad_bbt(mtd
, ofs
, allowbbt
);
2129 static int onenand_multiblock_erase_verify(struct mtd_info
*mtd
,
2130 struct erase_info
*instr
)
2132 struct onenand_chip
*this = mtd
->priv
;
2133 loff_t addr
= instr
->addr
;
2134 int len
= instr
->len
;
2135 unsigned int block_size
= (1 << this->erase_shift
);
2139 this->command(mtd
, ONENAND_CMD_ERASE_VERIFY
, addr
, block_size
);
2140 ret
= this->wait(mtd
, FL_VERIFYING_ERASE
);
2142 printk(KERN_ERR
"%s: Failed verify, block %d\n",
2143 __func__
, onenand_block(this, addr
));
2144 instr
->fail_addr
= addr
;
2154 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2155 * @param mtd MTD device structure
2156 * @param instr erase instruction
2157 * @param region erase region
2159 * Erase one or more blocks up to 64 block at a time
2161 static int onenand_multiblock_erase(struct mtd_info
*mtd
,
2162 struct erase_info
*instr
,
2163 unsigned int block_size
)
2165 struct onenand_chip
*this = mtd
->priv
;
2166 loff_t addr
= instr
->addr
;
2167 int len
= instr
->len
;
2172 if (ONENAND_IS_DDP(this)) {
2173 loff_t bdry_addr
= this->chipsize
>> 1;
2174 if (addr
< bdry_addr
&& (addr
+ len
) > bdry_addr
)
2175 bdry_block
= bdry_addr
>> this->erase_shift
;
2180 /* Check if we have a bad block, we do not erase bad blocks */
2181 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2182 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2183 "at addr 0x%012llx\n",
2184 __func__
, (unsigned long long) addr
);
2194 /* loop over 64 eb batches */
2196 struct erase_info verify_instr
= *instr
;
2197 int max_eb_count
= MB_ERASE_MAX_BLK_COUNT
;
2199 verify_instr
.addr
= addr
;
2200 verify_instr
.len
= 0;
2202 /* do not cross chip boundary */
2204 int this_block
= (addr
>> this->erase_shift
);
2206 if (this_block
< bdry_block
) {
2207 max_eb_count
= min(max_eb_count
,
2208 (bdry_block
- this_block
));
2214 while (len
> block_size
&& eb_count
< (max_eb_count
- 1)) {
2215 this->command(mtd
, ONENAND_CMD_MULTIBLOCK_ERASE
,
2217 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2219 ret
= this->wait(mtd
, FL_PREPARING_ERASE
);
2221 printk(KERN_ERR
"%s: Failed multiblock erase, "
2222 "block %d\n", __func__
,
2223 onenand_block(this, addr
));
2224 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2233 /* last block of 64-eb series */
2235 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2236 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2238 ret
= this->wait(mtd
, FL_ERASING
);
2239 /* Check if it is write protected */
2241 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2242 __func__
, onenand_block(this, addr
));
2243 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2252 verify_instr
.len
= eb_count
* block_size
;
2253 if (onenand_multiblock_erase_verify(mtd
, &verify_instr
)) {
2254 instr
->fail_addr
= verify_instr
.fail_addr
;
2264 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2265 * @param mtd MTD device structure
2266 * @param instr erase instruction
2267 * @param region erase region
2268 * @param block_size erase block size
2270 * Erase one or more blocks one block at a time
2272 static int onenand_block_by_block_erase(struct mtd_info
*mtd
,
2273 struct erase_info
*instr
,
2274 struct mtd_erase_region_info
*region
,
2275 unsigned int block_size
)
2277 struct onenand_chip
*this = mtd
->priv
;
2278 loff_t addr
= instr
->addr
;
2279 int len
= instr
->len
;
2280 loff_t region_end
= 0;
2284 /* region is set for Flex-OneNAND */
2285 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2288 /* Loop through the blocks */
2292 /* Check if we have a bad block, we do not erase bad blocks */
2293 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2294 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2295 "at addr 0x%012llx\n",
2296 __func__
, (unsigned long long) addr
);
2300 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2302 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2304 ret
= this->wait(mtd
, FL_ERASING
);
2305 /* Check, if it is write protected */
2307 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2308 __func__
, onenand_block(this, addr
));
2309 instr
->fail_addr
= addr
;
2316 if (region
&& addr
== region_end
) {
2321 block_size
= region
->erasesize
;
2322 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2324 if (len
& (block_size
- 1)) {
2325 /* FIXME: This should be handled at MTD partitioning level. */
2326 printk(KERN_ERR
"%s: Unaligned address\n",
2336 * onenand_erase - [MTD Interface] erase block(s)
2337 * @param mtd MTD device structure
2338 * @param instr erase instruction
2340 * Erase one or more blocks
2342 static int onenand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2344 struct onenand_chip
*this = mtd
->priv
;
2345 unsigned int block_size
;
2346 loff_t addr
= instr
->addr
;
2347 loff_t len
= instr
->len
;
2349 struct mtd_erase_region_info
*region
= NULL
;
2350 loff_t region_offset
= 0;
2352 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__
,
2353 (unsigned long long)instr
->addr
,
2354 (unsigned long long)instr
->len
);
2356 if (FLEXONENAND(this)) {
2357 /* Find the eraseregion of this address */
2358 int i
= flexonenand_region(mtd
, addr
);
2360 region
= &mtd
->eraseregions
[i
];
2361 block_size
= region
->erasesize
;
2363 /* Start address within region must align on block boundary.
2364 * Erase region's start offset is always block start address.
2366 region_offset
= region
->offset
;
2368 block_size
= 1 << this->erase_shift
;
2370 /* Start address must align on block boundary */
2371 if (unlikely((addr
- region_offset
) & (block_size
- 1))) {
2372 printk(KERN_ERR
"%s: Unaligned address\n", __func__
);
2376 /* Length must align on block boundary */
2377 if (unlikely(len
& (block_size
- 1))) {
2378 printk(KERN_ERR
"%s: Length not block aligned\n", __func__
);
2382 /* Grab the lock and see if the device is available */
2383 onenand_get_device(mtd
, FL_ERASING
);
2385 if (ONENAND_IS_4KB_PAGE(this) || region
||
2386 instr
->len
< MB_ERASE_MIN_BLK_COUNT
* block_size
) {
2387 /* region is set for Flex-OneNAND (no mb erase) */
2388 ret
= onenand_block_by_block_erase(mtd
, instr
,
2389 region
, block_size
);
2391 ret
= onenand_multiblock_erase(mtd
, instr
, block_size
);
2394 /* Deselect and wake up anyone waiting on the device */
2395 onenand_release_device(mtd
);
2401 * onenand_sync - [MTD Interface] sync
2402 * @param mtd MTD device structure
2404 * Sync is actually a wait for chip ready function
2406 static void onenand_sync(struct mtd_info
*mtd
)
2408 pr_debug("%s: called\n", __func__
);
2410 /* Grab the lock and see if the device is available */
2411 onenand_get_device(mtd
, FL_SYNCING
);
2413 /* Release it and go back */
2414 onenand_release_device(mtd
);
2418 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2419 * @param mtd MTD device structure
2420 * @param ofs offset relative to mtd start
2422 * Check whether the block is bad
2424 static int onenand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2428 onenand_get_device(mtd
, FL_READING
);
2429 ret
= onenand_block_isbad_nolock(mtd
, ofs
, 0);
2430 onenand_release_device(mtd
);
2435 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2436 * @param mtd MTD device structure
2437 * @param ofs offset from device start
2439 * This is the default implementation, which can be overridden by
2440 * a hardware specific driver.
