Linux 4.19.133
[linux/fpc-iii.git] / drivers / mtd / nand / raw / marvell_nand.c
bloba917bc242c9cc5aa72c09601ae022ed8f50e16f8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Marvell NAND flash controller driver
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
8 */
10 #include <linux/module.h>
11 #include <linux/clk.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/of_platform.h>
14 #include <linux/iopoll.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/regmap.h>
19 #include <asm/unaligned.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dma/pxa-dma.h>
24 #include <linux/platform_data/mtd-nand-pxa3xx.h>
26 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
27 #define FIFO_DEPTH 8
28 #define FIFO_REP(x) (x / sizeof(u32))
29 #define BCH_SEQ_READS (32 / FIFO_DEPTH)
30 /* NFC does not support transfers of larger chunks at a time */
31 #define MAX_CHUNK_SIZE 2112
32 /* NFCv1 cannot read more that 7 bytes of ID */
33 #define NFCV1_READID_LEN 7
34 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
35 #define POLL_PERIOD 0
36 #define POLL_TIMEOUT 100000
37 /* Interrupt maximum wait period in ms */
38 #define IRQ_TIMEOUT 1000
39 /* Latency in clock cycles between SoC pins and NFC logic */
40 #define MIN_RD_DEL_CNT 3
41 /* Maximum number of contiguous address cycles */
42 #define MAX_ADDRESS_CYC_NFCV1 5
43 #define MAX_ADDRESS_CYC_NFCV2 7
44 /* System control registers/bits to enable the NAND controller on some SoCs */
45 #define GENCONF_SOC_DEVICE_MUX 0x208
46 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
47 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
48 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
49 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
50 #define GENCONF_CLK_GATING_CTRL 0x220
51 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
52 #define GENCONF_ND_CLK_CTRL 0x700
53 #define GENCONF_ND_CLK_CTRL_EN BIT(0)
55 /* NAND controller data flash control register */
56 #define NDCR 0x00
57 #define NDCR_ALL_INT GENMASK(11, 0)
58 #define NDCR_CS1_CMDDM BIT(7)
59 #define NDCR_CS0_CMDDM BIT(8)
60 #define NDCR_RDYM BIT(11)
61 #define NDCR_ND_ARB_EN BIT(12)
62 #define NDCR_RA_START BIT(15)
63 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
64 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
65 #define NDCR_DWIDTH_M BIT(26)
66 #define NDCR_DWIDTH_C BIT(27)
67 #define NDCR_ND_RUN BIT(28)
68 #define NDCR_DMA_EN BIT(29)
69 #define NDCR_ECC_EN BIT(30)
70 #define NDCR_SPARE_EN BIT(31)
71 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
72 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
74 /* NAND interface timing parameter 0 register */
75 #define NDTR0 0x04
76 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
77 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
78 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
79 #define NDTR0_SEL_NRE_EDGE BIT(7)
80 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
81 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
82 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
83 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
84 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
85 #define NDTR0_SELCNTR BIT(26)
86 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
88 /* NAND interface timing parameter 1 register */
89 #define NDTR1 0x0C
90 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
91 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
92 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
93 #define NDTR1_PRESCALE BIT(14)
94 #define NDTR1_WAIT_MODE BIT(15)
95 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
97 /* NAND controller status register */
98 #define NDSR 0x14
99 #define NDSR_WRCMDREQ BIT(0)
100 #define NDSR_RDDREQ BIT(1)
101 #define NDSR_WRDREQ BIT(2)
102 #define NDSR_CORERR BIT(3)
103 #define NDSR_UNCERR BIT(4)
104 #define NDSR_CMDD(cs) BIT(8 - cs)
105 #define NDSR_RDY(rb) BIT(11 + rb)
106 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
108 /* NAND ECC control register */
109 #define NDECCCTRL 0x28
110 #define NDECCCTRL_BCH_EN BIT(0)
112 /* NAND controller data buffer register */
113 #define NDDB 0x40
115 /* NAND controller command buffer 0 register */
116 #define NDCB0 0x48
117 #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
118 #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
119 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
120 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
121 #define NDCB0_DBC BIT(19)
122 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
123 #define NDCB0_CSEL BIT(24)
124 #define NDCB0_RDY_BYP BIT(27)
125 #define NDCB0_LEN_OVRD BIT(28)
126 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
128 /* NAND controller command buffer 1 register */
129 #define NDCB1 0x4C
130 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
131 #define NDCB1_ADDRS_PAGE(x) (x << 16)
133 /* NAND controller command buffer 2 register */
134 #define NDCB2 0x50
135 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
136 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
138 /* NAND controller command buffer 3 register */
139 #define NDCB3 0x54
140 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
141 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
143 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
144 #define TYPE_READ 0
145 #define TYPE_WRITE 1
146 #define TYPE_ERASE 2
147 #define TYPE_READ_ID 3
148 #define TYPE_STATUS 4
149 #define TYPE_RESET 5
150 #define TYPE_NAKED_CMD 6
151 #define TYPE_NAKED_ADDR 7
152 #define TYPE_MASK 7
153 #define XTYPE_MONOLITHIC_RW 0
154 #define XTYPE_LAST_NAKED_RW 1
155 #define XTYPE_FINAL_COMMAND 3
156 #define XTYPE_READ 4
157 #define XTYPE_WRITE_DISPATCH 4
158 #define XTYPE_NAKED_RW 5
159 #define XTYPE_COMMAND_DISPATCH 6
160 #define XTYPE_MASK 7
163 * Marvell ECC engine works differently than the others, in order to limit the
164 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
165 * per subpage, and depending on a the desired strength needed by the NAND chip,
166 * a particular layout mixing data/spare/ecc is defined, with a possible last
167 * chunk smaller that the others.
169 * @writesize: Full page size on which the layout applies
170 * @chunk: Desired ECC chunk size on which the layout applies
171 * @strength: Desired ECC strength (per chunk size bytes) on which the
172 * layout applies
173 * @nchunks: Total number of chunks
174 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
175 * repetitions of the pattern:
176 * (data_bytes + spare_bytes + ecc_bytes).
177 * @data_bytes: Number of data bytes per chunk
178 * @spare_bytes: Number of spare bytes per chunk
179 * @ecc_bytes: Number of ecc bytes per chunk
180 * @last_data_bytes: Number of data bytes in the last chunk
181 * @last_spare_bytes: Number of spare bytes in the last chunk
182 * @last_ecc_bytes: Number of ecc bytes in the last chunk
184 struct marvell_hw_ecc_layout {
185 /* Constraints */
186 int writesize;
187 int chunk;
188 int strength;
189 /* Corresponding layout */
190 int nchunks;
191 int full_chunk_cnt;
192 int data_bytes;
193 int spare_bytes;
194 int ecc_bytes;
195 int last_data_bytes;
196 int last_spare_bytes;
197 int last_ecc_bytes;
200 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
202 .writesize = ws, \
203 .chunk = dc, \
204 .strength = ds, \
205 .nchunks = nc, \
206 .full_chunk_cnt = fcc, \
207 .data_bytes = db, \
208 .spare_bytes = sb, \
209 .ecc_bytes = eb, \
210 .last_data_bytes = ldb, \
211 .last_spare_bytes = lsb, \
212 .last_ecc_bytes = leb, \
215 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
216 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
217 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
218 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
219 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
220 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
221 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
225 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
226 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
227 * The datasheet describes the logic with an error: ADDR5 field is once
228 * declared at the beginning of NDCB2, and another time at its end. Because the
229 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
230 * to use the last bit of this field instead of the first ones.
232 * @cs: Wanted CE lane.
233 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
234 * selecting the wanted CE lane. This is set once when
235 * the Device Tree is probed.
