1 /* bnx2x_sriov.c: QLogic Everest network driver.
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
29 static int bnx2x_vf_op_prep(struct bnx2x
*bp
, int vfidx
,
30 struct bnx2x_virtf
**vf
,
31 struct pf_vf_bulletin_content
**bulletin
,
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x
*bp
, u16 abs_fid
,
38 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_VF_TO_PF_OFFSET(abs_fid
),
40 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_VF_TO_PF_OFFSET(abs_fid
),
42 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_VF_TO_PF_OFFSET(abs_fid
),
44 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_VF_TO_PF_OFFSET(abs_fid
),
48 static void storm_memset_func_en(struct bnx2x
*bp
, u16 abs_fid
,
51 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(abs_fid
),
53 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(abs_fid
),
55 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(abs_fid
),
57 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(abs_fid
),
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x
*bp
, u16 abs_vfid
)
66 if (bnx2x_vf(bp
, idx
, abs_vfid
) == abs_vfid
)
72 struct bnx2x_virtf
*bnx2x_vf_by_abs_fid(struct bnx2x
*bp
, u16 abs_vfid
)
74 u16 idx
= (u16
)bnx2x_vf_idx_by_abs_fid(bp
, abs_vfid
);
75 return (idx
< BNX2X_NR_VIRTFN(bp
)) ? BP_VF(bp
, idx
) : NULL
;
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
79 u8 igu_sb_id
, u8 segment
, u16 index
, u8 op
,
82 /* acking a VF sb through the PF - use the GRC */
84 u32 igu_addr_data
= IGU_REG_COMMAND_REG_32LSB_DATA
;
85 u32 igu_addr_ctl
= IGU_REG_COMMAND_REG_CTRL
;
86 u32 func_encode
= vf
->abs_vfid
;
87 u32 addr_encode
= IGU_CMD_E2_PROD_UPD_BASE
+ igu_sb_id
;
88 struct igu_regular cmd_data
= {0};
90 cmd_data
.sb_id_and_flags
=
91 ((index
<< IGU_REGULAR_SB_INDEX_SHIFT
) |
92 (segment
<< IGU_REGULAR_SEGMENT_ACCESS_SHIFT
) |
93 (update
<< IGU_REGULAR_BUPDATE_SHIFT
) |
94 (op
<< IGU_REGULAR_ENABLE_INT_SHIFT
));
96 ctl
= addr_encode
<< IGU_CTRL_REG_ADDRESS_SHIFT
|
97 func_encode
<< IGU_CTRL_REG_FID_SHIFT
|
98 IGU_CTRL_CMD_TYPE_WR
<< IGU_CTRL_REG_TYPE_SHIFT
;
100 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data
.sb_id_and_flags
, igu_addr_data
);
102 REG_WR(bp
, igu_addr_data
, cmd_data
.sb_id_and_flags
);
106 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
108 REG_WR(bp
, igu_addr_ctl
, ctl
);
113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x
*bp
,
114 struct bnx2x_virtf
*vf
,
117 if (!bnx2x_leading_vfq(vf
, sp_initialized
)) {
119 BNX2X_ERR("Slowpath objects not yet initialized!\n");
121 DP(BNX2X_MSG_IOV
, "Slowpath objects not yet initialized!\n");
127 /* VFOP operations states */
128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
129 struct bnx2x_queue_init_params
*init_params
,
130 struct bnx2x_queue_setup_params
*setup_params
,
131 u16 q_idx
, u16 sb_idx
)
134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
138 init_params
->tx
.sb_cq_index
,
139 init_params
->tx
.hc_rate
,
141 setup_params
->txq_params
.traffic_type
);
144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
145 struct bnx2x_queue_init_params
*init_params
,
146 struct bnx2x_queue_setup_params
*setup_params
,
147 u16 q_idx
, u16 sb_idx
)
149 struct bnx2x_rxq_setup_params
*rxq_params
= &setup_params
->rxq_params
;
151 DP(BNX2X_MSG_IOV
, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
156 init_params
->rx
.sb_cq_index
,
157 init_params
->rx
.hc_rate
,
158 setup_params
->gen_params
.mtu
,
160 rxq_params
->sge_buf_sz
,
161 rxq_params
->max_sges_pkt
,
162 rxq_params
->tpa_agg_sz
,
164 rxq_params
->drop_flags
,
165 rxq_params
->cache_line_log
);
168 void bnx2x_vfop_qctor_prep(struct bnx2x
*bp
,
169 struct bnx2x_virtf
*vf
,
170 struct bnx2x_vf_queue
*q
,
171 struct bnx2x_vf_queue_construct_params
*p
,
172 unsigned long q_type
)
174 struct bnx2x_queue_init_params
*init_p
= &p
->qstate
.params
.init
;
175 struct bnx2x_queue_setup_params
*setup_p
= &p
->prep_qsetup
;
179 /* Enable host coalescing in the transition to INIT state */
180 if (test_bit(BNX2X_Q_FLG_HC
, &init_p
->rx
.flags
))
181 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_p
->rx
.flags
);
183 if (test_bit(BNX2X_Q_FLG_HC
, &init_p
->tx
.flags
))
184 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_p
->tx
.flags
);
187 init_p
->rx
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
188 init_p
->tx
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
191 init_p
->cxts
[0] = q
->cxt
;
195 /* Setup-op general parameters */
196 setup_p
->gen_params
.spcl_id
= vf
->sp_cl_id
;
197 setup_p
->gen_params
.stat_id
= vfq_stat_id(vf
, q
);
198 setup_p
->gen_params
.fp_hsi
= vf
->fp_hsi
;
201 * collect statistics, zero statistics, local-switching, security,
202 * OV for Flex10, RSS and MCAST for leading
204 if (test_bit(BNX2X_Q_FLG_STATS
, &setup_p
->flags
))
205 __set_bit(BNX2X_Q_FLG_ZERO_STATS
, &setup_p
->flags
);
207 /* for VFs, enable tx switching, bd coherency, and mac address
210 __set_bit(BNX2X_Q_FLG_TX_SWITCH
, &setup_p
->flags
);
211 __set_bit(BNX2X_Q_FLG_TX_SEC
, &setup_p
->flags
);
212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF
, &setup_p
->flags
);
214 /* Setup-op rx parameters */
215 if (test_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
)) {
216 struct bnx2x_rxq_setup_params
*rxq_p
= &setup_p
->rxq_params
;
218 rxq_p
->cl_qzone_id
= vfq_qzone_id(vf
, q
);
219 rxq_p
->fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
220 rxq_p
->rss_engine_id
= FW_VF_HANDLE(vf
->abs_vfid
);
222 if (test_bit(BNX2X_Q_FLG_TPA
, &setup_p
->flags
))
223 rxq_p
->max_tpa_queues
= BNX2X_VF_MAX_TPA_AGG_QUEUES
;
226 /* Setup-op tx parameters */
227 if (test_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
)) {
228 setup_p
->txq_params
.tss_leading_cl_id
= vf
->leading_rss
;
229 setup_p
->txq_params
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
233 static int bnx2x_vf_queue_create(struct bnx2x
*bp
,
234 struct bnx2x_virtf
*vf
, int qid
,
235 struct bnx2x_vf_queue_construct_params
*qctor
)
237 struct bnx2x_queue_state_params
*q_params
;
240 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
242 /* Prepare ramrod information */
243 q_params
= &qctor
->qstate
;
244 q_params
->q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
245 set_bit(RAMROD_COMP_WAIT
, &q_params
->ramrod_flags
);
247 if (bnx2x_get_q_logical_state(bp
, q_params
->q_obj
) ==
248 BNX2X_Q_LOGICAL_STATE_ACTIVE
) {
249 DP(BNX2X_MSG_IOV
, "queue was already up. Aborting gracefully\n");
253 /* Run Queue 'construction' ramrods */
254 q_params
->cmd
= BNX2X_Q_CMD_INIT
;
255 rc
= bnx2x_queue_state_change(bp
, q_params
);
259 memcpy(&q_params
->params
.setup
, &qctor
->prep_qsetup
,
260 sizeof(struct bnx2x_queue_setup_params
));
261 q_params
->cmd
= BNX2X_Q_CMD_SETUP
;
262 rc
= bnx2x_queue_state_change(bp
, q_params
);
266 /* enable interrupts */
267 bnx2x_vf_igu_ack_sb(bp
, vf
, vf_igu_sb(vf
, bnx2x_vfq(vf
, qid
, sb_idx
)),
268 USTORM_ID
, 0, IGU_INT_ENABLE
, 0);
273 static int bnx2x_vf_queue_destroy(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
276 enum bnx2x_queue_cmd cmds
[] = {BNX2X_Q_CMD_HALT
,
277 BNX2X_Q_CMD_TERMINATE
,
278 BNX2X_Q_CMD_CFC_DEL
};
279 struct bnx2x_queue_state_params q_params
;
282 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
284 /* Prepare ramrod information */
285 memset(&q_params
, 0, sizeof(struct bnx2x_queue_state_params
));
286 q_params
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
287 set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
289 if (bnx2x_get_q_logical_state(bp
, q_params
.q_obj
) ==
290 BNX2X_Q_LOGICAL_STATE_STOPPED
) {
291 DP(BNX2X_MSG_IOV
, "queue was already stopped. Aborting gracefully\n");
295 /* Run Queue 'destruction' ramrods */
296 for (i
= 0; i
< ARRAY_SIZE(cmds
); i
++) {
297 q_params
.cmd
= cmds
[i
];
298 rc
= bnx2x_queue_state_change(bp
, &q_params
);
300 BNX2X_ERR("Failed to run Queue command %d\n", cmds
[i
]);
306 if (bnx2x_vfq(vf
, qid
, cxt
)) {
307 bnx2x_vfq(vf
, qid
, cxt
)->ustorm_ag_context
.cdu_usage
= 0;
308 bnx2x_vfq(vf
, qid
, cxt
)->xstorm_ag_context
.cdu_reserved
= 0;
315 bnx2x_vf_set_igu_info(struct bnx2x
*bp
, u8 igu_sb_id
, u8 abs_vfid
)
317 struct bnx2x_virtf
*vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
319 /* the first igu entry belonging to VFs of this PF */
320 if (!BP_VFDB(bp
)->first_vf_igu_entry
)
321 BP_VFDB(bp
)->first_vf_igu_entry
= igu_sb_id
;
323 /* the first igu entry belonging to this VF */
324 if (!vf_sb_count(vf
))
325 vf
->igu_base_id
= igu_sb_id
;
330 BP_VFDB(bp
)->vf_sbs_pool
++;
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x
*bp
,
334 struct bnx2x_vlan_mac_obj
*obj
,
337 struct list_head
*pos
;
341 read_lock
= bnx2x_vlan_mac_h_read_lock(bp
, obj
);
343 DP(BNX2X_MSG_SP
, "Failed to take vlan mac read head; continuing anyway\n");
345 list_for_each(pos
, &obj
->head
)
349 bnx2x_vlan_mac_h_read_unlock(bp
, obj
);
351 atomic_set(counter
, cnt
);
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
355 int qid
, bool drv_only
, int type
)
357 struct bnx2x_vlan_mac_ramrod_params ramrod
;
360 DP(BNX2X_MSG_IOV
