2 * Copyright (C) 2017 Free Electrons
3 * Copyright (C) 2017 NextThing Co
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/mtd/rawnand.h>
19 #include <linux/slab.h>
22 * Special Micron status bit 3 indicates that the block has been
23 * corrected by on-die ECC and should be rewritten.
25 #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3)
28 * On chips with 8-bit ECC and additional bit can be used to distinguish
29 * cases where a errors were corrected without needing a rewrite
31 * Bit 4 Bit 3 Bit 0 Description
32 * ----- ----- ----- -----------
34 * 0 0 1 Multiple uncorrected errors
35 * 0 1 0 4 - 6 errors corrected, recommend rewrite
37 * 1 0 0 1 - 3 errors corrected
39 * 1 1 0 7 - 8 errors corrected, recommend rewrite
41 #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0))
42 #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0)
43 #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3)
44 #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4)
45 #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3))
47 struct nand_onfi_vendor_micron
{
52 u8 dq_imped_num_settings
;
53 u8 dq_imped_feat_addr
;
54 u8 rb_pulldown_strength
;
55 u8 rb_pulldown_strength_feat_addr
;
56 u8 rb_pulldown_strength_num_settings
;
59 u8 otp_data_prot_addr
;
62 u8 read_retry_options
;
67 struct micron_on_die_ecc
{
74 struct micron_on_die_ecc ecc
;
77 static int micron_nand_setup_read_retry(struct mtd_info
*mtd
, int retry_mode
)
79 struct nand_chip
*chip
= mtd_to_nand(mtd
);
80 u8 feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {retry_mode
};
82 return nand_set_features(chip
, ONFI_FEATURE_ADDR_READ_RETRY
, feature
);
86 * Configure chip properties from Micron vendor-specific ONFI table
88 static int micron_nand_onfi_init(struct nand_chip
*chip
)
90 struct nand_parameters
*p
= &chip
->parameters
;
93 struct nand_onfi_vendor_micron
*micron
= (void *)p
->onfi
->vendor
;
95 chip
->read_retries
= micron
->read_retry_options
;
96 chip
->setup_read_retry
= micron_nand_setup_read_retry
;
99 if (p
->supports_set_get_features
) {
100 set_bit(ONFI_FEATURE_ADDR_READ_RETRY
, p
->set_feature_list
);
101 set_bit(ONFI_FEATURE_ON_DIE_ECC
, p
->set_feature_list
);
102 set_bit(ONFI_FEATURE_ADDR_READ_RETRY
, p
->get_feature_list
);
103 set_bit(ONFI_FEATURE_ON_DIE_ECC
, p
->get_feature_list
);
109 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info
*mtd
,
111 struct mtd_oob_region
*oobregion
)
116 oobregion
->offset
= (section
* 16) + 8;
117 oobregion
->length
= 8;
122 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info
*mtd
,
124 struct mtd_oob_region
*oobregion
)
129 oobregion
->offset
= (section
* 16) + 2;
130 oobregion
->length
= 6;
135 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops
= {
136 .ecc
= micron_nand_on_die_4_ooblayout_ecc
,
137 .free
= micron_nand_on_die_4_ooblayout_free
,
140 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info
*mtd
,
142 struct mtd_oob_region
*oobregion
)
144 struct nand_chip
*chip
= mtd_to_nand(mtd
);
149 oobregion
->offset
= mtd
->oobsize
- chip
->ecc
.total
;
150 oobregion
->length
= chip
->ecc
.total
;
155 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info
*mtd
,
157 struct mtd_oob_region
*oobregion
)
159 struct nand_chip
*chip
= mtd_to_nand(mtd
);
164 oobregion
->offset
= 2;
165 oobregion
->length
= mtd
->oobsize
- chip
->ecc
.total
- 2;
170 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops
= {
171 .ecc
= micron_nand_on_die_8_ooblayout_ecc
,
172 .free
= micron_nand_on_die_8_ooblayout_free
,
175 static int micron_nand_on_die_ecc_setup(struct nand_chip
*chip
, bool enable
)
177 struct micron_nand
*micron
= nand_get_manufacturer_data(chip
);
178 u8 feature
[ONFI_SUBFEATURE_PARAM_LEN
] = { 0, };
181 if (micron
->ecc
.forced
)
184 if (micron
->ecc
.enabled
== enable
)
188 feature
[0] |= ONFI_FEATURE_ON_DIE_ECC_EN
;
190 ret
= nand_set_features(chip
, ONFI_FEATURE_ON_DIE_ECC
, feature
);
192 micron
->ecc
.enabled
= enable
;
197 static int micron_nand_on_die_ecc_status_4(struct nand_chip
*chip
, u8 status
,
201 struct micron_nand
*micron
= nand_get_manufacturer_data(chip
);
202 struct mtd_info
*mtd
= nand_to_mtd(chip
);
203 unsigned int step
, max_bitflips
= 0;
206 if (!(status
& NAND_ECC_STATUS_WRITE_RECOMMENDED
)) {
207 if (status
& NAND_STATUS_FAIL
)
208 mtd
->ecc_stats
.failed
++;
214 * The internal ECC doesn't tell us the number of bitflips that have
215 * been corrected, but tells us if it recommends to rewrite the block.