236 * @rb: Ready/Busy pin for the flash chip
238 struct marvell_nand_chip_sel {
239 unsigned int cs;
240 u32 ndcb0_csel;
241 unsigned int rb;
245 * NAND chip structure: stores NAND chip device related information
247 * @chip: Base NAND chip structure
248 * @node: Used to store NAND chips into a list
249 * @layout NAND layout when using hardware ECC
250 * @ndcr: Controller register value for this NAND chip
251 * @ndtr0: Timing registers 0 value for this NAND chip
252 * @ndtr1: Timing registers 1 value for this NAND chip
253 * @selected_die: Current active CS
254 * @nsels: Number of CS lines required by the NAND chip
255 * @sels: Array of CS lines descriptions
257 struct marvell_nand_chip {
258 struct nand_chip chip;
259 struct list_head node;
260 const struct marvell_hw_ecc_layout *layout;
261 u32 ndcr;
262 u32 ndtr0;
263 u32 ndtr1;
264 int addr_cyc;
265 int selected_die;
266 unsigned int nsels;
267 struct marvell_nand_chip_sel sels[0];
270 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
272 return container_of(chip, struct marvell_nand_chip, chip);
275 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
276 *nand)
278 return &nand->sels[nand->selected_die];
282 * NAND controller capabilities for distinction between compatible strings
284 * @max_cs_nb: Number of Chip Select lines available
285 * @max_rb_nb: Number of Ready/Busy lines available
286 * @need_system_controller: Indicates if the SoC needs to have access to the
287 * system controller (ie. to enable the NAND controller)
288 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
289 * fashion way
290 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
291 * BCH error detection and correction algorithm,
292 * NDCB3 register has been added
293 * @use_dma: Use dma for data transfers
295 struct marvell_nfc_caps {
296 unsigned int max_cs_nb;
297 unsigned int max_rb_nb;
298 bool need_system_controller;
299 bool legacy_of_bindings;
300 bool is_nfcv2;
301 bool use_dma;
305 * NAND controller structure: stores Marvell NAND controller information
307 * @controller: Base controller structure
308 * @dev: Parent device (used to print error messages)
309 * @regs: NAND controller registers
310 * @core_clk: Core clock
311 * @reg_clk: Regiters clock
312 * @complete: Completion object to wait for NAND controller events
313 * @assigned_cs: Bitmask describing already assigned CS lines
314 * @chips: List containing all the NAND chips attached to
315 * this NAND controller
316 * @caps: NAND controller capabilities for each compatible string
317 * @dma_chan: DMA channel (NFCv1 only)
318 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
320 struct marvell_nfc {
321 struct nand_controller controller;
322 struct device *dev;
323 void __iomem *regs;
324 struct clk *core_clk;
325 struct clk *reg_clk;
326 struct completion complete;
327 unsigned long assigned_cs;
328 struct list_head chips;
329 struct nand_chip *selected_chip;
330 const struct marvell_nfc_caps *caps;
332 /* DMA (NFCv1 only) */
333 bool use_dma;
334 struct dma_chan *dma_chan;
335 u8 *dma_buf;
338 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
340 return container_of(ctrl, struct marvell_nfc, controller);
344 * NAND controller timings expressed in NAND Controller clock cycles
346 * @tRP: ND_nRE pulse width
347 * @tRH: ND_nRE high duration
348 * @tWP: ND_nWE pulse time
349 * @tWH: ND_nWE high duration
350 * @tCS: Enable signal setup time
351 * @tCH: Enable signal hold time
352 * @tADL: Address to write data delay
353 * @tAR: ND_ALE low to ND_nRE low delay
354 * @tWHR: ND_nWE high to ND_nRE low for status read
355 * @tRHW: ND_nRE high duration, read to write delay
356 * @tR: ND_nWE high to ND_nRE low for read
358 struct marvell_nfc_timings {
359 /* NDTR0 fields */
360 unsigned int tRP;
361 unsigned int tRH;
362 unsigned int tWP;
363 unsigned int tWH;
364 unsigned int tCS;
365 unsigned int tCH;
366 unsigned int tADL;
367 /* NDTR1 fields */
368 unsigned int tAR;
369 unsigned int tWHR;
370 unsigned int tRHW;
371 unsigned int tR;
375 * Derives a duration in numbers of clock cycles.
377 * @ps: Duration in pico-seconds
378 * @period_ns: Clock period in nano-seconds
380 * Convert the duration in nano-seconds, then divide by the period and
381 * return the number of clock periods.
383 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
384 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
385 period_ns))
388 * NAND driver structure filled during the parsing of the ->exec_op() subop
389 * subset of instructions.
391 * @ndcb: Array of values written to NDCBx registers
392 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
393 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
394 * @rdy_delay_ns: Optional delay after waiting for the RB pin
395 * @data_delay_ns: Optional delay after the data xfer
396 * @data_instr_idx: Index of the data instruction in the subop
397 * @data_instr: Pointer to the data instruction in the subop
399 struct marvell_nfc_op {
400 u32 ndcb[4];
401 unsigned int cle_ale_delay_ns;
402 unsigned int rdy_timeout_ms;
403 unsigned int rdy_delay_ns;
404 unsigned int data_delay_ns;
405 unsigned int data_instr_idx;
406 const struct nand_op_instr *data_instr;
410 * Internal helper to conditionnally apply a delay (from the above structure,
411 * most of the time).
413 static void cond_delay(unsigned int ns)
415 if (!ns)
416 return;
418 if (ns < 10000)
419 ndelay(ns);
420 else
421 udelay(DIV_ROUND_UP(ns, 1000));
425 * The controller has many flags that could generate interrupts, most of them
426 * are disabled and polling is used. For the very slow signals, using interrupts
427 * may relax the CPU charge.
429 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
431 u32 reg;
433 /* Writing 1 disables the interrupt */
434 reg = readl_relaxed(nfc->regs + NDCR);
435 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
438 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
440 u32 reg;
442 /* Writing 0 enables the interrupt */
443 reg = readl_relaxed(nfc->regs + NDCR);
444 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
447 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
449 u32 reg;
451 reg = readl_relaxed(nfc->regs + NDSR);
452 writel_relaxed(int_mask, nfc->regs + NDSR);
454 return reg & int_mask;
457 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
458 bool force_8bit)
460 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
461 u32 ndcr;
464 * Callers of this function do not verify if the NAND is using a 16-bit
465 * an 8-bit bus for normal operations, so we need to take care of that
466 * here by leaving the configuration unchanged if the NAND does not have
467 * the NAND_BUSWIDTH_16 flag set.
469 if (!(chip->options & NAND_BUSWIDTH_16))
470 return;
472 ndcr = readl_relaxed(nfc->regs + NDCR);
474 if (force_8bit)
475 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
476 else
477 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
479 writel_relaxed(ndcr, nfc->regs + NDCR);
482 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
484 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
485 u32 val;
486 int ret;
489 * The command is being processed, wait for the ND_RUN bit to be
490 * cleared by the NFC. If not, we must clear it by hand.
492 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
493 (val & NDCR_ND_RUN) == 0,
494 POLL_PERIOD, POLL_TIMEOUT);
495 if (ret) {
496 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
497 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
498 nfc->regs + NDCR);
499 return ret;
502 return 0;
506 * Any time a command has to be sent to the controller, the following sequence
507 * has to be followed:
508 * - call marvell_nfc_prepare_cmd()
509 * -> activate the ND_RUN bit that will kind of 'start a job'
510 * -> wait the signal indicating the NFC is waiting for a command
511 * - send the command (cmd and address cycles)
512 * - enventually send or receive the data
513 * - call marvell_nfc_end_cmd() with the corresponding flag
514 * -> wait the flag to be triggered or cancel the job with a timeout
516 * The following helpers are here to factorize the code a bit so that
517 * specialized functions responsible for executing the actual NAND
518 * operations do not have to replicate the same code blocks.
520 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
522 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
523 u32 ndcr, val;
524 int ret;
526 /* Poll ND_RUN and clear NDSR before issuing any command */
527 ret = marvell_nfc_wait_ndrun(chip);
528 if (ret) {
529 dev_err(nfc->dev, "Last operation did not succeed\n");
530 return ret;
533 ndcr = readl_relaxed(nfc->regs + NDCR);
534 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
536 /* Assert ND_RUN bit and wait the NFC to be ready */
537 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
538 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
539 val & NDSR_WRCMDREQ,
540 POLL_PERIOD, POLL_TIMEOUT);
541 if (ret) {
542 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
543 return -ETIMEDOUT;
546 /* Command may be written, clear WRCMDREQ status bit */
547 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
549 return 0;
552 static void marvell_nfc_send_cmd(struct nand_chip *chip,
553 struct marvell_nfc_op *nfc_op)
555 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
556 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
558 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
559 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
560 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
561 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
563 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
564 nfc->regs + NDCB0);
565 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
566 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
569 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
570 * fields are used (only available on NFCv2).
572 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
573 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
574 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
575 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
579 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
580 const char *label)
582 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
583 u32 val;
584 int ret;
586 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
587 val & flag,
588 POLL_PERIOD, POLL_TIMEOUT);
590 if (ret) {
591 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
592 label, val);
593 if (nfc->dma_chan)
594 dmaengine_terminate_all(nfc->dma_chan);
595 return ret;
599 * DMA function uses this helper to poll on CMDD bits without wanting
600 * them to be cleared.
602 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
603 return 0;
605 writel_relaxed(flag, nfc->regs + NDSR);
607 return 0;
610 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
612 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
613 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
615 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
618 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
620 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
621 u32 pending;
622 int ret;
624 /* Timeout is expressed in ms */
625 if (!timeout_ms)
626 timeout_ms = IRQ_TIMEOUT;
628 init_completion(&nfc->complete);
630 marvell_nfc_enable_int(nfc, NDCR_RDYM);
631 ret = wait_for_completion_timeout(&nfc->complete,
632 msecs_to_jiffies(timeout_ms));
633 marvell_nfc_disable_int(nfc, NDCR_RDYM);
634 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
637 * In case the interrupt was not served in the required time frame,
638 * check if the ISR was not served or if something went actually wrong.
640 if (!ret && !pending) {
641 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
642 return -ETIMEDOUT;
645 return 0;
648 static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
650 struct nand_chip *chip = mtd_to_nand(mtd);
651 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
652 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
653 u32 ndcr_generic;
655 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
656 return;
658 if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
659 nfc->selected_chip = NULL;
660 marvell_nand->selected_die = -1;
661 return;
664 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
665 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
668 * Reset the NDCR register to a clean state for this particular chip,
669 * also clear ND_RUN bit.
671 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
672 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
673 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
675 /* Also reset the interrupt status register */
676 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
678 nfc->selected_chip = chip;
679 marvell_nand->selected_die = die_nr;
682 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
684 struct marvell_nfc *nfc = dev_id;
685 u32 st = readl_relaxed(nfc->regs + NDSR);
686 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
689 * RDY interrupt mask is one bit in NDCR while there are two status
690 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
692 if (st & NDSR_RDY(1))
693 st |= NDSR_RDY(0);
695 if (!(st & ien))
696 return IRQ_NONE;
698 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
700 if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
701 complete(&nfc->complete);
703 return IRQ_HANDLED;
706 /* HW ECC related functions */
707 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
709 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
710 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
712 if (!(ndcr & NDCR_ECC_EN)) {
713 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
716 * When enabling BCH, set threshold to 0 to always know the
717 * number of corrected bitflips.