, "vf[%d] - deleting all %s\n", vf
->abs_vfid
,
361 (type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MACs" :
362 (type
== BNX2X_VF_FILTER_MAC
) ? "MACs" : "VLANs");
364 /* Prepare ramrod params */
365 memset(&ramrod
, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params
));
366 if (type
== BNX2X_VF_FILTER_VLAN_MAC
) {
367 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
368 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_mac_obj
);
369 } else if (type
== BNX2X_VF_FILTER_MAC
) {
370 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
371 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, mac_obj
);
373 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_obj
);
375 ramrod
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
377 set_bit(RAMROD_EXEC
, &ramrod
.ramrod_flags
);
379 set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod
.ramrod_flags
);
381 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
384 rc
= ramrod
.vlan_mac_obj
->delete_all(bp
,
386 &ramrod
.user_req
.vlan_mac_flags
,
387 &ramrod
.ramrod_flags
);
389 BNX2X_ERR("Failed to delete all %s\n",
390 (type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MACs" :
391 (type
== BNX2X_VF_FILTER_MAC
) ? "MACs" : "VLANs");
398 static int bnx2x_vf_mac_vlan_config(struct bnx2x
*bp
,
399 struct bnx2x_virtf
*vf
, int qid
,
400 struct bnx2x_vf_mac_vlan_filter
*filter
,
403 struct bnx2x_vlan_mac_ramrod_params ramrod
;
406 DP(BNX2X_MSG_IOV
, "vf[%d] - %s a %s filter\n",
407 vf
->abs_vfid
, filter
->add
? "Adding" : "Deleting",
408 (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MAC" :
409 (filter
->type
== BNX2X_VF_FILTER_MAC
) ? "MAC" : "VLAN");
411 /* Prepare ramrod params */
412 memset(&ramrod
, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params
));
413 if (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) {
414 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_mac_obj
);
415 ramrod
.user_req
.u
.vlan
.vlan
= filter
->vid
;
416 memcpy(&ramrod
.user_req
.u
.mac
.mac
, filter
->mac
, ETH_ALEN
);
417 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
418 } else if (filter
->type
== BNX2X_VF_FILTER_VLAN
) {
419 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_obj
);
420 ramrod
.user_req
.u
.vlan
.vlan
= filter
->vid
;
422 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
423 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, mac_obj
);
424 memcpy(&ramrod
.user_req
.u
.mac
.mac
, filter
->mac
, ETH_ALEN
);
426 ramrod
.user_req
.cmd
= filter
->add
? BNX2X_VLAN_MAC_ADD
:
429 set_bit(RAMROD_EXEC
, &ramrod
.ramrod_flags
);
431 set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod
.ramrod_flags
);
433 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
435 /* Add/Remove the filter */
436 rc
= bnx2x_config_vlan_mac(bp
, &ramrod
);
440 BNX2X_ERR("Failed to %s %s\n",
441 filter
->add
? "add" : "delete",
442 (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) ?
444 (filter
->type
== BNX2X_VF_FILTER_MAC
) ?
449 filter
->applied
= true;
454 int bnx2x_vf_mac_vlan_config_list(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
455 struct bnx2x_vf_mac_vlan_filters
*filters
,
456 int qid
, bool drv_only
)
460 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
462 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
465 /* Prepare ramrod params */
466 for (i
= 0; i
< filters
->count
; i
++) {
467 rc
= bnx2x_vf_mac_vlan_config(bp
, vf
, qid
,
468 &filters
->filters
[i
], drv_only
);
473 /* Rollback if needed */
474 if (i
!= filters
->count
) {
475 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
478 if (!filters
->filters
[i
].applied
)
480 filters
->filters
[i
].add
= !filters
->filters
[i
].add
;
481 bnx2x_vf_mac_vlan_config(bp
, vf
, qid
,
482 &filters
->filters
[i
],
487 /* It's our responsibility to free the filters */
493 int bnx2x_vf_queue_setup(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, int qid
,
494 struct bnx2x_vf_queue_construct_params
*qctor
)
498 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
500 rc
= bnx2x_vf_queue_create(bp
, vf
, qid
, qctor
);
504 /* Schedule the configuration of any pending vlan filters */
505 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_HYPERVISOR_VLAN
,
509 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf
->abs_vfid
, qid
, rc
);
513 static int bnx2x_vf_queue_flr(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
518 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
520 /* If needed, clean the filtering data base */
521 if ((qid
== LEADING_IDX
) &&
522 bnx2x_validate_vf_sp_objs(bp
, vf
, false)) {
523 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
524 BNX2X_VF_FILTER_VLAN_MAC
);
527 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
528 BNX2X_VF_FILTER_VLAN
);
531 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
532 BNX2X_VF_FILTER_MAC
);
537 /* Terminate queue */
538 if (bnx2x_vfq(vf
, qid
, sp_obj
).state
!= BNX2X_Q_STATE_RESET
) {
539 struct bnx2x_queue_state_params qstate
;
541 memset(&qstate
, 0, sizeof(struct bnx2x_queue_state_params
));
542 qstate
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
543 qstate
.q_obj
->state
= BNX2X_Q_STATE_STOPPED
;
544 qstate
.cmd
= BNX2X_Q_CMD_TERMINATE
;
545 set_bit(RAMROD_COMP_WAIT
, &qstate
.ramrod_flags
);
546 rc
= bnx2x_queue_state_change(bp
, &qstate
);
553 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf
->abs_vfid
, qid
, rc
);
557 int bnx2x_vf_mcast(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
558 bnx2x_mac_addr_t
*mcasts
, int mc_num
, bool drv_only
)
560 struct bnx2x_mcast_list_elem
*mc
= NULL
;
561 struct bnx2x_mcast_ramrod_params mcast
;
564 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
566 /* Prepare Multicast command */
567 memset(&mcast
, 0, sizeof(struct bnx2x_mcast_ramrod_params
));
568 mcast
.mcast_obj
= &vf
->mcast_obj
;
570 set_bit(RAMROD_DRV_CLR_ONLY
, &mcast
.ramrod_flags
);
572 set_bit(RAMROD_COMP_WAIT
, &mcast
.ramrod_flags
);
574 mc
= kcalloc(mc_num
, sizeof(struct bnx2x_mcast_list_elem
),
577 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
583 INIT_LIST_HEAD(&mcast
.mcast_list
);
584 for (i
= 0; i
< mc_num
; i
++) {
585 mc
[i
].mac
= mcasts
[i
];
586 list_add_tail(&mc
[i
].link
,
591 mcast
.mcast_list_len
= mc_num
;
592 rc
= bnx2x_config_mcast(bp
, &mcast
, BNX2X_MCAST_CMD_SET
);
594 BNX2X_ERR("Failed to set multicasts\n");
596 /* clear existing mcasts */
597 rc
= bnx2x_config_mcast(bp
, &mcast
, BNX2X_MCAST_CMD_DEL
);
599 BNX2X_ERR("Failed to remove multicasts\n");
607 static void bnx2x_vf_prep_rx_mode(struct bnx2x
*bp
, u8 qid
,
608 struct bnx2x_rx_mode_ramrod_params
*ramrod
,
609 struct bnx2x_virtf
*vf
,
610 unsigned long accept_flags
)
612 struct bnx2x_vf_queue
*vfq
= vfq_get(vf
, qid
);
614 memset(ramrod
, 0, sizeof(*ramrod
));
615 ramrod
->cid
= vfq
->cid
;
616 ramrod
->cl_id
= vfq_cl_id(vf
, vfq
);
617 ramrod
->rx_mode_obj
= &bp
->rx_mode_obj
;
618 ramrod
->func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
619 ramrod
->rx_accept_flags
= accept_flags
;
620 ramrod
->tx_accept_flags
= accept_flags
;
621 ramrod
->pstate
= &vf
->filter_state
;
622 ramrod
->state
= BNX2X_FILTER_RX_MODE_PENDING
;
624 set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &vf
->filter_state
);
625 set_bit(RAMROD_RX
, &ramrod
->ramrod_flags
);
626 set_bit(RAMROD_TX
, &ramrod
->ramrod_flags
);
628 ramrod
->rdata
= bnx2x_vf_sp(bp
, vf
, rx_mode_rdata
.e2
);
629 ramrod
->rdata_mapping
= bnx2x_vf_sp_map(bp
, vf
, rx_mode_rdata
.e2
);
632 int bnx2x_vf_rxmode(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
633 int qid
, unsigned long accept_flags
)
635 struct bnx2x_rx_mode_ramrod_params ramrod
;
637 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
639 bnx2x_vf_prep_rx_mode(bp
, qid
, &ramrod
, vf
, accept_flags
);
640 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
641 vfq_get(vf
, qid
)->accept_flags
= ramrod
.rx_accept_flags
;
642 return bnx2x_config_rx_mode(bp
, &ramrod
);
645 int bnx2x_vf_queue_teardown(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, int qid
)
649 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
651 /* Remove all classification configuration for leading queue */
652 if (qid
== LEADING_IDX
) {
653 rc
= bnx2x_vf_rxmode(bp
, vf
, qid
, 0);
657 /* Remove filtering if feasible */
658 if (bnx2x_validate_vf_sp_objs(bp
, vf
, true)) {
659 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
661 BNX2X_VF_FILTER_VLAN_MAC
);
664 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
666 BNX2X_VF_FILTER_VLAN
);
669 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
671 BNX2X_VF_FILTER_MAC
);
674 rc
= bnx2x_vf_mcast(bp
, vf
, NULL
, 0, false);
681 rc
= bnx2x_vf_queue_destroy(bp
, vf
, qid
);
686 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
687 vf
->abs_vfid
, qid
, rc
);
691 /* VF enable primitives
692 * when pretend is required the caller is responsible
693 * for calling pretend prior to calling these routines
696 /* internal vf enable - until vf is enabled internally all transactions
697 * are blocked. This routine should always be called last with pretend.
