1 /* bnx2x_cmn.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
26 #include <linux/crash_dump.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
);
38 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
);
39 static int bnx2x_poll(struct napi_struct
*napi
, int budget
);
41 static void bnx2x_add_all_napi_cnic(struct bnx2x
*bp
)
45 /* Add NAPI objects */
46 for_each_rx_queue_cnic(bp
, i
) {
47 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
48 bnx2x_poll
, NAPI_POLL_WEIGHT
);
52 static void bnx2x_add_all_napi(struct bnx2x
*bp
)
56 /* Add NAPI objects */
57 for_each_eth_queue(bp
, i
) {
58 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
59 bnx2x_poll
, NAPI_POLL_WEIGHT
);
63 static int bnx2x_calc_num_queues(struct bnx2x
*bp
)
65 int nq
= bnx2x_num_queues
? : netif_get_num_default_rss_queues();
67 /* Reduce memory usage in kdump environment by using only one queue */
68 if (is_kdump_kernel())
71 nq
= clamp(nq
, 1, BNX2X_MAX_QUEUES(bp
));
76 * bnx2x_move_fp - move content of the fastpath structure.
79 * @from: source FP index
80 * @to: destination FP index
82 * Makes sure the contents of the bp->fp[to].napi is kept
83 * intact. This is done by first copying the napi struct from
84 * the target to the source, and then mem copying the entire
85 * source onto the target. Update txdata pointers and related
88 static inline void bnx2x_move_fp(struct bnx2x
*bp
, int from
, int to
)
90 struct bnx2x_fastpath
*from_fp
= &bp
->fp
[from
];
91 struct bnx2x_fastpath
*to_fp
= &bp
->fp
[to
];
92 struct bnx2x_sp_objs
*from_sp_objs
= &bp
->sp_objs
[from
];
93 struct bnx2x_sp_objs
*to_sp_objs
= &bp
->sp_objs
[to
];
94 struct bnx2x_fp_stats
*from_fp_stats
= &bp
->fp_stats
[from
];
95 struct bnx2x_fp_stats
*to_fp_stats
= &bp
->fp_stats
[to
];
96 int old_max_eth_txqs
, new_max_eth_txqs
;
97 int old_txdata_index
= 0, new_txdata_index
= 0;
98 struct bnx2x_agg_info
*old_tpa_info
= to_fp
->tpa_info
;
100 /* Copy the NAPI object as it has been already initialized */
101 from_fp
->napi
= to_fp
->napi
;
103 /* Move bnx2x_fastpath contents */
104 memcpy(to_fp
, from_fp
, sizeof(*to_fp
));
107 /* Retain the tpa_info of the original `to' version as we don't want
108 * 2 FPs to contain the same tpa_info pointer.
110 to_fp
->tpa_info
= old_tpa_info
;
112 /* move sp_objs contents as well, as their indices match fp ones */
113 memcpy(to_sp_objs
, from_sp_objs
, sizeof(*to_sp_objs
));
115 /* move fp_stats contents as well, as their indices match fp ones */
116 memcpy(to_fp_stats
, from_fp_stats
, sizeof(*to_fp_stats
));
118 /* Update txdata pointers in fp and move txdata content accordingly:
119 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 * decremented by max_cos x delta.
123 old_max_eth_txqs
= BNX2X_NUM_ETH_QUEUES(bp
) * (bp
)->max_cos
;
124 new_max_eth_txqs
= (BNX2X_NUM_ETH_QUEUES(bp
) - from
+ to
) *
126 if (from
== FCOE_IDX(bp
)) {
127 old_txdata_index
= old_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
128 new_txdata_index
= new_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
131 memcpy(&bp
->bnx2x_txq
[new_txdata_index
],
132 &bp
->bnx2x_txq
[old_txdata_index
],
133 sizeof(struct bnx2x_fp_txdata
));
134 to_fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[new_txdata_index
];
138 * bnx2x_fill_fw_str - Fill buffer with FW version string.
141 * @buf: character buffer to fill with the fw name
142 * @buf_len: length of the above buffer
145 void bnx2x_fill_fw_str(struct bnx2x
*bp
, char *buf
, size_t buf_len
)
148 u8 phy_fw_ver
[PHY_FW_VER_LEN
];
150 phy_fw_ver
[0] = '\0';
151 bnx2x_get_ext_phy_fw_version(&bp
->link_params
,
152 phy_fw_ver
, PHY_FW_VER_LEN
);
153 strlcpy(buf
, bp
->fw_ver
, buf_len
);
154 snprintf(buf
+ strlen(bp
->fw_ver
), 32 - strlen(bp
->fw_ver
),
156 (bp
->common
.bc_ver
& 0xff0000) >> 16,
157 (bp
->common
.bc_ver
& 0xff00) >> 8,
158 (bp
->common
.bc_ver
& 0xff),
159 ((phy_fw_ver
[0] != '\0') ? " phy " : ""), phy_fw_ver
);
161 bnx2x_vf_fill_fw_str(bp
, buf
, buf_len
);
166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
169 * @delta: number of eth queues which were not allocated
171 static void bnx2x_shrink_eth_fp(struct bnx2x
*bp
, int delta
)
173 int i
, cos
, old_eth_num
= BNX2X_NUM_ETH_QUEUES(bp
);
175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 * backward along the array could cause memory to be overridden
178 for (cos
= 1; cos
< bp
->max_cos
; cos
++) {
179 for (i
= 0; i
< old_eth_num
- delta
; i
++) {
180 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
181 int new_idx
= cos
* (old_eth_num
- delta
) + i
;
183 memcpy(&bp
->bnx2x_txq
[new_idx
], fp
->txdata_ptr
[cos
],
184 sizeof(struct bnx2x_fp_txdata
));
185 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[new_idx
];
190 int bnx2x_load_count
[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
192 /* free skb in the packet ring at pos idx
193 * return idx of last bd freed
195 static u16
bnx2x_free_tx_pkt(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
,
196 u16 idx
, unsigned int *pkts_compl
,
197 unsigned int *bytes_compl
)
199 struct sw_tx_bd
*tx_buf
= &txdata
->tx_buf_ring
[idx
];
200 struct eth_tx_start_bd
*tx_start_bd
;
201 struct eth_tx_bd
*tx_data_bd
;
202 struct sk_buff
*skb
= tx_buf
->skb
;
203 u16 bd_idx
= TX_BD(tx_buf
->first_bd
), new_cons
;
205 u16 split_bd_len
= 0;
207 /* prefetch skb end pointer to speedup dev_kfree_skb() */
210 DP(NETIF_MSG_TX_DONE
, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
211 txdata
->txq_index
, idx
, tx_buf
, skb
);
213 tx_start_bd
= &txdata
->tx_desc_ring
[bd_idx
].start_bd
;
215 nbd
= le16_to_cpu(tx_start_bd
->nbd
) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 if ((nbd
- 1) > (MAX_SKB_FRAGS
+ 2)) {
218 BNX2X_ERR("BAD nbd!\n");
222 new_cons
= nbd
+ tx_buf
->first_bd
;
224 /* Get the next bd */
225 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
227 /* Skip a parse bd... */
229 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
231 if (tx_buf
->flags
& BNX2X_HAS_SECOND_PBD
) {
232 /* Skip second parse bd... */
234 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 if (tx_buf
->flags
& BNX2X_TSO_SPLIT_BD
) {
239 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
240 split_bd_len
= BD_UNMAP_LEN(tx_data_bd
);
242 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
246 dma_unmap_single(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_start_bd
),
247 BD_UNMAP_LEN(tx_start_bd
) + split_bd_len
,
253 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
254 dma_unmap_page(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_data_bd
),
255 BD_UNMAP_LEN(tx_data_bd
), DMA_TO_DEVICE
);
257 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
264 (*bytes_compl
) += skb
->len
;
265 dev_kfree_skb_any(skb
);
268 tx_buf
->first_bd
= 0;
274 int bnx2x_tx_int(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
)
276 struct netdev_queue
*txq
;
277 u16 hw_cons
, sw_cons
, bd_cons
= txdata
->tx_bd_cons
;
278 unsigned int pkts_compl
= 0, bytes_compl
= 0;
280 #ifdef BNX2X_STOP_ON_ERROR
281 if (unlikely(bp
->panic
))
285 txq
= netdev_get_tx_queue(bp
->dev
, txdata
->txq_index
);
286 hw_cons
= le16_to_cpu(*txdata
->tx_cons_sb
);
287 sw_cons
= txdata
->tx_pkt_cons
;
289 /* Ensure subsequent loads occur after hw_cons */
292 while (sw_cons
!= hw_cons
) {
295 pkt_cons
= TX_BD(sw_cons
);
297 DP(NETIF_MSG_TX_DONE
,
298 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
299 txdata
->txq_index
, hw_cons
, sw_cons
, pkt_cons
);
301 bd_cons
= bnx2x_free_tx_pkt(bp
, txdata
, pkt_cons
,
302 &pkts_compl
, &bytes_compl
);
307 netdev_tx_completed_queue(txq
, pkts_compl
, bytes_compl
);
309 txdata
->tx_pkt_cons
= sw_cons
;
310 txdata
->tx_bd_cons
= bd_cons
;
312 /* Need to make the tx_bd_cons update visible to start_xmit()
313 * before checking for netif_tx_queue_stopped(). Without the
314 * memory barrier, there is a small possibility that
315 * start_xmit() will miss it and cause the queue to be stopped
317 * On the other hand we need an rmb() here to ensure the proper
318 * ordering of bit testing in the following
319 * netif_tx_queue_stopped(txq) call.
323 if (unlikely(netif_tx_queue_stopped(txq
))) {
324 /* Taking tx_lock() is needed to prevent re-enabling the queue
325 * while it's empty. This could have happen if rx_action() gets
326 * suspended in bnx2x_tx_int() after the condition before
327 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
329 * stops the queue->sees fresh tx_bd_cons->releases the queue->
330 * sends some packets consuming the whole queue again->
334 __netif_tx_lock(txq
, smp_processor_id());
336 if ((netif_tx_queue_stopped(txq
)) &&
337 (bp
->state
== BNX2X_STATE_OPEN
) &&
338 (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
))
339 netif_tx_wake_queue(txq
);
341 __netif_tx_unlock(txq
);
346 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath
*fp
,
349 u16 last_max
= fp
->last_max_sge
;
351 if (SUB_S16(idx
, last_max
) > 0)
352 fp
->last_max_sge
= idx
;
355 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath
*fp
,
357 struct eth_end_agg_rx_cqe
*cqe
)
359 struct bnx2x
*bp
= fp
->bp
;
360 u16 last_max
, last_elem
, first_elem
;
367 /* First mark all used pages */
368 for (i
= 0; i
< sge_len
; i
++)
369 BIT_VEC64_CLEAR_BIT(fp
->sge_mask
,
370 RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[i
])));
372 DP(NETIF_MSG_RX_STATUS
, "fp_cqe->sgl[%d] = %d\n",
373 sge_len
- 1, le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
375 /* Here we assume that the last SGE index is the biggest */
376 prefetch((void *)(fp
->sge_mask
));
377 bnx2x_update_last_max_sge(fp
,
378 le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
380 last_max
= RX_SGE(fp
->last_max_sge
);
381 last_elem
= last_max
>> BIT_VEC64_ELEM_SHIFT
;
382 first_elem
= RX_SGE(fp
->rx_sge_prod
) >> BIT_VEC64_ELEM_SHIFT
;
384 /* If ring is not full */
385 if (last_elem
+ 1 != first_elem
)
388 /* Now update the prod */
389 for (i
= first_elem
; i
!= last_elem
; i
= NEXT_SGE_MASK_ELEM(i
)) {
390 if (likely(fp
->sge_mask
[i
]))
393 fp
->sge_mask
[i
] = BIT_VEC64_ELEM_ONE_MASK
;
394 delta
+= BIT_VEC64_ELEM_SZ
;
398 fp
->rx_sge_prod
+= delta
;
399 /* clear page-end entries */
400 bnx2x_clear_sge_mask_next_elems(fp
);
403 DP(NETIF_MSG_RX_STATUS
,
404 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
405 fp
->last_max_sge
, fp
->rx_sge_prod
);
408 /* Get Toeplitz hash value in the skb using the value from the
409 * CQE (calculated by HW).
411 static u32
bnx2x_get_rxhash(const struct bnx2x
*bp
,
412 const struct eth_fast_path_rx_cqe
*cqe
,
413 enum pkt_hash_types
*rxhash_type
)
415 /* Get Toeplitz hash from CQE */
416 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
417 (cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG
)) {
418 enum eth_rss_hash_type htype
;
420 htype
= cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE
;
421 *rxhash_type
= ((htype
== TCP_IPV4_HASH_TYPE
) ||
422 (htype
== TCP_IPV6_HASH_TYPE
)) ?
423 PKT_HASH_TYPE_L4
: PKT_HASH_TYPE_L3
;
425 return le32_to_cpu(cqe
->rss_hash_result
);
427 *rxhash_type
= PKT_HASH_TYPE_NONE
;
431 static void bnx2x_tpa_start(struct bnx2x_fastpath
*fp
, u16 queue
,
433 struct eth_fast_path_rx_cqe
*cqe
)
435 struct bnx2x
*bp
= fp
->bp
;
436 struct sw_rx_bd
*cons_rx_buf
= &fp
->rx_buf_ring
[cons
];
437 struct sw_rx_bd
*prod_rx_buf
= &fp
->rx_buf_ring
[prod
];
438 struct eth_rx_bd
*prod_bd
= &fp
->rx_desc_ring
[prod
];
440 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[queue
];
441 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
443 /* print error if current state != stop */
444 if (tpa_info
->tpa_state
!= BNX2X_TPA_STOP
)
445 BNX2X_ERR("start of bin not in stop [%d]\n", queue
);
447 /* Try to map an empty data buffer from the aggregation info */
448 mapping
= dma_map_single(&bp
->pdev
->dev
,
449 first_buf
->data
+ NET_SKB_PAD
,
450 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
452 * ...if it fails - move the skb from the consumer to the producer
453 * and set the current aggregation state as ERROR to drop it
454 * when TPA_STOP arrives.
457 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
458 /* Move the BD from the consumer to the producer */
459 bnx2x_reuse_rx_data(fp
, cons
, prod
);
460 tpa_info
->tpa_state
= BNX2X_TPA_ERROR
;
464 /* move empty data from pool to prod */
465 prod_rx_buf
->data
= first_buf
->data
;
466 dma_unmap_addr_set(prod_rx_buf
, mapping
, mapping
);
467 /* point prod_bd to new data */
468 prod_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
469 prod_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
471 /* move partial skb from cons to pool (don't unmap yet) */
472 *first_buf
= *cons_rx_buf
;
474 /* mark bin state as START */
475 tpa_info
->parsing_flags
=
476 le16_to_cpu(cqe
->pars_flags
.flags
);
477 tpa_info
->vlan_tag
= le16_to_cpu(cqe
->vlan_tag
);
478 tpa_info
->tpa_state
= BNX2X_TPA_START
;
479 tpa_info
->len_on_bd
= le16_to_cpu(cqe
->len_on_bd
);
480 tpa_info
->placement_offset
= cqe
->placement_offset
;
481 tpa_info
->rxhash
= bnx2x_get_rxhash(bp
, cqe
, &tpa_info
->rxhash_type
);
482 if (fp
->mode
== TPA_MODE_GRO
) {
483 u16 gro_size
= le16_to_cpu(cqe
->pkt_len_or_gro_seg_len
);
484 tpa_info
->full_page
= SGE_PAGES
/ gro_size
* gro_size
;
485 tpa_info
->gro_size
= gro_size
;
488 #ifdef BNX2X_STOP_ON_ERROR
489 fp
->tpa_queue_used
|= (1 << queue
);
490 DP(NETIF_MSG_RX_STATUS
, "fp->tpa_queue_used = 0x%llx\n",
495 /* Timestamp option length allowed for TPA aggregation:
497 * nop nop kind length echo val
499 #define TPA_TSTAMP_OPT_LEN 12
501 * bnx2x_set_gro_params - compute GRO values
504 * @parsing_flags: parsing flags from the START CQE
505 * @len_on_bd: total length of the first packet for the
507 * @pkt_len: length of all segments
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
513 static void bnx2x_set_gro_params(struct sk_buff
*skb
, u16 parsing_flags
,
514 u16 len_on_bd
, unsigned int pkt_len
,
515 u16 num_of_coalesced_segs
)
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
520 u16 hdrs_len
= ETH_HLEN
+ sizeof(struct tcphdr
);
522 if (GET_FLAG(parsing_flags
, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL
) ==
523 PRS_FLAG_OVERETH_IPV6
) {
524 hdrs_len
+= sizeof(struct ipv6hdr
);
525 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV6
;
527 hdrs_len
+= sizeof(struct iphdr
);
528 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
534 * Otherwise FW would close the aggregation.