719 if (chip->ecc.algo == NAND_ECC_BCH)
720 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
724 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
726 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
727 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
729 if (ndcr & NDCR_ECC_EN) {
730 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
731 if (chip->ecc.algo == NAND_ECC_BCH)
732 writel_relaxed(0, nfc->regs + NDECCCTRL);
736 /* DMA related helpers */
737 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
739 u32 reg;
741 reg = readl_relaxed(nfc->regs + NDCR);
742 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
745 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
747 u32 reg;
749 reg = readl_relaxed(nfc->regs + NDCR);
750 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
753 /* Read/write PIO/DMA accessors */
754 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
755 enum dma_data_direction direction,
756 unsigned int len)
758 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
759 struct dma_async_tx_descriptor *tx;
760 struct scatterlist sg;
761 dma_cookie_t cookie;
762 int ret;
764 marvell_nfc_enable_dma(nfc);
765 /* Prepare the DMA transfer */
766 sg_init_one(&sg, nfc->dma_buf, dma_len);
767 dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
768 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
769 direction == DMA_FROM_DEVICE ?
770 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
771 DMA_PREP_INTERRUPT);
772 if (!tx) {
773 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
774 return -ENXIO;
777 /* Do the task and wait for it to finish */
778 cookie = dmaengine_submit(tx);
779 ret = dma_submit_error(cookie);
780 if (ret)
781 return -EIO;
783 dma_async_issue_pending(nfc->dma_chan);
784 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
785 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
786 marvell_nfc_disable_dma(nfc);
787 if (ret) {
788 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
789 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
790 dmaengine_terminate_all(nfc->dma_chan);
791 return -ETIMEDOUT;
794 return 0;
797 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
798 unsigned int len)
800 unsigned int last_len = len % FIFO_DEPTH;
801 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
802 int i;
804 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
805 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
807 if (last_len) {
808 u8 tmp_buf[FIFO_DEPTH];
810 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
811 memcpy(in + last_full_offset, tmp_buf, last_len);
814 return 0;
817 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
818 unsigned int len)
820 unsigned int last_len = len % FIFO_DEPTH;
821 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
822 int i;
824 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
825 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
827 if (last_len) {
828 u8 tmp_buf[FIFO_DEPTH];
830 memcpy(tmp_buf, out + last_full_offset, last_len);
831 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
834 return 0;
837 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
838 u8 *data, int data_len,
839 u8 *spare, int spare_len,
840 u8 *ecc, int ecc_len,
841 unsigned int *max_bitflips)
843 struct mtd_info *mtd = nand_to_mtd(chip);
844 int bf;
847 * Blank pages (all 0xFF) that have not been written may be recognized
848 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
849 * check if the entire page (with ECC bytes) is actually blank or not.
851 if (!data)
852 data_len = 0;
853 if (!spare)
854 spare_len = 0;
855 if (!ecc)
856 ecc_len = 0;
858 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
859 spare, spare_len, chip->ecc.strength);
860 if (bf < 0) {
861 mtd->ecc_stats.failed++;
862 return;
865 /* Update the stats and max_bitflips */
866 mtd->ecc_stats.corrected += bf;
867 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
871 * Check a chunk is correct or not according to hardware ECC engine.
872 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
873 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
874 * value indicating that a check on the emptyness of the subpage must be
875 * performed before declaring the subpage corrupted.
877 static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
878 unsigned int *max_bitflips)
880 struct mtd_info *mtd = nand_to_mtd(chip);
881 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
882 int bf = 0;
883 u32 ndsr;
885 ndsr = readl_relaxed(nfc->regs + NDSR);
887 /* Check uncorrectable error flag */
888 if (ndsr & NDSR_UNCERR) {
889 writel_relaxed(ndsr, nfc->regs + NDSR);
892 * Do not increment ->ecc_stats.failed now, instead, return a
893 * non-zero value to indicate that this chunk was apparently
894 * bad, and it should be check to see if it empty or not. If
895 * the chunk (with ECC bytes) is not declared empty, the calling
896 * function must increment the failure count.
898 return -EBADMSG;
901 /* Check correctable error flag */
902 if (ndsr & NDSR_CORERR) {
903 writel_relaxed(ndsr, nfc->regs + NDSR);
905 if (chip->ecc.algo == NAND_ECC_BCH)
906 bf = NDSR_ERRCNT(ndsr);
907 else
908 bf = 1;
911 /* Update the stats and max_bitflips */
912 mtd->ecc_stats.corrected += bf;
913 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
915 return 0;
918 /* Hamming read helpers */
919 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
920 u8 *data_buf, u8 *oob_buf,
921 bool raw, int page)
923 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
924 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
925 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
926 struct marvell_nfc_op nfc_op = {
927 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
928 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
929 NDCB0_DBC |
930 NDCB0_CMD1(NAND_CMD_READ0) |
931 NDCB0_CMD2(NAND_CMD_READSTART),
932 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
933 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
935 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
936 int ret;
938 /* NFCv2 needs more information about the operation being executed */
939 if (nfc->caps->is_nfcv2)
940 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
942 ret = marvell_nfc_prepare_cmd(chip);
943 if (ret)
944 return ret;
946 marvell_nfc_send_cmd(chip, &nfc_op);
947 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
948 "RDDREQ while draining FIFO (data/oob)");
949 if (ret)
950 return ret;
953 * Read the page then the OOB area. Unlike what is shown in current
954 * documentation, spare bytes are protected by the ECC engine, and must
955 * be at the beginning of the OOB area or running this driver on legacy
956 * systems will prevent the discovery of the BBM/BBT.
958 if (nfc->use_dma) {
959 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
960 lt->data_bytes + oob_bytes);
961 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
962 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
963 } else {
964 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
965 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
968 ret = marvell_nfc_wait_cmdd(chip);
970 return ret;
973 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
974 struct nand_chip *chip, u8 *buf,
975 int oob_required, int page)
977 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
978 true, page);
981 static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
982 struct nand_chip *chip,
983 u8 *buf, int oob_required,
984 int page)
986 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
987 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
988 int max_bitflips = 0, ret;
989 u8 *raw_buf;
991 marvell_nfc_enable_hw_ecc(chip);
992 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
993 page);
994 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
995 marvell_nfc_disable_hw_ecc(chip);
997 if (!ret)
998 return max_bitflips;
1001 * When ECC failures are detected, check if the full page has been
1002 * written or not. Ignore the failure if it is actually empty.
1004 raw_buf = kmalloc(full_sz, GFP_KERNEL);
1005 if (!raw_buf)
1006 return -ENOMEM;
1008 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1009 lt->data_bytes, true, page);
1010 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1011 &max_bitflips);
1012 kfree(raw_buf);
1014 return max_bitflips;
1018 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1019 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1020 * also stands for ->read_oob().
1022 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
1023 struct nand_chip *chip, int page)
1025 /* Invalidate page cache */
1026 chip->pagebuf = -1;
1028 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
1029 chip->oob_poi, true, page);
1032 /* Hamming write helpers */
1033 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1034 const u8 *data_buf,
1035 const u8 *oob_buf, bool raw,
1036 int page)
1038 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1039 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1040 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1041 struct marvell_nfc_op nfc_op = {
1042 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1043 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1044 NDCB0_CMD1(NAND_CMD_SEQIN) |
1045 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1046 NDCB0_DBC,
1047 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1048 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1050 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1051 int ret;
1053 /* NFCv2 needs more information about the operation being executed */
1054 if (nfc->caps->is_nfcv2)
1055 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1057 ret = marvell_nfc_prepare_cmd(chip);
1058 if (ret)
1059 return ret;
1061 marvell_nfc_send_cmd(chip, &nfc_op);
1062 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1063 "WRDREQ while loading FIFO (data)");
1064 if (ret)
1065 return ret;
1067 /* Write the page then the OOB area */
1068 if (nfc->use_dma) {
1069 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1070 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1071 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1072 lt->ecc_bytes + lt->spare_bytes);
1073 } else {
1074 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1075 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1078 ret = marvell_nfc_wait_cmdd(chip);
1079 if (ret)
1080 return ret;
1082 ret = marvell_nfc_wait_op(chip,
1083 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1084 return ret;
1087 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
1088 struct nand_chip *chip,
1089 const u8 *buf,
1090 int oob_required, int page)
1092 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1093 true, page);
1096 static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
1097 struct nand_chip *chip,
1098 const u8 *buf,
1099 int oob_required, int page)
1101 int ret;
1103 marvell_nfc_enable_hw_ecc(chip);
1104 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1105 false, page);
1106 marvell_nfc_disable_hw_ecc(chip);
1108 return ret;
1112 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1113 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1114 * also stands for ->write_oob().
1116 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
1117 struct nand_chip *chip,
1118 int page)
1120 /* Invalidate page cache */
1121 chip->pagebuf = -1;
1123 memset(chip->data_buf, 0xFF, mtd->writesize);
1125 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
1126 chip->oob_poi, true, page);
1129 /* BCH read helpers */
1130 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
1131 struct nand_chip *chip, u8 *buf,
1132 int oob_required, int page)
1134 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1135 u8 *oob = chip->oob_poi;
1136 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1137 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1138 lt->last_spare_bytes;
1139 int data_len = lt->data_bytes;
1140 int spare_len = lt->spare_bytes;
1141 int ecc_len = lt->ecc_bytes;
1142 int chunk;
1144 if (oob_required)
1145 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1147 nand_read_page_op(chip, page, 0, NULL, 0);
1149 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1150 /* Update last chunk length */
1151 if (chunk >= lt->full_chunk_cnt) {
1152 data_len = lt->last_data_bytes;
1153 spare_len = lt->last_spare_bytes;
1154 ecc_len = lt->last_ecc_bytes;
1157 /* Read data bytes*/
1158 nand_change_read_column_op(chip, chunk * chunk_size,
1159 buf + (lt->data_bytes * chunk),
1160 data_len, false);
1162 /* Read spare bytes */
1163 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1164 spare_len, false);
1166 /* Read ECC bytes */
1167 nand_read_data_op(chip, oob + ecc_offset +
1168 (ALIGN(lt->ecc_bytes, 32) * chunk),
1169 ecc_len, false);
1172 return 0;
1175 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1176 u8 *data, unsigned int data_len,
1177 u8 *spare, unsigned int spare_len,
1178 int page)
1180 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1181 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1182 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1183 int i, ret;
1184 struct marvell_nfc_op nfc_op = {
1185 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1186 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1187 NDCB0_LEN_OVRD,
1188 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1189 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1190 .ndcb[3] = data_len + spare_len,
1193 ret = marvell_nfc_prepare_cmd(chip);
1194 if (ret)
1195 return;
1197 if (chunk == 0)
1198 nfc_op.ndcb[0] |= NDCB0_DBC |
1199 NDCB0_CMD1(NAND_CMD_READ0) |
1200 NDCB0_CMD2(NAND_CMD_READSTART);
1203 * Trigger the monolithic read on the first chunk, then naked read on
1204 * intermediate chunks and finally a last naked read on the last chunk.
