Linux 4.19.133
[linux/fpc-iii.git] / drivers / mtd / nand / raw / au1550nd.c
blobb45fb36537e7ec782f7571aeb46952943c373258
1 /*
2 * Copyright (C) 2004 Embedded Edge, LLC
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 */
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/mtd/partitions.h>
16 #include <linux/platform_device.h>
17 #include <asm/io.h>
18 #include <asm/mach-au1x00/au1000.h>
19 #include <asm/mach-au1x00/au1550nd.h>
22 struct au1550nd_ctx {
23 struct nand_chip chip;
25 int cs;
26 void __iomem *base;
27 void (*write_byte)(struct mtd_info *, u_char);
30 /**
31 * au_read_byte - read one byte from the chip
32 * @mtd: MTD device structure
34 * read function for 8bit buswidth
36 static u_char au_read_byte(struct mtd_info *mtd)
38 struct nand_chip *this = mtd_to_nand(mtd);
39 u_char ret = readb(this->IO_ADDR_R);
40 wmb(); /* drain writebuffer */
41 return ret;
44 /**
45 * au_write_byte - write one byte to the chip
46 * @mtd: MTD device structure
47 * @byte: pointer to data byte to write
49 * write function for 8it buswidth
51 static void au_write_byte(struct mtd_info *mtd, u_char byte)
53 struct nand_chip *this = mtd_to_nand(mtd);
54 writeb(byte, this->IO_ADDR_W);
55 wmb(); /* drain writebuffer */
58 /**
59 * au_read_byte16 - read one byte endianness aware from the chip
60 * @mtd: MTD device structure
62 * read function for 16bit buswidth with endianness conversion
64 static u_char au_read_byte16(struct mtd_info *mtd)
66 struct nand_chip *this = mtd_to_nand(mtd);
67 u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
68 wmb(); /* drain writebuffer */
69 return ret;
72 /**
73 * au_write_byte16 - write one byte endianness aware to the chip
74 * @mtd: MTD device structure
75 * @byte: pointer to data byte to write
77 * write function for 16bit buswidth with endianness conversion
79 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
81 struct nand_chip *this = mtd_to_nand(mtd);
82 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
83 wmb(); /* drain writebuffer */
86 /**
87 * au_read_word - read one word from the chip
88 * @mtd: MTD device structure
90 * read function for 16bit buswidth without endianness conversion
92 static u16 au_read_word(struct mtd_info *mtd)
94 struct nand_chip *this = mtd_to_nand(mtd);
95 u16 ret = readw(this->IO_ADDR_R);
96 wmb(); /* drain writebuffer */
97 return ret;
101 * au_write_buf - write buffer to chip
102 * @mtd: MTD device structure
103 * @buf: data buffer
104 * @len: number of bytes to write
106 * write function for 8bit buswidth
108 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
110 int i;
111 struct nand_chip *this = mtd_to_nand(mtd);
113 for (i = 0; i < len; i++) {
114 writeb(buf[i], this->IO_ADDR_W);
115 wmb(); /* drain writebuffer */
120 * au_read_buf - read chip data into buffer
121 * @mtd: MTD device structure
122 * @buf: buffer to store date
123 * @len: number of bytes to read
125 * read function for 8bit buswidth
127 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
129 int i;
130 struct nand_chip *this = mtd_to_nand(mtd);
132 for (i = 0; i < len; i++) {
133 buf[i] = readb(this->IO_ADDR_R);
134 wmb(); /* drain writebuffer */
139 * au_write_buf16 - write buffer to chip
140 * @mtd: MTD device structure
141 * @buf: data buffer
142 * @len: number of bytes to write
144 * write function for 16bit buswidth
146 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
148 int i;
149 struct nand_chip *this = mtd_to_nand(mtd);
150 u16 *p = (u16 *) buf;
151 len >>= 1;
153 for (i = 0; i < len; i++) {
154 writew(p[i], this->IO_ADDR_W);
155 wmb(); /* drain writebuffer */
161 * au_read_buf16 - read chip data into buffer
162 * @mtd: MTD device structure
163 * @buf: buffer to store date
164 * @len: number of bytes to read
166 * read function for 16bit buswidth
168 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
170 int i;
171 struct nand_chip *this = mtd_to_nand(mtd);
172 u16 *p = (u16 *) buf;
173 len >>= 1;
175 for (i = 0; i < len; i++) {
176 p[i] = readw(this->IO_ADDR_R);
177 wmb(); /* drain writebuffer */
181 /* Select the chip by setting nCE to low */
182 #define NAND_CTL_SETNCE 1
183 /* Deselect the chip by setting nCE to high */
184 #define NAND_CTL_CLRNCE 2
185 /* Select the command latch by setting CLE to high */
186 #define NAND_CTL_SETCLE 3
187 /* Deselect the command latch by setting CLE to low */