536 if (parsing_flags
& PARSING_FLAGS_TIME_STAMP_EXIST_FLAG
)
537 hdrs_len
+= TPA_TSTAMP_OPT_LEN
;
539 skb_shinfo(skb
)->gso_size
= len_on_bd
- hdrs_len
;
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
544 NAPI_GRO_CB(skb
)->count
= num_of_coalesced_segs
;
547 static int bnx2x_alloc_rx_sge(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
548 u16 index
, gfp_t gfp_mask
)
550 struct sw_rx_page
*sw_buf
= &fp
->rx_page_ring
[index
];
551 struct eth_rx_sge
*sge
= &fp
->rx_sge_ring
[index
];
552 struct bnx2x_alloc_pool
*pool
= &fp
->page_pool
;
556 pool
->page
= alloc_pages(gfp_mask
, PAGES_PER_SGE_SHIFT
);
557 if (unlikely(!pool
->page
))
563 mapping
= dma_map_page(&bp
->pdev
->dev
, pool
->page
,
564 pool
->offset
, SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
565 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
566 BNX2X_ERR("Can't map sge\n");
570 sw_buf
->page
= pool
->page
;
571 sw_buf
->offset
= pool
->offset
;
573 dma_unmap_addr_set(sw_buf
, mapping
, mapping
);
575 sge
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
576 sge
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
578 pool
->offset
+= SGE_PAGE_SIZE
;
579 if (PAGE_SIZE
- pool
->offset
>= SGE_PAGE_SIZE
)
580 get_page(pool
->page
);
586 static int bnx2x_fill_frag_skb(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
587 struct bnx2x_agg_info
*tpa_info
,
590 struct eth_end_agg_rx_cqe
*cqe
,
593 struct sw_rx_page
*rx_pg
, old_rx_pg
;
594 u32 i
, frag_len
, frag_size
;
595 int err
, j
, frag_id
= 0;
596 u16 len_on_bd
= tpa_info
->len_on_bd
;
597 u16 full_page
= 0, gro_size
= 0;
599 frag_size
= le16_to_cpu(cqe
->pkt_len
) - len_on_bd
;
601 if (fp
->mode
== TPA_MODE_GRO
) {
602 gro_size
= tpa_info
->gro_size
;
603 full_page
= tpa_info
->full_page
;
606 /* This is needed in order to enable forwarding support */
608 bnx2x_set_gro_params(skb
, tpa_info
->parsing_flags
, len_on_bd
,
609 le16_to_cpu(cqe
->pkt_len
),
610 le16_to_cpu(cqe
->num_of_coalesced_segs
));
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages
> min_t(u32
, 8, MAX_SKB_FRAGS
) * SGE_PAGES
) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe
->pkt_len
);
622 /* Run through the SGL and compose the fragmented skb */
623 for (i
= 0, j
= 0; i
< pages
; i
+= PAGES_PER_SGE
, j
++) {
624 u16 sge_idx
= RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[j
]));
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp
->mode
== TPA_MODE_GRO
)
629 frag_len
= min_t(u32
, frag_size
, (u32
)full_page
);
631 frag_len
= min_t(u32
, frag_size
, (u32
)SGE_PAGES
);
633 rx_pg
= &fp
->rx_page_ring
[sge_idx
];
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err
= bnx2x_alloc_rx_sge(bp
, fp
, sge_idx
, GFP_ATOMIC
);
640 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
644 dma_unmap_page(&bp
->pdev
->dev
,
645 dma_unmap_addr(&old_rx_pg
, mapping
),
646 SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp
->mode
== TPA_MODE_LRO
)
649 skb_fill_page_desc(skb
, j
, old_rx_pg
.page
,
650 old_rx_pg
.offset
, frag_len
);
654 for (rem
= frag_len
; rem
> 0; rem
-= gro_size
) {
655 int len
= rem
> gro_size
? gro_size
: rem
;
656 skb_fill_page_desc(skb
, frag_id
++,
658 old_rx_pg
.offset
+ offset
,
661 get_page(old_rx_pg
.page
);
666 skb
->data_len
+= frag_len
;
667 skb
->truesize
+= SGE_PAGES
;
668 skb
->len
+= frag_len
;
670 frag_size
-= frag_len
;
676 static void bnx2x_frag_free(const struct bnx2x_fastpath
*fp
, void *data
)
678 if (fp
->rx_frag_size
)
684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath
*fp
, gfp_t gfp_mask
)
686 if (fp
->rx_frag_size
) {
687 /* GFP_KERNEL allocations are used only during initialization */
688 if (unlikely(gfpflags_allow_blocking(gfp_mask
)))
689 return (void *)__get_free_page(gfp_mask
);
691 return netdev_alloc_frag(fp
->rx_frag_size
);
694 return kmalloc(fp
->rx_buf_size
+ NET_SKB_PAD
, gfp_mask
);
698 static void bnx2x_gro_ip_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
700 const struct iphdr
*iph
= ip_hdr(skb
);
703 skb_set_transport_header(skb
, sizeof(struct iphdr
));
706 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
707 iph
->saddr
, iph
->daddr
, 0);
710 static void bnx2x_gro_ipv6_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
712 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
715 skb_set_transport_header(skb
, sizeof(struct ipv6hdr
));
718 th
->check
= ~tcp_v6_check(skb
->len
- skb_transport_offset(skb
),
719 &iph
->saddr
, &iph
->daddr
, 0);
722 static void bnx2x_gro_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
723 void (*gro_func
)(struct bnx2x
*, struct sk_buff
*))
725 skb_reset_network_header(skb
);
727 tcp_gro_complete(skb
);
731 static void bnx2x_gro_receive(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
735 if (skb_shinfo(skb
)->gso_size
) {
736 switch (be16_to_cpu(skb
->protocol
)) {
738 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ip_csum
);
741 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ipv6_csum
);
744 netdev_WARN_ONCE(bp
->dev
,
745 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
746 be16_to_cpu(skb
->protocol
));
750 skb_record_rx_queue(skb
, fp
->rx_queue
);
751 napi_gro_receive(&fp
->napi
, skb
);
754 static void bnx2x_tpa_stop(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
755 struct bnx2x_agg_info
*tpa_info
,
757 struct eth_end_agg_rx_cqe
*cqe
,
760 struct sw_rx_bd
*rx_buf
= &tpa_info
->first_buf
;
761 u8 pad
= tpa_info
->placement_offset
;
762 u16 len
= tpa_info
->len_on_bd
;
763 struct sk_buff
*skb
= NULL
;
764 u8
*new_data
, *data
= rx_buf
->data
;
765 u8 old_tpa_state
= tpa_info
->tpa_state
;
767 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
769 /* If we there was an error during the handling of the TPA_START -
770 * drop this aggregation.
772 if (old_tpa_state
== BNX2X_TPA_ERROR
)
775 /* Try to allocate the new data */
776 new_data
= bnx2x_frag_alloc(fp
, GFP_ATOMIC
);
777 /* Unmap skb in the pool anyway, as we are going to change
778 pool entry status to BNX2X_TPA_STOP even if new skb allocation
780 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(rx_buf
, mapping
),
781 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
782 if (likely(new_data
))
783 skb
= build_skb(data
, fp
->rx_frag_size
);
786 #ifdef BNX2X_STOP_ON_ERROR
787 if (pad
+ len
> fp
->rx_buf_size
) {
788 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
789 pad
, len
, fp
->rx_buf_size
);
795 skb_reserve(skb
, pad
+ NET_SKB_PAD
);
797 skb_set_hash(skb
, tpa_info
->rxhash
, tpa_info
->rxhash_type
);
799 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
800 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
802 if (!bnx2x_fill_frag_skb(bp
, fp
, tpa_info
, pages
,
803 skb
, cqe
, cqe_idx
)) {
804 if (tpa_info
->parsing_flags
& PARSING_FLAGS_VLAN
)
805 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tpa_info
->vlan_tag
);
806 bnx2x_gro_receive(bp
, fp
, skb
);
808 DP(NETIF_MSG_RX_STATUS
,
809 "Failed to allocate new pages - dropping packet!\n");
810 dev_kfree_skb_any(skb
);
813 /* put new data in bin */
814 rx_buf
->data
= new_data
;
819 bnx2x_frag_free(fp
, new_data
);
821 /* drop the packet and keep the buffer in the bin */
822 DP(NETIF_MSG_RX_STATUS
,
823 "Failed to allocate or map a new skb - dropping packet!\n");
824 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
++;
827 static int bnx2x_alloc_rx_data(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
828 u16 index
, gfp_t gfp_mask
)
831 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[index
];
832 struct eth_rx_bd
*rx_bd
= &fp
->rx_desc_ring
[index
];
835 data
= bnx2x_frag_alloc(fp
, gfp_mask
);
836 if (unlikely(data
== NULL
))
839 mapping
= dma_map_single(&bp
->pdev
->dev
, data
+ NET_SKB_PAD
,
842 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
843 bnx2x_frag_free(fp
, data
);
844 BNX2X_ERR("Can't map rx data\n");
849 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
851 rx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
852 rx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
858 void bnx2x_csum_validate(struct sk_buff
*skb
, union eth_rx_cqe
*cqe
,
859 struct bnx2x_fastpath
*fp
,
860 struct bnx2x_eth_q_stats
*qstats
)
862 /* Do nothing if no L4 csum validation was done.
863 * We do not check whether IP csum was validated. For IPv4 we assume
864 * that if the card got as far as validating the L4 csum, it also
865 * validated the IP csum. IPv6 has no IP csum.
867 if (cqe
->fast_path_cqe
.status_flags
&
868 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG
)
871 /* If L4 validation was done, check if an error was found. */
873 if (cqe
->fast_path_cqe
.type_error_flags
&
874 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG
|
875 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG
))
876 qstats
->hw_csum_err
++;
878 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
881 static int bnx2x_rx_int(struct bnx2x_fastpath
*fp
, int budget
)
883 struct bnx2x
*bp
= fp
->bp
;
884 u16 bd_cons
, bd_prod
, bd_prod_fw
, comp_ring_cons
;
885 u16 sw_comp_cons
, sw_comp_prod
;
887 union eth_rx_cqe
*cqe
;
888 struct eth_fast_path_rx_cqe
*cqe_fp
;
890 #ifdef BNX2X_STOP_ON_ERROR
891 if (unlikely(bp
->panic
))
897 bd_cons
= fp
->rx_bd_cons
;
898 bd_prod
= fp
->rx_bd_prod
;
899 bd_prod_fw
= bd_prod
;
900 sw_comp_cons
= fp
->rx_comp_cons
;
901 sw_comp_prod
= fp
->rx_comp_prod
;
903 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
904 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
905 cqe_fp
= &cqe
->fast_path_cqe
;
907 DP(NETIF_MSG_RX_STATUS
,
908 "queue[%d]: sw_comp_cons %u\n", fp
->index
, sw_comp_cons
);
910 while (BNX2X_IS_CQE_COMPLETED(cqe_fp
)) {
911 struct sw_rx_bd
*rx_buf
= NULL
;
914 enum eth_rx_cqe_type cqe_fp_type
;
918 enum pkt_hash_types rxhash_type
;
920 #ifdef BNX2X_STOP_ON_ERROR
921 if (unlikely(bp
->panic
))
925 bd_prod
= RX_BD(bd_prod
);
926 bd_cons
= RX_BD(bd_cons
);
928 /* A rmb() is required to ensure that the CQE is not read
929 * before it is written by the adapter DMA. PCI ordering
930 * rules will make sure the other fields are written before
931 * the marker at the end of struct eth_fast_path_rx_cqe
932 * but without rmb() a weakly ordered processor can process
933 * stale data. Without the barrier TPA state-machine might
934 * enter inconsistent state and kernel stack might be
935 * provided with incorrect packet description - these lead
936 * to various kernel crashed.
940 cqe_fp_flags
= cqe_fp
->type_error_flags
;
941 cqe_fp_type
= cqe_fp_flags
& ETH_FAST_PATH_RX_CQE_TYPE
;
943 DP(NETIF_MSG_RX_STATUS
,
944 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
945 CQE_TYPE(cqe_fp_flags
),
946 cqe_fp_flags
, cqe_fp
->status_flags
,
947 le32_to_cpu(cqe_fp
->rss_hash_result
),
948 le16_to_cpu(cqe_fp
->vlan_tag
),
949 le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
));
951 /* is this a slowpath msg? */
952 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type
))) {
953 bnx2x_sp_event(fp
, cqe
);
957 rx_buf
= &fp
->rx_buf_ring
[bd_cons
];
960 if (!CQE_TYPE_FAST(cqe_fp_type
)) {
961 struct bnx2x_agg_info
*tpa_info
;
962 u16 frag_size
, pages
;
963 #ifdef BNX2X_STOP_ON_ERROR
965 if (fp
->mode
== TPA_MODE_DISABLED
&&
966 (CQE_TYPE_START(cqe_fp_type
) ||
967 CQE_TYPE_STOP(cqe_fp_type
)))
968 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
969 CQE_TYPE(cqe_fp_type
));
972 if (CQE_TYPE_START(cqe_fp_type
)) {
973 u16 queue
= cqe_fp
->queue_index
;
974 DP(NETIF_MSG_RX_STATUS
,
975 "calling tpa_start on queue %d\n",
978 bnx2x_tpa_start(fp
, queue
,
984 queue
= cqe
->end_agg_cqe
.queue_index
;
985 tpa_info
= &fp
->tpa_info
[queue
];
986 DP(NETIF_MSG_RX_STATUS
,
987 "calling tpa_stop on queue %d\n",
990 frag_size
= le16_to_cpu(cqe
->end_agg_cqe
.pkt_len
) -
993 if (fp
->mode
== TPA_MODE_GRO
)
994 pages
= (frag_size
+ tpa_info
->full_page
- 1) /
997 pages
= SGE_PAGE_ALIGN(frag_size
) >>
1000 bnx2x_tpa_stop(bp
, fp
, tpa_info
, pages
,
1001 &cqe
->end_agg_cqe
, comp_ring_cons
);
1002 #ifdef BNX2X_STOP_ON_ERROR
1007 bnx2x_update_sge_prod(fp
, pages
, &cqe
->end_agg_cqe
);
1011 len
= le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
);
1012 pad
= cqe_fp
->placement_offset
;
1013 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
1014 dma_unmap_addr(rx_buf
, mapping
),
1015 pad
+ RX_COPY_THRESH
,
1018 prefetch(data
+ pad
); /* speedup eth_type_trans() */
1019 /* is this an error packet? */
1020 if (unlikely(cqe_fp_flags
& ETH_RX_ERROR_FALGS
)) {
1021 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1022 "ERROR flags %x rx packet %u\n",
1023 cqe_fp_flags
, sw_comp_cons
);
1024 bnx2x_fp_qstats(bp
, fp
)->rx_err_discard_pkt
++;
1028 /* Since we don't have a jumbo ring
1029 * copy small packets if mtu > 1500
1031 if ((bp
->dev
->mtu
> ETH_MAX_PACKET_SIZE
) &&
1032 (len
<= RX_COPY_THRESH
)) {
1033 skb
= napi_alloc_skb(&fp
->napi
, len
);
1035 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1036 "ERROR packet dropped because of alloc failure\n");
1037 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1040 memcpy(skb
->data
, data
+ pad
, len
);
1041 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1043 if (likely(bnx2x_alloc_rx_data(bp
, fp
, bd_prod
,
1044 GFP_ATOMIC
) == 0)) {
1045 dma_unmap_single(&bp
->pdev
->dev
,
1046 dma_unmap_addr(rx_buf
, mapping
),
1049 skb
= build_skb(data
, fp
->rx_frag_size
);
1050 if (unlikely(!skb
)) {
1051 bnx2x_frag_free(fp
, data
);
1052 bnx2x_fp_qstats(bp
, fp
)->
1053 rx_skb_alloc_failed
++;
1056 skb_reserve(skb
, pad
);
1058 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1059 "ERROR packet dropped because of alloc failure\n");
1060 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1062 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1068 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
1070 /* Set Toeplitz hash for a none-LRO skb */
1071 rxhash
= bnx2x_get_rxhash(bp
, cqe_fp
, &rxhash_type
);
1072 skb_set_hash(skb
, rxhash
, rxhash_type
);
1074 skb_checksum_none_assert(skb
);
1076 if (bp
->dev
->features
& NETIF_F_RXCSUM
)
1077 bnx2x_csum_validate(skb
, cqe
, fp
,
1078 bnx2x_fp_qstats(bp
, fp
));
1080 skb_record_rx_queue(skb
, fp
->rx_queue
);
1082 /* Check if this packet was timestamped */
1083 if (unlikely(cqe
->fast_path_cqe
.type_error_flags
&
1084 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT
)))
1085 bnx2x_set_rx_ts(bp
, skb
);
1087 if (le16_to_cpu(cqe_fp
->pars_flags
.flags
) &
1089 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
1090 le16_to_cpu(cqe_fp
->vlan_tag
));
1092 napi_gro_receive(&fp
->napi
, skb
);
1094 rx_buf
->data
= NULL
;
1096 bd_cons
= NEXT_RX_IDX(bd_cons
);
1097 bd_prod
= NEXT_RX_IDX(bd_prod
);
1098 bd_prod_fw
= NEXT_RX_IDX(bd_prod_fw
);
1101 sw_comp_prod
= NEXT_RCQ_IDX(sw_comp_prod
);
1102 sw_comp_cons
= NEXT_RCQ_IDX(sw_comp_cons
);
1104 /* mark CQE as free */
1105 BNX2X_SEED_CQE(cqe_fp
);
1107 if (rx_pkt
== budget
)
1110 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
1111 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
1112 cqe_fp
= &cqe
->fast_path_cqe
;
1115 fp
->rx_bd_cons
= bd_cons
;
1116 fp
->rx_bd_prod
= bd_prod_fw
;
1117 fp
->rx_comp_cons
= sw_comp_cons
;
1118 fp
->rx_comp_prod
= sw_comp_prod
;
1120 /* Update producers */
1121 bnx2x_update_rx_prod(bp
, fp
, bd_prod_fw
, sw_comp_prod
,
1127 static irqreturn_t
bnx2x_msix_fp_int(int irq
, void *fp_cookie
)
1129 struct bnx2x_fastpath
*fp
= fp_cookie
;
1130 struct bnx2x
*bp
= fp
->bp
;
1134 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1135 fp
->index
, fp
->fw_sb_id
, fp
->igu_sb_id
);
1137 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0, IGU_INT_DISABLE
, 0);
1139 #ifdef BNX2X_STOP_ON_ERROR
1140 if (unlikely(bp
->panic
))
1144 /* Handle Rx and Tx according to MSI-X vector */
1145 for_each_cos_in_tx_queue(fp
, cos
)
1146 prefetch(fp
->txdata_ptr
[cos
]->tx_cons_sb
);
1148 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1149 napi_schedule_irqoff(&bnx2x_fp(bp
, fp
->index
, napi
));
1154 /* HW Lock for shared dual port PHYs */
1155 void bnx2x_acquire_phy_lock(struct bnx2x
*bp
)
1157 mutex_lock(&bp
->port
.phy_mutex
);
1159 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1162 void bnx2x_release_phy_lock(struct bnx2x
*bp
)
1164 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1166 mutex_unlock(&bp
->port
.phy_mutex
);
1169 /* calculates MF speed according to current linespeed and MF configuration */
1170 u16
bnx2x_get_mf_speed(struct bnx2x
*bp
)
1172 u16 line_speed
= bp
->link_vars
.line_speed
;
1174 u16 maxCfg
= bnx2x_extract_max_cfg(bp
,
1175 bp
->mf_config
[BP_VN(bp
)]);
1177 /* Calculate the current MAX line speed limit for the MF
1180 if (IS_MF_PERCENT_BW(bp
))
1181 line_speed
= (line_speed
* maxCfg
) / 100;
1182 else { /* SD mode */
1183 u16 vn_max_rate
= maxCfg
* 100;
1185 if (vn_max_rate
< line_speed
)
1186 line_speed
= vn_max_rate
;
1194 * bnx2x_fill_report_data - fill link report data to report
1196 * @bp: driver handle
1197 * @data: link state to update
1199 * It uses a none-atomic bit operations because is called under the mutex.
1201 static void bnx2x_fill_report_data(struct bnx2x
*bp
,
1202 struct bnx2x_link_report_data
*data
)
1204 memset(data
, 0, sizeof(*data
));
1207 /* Fill the report data: effective line speed */
1208 data
->line_speed
= bnx2x_get_mf_speed(bp
);
1211 if (!bp
->link_vars
.link_up
|| (bp
->flags
& MF_FUNC_DIS
))
1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1213 &data
->link_report_flags
);
1215 if (!BNX2X_NUM_ETH_QUEUES(bp
))
1216 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1217 &data
->link_report_flags
);
1220 if (bp
->link_vars
.duplex
== DUPLEX_FULL
)
1221 __set_bit(BNX2X_LINK_REPORT_FD
,
1222 &data
->link_report_flags
);
1224 /* Rx Flow Control is ON */
1225 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_RX
)
1226 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1227 &data
->link_report_flags
);
1229 /* Tx Flow Control is ON */
1230 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
1231 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1232 &data
->link_report_flags
);
1234 *data
= bp
->vf_link_vars
;
1239 * bnx2x_link_report - report link status to OS.
1241 * @bp: driver handle
1243 * Calls the __bnx2x_link_report() under the same locking scheme
1244 * as a link/PHY state managing code to ensure a consistent link
1248 void bnx2x_link_report(struct bnx2x
*bp
)
1250 bnx2x_acquire_phy_lock(bp
);
1251 __bnx2x_link_report(bp
);
1252 bnx2x_release_phy_lock(bp
);
1256 * __bnx2x_link_report - report link status to OS.
1258 * @bp: driver handle
1260 * None atomic implementation.
1261 * Should be called under the phy_lock.
1263 void __bnx2x_link_report(struct bnx2x
*bp
)
1265 struct bnx2x_link_report_data cur_data
;
1267 if (bp
->force_link_down
) {
1268 bp
->link_vars
.link_up
= 0;
1273 if (IS_PF(bp
) && !CHIP_IS_E1(bp
))
1274 bnx2x_read_mf_cfg(bp
);
1276 /* Read the current link report info */
1277 bnx2x_fill_report_data(bp
, &cur_data
);
1279 /* Don't report link down or exactly the same link status twice */
1280 if (!memcmp(&cur_data
, &bp
->last_reported_link
, sizeof(cur_data
)) ||
1281 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1282 &bp
->last_reported_link
.link_report_flags
) &&
1283 test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1284 &cur_data
.link_report_flags
)))
1289 /* We are going to report a new link parameters now -
1290 * remember the current data for the next time.
