Linux 4.19.133
[linux/fpc-iii.git] / drivers / mtd / nand / raw / nand_micron.c
blobfb401c25732c7abf61119a5830859d5992a4bc0f
1 /*
2 * Copyright (C) 2017 Free Electrons
3 * Copyright (C) 2017 NextThing Co
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/mtd/rawnand.h>
19 #include <linux/slab.h>
22 * Special Micron status bit 3 indicates that the block has been
23 * corrected by on-die ECC and should be rewritten.
25 #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3)
28 * On chips with 8-bit ECC and additional bit can be used to distinguish
29 * cases where a errors were corrected without needing a rewrite
31 * Bit 4 Bit 3 Bit 0 Description
32 * ----- ----- ----- -----------
33 * 0 0 0 No Errors
34 * 0 0 1 Multiple uncorrected errors
35 * 0 1 0 4 - 6 errors corrected, recommend rewrite
36 * 0 1 1 Reserved
37 * 1 0 0 1 - 3 errors corrected
38 * 1 0 1 Reserved
39 * 1 1 0 7 - 8 errors corrected, recommend rewrite
41 #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0))
42 #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0)
43 #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3)
44 #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4)
45 #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3))
47 struct nand_onfi_vendor_micron {
48 u8 two_plane_read;
49 u8 read_cache;
50 u8 read_unique_id;
51 u8 dq_imped;
52 u8 dq_imped_num_settings;
53 u8 dq_imped_feat_addr;
54 u8 rb_pulldown_strength;
55 u8 rb_pulldown_strength_feat_addr;
56 u8 rb_pulldown_strength_num_settings;
57 u8 otp_mode;
58 u8 otp_page_start;
59 u8 otp_data_prot_addr;
60 u8 otp_num_pages;
61 u8 otp_feat_addr;
62 u8 read_retry_options;
63 u8 reserved[72];
64 u8 param_revision;
65 } __packed;
67 struct micron_on_die_ecc {
68 bool forced;
69 bool enabled;
70 void *rawbuf;
73 struct micron_nand {
74 struct micron_on_die_ecc ecc;
77 static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
79 struct nand_chip *chip = mtd_to_nand(mtd);
80 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
82 return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
86 * Configure chip properties from Micron vendor-specific ONFI table
88 static int micron_nand_onfi_init(struct nand_chip *chip)
90 struct nand_parameters *p = &chip->parameters;
92 if (p->onfi) {
93 struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
95 chip->read_retries = micron->read_retry_options;
96 chip->setup_read_retry = micron_nand_setup_read_retry;
99 if (p->supports_set_get_features) {
100 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
101 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
102 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
103 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
106 return 0;
109 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
110 int section,
111 struct mtd_oob_region *oobregion)
113 if (section >= 4)
114 return -ERANGE;
116 oobregion->offset = (section * 16) + 8;
117 oobregion->length = 8;
119 return 0;
122 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
123 int section,
124 struct mtd_oob_region *oobregion)
126 if (section >= 4)
127 return -ERANGE;
129 oobregion->offset = (section * 16) + 2;
130 oobregion->length = 6;
132 return 0;
135 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
136 .ecc = micron_nand_on_die_4_ooblayout_ecc,
137 .free = micron_nand_on_die_4_ooblayout_free,
140 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
141 int section,
142 struct mtd_oob_region *oobregion)
144 struct nand_chip *chip = mtd_to_nand(mtd);
146 if (section)
147 return -ERANGE;
149 oobregion->offset = mtd->oobsize - chip->ecc.total;
150 oobregion->length = chip->ecc.total;
152 return 0;
155 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
156 int section,
157 struct mtd_oob_region *oobregion)
159 struct nand_chip *chip = mtd_to_nand(mtd);
161 if (section)
162 return -ERANGE;
164 oobregion->offset = 2;
165 oobregion->length = mtd->oobsize - chip->ecc.total - 2;
167 return 0;
170 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
171 .ecc = micron_nand_on_die_8_ooblayout_ecc,
172 .free = micron_nand_on_die_8_ooblayout_free,
175 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
177 struct micron_nand *micron = nand_get_manufacturer_data(chip);
178 u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
179 int ret;
181 if (micron->ecc.forced)
182 return 0;
184 if (micron->ecc.enabled == enable)
185 return 0;
187 if (enable)
188 feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
190 ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
191 if (!ret)
192 micron->ecc.enabled = enable;
194 return ret;
197 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
198 void *buf, int page,
199 int oob_required)
201 struct micron_nand *micron = nand_get_manufacturer_data(chip);
202 struct mtd_info *mtd = nand_to_mtd(chip);
203 unsigned int step, max_bitflips = 0;
204 int ret;
206 if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
207 if (status & NAND_STATUS_FAIL)
208 mtd->ecc_stats.failed++;
210 return 0;
214 * The internal ECC doesn't tell us the number of bitflips that have
215 * been corrected, but tells us if it recommends to rewrite the block.