1206 if (chunk == 0)
1207 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1208 else if (chunk < lt->nchunks - 1)
1209 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1210 else
1211 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1213 marvell_nfc_send_cmd(chip, &nfc_op);
1216 * According to the datasheet, when reading from NDDB
1217 * with BCH enabled, after each 32 bytes reads, we
1218 * have to make sure that the NDSR.RDDREQ bit is set.
1220 * Drain the FIFO, 8 32-bit reads at a time, and skip
1221 * the polling on the last read.
1223 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1225 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1226 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1227 "RDDREQ while draining FIFO (data)");
1228 marvell_nfc_xfer_data_in_pio(nfc, data,
1229 FIFO_DEPTH * BCH_SEQ_READS);
1230 data += FIFO_DEPTH * BCH_SEQ_READS;
1233 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1234 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1235 "RDDREQ while draining FIFO (OOB)");
1236 marvell_nfc_xfer_data_in_pio(nfc, spare,
1237 FIFO_DEPTH * BCH_SEQ_READS);
1238 spare += FIFO_DEPTH * BCH_SEQ_READS;
1242 static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
1243 struct nand_chip *chip,
1244 u8 *buf, int oob_required,
1245 int page)
1247 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1248 int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
1249 u8 *data = buf, *spare = chip->oob_poi, *ecc;
1250 int max_bitflips = 0;
1251 u32 failure_mask = 0;
1252 int chunk, ecc_offset_in_page, ret;
1255 * With BCH, OOB is not fully used (and thus not read entirely), not
1256 * expected bytes could show up at the end of the OOB buffer if not
1257 * explicitly erased.
1259 if (oob_required)
1260 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1262 marvell_nfc_enable_hw_ecc(chip);
1264 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1265 /* Update length for the last chunk */
1266 if (chunk >= lt->full_chunk_cnt) {
1267 data_len = lt->last_data_bytes;
1268 spare_len = lt->last_spare_bytes;
1271 /* Read the chunk and detect number of bitflips */
1272 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1273 spare, spare_len, page);
1274 ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
1275 if (ret)
1276 failure_mask |= BIT(chunk);
1278 data += data_len;
1279 spare += spare_len;
1282 marvell_nfc_disable_hw_ecc(chip);
1284 if (!failure_mask)
1285 return max_bitflips;
1288 * Please note that dumping the ECC bytes during a normal read with OOB
1289 * area would add a significant overhead as ECC bytes are "consumed" by
1290 * the controller in normal mode and must be re-read in raw mode. To
1291 * avoid dropping the performances, we prefer not to include them. The
1292 * user should re-read the page in raw mode if ECC bytes are required.
1294 * However, for any subpage read error reported by ->correct(), the ECC
1295 * bytes must be read in raw mode and the full subpage must be checked
1296 * to see if it is entirely empty of if there was an actual error.
1298 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1299 /* No failure reported for this chunk, move to the next one */
1300 if (!(failure_mask & BIT(chunk)))
1301 continue;
1303 /* Derive ECC bytes positions (in page/buffer) and length */
1304 ecc = chip->oob_poi +
1305 (lt->full_chunk_cnt * lt->spare_bytes) +
1306 lt->last_spare_bytes +
1307 (chunk * ALIGN(lt->ecc_bytes, 32));
1308 ecc_offset_in_page =
1309 (chunk * (lt->data_bytes + lt->spare_bytes +
1310 lt->ecc_bytes)) +
1311 (chunk < lt->full_chunk_cnt ?
1312 lt->data_bytes + lt->spare_bytes :
1313 lt->last_data_bytes + lt->last_spare_bytes);
1314 ecc_len = chunk < lt->full_chunk_cnt ?
1315 lt->ecc_bytes : lt->last_ecc_bytes;
1317 /* Do the actual raw read of the ECC bytes */
1318 nand_change_read_column_op(chip, ecc_offset_in_page,
1319 ecc, ecc_len, false);
1321 /* Derive data/spare bytes positions (in buffer) and length */
1322 data = buf + (chunk * lt->data_bytes);
1323 data_len = chunk < lt->full_chunk_cnt ?
1324 lt->data_bytes : lt->last_data_bytes;
1325 spare = chip->oob_poi + (chunk * (lt->spare_bytes +
1326 lt->ecc_bytes));
1327 spare_len = chunk < lt->full_chunk_cnt ?
1328 lt->spare_bytes : lt->last_spare_bytes;
1330 /* Check the entire chunk (data + spare + ecc) for emptyness */
1331 marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
1332 spare_len, ecc, ecc_len,
1333 &max_bitflips);
1336 return max_bitflips;
1339 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
1340 struct nand_chip *chip, int page)
1342 /* Invalidate page cache */
1343 chip->pagebuf = -1;
1345 return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
1348 static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
1349 struct nand_chip *chip, int page)
1351 /* Invalidate page cache */
1352 chip->pagebuf = -1;
1354 return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
1357 /* BCH write helpers */
1358 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
1359 struct nand_chip *chip,
1360 const u8 *buf,
1361 int oob_required, int page)
1363 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1364 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1365 int data_len = lt->data_bytes;
1366 int spare_len = lt->spare_bytes;
1367 int ecc_len = lt->ecc_bytes;
1368 int spare_offset = 0;
1369 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1370 lt->last_spare_bytes;
1371 int chunk;
1373 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1375 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1376 if (chunk >= lt->full_chunk_cnt) {
1377 data_len = lt->last_data_bytes;
1378 spare_len = lt->last_spare_bytes;
1379 ecc_len = lt->last_ecc_bytes;
1382 /* Point to the column of the next chunk */
1383 nand_change_write_column_op(chip, chunk * full_chunk_size,
1384 NULL, 0, false);
1386 /* Write the data */
1387 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1388 data_len, false);
1390 if (!oob_required)
1391 continue;
1393 /* Write the spare bytes */
1394 if (spare_len)
1395 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1396 spare_len, false);
1398 /* Write the ECC bytes */
1399 if (ecc_len)
1400 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1401 ecc_len, false);
1403 spare_offset += spare_len;
1404 ecc_offset += ALIGN(ecc_len, 32);
1407 return nand_prog_page_end_op(chip);
1410 static int
1411 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1412 const u8 *data, unsigned int data_len,
1413 const u8 *spare, unsigned int spare_len,
1414 int page)
1416 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1417 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1418 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1419 u32 xtype;
1420 int ret;
1421 struct marvell_nfc_op nfc_op = {
1422 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1423 .ndcb[3] = data_len + spare_len,
1427 * First operation dispatches the CMD_SEQIN command, issue the address
1428 * cycles and asks for the first chunk of data.
1429 * All operations in the middle (if any) will issue a naked write and
1430 * also ask for data.
1431 * Last operation (if any) asks for the last chunk of data through a
1432 * last naked write.
1434 if (chunk == 0) {
1435 if (lt->nchunks == 1)
1436 xtype = XTYPE_MONOLITHIC_RW;
1437 else
1438 xtype = XTYPE_WRITE_DISPATCH;
1440 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1441 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1442 NDCB0_CMD1(NAND_CMD_SEQIN);
1443 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1444 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1445 } else if (chunk < lt->nchunks - 1) {
1446 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1447 } else {
1448 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1451 /* Always dispatch the PAGEPROG command on the last chunk */
1452 if (chunk == lt->nchunks - 1)
1453 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1455 ret = marvell_nfc_prepare_cmd(chip);
1456 if (ret)
1457 return ret;
1459 marvell_nfc_send_cmd(chip, &nfc_op);
1460 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1461 "WRDREQ while loading FIFO (data)");
1462 if (ret)
1463 return ret;
1465 /* Transfer the contents */
1466 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1467 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1469 return 0;
1472 static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
1473 struct nand_chip *chip,
1474 const u8 *buf,
1475 int oob_required, int page)
1477 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1478 const u8 *data = buf;
1479 const u8 *spare = chip->oob_poi;
1480 int data_len = lt->data_bytes;
1481 int spare_len = lt->spare_bytes;
1482 int chunk, ret;
1484 /* Spare data will be written anyway, so clear it to avoid garbage */
1485 if (!oob_required)
1486 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1488 marvell_nfc_enable_hw_ecc(chip);
1490 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1491 if (chunk >= lt->full_chunk_cnt) {
1492 data_len = lt->last_data_bytes;
1493 spare_len = lt->last_spare_bytes;
1496 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1497 spare, spare_len, page);
1498 data += data_len;
1499 spare += spare_len;
1502 * Waiting only for CMDD or PAGED is not enough, ECC are
1503 * partially written. No flag is set once the operation is
1504 * really finished but the ND_RUN bit is cleared, so wait for it
1505 * before stepping into the next command.