1292 memcpy(&bp
->last_reported_link
, &cur_data
, sizeof(cur_data
));
1294 /* propagate status to VFs */
1296 bnx2x_iov_link_update(bp
);
1298 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1299 &cur_data
.link_report_flags
)) {
1300 netif_carrier_off(bp
->dev
);
1301 netdev_err(bp
->dev
, "NIC Link is Down\n");
1307 netif_carrier_on(bp
->dev
);
1309 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD
,
1310 &cur_data
.link_report_flags
))
1315 /* Handle the FC at the end so that only these flags would be
1316 * possibly set. This way we may easily check if there is no FC
1319 if (cur_data
.link_report_flags
) {
1320 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1321 &cur_data
.link_report_flags
)) {
1322 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1323 &cur_data
.link_report_flags
))
1324 flow
= "ON - receive & transmit";
1326 flow
= "ON - receive";
1328 flow
= "ON - transmit";
1333 netdev_info(bp
->dev
, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1334 cur_data
.line_speed
, duplex
, flow
);
1338 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath
*fp
)
1342 for (i
= 1; i
<= NUM_RX_SGE_PAGES
; i
++) {
1343 struct eth_rx_sge
*sge
;
1345 sge
= &fp
->rx_sge_ring
[RX_SGE_CNT
* i
- 2];
1347 cpu_to_le32(U64_HI(fp
->rx_sge_mapping
+
1348 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1351 cpu_to_le32(U64_LO(fp
->rx_sge_mapping
+
1352 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1356 static void bnx2x_free_tpa_pool(struct bnx2x
*bp
,
1357 struct bnx2x_fastpath
*fp
, int last
)
1361 for (i
= 0; i
< last
; i
++) {
1362 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[i
];
1363 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
1364 u8
*data
= first_buf
->data
;
1367 DP(NETIF_MSG_IFDOWN
, "tpa bin %d empty on free\n", i
);
1370 if (tpa_info
->tpa_state
== BNX2X_TPA_START
)
1371 dma_unmap_single(&bp
->pdev
->dev
,
1372 dma_unmap_addr(first_buf
, mapping
),
1373 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1374 bnx2x_frag_free(fp
, data
);
1375 first_buf
->data
= NULL
;
1379 void bnx2x_init_rx_rings_cnic(struct bnx2x
*bp
)
1383 for_each_rx_queue_cnic(bp
, j
) {
1384 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1388 /* Activate BD ring */
1390 * this will generate an interrupt (to the TSTORM)
1391 * must only be done after chip is initialized
1393 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1398 void bnx2x_init_rx_rings(struct bnx2x
*bp
)
1400 int func
= BP_FUNC(bp
);
1404 /* Allocate TPA resources */
1405 for_each_eth_queue(bp
, j
) {
1406 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1409 "mtu %d rx_buf_size %d\n", bp
->dev
->mtu
, fp
->rx_buf_size
);
1411 if (fp
->mode
!= TPA_MODE_DISABLED
) {
1412 /* Fill the per-aggregation pool */
1413 for (i
= 0; i
< MAX_AGG_QS(bp
); i
++) {
1414 struct bnx2x_agg_info
*tpa_info
=
1416 struct sw_rx_bd
*first_buf
=
1417 &tpa_info
->first_buf
;
1420 bnx2x_frag_alloc(fp
, GFP_KERNEL
);
1421 if (!first_buf
->data
) {
1422 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1424 bnx2x_free_tpa_pool(bp
, fp
, i
);
1425 fp
->mode
= TPA_MODE_DISABLED
;
1428 dma_unmap_addr_set(first_buf
, mapping
, 0);
1429 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
1432 /* "next page" elements initialization */
1433 bnx2x_set_next_page_sgl(fp
);
1435 /* set SGEs bit mask */
1436 bnx2x_init_sge_ring_bit_mask(fp
);
1438 /* Allocate SGEs and initialize the ring elements */
1439 for (i
= 0, ring_prod
= 0;
1440 i
< MAX_RX_SGE_CNT
*NUM_RX_SGE_PAGES
; i
++) {
1442 if (bnx2x_alloc_rx_sge(bp
, fp
, ring_prod
,
1444 BNX2X_ERR("was only able to allocate %d rx sges\n",
1446 BNX2X_ERR("disabling TPA for queue[%d]\n",
1448 /* Cleanup already allocated elements */
1449 bnx2x_free_rx_sge_range(bp
, fp
,
1451 bnx2x_free_tpa_pool(bp
, fp
,
1453 fp
->mode
= TPA_MODE_DISABLED
;
1457 ring_prod
= NEXT_SGE_IDX(ring_prod
);
1460 fp
->rx_sge_prod
= ring_prod
;
1464 for_each_eth_queue(bp
, j
) {
1465 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1469 /* Activate BD ring */
1471 * this will generate an interrupt (to the TSTORM)
1472 * must only be done after chip is initialized
1474 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1480 if (CHIP_IS_E1(bp
)) {
1481 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1482 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
),
1483 U64_LO(fp
->rx_comp_mapping
));
1484 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1485 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
) + 4,
1486 U64_HI(fp
->rx_comp_mapping
));
1491 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath
*fp
)
1494 struct bnx2x
*bp
= fp
->bp
;
1496 for_each_cos_in_tx_queue(fp
, cos
) {
1497 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
1498 unsigned pkts_compl
= 0, bytes_compl
= 0;
1500 u16 sw_prod
= txdata
->tx_pkt_prod
;
1501 u16 sw_cons
= txdata
->tx_pkt_cons
;
1503 while (sw_cons
!= sw_prod
) {
1504 bnx2x_free_tx_pkt(bp
, txdata
, TX_BD(sw_cons
),
1505 &pkts_compl
, &bytes_compl
);
1509 netdev_tx_reset_queue(
1510 netdev_get_tx_queue(bp
->dev
,
1511 txdata
->txq_index
));
1515 static void bnx2x_free_tx_skbs_cnic(struct bnx2x
*bp
)
1519 for_each_tx_queue_cnic(bp
, i
) {
1520 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1524 static void bnx2x_free_tx_skbs(struct bnx2x
*bp
)
1528 for_each_eth_queue(bp
, i
) {
1529 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1533 static void bnx2x_free_rx_bds(struct bnx2x_fastpath
*fp
)
1535 struct bnx2x
*bp
= fp
->bp
;
1538 /* ring wasn't allocated */
1539 if (fp
->rx_buf_ring
== NULL
)
1542 for (i
= 0; i
< NUM_RX_BD
; i
++) {
1543 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[i
];
1544 u8
*data
= rx_buf
->data
;
1548 dma_unmap_single(&bp
->pdev
->dev
,
1549 dma_unmap_addr(rx_buf
, mapping
),
1550 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1552 rx_buf
->data
= NULL
;
1553 bnx2x_frag_free(fp
, data
);
1557 static void bnx2x_free_rx_skbs_cnic(struct bnx2x
*bp
)
1561 for_each_rx_queue_cnic(bp
, j
) {
1562 bnx2x_free_rx_bds(&bp
->fp
[j
]);
1566 static void bnx2x_free_rx_skbs(struct bnx2x
*bp
)
1570 for_each_eth_queue(bp
, j
) {
1571 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1573 bnx2x_free_rx_bds(fp
);
1575 if (fp
->mode
!= TPA_MODE_DISABLED
)
1576 bnx2x_free_tpa_pool(bp
, fp
, MAX_AGG_QS(bp
));
1580 static void bnx2x_free_skbs_cnic(struct bnx2x
*bp
)
1582 bnx2x_free_tx_skbs_cnic(bp
);
1583 bnx2x_free_rx_skbs_cnic(bp
);
1586 void bnx2x_free_skbs(struct bnx2x
*bp
)
1588 bnx2x_free_tx_skbs(bp
);
1589 bnx2x_free_rx_skbs(bp
);
1592 void bnx2x_update_max_mf_config(struct bnx2x
*bp
, u32 value
)
1594 /* load old values */
1595 u32 mf_cfg
= bp
->mf_config
[BP_VN(bp
)];
1597 if (value
!= bnx2x_extract_max_cfg(bp
, mf_cfg
)) {
1598 /* leave all but MAX value */
1599 mf_cfg
&= ~FUNC_MF_CFG_MAX_BW_MASK
;
1601 /* set new MAX value */
1602 mf_cfg
|= (value
<< FUNC_MF_CFG_MAX_BW_SHIFT
)
1603 & FUNC_MF_CFG_MAX_BW_MASK
;
1605 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW
, mf_cfg
);
1610 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1612 * @bp: driver handle
1613 * @nvecs: number of vectors to be released
1615 static void bnx2x_free_msix_irqs(struct bnx2x
*bp
, int nvecs
)
1619 if (nvecs
== offset
)
1622 /* VFs don't have a default SB */
1624 free_irq(bp
->msix_table
[offset
].vector
, bp
->dev
);
1625 DP(NETIF_MSG_IFDOWN
, "released sp irq (%d)\n",
1626 bp
->msix_table
[offset
].vector
);
1630 if (CNIC_SUPPORT(bp
)) {
1631 if (nvecs
== offset
)
1636 for_each_eth_queue(bp
, i
) {
1637 if (nvecs
== offset
)
1639 DP(NETIF_MSG_IFDOWN
, "about to release fp #%d->%d irq\n",
1640 i
, bp
->msix_table
[offset
].vector
);
1642 free_irq(bp
->msix_table
[offset
++].vector
, &bp
->fp
[i
]);
1646 void bnx2x_free_irq(struct bnx2x
*bp
)
1648 if (bp
->flags
& USING_MSIX_FLAG
&&
1649 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1650 int nvecs
= BNX2X_NUM_ETH_QUEUES(bp
) + CNIC_SUPPORT(bp
);
1652 /* vfs don't have a default status block */
1656 bnx2x_free_msix_irqs(bp
, nvecs
);
1658 free_irq(bp
->dev
->irq
, bp
->dev
);
1662 int bnx2x_enable_msix(struct bnx2x
*bp
)
1664 int msix_vec
= 0, i
, rc
;
1666 /* VFs don't have a default status block */
1668 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1669 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1670 bp
->msix_table
[0].entry
);
1674 /* Cnic requires an msix vector for itself */
1675 if (CNIC_SUPPORT(bp
)) {
1676 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1677 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1678 msix_vec
, bp
->msix_table
[msix_vec
].entry
);
1682 /* We need separate vectors for ETH queues only (not FCoE) */
1683 for_each_eth_queue(bp
, i
) {
1684 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1685 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1686 msix_vec
, msix_vec
, i
);
1690 DP(BNX2X_MSG_SP
, "about to request enable msix with %d vectors\n",
1693 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0],
1694 BNX2X_MIN_MSIX_VEC_CNT(bp
), msix_vec
);
1696 * reconfigure number of tx/rx queues according to available
1699 if (rc
== -ENOSPC
) {
1700 /* Get by with single vector */
1701 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0], 1, 1);
1703 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1708 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1709 bp
->flags
|= USING_SINGLE_MSIX_FLAG
;
1711 BNX2X_DEV_INFO("set number of queues to 1\n");
1712 bp
->num_ethernet_queues
= 1;
1713 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1714 } else if (rc
< 0) {
1715 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc
);
1717 } else if (rc
< msix_vec
) {
1718 /* how less vectors we will have? */
1719 int diff
= msix_vec
- rc
;
1721 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc
);
1724 * decrease number of queues by number of unallocated entries
1726 bp
->num_ethernet_queues
-= diff
;
1727 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1729 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1733 bp
->flags
|= USING_MSIX_FLAG
;
1738 /* fall to INTx if not enough memory */
1740 bp
->flags
|= DISABLE_MSI_FLAG
;
1745 static int bnx2x_req_msix_irqs(struct bnx2x
*bp
)
1747 int i
, rc
, offset
= 0;
1749 /* no default status block for vf */
1751 rc
= request_irq(bp
->msix_table
[offset
++].vector
,
1752 bnx2x_msix_sp_int
, 0,
1753 bp
->dev
->name
, bp
->dev
);
1755 BNX2X_ERR("request sp irq failed\n");
1760 if (CNIC_SUPPORT(bp
))
1763 for_each_eth_queue(bp
, i
) {
1764 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1765 snprintf(fp
->name
, sizeof(fp
->name
), "%s-fp-%d",
1768 rc
= request_irq(bp
->msix_table
[offset
].vector
,
1769 bnx2x_msix_fp_int
, 0, fp
->name
, fp
);
1771 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i
,
1772 bp
->msix_table
[offset
].vector
, rc
);
1773 bnx2x_free_msix_irqs(bp
, offset
);
1780 i
= BNX2X_NUM_ETH_QUEUES(bp
);
1782 offset
= 1 + CNIC_SUPPORT(bp
);
1783 netdev_info(bp
->dev
,
1784 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1785 bp
->msix_table
[0].vector
,
1786 0, bp
->msix_table
[offset
].vector
,
1787 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1789 offset
= CNIC_SUPPORT(bp
);
1790 netdev_info(bp
->dev
,
1791 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1792 0, bp
->msix_table
[offset
].vector
,
1793 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1798 int bnx2x_enable_msi(struct bnx2x
*bp
)
1802 rc
= pci_enable_msi(bp
->pdev
);
1804 BNX2X_DEV_INFO("MSI is not attainable\n");
1807 bp
->flags
|= USING_MSI_FLAG
;
1812 static int bnx2x_req_irq(struct bnx2x
*bp
)
1814 unsigned long flags
;
1817 if (bp
->flags
& (USING_MSI_FLAG
| USING_MSIX_FLAG
))
1820 flags
= IRQF_SHARED
;
1822 if (bp
->flags
& USING_MSIX_FLAG
)
1823 irq
= bp
->msix_table
[0].vector
;
1825 irq
= bp
->pdev
->irq
;
1827 return request_irq(irq
, bnx2x_interrupt
, flags
, bp
->dev
->name
, bp
->dev
);
1830 static int bnx2x_setup_irqs(struct bnx2x
*bp
)
1833 if (bp
->flags
& USING_MSIX_FLAG
&&
1834 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1835 rc
= bnx2x_req_msix_irqs(bp
);
1839 rc
= bnx2x_req_irq(bp
);
1841 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc
);
1844 if (bp
->flags
& USING_MSI_FLAG
) {
1845 bp
->dev
->irq
= bp
->pdev
->irq
;
1846 netdev_info(bp
->dev
, "using MSI IRQ %d\n",
1849 if (bp
->flags
& USING_MSIX_FLAG
) {
1850 bp
->dev
->irq
= bp
->msix_table
[0].vector
;
1851 netdev_info(bp
->dev
, "using MSIX IRQ %d\n",
1859 static void bnx2x_napi_enable_cnic(struct bnx2x
*bp
)
1863 for_each_rx_queue_cnic(bp
, i
) {
1864 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1868 static void bnx2x_napi_enable(struct bnx2x
*bp
)
1872 for_each_eth_queue(bp
, i
) {
1873 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1877 static void bnx2x_napi_disable_cnic(struct bnx2x
*bp
)
1881 for_each_rx_queue_cnic(bp
, i
) {
1882 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1886 static void bnx2x_napi_disable(struct bnx2x
*bp
)
1890 for_each_eth_queue(bp
, i
) {
1891 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1895 void bnx2x_netif_start(struct bnx2x
*bp
)
1897 if (netif_running(bp
->dev
)) {
1898 bnx2x_napi_enable(bp
);
1899 if (CNIC_LOADED(bp
))
1900 bnx2x_napi_enable_cnic(bp
);
1901 bnx2x_int_enable(bp
);
1902 if (bp
->state
== BNX2X_STATE_OPEN
)
1903 netif_tx_wake_all_queues(bp
->dev
);
1907 void bnx2x_netif_stop(struct bnx2x
*bp
, int disable_hw
)
1909 bnx2x_int_disable_sync(bp
, disable_hw
);
1910 bnx2x_napi_disable(bp
);
1911 if (CNIC_LOADED(bp
))
1912 bnx2x_napi_disable_cnic(bp
);
1915 u16
bnx2x_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
1916 struct net_device
*sb_dev
,
1917 select_queue_fallback_t fallback
)
1919 struct bnx2x
*bp
= netdev_priv(dev
);
1921 if (CNIC_LOADED(bp
) && !NO_FCOE(bp
)) {
1922 struct ethhdr
*hdr
= (struct ethhdr
*)skb
->data
;
1923 u16 ether_type
= ntohs(hdr
->h_proto
);
1925 /* Skip VLAN tag if present */
1926 if (ether_type
== ETH_P_8021Q
) {
1927 struct vlan_ethhdr
*vhdr
=
1928 (struct vlan_ethhdr
*)skb
->data
;
1930 ether_type
= ntohs(vhdr
->h_vlan_encapsulated_proto
);
1933 /* If ethertype is FCoE or FIP - use FCoE ring */
1934 if ((ether_type
== ETH_P_FCOE
) || (ether_type
== ETH_P_FIP
))
1935 return bnx2x_fcoe_tx(bp
, txq_index
);
1938 /* select a non-FCoE queue */
1939 return fallback(dev
, skb
, NULL
) % (BNX2X_NUM_ETH_QUEUES(bp
));
1942 void bnx2x_set_num_queues(struct bnx2x
*bp
)
1945 bp
->num_ethernet_queues
= bnx2x_calc_num_queues(bp
);
1947 /* override in STORAGE SD modes */
1948 if (IS_MF_STORAGE_ONLY(bp
))
1949 bp
->num_ethernet_queues
= 1;
1951 /* Add special queues */
1952 bp
->num_cnic_queues
= CNIC_SUPPORT(bp
); /* For FCOE */
1953 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1955 BNX2X_DEV_INFO("set number of queues to %d\n", bp
->num_queues
);
1959 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1961 * @bp: Driver handle
1963 * We currently support for at most 16 Tx queues for each CoS thus we will
1964 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1967 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1968 * index after all ETH L2 indices.
1970 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1971 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1972 * 16..31,...) with indices that are not coupled with any real Tx queue.
1974 * The proper configuration of skb->queue_mapping is handled by
1975 * bnx2x_select_queue() and __skb_tx_hash().
1977 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1978 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1980 static int bnx2x_set_real_num_queues(struct bnx2x
*bp
, int include_cnic
)
1984 tx
= BNX2X_NUM_ETH_QUEUES(bp
) * bp
->max_cos
;
1985 rx
= BNX2X_NUM_ETH_QUEUES(bp
);
1987 /* account for fcoe queue */
1988 if (include_cnic
&& !NO_FCOE(bp
)) {
1993 rc
= netif_set_real_num_tx_queues(bp
->dev
, tx
);
1995 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc
);
1998 rc
= netif_set_real_num_rx_queues(bp
->dev
, rx
);
2000 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc
);
2004 DP(NETIF_MSG_IFUP
, "Setting real num queues to (tx, rx) (%d, %d)\n",
2010 static void bnx2x_set_rx_buf_size(struct bnx2x
*bp
)
2014 for_each_queue(bp
, i
) {
2015 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2018 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2021 * Although there are no IP frames expected to arrive to
2022 * this ring we still want to add an
2023 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2026 mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
2029 fp
->rx_buf_size
= BNX2X_FW_RX_ALIGN_START
+
2030 IP_HEADER_ALIGNMENT_PADDING
+
2033 BNX2X_FW_RX_ALIGN_END
;
2034 fp
->rx_buf_size
= SKB_DATA_ALIGN(fp
->rx_buf_size
);
2035 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2036 if (fp
->rx_buf_size
+ NET_SKB_PAD
<= PAGE_SIZE
)
2037 fp
->rx_frag_size
= fp
->rx_buf_size
+ NET_SKB_PAD
;
2039 fp
->rx_frag_size
= 0;
2043 static int bnx2x_init_rss(struct bnx2x
*bp
)
2046 u8 num_eth_queues
= BNX2X_NUM_ETH_QUEUES(bp
);
2048 /* Prepare the initial contents for the indirection table if RSS is
2051 for (i
= 0; i
< sizeof(bp
->rss_conf_obj
.ind_table
); i
++)
2052 bp
->rss_conf_obj
.ind_table
[i
] =
2054 ethtool_rxfh_indir_default(i
, num_eth_queues
);
2057 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2058 * per-port, so if explicit configuration is needed , do it only
2061 * For 57712 and newer on the other hand it's a per-function
2064 return bnx2x_config_rss_eth(bp
, bp
->port
.pmf
|| !CHIP_IS_E1x(bp
));
2067 int bnx2x_rss(struct bnx2x
*bp
, struct bnx2x_rss_config_obj
*rss_obj
,
2068 bool config_hash
, bool enable
)
2070 struct bnx2x_config_rss_params params
= {NULL
};
2072 /* Although RSS is meaningless when there is a single HW queue we
2073 * still need it enabled in order to have HW Rx hash generated.