216 * If it's the case, we need to read the page in raw mode and compare
217 * its content to the corrected version to extract the actual number of
218 * bitflips.
219 * But before we do that, we must make sure we have all OOB bytes read
220 * in non-raw mode, even if the user did not request those bytes.
222 if (!oob_required) {
223 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
224 false);
225 if (ret)
226 return ret;
229 micron_nand_on_die_ecc_setup(chip, false);
231 ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
232 mtd->writesize + mtd->oobsize);
233 if (ret)
234 return ret;
236 for (step = 0; step < chip->ecc.steps; step++) {
237 unsigned int offs, i, nbitflips = 0;
238 u8 *rawbuf, *corrbuf;
240 offs = step * chip->ecc.size;
241 rawbuf = micron->ecc.rawbuf + offs;
242 corrbuf = buf + offs;
244 for (i = 0; i < chip->ecc.size; i++)
245 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
247 offs = (step * 16) + 4;
248 rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
249 corrbuf = chip->oob_poi + offs;
251 for (i = 0; i < chip->ecc.bytes + 4; i++)
252 nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
254 if (WARN_ON(nbitflips > chip->ecc.strength))
255 return -EINVAL;
257 max_bitflips = max(nbitflips, max_bitflips);
258 mtd->ecc_stats.corrected += nbitflips;
261 return max_bitflips;
264 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
266 struct mtd_info *mtd = nand_to_mtd(chip);
269 * With 8/512 we have more information but still don't know precisely
270 * how many bit-flips were seen.
272 switch (status & NAND_ECC_STATUS_MASK) {
273 case NAND_ECC_STATUS_UNCORRECTABLE:
274 mtd->ecc_stats.failed++;
275 return 0;
276 case NAND_ECC_STATUS_1_3_CORRECTED:
277 mtd->ecc_stats.corrected += 3;
278 return 3;
279 case NAND_ECC_STATUS_4_6_CORRECTED:
280 mtd->ecc_stats.corrected += 6;
281 /* rewrite recommended */
282 return 6;
283 case NAND_ECC_STATUS_7_8_CORRECTED:
284 mtd->ecc_stats.corrected += 8;
285 /* rewrite recommended */
286 return 8;
287 default:
288 return 0;
292 static int
293 micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
294 uint8_t *buf, int oob_required,
295 int page)
297 u8 status;
298 int ret, max_bitflips = 0;
300 ret = micron_nand_on_die_ecc_setup(chip, true);
301 if (ret)
302 return ret;
304 ret = nand_read_page_op(chip, page, 0, NULL, 0);
305 if (ret)
306 goto out;
308 ret = nand_status_op(chip, &status);
309 if (ret)
310 goto out;
312 ret = nand_exit_status_op(chip);
313 if (ret)
314 goto out;
316 ret = nand_read_data_op(chip, buf, mtd->writesize, false);
317 if (!ret && oob_required)
318 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
319 false);
321 if (chip->ecc.strength == 4)
322 max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
323 buf, page,
324 oob_required);
325 else
326 max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
328 out:
329 micron_nand_on_die_ecc_setup(chip, false);
331 return ret ? ret : max_bitflips;
334 static int
335 micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
336 const uint8_t *buf, int oob_required,
337 int page)
339 int ret;
341 ret = micron_nand_on_die_ecc_setup(chip, true);
342 if (ret)
343 return ret;
345 ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
346 micron_nand_on_die_ecc_setup(chip, false);
348 return ret;
351 enum {
352 /* The NAND flash doesn't support on-die ECC */
353 MICRON_ON_DIE_UNSUPPORTED,
356 * The NAND flash supports on-die ECC and it can be
357 * enabled/disabled by a set features command.
359 MICRON_ON_DIE_SUPPORTED,
362 * The NAND flash supports on-die ECC, and it cannot be
363 * disabled.
365 MICRON_ON_DIE_MANDATORY,
368 #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0)
369 #define MICRON_ID_ECC_ENABLED BIT(7)
372 * Try to detect if the NAND support on-die ECC. To do this, we enable
373 * the feature, and read back if it has been enabled as expected. We
374 * also check if it can be disabled, because some Micron NANDs do not
375 * allow disabling the on-die ECC and we don't support such NANDs for
376 * now.
378 * This function also has the side effect of disabling on-die ECC if
379 * it had been left enabled by the firmware/bootloader.
381 static int micron_supports_on_die_ecc(struct nand_chip *chip)
383 u8 id[5];
384 int ret;
386 if (!chip->parameters.onfi)
387 return MICRON_ON_DIE_UNSUPPORTED;
389 if (chip->bits_per_cell != 1)
390 return MICRON_ON_DIE_UNSUPPORTED;
393 * We only support on-die ECC of 4/512 or 8/512
395 if (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
396 return MICRON_ON_DIE_UNSUPPORTED;
398 /* 0x2 means on-die ECC is available. */
399 if (chip->id.len != 5 ||
400 (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
401 return MICRON_ON_DIE_UNSUPPORTED;
404 * It seems that there are devices which do not support ECC officially.