1507 marvell_nfc_wait_ndrun(chip);
1510 ret = marvell_nfc_wait_op(chip,
1511 PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
1513 marvell_nfc_disable_hw_ecc(chip);
1515 if (ret)
1516 return ret;
1518 return 0;
1521 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
1522 struct nand_chip *chip,
1523 int page)
1525 /* Invalidate page cache */
1526 chip->pagebuf = -1;
1528 memset(chip->data_buf, 0xFF, mtd->writesize);
1530 return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
1533 static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
1534 struct nand_chip *chip, int page)
1536 /* Invalidate page cache */
1537 chip->pagebuf = -1;
1539 memset(chip->data_buf, 0xFF, mtd->writesize);
1541 return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
1544 /* NAND framework ->exec_op() hooks and related helpers */
1545 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1546 const struct nand_subop *subop,
1547 struct marvell_nfc_op *nfc_op)
1549 const struct nand_op_instr *instr = NULL;
1550 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1551 bool first_cmd = true;
1552 unsigned int op_id;
1553 int i;
1555 /* Reset the input structure as most of its fields will be OR'ed */
1556 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1558 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1559 unsigned int offset, naddrs;
1560 const u8 *addrs;
1561 int len;
1563 instr = &subop->instrs[op_id];
1565 switch (instr->type) {
1566 case NAND_OP_CMD_INSTR:
1567 if (first_cmd)
1568 nfc_op->ndcb[0] |=
1569 NDCB0_CMD1(instr->ctx.cmd.opcode);
1570 else
1571 nfc_op->ndcb[0] |=
1572 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1573 NDCB0_DBC;
1575 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1576 first_cmd = false;
1577 break;
1579 case NAND_OP_ADDR_INSTR:
1580 offset = nand_subop_get_addr_start_off(subop, op_id);
1581 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1582 addrs = &instr->ctx.addr.addrs[offset];
1584 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1586 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1587 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1589 if (naddrs >= 5)
1590 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1591 if (naddrs >= 6)
1592 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1593 if (naddrs == 7)
1594 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1596 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1597 break;
1599 case NAND_OP_DATA_IN_INSTR:
1600 nfc_op->data_instr = instr;
1601 nfc_op->data_instr_idx = op_id;
1602 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1603 if (nfc->caps->is_nfcv2) {
1604 nfc_op->ndcb[0] |=
1605 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1606 NDCB0_LEN_OVRD;
1607 len = nand_subop_get_data_len(subop, op_id);
1608 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1610 nfc_op->data_delay_ns = instr->delay_ns;
1611 break;
1613 case NAND_OP_DATA_OUT_INSTR:
1614 nfc_op->data_instr = instr;
1615 nfc_op->data_instr_idx = op_id;
1616 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1617 if (nfc->caps->is_nfcv2) {
1618 nfc_op->ndcb[0] |=
1619 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1620 NDCB0_LEN_OVRD;
1621 len = nand_subop_get_data_len(subop, op_id);
1622 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1624 nfc_op->data_delay_ns = instr->delay_ns;
1625 break;
1627 case NAND_OP_WAITRDY_INSTR:
1628 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1629 nfc_op->rdy_delay_ns = instr->delay_ns;
1630 break;
1635 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1636 const struct nand_subop *subop,
1637 struct marvell_nfc_op *nfc_op)
1639 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1640 const struct nand_op_instr *instr = nfc_op->data_instr;
1641 unsigned int op_id = nfc_op->data_instr_idx;
1642 unsigned int len = nand_subop_get_data_len(subop, op_id);
1643 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1644 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1645 int ret;
1647 if (instr->ctx.data.force_8bit)
1648 marvell_nfc_force_byte_access(chip, true);
1650 if (reading) {
1651 u8 *in = instr->ctx.data.buf.in + offset;
1653 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1654 } else {
1655 const u8 *out = instr->ctx.data.buf.out + offset;
1657 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1660 if (instr->ctx.data.force_8bit)
1661 marvell_nfc_force_byte_access(chip, false);
1663 return ret;
1666 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1667 const struct nand_subop *subop)
1669 struct marvell_nfc_op nfc_op;
1670 bool reading;
1671 int ret;
1673 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1674 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1676 ret = marvell_nfc_prepare_cmd(chip);
1677 if (ret)
1678 return ret;
1680 marvell_nfc_send_cmd(chip, &nfc_op);
1681 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1682 "RDDREQ/WRDREQ while draining raw data");
1683 if (ret)
1684 return ret;
1686 cond_delay(nfc_op.cle_ale_delay_ns);
1688 if (reading) {
1689 if (nfc_op.rdy_timeout_ms) {
1690 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1691 if (ret)
1692 return ret;
1695 cond_delay(nfc_op.rdy_delay_ns);
1698 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1699 ret = marvell_nfc_wait_cmdd(chip);
1700 if (ret)
1701 return ret;
1703 cond_delay(nfc_op.data_delay_ns);
1705 if (!reading) {
1706 if (nfc_op.rdy_timeout_ms) {
1707 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1708 if (ret)
1709 return ret;
1712 cond_delay(nfc_op.rdy_delay_ns);
1716 * NDCR ND_RUN bit should be cleared automatically at the end of each
1717 * operation but experience shows that the behavior is buggy when it
1718 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1720 if (!reading) {
1721 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1723 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1724 nfc->regs + NDCR);
1727 return 0;
1730 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1731 const struct nand_subop *subop)
1733 struct marvell_nfc_op nfc_op;
1734 int ret;
1736 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1739 * Naked access are different in that they need to be flagged as naked
1740 * by the controller. Reset the controller registers fields that inform
1741 * on the type and refill them according to the ongoing operation.
1743 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1744 NDCB0_CMD_XTYPE(XTYPE_MASK));
1745 switch (subop->instrs[0].type) {
1746 case NAND_OP_CMD_INSTR:
1747 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1748 break;
1749 case NAND_OP_ADDR_INSTR:
1750 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1751 break;
1752 case NAND_OP_DATA_IN_INSTR:
1753 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1754 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1755 break;
1756 case NAND_OP_DATA_OUT_INSTR:
1757 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1758 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1759 break;
1760 default:
1761 /* This should never happen */
1762 break;
1765 ret = marvell_nfc_prepare_cmd(chip);
1766 if (ret)
1767 return ret;
1769 marvell_nfc_send_cmd(chip, &nfc_op);
1771 if (!nfc_op.data_instr) {
1772 ret = marvell_nfc_wait_cmdd(chip);
1773 cond_delay(nfc_op.cle_ale_delay_ns);
1774 return ret;
1777 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1778 "RDDREQ/WRDREQ while draining raw data");
1779 if (ret)
1780 return ret;
1782 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1783 ret = marvell_nfc_wait_cmdd(chip);
1784 if (ret)
1785 return ret;
1788 * NDCR ND_RUN bit should be cleared automatically at the end of each
1789 * operation but experience shows that the behavior is buggy when it
1790 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1792 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1793 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1795 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1796 nfc->regs + NDCR);
1799 return 0;
1802 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1803 const struct nand_subop *subop)
1805 struct marvell_nfc_op nfc_op;
1806 int ret;
1808 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1810 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1811 cond_delay(nfc_op.rdy_delay_ns);
1813 return ret;
1816 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1817 const struct nand_subop *subop)
1819 struct marvell_nfc_op nfc_op;
1820 int ret;
1822 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1823 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1824 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1826 ret = marvell_nfc_prepare_cmd(chip);
1827 if (ret)
1828 return ret;
1830 marvell_nfc_send_cmd(chip, &nfc_op);
1831 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1832 "RDDREQ while reading ID");
1833 if (ret)
1834 return ret;
1836 cond_delay(nfc_op.cle_ale_delay_ns);
1838 if (nfc_op.rdy_timeout_ms) {
1839 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1840 if (ret)
1841 return ret;
1844 cond_delay(nfc_op.rdy_delay_ns);
1846 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1847 ret = marvell_nfc_wait_cmdd(chip);
1848 if (ret)
1849 return ret;
1851 cond_delay(nfc_op.data_delay_ns);
1853 return 0;
1856 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
1857 const struct nand_subop *subop)
1859 struct marvell_nfc_op nfc_op;
1860 int ret;
1862 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1863 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1864 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
1866 ret = marvell_nfc_prepare_cmd(chip);
1867 if (ret)
1868 return ret;
1870 marvell_nfc_send_cmd(chip, &nfc_op);
1871 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1872 "RDDREQ while reading status");
1873 if (ret)
1874 return ret;
1876 cond_delay(nfc_op.cle_ale_delay_ns);
1878 if (nfc_op.rdy_timeout_ms) {
1879 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1880 if (ret)
1881 return ret;
1884 cond_delay(nfc_op.rdy_delay_ns);
1886 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1887 ret = marvell_nfc_wait_cmdd(chip);
1888 if (ret)
1889 return ret;
1891 cond_delay(nfc_op.data_delay_ns);
1893 return 0;
1896 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
1897 const struct nand_subop *subop)
1899 struct marvell_nfc_op nfc_op;
1900 int ret;
1902 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1903 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
1905 ret = marvell_nfc_prepare_cmd(chip);
1906 if (ret)
1907 return ret;
1909 marvell_nfc_send_cmd(chip, &nfc_op);
1910 ret = marvell_nfc_wait_cmdd(chip);
1911 if (ret)
1912 return ret;
1914 cond_delay(nfc_op.cle_ale_delay_ns);
1916 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1917 if (ret)
1918 return ret;
1920 cond_delay(nfc_op.rdy_delay_ns);
1922 return 0;
1925 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
1926 const struct nand_subop *subop)
1928 struct marvell_nfc_op nfc_op;
1929 int ret;
1931 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1932 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
1934 ret = marvell_nfc_prepare_cmd(chip);
1935 if (ret)
1936 return ret;
1938 marvell_nfc_send_cmd(chip, &nfc_op);
1939 ret = marvell_nfc_wait_cmdd(chip);
1940 if (ret)
1941 return ret;
1943 cond_delay(nfc_op.cle_ale_delay_ns);
1945 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1946 if (ret)
1947 return ret;
1949 cond_delay(nfc_op.rdy_delay_ns);
1951 return 0;
1954 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
1955 /* Monolithic reads/writes */
1956 NAND_OP_PARSER_PATTERN(
1957 marvell_nfc_monolithic_access_exec,
1958 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1959 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
1960 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1961 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1962 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1963 NAND_OP_PARSER_PATTERN(
1964 marvell_nfc_monolithic_access_exec,
1965 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1966 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
1967 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
1968 NAND_OP_PARSER_PAT_CMD_ELEM(true),
1969 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
1970 /* Naked commands */
1971 NAND_OP_PARSER_PATTERN(
1972 marvell_nfc_naked_access_exec,
1973 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
1974 NAND_OP_PARSER_PATTERN(
1975 marvell_nfc_naked_access_exec,
1976 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
1977 NAND_OP_PARSER_PATTERN(
1978 marvell_nfc_naked_access_exec,
1979 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
1980 NAND_OP_PARSER_PATTERN(
1981 marvell_nfc_naked_access_exec,
1982 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
1983 NAND_OP_PARSER_PATTERN(
1984 marvell_nfc_naked_waitrdy_exec,
1985 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1988 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
1989 /* Naked commands not supported, use a function for each pattern */
1990 NAND_OP_PARSER_PATTERN(
1991 marvell_nfc_read_id_type_exec,
1992 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1993 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1994 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1995 NAND_OP_PARSER_PATTERN(
1996 marvell_nfc_erase_cmd_type_exec,
1997 NAND_OP_PARSER_PAT_CMD_ELEM(false),
1998 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
1999 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2000 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2001 NAND_OP_PARSER_PATTERN(
2002 marvell_nfc_read_status_exec,
2003 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2004 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2005 NAND_OP_PARSER_PATTERN(
2006 marvell_nfc_reset_cmd_type_exec,
2007 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2008 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2009 NAND_OP_PARSER_PATTERN(
2010 marvell_nfc_naked_waitrdy_exec,
2011 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2014 static int marvell_nfc_exec_op(struct nand_chip *chip,
2015 const struct nand_operation *op,
2016 bool check_only)
2018 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2020 if (nfc->caps->is_nfcv2)
2021 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2022 op, check_only);
2023 else
2024 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2025 op, check_only);
2029 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2030 * usable.