2075 * if (!is_eth_multi(bp))
2076 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2079 params
.rss_obj
= rss_obj
;
2081 __set_bit(RAMROD_COMP_WAIT
, ¶ms
.ramrod_flags
);
2084 __set_bit(BNX2X_RSS_MODE_REGULAR
, ¶ms
.rss_flags
);
2086 /* RSS configuration */
2087 __set_bit(BNX2X_RSS_IPV4
, ¶ms
.rss_flags
);
2088 __set_bit(BNX2X_RSS_IPV4_TCP
, ¶ms
.rss_flags
);
2089 __set_bit(BNX2X_RSS_IPV6
, ¶ms
.rss_flags
);
2090 __set_bit(BNX2X_RSS_IPV6_TCP
, ¶ms
.rss_flags
);
2091 if (rss_obj
->udp_rss_v4
)
2092 __set_bit(BNX2X_RSS_IPV4_UDP
, ¶ms
.rss_flags
);
2093 if (rss_obj
->udp_rss_v6
)
2094 __set_bit(BNX2X_RSS_IPV6_UDP
, ¶ms
.rss_flags
);
2096 if (!CHIP_IS_E1x(bp
)) {
2097 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2098 __set_bit(BNX2X_RSS_IPV4_VXLAN
, ¶ms
.rss_flags
);
2099 __set_bit(BNX2X_RSS_IPV6_VXLAN
, ¶ms
.rss_flags
);
2101 /* valid only for TUNN_MODE_GRE tunnel mode */
2102 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS
, ¶ms
.rss_flags
);
2105 __set_bit(BNX2X_RSS_MODE_DISABLED
, ¶ms
.rss_flags
);
2109 params
.rss_result_mask
= MULTI_MASK
;
2111 memcpy(params
.ind_table
, rss_obj
->ind_table
, sizeof(params
.ind_table
));
2115 netdev_rss_key_fill(params
.rss_key
, T_ETH_RSS_KEY
* 4);
2116 __set_bit(BNX2X_RSS_SET_SRCH
, ¶ms
.rss_flags
);
2120 return bnx2x_config_rss(bp
, ¶ms
);
2122 return bnx2x_vfpf_config_rss(bp
, ¶ms
);
2125 static int bnx2x_init_hw(struct bnx2x
*bp
, u32 load_code
)
2127 struct bnx2x_func_state_params func_params
= {NULL
};
2129 /* Prepare parameters for function state transitions */
2130 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
2132 func_params
.f_obj
= &bp
->func_obj
;
2133 func_params
.cmd
= BNX2X_F_CMD_HW_INIT
;
2135 func_params
.params
.hw_init
.load_phase
= load_code
;
2137 return bnx2x_func_state_change(bp
, &func_params
);
2141 * Cleans the object that have internal lists without sending
2142 * ramrods. Should be run when interrupts are disabled.
2144 void bnx2x_squeeze_objects(struct bnx2x
*bp
)
2147 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
2148 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
2149 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->sp_objs
->mac_obj
;
2151 /***************** Cleanup MACs' object first *************************/
2153 /* Wait for completion of requested */
2154 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2155 /* Perform a dry cleanup */
2156 __set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod_flags
);
2158 /* Clean ETH primary MAC */
2159 __set_bit(BNX2X_ETH_MAC
, &vlan_mac_flags
);
2160 rc
= mac_obj
->delete_all(bp
, &bp
->sp_objs
->mac_obj
, &vlan_mac_flags
,
2163 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc
);
2165 /* Cleanup UC list */
2167 __set_bit(BNX2X_UC_LIST_MAC
, &vlan_mac_flags
);
2168 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
,
2171 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc
);
2173 /***************** Now clean mcast object *****************************/
2174 rparam
.mcast_obj
= &bp
->mcast_obj
;
2175 __set_bit(RAMROD_DRV_CLR_ONLY
, &rparam
.ramrod_flags
);
2177 /* Add a DEL command... - Since we're doing a driver cleanup only,
2178 * we take a lock surrounding both the initial send and the CONTs,
2179 * as we don't want a true completion to disrupt us in the middle.
2181 netif_addr_lock_bh(bp
->dev
);
2182 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
2184 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2187 /* ...and wait until all pending commands are cleared */
2188 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2191 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2193 netif_addr_unlock_bh(bp
->dev
);
2197 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2199 netif_addr_unlock_bh(bp
->dev
);
2202 #ifndef BNX2X_STOP_ON_ERROR
2203 #define LOAD_ERROR_EXIT(bp, label) \
2205 (bp)->state = BNX2X_STATE_ERROR; \
2209 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2211 bp->cnic_loaded = false; \
2214 #else /*BNX2X_STOP_ON_ERROR*/
2215 #define LOAD_ERROR_EXIT(bp, label) \
2217 (bp)->state = BNX2X_STATE_ERROR; \
2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 bp->cnic_loaded = false; \
2227 #endif /*BNX2X_STOP_ON_ERROR*/
2229 static void bnx2x_free_fw_stats_mem(struct bnx2x
*bp
)
2231 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
2232 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2236 static int bnx2x_alloc_fw_stats_mem(struct bnx2x
*bp
)
2238 int num_groups
, vf_headroom
= 0;
2239 int is_fcoe_stats
= NO_FCOE(bp
) ? 0 : 1;
2241 /* number of queues for statistics is number of eth queues + FCoE */
2242 u8 num_queue_stats
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe_stats
;
2244 /* Total number of FW statistics requests =
2245 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2246 * and fcoe l2 queue) stats + num of queues (which includes another 1
2247 * for fcoe l2 queue if applicable)
2249 bp
->fw_stats_num
= 2 + is_fcoe_stats
+ num_queue_stats
;
2251 /* vf stats appear in the request list, but their data is allocated by
2252 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2253 * it is used to determine where to place the vf stats queries in the
2257 vf_headroom
= bnx2x_vf_headroom(bp
);
2259 /* Request is built from stats_query_header and an array of
2260 * stats_query_cmd_group each of which contains
2261 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2262 * configured in the stats_query_header.
2265 (((bp
->fw_stats_num
+ vf_headroom
) / STATS_QUERY_CMD_COUNT
) +
2266 (((bp
->fw_stats_num
+ vf_headroom
) % STATS_QUERY_CMD_COUNT
) ?
2269 DP(BNX2X_MSG_SP
, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2270 bp
->fw_stats_num
, vf_headroom
, num_groups
);
2271 bp
->fw_stats_req_sz
= sizeof(struct stats_query_header
) +
2272 num_groups
* sizeof(struct stats_query_cmd_group
);
2274 /* Data for statistics requests + stats_counter
2275 * stats_counter holds per-STORM counters that are incremented
2276 * when STORM has finished with the current request.
2277 * memory for FCoE offloaded statistics are counted anyway,
2278 * even if they will not be sent.
2279 * VF stats are not accounted for here as the data of VF stats is stored
2280 * in memory allocated by the VF, not here.
2282 bp
->fw_stats_data_sz
= sizeof(struct per_port_stats
) +
2283 sizeof(struct per_pf_stats
) +
2284 sizeof(struct fcoe_statistics_params
) +
2285 sizeof(struct per_queue_stats
) * num_queue_stats
+
2286 sizeof(struct stats_counter
);
2288 bp
->fw_stats
= BNX2X_PCI_ALLOC(&bp
->fw_stats_mapping
,
2289 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2294 bp
->fw_stats_req
= (struct bnx2x_fw_stats_req
*)bp
->fw_stats
;
2295 bp
->fw_stats_req_mapping
= bp
->fw_stats_mapping
;
2296 bp
->fw_stats_data
= (struct bnx2x_fw_stats_data
*)
2297 ((u8
*)bp
->fw_stats
+ bp
->fw_stats_req_sz
);
2298 bp
->fw_stats_data_mapping
= bp
->fw_stats_mapping
+
2299 bp
->fw_stats_req_sz
;
2301 DP(BNX2X_MSG_SP
, "statistics request base address set to %x %x\n",
2302 U64_HI(bp
->fw_stats_req_mapping
),
2303 U64_LO(bp
->fw_stats_req_mapping
));
2304 DP(BNX2X_MSG_SP
, "statistics data base address set to %x %x\n",
2305 U64_HI(bp
->fw_stats_data_mapping
),
2306 U64_LO(bp
->fw_stats_data_mapping
));
2310 bnx2x_free_fw_stats_mem(bp
);
2311 BNX2X_ERR("Can't allocate FW stats memory\n");
2315 /* send load request to mcp and analyze response */
2316 static int bnx2x_nic_load_request(struct bnx2x
*bp
, u32
*load_code
)
2322 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
2323 DRV_MSG_SEQ_NUMBER_MASK
);
2324 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
2326 /* Get current FW pulse sequence */
2327 bp
->fw_drv_pulse_wr_seq
=
2328 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
) &
2329 DRV_PULSE_SEQ_MASK
);
2330 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp
->fw_drv_pulse_wr_seq
);
2332 param
= DRV_MSG_CODE_LOAD_REQ_WITH_LFA
;
2334 if (IS_MF_SD(bp
) && bnx2x_port_after_undi(bp
))
2335 param
|= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA
;
2338 (*load_code
) = bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_REQ
, param
);
2340 /* if mcp fails to respond we must abort */
2341 if (!(*load_code
)) {
2342 BNX2X_ERR("MCP response failure, aborting\n");
2346 /* If mcp refused (e.g. other port is in diagnostic mode) we
2349 if ((*load_code
) == FW_MSG_CODE_DRV_LOAD_REFUSED
) {
2350 BNX2X_ERR("MCP refused load request, aborting\n");
2356 /* check whether another PF has already loaded FW to chip. In
2357 * virtualized environments a pf from another VM may have already
2358 * initialized the device including loading FW
2360 int bnx2x_compare_fw_ver(struct bnx2x
*bp
, u32 load_code
, bool print_err
)
2362 /* is another pf loaded on this engine? */
2363 if (load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
&&
2364 load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON
) {
2365 /* build my FW version dword */
2366 u32 my_fw
= (BCM_5710_FW_MAJOR_VERSION
) +
2367 (BCM_5710_FW_MINOR_VERSION
<< 8) +
2368 (BCM_5710_FW_REVISION_VERSION
<< 16) +
2369 (BCM_5710_FW_ENGINEERING_VERSION
<< 24);
2371 /* read loaded FW from chip */
2372 u32 loaded_fw
= REG_RD(bp
, XSEM_REG_PRAM
);
2374 DP(BNX2X_MSG_SP
, "loaded fw %x, my fw %x\n",
2377 /* abort nic load if version mismatch */
2378 if (my_fw
!= loaded_fw
) {
2380 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2383 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2391 /* returns the "mcp load_code" according to global load_count array */
2392 static int bnx2x_nic_load_no_mcp(struct bnx2x
*bp
, int port
)
2394 int path
= BP_PATH(bp
);
2396 DP(NETIF_MSG_IFUP
, "NO MCP - load counts[%d] %d, %d, %d\n",
2397 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2398 bnx2x_load_count
[path
][2]);
2399 bnx2x_load_count
[path
][0]++;
2400 bnx2x_load_count
[path
][1 + port
]++;
2401 DP(NETIF_MSG_IFUP
, "NO MCP - new load counts[%d] %d, %d, %d\n",
2402 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2403 bnx2x_load_count
[path
][2]);
2404 if (bnx2x_load_count
[path
][0] == 1)
2405 return FW_MSG_CODE_DRV_LOAD_COMMON
;
2406 else if (bnx2x_load_count
[path
][1 + port
] == 1)
2407 return FW_MSG_CODE_DRV_LOAD_PORT
;
2409 return FW_MSG_CODE_DRV_LOAD_FUNCTION
;
2412 /* mark PMF if applicable */
2413 static void bnx2x_nic_load_pmf(struct bnx2x
*bp
, u32 load_code
)
2415 if ((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2416 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
) ||
2417 (load_code
== FW_MSG_CODE_DRV_LOAD_PORT
)) {
2419 /* We need the barrier to ensure the ordering between the
2420 * writing to bp->port.pmf here and reading it from the
2421 * bnx2x_periodic_task().
2428 DP(NETIF_MSG_LINK
, "pmf %d\n", bp
->port
.pmf
);
2431 static void bnx2x_nic_load_afex_dcc(struct bnx2x
*bp
, int load_code
)
2433 if (((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2434 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
)) &&
2435 (bp
->common
.shmem2_base
)) {
2436 if (SHMEM2_HAS(bp
, dcc_support
))
2437 SHMEM2_WR(bp
, dcc_support
,
2438 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV
|
2439 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV
));
2440 if (SHMEM2_HAS(bp
, afex_driver_support
))
2441 SHMEM2_WR(bp
, afex_driver_support
,
2442 SHMEM_AFEX_SUPPORTED_VERSION_ONE
);
2445 /* Set AFEX default VLAN tag to an invalid value */
2446 bp
->afex_def_vlan_tag
= -1;
2450 * bnx2x_bz_fp - zero content of the fastpath structure.
2452 * @bp: driver handle
2453 * @index: fastpath index to be zeroed
2455 * Makes sure the contents of the bp->fp[index].napi is kept
2458 static void bnx2x_bz_fp(struct bnx2x
*bp
, int index
)
2460 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
2462 struct napi_struct orig_napi
= fp
->napi
;
2463 struct bnx2x_agg_info
*orig_tpa_info
= fp
->tpa_info
;
2465 /* bzero bnx2x_fastpath contents */
2467 memset(fp
->tpa_info
, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2
*
2468 sizeof(struct bnx2x_agg_info
));
2469 memset(fp
, 0, sizeof(*fp
));
2471 /* Restore the NAPI object as it has been already initialized */
2472 fp
->napi
= orig_napi
;
2473 fp
->tpa_info
= orig_tpa_info
;
2477 fp
->max_cos
= bp
->max_cos
;
2479 /* Special queues support only one CoS */
2482 /* Init txdata pointers */
2484 fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[FCOE_TXQ_IDX(bp
)];
2486 for_each_cos_in_tx_queue(fp
, cos
)
2487 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[cos
*
2488 BNX2X_NUM_ETH_QUEUES(bp
) + index
];
2490 /* set the tpa flag for each queue. The tpa flag determines the queue
2491 * minimal size so it must be set prior to queue memory allocation
2493 if (bp
->dev
->features
& NETIF_F_LRO
)
2494 fp
->mode
= TPA_MODE_LRO
;
2495 else if (bp
->dev
->features
& NETIF_F_GRO_HW
)
2496 fp
->mode
= TPA_MODE_GRO
;
2498 fp
->mode
= TPA_MODE_DISABLED
;
2500 /* We don't want TPA if it's disabled in bp
2501 * or if this is an FCoE L2 ring.
2503 if (bp
->disable_tpa
|| IS_FCOE_FP(fp
))
2504 fp
->mode
= TPA_MODE_DISABLED
;
2507 void bnx2x_set_os_driver_state(struct bnx2x
*bp
, u32 state
)
2511 if (!IS_MF_BD(bp
) || !SHMEM2_HAS(bp
, os_driver_state
) || IS_VF(bp
))
2514 cur
= SHMEM2_RD(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)]);
2515 DP(NETIF_MSG_IFUP
, "Driver state %08x-->%08x\n",
2518 SHMEM2_WR(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)], state
);
2521 int bnx2x_load_cnic(struct bnx2x
*bp
)
2523 int i
, rc
, port
= BP_PORT(bp
);
2525 DP(NETIF_MSG_IFUP
, "Starting CNIC-related load\n");
2527 mutex_init(&bp
->cnic_mutex
);
2530 rc
= bnx2x_alloc_mem_cnic(bp
);
2532 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2533 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2537 rc
= bnx2x_alloc_fp_mem_cnic(bp
);
2539 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2540 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2543 /* Update the number of queues with the cnic queues */
2544 rc
= bnx2x_set_real_num_queues(bp
, 1);
2546 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2547 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2550 /* Add all CNIC NAPI objects */
2551 bnx2x_add_all_napi_cnic(bp
);
2552 DP(NETIF_MSG_IFUP
, "cnic napi added\n");
2553 bnx2x_napi_enable_cnic(bp
);
2555 rc
= bnx2x_init_hw_func_cnic(bp
);
2557 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic1
);
2559 bnx2x_nic_init_cnic(bp
);
2562 /* Enable Timer scan */
2563 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 1);
2565 /* setup cnic queues */
2566 for_each_cnic_queue(bp
, i
) {
2567 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], 0);
2569 BNX2X_ERR("Queue setup failed\n");
2570 LOAD_ERROR_EXIT(bp
, load_error_cnic2
);
2575 /* Initialize Rx filter. */
2576 bnx2x_set_rx_mode_inner(bp
);
2578 /* re-read iscsi info */
2579 bnx2x_get_iscsi_info(bp
);
2580 bnx2x_setup_cnic_irq_info(bp
);
2581 bnx2x_setup_cnic_info(bp
);
2582 bp
->cnic_loaded
= true;
2583 if (bp
->state
== BNX2X_STATE_OPEN
)
2584 bnx2x_cnic_notify(bp
, CNIC_CTL_START_CMD
);
2586 DP(NETIF_MSG_IFUP
, "Ending successfully CNIC-related load\n");
2590 #ifndef BNX2X_STOP_ON_ERROR
2592 /* Disable Timer scan */
2593 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
2596 bnx2x_napi_disable_cnic(bp
);
2597 /* Update the number of queues without the cnic queues */
2598 if (bnx2x_set_real_num_queues(bp
, 0))
2599 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2601 BNX2X_ERR("CNIC-related load failed\n");
2602 bnx2x_free_fp_mem_cnic(bp
);
2603 bnx2x_free_mem_cnic(bp
);
2605 #endif /* ! BNX2X_STOP_ON_ERROR */
2608 /* must be called with rtnl_lock */
2609 int bnx2x_nic_load(struct bnx2x
*bp
, int load_mode
)
2611 int port
= BP_PORT(bp
);
2612 int i
, rc
= 0, load_code
= 0;
2614 DP(NETIF_MSG_IFUP
, "Starting NIC load\n");
2616 "CNIC is %s\n", CNIC_ENABLED(bp
) ? "enabled" : "disabled");
2618 #ifdef BNX2X_STOP_ON_ERROR
2619 if (unlikely(bp
->panic
)) {
2620 BNX2X_ERR("Can't load NIC when there is panic\n");
2625 bp
->state
= BNX2X_STATE_OPENING_WAIT4_LOAD
;
2627 /* zero the structure w/o any lock, before SP handler is initialized */
2628 memset(&bp
->last_reported_link
, 0, sizeof(bp
->last_reported_link
));
2629 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
2630 &bp
->last_reported_link
.link_report_flags
);
2633 /* must be called before memory allocation and HW init */
2634 bnx2x_ilt_set_info(bp
);
2637 * Zero fastpath structures preserving invariants like napi, which are
2638 * allocated only once, fp index, max_cos, bp pointer.
2639 * Also set fp->mode and txdata_ptr.