188 #define NAND_CTL_CLRCLE 4
189 /* Select the address latch by setting ALE to high */
190 #define NAND_CTL_SETALE 5
191 /* Deselect the address latch by setting ALE to low */
192 #define NAND_CTL_CLRALE 6
194 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
196 struct nand_chip *this = mtd_to_nand(mtd);
197 struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
198 chip);
200 switch (cmd) {
202 case NAND_CTL_SETCLE:
203 this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
204 break;
206 case NAND_CTL_CLRCLE:
207 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
208 break;
210 case NAND_CTL_SETALE:
211 this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
212 break;
214 case NAND_CTL_CLRALE:
215 this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
216 /* FIXME: Nobody knows why this is necessary,
217 * but it works only that way */
218 udelay(1);
219 break;
221 case NAND_CTL_SETNCE:
222 /* assert (force assert) chip enable */
223 alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
224 break;
226 case NAND_CTL_CLRNCE:
227 /* deassert chip enable */
228 alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
229 break;
232 this->IO_ADDR_R = this->IO_ADDR_W;
234 wmb(); /* Drain the writebuffer */
237 int au1550_device_ready(struct mtd_info *mtd)
239 return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
243 * au1550_select_chip - control -CE line
244 * Forbid driving -CE manually permitting the NAND controller to do this.
245 * Keeping -CE asserted during the whole sector reads interferes with the
246 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
247 * We only have to hold -CE low for the NAND read commands since the flash
248 * chip needs it to be asserted during chip not ready time but the NAND
249 * controller keeps it released.
251 * @mtd: MTD device structure
252 * @chip: chipnumber to select, -1 for deselect
254 static void au1550_select_chip(struct mtd_info *mtd, int chip)
259 * au1550_command - Send command to NAND device
260 * @mtd: MTD device structure
261 * @command: the command to be sent
262 * @column: the column address for this command, -1 if none
263 * @page_addr: the page address for this command, -1 if none
265 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
267 struct nand_chip *this = mtd_to_nand(mtd);
268 struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
269 chip);
270 int ce_override = 0, i;
271 unsigned long flags = 0;
273 /* Begin command latch cycle */
274 au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
276 * Write out the command to the device.
278 if (command == NAND_CMD_SEQIN) {
279 int readcmd;
281 if (column >= mtd->writesize) {
282 /* OOB area */
283 column -= mtd->writesize;
284 readcmd = NAND_CMD_READOOB;
285 } else if (column < 256) {
286 /* First 256 bytes --> READ0 */
287 readcmd = NAND_CMD_READ0;
288 } else {
289 column -= 256;
290 readcmd = NAND_CMD_READ1;
292 ctx->write_byte(mtd, readcmd);
294 ctx->write_byte(mtd, command);
296 /* Set ALE and clear CLE to start address cycle */
297 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
299 if (column != -1 || page_addr != -1) {
300 au1550_hwcontrol(mtd, NAND_CTL_SETALE);
302 /* Serially input address */
303 if (column != -1) {
304 /* Adjust columns for 16 bit buswidth */
305 if (this->options & NAND_BUSWIDTH_16 &&
306 !nand_opcode_8bits(command))
307 column >>= 1;
308 ctx->write_byte(mtd, column);
310 if (page_addr != -1) {
311 ctx->write_byte(mtd, (u8)(page_addr & 0xff));
313 if (command == NAND_CMD_READ0 ||
314 command == NAND_CMD_READ1 ||
315 command == NAND_CMD_READOOB) {
317 * NAND controller will release -CE after
318 * the last address byte is written, so we'll
319 * have to forcibly assert it. No interrupts
320 * are allowed while we do this as we don't
321 * want the NOR flash or PCMCIA drivers to
322 * steal our precious bytes of data...
324 ce_override = 1;
325 local_irq_save(flags);
326 au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
329 ctx->write_byte(mtd, (u8)(page_addr >> 8));
331 if (this->options & NAND_ROW_ADDR_3)
332 ctx->write_byte(mtd,
333 ((page_addr >> 16) & 0x0f));
335 /* Latch in address */
336 au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
340 * Program and erase have their own busy handlers.
341 * Status and sequential in need no delay.