699 static void bnx2x_vf_enable_internal(struct bnx2x
*bp
, u8 enable
)
701 REG_WR(bp
, PGLUE_B_REG_INTERNAL_VFID_ENABLE
, enable
? 1 : 0);
704 /* clears vf error in all semi blocks */
705 static void bnx2x_vf_semi_clear_err(struct bnx2x
*bp
, u8 abs_vfid
)
707 REG_WR(bp
, TSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
708 REG_WR(bp
, USEM_REG_VFPF_ERR_NUM
, abs_vfid
);
709 REG_WR(bp
, CSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
710 REG_WR(bp
, XSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
713 static void bnx2x_vf_pglue_clear_err(struct bnx2x
*bp
, u8 abs_vfid
)
715 u32 was_err_group
= (2 * BP_PATH(bp
) + abs_vfid
) >> 5;
718 switch (was_err_group
) {
720 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR
;
723 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR
;
726 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR
;
729 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR
;
732 REG_WR(bp
, was_err_reg
, 1 << (abs_vfid
& 0x1f));
735 static void bnx2x_vf_igu_reset(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
740 /* Set VF masks and configuration - pretend */
741 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
743 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_LSB
, 0);
744 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_MSB
, 0);
745 REG_WR(bp
, IGU_REG_SB_MASK_LSB
, 0);
746 REG_WR(bp
, IGU_REG_SB_MASK_MSB
, 0);
747 REG_WR(bp
, IGU_REG_PBA_STATUS_LSB
, 0);
748 REG_WR(bp
, IGU_REG_PBA_STATUS_MSB
, 0);
750 val
= REG_RD(bp
, IGU_REG_VF_CONFIGURATION
);
751 val
|= (IGU_VF_CONF_FUNC_EN
| IGU_VF_CONF_MSI_MSIX_EN
);
752 val
&= ~IGU_VF_CONF_PARENT_MASK
;
753 val
|= (BP_ABS_FUNC(bp
) >> 1) << IGU_VF_CONF_PARENT_SHIFT
;
754 REG_WR(bp
, IGU_REG_VF_CONFIGURATION
, val
);
757 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
760 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
762 /* iterate over all queues, clear sb consumer */
763 for (i
= 0; i
< vf_sb_count(vf
); i
++) {
764 u8 igu_sb_id
= vf_igu_sb(vf
, i
);
766 /* zero prod memory */
767 REG_WR(bp
, IGU_REG_PROD_CONS_MEMORY
+ igu_sb_id
* 4, 0);
769 /* clear sb state machine */
770 bnx2x_igu_clear_sb_gen(bp
, vf
->abs_vfid
, igu_sb_id
,
773 /* disable + update */
774 bnx2x_vf_igu_ack_sb(bp
, vf
, igu_sb_id
, USTORM_ID
, 0,
779 void bnx2x_vf_enable_access(struct bnx2x
*bp
, u8 abs_vfid
)
781 /* set the VF-PF association in the FW */
782 storm_memset_vf_to_pf(bp
, FW_VF_HANDLE(abs_vfid
), BP_FUNC(bp
));
783 storm_memset_func_en(bp
, FW_VF_HANDLE(abs_vfid
), 1);
786 bnx2x_vf_semi_clear_err(bp
, abs_vfid
);
787 bnx2x_vf_pglue_clear_err(bp
, abs_vfid
);
789 /* internal vf-enable - pretend */
790 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, abs_vfid
));
791 DP(BNX2X_MSG_IOV
, "enabling internal access for vf %x\n", abs_vfid
);
792 bnx2x_vf_enable_internal(bp
, true);
793 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
796 static void bnx2x_vf_enable_traffic(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
798 /* Reset vf in IGU interrupts are still disabled */
799 bnx2x_vf_igu_reset(bp
, vf
);
801 /* pretend to enable the vf with the PBF */
802 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
803 REG_WR(bp
, PBF_REG_DISABLE_VF
, 0);
804 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
807 static u8
bnx2x_vf_is_pcie_pending(struct bnx2x
*bp
, u8 abs_vfid
)
810 struct bnx2x_virtf
*vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
815 dev
= pci_get_domain_bus_and_slot(vf
->domain
, vf
->bus
, vf
->devfn
);
817 return bnx2x_is_pcie_pending(dev
);
821 int bnx2x_vf_flr_clnup_epilog(struct bnx2x
*bp
, u8 abs_vfid
)
823 /* Verify no pending pci transactions */
824 if (bnx2x_vf_is_pcie_pending(bp
, abs_vfid
))
825 BNX2X_ERR("PCIE Transactions still pending\n");
830 /* must be called after the number of PF queues and the number of VFs are
834 bnx2x_iov_static_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
836 struct vf_pf_resc_request
*resc
= &vf
->alloc_resc
;
838 /* will be set only during VF-ACQUIRE */
842 resc
->num_mac_filters
= VF_MAC_CREDIT_CNT
;
843 resc
->num_vlan_filters
= VF_VLAN_CREDIT_CNT
;
845 /* no real limitation */
846 resc
->num_mc_filters
= 0;
848 /* num_sbs already set */
849 resc
->num_sbs
= vf
->sb_count
;
853 static void bnx2x_vf_free_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
855 /* reset the state variables */
856 bnx2x_iov_static_resc(bp
, vf
);
860 static void bnx2x_vf_flr_clnup_hw(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
862 u32 poll_cnt
= bnx2x_flr_clnup_poll_count(bp
);
864 /* DQ usage counter */
865 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
866 bnx2x_flr_clnup_poll_hw_counter(bp
, DORQ_REG_VF_USAGE_CNT
,
867 "DQ VF usage counter timed out",
869 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
871 /* FW cleanup command - poll for the results */
872 if (bnx2x_send_final_clnup(bp
, (u8
)FW_VF_HANDLE(vf
->abs_vfid
),
874 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf
->abs_vfid
);
876 /* verify TX hw is flushed */
877 bnx2x_tx_hw_flushed(bp
, poll_cnt
);
880 static void bnx2x_vf_flr(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
884 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
886 /* the cleanup operations are valid if and only if the VF
887 * was first acquired.
889 for (i
= 0; i
< vf_rxq_count(vf
); i
++) {
890 rc
= bnx2x_vf_queue_flr(bp
, vf
, i
);
895 /* remove multicasts */
896 bnx2x_vf_mcast(bp
, vf
, NULL
, 0, true);
898 /* dispatch final cleanup and wait for HW queues to flush */
899 bnx2x_vf_flr_clnup_hw(bp
, vf
);
901 /* release VF resources */
902 bnx2x_vf_free_resc(bp
, vf
);
904 vf
->malicious
= false;
906 /* re-open the mailbox */
907 bnx2x_vf_enable_mbx(bp
, vf
->abs_vfid
);
910 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
911 vf
->abs_vfid
, i
, rc
);
914 static void bnx2x_vf_flr_clnup(struct bnx2x
*bp
)
916 struct bnx2x_virtf
*vf
;
919 for (i
= 0; i
< BNX2X_NR_VIRTFN(bp
); i
++) {
920 /* VF should be RESET & in FLR cleanup states */
921 if (bnx2x_vf(bp
, i
, state
) != VF_RESET
||
922 !bnx2x_vf(bp
, i
, flr_clnup_stage
))
925 DP(BNX2X_MSG_IOV
, "next vf to cleanup: %d. Num of vfs: %d\n",
926 i
, BNX2X_NR_VIRTFN(bp
));
930 /* lock the vf pf channel */
931 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_FLR
);
933 /* invoke the VF FLR SM */
934 bnx2x_vf_flr(bp
, vf
);
936 /* mark the VF to be ACKED and continue */
937 vf
->flr_clnup_stage
= false;
938 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_FLR
);
941 /* Acknowledge the handled VFs.
942 * we are acknowledge all the vfs which an flr was requested for, even
943 * if amongst them there are such that we never opened, since the mcp
944 * will interrupt us immediately again if we only ack some of the bits,
945 * resulting in an endless loop. This can happen for example in KVM
946 * where an 'all ones' flr request is sometimes given by hyper visor
948 DP(BNX2X_MSG_MCP
, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
949 bp
->vfdb
->flrd_vfs
[0], bp
->vfdb
->flrd_vfs
[1]);
950 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
951 SHMEM2_WR(bp
, drv_ack_vf_disabled
[BP_FW_MB_IDX(bp
)][i
],
952 bp
->vfdb
->flrd_vfs
[i
]);
954 bnx2x_fw_command(bp
, DRV_MSG_CODE_VF_DISABLED_DONE
, 0);
956 /* clear the acked bits - better yet if the MCP implemented
957 * write to clear semantics
959 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
960 SHMEM2_WR(bp
, drv_ack_vf_disabled
[BP_FW_MB_IDX(bp
)][i
], 0);
963 void bnx2x_vf_handle_flr_event(struct bnx2x
*bp
)
968 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
969 bp
->vfdb
->flrd_vfs
[i
] = SHMEM2_RD(bp
, mcp_vf_disabled
[i
]);
972 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
973 bp
->vfdb
->flrd_vfs
[0], bp
->vfdb
->flrd_vfs
[1]);
976 struct bnx2x_virtf
*vf
= BP_VF(bp
, i
);
979 if (vf
->abs_vfid
< 32)
980 reset
= bp
->vfdb
->flrd_vfs
[0] & (1 << vf
->abs_vfid
);
982 reset
= bp
->vfdb
->flrd_vfs
[1] &
983 (1 << (vf
->abs_vfid
- 32));
986 /* set as reset and ready for cleanup */
987 vf
->state
= VF_RESET
;
988 vf
->flr_clnup_stage
= true;
991 "Initiating Final cleanup for VF %d\n",
996 /* do the FLR cleanup for all marked VFs*/
997 bnx2x_vf_flr_clnup(bp
);
1000 /* IOV global initialization routines */
1001 void bnx2x_iov_init_dq(struct bnx2x
*bp
)
1006 /* Set the DQ such that the CID reflect the abs_vfid */
1007 REG_WR(bp
, DORQ_REG_VF_NORM_VF_BASE
, 0);
1008 REG_WR(bp
, DORQ_REG_MAX_RVFID_SIZE
, ilog2(BNX2X_MAX_NUM_OF_VFS
));
1010 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1013 REG_WR(bp
, DORQ_REG_VF_NORM_CID_BASE
, BNX2X_FIRST_VF_CID
);
1015 /* The VF window size is the log2 of the max number of CIDs per VF */
1016 REG_WR(bp
, DORQ_REG_VF_NORM_CID_WND_SIZE
, BNX2X_VF_CID_WND
);
1018 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1019 * the Pf doorbell size although the 2 are independent.