216 * If it's the case, we need to read the page in raw mode and compare
217 * its content to the corrected version to extract the actual number of
219 * But before we do that, we must make sure we have all OOB bytes read
220 * in non-raw mode, even if the user did not request those bytes.
223 ret
= nand_read_data_op(chip
, chip
->oob_poi
, mtd
->oobsize
,
229 micron_nand_on_die_ecc_setup(chip
, false);
231 ret
= nand_read_page_op(chip
, page
, 0, micron
->ecc
.rawbuf
,
232 mtd
->writesize
+ mtd
->oobsize
);
236 for (step
= 0; step
< chip
->ecc
.steps
; step
++) {
237 unsigned int offs
, i
, nbitflips
= 0;
238 u8
*rawbuf
, *corrbuf
;
240 offs
= step
* chip
->ecc
.size
;
241 rawbuf
= micron
->ecc
.rawbuf
+ offs
;
242 corrbuf
= buf
+ offs
;
244 for (i
= 0; i
< chip
->ecc
.size
; i
++)
245 nbitflips
+= hweight8(corrbuf
[i
] ^ rawbuf
[i
]);
247 offs
= (step
* 16) + 4;
248 rawbuf
= micron
->ecc
.rawbuf
+ mtd
->writesize
+ offs
;
249 corrbuf
= chip
->oob_poi
+ offs
;
251 for (i
= 0; i
< chip
->ecc
.bytes
+ 4; i
++)
252 nbitflips
+= hweight8(corrbuf
[i
] ^ rawbuf
[i
]);
254 if (WARN_ON(nbitflips
> chip
->ecc
.strength
))
257 max_bitflips
= max(nbitflips
, max_bitflips
);
258 mtd
->ecc_stats
.corrected
+= nbitflips
;
264 static int micron_nand_on_die_ecc_status_8(struct nand_chip
*chip
, u8 status
)
266 struct mtd_info
*mtd
= nand_to_mtd(chip
);
269 * With 8/512 we have more information but still don't know precisely
270 * how many bit-flips were seen.