2641 DP(NETIF_MSG_IFUP
, "num queues: %d", bp
->num_queues
);
2642 for_each_queue(bp
, i
)
2644 memset(bp
->bnx2x_txq
, 0, (BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+
2645 bp
->num_cnic_queues
) *
2646 sizeof(struct bnx2x_fp_txdata
));
2648 bp
->fcoe_init
= false;
2650 /* Set the receive queues buffer size */
2651 bnx2x_set_rx_buf_size(bp
);
2654 rc
= bnx2x_alloc_mem(bp
);
2656 BNX2X_ERR("Unable to allocate bp memory\n");
2661 /* need to be done after alloc mem, since it's self adjusting to amount
2662 * of memory available for RSS queues
2664 rc
= bnx2x_alloc_fp_mem(bp
);
2666 BNX2X_ERR("Unable to allocate memory for fps\n");
2667 LOAD_ERROR_EXIT(bp
, load_error0
);
2670 /* Allocated memory for FW statistics */
2671 if (bnx2x_alloc_fw_stats_mem(bp
))
2672 LOAD_ERROR_EXIT(bp
, load_error0
);
2674 /* request pf to initialize status blocks */
2676 rc
= bnx2x_vfpf_init(bp
);
2678 LOAD_ERROR_EXIT(bp
, load_error0
);
2681 /* As long as bnx2x_alloc_mem() may possibly update
2682 * bp->num_queues, bnx2x_set_real_num_queues() should always
2683 * come after it. At this stage cnic queues are not counted.
2685 rc
= bnx2x_set_real_num_queues(bp
, 0);
2687 BNX2X_ERR("Unable to set real_num_queues\n");
2688 LOAD_ERROR_EXIT(bp
, load_error0
);
2691 /* configure multi cos mappings in kernel.
2692 * this configuration may be overridden by a multi class queue
2693 * discipline or by a dcbx negotiation result.
2695 bnx2x_setup_tc(bp
->dev
, bp
->max_cos
);
2697 /* Add all NAPI objects */
2698 bnx2x_add_all_napi(bp
);
2699 DP(NETIF_MSG_IFUP
, "napi added\n");
2700 bnx2x_napi_enable(bp
);
2703 /* set pf load just before approaching the MCP */
2704 bnx2x_set_pf_load(bp
);
2706 /* if mcp exists send load request and analyze response */
2707 if (!BP_NOMCP(bp
)) {
2708 /* attempt to load pf */
2709 rc
= bnx2x_nic_load_request(bp
, &load_code
);
2711 LOAD_ERROR_EXIT(bp
, load_error1
);
2713 /* what did mcp say? */
2714 rc
= bnx2x_compare_fw_ver(bp
, load_code
, true);
2716 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2717 LOAD_ERROR_EXIT(bp
, load_error2
);
2720 load_code
= bnx2x_nic_load_no_mcp(bp
, port
);
2723 /* mark pmf if applicable */
2724 bnx2x_nic_load_pmf(bp
, load_code
);
2726 /* Init Function state controlling object */
2727 bnx2x__init_func_obj(bp
);
2730 rc
= bnx2x_init_hw(bp
, load_code
);
2732 BNX2X_ERR("HW init failed, aborting\n");
2733 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2734 LOAD_ERROR_EXIT(bp
, load_error2
);
2738 bnx2x_pre_irq_nic_init(bp
);
2740 /* Connect to IRQs */
2741 rc
= bnx2x_setup_irqs(bp
);
2743 BNX2X_ERR("setup irqs failed\n");
2745 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2746 LOAD_ERROR_EXIT(bp
, load_error2
);
2749 /* Init per-function objects */
2751 /* Setup NIC internals and enable interrupts */
2752 bnx2x_post_irq_nic_init(bp
, load_code
);
2754 bnx2x_init_bp_objs(bp
);
2755 bnx2x_iov_nic_init(bp
);
2757 /* Set AFEX default VLAN tag to an invalid value */
2758 bp
->afex_def_vlan_tag
= -1;
2759 bnx2x_nic_load_afex_dcc(bp
, load_code
);
2760 bp
->state
= BNX2X_STATE_OPENING_WAIT4_PORT
;
2761 rc
= bnx2x_func_start(bp
);
2763 BNX2X_ERR("Function start failed!\n");
2764 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2766 LOAD_ERROR_EXIT(bp
, load_error3
);
2769 /* Send LOAD_DONE command to MCP */
2770 if (!BP_NOMCP(bp
)) {
2771 load_code
= bnx2x_fw_command(bp
,
2772 DRV_MSG_CODE_LOAD_DONE
, 0);
2774 BNX2X_ERR("MCP response failure, aborting\n");
2776 LOAD_ERROR_EXIT(bp
, load_error3
);
2780 /* initialize FW coalescing state machines in RAM */
2781 bnx2x_update_coalesce(bp
);
2784 /* setup the leading queue */
2785 rc
= bnx2x_setup_leading(bp
);
2787 BNX2X_ERR("Setup leading failed!\n");
2788 LOAD_ERROR_EXIT(bp
, load_error3
);
2791 /* set up the rest of the queues */
2792 for_each_nondefault_eth_queue(bp
, i
) {
2794 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], false);
2796 rc
= bnx2x_vfpf_setup_q(bp
, &bp
->fp
[i
], false);
2798 BNX2X_ERR("Queue %d setup failed\n", i
);
2799 LOAD_ERROR_EXIT(bp
, load_error3
);
2804 rc
= bnx2x_init_rss(bp
);
2806 BNX2X_ERR("PF RSS init failed\n");
2807 LOAD_ERROR_EXIT(bp
, load_error3
);
2810 /* Now when Clients are configured we are ready to work */
2811 bp
->state
= BNX2X_STATE_OPEN
;
2813 /* Configure a ucast MAC */
2815 rc
= bnx2x_set_eth_mac(bp
, true);
2817 rc
= bnx2x_vfpf_config_mac(bp
, bp
->dev
->dev_addr
, bp
->fp
->index
,
2820 BNX2X_ERR("Setting Ethernet MAC failed\n");
2821 LOAD_ERROR_EXIT(bp
, load_error3
);
2824 if (IS_PF(bp
) && bp
->pending_max
) {
2825 bnx2x_update_max_mf_config(bp
, bp
->pending_max
);
2826 bp
->pending_max
= 0;
2829 bp
->force_link_down
= false;
2831 rc
= bnx2x_initial_phy_init(bp
, load_mode
);
2833 LOAD_ERROR_EXIT(bp
, load_error3
);
2835 bp
->link_params
.feature_config_flags
&= ~FEATURE_CONFIG_BOOT_FROM_SAN
;
2837 /* Start fast path */
2839 /* Re-configure vlan filters */
2840 rc
= bnx2x_vlan_reconfigure_vid(bp
);
2842 LOAD_ERROR_EXIT(bp
, load_error3
);
2844 /* Initialize Rx filter. */
2845 bnx2x_set_rx_mode_inner(bp
);
2847 if (bp
->flags
& PTP_SUPPORTED
) {
2849 bnx2x_configure_ptp_filters(bp
);
2852 switch (load_mode
) {
2854 /* Tx queue should be only re-enabled */
2855 netif_tx_wake_all_queues(bp
->dev
);
2859 netif_tx_start_all_queues(bp
->dev
);
2860 smp_mb__after_atomic();
2864 case LOAD_LOOPBACK_EXT
:
2865 bp
->state
= BNX2X_STATE_DIAG
;
2873 bnx2x_update_drv_flags(bp
, 1 << DRV_FLAGS_PORT_MASK
, 0);
2875 bnx2x__link_status_update(bp
);
2877 /* start the timer */
2878 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
2880 if (CNIC_ENABLED(bp
))
2881 bnx2x_load_cnic(bp
);
2884 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_GET_DRV_VERSION
, 0);
2886 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2887 /* mark driver is loaded in shmem2 */
2889 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2890 val
&= ~DRV_FLAGS_MTU_MASK
;
2891 val
|= (bp
->dev
->mtu
<< DRV_FLAGS_MTU_SHIFT
);
2892 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2893 val
| DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED
|
2894 DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2897 /* Wait for all pending SP commands to complete */
2898 if (IS_PF(bp
) && !bnx2x_wait_sp_comp(bp
, ~0x0UL
)) {
2899 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2900 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
2904 /* Update driver data for On-Chip MFW dump. */
2906 bnx2x_update_mfw_dump(bp
);
2908 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2909 if (bp
->port
.pmf
&& (bp
->state
!= BNX2X_STATE_DIAG
))
2910 bnx2x_dcbx_init(bp
, false);
2912 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2913 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_ACTIVE
);
2915 DP(NETIF_MSG_IFUP
, "Ending successfully NIC load\n");
2919 #ifndef BNX2X_STOP_ON_ERROR
2922 bnx2x_int_disable_sync(bp
, 1);
2924 /* Clean queueable objects */
2925 bnx2x_squeeze_objects(bp
);
2928 /* Free SKBs, SGEs, TPA pool and driver internals */
2929 bnx2x_free_skbs(bp
);
2930 for_each_rx_queue(bp
, i
)
2931 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
2936 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
2937 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
, 0);
2938 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
2943 bnx2x_napi_disable(bp
);
2944 bnx2x_del_all_napi(bp
);
2946 /* clear pf_load status, as it was already set */
2948 bnx2x_clear_pf_load(bp
);
2950 bnx2x_free_fw_stats_mem(bp
);
2951 bnx2x_free_fp_mem(bp
);
2955 #endif /* ! BNX2X_STOP_ON_ERROR */
2958 int bnx2x_drain_tx_queues(struct bnx2x
*bp
)
2962 /* Wait until tx fastpath tasks complete */
2963 for_each_tx_queue(bp
, i
) {
2964 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2966 for_each_cos_in_tx_queue(fp
, cos
)
2967 rc
= bnx2x_clean_tx_queue(bp
, fp
->txdata_ptr
[cos
]);
2974 /* must be called with rtnl_lock */
2975 int bnx2x_nic_unload(struct bnx2x
*bp
, int unload_mode
, bool keep_link
)
2978 bool global
= false;
2980 DP(NETIF_MSG_IFUP
, "Starting NIC unload\n");
2982 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2983 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_DISABLED
);
2985 /* mark driver is unloaded in shmem2 */
2986 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2988 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2989 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2990 val
& ~DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2993 if (IS_PF(bp
) && bp
->recovery_state
!= BNX2X_RECOVERY_DONE
&&
2994 (bp
->state
== BNX2X_STATE_CLOSED
||
2995 bp
->state
== BNX2X_STATE_ERROR
)) {
2996 /* We can get here if the driver has been unloaded
2997 * during parity error recovery and is either waiting for a
2998 * leader to complete or for other functions to unload and
2999 * then ifdown has been issued. In this case we want to
3000 * unload and let other functions to complete a recovery
3003 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
3005 bnx2x_release_leader_lock(bp
);
3008 DP(NETIF_MSG_IFDOWN
, "Releasing a leadership...\n");
3009 BNX2X_ERR("Can't unload in closed or error state\n");
3013 /* Nothing to do during unload if previous bnx2x_nic_load()
3014 * have not completed successfully - all resources are released.
3016 * we can get here only after unsuccessful ndo_* callback, during which
3017 * dev->IFF_UP flag is still on.
3019 if (bp
->state
== BNX2X_STATE_CLOSED
|| bp
->state
== BNX2X_STATE_ERROR
)
3022 /* It's important to set the bp->state to the value different from
3023 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3024 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3026 bp
->state
= BNX2X_STATE_CLOSING_WAIT4_HALT
;
3029 /* indicate to VFs that the PF is going down */
3030 bnx2x_iov_channel_down(bp
);
3032 if (CNIC_LOADED(bp
))
3033 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
3036 bnx2x_tx_disable(bp
);
3037 netdev_reset_tc(bp
->dev
);
3039 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
3041 del_timer_sync(&bp
->timer
);
3043 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
3044 /* Set ALWAYS_ALIVE bit in shmem */
3045 bp
->fw_drv_pulse_wr_seq
|= DRV_PULSE_ALWAYS_ALIVE
;
3046 bnx2x_drv_pulse(bp
);
3047 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
3048 bnx2x_save_statistics(bp
);
3051 /* wait till consumers catch up with producers in all queues.
3052 * If we're recovering, FW can't write to host so no reason
3053 * to wait for the queues to complete all Tx.
3055 if (unload_mode
!= UNLOAD_RECOVERY
)
3056 bnx2x_drain_tx_queues(bp
);
3058 /* if VF indicate to PF this function is going down (PF will delete sp
3059 * elements and clear initializations
3062 bnx2x_clear_vlan_info(bp
);
3063 bnx2x_vfpf_close_vf(bp
);
3064 } else if (unload_mode
!= UNLOAD_RECOVERY
) {
3065 /* if this is a normal/close unload need to clean up chip*/
3066 bnx2x_chip_cleanup(bp
, unload_mode
, keep_link
);
3068 /* Send the UNLOAD_REQUEST to the MCP */
3069 bnx2x_send_unload_req(bp
, unload_mode
);
3071 /* Prevent transactions to host from the functions on the
3072 * engine that doesn't reset global blocks in case of global
3073 * attention once global blocks are reset and gates are opened
3074 * (the engine which leader will perform the recovery
3077 if (!CHIP_IS_E1x(bp
))
3078 bnx2x_pf_disable(bp
);
3080 /* Disable HW interrupts, NAPI */
3081 bnx2x_netif_stop(bp
, 1);
3082 /* Delete all NAPI objects */
3083 bnx2x_del_all_napi(bp
);
3084 if (CNIC_LOADED(bp
))
3085 bnx2x_del_all_napi_cnic(bp
);
3089 /* Report UNLOAD_DONE to MCP */
3090 bnx2x_send_unload_done(bp
, false);
3094 * At this stage no more interrupts will arrive so we may safely clean
3095 * the queueable objects here in case they failed to get cleaned so far.
3098 bnx2x_squeeze_objects(bp
);
3100 /* There should be no more pending SP commands at this stage */
3105 /* clear pending work in rtnl task */
3106 bp
->sp_rtnl_state
= 0;
3109 /* Free SKBs, SGEs, TPA pool and driver internals */
3110 bnx2x_free_skbs(bp
);
3111 if (CNIC_LOADED(bp
))
3112 bnx2x_free_skbs_cnic(bp
);
3113 for_each_rx_queue(bp
, i
)
3114 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
3116 bnx2x_free_fp_mem(bp
);
3117 if (CNIC_LOADED(bp
))
3118 bnx2x_free_fp_mem_cnic(bp
);
3121 if (CNIC_LOADED(bp
))
3122 bnx2x_free_mem_cnic(bp
);
3126 bp
->state
= BNX2X_STATE_CLOSED
;
3127 bp
->cnic_loaded
= false;
3129 /* Clear driver version indication in shmem */
3130 if (IS_PF(bp
) && !BP_NOMCP(bp
))
3131 bnx2x_update_mng_version(bp
);
3133 /* Check if there are pending parity attentions. If there are - set
3134 * RECOVERY_IN_PROGRESS.
3136 if (IS_PF(bp
) && bnx2x_chk_parity_attn(bp
, &global
, false)) {
3137 bnx2x_set_reset_in_progress(bp
);
3139 /* Set RESET_IS_GLOBAL if needed */
3141 bnx2x_set_reset_global(bp
);
3144 /* The last driver must disable a "close the gate" if there is no
3145 * parity attention or "process kill" pending.
3148 !bnx2x_clear_pf_load(bp
) &&
3149 bnx2x_reset_is_done(bp
, BP_PATH(bp
)))
3150 bnx2x_disable_close_the_gate(bp
);
3152 DP(NETIF_MSG_IFUP
, "Ending NIC unload\n");
3157 int bnx2x_set_power_state(struct bnx2x
*bp
, pci_power_t state
)
3161 /* If there is no power capability, silently succeed */
3162 if (!bp
->pdev
->pm_cap
) {
3163 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3167 pci_read_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3171 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3172 ((pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3173 PCI_PM_CTRL_PME_STATUS
));
3175 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3176 /* delay required during transition out of D3hot */
3181 /* If there are other clients above don't
3182 shut down the power */
3183 if (atomic_read(&bp
->pdev
->enable_cnt
) != 1)
3185 /* Don't shut down the power for emulation and FPGA */
3186 if (CHIP_REV_IS_SLOW(bp
))
3189 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3193 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3195 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3198 /* No more memory access after this point until
3199 * device is brought back to D0.
3204 dev_err(&bp
->pdev
->dev
, "Can't support state = %d\n", state
);
3211 * net_device service functions
3213 static int bnx2x_poll(struct napi_struct
*napi
, int budget
)
3215 struct bnx2x_fastpath
*fp
= container_of(napi
, struct bnx2x_fastpath
,
3217 struct bnx2x
*bp
= fp
->bp
;
3221 #ifdef BNX2X_STOP_ON_ERROR
3222 if (unlikely(bp
->panic
)) {
3223 napi_complete(napi
);
3227 for_each_cos_in_tx_queue(fp
, cos
)
3228 if (bnx2x_tx_queue_has_work(fp
->txdata_ptr
[cos
]))
3229 bnx2x_tx_int(bp
, fp
->txdata_ptr
[cos
]);
3231 rx_work_done
= (bnx2x_has_rx_work(fp
)) ? bnx2x_rx_int(fp
, budget
) : 0;
3233 if (rx_work_done
< budget
) {
3234 /* No need to update SB for FCoE L2 ring as long as
3235 * it's connected to the default SB and the SB
3236 * has been updated when NAPI was scheduled.
3238 if (IS_FCOE_FP(fp
)) {
3239 napi_complete_done(napi
, rx_work_done
);
3241 bnx2x_update_fpsb_idx(fp
);
3242 /* bnx2x_has_rx_work() reads the status block,
3243 * thus we need to ensure that status block indices
3244 * have been actually read (bnx2x_update_fpsb_idx)
3245 * prior to this check (bnx2x_has_rx_work) so that
3246 * we won't write the "newer" value of the status block
3247 * to IGU (if there was a DMA right after
3248 * bnx2x_has_rx_work and if there is no rmb, the memory
3249 * reading (bnx2x_update_fpsb_idx) may be postponed
3250 * to right before bnx2x_ack_sb). In this case there
3251 * will never be another interrupt until there is
3252 * another update of the status block, while there
3253 * is still unhandled work.