1021 REG_WR(bp
, DORQ_REG_VF_NORM_CID_OFST
, 3);
1023 /* No security checks for now -
1024 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1025 * CID range 0 - 0x1ffff
1027 REG_WR(bp
, DORQ_REG_VF_TYPE_MASK_0
, 1);
1028 REG_WR(bp
, DORQ_REG_VF_TYPE_VALUE_0
, 0);
1029 REG_WR(bp
, DORQ_REG_VF_TYPE_MIN_MCID_0
, 0);
1030 REG_WR(bp
, DORQ_REG_VF_TYPE_MAX_MCID_0
, 0x1ffff);
1032 /* set the VF doorbell threshold. This threshold represents the amount
1033 * of doorbells allowed in the main DORQ fifo for a specific VF.
1035 REG_WR(bp
, DORQ_REG_VF_USAGE_CT_LIMIT
, 64);
1038 void bnx2x_iov_init_dmae(struct bnx2x
*bp
)
1040 if (pci_find_ext_capability(bp
->pdev
, PCI_EXT_CAP_ID_SRIOV
))
1041 REG_WR(bp
, DMAE_REG_BACKWARD_COMP_EN
, 0);
1044 static int bnx2x_vf_domain(struct bnx2x
*bp
, int vfid
)
1046 struct pci_dev
*dev
= bp
->pdev
;
1048 return pci_domain_nr(dev
->bus
);
1051 static int bnx2x_vf_bus(struct bnx2x
*bp
, int vfid
)
1053 struct pci_dev
*dev
= bp
->pdev
;
1054 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1056 return dev
->bus
->number
+ ((dev
->devfn
+ iov
->offset
+
1057 iov
->stride
* vfid
) >> 8);
1060 static int bnx2x_vf_devfn(struct bnx2x
*bp
, int vfid
)
1062 struct pci_dev
*dev
= bp
->pdev
;
1063 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1065 return (dev
->devfn
+ iov
->offset
+ iov
->stride
* vfid
) & 0xff;
1068 static void bnx2x_vf_set_bars(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1071 struct pci_dev
*dev
= bp
->pdev
;
1072 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1074 for (i
= 0, n
= 0; i
< PCI_SRIOV_NUM_BARS
; i
+= 2, n
++) {
1075 u64 start
= pci_resource_start(dev
, PCI_IOV_RESOURCES
+ i
);
1076 u32 size
= pci_resource_len(dev
, PCI_IOV_RESOURCES
+ i
);
1079 vf
->bars
[n
].bar
= start
+ size
* vf
->abs_vfid
;
1080 vf
->bars
[n
].size
= size
;
1085 bnx2x_get_vf_igu_cam_info(struct bnx2x
*bp
)
1089 u8 fid
, current_pf
= 0;
1091 /* IGU in normal mode - read CAM */
1092 for (sb_id
= 0; sb_id
< IGU_REG_MAPPING_MEMORY_SIZE
; sb_id
++) {
1093 val
= REG_RD(bp
, IGU_REG_MAPPING_MEMORY
+ sb_id
* 4);
1094 if (!(val
& IGU_REG_MAPPING_MEMORY_VALID
))
1096 fid
= GET_FIELD((val
), IGU_REG_MAPPING_MEMORY_FID
);
1097 if (fid
& IGU_FID_ENCODE_IS_PF
)
1098 current_pf
= fid
& IGU_FID_PF_NUM_MASK
;
1099 else if (current_pf
== BP_FUNC(bp
))
1100 bnx2x_vf_set_igu_info(bp
, sb_id
,
1101 (fid
& IGU_FID_VF_NUM_MASK
));
1102 DP(BNX2X_MSG_IOV
, "%s[%d], igu_sb_id=%d, msix=%d\n",
1103 ((fid
& IGU_FID_ENCODE_IS_PF
) ? "PF" : "VF"),
1104 ((fid
& IGU_FID_ENCODE_IS_PF
) ? (fid
& IGU_FID_PF_NUM_MASK
) :
1105 (fid
& IGU_FID_VF_NUM_MASK
)), sb_id
,
1106 GET_FIELD((val
), IGU_REG_MAPPING_MEMORY_VECTOR
));
1108 DP(BNX2X_MSG_IOV
, "vf_sbs_pool is %d\n", BP_VFDB(bp
)->vf_sbs_pool
);
1109 return BP_VFDB(bp
)->vf_sbs_pool
;
1112 static void __bnx2x_iov_free_vfdb(struct bnx2x
*bp
)
1115 kfree(bp
->vfdb
->vfqs
);
1116 kfree(bp
->vfdb
->vfs
);
1122 static int bnx2x_sriov_pci_cfg_info(struct bnx2x
*bp
, struct bnx2x_sriov
*iov
)
1125 struct pci_dev
*dev
= bp
->pdev
;
1127 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_SRIOV
);
1129 BNX2X_ERR("failed to find SRIOV capability in device\n");
1134 DP(BNX2X_MSG_IOV
, "sriov ext pos %d\n", pos
);
1135 pci_read_config_word(dev
, pos
+ PCI_SRIOV_CTRL
, &iov
->ctrl
);
1136 pci_read_config_word(dev
, pos
+ PCI_SRIOV_TOTAL_VF
, &iov
->total
);
1137 pci_read_config_word(dev
, pos
+ PCI_SRIOV_INITIAL_VF
, &iov
->initial
);
1138 pci_read_config_word(dev
, pos
+ PCI_SRIOV_VF_OFFSET
, &iov
->offset
);
1139 pci_read_config_word(dev
, pos
+ PCI_SRIOV_VF_STRIDE
, &iov
->stride
);
1140 pci_read_config_dword(dev
, pos
+ PCI_SRIOV_SUP_PGSIZE
, &iov
->pgsz
);
1141 pci_read_config_dword(dev
, pos
+ PCI_SRIOV_CAP
, &iov
->cap
);
1142 pci_read_config_byte(dev
, pos
+ PCI_SRIOV_FUNC_LINK
, &iov
->link
);
1147 static int bnx2x_sriov_info(struct bnx2x
*bp
, struct bnx2x_sriov
*iov
)
1151 /* read the SRIOV capability structure
1152 * The fields can be read via configuration read or
1153 * directly from the device (starting at offset PCICFG_OFFSET)
1155 if (bnx2x_sriov_pci_cfg_info(bp
, iov
))
1158 /* get the number of SRIOV bars */
1161 /* read the first_vfid */
1162 val
= REG_RD(bp
, PCICFG_OFFSET
+ GRC_CONFIG_REG_PF_INIT_VF
);
1163 iov
->first_vf_in_pf
= ((val
& GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK
)
1164 * 8) - (BNX2X_MAX_NUM_OF_VFS
* BP_PATH(bp
));
1167 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1169 iov
->first_vf_in_pf
, iov
->nres
, iov
->cap
, iov
->ctrl
, iov
->total
,
1170 iov
->initial
, iov
->nr_virtfn
, iov
->offset
, iov
->stride
, iov
->pgsz
);
1175 /* must be called after PF bars are mapped */
1176 int bnx2x_iov_init_one(struct bnx2x
*bp
, int int_mode_param
,
1180 struct bnx2x_sriov
*iov
;
1181 struct pci_dev
*dev
= bp
->pdev
;
1189 /* verify sriov capability is present in configuration space */
1190 if (!pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_SRIOV
))
1193 /* verify chip revision */
1194 if (CHIP_IS_E1x(bp
))
1197 /* check if SRIOV support is turned off */
1201 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1202 if (BNX2X_L2_MAX_CID(bp
) >= BNX2X_FIRST_VF_CID
) {
1203 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1204 BNX2X_L2_MAX_CID(bp
), BNX2X_FIRST_VF_CID
);
1208 /* SRIOV can be enabled only with MSIX */
1209 if (int_mode_param
== BNX2X_INT_MODE_MSI
||
1210 int_mode_param
== BNX2X_INT_MODE_INTX
) {
1211 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1216 /* verify ari is enabled */
1217 if (!pci_ari_enabled(bp
->pdev
->bus
)) {
1218 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1222 /* verify igu is in normal mode */
1223 if (CHIP_INT_MODE_IS_BC(bp
)) {
1224 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1228 /* allocate the vfs database */
1229 bp
->vfdb
= kzalloc(sizeof(*(bp
->vfdb
)), GFP_KERNEL
);
1231 BNX2X_ERR("failed to allocate vf database\n");
1236 /* get the sriov info - Linux already collected all the pertinent
1237 * information, however the sriov structure is for the private use
1238 * of the pci module. Also we want this information regardless
1239 * of the hyper-visor.