2032 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2033 struct mtd_oob_region *oobregion)
2035 struct nand_chip *chip = mtd_to_nand(mtd);
2036 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2038 if (section)
2039 return -ERANGE;
2041 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2042 lt->last_ecc_bytes;
2043 oobregion->offset = mtd->oobsize - oobregion->length;
2045 return 0;
2048 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2049 struct mtd_oob_region *oobregion)
2051 struct nand_chip *chip = mtd_to_nand(mtd);
2052 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2054 if (section)
2055 return -ERANGE;
2058 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2059 * 4KB page / 4bit BCH combination.
2061 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2062 oobregion->offset = 6;
2063 else
2064 oobregion->offset = 2;
2066 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2067 lt->last_spare_bytes - oobregion->offset;
2069 return 0;
2072 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2073 .ecc = marvell_nand_ooblayout_ecc,
2074 .free = marvell_nand_ooblayout_free,
2077 static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
2078 struct nand_ecc_ctrl *ecc)
2080 struct nand_chip *chip = mtd_to_nand(mtd);
2081 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2082 const struct marvell_hw_ecc_layout *l;
2083 int i;
2085 if (!nfc->caps->is_nfcv2 &&
2086 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2087 dev_err(nfc->dev,
2088 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2089 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2090 return -ENOTSUPP;
2093 to_marvell_nand(chip)->layout = NULL;
2094 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2095 l = &marvell_nfc_layouts[i];
2096 if (mtd->writesize == l->writesize &&
2097 ecc->size == l->chunk && ecc->strength == l->strength) {
2098 to_marvell_nand(chip)->layout = l;
2099 break;
2103 if (!to_marvell_nand(chip)->layout ||
2104 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2105 dev_err(nfc->dev,
2106 "ECC strength %d at page size %d is not supported\n",
2107 ecc->strength, mtd->writesize);
2108 return -ENOTSUPP;
2111 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2112 ecc->steps = l->nchunks;
2113 ecc->size = l->data_bytes;
2115 if (ecc->strength == 1) {
2116 chip->ecc.algo = NAND_ECC_HAMMING;
2117 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2118 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2119 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2120 ecc->read_oob = ecc->read_oob_raw;
2121 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2122 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2123 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2124 ecc->write_oob = ecc->write_oob_raw;
2125 } else {
2126 chip->ecc.algo = NAND_ECC_BCH;
2127 ecc->strength = 16;
2128 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2129 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2130 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2131 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2132 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2133 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2134 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2135 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2138 return 0;
2141 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2142 struct nand_ecc_ctrl *ecc)
2144 struct nand_chip *chip = mtd_to_nand(mtd);
2145 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2146 int ret;
2148 if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
2149 if (chip->ecc_step_ds && chip->ecc_strength_ds) {
2150 ecc->size = chip->ecc_step_ds;
2151 ecc->strength = chip->ecc_strength_ds;
2152 } else {
2153 dev_info(nfc->dev,
2154 "No minimum ECC strength, using 1b/512B\n");
2155 ecc->size = 512;
2156 ecc->strength = 1;
2160 switch (ecc->mode) {
2161 case NAND_ECC_HW:
2162 ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
2163 if (ret)
2164 return ret;
2165 break;
2166 case NAND_ECC_NONE:
2167 case NAND_ECC_SOFT:
2168 case NAND_ECC_ON_DIE:
2169 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2170 mtd->writesize != SZ_2K) {
2171 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2172 mtd->writesize);
2173 return -EINVAL;
2175 break;
2176 default:
2177 return -EINVAL;
2180 return 0;
2183 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2184 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2186 static struct nand_bbt_descr bbt_main_descr = {
2187 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2188 NAND_BBT_2BIT | NAND_BBT_VERSION,
2189 .offs = 8,
2190 .len = 6,
2191 .veroffs = 14,
2192 .maxblocks = 8, /* Last 8 blocks in each chip */
2193 .pattern = bbt_pattern
2196 static struct nand_bbt_descr bbt_mirror_descr = {
2197 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2198 NAND_BBT_2BIT | NAND_BBT_VERSION,
2199 .offs = 8,
2200 .len = 6,
2201 .veroffs = 14,
2202 .maxblocks = 8, /* Last 8 blocks in each chip */
2203 .pattern = bbt_mirror_pattern
2206 static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
2207 const struct nand_data_interface
2208 *conf)
2210 struct nand_chip *chip = mtd_to_nand(mtd);
2211 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2212 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2213 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2214 const struct nand_sdr_timings *sdr;
2215 struct marvell_nfc_timings nfc_tmg;
2216 int read_delay;
2218 sdr = nand_get_sdr_timings(conf);
2219 if (IS_ERR(sdr))
2220 return PTR_ERR(sdr);
2223 * SDR timings are given in pico-seconds while NFC timings must be
2224 * expressed in NAND controller clock cycles, which is half of the
2225 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2226 * This is not written anywhere in the datasheet but was observed
2227 * with an oscilloscope.
2229 * NFC datasheet gives equations from which thoses calculations
2230 * are derived, they tend to be slightly more restrictives than the
2231 * given core timings and may improve the overall speed.
2233 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2234 nfc_tmg.tRH = nfc_tmg.tRP;
2235 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2236 nfc_tmg.tWH = nfc_tmg.tWP;
2237 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2238 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2239 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2241 * Read delay is the time of propagation from SoC pins to NFC internal
2242 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2243 * EDO mode, an additional delay of tRH must be taken into account so
2244 * the data is sampled on the falling edge instead of the rising edge.
2246 read_delay = sdr->tRC_min >= 30000 ?
2247 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2249 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2251 * tWHR and tRHW are supposed to be read to write delays (and vice
2252 * versa) but in some cases, ie. when doing a change column, they must
2253 * be greater than that to be sure tCCS delay is respected.
2255 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2256 period_ns) - 2,
2257 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2258 period_ns);
2261 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2262 * NFCv1: No WAIT_MODE, tR must be maximal.