2442 static int onenand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2444 struct onenand_chip
*this = mtd
->priv
;
2445 struct bbm_info
*bbm
= this->bbm
;
2446 u_char buf
[2] = {0, 0};
2447 struct mtd_oob_ops ops
= {
2448 .mode
= MTD_OPS_PLACE_OOB
,
2455 /* Get block number */
2456 block
= onenand_block(this, ofs
);
2458 bbm
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
2460 /* We write two bytes, so we don't have to mess with 16-bit access */
2461 ofs
+= mtd
->oobsize
+ (bbm
->badblockpos
& ~0x01);
2462 /* FIXME : What to do when marking SLC block in partition
2463 * with MLC erasesize? For now, it is not advisable to
2464 * create partitions containing both SLC and MLC regions.
2466 return onenand_write_oob_nolock(mtd
, ofs
, &ops
);
2470 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2471 * @param mtd MTD device structure
2472 * @param ofs offset relative to mtd start
2474 * Mark the block as bad
2476 static int onenand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2478 struct onenand_chip
*this = mtd
->priv
;
2481 ret
= onenand_block_isbad(mtd
, ofs
);
2483 /* If it was bad already, return success and do nothing */
2489 onenand_get_device(mtd
, FL_WRITING
);
2490 ret
= this->block_markbad(mtd
, ofs
);
2491 onenand_release_device(mtd
);
2496 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2497 * @param mtd MTD device structure
2498 * @param ofs offset relative to mtd start
2499 * @param len number of bytes to lock or unlock
2500 * @param cmd lock or unlock command
2502 * Lock or unlock one or more blocks
2504 static int onenand_do_lock_cmd(struct mtd_info
*mtd
, loff_t ofs
, size_t len
, int cmd
)
2506 struct onenand_chip
*this = mtd
->priv
;
2507 int start
, end
, block
, value
, status
;
2510 start
= onenand_block(this, ofs
);
2511 end
= onenand_block(this, ofs
+ len
) - 1;
2513 if (cmd
== ONENAND_CMD_LOCK
)
2514 wp_status_mask
= ONENAND_WP_LS
;
2516 wp_status_mask
= ONENAND_WP_US
;
2518 /* Continuous lock scheme */
2519 if (this->options
& ONENAND_HAS_CONT_LOCK
) {
2520 /* Set start block address */
2521 this->write_word(start
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2522 /* Set end block address */
2523 this->write_word(end
, this->base
+ ONENAND_REG_END_BLOCK_ADDRESS
);
2524 /* Write lock command */
2525 this->command(mtd
, cmd
, 0, 0);
2527 /* There's no return value */
2528 this->wait(mtd
, FL_LOCKING
);
2531 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2532 & ONENAND_CTRL_ONGO
)
2535 /* Check lock status */
2536 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2537 if (!(status
& wp_status_mask
))
2538 printk(KERN_ERR
"%s: wp status = 0x%x\n",
2544 /* Block lock scheme */
2545 for (block
= start
; block
< end
+ 1; block
++) {
2546 /* Set block address */
2547 value
= onenand_block_address(this, block
);
2548 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2549 /* Select DataRAM for DDP */
2550 value
= onenand_bufferram_address(this, block
);
2551 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2552 /* Set start block address */
2553 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2554 /* Write lock command */
2555 this->command(mtd
, cmd
, 0, 0);
2557 /* There's no return value */
2558 this->wait(mtd
, FL_LOCKING
);
2561 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2562 & ONENAND_CTRL_ONGO
)
2565 /* Check lock status */
2566 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2567 if (!(status
& wp_status_mask
))
2568 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2569 __func__
, block
, status
);
2576 * onenand_lock - [MTD Interface] Lock block(s)
2577 * @param mtd MTD device structure
2578 * @param ofs offset relative to mtd start
2579 * @param len number of bytes to unlock
2581 * Lock one or more blocks
2583 static int onenand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2587 onenand_get_device(mtd
, FL_LOCKING
);
2588 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_LOCK
);
2589 onenand_release_device(mtd
);
2594 * onenand_unlock - [MTD Interface] Unlock block(s)
2595 * @param mtd MTD device structure
2596 * @param ofs offset relative to mtd start
2597 * @param len number of bytes to unlock
2599 * Unlock one or more blocks
2601 static int onenand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2605 onenand_get_device(mtd
, FL_LOCKING
);
2606 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2607 onenand_release_device(mtd
);
2612 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2613 * @param this onenand chip data structure
2617 static int onenand_check_lock_status(struct onenand_chip
*this)
2619 unsigned int value
, block
, status
;
2622 end
= this->chipsize
>> this->erase_shift
;
2623 for (block
= 0; block
< end
; block
++) {
2624 /* Set block address */
2625 value
= onenand_block_address(this, block
);
2626 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2627 /* Select DataRAM for DDP */
2628 value
= onenand_bufferram_address(this, block
);
2629 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2630 /* Set start block address */
2631 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2633 /* Check lock status */
2634 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2635 if (!(status
& ONENAND_WP_US
)) {
2636 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2637 __func__
, block
, status
);
2646 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2647 * @param mtd MTD device structure
2651 static void onenand_unlock_all(struct mtd_info
*mtd
)
2653 struct onenand_chip
*this = mtd
->priv
;
2655 loff_t len
= mtd
->size
;
2657 if (this->options
& ONENAND_HAS_UNLOCK_ALL
) {
2658 /* Set start block address */
2659 this->write_word(0, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2660 /* Write unlock command */
2661 this->command(mtd
, ONENAND_CMD_UNLOCK_ALL
, 0, 0);
2663 /* There's no return value */
2664 this->wait(mtd
, FL_LOCKING
);
2667 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2668 & ONENAND_CTRL_ONGO
)
2671 /* Don't check lock status */
2672 if (this->options
& ONENAND_SKIP_UNLOCK_CHECK
)
2675 /* Check lock status */
2676 if (onenand_check_lock_status(this))
2679 /* Workaround for all block unlock in DDP */
2680 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2681 /* All blocks on another chip */