343 switch (command) {
345 case NAND_CMD_PAGEPROG:
346 case NAND_CMD_ERASE1:
347 case NAND_CMD_ERASE2:
348 case NAND_CMD_SEQIN:
349 case NAND_CMD_STATUS:
350 return;
352 case NAND_CMD_RESET:
353 break;
355 case NAND_CMD_READ0:
356 case NAND_CMD_READ1:
357 case NAND_CMD_READOOB:
358 /* Check if we're really driving -CE low (just in case) */
359 if (unlikely(!ce_override))
360 break;
362 /* Apply a short delay always to ensure that we do wait tWB. */
363 ndelay(100);
364 /* Wait for a chip to become ready... */
365 for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
366 udelay(1);
368 /* Release -CE and re-enable interrupts. */
369 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
370 local_irq_restore(flags);
371 return;
373 /* Apply this short delay always to ensure that we do wait tWB. */
374 ndelay(100);
376 while(!this->dev_ready(mtd));
379 static int find_nand_cs(unsigned long nand_base)
381 void __iomem *base =
382 (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
383 unsigned long addr, staddr, start, mask, end;
384 int i;
386 for (i = 0; i < 4; i++) {
387 addr = 0x1000 + (i * 0x10); /* CSx */
388 staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
389 /* figure out the decoded range of this CS */
390 start = (staddr << 4) & 0xfffc0000;
391 mask = (staddr << 18) & 0xfffc0000;
392 end = (start | (start - 1)) & ~(start ^ mask);
393 if ((nand_base >= start) && (nand_base < end))
394 return i;
397 return -ENODEV;
400 static int au1550nd_probe(struct platform_device *pdev)
402 struct au1550nd_platdata *pd;
403 struct au1550nd_ctx *ctx;
404 struct nand_chip *this;
405 struct mtd_info *mtd;
406 struct resource *r;
407 int ret, cs;
409 pd = dev_get_platdata(&pdev->dev);
410 if (!pd) {
411 dev_err(&pdev->dev, "missing platform data\n");
412 return -ENODEV;
415 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
416 if (!ctx)
417 return -ENOMEM;
419 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
420 if (!r) {
421 dev_err(&pdev->dev, "no NAND memory resource\n");
422 ret = -ENODEV;
423 goto out1;
425 if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
426 dev_err(&pdev->dev, "cannot claim NAND memory area\n");
427 ret = -ENOMEM;
428 goto out1;
431 ctx->base = ioremap_nocache(r->start, 0x1000);
432 if (!ctx->base) {
433 dev_err(&pdev->dev, "cannot remap NAND memory area\n");
434 ret = -ENODEV;
435 goto out2;
438 this = &ctx->chip;
439 mtd = nand_to_mtd(this);
440 mtd->dev.parent = &pdev->dev;
442 /* figure out which CS# r->start belongs to */
443 cs = find_nand_cs(r->start);
444 if (cs < 0) {
445 dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
446 ret = -ENODEV;
447 goto out3;
449 ctx->cs = cs;
451 this->dev_ready = au1550_device_ready;
452 this->select_chip = au1550_select_chip;
453 this->cmdfunc = au1550_command;
455 /* 30 us command delay time */
456 this->chip_delay = 30;
457 this->ecc.mode = NAND_ECC_SOFT;
458 this->ecc.algo = NAND_ECC_HAMMING;
460 if (pd->devwidth)
461 this->options |= NAND_BUSWIDTH_16;
463 this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
464 ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
465 this->read_word = au_read_word;
466 this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
467 this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
469 ret = nand_scan(this, 1);
470 if (ret) {
471 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
472 goto out3;
475 mtd_device_register(mtd, pd->parts, pd->num_parts);
477 platform_set_drvdata(pdev, ctx);
479 return 0;
481 out3:
482 iounmap(ctx->base);
483 out2:
484 release_mem_region(r->start, resource_size(r));
485 out1:
486 kfree(ctx);
487 return ret;
490 static int au1550nd_remove(struct platform_device *pdev)
492 struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
493 struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495 nand_release(&ctx->chip);
496 iounmap(ctx->base);
497 release_mem_region(r->start, 0x1000);
498 kfree(ctx);
499 return 0;
502 static struct platform_driver au1550nd_driver = {
503 .driver = {
504 .name = "au1550-nand",
506 .probe = au1550nd_probe,
507 .remove = au1550nd_remove,
510 module_platform_driver(au1550nd_driver);
512 MODULE_LICENSE("GPL");
513 MODULE_AUTHOR("Embedded Edge, LLC");
514 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");