1241 iov
= &(bp
->vfdb
->sriov
);
1242 err
= bnx2x_sriov_info(bp
, iov
);
1246 /* SR-IOV capability was enabled but there are no VFs*/
1247 if (iov
->total
== 0)
1250 iov
->nr_virtfn
= min_t(u16
, iov
->total
, num_vfs_param
);
1252 DP(BNX2X_MSG_IOV
, "num_vfs_param was %d, nr_virtfn was %d\n",
1253 num_vfs_param
, iov
->nr_virtfn
);
1255 /* allocate the vf array */
1256 bp
->vfdb
->vfs
= kcalloc(BNX2X_NR_VIRTFN(bp
),
1257 sizeof(struct bnx2x_virtf
),
1259 if (!bp
->vfdb
->vfs
) {
1260 BNX2X_ERR("failed to allocate vf array\n");
1265 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1266 for_each_vf(bp
, i
) {
1267 bnx2x_vf(bp
, i
, index
) = i
;
1268 bnx2x_vf(bp
, i
, abs_vfid
) = iov
->first_vf_in_pf
+ i
;
1269 bnx2x_vf(bp
, i
, state
) = VF_FREE
;
1270 mutex_init(&bnx2x_vf(bp
, i
, op_mutex
));
1271 bnx2x_vf(bp
, i
, op_current
) = CHANNEL_TLV_NONE
;
1274 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1275 if (!bnx2x_get_vf_igu_cam_info(bp
)) {
1276 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1281 /* allocate the queue arrays for all VFs */
1282 bp
->vfdb
->vfqs
= kcalloc(BNX2X_MAX_NUM_VF_QUEUES
,
1283 sizeof(struct bnx2x_vf_queue
),
1286 if (!bp
->vfdb
->vfqs
) {
1287 BNX2X_ERR("failed to allocate vf queue array\n");
1292 /* Prepare the VFs event synchronization mechanism */
1293 mutex_init(&bp
->vfdb
->event_mutex
);
1295 mutex_init(&bp
->vfdb
->bulletin_mutex
);
1297 if (SHMEM2_HAS(bp
, sriov_switch_mode
))
1298 SHMEM2_WR(bp
, sriov_switch_mode
, SRIOV_SWITCH_MODE_VEB
);
1302 DP(BNX2X_MSG_IOV
, "Failed err=%d\n", err
);
1303 __bnx2x_iov_free_vfdb(bp
);
1307 void bnx2x_iov_remove_one(struct bnx2x
*bp
)
1311 /* if SRIOV is not enabled there's nothing to do */
1315 bnx2x_disable_sriov(bp
);
1317 /* disable access to all VFs */
1318 for (vf_idx
= 0; vf_idx
< bp
->vfdb
->sriov
.total
; vf_idx
++) {
1319 bnx2x_pretend_func(bp
,
1321 bp
->vfdb
->sriov
.first_vf_in_pf
+
1323 DP(BNX2X_MSG_IOV
, "disabling internal access for vf %d\n",
1324 bp
->vfdb
->sriov
.first_vf_in_pf
+ vf_idx
);
1325 bnx2x_vf_enable_internal(bp
, 0);
1326 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
1329 /* free vf database */
1330 __bnx2x_iov_free_vfdb(bp
);
1333 void bnx2x_iov_free_mem(struct bnx2x
*bp
)
1340 /* free vfs hw contexts */
1341 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1342 struct hw_dma
*cxt
= &bp
->vfdb
->context
[i
];
1343 BNX2X_PCI_FREE(cxt
->addr
, cxt
->mapping
, cxt
->size
);
1346 BNX2X_PCI_FREE(BP_VFDB(bp
)->sp_dma
.addr
,
1347 BP_VFDB(bp
)->sp_dma
.mapping
,
1348 BP_VFDB(bp
)->sp_dma
.size
);
1350 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp
)->addr
,
1351 BP_VF_MBX_DMA(bp
)->mapping
,
1352 BP_VF_MBX_DMA(bp
)->size
);
1354 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp
)->addr
,
1355 BP_VF_BULLETIN_DMA(bp
)->mapping
,
1356 BP_VF_BULLETIN_DMA(bp
)->size
);
1359 int bnx2x_iov_alloc_mem(struct bnx2x
*bp
)
1367 /* allocate vfs hw contexts */
1368 tot_size
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ BNX2X_NR_VIRTFN(bp
)) *
1369 BNX2X_CIDS_PER_VF
* sizeof(union cdu_context
);
1371 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1372 struct hw_dma
*cxt
= BP_VF_CXT_PAGE(bp
, i
);
1373 cxt
->size
= min_t(size_t, tot_size
, CDU_ILT_PAGE_SZ
);
1376 cxt
->addr
= BNX2X_PCI_ALLOC(&cxt
->mapping
, cxt
->size
);
1383 tot_size
-= cxt
->size
;
1386 /* allocate vfs ramrods dma memory - client_init and set_mac */
1387 tot_size
= BNX2X_NR_VIRTFN(bp
) * sizeof(struct bnx2x_vf_sp
);
1388 BP_VFDB(bp
)->sp_dma
.addr
= BNX2X_PCI_ALLOC(&BP_VFDB(bp
)->sp_dma
.mapping
,
1390 if (!BP_VFDB(bp
)->sp_dma
.addr
)
1392 BP_VFDB(bp
)->sp_dma
.size
= tot_size
;
1394 /* allocate mailboxes */
1395 tot_size
= BNX2X_NR_VIRTFN(bp
) * MBX_MSG_ALIGNED_SIZE
;
1396 BP_VF_MBX_DMA(bp
)->addr
= BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp
)->mapping
,
1398 if (!BP_VF_MBX_DMA(bp
)->addr
)
1401 BP_VF_MBX_DMA(bp
)->size
= tot_size
;
1403 /* allocate local bulletin boards */
1404 tot_size
= BNX2X_NR_VIRTFN(bp
) * BULLETIN_CONTENT_SIZE
;
1405 BP_VF_BULLETIN_DMA(bp
)->addr
= BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp
)->mapping
,
1407 if (!BP_VF_BULLETIN_DMA(bp
)->addr
)
1410 BP_VF_BULLETIN_DMA(bp
)->size
= tot_size
;
1418 static void bnx2x_vfq_init(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
1419 struct bnx2x_vf_queue
*q
)
1421 u8 cl_id
= vfq_cl_id(vf
, q
);
1422 u8 func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
1423 unsigned long q_type
= 0;
1425 set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
1426 set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
1428 /* Queue State object */
1429 bnx2x_init_queue_obj(bp
, &q
->sp_obj
,
1430 cl_id
, &q
->cid
, 1, func_id
,
1431 bnx2x_vf_sp(bp
, vf
, q_data
),
1432 bnx2x_vf_sp_map(bp
, vf
, q_data
),
1435 /* sp indication is set only when vlan/mac/etc. are initialized */
1436 q
->sp_initialized
= false;
1439 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1440 vf
->abs_vfid
, q
->sp_obj
.func_id
, q
->cid
);
1443 static int bnx2x_max_speed_cap(struct bnx2x
*bp
)
1445 u32 supported
= bp
->port
.supported
[bnx2x_get_link_cfg_idx(bp
)];
1448 (SUPPORTED_20000baseMLD2_Full
| SUPPORTED_20000baseKR2_Full
))
1451 return 10000; /* assume lowest supported speed is 10G */
1454 int bnx2x_iov_link_update_vf(struct bnx2x
*bp
, int idx
)
1456 struct bnx2x_link_report_data
*state
= &bp
->last_reported_link
;
1457 struct pf_vf_bulletin_content
*bulletin
;
1458 struct bnx2x_virtf
*vf
;
1462 /* sanity and init */
1463 rc
= bnx2x_vf_op_prep(bp
, idx
, &vf
, &bulletin
, false);
1467 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
1469 if (vf
->link_cfg
== IFLA_VF_LINK_STATE_AUTO
) {
1470 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1472 bulletin
->link_speed
= state
->line_speed
;
1473 bulletin
->link_flags
= 0;
1474 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1475 &state
->link_report_flags
))
1476 bulletin
->link_flags
|= VFPF_LINK_REPORT_LINK_DOWN
;
1477 if (test_bit(BNX2X_LINK_REPORT_FD
,
1478 &state
->link_report_flags
))
1479 bulletin
->link_flags
|= VFPF_LINK_REPORT_FULL_DUPLEX
;
1480 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1481 &state
->link_report_flags
))
1482 bulletin
->link_flags
|= VFPF_LINK_REPORT_RX_FC_ON
;
1483 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1484 &state
->link_report_flags
))
1485 bulletin
->link_flags
|= VFPF_LINK_REPORT_TX_FC_ON
;
1486 } else if (vf
->link_cfg
== IFLA_VF_LINK_STATE_DISABLE
&&
1487 !(bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)) {
1488 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1489 bulletin
->link_flags
|= VFPF_LINK_REPORT_LINK_DOWN
;
1490 } else if (vf
->link_cfg
== IFLA_VF_LINK_STATE_ENABLE
&&
1491 (bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)) {
1492 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1493 bulletin
->link_speed
= bnx2x_max_speed_cap(bp
);
1494 bulletin
->link_flags
&= ~VFPF_LINK_REPORT_LINK_DOWN
;
1500 DP(NETIF_MSG_LINK
| BNX2X_MSG_IOV
,
1501 "vf %d mode %u speed %d flags %x\n", idx
,
1502 vf
->link_cfg
, bulletin
->link_speed
, bulletin
->link_flags
);
1504 /* Post update on VF's bulletin board */
1505 rc
= bnx2x_post_vf_bulletin(bp
, idx
);
1507 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx
);
1513 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
1517 int bnx2x_set_vf_link_state(struct net_device
*dev
, int idx
, int link_state
)
1519 struct bnx2x
*bp
= netdev_priv(dev
);
1520 struct bnx2x_virtf
*vf
= BP_VF(bp
, idx
);
1525 if (vf
->link_cfg
== link_state
)
1526 return 0; /* nothing todo */
1528 vf
->link_cfg
= link_state
;
1530 return bnx2x_iov_link_update_vf(bp
, idx
);
1533 void bnx2x_iov_link_update(struct bnx2x
*bp
)
1540 for_each_vf(bp
, vfid
)
1541 bnx2x_iov_link_update_vf(bp
, vfid
);
1544 /* called by bnx2x_nic_load */
1545 int bnx2x_iov_nic_init(struct bnx2x
*bp
)
1549 if (!IS_SRIOV(bp
)) {
1550 DP(BNX2X_MSG_IOV
, "vfdb was not allocated\n");
1554 DP(BNX2X_MSG_IOV
, "num of vfs: %d\n", (bp
)->vfdb
->sriov
.nr_virtfn
);
1556 /* let FLR complete ... */
1559 /* initialize vf database */
1560 for_each_vf(bp
, vfid
) {
1561 struct bnx2x_virtf
*vf
= BP_VF(bp
, vfid
);
1563 int base_vf_cid
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ vfid
) *
1566 union cdu_context
*base_cxt
= (union cdu_context
*)
1567 BP_VF_CXT_PAGE(bp
, base_vf_cid
/ILT_PAGE_CIDS
)->addr
+
1568 (base_vf_cid
& (ILT_PAGE_CIDS
-1));
1571 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1572 vf
->abs_vfid
, vf_sb_count(vf
), base_vf_cid
,
1573 BNX2X_FIRST_VF_CID
+ base_vf_cid
, base_cxt
);
1575 /* init statically provisioned resources */
1576 bnx2x_iov_static_resc(bp
, vf
);
1578 /* queues are initialized during VF-ACQUIRE */
1579 vf
->filter_state
= 0;
1580 vf
->sp_cl_id
= bnx2x_fp(bp
, 0, cl_id
);
1582 bnx2x_init_credit_pool(&vf
->vf_vlans_pool
, 0,
1583 vf_vlan_rules_cnt(vf
));
1584 bnx2x_init_credit_pool(&vf
->vf_macs_pool
, 0,
1585 vf_mac_rules_cnt(vf
));
1587 /* init mcast object - This object will be re-initialized
1588 * during VF-ACQUIRE with the proper cl_id and cid.