2682 ofs
= this->chipsize
>> 1;
2683 len
= this->chipsize
>> 1;
2687 onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2690 #ifdef CONFIG_MTD_ONENAND_OTP
2693 * onenand_otp_command - Send OTP specific command to OneNAND device
2694 * @param mtd MTD device structure
2695 * @param cmd the command to be sent
2696 * @param addr offset to read from or write to
2697 * @param len number of bytes to read or write
2699 static int onenand_otp_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
,
2702 struct onenand_chip
*this = mtd
->priv
;
2703 int value
, block
, page
;
2705 /* Address translation */
2707 case ONENAND_CMD_OTP_ACCESS
:
2708 block
= (int) (addr
>> this->erase_shift
);
2713 block
= (int) (addr
>> this->erase_shift
);
2714 page
= (int) (addr
>> this->page_shift
);
2716 if (ONENAND_IS_2PLANE(this)) {
2717 /* Make the even block number */
2719 /* Is it the odd plane? */
2720 if (addr
& this->writesize
)
2724 page
&= this->page_mask
;
2729 /* Write 'DFS, FBA' of Flash */
2730 value
= onenand_block_address(this, block
);
2731 this->write_word(value
, this->base
+
2732 ONENAND_REG_START_ADDRESS1
);
2736 /* Now we use page size operation */
2737 int sectors
= 4, count
= 4;
2742 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
2743 cmd
= ONENAND_CMD_2X_PROG
;
2744 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
2748 /* Write 'FPA, FSA' of Flash */
2749 value
= onenand_page_address(page
, sectors
);
2750 this->write_word(value
, this->base
+
2751 ONENAND_REG_START_ADDRESS8
);
2753 /* Write 'BSA, BSC' of DataRAM */
2754 value
= onenand_buffer_address(dataram
, sectors
, count
);
2755 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
2758 /* Interrupt clear */
2759 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
2762 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
2768 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2769 * @param mtd MTD device structure
2770 * @param to offset to write to
2771 * @param len number of bytes to write
2772 * @param retlen pointer to variable to store the number of written bytes
2773 * @param buf the data to write
2775 * OneNAND write out-of-band only for OTP
2777 static int onenand_otp_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2778 struct mtd_oob_ops
*ops
)
2780 struct onenand_chip
*this = mtd
->priv
;
2781 int column
, ret
= 0, oobsize
;
2784 size_t len
= ops
->ooblen
;
2785 const u_char
*buf
= ops
->oobbuf
;
2786 int block
, value
, status
;
2790 /* Initialize retlen, in case of early exit */
2793 oobsize
= mtd
->oobsize
;
2795 column
= to
& (mtd
->oobsize
- 1);
2797 oobbuf
= this->oob_buf
;
2799 /* Loop until all data write */
2800 while (written
< len
) {
2801 int thislen
= min_t(int, oobsize
, len
- written
);
2805 block
= (int) (to
>> this->erase_shift
);
2807 * Write 'DFS, FBA' of Flash
2808 * Add: F100h DQ=DFS, FBA
2811 value
= onenand_block_address(this, block
);
2812 this->write_word(value
, this->base
+
2813 ONENAND_REG_START_ADDRESS1
);
2816 * Select DataRAM for DDP
2820 value
= onenand_bufferram_address(this, block
);
2821 this->write_word(value
, this->base
+
2822 ONENAND_REG_START_ADDRESS2
);
2823 ONENAND_SET_NEXT_BUFFERRAM(this);
2826 * Enter OTP access mode
2828 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2829 this->wait(mtd
, FL_OTPING
);
2831 /* We send data to spare ram with oobsize
2832 * to prevent byte access */
2833 memcpy(oobbuf
+ column
, buf
, thislen
);
2836 * Write Data into DataRAM
2838 * in sector0/spare/page0
2841 this->write_bufferram(mtd
, ONENAND_SPARERAM
,
2842 oobbuf
, 0, mtd
->oobsize
);
2844 onenand_otp_command(mtd
, ONENAND_CMD_PROGOOB
, to
, mtd
->oobsize
);
2845 onenand_update_bufferram(mtd
, to
, 0);
2846 if (ONENAND_IS_2PLANE(this)) {
2847 ONENAND_SET_BUFFERRAM1(this);
2848 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2851 ret
= this->wait(mtd
, FL_WRITING
);
2853 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2857 /* Exit OTP access mode */
2858 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2859 this->wait(mtd
, FL_RESETING
);
2861 status
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
2864 if (status
== 0x60) {
2865 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2866 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2867 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2868 } else if (status
== 0x20) {
2869 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2870 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2871 printk(KERN_DEBUG
"OTP Block\tUN-LOCKED\n");
2872 } else if (status
== 0x40) {
2873 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2874 printk(KERN_DEBUG
"1st Block\tUN-LOCKED\n");
2875 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2877 printk(KERN_DEBUG
"Reboot to check\n");
2884 to
+= mtd
->writesize
;
2889 ops
->oobretlen
= written
;
2894 /* Internal OTP operation */
2895 typedef int (*otp_op_t
)(struct mtd_info
*mtd
, loff_t form
, size_t len
,
2896 size_t *retlen
, u_char
*buf
);
2899 * do_otp_read - [DEFAULT] Read OTP block area
2900 * @param mtd MTD device structure
2901 * @param from The offset to read
2902 * @param len number of bytes to read
2903 * @param retlen pointer to variable to store the number of readbytes
2904 * @param buf the databuffer to put/get data
2906 * Read OTP block area.
2908 static int do_otp_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2909 size_t *retlen
, u_char
*buf
)
2911 struct onenand_chip
*this = mtd
->priv
;
2912 struct mtd_oob_ops ops
= {
2920 /* Enter OTP access mode */
2921 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2922 this->wait(mtd
, FL_OTPING
);
2924 ret
= ONENAND_IS_4KB_PAGE(this) ?
2925 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
2926 onenand_read_ops_nolock(mtd
, from
, &ops
);
2928 /* Exit OTP access mode */
2929 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2930 this->wait(mtd
, FL_RESETING
);
2936 * do_otp_write - [DEFAULT] Write OTP block area
2937 * @param mtd MTD device structure
2938 * @param to The offset to write
2939 * @param len number of bytes to write
2940 * @param retlen pointer to variable to store the number of write bytes
2941 * @param buf the databuffer to put/get data
2943 * Write OTP block area.