3257 if (!(bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
3258 if (napi_complete_done(napi
, rx_work_done
)) {
3259 /* Re-enable interrupts */
3260 DP(NETIF_MSG_RX_STATUS
,
3261 "Update index to %d\n", fp
->fp_hc_idx
);
3262 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
,
3263 le16_to_cpu(fp
->fp_hc_idx
),
3267 rx_work_done
= budget
;
3272 return rx_work_done
;
3275 /* we split the first BD into headers and data BDs
3276 * to ease the pain of our fellow microcode engineers
3277 * we use one mapping for both BDs
3279 static u16
bnx2x_tx_split(struct bnx2x
*bp
,
3280 struct bnx2x_fp_txdata
*txdata
,
3281 struct sw_tx_bd
*tx_buf
,
3282 struct eth_tx_start_bd
**tx_bd
, u16 hlen
,
3285 struct eth_tx_start_bd
*h_tx_bd
= *tx_bd
;
3286 struct eth_tx_bd
*d_tx_bd
;
3288 int old_len
= le16_to_cpu(h_tx_bd
->nbytes
);
3290 /* first fix first BD */
3291 h_tx_bd
->nbytes
= cpu_to_le16(hlen
);
3293 DP(NETIF_MSG_TX_QUEUED
, "TSO split header size is %d (%x:%x)\n",
3294 h_tx_bd
->nbytes
, h_tx_bd
->addr_hi
, h_tx_bd
->addr_lo
);
3296 /* now get a new data BD
3297 * (after the pbd) and fill it */
3298 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3299 d_tx_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
3301 mapping
= HILO_U64(le32_to_cpu(h_tx_bd
->addr_hi
),
3302 le32_to_cpu(h_tx_bd
->addr_lo
)) + hlen
;
3304 d_tx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
3305 d_tx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
3306 d_tx_bd
->nbytes
= cpu_to_le16(old_len
- hlen
);
3308 /* this marks the BD as one that has no individual mapping */
3309 tx_buf
->flags
|= BNX2X_TSO_SPLIT_BD
;
3311 DP(NETIF_MSG_TX_QUEUED
,
3312 "TSO split data size is %d (%x:%x)\n",
3313 d_tx_bd
->nbytes
, d_tx_bd
->addr_hi
, d_tx_bd
->addr_lo
);
3316 *tx_bd
= (struct eth_tx_start_bd
*)d_tx_bd
;
3321 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3322 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3323 static __le16
bnx2x_csum_fix(unsigned char *t_header
, u16 csum
, s8 fix
)
3325 __sum16 tsum
= (__force __sum16
) csum
;
3328 tsum
= ~csum_fold(csum_sub((__force __wsum
) csum
,
3329 csum_partial(t_header
- fix
, fix
, 0)));
3332 tsum
= ~csum_fold(csum_add((__force __wsum
) csum
,
3333 csum_partial(t_header
, -fix
, 0)));
3335 return bswab16(tsum
);
3338 static u32
bnx2x_xmit_type(struct bnx2x
*bp
, struct sk_buff
*skb
)
3344 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3347 protocol
= vlan_get_protocol(skb
);
3348 if (protocol
== htons(ETH_P_IPV6
)) {
3350 prot
= ipv6_hdr(skb
)->nexthdr
;
3353 prot
= ip_hdr(skb
)->protocol
;
3356 if (!CHIP_IS_E1x(bp
) && skb
->encapsulation
) {
3357 if (inner_ip_hdr(skb
)->version
== 6) {
3358 rc
|= XMIT_CSUM_ENC_V6
;
3359 if (inner_ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3360 rc
|= XMIT_CSUM_TCP
;
3362 rc
|= XMIT_CSUM_ENC_V4
;
3363 if (inner_ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3364 rc
|= XMIT_CSUM_TCP
;
3367 if (prot
== IPPROTO_TCP
)
3368 rc
|= XMIT_CSUM_TCP
;
3370 if (skb_is_gso(skb
)) {
3371 if (skb_is_gso_v6(skb
)) {
3372 rc
|= (XMIT_GSO_V6
| XMIT_CSUM_TCP
);
3373 if (rc
& XMIT_CSUM_ENC
)
3374 rc
|= XMIT_GSO_ENC_V6
;
3376 rc
|= (XMIT_GSO_V4
| XMIT_CSUM_TCP
);
3377 if (rc
& XMIT_CSUM_ENC
)
3378 rc
|= XMIT_GSO_ENC_V4
;
3385 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3386 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3388 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3389 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3391 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3392 /* check if packet requires linearization (packet is too fragmented)
3393 no need to check fragmentation if page size > 8K (there will be no
3394 violation to FW restrictions) */
3395 static int bnx2x_pkt_req_lin(struct bnx2x
*bp
, struct sk_buff
*skb
,
3398 int first_bd_sz
= 0, num_tso_win_sub
= BNX2X_NUM_TSO_WIN_SUB_BDS
;
3399 int to_copy
= 0, hlen
= 0;
3401 if (xmit_type
& XMIT_GSO_ENC
)
3402 num_tso_win_sub
= BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS
;
3404 if (skb_shinfo(skb
)->nr_frags
>= (MAX_FETCH_BD
- num_tso_win_sub
)) {
3405 if (xmit_type
& XMIT_GSO
) {
3406 unsigned short lso_mss
= skb_shinfo(skb
)->gso_size
;
3407 int wnd_size
= MAX_FETCH_BD
- num_tso_win_sub
;
3408 /* Number of windows to check */
3409 int num_wnds
= skb_shinfo(skb
)->nr_frags
- wnd_size
;
3414 /* Headers length */
3415 if (xmit_type
& XMIT_GSO_ENC
)
3416 hlen
= (int)(skb_inner_transport_header(skb
) -
3418 inner_tcp_hdrlen(skb
);
3420 hlen
= (int)(skb_transport_header(skb
) -
3421 skb
->data
) + tcp_hdrlen(skb
);
3423 /* Amount of data (w/o headers) on linear part of SKB*/
3424 first_bd_sz
= skb_headlen(skb
) - hlen
;
3426 wnd_sum
= first_bd_sz
;
3428 /* Calculate the first sum - it's special */
3429 for (frag_idx
= 0; frag_idx
< wnd_size
- 1; frag_idx
++)
3431 skb_frag_size(&skb_shinfo(skb
)->frags
[frag_idx
]);
3433 /* If there was data on linear skb data - check it */
3434 if (first_bd_sz
> 0) {
3435 if (unlikely(wnd_sum
< lso_mss
)) {
3440 wnd_sum
-= first_bd_sz
;
3443 /* Others are easier: run through the frag list and
3444 check all windows */
3445 for (wnd_idx
= 0; wnd_idx
<= num_wnds
; wnd_idx
++) {
3447 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
+ wnd_size
- 1]);
3449 if (unlikely(wnd_sum
< lso_mss
)) {
3454 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
]);
3457 /* in non-LSO too fragmented packet should always
3464 if (unlikely(to_copy
))
3465 DP(NETIF_MSG_TX_QUEUED
,
3466 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3467 (xmit_type
& XMIT_GSO
) ? "LSO" : "non-LSO",
3468 skb_shinfo(skb
)->nr_frags
, hlen
, first_bd_sz
);
3475 * bnx2x_set_pbd_gso - update PBD in GSO case.
3479 * @xmit_type: xmit flags
3481 static void bnx2x_set_pbd_gso(struct sk_buff
*skb
,
3482 struct eth_tx_parse_bd_e1x
*pbd
,
3485 pbd
->lso_mss
= cpu_to_le16(skb_shinfo(skb
)->gso_size
);
3486 pbd
->tcp_send_seq
= bswab32(tcp_hdr(skb
)->seq
);
3487 pbd
->tcp_flags
= pbd_tcp_flags(tcp_hdr(skb
));
3489 if (xmit_type
& XMIT_GSO_V4
) {
3490 pbd
->ip_id
= bswab16(ip_hdr(skb
)->id
);
3491 pbd
->tcp_pseudo_csum
=
3492 bswab16(~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3494 0, IPPROTO_TCP
, 0));
3496 pbd
->tcp_pseudo_csum
=
3497 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3498 &ipv6_hdr(skb
)->daddr
,
3499 0, IPPROTO_TCP
, 0));
3503 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN
);
3507 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3509 * @bp: driver handle
3511 * @parsing_data: data to be updated
3512 * @xmit_type: xmit flags
3514 * 57712/578xx related, when skb has encapsulation
3516 static u8
bnx2x_set_pbd_csum_enc(struct bnx2x
*bp
, struct sk_buff
*skb
,
3517 u32
*parsing_data
, u32 xmit_type
)
3520 ((((u8
*)skb_inner_transport_header(skb
) - skb
->data
) >> 1) <<
3521 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3522 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3524 if (xmit_type
& XMIT_CSUM_TCP
) {
3525 *parsing_data
|= ((inner_tcp_hdrlen(skb
) / 4) <<
3526 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3527 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3529 return skb_inner_transport_header(skb
) +
3530 inner_tcp_hdrlen(skb
) - skb
->data
;
3533 /* We support checksum offload for TCP and UDP only.
3534 * No need to pass the UDP header length - it's a constant.
3536 return skb_inner_transport_header(skb
) +
3537 sizeof(struct udphdr
) - skb
->data
;
3541 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3543 * @bp: driver handle
3545 * @parsing_data: data to be updated
3546 * @xmit_type: xmit flags
3548 * 57712/578xx related
3550 static u8
bnx2x_set_pbd_csum_e2(struct bnx2x
*bp
, struct sk_buff
*skb
,
3551 u32
*parsing_data
, u32 xmit_type
)
3554 ((((u8
*)skb_transport_header(skb
) - skb
->data
) >> 1) <<
3555 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3556 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3558 if (xmit_type
& XMIT_CSUM_TCP
) {
3559 *parsing_data
|= ((tcp_hdrlen(skb
) / 4) <<
3560 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3561 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3563 return skb_transport_header(skb
) + tcp_hdrlen(skb
) - skb
->data
;
3565 /* We support checksum offload for TCP and UDP only.
3566 * No need to pass the UDP header length - it's a constant.
3568 return skb_transport_header(skb
) + sizeof(struct udphdr
) - skb
->data
;
3571 /* set FW indication according to inner or outer protocols if tunneled */
3572 static void bnx2x_set_sbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3573 struct eth_tx_start_bd
*tx_start_bd
,
3576 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_L4_CSUM
;
3578 if (xmit_type
& (XMIT_CSUM_ENC_V6
| XMIT_CSUM_V6
))
3579 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IPV6
;
3581 if (!(xmit_type
& XMIT_CSUM_TCP
))
3582 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IS_UDP
;
3586 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3588 * @bp: driver handle
3590 * @pbd: parse BD to be updated
3591 * @xmit_type: xmit flags
3593 static u8
bnx2x_set_pbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3594 struct eth_tx_parse_bd_e1x
*pbd
,
3597 u8 hlen
= (skb_network_header(skb
) - skb
->data
) >> 1;
3599 /* for now NS flag is not used in Linux */
3602 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3603 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT
));
3605 pbd
->ip_hlen_w
= (skb_transport_header(skb
) -
3606 skb_network_header(skb
)) >> 1;
3608 hlen
+= pbd
->ip_hlen_w
;
3610 /* We support checksum offload for TCP and UDP only */
3611 if (xmit_type
& XMIT_CSUM_TCP
)
3612 hlen
+= tcp_hdrlen(skb
) / 2;
3614 hlen
+= sizeof(struct udphdr
) / 2;
3616 pbd
->total_hlen_w
= cpu_to_le16(hlen
);
3619 if (xmit_type
& XMIT_CSUM_TCP
) {
3620 pbd
->tcp_pseudo_csum
= bswab16(tcp_hdr(skb
)->check
);
3623 s8 fix
= SKB_CS_OFF(skb
); /* signed! */
3625 DP(NETIF_MSG_TX_QUEUED
,
3626 "hlen %d fix %d csum before fix %x\n",
3627 le16_to_cpu(pbd
->total_hlen_w
), fix
, SKB_CS(skb
));
3629 /* HW bug: fixup the CSUM */
3630 pbd
->tcp_pseudo_csum
=
3631 bnx2x_csum_fix(skb_transport_header(skb
),
3634 DP(NETIF_MSG_TX_QUEUED
, "csum after fix %x\n",
3635 pbd
->tcp_pseudo_csum
);
3641 static void bnx2x_update_pbds_gso_enc(struct sk_buff
*skb
,
3642 struct eth_tx_parse_bd_e2
*pbd_e2
,
3643 struct eth_tx_parse_2nd_bd
*pbd2
,
3648 u8 outerip_off
, outerip_len
= 0;
3650 /* from outer IP to transport */
3651 hlen_w
= (skb_inner_transport_header(skb
) -
3652 skb_network_header(skb
)) >> 1;
3655 hlen_w
+= inner_tcp_hdrlen(skb
) >> 1;
3657 pbd2
->fw_ip_hdr_to_payload_w
= hlen_w
;
3659 /* outer IP header info */
3660 if (xmit_type
& XMIT_CSUM_V4
) {
3661 struct iphdr
*iph
= ip_hdr(skb
);
3662 u32 csum
= (__force u32
)(~iph
->check
) -
3663 (__force u32
)iph
->tot_len
-
3664 (__force u32
)iph
->frag_off
;
3666 outerip_len
= iph
->ihl
<< 1;
3668 pbd2
->fw_ip_csum_wo_len_flags_frag
=
3669 bswab16(csum_fold((__force __wsum
)csum
));
3671 pbd2
->fw_ip_hdr_to_payload_w
=
3672 hlen_w
- ((sizeof(struct ipv6hdr
)) >> 1);
3673 pbd_e2
->data
.tunnel_data
.flags
|=
3674 ETH_TUNNEL_DATA_IPV6_OUTER
;
3677 pbd2
->tcp_send_seq
= bswab32(inner_tcp_hdr(skb
)->seq
);
3679 pbd2
->tcp_flags
= pbd_tcp_flags(inner_tcp_hdr(skb
));
3681 /* inner IP header info */
3682 if (xmit_type
& XMIT_CSUM_ENC_V4
) {
3683 pbd2
->hw_ip_id
= bswab16(inner_ip_hdr(skb
)->id
);
3685 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3686 bswab16(~csum_tcpudp_magic(
3687 inner_ip_hdr(skb
)->saddr
,
3688 inner_ip_hdr(skb
)->daddr
,
3689 0, IPPROTO_TCP
, 0));
3691 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3692 bswab16(~csum_ipv6_magic(
3693 &inner_ipv6_hdr(skb
)->saddr
,
3694 &inner_ipv6_hdr(skb
)->daddr
,
3695 0, IPPROTO_TCP
, 0));
3698 outerip_off
= (skb_network_header(skb
) - skb
->data
) >> 1;
3703 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT
) |
3704 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3705 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT
);
3707 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
3708 SET_FLAG(*global_data
, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST
, 1);
3709 pbd2
->tunnel_udp_hdr_start_w
= skb_transport_offset(skb
) >> 1;
3713 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff
*skb
, u32
*parsing_data
,
3716 struct ipv6hdr
*ipv6
;
3718 if (!(xmit_type
& (XMIT_GSO_ENC_V6
| XMIT_GSO_V6
)))
3721 if (xmit_type
& XMIT_GSO_ENC_V6
)
3722 ipv6
= inner_ipv6_hdr(skb
);
3723 else /* XMIT_GSO_V6 */
3724 ipv6
= ipv6_hdr(skb
);
3726 if (ipv6
->nexthdr
== NEXTHDR_IPV6
)
3727 *parsing_data
|= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR
;
3730 /* called with netif_tx_lock
3731 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3732 * netif_wake_queue()
3734 netdev_tx_t
bnx2x_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3736 struct bnx2x
*bp
= netdev_priv(dev
);
3738 struct netdev_queue
*txq
;
3739 struct bnx2x_fp_txdata
*txdata
;
3740 struct sw_tx_bd
*tx_buf
;
3741 struct eth_tx_start_bd
*tx_start_bd
, *first_bd
;
3742 struct eth_tx_bd
*tx_data_bd
, *total_pkt_bd
= NULL
;
3743 struct eth_tx_parse_bd_e1x
*pbd_e1x
= NULL
;
3744 struct eth_tx_parse_bd_e2
*pbd_e2
= NULL
;
3745 struct eth_tx_parse_2nd_bd
*pbd2
= NULL
;
3746 u32 pbd_e2_parsing_data
= 0;
3747 u16 pkt_prod
, bd_prod
;
3750 u32 xmit_type
= bnx2x_xmit_type(bp
, skb
);
3753 __le16 pkt_size
= 0;
3755 u8 mac_type
= UNICAST_ADDRESS
;
3757 #ifdef BNX2X_STOP_ON_ERROR
3758 if (unlikely(bp
->panic
))
3759 return NETDEV_TX_BUSY
;
3762 txq_index
= skb_get_queue_mapping(skb
);
3763 txq
= netdev_get_tx_queue(dev
, txq_index
);
3765 BUG_ON(txq_index
>= MAX_ETH_TXQ_IDX(bp
) + (CNIC_LOADED(bp
) ? 1 : 0));
3767 txdata
= &bp
->bnx2x_txq
[txq_index
];
3769 /* enable this debug print to view the transmission queue being used
3770 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3771 txq_index, fp_index, txdata_index); */
3773 /* enable this debug print to view the transmission details
3774 DP(NETIF_MSG_TX_QUEUED,
3775 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3776 txdata->cid, fp_index, txdata_index, txdata, fp); */
3778 if (unlikely(bnx2x_tx_avail(bp
, txdata
) <
3779 skb_shinfo(skb
)->nr_frags
+
3781 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT
))) {
3782 /* Handle special storage cases separately */
3783 if (txdata
->tx_ring_size
== 0) {
3784 struct bnx2x_eth_q_stats
*q_stats
=
3785 bnx2x_fp_qstats(bp
, txdata
->parent_fp
);
3786 q_stats
->driver_filtered_tx_pkt
++;
3788 return NETDEV_TX_OK
;
3790 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
3791 netif_tx_stop_queue(txq
);
3792 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3794 return NETDEV_TX_BUSY
;
3797 DP(NETIF_MSG_TX_QUEUED
,
3798 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3799 txq_index
, skb
->ip_summed
, skb
->protocol
, ipv6_hdr(skb
)->nexthdr
,
3800 ip_hdr(skb
)->protocol
, skb_shinfo(skb
)->gso_type
, xmit_type
,
3803 eth
= (struct ethhdr
*)skb
->data
;
3805 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3806 if (unlikely(is_multicast_ether_addr(eth
->h_dest
))) {
3807 if (is_broadcast_ether_addr(eth
->h_dest
))
3808 mac_type
= BROADCAST_ADDRESS
;
3810 mac_type
= MULTICAST_ADDRESS
;
3813 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3814 /* First, check if we need to linearize the skb (due to FW
3815 restrictions). No need to check fragmentation if page size > 8K
3816 (there will be no violation to FW restrictions) */
3817 if (bnx2x_pkt_req_lin(bp
, skb
, xmit_type
)) {
3818 /* Statistics of linearization */
3820 if (skb_linearize(skb
) != 0) {
3821 DP(NETIF_MSG_TX_QUEUED
,
3822 "SKB linearization failed - silently dropping this SKB\n");
3823 dev_kfree_skb_any(skb
);
3824 return NETDEV_TX_OK
;
3828 /* Map skb linear data for DMA */
3829 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
,
3830 skb_headlen(skb
), DMA_TO_DEVICE
);
3831 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
3832 DP(NETIF_MSG_TX_QUEUED
,
3833 "SKB mapping failed - silently dropping this SKB\n");
3834 dev_kfree_skb_any(skb
);
3835 return NETDEV_TX_OK
;
3838 Please read carefully. First we use one BD which we mark as start,
3839 then we have a parsing info BD (used for TSO or xsum),
3840 and only then we have the rest of the TSO BDs.
3841 (don't forget to mark the last one as last,
3842 and to unmap only AFTER you write to the BD ...)