1589 * It needs to be initialized here so that it can be safely
1590 * handled by a subsequent FLR flow.
1592 bnx2x_init_mcast_obj(bp
, &vf
->mcast_obj
, 0xFF,
1594 bnx2x_vf_sp(bp
, vf
, mcast_rdata
),
1595 bnx2x_vf_sp_map(bp
, vf
, mcast_rdata
),
1596 BNX2X_FILTER_MCAST_PENDING
,
1598 BNX2X_OBJ_TYPE_RX_TX
);
1600 /* set the mailbox message addresses */
1601 BP_VF_MBX(bp
, vfid
)->msg
= (struct bnx2x_vf_mbx_msg
*)
1602 (((u8
*)BP_VF_MBX_DMA(bp
)->addr
) + vfid
*
1603 MBX_MSG_ALIGNED_SIZE
);
1605 BP_VF_MBX(bp
, vfid
)->msg_mapping
= BP_VF_MBX_DMA(bp
)->mapping
+
1606 vfid
* MBX_MSG_ALIGNED_SIZE
;
1608 /* Enable vf mailbox */
1609 bnx2x_vf_enable_mbx(bp
, vf
->abs_vfid
);
1613 for_each_vf(bp
, vfid
) {
1614 struct bnx2x_virtf
*vf
= BP_VF(bp
, vfid
);
1616 /* fill in the BDF and bars */
1617 vf
->domain
= bnx2x_vf_domain(bp
, vfid
);
1618 vf
->bus
= bnx2x_vf_bus(bp
, vfid
);
1619 vf
->devfn
= bnx2x_vf_devfn(bp
, vfid
);
1620 bnx2x_vf_set_bars(bp
, vf
);
1623 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1624 vf
->abs_vfid
, vf
->bus
, vf
->devfn
,
1625 (unsigned)vf
->bars
[0].bar
, vf
->bars
[0].size
,
1626 (unsigned)vf
->bars
[1].bar
, vf
->bars
[1].size
,
1627 (unsigned)vf
->bars
[2].bar
, vf
->bars
[2].size
);
1633 /* called by bnx2x_chip_cleanup */
1634 int bnx2x_iov_chip_cleanup(struct bnx2x
*bp
)
1641 /* release all the VFs */
1643 bnx2x_vf_release(bp
, BP_VF(bp
, i
));
1648 /* called by bnx2x_init_hw_func, returns the next ilt line */
1649 int bnx2x_iov_init_ilt(struct bnx2x
*bp
, u16 line
)
1652 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
1657 /* set vfs ilt lines */
1658 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1659 struct hw_dma
*hw_cxt
= BP_VF_CXT_PAGE(bp
, i
);
1661 ilt
->lines
[line
+i
].page
= hw_cxt
->addr
;
1662 ilt
->lines
[line
+i
].page_mapping
= hw_cxt
->mapping
;
1663 ilt
->lines
[line
+i
].size
= hw_cxt
->size
; /* doesn't matter */
1668 static u8
bnx2x_iov_is_vf_cid(struct bnx2x
*bp
, u16 cid
)
1670 return ((cid
>= BNX2X_FIRST_VF_CID
) &&
1671 ((cid
- BNX2X_FIRST_VF_CID
) < BNX2X_VF_CIDS
));
1675 void bnx2x_vf_handle_classification_eqe(struct bnx2x
*bp
,
1676 struct bnx2x_vf_queue
*vfq
,
1677 union event_ring_elem
*elem
)
1679 unsigned long ramrod_flags
= 0;
1681 u32 echo
= le32_to_cpu(elem
->message
.data
.eth_event
.echo
);
1683 /* Always push next commands out, don't wait here */
1684 set_bit(RAMROD_CONT
, &ramrod_flags
);
1686 switch (echo
>> BNX2X_SWCID_SHIFT
) {
1687 case BNX2X_FILTER_MAC_PENDING
:
1688 rc
= vfq
->mac_obj
.complete(bp
, &vfq
->mac_obj
, elem
,
1691 case BNX2X_FILTER_VLAN_PENDING
:
1692 rc
= vfq
->vlan_obj
.complete(bp
, &vfq
->vlan_obj
, elem
,
1696 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo
);
1700 BNX2X_ERR("Failed to schedule new commands: %d\n", rc
);
1702 DP(BNX2X_MSG_IOV
, "Scheduled next pending commands...\n");
1706 void bnx2x_vf_handle_mcast_eqe(struct bnx2x
*bp
,
1707 struct bnx2x_virtf
*vf
)
1709 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
1712 rparam
.mcast_obj
= &vf
->mcast_obj
;
1713 vf
->mcast_obj
.raw
.clear_pending(&vf
->mcast_obj
.raw
);
1715 /* If there are pending mcast commands - send them */
1716 if (vf
->mcast_obj
.check_pending(&vf
->mcast_obj
)) {
1717 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
1719 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1725 void bnx2x_vf_handle_filters_eqe(struct bnx2x
*bp
,
1726 struct bnx2x_virtf
*vf
)
1728 smp_mb__before_atomic();
1729 clear_bit(BNX2X_FILTER_RX_MODE_PENDING
, &vf
->filter_state
);
1730 smp_mb__after_atomic();
1733 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x
*bp
,
1734 struct bnx2x_virtf
*vf
)
1736 vf
->rss_conf_obj
.raw
.clear_pending(&vf
->rss_conf_obj
.raw
);
1739 int bnx2x_iov_eq_sp_event(struct bnx2x
*bp
, union event_ring_elem
*elem
)
1741 struct bnx2x_virtf
*vf
;
1742 int qidx
= 0, abs_vfid
;
1749 /* first get the cid - the only events we handle here are cfc-delete
1750 * and set-mac completion
1752 opcode
= elem
->message
.opcode
;
1755 case EVENT_RING_OPCODE_CFC_DEL
:
1756 cid
= SW_CID(elem
->message
.data
.cfc_del_event
.cid
);
1757 DP(BNX2X_MSG_IOV
, "checking cfc-del comp cid=%d\n", cid
);
1759 case EVENT_RING_OPCODE_CLASSIFICATION_RULES
:
1760 case EVENT_RING_OPCODE_MULTICAST_RULES
:
1761 case EVENT_RING_OPCODE_FILTERS_RULES
:
1762 case EVENT_RING_OPCODE_RSS_UPDATE_RULES
:
1763 cid
= SW_CID(elem
->message
.data
.eth_event
.echo
);
1764 DP(BNX2X_MSG_IOV
, "checking filtering comp cid=%d\n", cid
);
1766 case EVENT_RING_OPCODE_VF_FLR
:
1767 abs_vfid
= elem
->message
.data
.vf_flr_event
.vf_id
;
1768 DP(BNX2X_MSG_IOV
, "Got VF FLR notification abs_vfid=%d\n",
1771 case EVENT_RING_OPCODE_MALICIOUS_VF
:
1772 abs_vfid
= elem
->message
.data
.malicious_vf_event
.vf_id
;
1773 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1775 elem
->message
.data
.malicious_vf_event
.err_id
);
1781 /* check if the cid is the VF range */
1782 if (!bnx2x_iov_is_vf_cid(bp
, cid
)) {
1783 DP(BNX2X_MSG_IOV
, "cid is outside vf range: %d\n", cid
);
1787 /* extract vf and rxq index from vf_cid - relies on the following:
1788 * 1. vfid on cid reflects the true abs_vfid
1789 * 2. The max number of VFs (per path) is 64
1791 qidx
= cid
& ((1 << BNX2X_VF_CID_WND
)-1);
1792 abs_vfid
= (cid
>> BNX2X_VF_CID_WND
) & (BNX2X_MAX_NUM_OF_VFS
-1);
1794 vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
1797 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1803 case EVENT_RING_OPCODE_CFC_DEL
:
1804 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] cfc delete ramrod\n",
1805 vf
->abs_vfid
, qidx
);
1806 vfq_get(vf
, qidx
)->sp_obj
.complete_cmd(bp
,
1809 BNX2X_Q_CMD_CFC_DEL
);
1811 case EVENT_RING_OPCODE_CLASSIFICATION_RULES
:
1812 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set mac/vlan ramrod\n",
1813 vf
->abs_vfid
, qidx
);
1814 bnx2x_vf_handle_classification_eqe(bp
, vfq_get(vf
, qidx
), elem
);
1816 case EVENT_RING_OPCODE_MULTICAST_RULES
:
1817 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set mcast ramrod\n",
1818 vf
->abs_vfid
, qidx
);
1819 bnx2x_vf_handle_mcast_eqe(bp
, vf
);
1821 case EVENT_RING_OPCODE_FILTERS_RULES
:
1822 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set rx-mode ramrod\n",
1823 vf
->abs_vfid
, qidx
);
1824 bnx2x_vf_handle_filters_eqe(bp
, vf
);
1826 case EVENT_RING_OPCODE_RSS_UPDATE_RULES
:
1827 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] RSS update ramrod\n",
1828 vf
->abs_vfid
, qidx
);
1829 bnx2x_vf_handle_rss_update_eqe(bp
, vf
);
1831 case EVENT_RING_OPCODE_VF_FLR
:
1832 /* Do nothing for now */
1834 case EVENT_RING_OPCODE_MALICIOUS_VF
:
1835 vf
->malicious
= true;
1842 static struct bnx2x_virtf
*bnx2x_vf_by_cid(struct bnx2x
*bp
, int vf_cid
)
1844 /* extract the vf from vf_cid - relies on the following:
1845 * 1. vfid on cid reflects the true abs_vfid
1846 * 2. The max number of VFs (per path) is 64
1848 int abs_vfid
= (vf_cid
>> BNX2X_VF_CID_WND
) & (BNX2X_MAX_NUM_OF_VFS
-1);
1849 return bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
1852 void bnx2x_iov_set_queue_sp_obj(struct bnx2x
*bp
, int vf_cid
,
1853 struct bnx2x_queue_sp_obj
**q_obj
)
1855 struct bnx2x_virtf
*vf
;
1860 vf
= bnx2x_vf_by_cid(bp
, vf_cid
);
1863 /* extract queue index from vf_cid - relies on the following:
1864 * 1. vfid on cid reflects the true abs_vfid
1865 * 2. The max number of VFs (per path) is 64
1867 int q_index
= vf_cid
& ((1 << BNX2X_VF_CID_WND
)-1);
1868 *q_obj
= &bnx2x_vfq(vf
, q_index
, sp_obj
);
1870 BNX2X_ERR("No vf matching cid %d\n", vf_cid
);
1874 void bnx2x_iov_adjust_stats_req(struct bnx2x
*bp
)
1877 int first_queue_query_index
, num_queues_req
;
1878 dma_addr_t cur_data_offset
;
1879 struct stats_query_entry
*cur_query_entry
;
1881 bool is_fcoe
= false;
1889 /* fcoe adds one global request and one queue request */
1890 num_queues_req
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe
;
1891 first_queue_query_index
= BNX2X_FIRST_QUEUE_QUERY_IDX
-
1894 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1895 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1896 BNX2X_NUM_ETH_QUEUES(bp
), is_fcoe
, first_queue_query_index
,
1897 first_queue_query_index
+ num_queues_req