2945 static int do_otp_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2946 size_t *retlen
, u_char
*buf
)
2948 struct onenand_chip
*this = mtd
->priv
;
2949 unsigned char *pbuf
= buf
;
2951 struct mtd_oob_ops ops
;
2953 /* Force buffer page aligned */
2954 if (len
< mtd
->writesize
) {
2955 memcpy(this->page_buf
, buf
, len
);
2956 memset(this->page_buf
+ len
, 0xff, mtd
->writesize
- len
);
2957 pbuf
= this->page_buf
;
2958 len
= mtd
->writesize
;
2961 /* Enter OTP access mode */
2962 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2963 this->wait(mtd
, FL_OTPING
);
2969 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
2970 *retlen
= ops
.retlen
;
2972 /* Exit OTP access mode */
2973 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2974 this->wait(mtd
, FL_RESETING
);
2980 * do_otp_lock - [DEFAULT] Lock OTP block area
2981 * @param mtd MTD device structure
2982 * @param from The offset to lock
2983 * @param len number of bytes to lock
2984 * @param retlen pointer to variable to store the number of lock bytes
2985 * @param buf the databuffer to put/get data
2987 * Lock OTP block area.
2989 static int do_otp_lock(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2990 size_t *retlen
, u_char
*buf
)
2992 struct onenand_chip
*this = mtd
->priv
;
2993 struct mtd_oob_ops ops
;
2996 if (FLEXONENAND(this)) {
2998 /* Enter OTP access mode */
2999 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3000 this->wait(mtd
, FL_OTPING
);
3002 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3003 * main area of page 49.
3005 ops
.len
= mtd
->writesize
;
3009 ret
= onenand_write_ops_nolock(mtd
, mtd
->writesize
* 49, &ops
);
3010 *retlen
= ops
.retlen
;
3012 /* Exit OTP access mode */
3013 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3014 this->wait(mtd
, FL_RESETING
);
3016 ops
.mode
= MTD_OPS_PLACE_OOB
;
3020 ret
= onenand_otp_write_oob_nolock(mtd
, from
, &ops
);
3021 *retlen
= ops
.oobretlen
;
3028 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3029 * @param mtd MTD device structure
3030 * @param from The offset to read/write
3031 * @param len number of bytes to read/write
3032 * @param retlen pointer to variable to store the number of read bytes
3033 * @param buf the databuffer to put/get data
3034 * @param action do given action
3035 * @param mode specify user and factory
3037 * Handle OTP operation.
3039 static int onenand_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3040 size_t *retlen
, u_char
*buf
,
3041 otp_op_t action
, int mode
)
3043 struct onenand_chip
*this = mtd
->priv
;
3050 density
= onenand_get_density(this->device_id
);
3051 if (density
< ONENAND_DEVICE_DENSITY_512Mb
)
3056 if (mode
== MTD_OTP_FACTORY
) {
3057 from
+= mtd
->writesize
* otp_pages
;
3058 otp_pages
= ONENAND_PAGES_PER_BLOCK
- otp_pages
;
3061 /* Check User/Factory boundary */
3062 if (mode
== MTD_OTP_USER
) {
3063 if (mtd
->writesize
* otp_pages
< from
+ len
)
3066 if (mtd
->writesize
* otp_pages
< len
)
3070 onenand_get_device(mtd
, FL_OTPING
);
3071 while (len
> 0 && otp_pages
> 0) {
3072 if (!action
) { /* OTP Info functions */
3073 struct otp_info
*otpinfo
;
3075 len
-= sizeof(struct otp_info
);
3081 otpinfo
= (struct otp_info
*) buf
;
3082 otpinfo
->start
= from
;
3083 otpinfo
->length
= mtd
->writesize
;
3084 otpinfo
->locked
= 0;
3086 from
+= mtd
->writesize
;
3087 buf
+= sizeof(struct otp_info
);
3088 *retlen
+= sizeof(struct otp_info
);
3092 ret
= action(mtd
, from
, len
, &tmp_retlen
, buf
);
3098 *retlen
+= tmp_retlen
;
3103 onenand_release_device(mtd
);
3109 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3110 * @param mtd MTD device structure
3111 * @param len number of bytes to read
3112 * @param retlen pointer to variable to store the number of read bytes
3113 * @param buf the databuffer to put/get data
3115 * Read factory OTP info.
3117 static int onenand_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
3118 size_t *retlen
, struct otp_info
*buf
)
3120 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3125 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3126 * @param mtd MTD device structure
3127 * @param from The offset to read
3128 * @param len number of bytes to read
3129 * @param retlen pointer to variable to store the number of read bytes
3130 * @param buf the databuffer to put/get data
3132 * Read factory OTP area.
3134 static int onenand_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3135 size_t len
, size_t *retlen
, u_char
*buf
)
3137 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_FACTORY
);
3141 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3142 * @param mtd MTD device structure
3143 * @param retlen pointer to variable to store the number of read bytes
3144 * @param len number of bytes to read
3145 * @param buf the databuffer to put/get data
3147 * Read user OTP info.
3149 static int onenand_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
3150 size_t *retlen
, struct otp_info
*buf
)
3152 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3157 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3158 * @param mtd MTD device structure
3159 * @param from The offset to read
3160 * @param len number of bytes to read
3161 * @param retlen pointer to variable to store the number of read bytes
3162 * @param buf the databuffer to put/get data
3164 * Read user OTP area.
3166 static int onenand_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3167 size_t len
, size_t *retlen
, u_char
*buf
)
3169 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_USER
);
3173 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3174 * @param mtd MTD device structure
3175 * @param from The offset to write
3176 * @param len number of bytes to write
3177 * @param retlen pointer to variable to store the number of write bytes
3178 * @param buf the databuffer to put/get data
3180 * Write user OTP area.
3182 static int onenand_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3183 size_t len
, size_t *retlen
, u_char
*buf
)
3185 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_write
, MTD_OTP_USER
);
3189 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3190 * @param mtd MTD device structure
3191 * @param from The offset to lock
3192 * @param len number of bytes to unlock
3194 * Write lock mark on spare area in page 0 in OTP block
3196 static int onenand_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3199 struct onenand_chip
*this = mtd
->priv
;
3200 u_char
*buf
= FLEXONENAND(this) ? this->page_buf
: this->oob_buf
;
3203 unsigned int otp_lock_offset
= ONENAND_OTP_LOCK_OFFSET
;
3205 memset(buf
, 0xff, FLEXONENAND(this) ? this->writesize
3208 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3209 * We write 16 bytes spare area instead of 2 bytes.
3210 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3211 * main area of page 49.