3843 And above all, all pdb sizes are in words - NOT DWORDS!
3846 /* get current pkt produced now - advance it just before sending packet
3847 * since mapping of pages may fail and cause packet to be dropped
3849 pkt_prod
= txdata
->tx_pkt_prod
;
3850 bd_prod
= TX_BD(txdata
->tx_bd_prod
);
3852 /* get a tx_buf and first BD
3853 * tx_start_bd may be changed during SPLIT,
3854 * but first_bd will always stay first
3856 tx_buf
= &txdata
->tx_buf_ring
[TX_BD(pkt_prod
)];
3857 tx_start_bd
= &txdata
->tx_desc_ring
[bd_prod
].start_bd
;
3858 first_bd
= tx_start_bd
;
3860 tx_start_bd
->bd_flags
.as_bitfield
= ETH_TX_BD_FLAGS_START_BD
;
3862 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
)) {
3863 if (!(bp
->flags
& TX_TIMESTAMPING_EN
)) {
3864 bp
->eth_stats
.ptp_skip_tx_ts
++;
3865 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3866 } else if (bp
->ptp_tx_skb
) {
3867 bp
->eth_stats
.ptp_skip_tx_ts
++;
3868 netdev_err_once(bp
->dev
,
3869 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3871 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
3872 /* schedule check for Tx timestamp */
3873 bp
->ptp_tx_skb
= skb_get(skb
);
3874 bp
->ptp_tx_start
= jiffies
;
3875 schedule_work(&bp
->ptp_task
);
3879 /* header nbd: indirectly zero other flags! */
3880 tx_start_bd
->general_data
= 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT
;
3882 /* remember the first BD of the packet */
3883 tx_buf
->first_bd
= txdata
->tx_bd_prod
;
3887 DP(NETIF_MSG_TX_QUEUED
,
3888 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3889 pkt_prod
, tx_buf
, txdata
->tx_pkt_prod
, bd_prod
, tx_start_bd
);
3891 if (skb_vlan_tag_present(skb
)) {
3892 tx_start_bd
->vlan_or_ethertype
=
3893 cpu_to_le16(skb_vlan_tag_get(skb
));
3894 tx_start_bd
->bd_flags
.as_bitfield
|=
3895 (X_ETH_OUTBAND_VLAN
<< ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3897 /* when transmitting in a vf, start bd must hold the ethertype
3898 * for fw to enforce it
3901 #ifndef BNX2X_STOP_ON_ERROR
3904 /* Still need to consider inband vlan for enforced */
3905 if (__vlan_get_tag(skb
, &vlan_tci
)) {
3906 tx_start_bd
->vlan_or_ethertype
=
3907 cpu_to_le16(ntohs(eth
->h_proto
));
3909 tx_start_bd
->bd_flags
.as_bitfield
|=
3910 (X_ETH_INBAND_VLAN
<<
3911 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3912 tx_start_bd
->vlan_or_ethertype
=
3913 cpu_to_le16(vlan_tci
);
3915 #ifndef BNX2X_STOP_ON_ERROR
3917 /* used by FW for packet accounting */
3918 tx_start_bd
->vlan_or_ethertype
= cpu_to_le16(pkt_prod
);
3923 nbd
= 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3925 /* turn on parsing and get a BD */
3926 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3928 if (xmit_type
& XMIT_CSUM
)
3929 bnx2x_set_sbd_csum(bp
, skb
, tx_start_bd
, xmit_type
);
3931 if (!CHIP_IS_E1x(bp
)) {
3932 pbd_e2
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e2
;
3933 memset(pbd_e2
, 0, sizeof(struct eth_tx_parse_bd_e2
));
3935 if (xmit_type
& XMIT_CSUM_ENC
) {
3936 u16 global_data
= 0;
3938 /* Set PBD in enc checksum offload case */
3939 hlen
= bnx2x_set_pbd_csum_enc(bp
, skb
,
3940 &pbd_e2_parsing_data
,
3943 /* turn on 2nd parsing and get a BD */
3944 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3946 pbd2
= &txdata
->tx_desc_ring
[bd_prod
].parse_2nd_bd
;
3948 memset(pbd2
, 0, sizeof(*pbd2
));
3950 pbd_e2
->data
.tunnel_data
.ip_hdr_start_inner_w
=
3951 (skb_inner_network_header(skb
) -
3954 if (xmit_type
& XMIT_GSO_ENC
)
3955 bnx2x_update_pbds_gso_enc(skb
, pbd_e2
, pbd2
,
3959 pbd2
->global_data
= cpu_to_le16(global_data
);
3961 /* add addition parse BD indication to start BD */
3962 SET_FLAG(tx_start_bd
->general_data
,
3963 ETH_TX_START_BD_PARSE_NBDS
, 1);
3964 /* set encapsulation flag in start BD */
3965 SET_FLAG(tx_start_bd
->general_data
,
3966 ETH_TX_START_BD_TUNNEL_EXIST
, 1);
3968 tx_buf
->flags
|= BNX2X_HAS_SECOND_PBD
;
3971 } else if (xmit_type
& XMIT_CSUM
) {
3972 /* Set PBD in checksum offload case w/o encapsulation */
3973 hlen
= bnx2x_set_pbd_csum_e2(bp
, skb
,
3974 &pbd_e2_parsing_data
,
3978 bnx2x_set_ipv6_ext_e2(skb
, &pbd_e2_parsing_data
, xmit_type
);
3979 /* Add the macs to the parsing BD if this is a vf or if
3980 * Tx Switching is enabled.
3983 /* override GRE parameters in BD */
3984 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
3985 &pbd_e2
->data
.mac_addr
.src_mid
,
3986 &pbd_e2
->data
.mac_addr
.src_lo
,
3989 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.dst_hi
,
3990 &pbd_e2
->data
.mac_addr
.dst_mid
,
3991 &pbd_e2
->data
.mac_addr
.dst_lo
,
3994 if (bp
->flags
& TX_SWITCHING
)
3995 bnx2x_set_fw_mac_addr(
3996 &pbd_e2
->data
.mac_addr
.dst_hi
,
3997 &pbd_e2
->data
.mac_addr
.dst_mid
,
3998 &pbd_e2
->data
.mac_addr
.dst_lo
,
4000 #ifdef BNX2X_STOP_ON_ERROR
4001 /* Enforce security is always set in Stop on Error -
4002 * source mac should be present in the parsing BD
4004 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
4005 &pbd_e2
->data
.mac_addr
.src_mid
,
4006 &pbd_e2
->data
.mac_addr
.src_lo
,
4011 SET_FLAG(pbd_e2_parsing_data
,
4012 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE
, mac_type
);
4014 u16 global_data
= 0;
4015 pbd_e1x
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e1x
;
4016 memset(pbd_e1x
, 0, sizeof(struct eth_tx_parse_bd_e1x
));
4017 /* Set PBD in checksum offload case */
4018 if (xmit_type
& XMIT_CSUM
)
4019 hlen
= bnx2x_set_pbd_csum(bp
, skb
, pbd_e1x
, xmit_type
);
4021 SET_FLAG(global_data
,
4022 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE
, mac_type
);
4023 pbd_e1x
->global_data
|= cpu_to_le16(global_data
);
4026 /* Setup the data pointer of the first BD of the packet */
4027 tx_start_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4028 tx_start_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4029 tx_start_bd
->nbytes
= cpu_to_le16(skb_headlen(skb
));
4030 pkt_size
= tx_start_bd
->nbytes
;
4032 DP(NETIF_MSG_TX_QUEUED
,
4033 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4034 tx_start_bd
, tx_start_bd
->addr_hi
, tx_start_bd
->addr_lo
,
4035 le16_to_cpu(tx_start_bd
->nbytes
),
4036 tx_start_bd
->bd_flags
.as_bitfield
,
4037 le16_to_cpu(tx_start_bd
->vlan_or_ethertype
));
4039 if (xmit_type
& XMIT_GSO
) {
4041 DP(NETIF_MSG_TX_QUEUED
,
4042 "TSO packet len %d hlen %d total len %d tso size %d\n",
4043 skb
->len
, hlen
, skb_headlen(skb
),
4044 skb_shinfo(skb
)->gso_size
);
4046 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_SW_LSO
;
4048 if (unlikely(skb_headlen(skb
) > hlen
)) {
4050 bd_prod
= bnx2x_tx_split(bp
, txdata
, tx_buf
,
4054 if (!CHIP_IS_E1x(bp
))
4055 pbd_e2_parsing_data
|=
4056 (skb_shinfo(skb
)->gso_size
<<
4057 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT
) &
4058 ETH_TX_PARSE_BD_E2_LSO_MSS
;
4060 bnx2x_set_pbd_gso(skb
, pbd_e1x
, xmit_type
);
4063 /* Set the PBD's parsing_data field if not zero
4064 * (for the chips newer than 57711).
4066 if (pbd_e2_parsing_data
)
4067 pbd_e2
->parsing_data
= cpu_to_le32(pbd_e2_parsing_data
);
4069 tx_data_bd
= (struct eth_tx_bd
*)tx_start_bd
;
4071 /* Handle fragmented skb */
4072 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
4073 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4075 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0,
4076 skb_frag_size(frag
), DMA_TO_DEVICE
);
4077 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
4078 unsigned int pkts_compl
= 0, bytes_compl
= 0;
4080 DP(NETIF_MSG_TX_QUEUED
,
4081 "Unable to map page - dropping packet...\n");
4083 /* we need unmap all buffers already mapped
4085 * first_bd->nbd need to be properly updated
4086 * before call to bnx2x_free_tx_pkt
4088 first_bd
->nbd
= cpu_to_le16(nbd
);
4089 bnx2x_free_tx_pkt(bp
, txdata
,
4090 TX_BD(txdata
->tx_pkt_prod
),
4091 &pkts_compl
, &bytes_compl
);
4092 return NETDEV_TX_OK
;
4095 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4096 tx_data_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4097 if (total_pkt_bd
== NULL
)
4098 total_pkt_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4100 tx_data_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4101 tx_data_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4102 tx_data_bd
->nbytes
= cpu_to_le16(skb_frag_size(frag
));
4103 le16_add_cpu(&pkt_size
, skb_frag_size(frag
));
4106 DP(NETIF_MSG_TX_QUEUED
,
4107 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4108 i
, tx_data_bd
, tx_data_bd
->addr_hi
, tx_data_bd
->addr_lo
,
4109 le16_to_cpu(tx_data_bd
->nbytes
));
4112 DP(NETIF_MSG_TX_QUEUED
, "last bd @%p\n", tx_data_bd
);
4114 /* update with actual num BDs */
4115 first_bd
->nbd
= cpu_to_le16(nbd
);
4117 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4119 /* now send a tx doorbell, counting the next BD
4120 * if the packet contains or ends with it
4122 if (TX_BD_POFF(bd_prod
) < nbd
)
4125 /* total_pkt_bytes should be set on the first data BD if
4126 * it's not an LSO packet and there is more than one
4127 * data BD. In this case pkt_size is limited by an MTU value.
4128 * However we prefer to set it for an LSO packet (while we don't
4129 * have to) in order to save some CPU cycles in a none-LSO
4130 * case, when we much more care about them.
4132 if (total_pkt_bd
!= NULL
)
4133 total_pkt_bd
->total_pkt_bytes
= pkt_size
;
4136 DP(NETIF_MSG_TX_QUEUED
,
4137 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4138 pbd_e1x
, pbd_e1x
->global_data
, pbd_e1x
->ip_hlen_w
,
4139 pbd_e1x
->ip_id
, pbd_e1x
->lso_mss
, pbd_e1x
->tcp_flags
,
4140 pbd_e1x
->tcp_pseudo_csum
, pbd_e1x
->tcp_send_seq
,
4141 le16_to_cpu(pbd_e1x
->total_hlen_w
));
4143 DP(NETIF_MSG_TX_QUEUED
,
4144 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4146 pbd_e2
->data
.mac_addr
.dst_hi
,
4147 pbd_e2
->data
.mac_addr
.dst_mid
,
4148 pbd_e2
->data
.mac_addr
.dst_lo
,
4149 pbd_e2
->data
.mac_addr
.src_hi
,
4150 pbd_e2
->data
.mac_addr
.src_mid
,
4151 pbd_e2
->data
.mac_addr
.src_lo
,
4152 pbd_e2
->parsing_data
);
4153 DP(NETIF_MSG_TX_QUEUED
, "doorbell: nbd %d bd %u\n", nbd
, bd_prod
);
4155 netdev_tx_sent_queue(txq
, skb
->len
);
4157 skb_tx_timestamp(skb
);
4159 txdata
->tx_pkt_prod
++;
4161 * Make sure that the BD data is updated before updating the producer
4162 * since FW might read the BD right after the producer is updated.
4163 * This is only applicable for weak-ordered memory model archs such
4164 * as IA-64. The following barrier is also mandatory since FW will
4165 * assumes packets must have BDs.
4169 txdata
->tx_db
.data
.prod
+= nbd
;
4170 /* make sure descriptor update is observed by HW */
4173 DOORBELL_RELAXED(bp
, txdata
->cid
, txdata
->tx_db
.raw
);
4177 txdata
->tx_bd_prod
+= nbd
;
4179 if (unlikely(bnx2x_tx_avail(bp
, txdata
) < MAX_DESC_PER_TX_PKT
)) {
4180 netif_tx_stop_queue(txq
);
4182 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4183 * ordering of set_bit() in netif_tx_stop_queue() and read of
4187 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
4188 if (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
)
4189 netif_tx_wake_queue(txq
);
4193 return NETDEV_TX_OK
;
4196 void bnx2x_get_c2s_mapping(struct bnx2x
*bp
, u8
*c2s_map
, u8
*c2s_default
)
4198 int mfw_vn
= BP_FW_MB_IDX(bp
);
4201 /* If the shmem shouldn't affect configuration, reflect */
4202 if (!IS_MF_BD(bp
)) {
4205 for (i
= 0; i
< BNX2X_MAX_PRIORITY
; i
++)
4212 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_lower
[mfw_vn
]);
4213 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4214 c2s_map
[0] = tmp
& 0xff;
4215 c2s_map
[1] = (tmp
>> 8) & 0xff;
4216 c2s_map
[2] = (tmp
>> 16) & 0xff;
4217 c2s_map
[3] = (tmp
>> 24) & 0xff;
4219 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_upper
[mfw_vn
]);
4220 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4221 c2s_map
[4] = tmp
& 0xff;
4222 c2s_map
[5] = (tmp
>> 8) & 0xff;
4223 c2s_map
[6] = (tmp
>> 16) & 0xff;
4224 c2s_map
[7] = (tmp
>> 24) & 0xff;
4226 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_default
[mfw_vn
]);
4227 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4228 *c2s_default
= (tmp
>> (8 * mfw_vn
)) & 0xff;
4232 * bnx2x_setup_tc - routine to configure net_device for multi tc
4234 * @netdev: net device to configure
4235 * @tc: number of traffic classes to enable
4237 * callback connected to the ndo_setup_tc function pointer
4239 int bnx2x_setup_tc(struct net_device
*dev
, u8 num_tc
)
4241 struct bnx2x
*bp
= netdev_priv(dev
);
4242 u8 c2s_map
[BNX2X_MAX_PRIORITY
], c2s_def
;
4243 int cos
, prio
, count
, offset
;
4245 /* setup tc must be called under rtnl lock */
4248 /* no traffic classes requested. Aborting */
4250 netdev_reset_tc(dev
);
4254 /* requested to support too many traffic classes */
4255 if (num_tc
> bp
->max_cos
) {
4256 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4257 num_tc
, bp
->max_cos
);
4261 /* declare amount of supported traffic classes */
4262 if (netdev_set_num_tc(dev
, num_tc
)) {
4263 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc
);
4267 bnx2x_get_c2s_mapping(bp
, c2s_map
, &c2s_def
);
4269 /* configure priority to traffic class mapping */
4270 for (prio
= 0; prio
< BNX2X_MAX_PRIORITY
; prio
++) {
4271 int outer_prio
= c2s_map
[prio
];
4273 netdev_set_prio_tc_map(dev
, prio
, bp
->prio_to_cos
[outer_prio
]);
4274 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4275 "mapping priority %d to tc %d\n",
4276 outer_prio
, bp
->prio_to_cos
[outer_prio
]);
4279 /* Use this configuration to differentiate tc0 from other COSes
4280 This can be used for ets or pfc, and save the effort of setting
4281 up a multio class queue disc or negotiating DCBX with a switch
4282 netdev_set_prio_tc_map(dev, 0, 0);
4283 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4284 for (prio = 1; prio < 16; prio++) {
4285 netdev_set_prio_tc_map(dev, prio, 1);
4286 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4289 /* configure traffic class to transmission queue mapping */
4290 for (cos
= 0; cos
< bp
->max_cos
; cos
++) {
4291 count
= BNX2X_NUM_ETH_QUEUES(bp
);
4292 offset
= cos
* BNX2X_NUM_NON_CNIC_QUEUES(bp
);
4293 netdev_set_tc_queue(dev
, cos
, count
, offset
);
4294 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4295 "mapping tc %d to offset %d count %d\n",
4296 cos
, offset
, count
);
4302 int __bnx2x_setup_tc(struct net_device
*dev
, enum tc_setup_type type
,
4305 struct tc_mqprio_qopt
*mqprio
= type_data
;
4307 if (type
!= TC_SETUP_QDISC_MQPRIO
)
4310 mqprio
->hw
= TC_MQPRIO_HW_OFFLOAD_TCS
;
4312 return bnx2x_setup_tc(dev
, mqprio
->num_tc
);
4315 /* called with rtnl_lock */
4316 int bnx2x_change_mac_addr(struct net_device
*dev
, void *p
)
4318 struct sockaddr
*addr
= p
;
4319 struct bnx2x
*bp
= netdev_priv(dev
);
4322 if (!is_valid_ether_addr(addr
->sa_data
)) {
4323 BNX2X_ERR("Requested MAC address is not valid\n");
4327 if (IS_MF_STORAGE_ONLY(bp
)) {
4328 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4332 if (netif_running(dev
)) {
4333 rc
= bnx2x_set_eth_mac(bp
, false);
4338 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
4340 if (netif_running(dev
))
4341 rc
= bnx2x_set_eth_mac(bp
, true);
4343 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4344 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4349 static void bnx2x_free_fp_mem_at(struct bnx2x
*bp
, int fp_index
)
4351 union host_hc_status_block
*sb
= &bnx2x_fp(bp
, fp_index
, status_blk
);
4352 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_index
];
4357 if (IS_FCOE_IDX(fp_index
)) {
4358 memset(sb
, 0, sizeof(union host_hc_status_block
));
4359 fp
->status_blk_mapping
= 0;
4362 if (!CHIP_IS_E1x(bp
))
4363 BNX2X_PCI_FREE(sb
->e2_sb
,
4364 bnx2x_fp(bp
, fp_index
,
4365 status_blk_mapping
),
4366 sizeof(struct host_hc_status_block_e2
));
4368 BNX2X_PCI_FREE(sb
->e1x_sb
,
4369 bnx2x_fp(bp
, fp_index
,
4370 status_blk_mapping
),
4371 sizeof(struct host_hc_status_block_e1x
));
4375 if (!skip_rx_queue(bp
, fp_index
)) {
4376 bnx2x_free_rx_bds(fp
);
4378 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4379 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_buf_ring
));
4380 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_desc_ring
),
4381 bnx2x_fp(bp
, fp_index
, rx_desc_mapping
),
4382 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4384 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_comp_ring
),
4385 bnx2x_fp(bp
, fp_index
, rx_comp_mapping
),
4386 sizeof(struct eth_fast_path_rx_cqe
) *
4390 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_page_ring
));
4391 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_sge_ring
),
4392 bnx2x_fp(bp
, fp_index
, rx_sge_mapping
),
4393 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4397 if (!skip_tx_queue(bp
, fp_index
)) {
4398 /* fastpath tx rings: tx_buf tx_desc */
4399 for_each_cos_in_tx_queue(fp
, cos
) {
4400 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4402 DP(NETIF_MSG_IFDOWN
,
4403 "freeing tx memory of fp %d cos %d cid %d\n",
4404 fp_index
, cos
, txdata
->cid
);
4406 BNX2X_FREE(txdata
->tx_buf_ring
);
4407 BNX2X_PCI_FREE(txdata
->tx_desc_ring
,
4408 txdata
->tx_desc_mapping
,
4409 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4412 /* end of fastpath */
4415 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
)
4418 for_each_cnic_queue(bp
, i
)
4419 bnx2x_free_fp_mem_at(bp
, i
);
4422 void bnx2x_free_fp_mem(struct bnx2x
*bp
)
4425 for_each_eth_queue(bp
, i
)
4426 bnx2x_free_fp_mem_at(bp
, i
);
4429 static void set_sb_shortcuts(struct bnx2x
*bp
, int index
)
4431 union host_hc_status_block status_blk
= bnx2x_fp(bp
, index
, status_blk
);
4432 if (!CHIP_IS_E1x(bp
)) {
4433 bnx2x_fp(bp
, index
, sb_index_values
) =
4434 (__le16
*)status_blk
.e2_sb
->sb
.index_values
;
4435 bnx2x_fp(bp
, index
, sb_running_index
) =
4436 (__le16
*)status_blk
.e2_sb
->sb
.running_index
;
4438 bnx2x_fp(bp
, index
, sb_index_values
) =
4439 (__le16
*)status_blk
.e1x_sb
->sb
.index_values
;
4440 bnx2x_fp(bp
, index
, sb_running_index
) =
4441 (__le16
*)status_blk
.e1x_sb
->sb
.running_index
;
4445 /* Returns the number of actually allocated BDs */
4446 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath
*fp
,
4449 struct bnx2x
*bp
= fp
->bp
;
4450 u16 ring_prod
, cqe_ring_prod
;
4451 int i
, failure_cnt
= 0;
4453 fp
->rx_comp_cons
= 0;
4454 cqe_ring_prod
= ring_prod
= 0;
4456 /* This routine is called only during fo init so
4457 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4459 for (i
= 0; i
< rx_ring_size
; i
++) {
4460 if (bnx2x_alloc_rx_data(bp
, fp
, ring_prod
, GFP_KERNEL
) < 0) {
4464 ring_prod
= NEXT_RX_IDX(ring_prod
);
4465 cqe_ring_prod
= NEXT_RCQ_IDX(cqe_ring_prod
);
4466 WARN_ON(ring_prod
<= (i
- failure_cnt
));
4470 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4471 i
- failure_cnt
, fp
->index
);
4473 fp
->rx_bd_prod
= ring_prod
;
4474 /* Limit the CQE producer by the CQE ring size */
4475 fp
->rx_comp_prod
= min_t(u16
, NUM_RCQ_RINGS
*RCQ_DESC_CNT
,
4478 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
+= failure_cnt
;
4480 return i
- failure_cnt
;
4483 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath
*fp
)
4487 for (i
= 1; i
<= NUM_RCQ_RINGS
; i
++) {
4488 struct eth_rx_cqe_next_page
*nextpg
;
4490 nextpg
= (struct eth_rx_cqe_next_page
*)
4491 &fp
->rx_comp_ring
[RCQ_DESC_CNT
* i
- 1];
4493 cpu_to_le32(U64_HI(fp
->rx_comp_mapping
+
4494 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4496 cpu_to_le32(U64_LO(fp
->rx_comp_mapping
+
4497 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4501 static int bnx2x_alloc_fp_mem_at(struct bnx2x
*bp
, int index
)
4503 union host_hc_status_block
*sb
;
4504 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
4507 int rx_ring_size
= 0;
4509 if (!bp
->rx_ring_size
&& IS_MF_STORAGE_ONLY(bp
)) {
4510 rx_ring_size
= MIN_RX_SIZE_NONTPA
;
4511 bp
->rx_ring_size
= rx_ring_size
;
4512 } else if (!bp
->rx_ring_size
) {
4513 rx_ring_size
= MAX_RX_AVAIL
/BNX2X_NUM_RX_QUEUES(bp
);
4515 if (CHIP_IS_E3(bp
)) {
4516 u32 cfg
= SHMEM_RD(bp
,
4517 dev_info
.port_hw_config
[BP_PORT(bp
)].