);
1899 cur_data_offset
= bp
->fw_stats_data_mapping
+
1900 offsetof(struct bnx2x_fw_stats_data
, queue_stats
) +
1901 num_queues_req
* sizeof(struct per_queue_stats
);
1903 cur_query_entry
= &bp
->fw_stats_req
->
1904 query
[first_queue_query_index
+ num_queues_req
];
1906 for_each_vf(bp
, i
) {
1908 struct bnx2x_virtf
*vf
= BP_VF(bp
, i
);
1910 if (vf
->state
!= VF_ENABLED
) {
1911 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1912 "vf %d not enabled so no stats for it\n",
1917 if (vf
->malicious
) {
1918 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1919 "vf %d malicious so no stats for it\n",
1924 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1925 "add addresses for vf %d\n", vf
->abs_vfid
);
1926 for_each_vfq(vf
, j
) {
1927 struct bnx2x_vf_queue
*rxq
= vfq_get(vf
, j
);
1929 dma_addr_t q_stats_addr
=
1930 vf
->fw_stat_map
+ j
* vf
->stats_stride
;
1932 /* collect stats fro active queues only */
1933 if (bnx2x_get_q_logical_state(bp
, &rxq
->sp_obj
) ==
1934 BNX2X_Q_LOGICAL_STATE_STOPPED
)
1937 /* create stats query entry for this queue */
1938 cur_query_entry
->kind
= STATS_TYPE_QUEUE
;
1939 cur_query_entry
->index
= vfq_stat_id(vf
, rxq
);
1940 cur_query_entry
->funcID
=
1941 cpu_to_le16(FW_VF_HANDLE(vf
->abs_vfid
));
1942 cur_query_entry
->address
.hi
=
1943 cpu_to_le32(U64_HI(q_stats_addr
));
1944 cur_query_entry
->address
.lo
=
1945 cpu_to_le32(U64_LO(q_stats_addr
));
1946 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1947 "added address %x %x for vf %d queue %d client %d\n",
1948 cur_query_entry
->address
.hi
,
1949 cur_query_entry
->address
.lo
,
1950 cur_query_entry
->funcID
,
1951 j
, cur_query_entry
->index
);
1953 cur_data_offset
+= sizeof(struct per_queue_stats
);
1956 /* all stats are coalesced to the leading queue */
1957 if (vf
->cfg_flags
& VF_CFG_STATS_COALESCE
)
1961 bp
->fw_stats_req
->hdr
.cmd_num
= bp
->fw_stats_num
+ stats_count
;
1964 /* VF API helpers */
1965 static void bnx2x_vf_qtbl_set_q(struct bnx2x
*bp
, u8 abs_vfid
, u8 qid
,
1968 u32 reg
= PXP_REG_HST_ZONE_PERMISSION_TABLE
+ qid
* 4;
1969 u32 val
= enable
? (abs_vfid
| (1 << 6)) : 0;
1971 REG_WR(bp
, reg
, val
);
1974 static void bnx2x_vf_clr_qtbl(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1979 bnx2x_vf_qtbl_set_q(bp
, vf
->abs_vfid
,
1980 vfq_qzone_id(vf
, vfq_get(vf
, i
)), false);
1983 static void bnx2x_vf_igu_disable(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1987 /* clear the VF configuration - pretend */
1988 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
1989 val
= REG_RD(bp
, IGU_REG_VF_CONFIGURATION
);
1990 val
&= ~(IGU_VF_CONF_MSI_MSIX_EN
| IGU_VF_CONF_SINGLE_ISR_EN
|
1991 IGU_VF_CONF_FUNC_EN
| IGU_VF_CONF_PARENT_MASK
);
1992 REG_WR(bp
, IGU_REG_VF_CONFIGURATION
, val
);
1993 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
1996 u8
bnx2x_vf_max_queue_cnt(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1998 return min_t(u8
, min_t(u8
, vf_sb_count(vf
), BNX2X_CIDS_PER_VF
),
1999 BNX2X_VF_MAX_QUEUES
);
2003 int bnx2x_vf_chk_avail_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2004 struct vf_pf_resc_request
*req_resc
)
2006 u8 rxq_cnt
= vf_rxq_count(vf
) ? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2007 u8 txq_cnt
= vf_txq_count(vf
) ? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2009 return ((req_resc
->num_rxqs
<= rxq_cnt
) &&
2010 (req_resc
->num_txqs
<= txq_cnt
) &&
2011 (req_resc
->num_sbs
<= vf_sb_count(vf
)) &&
2012 (req_resc
->num_mac_filters
<= vf_mac_rules_cnt(vf
)) &&
2013 (req_resc
->num_vlan_filters
<= vf_vlan_rules_cnt(vf
)));
2017 int bnx2x_vf_acquire(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2018 struct vf_pf_resc_request
*resc
)
2020 int base_vf_cid
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ vf
->index
) *
2023 union cdu_context
*base_cxt
= (union cdu_context
*)
2024 BP_VF_CXT_PAGE(bp
, base_vf_cid
/ILT_PAGE_CIDS
)->addr
+
2025 (base_vf_cid
& (ILT_PAGE_CIDS
-1));
2028 /* if state is 'acquired' the VF was not released or FLR'd, in
2029 * this case the returned resources match the acquired already
2030 * acquired resources. Verify that the requested numbers do
2031 * not exceed the already acquired numbers.
2033 if (vf
->state
== VF_ACQUIRED
) {
2034 DP(BNX2X_MSG_IOV
, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2037 if (!bnx2x_vf_chk_avail_resc(bp
, vf
, resc
)) {
2038 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2045 /* Otherwise vf state must be 'free' or 'reset' */
2046 if (vf
->state
!= VF_FREE
&& vf
->state
!= VF_RESET
) {
2047 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2048 vf
->abs_vfid
, vf
->state
);
2052 /* static allocation:
2053 * the global maximum number are fixed per VF. Fail the request if
2054 * requested number exceed these globals
2056 if (!bnx2x_vf_chk_avail_resc(bp
, vf
, resc
)) {
2058 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2059 /* set the max resource in the vf */
2063 /* Set resources counters - 0 request means max available */
2064 vf_sb_count(vf
) = resc
->num_sbs
;
2065 vf_rxq_count(vf
) = resc
->num_rxqs
? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2066 vf_txq_count(vf
) = resc
->num_txqs
? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2069 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2070 vf_sb_count(vf
), vf_rxq_count(vf
),
2071 vf_txq_count(vf
), vf_mac_rules_cnt(vf
),
2072 vf_vlan_rules_cnt(vf
));
2074 /* Initialize the queues */
2076 DP(BNX2X_MSG_IOV
, "vf->vfqs was not allocated\n");
2080 for_each_vfq(vf
, i
) {
2081 struct bnx2x_vf_queue
*q
= vfq_get(vf
, i
);
2084 BNX2X_ERR("q number %d was not allocated\n", i
);
2089 q
->cxt
= &((base_cxt
+ i
)->eth
);
2090 q
->cid
= BNX2X_FIRST_VF_CID
+ base_vf_cid
+ i
;
2092 DP(BNX2X_MSG_IOV
, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2093 vf
->abs_vfid
, i
, q
->index
, q
->cid
, q
->cxt
);
2095 /* init SP objects */
2096 bnx2x_vfq_init(bp
, vf
, q
);
2098 vf
->state
= VF_ACQUIRED
;
2102 int bnx2x_vf_init(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, dma_addr_t
*sb_map
)
2104 struct bnx2x_func_init_params func_init
= {0};
2107 /* the sb resources are initialized at this point, do the
2108 * FW/HW initializations
2110 for_each_vf_sb(vf
, i
)
2111 bnx2x_init_sb(bp
, (dma_addr_t
)sb_map
[i
], vf
->abs_vfid
, true,
2112 vf_igu_sb(vf
, i
), vf_igu_sb(vf
, i
));
2115 if (vf
->state
!= VF_ACQUIRED
) {
2116 DP(BNX2X_MSG_IOV
, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2117 vf
->abs_vfid
, vf
->state
);
2121 /* let FLR complete ... */
2124 /* FLR cleanup epilogue */
2125 if (bnx2x_vf_flr_clnup_epilog(bp
, vf
->abs_vfid
))
2128 /* reset IGU VF statistics: MSIX */
2129 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+ vf
->abs_vfid
* 4 , 0);
2131 /* function setup */
2132 func_init
.pf_id
= BP_FUNC(bp
);
2133 func_init
.func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
2134 bnx2x_func_init(bp
, &func_init
);
2137 bnx2x_vf_enable_access(bp
, vf
->abs_vfid
);
2138 bnx2x_vf_enable_traffic(bp
, vf
);
2140 /* queue protection table */
2142 bnx2x_vf_qtbl_set_q(bp
, vf
->abs_vfid
,
2143 vfq_qzone_id(vf
, vfq_get(vf
, i
)), true);
2145 vf
->state
= VF_ENABLED
;
2147 /* update vf bulletin board */
2148 bnx2x_post_vf_bulletin(bp
, vf
->index
);
2153 struct set_vf_state_cookie
{
2154 struct bnx2x_virtf
*vf
;
2158 static void bnx2x_set_vf_state(void *cookie
)
2160 struct set_vf_state_cookie
*p
= (struct set_vf_state_cookie
*)cookie
;
2162 p
->vf
->state
= p
->state
;
2165 int bnx2x_vf_close(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2169 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2171 /* Close all queues */
2172 for (i
= 0; i
< vf_rxq_count(vf
); i
++) {
2173 rc
= bnx2x_vf_queue_teardown(bp
, vf
, i
);
2178 /* disable the interrupts */
2179 DP(BNX2X_MSG_IOV
, "disabling igu\n");
2180 bnx2x_vf_igu_disable(bp
, vf
);
2182 /* disable the VF */
2183 DP(BNX2X_MSG_IOV
, "clearing qtbl\n");
2184 bnx2x_vf_clr_qtbl(bp
, vf
);
2186 /* need to make sure there are no outstanding stats ramrods which may
2187 * cause the device to access the VF's stats buffer which it will free
2188 * as soon as we return from the close flow.