3215 len
= FLEXONENAND(this) ? mtd
->writesize
: 16;
3218 * Note: OTP lock operation
3219 * OTP block : 0xXXFC XX 1111 1100
3220 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3221 * Both : 0xXXF0 (If chip support) XX 1111 0000
3223 if (FLEXONENAND(this))
3224 otp_lock_offset
= FLEXONENAND_OTP_LOCK_OFFSET
;
3226 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3228 buf
[otp_lock_offset
] = 0xFC;
3230 buf
[otp_lock_offset
] = 0xF3;
3232 buf
[otp_lock_offset
] = 0xF0;
3234 printk(KERN_DEBUG
"[OneNAND] Invalid option selected for OTP\n");
3236 ret
= onenand_otp_walk(mtd
, from
, len
, &retlen
, buf
, do_otp_lock
, MTD_OTP_USER
);
3238 return ret
? : retlen
;
3241 #endif /* CONFIG_MTD_ONENAND_OTP */
3244 * onenand_check_features - Check and set OneNAND features
3245 * @param mtd MTD data structure
3247 * Check and set OneNAND features
3251 static void onenand_check_features(struct mtd_info
*mtd
)
3253 struct onenand_chip
*this = mtd
->priv
;
3254 unsigned int density
, process
, numbufs
;
3256 /* Lock scheme depends on density and process */
3257 density
= onenand_get_density(this->device_id
);
3258 process
= this->version_id
>> ONENAND_VERSION_PROCESS_SHIFT
;
3259 numbufs
= this->read_word(this->base
+ ONENAND_REG_NUM_BUFFERS
) >> 8;
3263 case ONENAND_DEVICE_DENSITY_4Gb
:
3264 if (ONENAND_IS_DDP(this))
3265 this->options
|= ONENAND_HAS_2PLANE
;
3266 else if (numbufs
== 1) {
3267 this->options
|= ONENAND_HAS_4KB_PAGE
;
3268 this->options
|= ONENAND_HAS_CACHE_PROGRAM
;
3270 * There are two different 4KiB pagesize chips
3271 * and no way to detect it by H/W config values.
3273 * To detect the correct NOP for each chips,
3274 * It should check the version ID as workaround.
3276 * Now it has as following
3277 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3278 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3280 if ((this->version_id
& 0xf) == 0xe)
3281 this->options
|= ONENAND_HAS_NOP_1
;
3284 case ONENAND_DEVICE_DENSITY_2Gb
:
3285 /* 2Gb DDP does not have 2 plane */
3286 if (!ONENAND_IS_DDP(this))
3287 this->options
|= ONENAND_HAS_2PLANE
;
3288 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3290 case ONENAND_DEVICE_DENSITY_1Gb
:
3291 /* A-Die has all block unlock */
3293 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3297 /* Some OneNAND has continuous lock scheme */
3299 this->options
|= ONENAND_HAS_CONT_LOCK
;
3303 /* The MLC has 4KiB pagesize. */
3304 if (ONENAND_IS_MLC(this))
3305 this->options
|= ONENAND_HAS_4KB_PAGE
;
3307 if (ONENAND_IS_4KB_PAGE(this))
3308 this->options
&= ~ONENAND_HAS_2PLANE
;
3310 if (FLEXONENAND(this)) {
3311 this->options
&= ~ONENAND_HAS_CONT_LOCK
;
3312 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3315 if (this->options
& ONENAND_HAS_CONT_LOCK
)
3316 printk(KERN_DEBUG
"Lock scheme is Continuous Lock\n");
3317 if (this->options
& ONENAND_HAS_UNLOCK_ALL
)
3318 printk(KERN_DEBUG
"Chip support all block unlock\n");
3319 if (this->options
& ONENAND_HAS_2PLANE
)
3320 printk(KERN_DEBUG
"Chip has 2 plane\n");
3321 if (this->options
& ONENAND_HAS_4KB_PAGE
)
3322 printk(KERN_DEBUG
"Chip has 4KiB pagesize\n");
3323 if (this->options
& ONENAND_HAS_CACHE_PROGRAM
)
3324 printk(KERN_DEBUG
"Chip has cache program feature\n");
3328 * onenand_print_device_info - Print device & version ID
3329 * @param device device ID
3330 * @param version version ID
3332 * Print device & version ID
3334 static void onenand_print_device_info(int device
, int version
)
3336 int vcc
, demuxed
, ddp
, density
, flexonenand
;
3338 vcc
= device
& ONENAND_DEVICE_VCC_MASK
;
3339 demuxed
= device
& ONENAND_DEVICE_IS_DEMUX
;
3340 ddp
= device
& ONENAND_DEVICE_IS_DDP
;
3341 density
= onenand_get_density(device
);
3342 flexonenand
= device
& DEVICE_IS_FLEXONENAND
;
3343 printk(KERN_INFO
"%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3344 demuxed
? "" : "Muxed ",
3345 flexonenand
? "Flex-" : "",
3348 vcc
? "2.65/3.3" : "1.8",
3350 printk(KERN_INFO
"OneNAND version = 0x%04x\n", version
);
3353 static const struct onenand_manufacturers onenand_manuf_ids
[] = {
3354 {ONENAND_MFR_SAMSUNG
, "Samsung"},
3355 {ONENAND_MFR_NUMONYX
, "Numonyx"},
3359 * onenand_check_maf - Check manufacturer ID
3360 * @param manuf manufacturer ID
3362 * Check manufacturer ID
3364 static int onenand_check_maf(int manuf
)
3366 int size
= ARRAY_SIZE(onenand_manuf_ids
);
3370 for (i
= 0; i
< size
; i
++)
3371 if (manuf
== onenand_manuf_ids
[i
].id
)
3375 name
= onenand_manuf_ids
[i
].name
;
3379 printk(KERN_DEBUG
"OneNAND Manufacturer: %s (0x%0x)\n", name
, manuf
);
3385 * flexonenand_get_boundary - Reads the SLC boundary
3386 * @param onenand_info - onenand info structure
3388 static int flexonenand_get_boundary(struct mtd_info
*mtd
)
3390 struct onenand_chip
*this = mtd
->priv
;
3395 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3396 this->write_word((syscfg
| 0x0100), this->base
+ ONENAND_REG_SYS_CFG1
);
3398 for (die
= 0; die
< this->dies
; die
++) {
3399 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3400 this->wait(mtd
, FL_SYNCING
);
3402 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3403 this->wait(mtd
, FL_READING
);
3405 bdry
= this->read_word(this->base
+ ONENAND_DATARAM
);
3406 if ((bdry
>> FLEXONENAND_PI_UNLOCK_SHIFT
) == 3)
3410 this->boundary
[die
] = bdry
& FLEXONENAND_PI_MASK
;
3412 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3413 this->wait(mtd
, FL_RESETING
);
3415 printk(KERN_INFO
"Die %d boundary: %d%s\n", die
,
3416 this->boundary
[die
], locked
? "(Locked)" : "(Unlocked)");
3420 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3425 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3426 * boundary[], diesize[], mtd->size, mtd->erasesize