2264 if (nfc->caps->is_nfcv2) {
2265 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2266 } else {
2267 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2268 period_ns);
2269 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2270 nfc_tmg.tR = nfc_tmg.tCH - 3;
2271 else
2272 nfc_tmg.tR = 0;
2275 if (chipnr < 0)
2276 return 0;
2278 marvell_nand->ndtr0 =
2279 NDTR0_TRP(nfc_tmg.tRP) |
2280 NDTR0_TRH(nfc_tmg.tRH) |
2281 NDTR0_ETRP(nfc_tmg.tRP) |
2282 NDTR0_TWP(nfc_tmg.tWP) |
2283 NDTR0_TWH(nfc_tmg.tWH) |
2284 NDTR0_TCS(nfc_tmg.tCS) |
2285 NDTR0_TCH(nfc_tmg.tCH);
2287 marvell_nand->ndtr1 =
2288 NDTR1_TAR(nfc_tmg.tAR) |
2289 NDTR1_TWHR(nfc_tmg.tWHR) |
2290 NDTR1_TR(nfc_tmg.tR);
2292 if (nfc->caps->is_nfcv2) {
2293 marvell_nand->ndtr0 |=
2294 NDTR0_RD_CNT_DEL(read_delay) |
2295 NDTR0_SELCNTR |
2296 NDTR0_TADL(nfc_tmg.tADL);
2298 marvell_nand->ndtr1 |=
2299 NDTR1_TRHW(nfc_tmg.tRHW) |
2300 NDTR1_WAIT_MODE;
2303 return 0;
2306 static int marvell_nand_attach_chip(struct nand_chip *chip)
2308 struct mtd_info *mtd = nand_to_mtd(chip);
2309 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2310 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2311 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2312 int ret;
2314 if (pdata && pdata->flash_bbt)
2315 chip->bbt_options |= NAND_BBT_USE_FLASH;
2317 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2319 * We'll use a bad block table stored in-flash and don't
2320 * allow writing the bad block marker to the flash.
2322 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2323 chip->bbt_td = &bbt_main_descr;
2324 chip->bbt_md = &bbt_mirror_descr;
2327 /* Save the chip-specific fields of NDCR */
2328 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2329 if (chip->options & NAND_BUSWIDTH_16)
2330 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2333 * On small page NANDs, only one cycle is needed to pass the
2334 * column address.
2336 if (mtd->writesize <= 512) {
2337 marvell_nand->addr_cyc = 1;
2338 } else {
2339 marvell_nand->addr_cyc = 2;
2340 marvell_nand->ndcr |= NDCR_RA_START;
2344 * Now add the number of cycles needed to pass the row
2345 * address.
2347 * Addressing a chip using CS 2 or 3 should also need the third row
2348 * cycle but due to inconsistance in the documentation and lack of
2349 * hardware to test this situation, this case is not supported.
2351 if (chip->options & NAND_ROW_ADDR_3)
2352 marvell_nand->addr_cyc += 3;
2353 else
2354 marvell_nand->addr_cyc += 2;
2356 if (pdata) {
2357 chip->ecc.size = pdata->ecc_step_size;
2358 chip->ecc.strength = pdata->ecc_strength;
2361 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2362 if (ret) {
2363 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2364 return ret;
2367 if (chip->ecc.mode == NAND_ECC_HW) {
2369 * Subpage write not available with hardware ECC, prohibit also
2370 * subpage read as in userspace subpage access would still be
2371 * allowed and subpage write, if used, would lead to numerous
2372 * uncorrectable ECC errors.
2374 chip->options |= NAND_NO_SUBPAGE_WRITE;
2377 if (pdata || nfc->caps->legacy_of_bindings) {
2379 * We keep the MTD name unchanged to avoid breaking platforms
2380 * where the MTD cmdline parser is used and the bootloader
2381 * has not been updated to use the new naming scheme.
2383 mtd->name = "pxa3xx_nand-0";
2384 } else if (!mtd->name) {
2386 * If the new bindings are used and the bootloader has not been
2387 * updated to pass a new mtdparts parameter on the cmdline, you
2388 * should define the following property in your NAND node, ie:
2390 * label = "main-storage";
2392 * This way, mtd->name will be set by the core when
2393 * nand_set_flash_node() is called.
2395 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2396 "%s:nand.%d", dev_name(nfc->dev),
2397 marvell_nand->sels[0].cs);
2398 if (!mtd->name) {
2399 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2400 return -ENOMEM;
2404 return 0;
2407 static const struct nand_controller_ops marvell_nand_controller_ops = {
2408 .attach_chip = marvell_nand_attach_chip,
2411 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2412 struct device_node *np)
2414 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2415 struct marvell_nand_chip *marvell_nand;
2416 struct mtd_info *mtd;
2417 struct nand_chip *chip;
2418 int nsels, ret, i;
2419 u32 cs, rb;
2422 * The legacy "num-cs" property indicates the number of CS on the only
2423 * chip connected to the controller (legacy bindings does not support
2424 * more than one chip). The CS and RB pins are always the #0.
2426 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2427 * properties must be filled. For each chip, expressed as a subnode,
2428 * "reg" points to the CS lines and "nand-rb" to the RB line.
2430 if (pdata || nfc->caps->legacy_of_bindings) {
2431 nsels = 1;
2432 } else {
2433 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2434 if (nsels <= 0) {
2435 dev_err(dev, "missing/invalid reg property\n");
2436 return -EINVAL;
2440 /* Alloc the nand chip structure */
2441 marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
2442 (nsels *
2443 sizeof(struct marvell_nand_chip_sel)),
2444 GFP_KERNEL);
2445 if (!marvell_nand) {
2446 dev_err(dev, "could not allocate chip structure\n");
2447 return -ENOMEM;
2450 marvell_nand->nsels = nsels;
2451 marvell_nand->selected_die = -1;
2453 for (i = 0; i < nsels; i++) {
2454 if (pdata || nfc->caps->legacy_of_bindings) {
2456 * Legacy bindings use the CS lines in natural
2457 * order (0, 1, ...)
2459 cs = i;
2460 } else {
2461 /* Retrieve CS id */
2462 ret = of_property_read_u32_index(np, "reg", i, &cs);
2463 if (ret) {
2464 dev_err(dev, "could not retrieve reg property: %d\n",
2465 ret);
2466 return ret;
2470 if (cs >= nfc->caps->max_cs_nb) {
2471 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2472 cs, nfc->caps->max_cs_nb);
2473 return -EINVAL;
2476 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2477 dev_err(dev, "CS %d already assigned\n", cs);
2478 return -EINVAL;
2482 * The cs variable represents the chip select id, which must be
2483 * converted in bit fields for NDCB0 and NDCB2 to select the
2484 * right chip. Unfortunately, due to a lack of information on
2485 * the subject and incoherent documentation, the user should not
2486 * use CS1 and CS3 at all as asserting them is not supported in
2487 * a reliable way (due to multiplexing inside ADDR5 field).
2489 marvell_nand->sels[i].cs = cs;
2490 switch (cs) {
2491 case 0:
2492 case 2:
2493 marvell_nand->sels[i].ndcb0_csel = 0;
2494 break;
2495 case 1:
2496 case 3:
2497 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2498 break;
2499 default:
2500 return -EINVAL;
2503 /* Retrieve RB id */
2504 if (pdata || nfc->caps->legacy_of_bindings) {
2505 /* Legacy bindings always use RB #0 */
2506 rb = 0;
2507 } else {
2508 ret = of_property_read_u32_index(np, "nand-rb", i,
2509 &rb);
2510 if (ret) {
2511 dev_err(dev,
2512 "could not retrieve RB property: %d\n",
2513 ret);
2514 return ret;
2518 if (rb >= nfc->caps->max_rb_nb) {
2519 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2520 rb, nfc->caps->max_rb_nb);
2521 return -EINVAL;
2524 marvell_nand->sels[i].rb = rb;
2527 chip = &marvell_nand->chip;
2528 chip->controller = &nfc->controller;
2529 nand_set_flash_node(chip, np);
2531 chip->exec_op = marvell_nfc_exec_op;
2532 chip->select_chip = marvell_nfc_select_chip;
2533 if (!of_property_read_bool(np, "marvell,nand-keep-config"))
2534 chip->setup_data_interface = marvell_nfc_setup_data_interface;
2536 mtd = nand_to_mtd(chip);
2537 mtd->dev.parent = dev;
2540 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2541 * in the DT node, this entry will be overwritten in nand_scan_ident().
2543 chip->ecc.mode = NAND_ECC_HW;
2546 * Save a reference value for timing registers before
2547 * ->setup_data_interface() is called.
2549 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2550 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2552 chip->options |= NAND_BUSWIDTH_AUTO;
2554 ret = nand_scan(chip, marvell_nand->nsels);
2555 if (ret) {
2556 dev_err(dev, "could not scan the nand chip\n");
2557 return ret;
2560 if (pdata)
2561 /* Legacy bindings support only one chip */
2562 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2563 else
2564 ret = mtd_device_register(mtd, NULL, 0);
2565 if (ret) {
2566 dev_err(dev, "failed to register mtd device: %d\n", ret);
2567 nand_release(chip);
2568 return ret;
2571 list_add_tail(&marvell_nand->node, &nfc->chips);
2573 return 0;
2576 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2578 struct device_node *np = dev->of_node;
2579 struct device_node *nand_np;
2580 int max_cs = nfc->caps->max_cs_nb;
2581 int nchips;
2582 int ret;
2584 if (!np)
2585 nchips = 1;
2586 else
2587 nchips = of_get_child_count(np);
2589 if (nchips > max_cs) {
2590 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2591 max_cs);
2592 return -EINVAL;
2596 * Legacy bindings do not use child nodes to exhibit NAND chip
2597 * properties and layout. Instead, NAND properties are mixed with the
2598 * controller ones, and partitions are defined as direct subnodes of the
2599 * NAND controller node.