272 switch (status
& NAND_ECC_STATUS_MASK
) {
273 case NAND_ECC_STATUS_UNCORRECTABLE
:
274 mtd
->ecc_stats
.failed
++;
276 case NAND_ECC_STATUS_1_3_CORRECTED
:
277 mtd
->ecc_stats
.corrected
+= 3;
279 case NAND_ECC_STATUS_4_6_CORRECTED
:
280 mtd
->ecc_stats
.corrected
+= 6;
281 /* rewrite recommended */
283 case NAND_ECC_STATUS_7_8_CORRECTED
:
284 mtd
->ecc_stats
.corrected
+= 8;
285 /* rewrite recommended */
293 micron_nand_read_page_on_die_ecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
294 uint8_t *buf
, int oob_required
,
298 int ret
, max_bitflips
= 0;
300 ret
= micron_nand_on_die_ecc_setup(chip
, true);
304 ret
= nand_read_page_op(chip
, page
, 0, NULL
, 0);
308 ret
= nand_status_op(chip
, &status
);
312 ret
= nand_exit_status_op(chip
);
316 ret
= nand_read_data_op(chip
, buf
, mtd
->writesize
, false);
317 if (!ret
&& oob_required
)
318 ret
= nand_read_data_op(chip
, chip
->oob_poi
, mtd
->oobsize
,
321 if (chip
->ecc
.strength
== 4)
322 max_bitflips
= micron_nand_on_die_ecc_status_4(chip
, status
,
326 max_bitflips
= micron_nand_on_die_ecc_status_8(chip
, status
);
329 micron_nand_on_die_ecc_setup(chip
, false);
331 return ret
? ret
: max_bitflips
;
335 micron_nand_write_page_on_die_ecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
336 const uint8_t *buf
, int oob_required
,
341 ret
= micron_nand_on_die_ecc_setup(chip
, true);
345 ret
= nand_write_page_raw(mtd
, chip
, buf
, oob_required
, page
);
346 micron_nand_on_die_ecc_setup(chip
, false);
352 /* The NAND flash doesn't support on-die ECC */
353 MICRON_ON_DIE_UNSUPPORTED
,
356 * The NAND flash supports on-die ECC and it can be
357 * enabled/disabled by a set features command.
359 MICRON_ON_DIE_SUPPORTED
,
362 * The NAND flash supports on-die ECC, and it cannot be
365 MICRON_ON_DIE_MANDATORY
,
368 #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0)
369 #define MICRON_ID_ECC_ENABLED BIT(7)
372 * Try to detect if the NAND support on-die ECC. To do this, we enable
373 * the feature, and read back if it has been enabled as expected. We
374 * also check if it can be disabled, because some Micron NANDs do not
375 * allow disabling the on-die ECC and we don't support such NANDs for
378 * This function also has the side effect of disabling on-die ECC if
379 * it had been left enabled by the firmware/bootloader.
381 static int micron_supports_on_die_ecc(struct nand_chip
*chip
)
386 if (!chip
->parameters
.onfi
)
387 return MICRON_ON_DIE_UNSUPPORTED
;
389 if (chip
->bits_per_cell
!= 1)
390 return MICRON_ON_DIE_UNSUPPORTED
;
393 * We only support on-die ECC of 4/512 or 8/512
395 if (chip
->ecc_strength_ds
!= 4 && chip
->ecc_strength_ds
!= 8)
396 return MICRON_ON_DIE_UNSUPPORTED
;
398 /* 0x2 means on-die ECC is available. */
399 if (chip
->id
.len
!= 5 ||
400 (chip
->id
.data
[4] & MICRON_ID_INTERNAL_ECC_MASK
) != 0x2)
401 return MICRON_ON_DIE_UNSUPPORTED
;
404 * It seems that there are devices which do not support ECC officially.
405 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
406 * enabling the ECC feature but don't reflect that to the READ_ID table.
407 * So we have to guarantee that we disable the ECC feature directly
408 * after we did the READ_ID table command. Later we can evaluate the
409 * ECC_ENABLE support.