3427 * @param mtd - MTD device structure
3429 static void flexonenand_get_size(struct mtd_info
*mtd
)
3431 struct onenand_chip
*this = mtd
->priv
;
3432 int die
, i
, eraseshift
, density
;
3433 int blksperdie
, maxbdry
;
3436 density
= onenand_get_density(this->device_id
);
3437 blksperdie
= ((loff_t
)(16 << density
) << 20) >> (this->erase_shift
);
3438 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3439 maxbdry
= blksperdie
- 1;
3440 eraseshift
= this->erase_shift
- 1;
3442 mtd
->numeraseregions
= this->dies
<< 1;
3444 /* This fills up the device boundary */
3445 flexonenand_get_boundary(mtd
);
3448 for (; die
< this->dies
; die
++) {
3449 if (!die
|| this->boundary
[die
-1] != maxbdry
) {
3451 mtd
->eraseregions
[i
].offset
= ofs
;
3452 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3453 mtd
->eraseregions
[i
].numblocks
=
3454 this->boundary
[die
] + 1;
3455 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3458 mtd
->numeraseregions
-= 1;
3459 mtd
->eraseregions
[i
].numblocks
+=
3460 this->boundary
[die
] + 1;
3461 ofs
+= (this->boundary
[die
] + 1) << (eraseshift
- 1);
3463 if (this->boundary
[die
] != maxbdry
) {
3465 mtd
->eraseregions
[i
].offset
= ofs
;
3466 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3467 mtd
->eraseregions
[i
].numblocks
= maxbdry
^
3468 this->boundary
[die
];
3469 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3472 mtd
->numeraseregions
-= 1;
3475 /* Expose MLC erase size except when all blocks are SLC */
3476 mtd
->erasesize
= 1 << this->erase_shift
;
3477 if (mtd
->numeraseregions
== 1)
3478 mtd
->erasesize
>>= 1;
3480 printk(KERN_INFO
"Device has %d eraseregions\n", mtd
->numeraseregions
);
3481 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
3482 printk(KERN_INFO
"[offset: 0x%08x, erasesize: 0x%05x,"
3483 " numblocks: %04u]\n",
3484 (unsigned int) mtd
->eraseregions
[i
].offset
,
3485 mtd
->eraseregions
[i
].erasesize
,
3486 mtd
->eraseregions
[i
].numblocks
);
3488 for (die
= 0, mtd
->size
= 0; die
< this->dies
; die
++) {
3489 this->diesize
[die
] = (loff_t
)blksperdie
<< this->erase_shift
;
3490 this->diesize
[die
] -= (loff_t
)(this->boundary
[die
] + 1)
3491 << (this->erase_shift
- 1);
3492 mtd
->size
+= this->diesize
[die
];
3497 * flexonenand_check_blocks_erased - Check if blocks are erased
3498 * @param mtd_info - mtd info structure
3499 * @param start - first erase block to check
3500 * @param end - last erase block to check
3502 * Converting an unerased block from MLC to SLC
3503 * causes byte values to change. Since both data and its ECC
3504 * have changed, reads on the block give uncorrectable error.
3505 * This might lead to the block being detected as bad.
3507 * Avoid this by ensuring that the block to be converted is
3510 static int flexonenand_check_blocks_erased(struct mtd_info
*mtd
, int start
, int end
)
3512 struct onenand_chip
*this = mtd
->priv
;
3515 struct mtd_oob_ops ops
= {
3516 .mode
= MTD_OPS_PLACE_OOB
,
3518 .ooblen
= mtd
->oobsize
,
3520 .oobbuf
= this->oob_buf
,
3524 printk(KERN_DEBUG
"Check blocks from %d to %d\n", start
, end
);
3526 for (block
= start
; block
<= end
; block
++) {
3527 addr
= flexonenand_addr(this, block
);
3528 if (onenand_block_isbad_nolock(mtd
, addr
, 0))
3532 * Since main area write results in ECC write to spare,
3533 * it is sufficient to check only ECC bytes for change.
3535 ret
= onenand_read_oob_nolock(mtd
, addr
, &ops
);
3539 for (i
= 0; i
< mtd
->oobsize
; i
++)
3540 if (this->oob_buf
[i
] != 0xff)
3543 if (i
!= mtd
->oobsize
) {
3544 printk(KERN_WARNING
"%s: Block %d not erased.\n",
3554 * flexonenand_set_boundary - Writes the SLC boundary
3555 * @param mtd - mtd info structure
3557 static int flexonenand_set_boundary(struct mtd_info
*mtd
, int die
,
3558 int boundary
, int lock
)
3560 struct onenand_chip
*this = mtd
->priv
;
3561 int ret
, density
, blksperdie
, old
, new, thisboundary
;
3564 /* Change only once for SDP Flex-OneNAND */
3565 if (die
&& (!ONENAND_IS_DDP(this)))
3568 /* boundary value of -1 indicates no required change */
3569 if (boundary
< 0 || boundary
== this->boundary
[die
])
3572 density
= onenand_get_density(this->device_id
);
3573 blksperdie
= ((16 << density
) << 20) >> this->erase_shift
;
3574 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3576 if (boundary
>= blksperdie
) {
3577 printk(KERN_ERR
"%s: Invalid boundary value. "
3578 "Boundary not changed.\n", __func__
);
3582 /* Check if converting blocks are erased */
3583 old
= this->boundary
[die
] + (die
* this->density_mask
);
3584 new = boundary
+ (die
* this->density_mask
);
3585 ret
= flexonenand_check_blocks_erased(mtd
, min(old
, new) + 1, max(old
, new));
3587 printk(KERN_ERR
"%s: Please erase blocks "
3588 "before boundary change\n", __func__
);
3592 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3593 this->wait(mtd
, FL_SYNCING
);
3595 /* Check is boundary is locked */
3596 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3597 this->wait(mtd
, FL_READING
);
3599 thisboundary
= this->read_word(this->base
+ ONENAND_DATARAM
);
3600 if ((thisboundary
>> FLEXONENAND_PI_UNLOCK_SHIFT
) != 3) {
3601 printk(KERN_ERR
"%s: boundary locked\n", __func__
);
3606 printk(KERN_INFO
"Changing die %d boundary: %d%s\n",
3607 die
, boundary
, lock
? "(Locked)" : "(Unlocked)");
3609 addr
= die
? this->diesize
[0] : 0;
3611 boundary
&= FLEXONENAND_PI_MASK
;
3612 boundary
|= lock
? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT
);
3614 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, 0);
3615 ret
= this->wait(mtd
, FL_ERASING
);
3617 printk(KERN_ERR
"%s: Failed PI erase for Die %d\n",
3622 this->write_word(boundary