4520 /* Decrease ring size for 1G functions */
4521 if ((cfg
& PORT_HW_CFG_NET_SERDES_IF_MASK
) ==
4522 PORT_HW_CFG_NET_SERDES_IF_SGMII
)
4526 /* allocate at least number of buffers required by FW */
4527 rx_ring_size
= max_t(int, bp
->disable_tpa
? MIN_RX_SIZE_NONTPA
:
4528 MIN_RX_SIZE_TPA
, rx_ring_size
);
4530 bp
->rx_ring_size
= rx_ring_size
;
4531 } else /* if rx_ring_size specified - use it */
4532 rx_ring_size
= bp
->rx_ring_size
;
4534 DP(BNX2X_MSG_SP
, "calculated rx_ring_size %d\n", rx_ring_size
);
4537 sb
= &bnx2x_fp(bp
, index
, status_blk
);
4539 if (!IS_FCOE_IDX(index
)) {
4541 if (!CHIP_IS_E1x(bp
)) {
4542 sb
->e2_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4543 sizeof(struct host_hc_status_block_e2
));
4547 sb
->e1x_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4548 sizeof(struct host_hc_status_block_e1x
));
4554 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4555 * set shortcuts for it.
4557 if (!IS_FCOE_IDX(index
))
4558 set_sb_shortcuts(bp
, index
);
4561 if (!skip_tx_queue(bp
, index
)) {
4562 /* fastpath tx rings: tx_buf tx_desc */
4563 for_each_cos_in_tx_queue(fp
, cos
) {
4564 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4567 "allocating tx memory of fp %d cos %d\n",
4570 txdata
->tx_buf_ring
= kcalloc(NUM_TX_BD
,
4571 sizeof(struct sw_tx_bd
),
4573 if (!txdata
->tx_buf_ring
)
4575 txdata
->tx_desc_ring
= BNX2X_PCI_ALLOC(&txdata
->tx_desc_mapping
,
4576 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4577 if (!txdata
->tx_desc_ring
)
4583 if (!skip_rx_queue(bp
, index
)) {
4584 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4585 bnx2x_fp(bp
, index
, rx_buf_ring
) =
4586 kcalloc(NUM_RX_BD
, sizeof(struct sw_rx_bd
), GFP_KERNEL
);
4587 if (!bnx2x_fp(bp
, index
, rx_buf_ring
))
4589 bnx2x_fp(bp
, index
, rx_desc_ring
) =
4590 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_desc_mapping
),
4591 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4592 if (!bnx2x_fp(bp
, index
, rx_desc_ring
))
4595 /* Seed all CQEs by 1s */
4596 bnx2x_fp(bp
, index
, rx_comp_ring
) =
4597 BNX2X_PCI_FALLOC(&bnx2x_fp(bp
, index
, rx_comp_mapping
),
4598 sizeof(struct eth_fast_path_rx_cqe
) * NUM_RCQ_BD
);
4599 if (!bnx2x_fp(bp
, index
, rx_comp_ring
))
4603 bnx2x_fp(bp
, index
, rx_page_ring
) =
4604 kcalloc(NUM_RX_SGE
, sizeof(struct sw_rx_page
),
4606 if (!bnx2x_fp(bp
, index
, rx_page_ring
))
4608 bnx2x_fp(bp
, index
, rx_sge_ring
) =
4609 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_sge_mapping
),
4610 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4611 if (!bnx2x_fp(bp
, index
, rx_sge_ring
))
4614 bnx2x_set_next_page_rx_bd(fp
);
4617 bnx2x_set_next_page_rx_cq(fp
);
4620 ring_size
= bnx2x_alloc_rx_bds(fp
, rx_ring_size
);
4621 if (ring_size
< rx_ring_size
)
4627 /* handles low memory cases */
4629 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4631 /* FW will drop all packets if queue is not big enough,
4632 * In these cases we disable the queue
4633 * Min size is different for OOO, TPA and non-TPA queues
4635 if (ring_size
< (fp
->mode
== TPA_MODE_DISABLED
?
4636 MIN_RX_SIZE_NONTPA
: MIN_RX_SIZE_TPA
)) {
4637 /* release memory allocated for this queue */
4638 bnx2x_free_fp_mem_at(bp
, index
);
4644 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
)
4648 if (bnx2x_alloc_fp_mem_at(bp
, FCOE_IDX(bp
)))
4649 /* we will fail load process instead of mark
4657 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
)
4661 /* 1. Allocate FP for leading - fatal if error
4662 * 2. Allocate RSS - fix number of queues if error
4666 if (bnx2x_alloc_fp_mem_at(bp
, 0))
4670 for_each_nondefault_eth_queue(bp
, i
)
4671 if (bnx2x_alloc_fp_mem_at(bp
, i
))
4674 /* handle memory failures */
4675 if (i
!= BNX2X_NUM_ETH_QUEUES(bp
)) {
4676 int delta
= BNX2X_NUM_ETH_QUEUES(bp
) - i
;
4679 bnx2x_shrink_eth_fp(bp
, delta
);
4680 if (CNIC_SUPPORT(bp
))
4681 /* move non eth FPs next to last eth FP
4682 * must be done in that order
4683 * FCOE_IDX < FWD_IDX < OOO_IDX
4686 /* move FCoE fp even NO_FCOE_FLAG is on */
4687 bnx2x_move_fp(bp
, FCOE_IDX(bp
), FCOE_IDX(bp
) - delta
);
4688 bp
->num_ethernet_queues
-= delta
;
4689 bp
->num_queues
= bp
->num_ethernet_queues
+
4690 bp
->num_cnic_queues
;
4691 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4692 bp
->num_queues
+ delta
, bp
->num_queues
);
4698 void bnx2x_free_mem_bp(struct bnx2x
*bp
)
4702 for (i
= 0; i
< bp
->fp_array_size
; i
++)
4703 kfree(bp
->fp
[i
].tpa_info
);
4706 kfree(bp
->fp_stats
);
4707 kfree(bp
->bnx2x_txq
);
4708 kfree(bp
->msix_table
);
4712 int bnx2x_alloc_mem_bp(struct bnx2x
*bp
)
4714 struct bnx2x_fastpath
*fp
;
4715 struct msix_entry
*tbl
;
4716 struct bnx2x_ilt
*ilt
;
4717 int msix_table_size
= 0;
4718 int fp_array_size
, txq_array_size
;
4722 * The biggest MSI-X table we might need is as a maximum number of fast
4723 * path IGU SBs plus default SB (for PF only).
4725 msix_table_size
= bp
->igu_sb_cnt
;
4728 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size
);
4730 /* fp array: RSS plus CNIC related L2 queues */
4731 fp_array_size
= BNX2X_MAX_RSS_COUNT(bp
) + CNIC_SUPPORT(bp
);
4732 bp
->fp_array_size
= fp_array_size
;
4733 BNX2X_DEV_INFO("fp_array_size %d\n", bp
->fp_array_size
);
4735 fp
= kcalloc(bp
->fp_array_size
, sizeof(*fp
), GFP_KERNEL
);
4738 for (i
= 0; i
< bp
->fp_array_size
; i
++) {
4740 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2
,
4741 sizeof(struct bnx2x_agg_info
), GFP_KERNEL
);
4742 if (!(fp
[i
].tpa_info
))
4748 /* allocate sp objs */
4749 bp
->sp_objs
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_sp_objs
),
4754 /* allocate fp_stats */
4755 bp
->fp_stats
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_fp_stats
),
4760 /* Allocate memory for the transmission queues array */
4762 BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+ CNIC_SUPPORT(bp
);
4763 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size
);
4765 bp
->bnx2x_txq
= kcalloc(txq_array_size
, sizeof(struct bnx2x_fp_txdata
),
4771 tbl
= kcalloc(msix_table_size
, sizeof(*tbl
), GFP_KERNEL
);
4774 bp
->msix_table
= tbl
;
4777 ilt
= kzalloc(sizeof(*ilt
), GFP_KERNEL
);
4784 bnx2x_free_mem_bp(bp
);
4788 int bnx2x_reload_if_running(struct net_device
*dev
)
4790 struct bnx2x
*bp
= netdev_priv(dev
);
4792 if (unlikely(!netif_running(dev
)))
4795 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
, true);
4796 return bnx2x_nic_load(bp
, LOAD_NORMAL
);
4799 int bnx2x_get_cur_phy_idx(struct bnx2x
*bp
)
4801 u32 sel_phy_idx
= 0;
4802 if (bp
->link_params
.num_phys
<= 1)
4805 if (bp
->link_vars
.link_up
) {
4806 sel_phy_idx
= EXT_PHY1
;
4807 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4808 if ((bp
->link_vars
.link_status
& LINK_STATUS_SERDES_LINK
) &&
4809 (bp
->link_params
.phy
[EXT_PHY2
].supported
& SUPPORTED_FIBRE
))
4810 sel_phy_idx
= EXT_PHY2
;
4813 switch (bnx2x_phy_selection(&bp
->link_params
)) {
4814 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT
:
4815 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY
:
4816 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY
:
4817 sel_phy_idx
= EXT_PHY1
;
4819 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY
:
4820 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY
:
4821 sel_phy_idx
= EXT_PHY2
;
4828 int bnx2x_get_link_cfg_idx(struct bnx2x
*bp
)
4830 u32 sel_phy_idx
= bnx2x_get_cur_phy_idx(bp
);
4832 * The selected activated PHY is always after swapping (in case PHY
4833 * swapping is enabled). So when swapping is enabled, we need to reverse
4837 if (bp
->link_params
.multi_phy_config
&
4838 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
4839 if (sel_phy_idx
== EXT_PHY1
)
4840 sel_phy_idx
= EXT_PHY2
;
4841 else if (sel_phy_idx
== EXT_PHY2
)
4842 sel_phy_idx
= EXT_PHY1
;
4844 return LINK_CONFIG_IDX(sel_phy_idx
);
4847 #ifdef NETDEV_FCOE_WWNN
4848 int bnx2x_fcoe_get_wwn(struct net_device
*dev
, u64
*wwn
, int type
)
4850 struct bnx2x
*bp
= netdev_priv(dev
);
4851 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
4854 case NETDEV_FCOE_WWNN
:
4855 *wwn
= HILO_U64(cp
->fcoe_wwn_node_name_hi
,
4856 cp
->fcoe_wwn_node_name_lo
);
4858 case NETDEV_FCOE_WWPN
:
4859 *wwn
= HILO_U64(cp
->fcoe_wwn_port_name_hi
,
4860 cp
->fcoe_wwn_port_name_lo
);
4863 BNX2X_ERR("Wrong WWN type requested - %d\n", type
);
4871 /* called with rtnl_lock */
4872 int bnx2x_change_mtu(struct net_device
*dev
, int new_mtu
)
4874 struct bnx2x
*bp
= netdev_priv(dev
);
4876 if (pci_num_vf(bp
->pdev
)) {
4877 DP(BNX2X_MSG_IOV
, "VFs are enabled, can not change MTU\n");
4881 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
4882 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4886 /* This does not race with packet allocation
4887 * because the actual alloc size is
4888 * only updated as part of load
4892 if (!bnx2x_mtu_allows_gro(new_mtu
))
4893 dev
->features
&= ~NETIF_F_GRO_HW
;
4895 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4896 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4898 return bnx2x_reload_if_running(dev
);
4901 netdev_features_t
bnx2x_fix_features(struct net_device
*dev
,
4902 netdev_features_t features
)
4904 struct bnx2x
*bp
= netdev_priv(dev
);
4906 if (pci_num_vf(bp
->pdev
)) {
4907 netdev_features_t changed
= dev
->features
^ features
;
4909 /* Revert the requested changes in features if they
4910 * would require internal reload of PF in bnx2x_set_features().
4912 if (!(features
& NETIF_F_RXCSUM
) && !bp
->disable_tpa
) {
4913 features
&= ~NETIF_F_RXCSUM
;
4914 features
|= dev
->features
& NETIF_F_RXCSUM
;
4917 if (changed
& NETIF_F_LOOPBACK
) {
4918 features
&= ~NETIF_F_LOOPBACK
;
4919 features
|= dev
->features
& NETIF_F_LOOPBACK
;
4923 /* TPA requires Rx CSUM offloading */
4924 if (!(features
& NETIF_F_RXCSUM
))
4925 features
&= ~NETIF_F_LRO
;
4927 if (!(features
& NETIF_F_GRO
) || !bnx2x_mtu_allows_gro(dev
->mtu
))
4928 features
&= ~NETIF_F_GRO_HW
;
4929 if (features
& NETIF_F_GRO_HW
)
4930 features
&= ~NETIF_F_LRO
;
4935 int bnx2x_set_features(struct net_device
*dev
, netdev_features_t features
)
4937 struct bnx2x
*bp
= netdev_priv(dev
);
4938 netdev_features_t changes
= features
^ dev
->features
;
4939 bool bnx2x_reload
= false;
4942 /* VFs or non SRIOV PFs should be able to change loopback feature */
4943 if (!pci_num_vf(bp
->pdev
)) {
4944 if (features
& NETIF_F_LOOPBACK
) {
4945 if (bp
->link_params
.loopback_mode
!= LOOPBACK_BMAC
) {
4946 bp
->link_params
.loopback_mode
= LOOPBACK_BMAC
;
4947 bnx2x_reload
= true;
4950 if (bp
->link_params
.loopback_mode
!= LOOPBACK_NONE
) {
4951 bp
->link_params
.loopback_mode
= LOOPBACK_NONE
;
4952 bnx2x_reload
= true;
4957 /* Don't care about GRO changes */
4958 changes
&= ~NETIF_F_GRO
;
4961 bnx2x_reload
= true;
4964 if (bp
->recovery_state
== BNX2X_RECOVERY_DONE
) {
4965 dev
->features
= features
;
4966 rc
= bnx2x_reload_if_running(dev
);
4969 /* else: bnx2x_nic_load() will be called at end of recovery */
4975 void bnx2x_tx_timeout(struct net_device
*dev
)
4977 struct bnx2x
*bp
= netdev_priv(dev
);
4979 /* We want the information of the dump logged,
4980 * but calling bnx2x_panic() would kill all chances of recovery.
4983 #ifndef BNX2X_STOP_ON_ERROR
4984 bnx2x_panic_dump(bp
, false);
4989 /* This allows the netif to be shutdown gracefully before resetting */
4990 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_TX_TIMEOUT
, 0);
4993 int bnx2x_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4995 struct net_device
*dev
= pci_get_drvdata(pdev
);
4999 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
5002 bp
= netdev_priv(dev
);
5006 pci_save_state(pdev
);
5008 if (!netif_running(dev
)) {
5013 netif_device_detach(dev
);
5015 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
5017 bnx2x_set_power_state(bp
, pci_choose_state(pdev
, state
));
5024 int bnx2x_resume(struct pci_dev
*pdev
)
5026 struct net_device
*dev
= pci_get_drvdata(pdev
);
5031 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
5034 bp
= netdev_priv(dev
);
5036 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
5037 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5043 pci_restore_state(pdev
);
5045 if (!netif_running(dev
)) {
5050 bnx2x_set_power_state(bp
, PCI_D0
);
5051 netif_device_attach(dev
);
5053 rc
= bnx2x_nic_load(bp
, LOAD_OPEN
);
5060 void bnx2x_set_ctx_validation(struct bnx2x
*bp
, struct eth_context
*cxt
,
5064 BNX2X_ERR("bad context pointer %p\n", cxt
);
5068 /* ustorm cxt validation */
5069 cxt
->ustorm_ag_context
.cdu_usage
=
5070 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5071 CDU_REGION_NUMBER_UCM_AG
, ETH_CONNECTION_TYPE
);
5072 /* xcontext validation */
5073 cxt
->xstorm_ag_context
.cdu_reserved
=
5074 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5075 CDU_REGION_NUMBER_XCM_AG
, ETH_CONNECTION_TYPE
);
5078 static void storm_memset_hc_timeout(struct bnx2x
*bp
, u8 port
,
5079 u8 fw_sb_id
, u8 sb_index
,
5082 u32 addr
= BAR_CSTRORM_INTMEM
+
5083 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id
, sb_index
);
5084 REG_WR8(bp
, addr
, ticks
);
5086 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5087 port
, fw_sb_id
, sb_index
, ticks
);
5090 static void storm_memset_hc_disable(struct bnx2x
*bp
, u8 port
,
5091 u16 fw_sb_id
, u8 sb_index
,
5094 u32 enable_flag
= disable
? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT
);
5095 u32 addr
= BAR_CSTRORM_INTMEM
+
5096 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id
, sb_index
);
5097 u8 flags
= REG_RD8(bp
, addr
);
5099 flags
&= ~HC_INDEX_DATA_HC_ENABLED
;
5100 flags
|= enable_flag
;
5101 REG_WR8(bp
, addr
, flags
);
5103 "port %x fw_sb_id %d sb_index %d disable %d\n",
5104 port
, fw_sb_id
, sb_index
, disable
);
5107 void bnx2x_update_coalesce_sb_index(struct bnx2x
*bp
, u8 fw_sb_id
,
5108 u8 sb_index
, u8 disable
, u16 usec
)
5110 int port
= BP_PORT(bp
);
5111 u8 ticks
= usec
/ BNX2X_BTR
;
5113 storm_memset_hc_timeout(bp
, port
, fw_sb_id
, sb_index
, ticks
);
5115 disable
= disable
? 1 : (usec
? 0 : 1);
5116 storm_memset_hc_disable(bp
, port
, fw_sb_id
, sb_index
, disable
);
5119 void bnx2x_schedule_sp_rtnl(struct bnx2x
*bp
, enum sp_rtnl_flag flag
,
5122 smp_mb__before_atomic();
5123 set_bit(flag
, &bp
->sp_rtnl_state
);
5124 smp_mb__after_atomic();
5125 DP((BNX2X_MSG_SP
| verbose
), "Scheduling sp_rtnl task [Flag: %d]\n",
5127 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);