411 ret
= micron_nand_on_die_ecc_setup(chip
, true);
413 return MICRON_ON_DIE_UNSUPPORTED
;
415 ret
= nand_readid_op(chip
, 0, id
, sizeof(id
));
417 return MICRON_ON_DIE_UNSUPPORTED
;
419 ret
= micron_nand_on_die_ecc_setup(chip
, false);
421 return MICRON_ON_DIE_UNSUPPORTED
;
423 if (!(id
[4] & MICRON_ID_ECC_ENABLED
))
424 return MICRON_ON_DIE_UNSUPPORTED
;
426 ret
= nand_readid_op(chip
, 0, id
, sizeof(id
));
428 return MICRON_ON_DIE_UNSUPPORTED
;
430 if (id
[4] & MICRON_ID_ECC_ENABLED
)
431 return MICRON_ON_DIE_MANDATORY
;
434 * We only support on-die ECC of 4/512 or 8/512
436 if (chip
->ecc_strength_ds
!= 4 && chip
->ecc_strength_ds
!= 8)
437 return MICRON_ON_DIE_UNSUPPORTED
;
439 return MICRON_ON_DIE_SUPPORTED
;
442 static int micron_nand_init(struct nand_chip
*chip
)
444 struct mtd_info
*mtd
= nand_to_mtd(chip
);
445 struct micron_nand
*micron
;
449 micron
= kzalloc(sizeof(*micron
), GFP_KERNEL
);
453 nand_set_manufacturer_data(chip
, micron
);
455 ret
= micron_nand_onfi_init(chip
);
457 goto err_free_manuf_data
;
459 if (mtd
->writesize
== 2048)
460 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
462 ondie
= micron_supports_on_die_ecc(chip
);
464 if (ondie
== MICRON_ON_DIE_MANDATORY
&&
465 chip
->ecc
.mode
!= NAND_ECC_ON_DIE
) {
466 pr_err("On-die ECC forcefully enabled, not supported\n");
468 goto err_free_manuf_data
;
471 if (chip
->ecc
.mode
== NAND_ECC_ON_DIE
) {
472 if (ondie
== MICRON_ON_DIE_UNSUPPORTED
) {
473 pr_err("On-die ECC selected but not supported\n");
475 goto err_free_manuf_data
;
478 if (ondie
== MICRON_ON_DIE_MANDATORY
) {
479 micron
->ecc
.forced
= true;
480 micron
->ecc
.enabled
= true;
484 * In case of 4bit on-die ECC, we need a buffer to store a
485 * page dumped in raw mode so that we can compare its content
486 * to the same page after ECC correction happened and extract
487 * the real number of bitflips from this comparison.
488 * That's not needed for 8-bit ECC, because the status expose
489 * a better approximation of the number of bitflips in a page.
491 if (chip
->ecc_strength_ds
== 4) {
492 micron
->ecc
.rawbuf
= kmalloc(mtd
->writesize
+
495 if (!micron
->ecc
.rawbuf
) {
497 goto err_free_manuf_data
;
501 if (chip
->ecc_strength_ds
== 4)
502 mtd_set_ooblayout(mtd
,
503 µn_nand_on_die_4_ooblayout_ops
);
505 mtd_set_ooblayout(mtd
,
506 µn_nand_on_die_8_ooblayout_ops
);
508 chip
->ecc
.bytes
= chip
->ecc_strength_ds
* 2;
509 chip
->ecc
.size
= 512;
510 chip
->ecc
.strength
= chip
->ecc_strength_ds
;
511 chip
->ecc
.algo
= NAND_ECC_BCH
;
512 chip
->ecc
.read_page
= micron_nand_read_page_on_die_ecc
;
513 chip
->ecc
.write_page
= micron_nand_write_page_on_die_ecc
;
515 if (ondie
== MICRON_ON_DIE_MANDATORY
) {
516 chip
->ecc
.read_page_raw
= nand_read_page_raw_notsupp
;
517 chip
->ecc
.write_page_raw
= nand_write_page_raw_notsupp
;
519 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
520 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
527 kfree(micron
->ecc
.rawbuf
);
533 static void micron_nand_cleanup(struct nand_chip
*chip
)
535 struct micron_nand
*micron
= nand_get_manufacturer_data(chip
);
537 kfree(micron
->ecc
.rawbuf
);
541 static void micron_fixup_onfi_param_page(struct nand_chip
*chip
,
542 struct nand_onfi_params
*p
)
545 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
546 * revision number field of the ONFI parameter page. Assume ONFI
547 * version 1.0 if the revision number is 00 00.
549 if (le16_to_cpu(p
->revision
) == 0)
550 p
->revision
= cpu_to_le16(ONFI_VERSION_1_0
);
553 const struct nand_manufacturer_ops micron_nand_manuf_ops
= {
554 .init
= micron_nand_init
,
555 .cleanup
= micron_nand_cleanup
,
556 .fixup_onfi_param_page
= micron_fixup_onfi_param_page
,