2601 if (nfc->caps->legacy_of_bindings) {
2602 ret = marvell_nand_chip_init(dev, nfc, np);
2603 return ret;
2606 for_each_child_of_node(np, nand_np) {
2607 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2608 if (ret) {
2609 of_node_put(nand_np);
2610 return ret;
2614 return 0;
2617 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2619 struct marvell_nand_chip *entry, *temp;
2621 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2622 nand_release(&entry->chip);
2623 list_del(&entry->node);
2627 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2629 struct platform_device *pdev = container_of(nfc->dev,
2630 struct platform_device,
2631 dev);
2632 struct dma_slave_config config = {};
2633 struct resource *r;
2634 int ret;
2636 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2637 dev_warn(nfc->dev,
2638 "DMA not enabled in configuration\n");
2639 return -ENOTSUPP;
2642 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2643 if (ret)
2644 return ret;
2646 nfc->dma_chan = dma_request_slave_channel(nfc->dev, "data");
2647 if (!nfc->dma_chan) {
2648 dev_err(nfc->dev,
2649 "Unable to request data DMA channel\n");
2650 return -ENODEV;
2653 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2654 if (!r)
2655 return -ENXIO;
2657 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2658 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2659 config.src_addr = r->start + NDDB;
2660 config.dst_addr = r->start + NDDB;
2661 config.src_maxburst = 32;
2662 config.dst_maxburst = 32;
2663 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2664 if (ret < 0) {
2665 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2666 return ret;
2670 * DMA must act on length multiple of 32 and this length may be
2671 * bigger than the destination buffer. Use this buffer instead
2672 * for DMA transfers and then copy the desired amount of data to
2673 * the provided buffer.
2675 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2676 if (!nfc->dma_buf)
2677 return -ENOMEM;
2679 nfc->use_dma = true;
2681 return 0;
2684 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2687 * ECC operations and interruptions are only enabled when specifically
2688 * needed. ECC shall not be activated in the early stages (fails probe).
2689 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2690 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2691 * offset in the read page and this will fail the protection.
2693 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2694 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2695 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2696 writel_relaxed(0, nfc->regs + NDECCCTRL);
2699 static int marvell_nfc_init(struct marvell_nfc *nfc)
2701 struct device_node *np = nfc->dev->of_node;
2704 * Some SoCs like A7k/A8k need to enable manually the NAND
2705 * controller, gated clocks and reset bits to avoid being bootloader
2706 * dependent. This is done through the use of the System Functions
2707 * registers.
2709 if (nfc->caps->need_system_controller) {
2710 struct regmap *sysctrl_base =
2711 syscon_regmap_lookup_by_phandle(np,
2712 "marvell,system-controller");
2714 if (IS_ERR(sysctrl_base))
2715 return PTR_ERR(sysctrl_base);
2717 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2718 GENCONF_SOC_DEVICE_MUX_NFC_EN |
2719 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2720 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2721 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
2723 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2724 GENCONF_CLK_GATING_CTRL_ND_GATE,
2725 GENCONF_CLK_GATING_CTRL_ND_GATE);
2727 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2728 GENCONF_ND_CLK_CTRL_EN,
2729 GENCONF_ND_CLK_CTRL_EN);
2732 /* Configure the DMA if appropriate */
2733 if (!nfc->caps->is_nfcv2)
2734 marvell_nfc_init_dma(nfc);
2736 marvell_nfc_reset(nfc);
2738 return 0;
2741 static int marvell_nfc_probe(struct platform_device *pdev)
2743 struct device *dev = &pdev->dev;
2744 struct resource *r;
2745 struct marvell_nfc *nfc;
2746 int ret;
2747 int irq;
2749 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2750 GFP_KERNEL);
2751 if (!nfc)
2752 return -ENOMEM;
2754 nfc->dev = dev;
2755 nand_controller_init(&nfc->controller);
2756 nfc->controller.ops = &marvell_nand_controller_ops;
2757 INIT_LIST_HEAD(&nfc->chips);
2759 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2760 nfc->regs = devm_ioremap_resource(dev, r);
2761 if (IS_ERR(nfc->regs))
2762 return PTR_ERR(nfc->regs);
2764 irq = platform_get_irq(pdev, 0);
2765 if (irq < 0) {
2766 dev_err(dev, "failed to retrieve irq\n");
2767 return irq;
2770 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2772 /* Managed the legacy case (when the first clock was not named) */
2773 if (nfc->core_clk == ERR_PTR(-ENOENT))
2774 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2776 if (IS_ERR(nfc->core_clk))
2777 return PTR_ERR(nfc->core_clk);
2779 ret = clk_prepare_enable(nfc->core_clk);
2780 if (ret)
2781 return ret;
2783 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2784 if (IS_ERR(nfc->reg_clk)) {
2785 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2786 ret = PTR_ERR(nfc->reg_clk);
2787 goto unprepare_core_clk;
2790 nfc->reg_clk = NULL;
2793 ret = clk_prepare_enable(nfc->reg_clk);
2794 if (ret)
2795 goto unprepare_core_clk;
2797 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2798 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2799 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2800 0, "marvell-nfc", nfc);
2801 if (ret)
2802 goto unprepare_reg_clk;
2804 /* Get NAND controller capabilities */
2805 if (pdev->id_entry)
2806 nfc->caps = (void *)pdev->id_entry->driver_data;
2807 else
2808 nfc->caps = of_device_get_match_data(&pdev->dev);
2810 if (!nfc->caps) {
2811 dev_err(dev, "Could not retrieve NFC caps\n");
2812 ret = -EINVAL;
2813 goto unprepare_reg_clk;
2816 /* Init the controller and then probe the chips */
2817 ret = marvell_nfc_init(nfc);
2818 if (ret)
2819 goto unprepare_reg_clk;
2821 platform_set_drvdata(pdev, nfc);
2823 ret = marvell_nand_chips_init(dev, nfc);
2824 if (ret)
2825 goto unprepare_reg_clk;
2827 return 0;
2829 unprepare_reg_clk:
2830 clk_disable_unprepare(nfc->reg_clk);
2831 unprepare_core_clk:
2832 clk_disable_unprepare(nfc->core_clk);
2834 return ret;
2837 static int marvell_nfc_remove(struct platform_device *pdev)
2839 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
2841 marvell_nand_chips_cleanup(nfc);
2843 if (nfc->use_dma) {
2844 dmaengine_terminate_all(nfc->dma_chan);
2845 dma_release_channel(nfc->dma_chan);
2848 clk_disable_unprepare(nfc->reg_clk);
2849 clk_disable_unprepare(nfc->core_clk);
2851 return 0;
2854 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
2856 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2857 struct marvell_nand_chip *chip;
2859 list_for_each_entry(chip, &nfc->chips, node)
2860 marvell_nfc_wait_ndrun(&chip->chip);
2862 clk_disable_unprepare(nfc->reg_clk);
2863 clk_disable_unprepare(nfc->core_clk);
2865 return 0;
2868 static int __maybe_unused marvell_nfc_resume(struct device *dev)
2870 struct marvell_nfc *nfc = dev_get_drvdata(dev);
2871 int ret;
2873 ret = clk_prepare_enable(nfc->core_clk);
2874 if (ret < 0)
2875 return ret;
2877 ret = clk_prepare_enable(nfc->reg_clk);
2878 if (ret < 0)
2879 return ret;
2882 * Reset nfc->selected_chip so the next command will cause the timing
2883 * registers to be restored in marvell_nfc_select_chip().
2885 nfc->selected_chip = NULL;
2887 /* Reset registers that have lost their contents */
2888 marvell_nfc_reset(nfc);
2890 return 0;
2893 static const struct dev_pm_ops marvell_nfc_pm_ops = {
2894 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
2897 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
2898 .max_cs_nb = 4,
2899 .max_rb_nb = 2,
2900 .need_system_controller = true,
2901 .is_nfcv2 = true,
2904 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
2905 .max_cs_nb = 4,
2906 .max_rb_nb = 2,
2907 .is_nfcv2 = true,
2910 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
2911 .max_cs_nb = 2,
2912 .max_rb_nb = 1,
2913 .use_dma = true,
2916 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
2917 .max_cs_nb = 4,
2918 .max_rb_nb = 2,
2919 .need_system_controller = true,
2920 .legacy_of_bindings = true,
2921 .is_nfcv2 = true,
2924 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
2925 .max_cs_nb = 4,
2926 .max_rb_nb = 2,
2927 .legacy_of_bindings = true,
2928 .is_nfcv2 = true,
2931 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
2932 .max_cs_nb = 2,
2933 .max_rb_nb = 1,
2934 .legacy_of_bindings = true,
2935 .use_dma = true,
2938 static const struct platform_device_id marvell_nfc_platform_ids[] = {
2940 .name = "pxa3xx-nand",
2941 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
2943 { /* sentinel */ },
2945 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
2947 static const struct of_device_id marvell_nfc_of_ids[] = {
2949 .compatible = "marvell,armada-8k-nand-controller",
2950 .data = &marvell_armada_8k_nfc_caps,
2953 .compatible = "marvell,armada370-nand-controller",
2954 .data = &marvell_armada370_nfc_caps,
2957 .compatible = "marvell,pxa3xx-nand-controller",
2958 .data = &marvell_pxa3xx_nfc_caps,
2960 /* Support for old/deprecated bindings: */
2962 .compatible = "marvell,armada-8k-nand",
2963 .data = &marvell_armada_8k_nfc_legacy_caps,
2966 .compatible = "marvell,armada370-nand",
2967 .data = &marvell_armada370_nfc_legacy_caps,
2970 .compatible = "marvell,pxa3xx-nand",
2971 .data = &marvell_pxa3xx_nfc_legacy_caps,
2973 { /* sentinel */ },
2975 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
2977 static struct platform_driver marvell_nfc_driver = {
2978 .driver = {
2979 .name = "marvell-nfc",
2980 .of_match_table = marvell_nfc_of_ids,
2981 .pm = &marvell_nfc_pm_ops,
2983 .id_table = marvell_nfc_platform_ids,
2984 .probe = marvell_nfc_probe,
2985 .remove = marvell_nfc_remove,
2987 module_platform_driver(marvell_nfc_driver);
2989 MODULE_LICENSE("GPL");
2990 MODULE_DESCRIPTION("Marvell NAND controller driver");