, this->base
+ ONENAND_DATARAM
);
3623 this->command(mtd
, ONENAND_CMD_PROG
, addr
, 0);
3624 ret
= this->wait(mtd
, FL_WRITING
);
3626 printk(KERN_ERR
"%s: Failed PI write for Die %d\n",
3631 this->command(mtd
, FLEXONENAND_CMD_PI_UPDATE
, die
, 0);
3632 ret
= this->wait(mtd
, FL_WRITING
);
3634 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_REG_COMMAND
);
3635 this->wait(mtd
, FL_RESETING
);
3637 /* Recalculate device size on boundary change*/
3638 flexonenand_get_size(mtd
);
3644 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3645 * @param mtd MTD device structure
3647 * OneNAND detection method:
3648 * Compare the values from command with ones from register
3650 static int onenand_chip_probe(struct mtd_info
*mtd
)
3652 struct onenand_chip
*this = mtd
->priv
;
3653 int bram_maf_id
, bram_dev_id
, maf_id
, dev_id
;
3656 /* Save system configuration 1 */
3657 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3658 /* Clear Sync. Burst Read mode to read BootRAM */
3659 this->write_word((syscfg
& ~ONENAND_SYS_CFG1_SYNC_READ
& ~ONENAND_SYS_CFG1_SYNC_WRITE
), this->base
+ ONENAND_REG_SYS_CFG1
);
3661 /* Send the command for reading device ID from BootRAM */
3662 this->write_word(ONENAND_CMD_READID
, this->base
+ ONENAND_BOOTRAM
);
3664 /* Read manufacturer and device IDs from BootRAM */
3665 bram_maf_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x0);
3666 bram_dev_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x2);
3668 /* Reset OneNAND to read default register values */
3669 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_BOOTRAM
);
3671 this->wait(mtd
, FL_RESETING
);
3673 /* Restore system configuration 1 */
3674 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3676 /* Check manufacturer ID */
3677 if (onenand_check_maf(bram_maf_id
))
3680 /* Read manufacturer and device IDs from Register */
3681 maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3682 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3684 /* Check OneNAND device */
3685 if (maf_id
!= bram_maf_id
|| dev_id
!= bram_dev_id
)
3692 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3693 * @param mtd MTD device structure
3695 static int onenand_probe(struct mtd_info
*mtd
)
3697 struct onenand_chip
*this = mtd
->priv
;
3702 ret
= this->chip_probe(mtd
);
3706 /* Device and version IDs from Register */
3707 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3708 ver_id
= this->read_word(this->base
+ ONENAND_REG_VERSION_ID
);
3709 this->technology
= this->read_word(this->base
+ ONENAND_REG_TECHNOLOGY
);
3711 /* Flash device information */
3712 onenand_print_device_info(dev_id
, ver_id
);
3713 this->device_id
= dev_id
;
3714 this->version_id
= ver_id
;
3716 /* Check OneNAND features */
3717 onenand_check_features(mtd
);
3719 density
= onenand_get_density(dev_id
);
3720 if (FLEXONENAND(this)) {
3721 this->dies
= ONENAND_IS_DDP(this) ? 2 : 1;
3722 /* Maximum possible erase regions */
3723 mtd
->numeraseregions
= this->dies
<< 1;
3725 kcalloc(this->dies
<< 1,
3726 sizeof(struct mtd_erase_region_info
),
3728 if (!mtd
->eraseregions
)
3733 * For Flex-OneNAND, chipsize represents maximum possible device size.
3734 * mtd->size represents the actual device size.
3736 this->chipsize
= (16 << density
) << 20;
3738 /* OneNAND page size & block size */
3739 /* The data buffer size is equal to page size */
3740 mtd
->writesize
= this->read_word(this->base
+ ONENAND_REG_DATA_BUFFER_SIZE
);
3741 /* We use the full BufferRAM */
3742 if (ONENAND_IS_4KB_PAGE(this))
3743 mtd
->writesize
<<= 1;
3745 mtd
->oobsize
= mtd
->writesize
>> 5;
3746 /* Pages per a block are always 64 in OneNAND */
3747 mtd
->erasesize
= mtd
->writesize
<< 6;
3749 * Flex-OneNAND SLC area has 64 pages per block.
3750 * Flex-OneNAND MLC area has 128 pages per block.
3751 * Expose MLC erase size to find erase_shift and page_mask.
3753 if (FLEXONENAND(this))
3754 mtd
->erasesize
<<= 1;
3756 this->erase_shift
= ffs(mtd
->erasesize
) - 1;
3757 this->page_shift
= ffs(mtd
->writesize
) - 1;
3758 this->page_mask
= (1 << (this->erase_shift
- this->page_shift
)) - 1;
3759 /* Set density mask. it is used for DDP */
3760 if (ONENAND_IS_DDP(this))
3761 this->density_mask
= this->chipsize
>> (this->erase_shift
+ 1);
3762 /* It's real page size */
3763 this->writesize
= mtd
->writesize
;
3765 /* REVISIT: Multichip handling */
3767 if (FLEXONENAND(this))
3768 flexonenand_get_size(mtd
);
3770 mtd
->size
= this->chipsize
;
3773 * We emulate the 4KiB page and 256KiB erase block size
3774 * But oobsize is still 64 bytes.
3775 * It is only valid if you turn on 2X program support,
3776 * Otherwise it will be ignored by compiler.
3778 if (ONENAND_IS_2PLANE(this)) {
3779 mtd
->writesize
<<= 1;
3780 mtd
->erasesize
<<= 1;
3787 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3788 * @param mtd MTD device structure
3790 static int onenand_suspend(struct mtd_info
*mtd
)
3792 return onenand_get_device(mtd
, FL_PM_SUSPENDED
);
3796 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3797 * @param mtd MTD device structure
3799 static void onenand_resume(struct mtd_info
*mtd
)
3801 struct onenand_chip
*this = mtd
->priv
;
3803 if (this->state
== FL_PM_SUSPENDED
)
3804 onenand_release_device(mtd
);
3806 printk(KERN_ERR
"%s: resume() called for the chip which is not "
3807 "in suspended state\n", __func__
);
3811 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3812 * @param mtd MTD device structure
3813 * @param maxchips Number of chips to scan for
3815 * This fills out all the not initialized function pointers
3816 * with the defaults.
3817 * The flash ID is read and the mtd/chip structures are
3818 * filled with the appropriate values.