405 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
406 * enabling the ECC feature but don't reflect that to the READ_ID table.
407 * So we have to guarantee that we disable the ECC feature directly
408 * after we did the READ_ID table command. Later we can evaluate the
409 * ECC_ENABLE support.
411 ret = micron_nand_on_die_ecc_setup(chip, true);
412 if (ret)
413 return MICRON_ON_DIE_UNSUPPORTED;
415 ret = nand_readid_op(chip, 0, id, sizeof(id));
416 if (ret)
417 return MICRON_ON_DIE_UNSUPPORTED;
419 ret = micron_nand_on_die_ecc_setup(chip, false);
420 if (ret)
421 return MICRON_ON_DIE_UNSUPPORTED;
423 if (!(id[4] & MICRON_ID_ECC_ENABLED))
424 return MICRON_ON_DIE_UNSUPPORTED;
426 ret = nand_readid_op(chip, 0, id, sizeof(id));
427 if (ret)
428 return MICRON_ON_DIE_UNSUPPORTED;
430 if (id[4] & MICRON_ID_ECC_ENABLED)
431 return MICRON_ON_DIE_MANDATORY;
434 * We only support on-die ECC of 4/512 or 8/512
436 if (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
437 return MICRON_ON_DIE_UNSUPPORTED;
439 return MICRON_ON_DIE_SUPPORTED;
442 static int micron_nand_init(struct nand_chip *chip)
444 struct mtd_info *mtd = nand_to_mtd(chip);
445 struct micron_nand *micron;
446 int ondie;
447 int ret;
449 micron = kzalloc(sizeof(*micron), GFP_KERNEL);
450 if (!micron)
451 return -ENOMEM;
453 nand_set_manufacturer_data(chip, micron);
455 ret = micron_nand_onfi_init(chip);
456 if (ret)
457 goto err_free_manuf_data;
459 if (mtd->writesize == 2048)
460 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
462 ondie = micron_supports_on_die_ecc(chip);
464 if (ondie == MICRON_ON_DIE_MANDATORY &&
465 chip->ecc.mode != NAND_ECC_ON_DIE) {
466 pr_err("On-die ECC forcefully enabled, not supported\n");
467 ret = -EINVAL;
468 goto err_free_manuf_data;
471 if (chip->ecc.mode == NAND_ECC_ON_DIE) {
472 if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
473 pr_err("On-die ECC selected but not supported\n");
474 ret = -EINVAL;
475 goto err_free_manuf_data;
478 if (ondie == MICRON_ON_DIE_MANDATORY) {
479 micron->ecc.forced = true;
480 micron->ecc.enabled = true;
484 * In case of 4bit on-die ECC, we need a buffer to store a
485 * page dumped in raw mode so that we can compare its content
486 * to the same page after ECC correction happened and extract
487 * the real number of bitflips from this comparison.
488 * That's not needed for 8-bit ECC, because the status expose
489 * a better approximation of the number of bitflips in a page.
491 if (chip->ecc_strength_ds == 4) {
492 micron->ecc.rawbuf = kmalloc(mtd->writesize +
493 mtd->oobsize,
494 GFP_KERNEL);
495 if (!micron->ecc.rawbuf) {
496 ret = -ENOMEM;
497 goto err_free_manuf_data;
501 if (chip->ecc_strength_ds == 4)
502 mtd_set_ooblayout(mtd,
503 &micron_nand_on_die_4_ooblayout_ops);
504 else
505 mtd_set_ooblayout(mtd,
506 &micron_nand_on_die_8_ooblayout_ops);
508 chip->ecc.bytes = chip->ecc_strength_ds * 2;
509 chip->ecc.size = 512;
510 chip->ecc.strength = chip->ecc_strength_ds;
511 chip->ecc.algo = NAND_ECC_BCH;
512 chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
513 chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
515 if (ondie == MICRON_ON_DIE_MANDATORY) {
516 chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
517 chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
518 } else {
519 chip->ecc.read_page_raw = nand_read_page_raw;
520 chip->ecc.write_page_raw = nand_write_page_raw;
524 return 0;
526 err_free_manuf_data:
527 kfree(micron->ecc.rawbuf);
528 kfree(micron);
530 return ret;
533 static void micron_nand_cleanup(struct nand_chip *chip)
535 struct micron_nand *micron = nand_get_manufacturer_data(chip);
537 kfree(micron->ecc.rawbuf);
538 kfree(micron);
541 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
542 struct nand_onfi_params *p)
545 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
546 * revision number field of the ONFI parameter page. Assume ONFI
547 * version 1.0 if the revision number is 00 00.
549 if (le16_to_cpu(p->revision) == 0)
550 p->revision = cpu_to_le16(ONFI_VERSION_1_0);
553 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
554 .init = micron_nand_init,
555 .cleanup = micron_nand_cleanup,
556 .fixup_onfi_param_page = micron_fixup_onfi_param_page,