3820 int onenand_scan(struct mtd_info
*mtd
, int maxchips
)
3823 struct onenand_chip
*this = mtd
->priv
;
3825 if (!this->read_word
)
3826 this->read_word
= onenand_readw
;
3827 if (!this->write_word
)
3828 this->write_word
= onenand_writew
;
3831 this->command
= onenand_command
;
3833 onenand_setup_wait(mtd
);
3834 if (!this->bbt_wait
)
3835 this->bbt_wait
= onenand_bbt_wait
;
3836 if (!this->unlock_all
)
3837 this->unlock_all
= onenand_unlock_all
;
3839 if (!this->chip_probe
)
3840 this->chip_probe
= onenand_chip_probe
;
3842 if (!this->read_bufferram
)
3843 this->read_bufferram
= onenand_read_bufferram
;
3844 if (!this->write_bufferram
)
3845 this->write_bufferram
= onenand_write_bufferram
;
3847 if (!this->block_markbad
)
3848 this->block_markbad
= onenand_default_block_markbad
;
3849 if (!this->scan_bbt
)
3850 this->scan_bbt
= onenand_default_bbt
;
3852 if (onenand_probe(mtd
))
3855 /* Set Sync. Burst Read after probing */
3856 if (this->mmcontrol
) {
3857 printk(KERN_INFO
"OneNAND Sync. Burst Read support\n");
3858 this->read_bufferram
= onenand_sync_read_bufferram
;
3861 /* Allocate buffers, if necessary */
3862 if (!this->page_buf
) {
3863 this->page_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3864 if (!this->page_buf
)
3866 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3867 this->verify_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3868 if (!this->verify_buf
) {
3869 kfree(this->page_buf
);
3873 this->options
|= ONENAND_PAGEBUF_ALLOC
;
3875 if (!this->oob_buf
) {
3876 this->oob_buf
= kzalloc(mtd
->oobsize
, GFP_KERNEL
);
3877 if (!this->oob_buf
) {
3878 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3879 this->options
&= ~ONENAND_PAGEBUF_ALLOC
;
3880 kfree(this->page_buf
);
3884 this->options
|= ONENAND_OOBBUF_ALLOC
;
3887 this->state
= FL_READY
;
3888 init_waitqueue_head(&this->wq
);
3889 spin_lock_init(&this->chip_lock
);
3892 * Allow subpage writes up to oobsize.
3894 switch (mtd
->oobsize
) {
3896 if (FLEXONENAND(this)) {
3897 mtd_set_ooblayout(mtd
, &flexonenand_ooblayout_ops
);
3898 mtd
->subpage_sft
= 0;
3900 mtd_set_ooblayout(mtd
, &onenand_oob_128_ooblayout_ops
);
3901 mtd
->subpage_sft
= 2;
3903 if (ONENAND_IS_NOP_1(this))
3904 mtd
->subpage_sft
= 0;
3907 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3908 mtd
->subpage_sft
= 2;
3912 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3913 mtd
->subpage_sft
= 1;
3917 printk(KERN_WARNING
"%s: No OOB scheme defined for oobsize %d\n",
3918 __func__
, mtd
->oobsize
);
3919 mtd
->subpage_sft
= 0;
3920 /* To prevent kernel oops */
3921 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3925 this->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3928 * The number of bytes available for a client to place data into
3929 * the out of band area
3931 ret
= mtd_ooblayout_count_freebytes(mtd
);
3935 mtd
->oobavail
= ret
;
3937 mtd
->ecc_strength
= 1;
3939 /* Fill in remaining MTD driver data */
3940 mtd
->type
= ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH
: MTD_NANDFLASH
;
3941 mtd
->flags
= MTD_CAP_NANDFLASH
;
3942 mtd
->_erase
= onenand_erase
;
3944 mtd
->_unpoint
= NULL
;
3945 mtd
->_read_oob
= onenand_read_oob
;
3946 mtd
->_write_oob
= onenand_write_oob
;
3947 mtd
->_panic_write
= onenand_panic_write
;
3948 #ifdef CONFIG_MTD_ONENAND_OTP
3949 mtd
->_get_fact_prot_info
= onenand_get_fact_prot_info
;
3950 mtd
->_read_fact_prot_reg
= onenand_read_fact_prot_reg
;
3951 mtd
->_get_user_prot_info
= onenand_get_user_prot_info
;
3952 mtd
->_read_user_prot_reg
= onenand_read_user_prot_reg
;
3953 mtd
->_write_user_prot_reg
= onenand_write_user_prot_reg
;
3954 mtd
->_lock_user_prot_reg
= onenand_lock_user_prot_reg
;
3956 mtd
->_sync
= onenand_sync
;
3957 mtd
->_lock
= onenand_lock
;
3958 mtd
->_unlock
= onenand_unlock
;
3959 mtd
->_suspend
= onenand_suspend
;
3960 mtd
->_resume
= onenand_resume
;
3961 mtd
->_block_isbad
= onenand_block_isbad
;
3962 mtd
->_block_markbad
= onenand_block_markbad
;
3963 mtd
->owner
= THIS_MODULE
;
3964 mtd
->writebufsize
= mtd
->writesize
;
3966 /* Unlock whole block */
3967 if (!(this->options
& ONENAND_SKIP_INITIAL_UNLOCKING
))
3968 this->unlock_all(mtd
);
3970 ret
= this->scan_bbt(mtd
);
3971 if ((!FLEXONENAND(this)) || ret
)
3974 /* Change Flex-OneNAND boundaries if required */
3975 for (i
= 0; i
< MAX_DIES
; i
++)
3976 flexonenand_set_boundary(mtd
, i
, flex_bdry
[2 * i
],
3977 flex_bdry
[(2 * i
) + 1]);
3983 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3984 * @param mtd MTD device structure
3986 void onenand_release(struct mtd_info
*mtd
)
3988 struct onenand_chip
*this = mtd
->priv
;
3990 /* Deregister partitions */
3991 mtd_device_unregister(mtd
);
3993 /* Free bad block table memory, if allocated */
3995 struct bbm_info
*bbm
= this->bbm
;
3999 /* Buffers allocated by onenand_scan */
4000 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
4001 kfree(this->page_buf
);
4002 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4003 kfree(this->verify_buf
);
4006 if (this->options
& ONENAND_OOBBUF_ALLOC
)
4007 kfree(this->oob_buf
);
4008 kfree(mtd
->eraseregions
);
4011 EXPORT_SYMBOL_GPL(onenand_scan
);
4012 EXPORT_SYMBOL_GPL(onenand_release
);
4014 MODULE_LICENSE("GPL");
4015 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4016 MODULE_DESCRIPTION("Generic OneNAND flash driver code");