2191 struct set_vf_state_cookie cookie
;
2194 cookie
.state
= VF_ACQUIRED
;
2195 rc
= bnx2x_stats_safe_exec(bp
, bnx2x_set_vf_state
, &cookie
);
2200 DP(BNX2X_MSG_IOV
, "set state to acquired\n");
2204 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf
->abs_vfid
, rc
);
2208 /* VF release can be called either: 1. The VF was acquired but
2209 * not enabled 2. the vf was enabled or in the process of being
2212 int bnx2x_vf_free(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2216 DP(BNX2X_MSG_IOV
, "VF[%d] STATE: %s\n", vf
->abs_vfid
,
2217 vf
->state
== VF_FREE
? "Free" :
2218 vf
->state
== VF_ACQUIRED
? "Acquired" :
2219 vf
->state
== VF_ENABLED
? "Enabled" :
2220 vf
->state
== VF_RESET
? "Reset" :
2223 switch (vf
->state
) {
2225 rc
= bnx2x_vf_close(bp
, vf
);
2228 /* Fallthrough to release resources */
2230 DP(BNX2X_MSG_IOV
, "about to free resources\n");
2231 bnx2x_vf_free_resc(bp
, vf
);
2241 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf
->abs_vfid
, rc
);
2245 int bnx2x_vf_rss_update(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2246 struct bnx2x_config_rss_params
*rss
)
2248 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2249 set_bit(RAMROD_COMP_WAIT
, &rss
->ramrod_flags
);
2250 return bnx2x_config_rss(bp
, rss
);
2253 int bnx2x_vf_tpa_update(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2254 struct vfpf_tpa_tlv
*tlv
,
2255 struct bnx2x_queue_update_tpa_params
*params
)
2257 aligned_u64
*sge_addr
= tlv
->tpa_client_info
.sge_addr
;
2258 struct bnx2x_queue_state_params qstate
;
2261 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2263 /* Set ramrod params */
2264 memset(&qstate
, 0, sizeof(struct bnx2x_queue_state_params
));
2265 memcpy(&qstate
.params
.update_tpa
, params
,
2266 sizeof(struct bnx2x_queue_update_tpa_params
));
2267 qstate
.cmd
= BNX2X_Q_CMD_UPDATE_TPA
;
2268 set_bit(RAMROD_COMP_WAIT
, &qstate
.ramrod_flags
);
2270 for (qid
= 0; qid
< vf_rxq_count(vf
); qid
++) {
2271 qstate
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
2272 qstate
.params
.update_tpa
.sge_map
= sge_addr
[qid
];
2273 DP(BNX2X_MSG_IOV
, "sge_addr[%d:%d] %08x:%08x\n",
2274 vf
->abs_vfid
, qid
, U64_HI(sge_addr
[qid
]),
2275 U64_LO(sge_addr
[qid
]));
2276 rc
= bnx2x_queue_state_change(bp
, &qstate
);
2278 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2279 U64_HI(sge_addr
[qid
]), U64_LO(sge_addr
[qid
]),
2288 /* VF release ~ VF close + VF release-resources
2289 * Release is the ultimate SW shutdown and is called whenever an
2290 * irrecoverable error is encountered.
2292 int bnx2x_vf_release(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2296 DP(BNX2X_MSG_IOV
, "PF releasing vf %d\n", vf
->abs_vfid
);
2297 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_RELEASE_VF
);
2299 rc
= bnx2x_vf_free(bp
, vf
);
2302 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2304 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_RELEASE_VF
);
2308 void bnx2x_lock_vf_pf_channel(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2309 enum channel_tlvs tlv
)
2311 /* we don't lock the channel for unsupported tlvs */
2312 if (!bnx2x_tlv_supported(tlv
)) {
2313 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2317 /* lock the channel */
2318 mutex_lock(&vf
->op_mutex
);
2320 /* record the locking op */
2321 vf
->op_current
= tlv
;
2324 DP(BNX2X_MSG_IOV
, "VF[%d]: vf pf channel locked by %d\n",
2328 void bnx2x_unlock_vf_pf_channel(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2329 enum channel_tlvs expected_tlv
)
2331 enum channel_tlvs current_tlv
;
2334 BNX2X_ERR("VF was %p\n", vf
);
2338 current_tlv
= vf
->op_current
;
2340 /* we don't unlock the channel for unsupported tlvs */
2341 if (!bnx2x_tlv_supported(expected_tlv
))
2344 WARN(expected_tlv
!= vf
->op_current
,
2345 "lock mismatch: expected %d found %d", expected_tlv
,
2348 /* record the locking op */
2349 vf
->op_current
= CHANNEL_TLV_NONE
;
2351 /* lock the channel */
2352 mutex_unlock(&vf
->op_mutex
);
2354 /* log the unlock */
2355 DP(BNX2X_MSG_IOV
, "VF[%d]: vf pf channel unlocked by %d\n",
2356 vf
->abs_vfid
, current_tlv
);
2359 static int bnx2x_set_pf_tx_switching(struct bnx2x
*bp
, bool enable
)
2361 struct bnx2x_queue_state_params q_params
;
2365 /* Verify changes are needed and record current Tx switching state */
2366 prev_flags
= bp
->flags
;
2368 bp
->flags
|= TX_SWITCHING
;
2370 bp
->flags
&= ~TX_SWITCHING
;
2371 if (prev_flags
== bp
->flags
)
2374 /* Verify state enables the sending of queue ramrods */
2375 if ((bp
->state
!= BNX2X_STATE_OPEN
) ||
2376 (bnx2x_get_q_logical_state(bp
,
2377 &bnx2x_sp_obj(bp
, &bp
->fp
[0]).q_obj
) !=
2378 BNX2X_Q_LOGICAL_STATE_ACTIVE
))
2381 /* send q. update ramrod to configure Tx switching */
2382 memset(&q_params
, 0, sizeof(q_params
));
2383 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
2384 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
2385 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG
,
2386 &q_params
.params
.update
.update_flags
);
2388 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING
,
2389 &q_params
.params
.update
.update_flags
);
2391 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING
,
2392 &q_params
.params
.update
.update_flags
);
2394 /* send the ramrod on all the queues of the PF */
2395 for_each_eth_queue(bp
, i
) {
2396 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2399 /* Set the appropriate Queue object */
2400 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
2402 for (tx_idx
= FIRST_TX_COS_INDEX
;
2403 tx_idx
< fp
->max_cos
; tx_idx
++) {
2404 q_params
.params
.update
.cid_index
= tx_idx
;
2406 /* Update the Queue state */
2407 rc
= bnx2x_queue_state_change(bp
, &q_params
);
2409 BNX2X_ERR("Failed to configure Tx switching\n");
2415 DP(BNX2X_MSG_IOV
, "%s Tx Switching\n", enable
? "Enabled" : "Disabled");
2419 int bnx2x_sriov_configure(struct pci_dev
*dev
, int num_vfs_param
)
2421 struct bnx2x
*bp
= netdev_priv(pci_get_drvdata(dev
));
2423 if (!IS_SRIOV(bp
)) {
2424 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2428 DP(BNX2X_MSG_IOV
, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2429 num_vfs_param
, BNX2X_NR_VIRTFN(bp
));
2431 /* HW channel is only operational when PF is up */
2432 if (bp
->state
!= BNX2X_STATE_OPEN
) {
2433 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2437 /* we are always bound by the total_vfs in the configuration space */
2438 if (num_vfs_param
> BNX2X_NR_VIRTFN(bp
)) {
2439 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2440 num_vfs_param
, BNX2X_NR_VIRTFN(bp
));
2441 num_vfs_param
= BNX2X_NR_VIRTFN(bp
);
2444 bp
->requested_nr_virtfn
= num_vfs_param
;
2445 if (num_vfs_param
== 0) {
2446 bnx2x_set_pf_tx_switching(bp
, false);
2447 bnx2x_disable_sriov(bp
);
2450 return bnx2x_enable_sriov(bp
);
2454 #define IGU_ENTRY_SIZE 4
2456 int bnx2x_enable_sriov(struct bnx2x
*bp
)
2458 int rc
= 0, req_vfs
= bp
->requested_nr_virtfn
;
2459 int vf_idx
, sb_idx
, vfq_idx
, qcount
, first_vf
;
2460 u32 igu_entry
, address
;
2466 first_vf
= bp
->vfdb
->sriov
.first_vf_in_pf
;
2468 /* statically distribute vf sb pool between VFs */
2469 num_vf_queues
= min_t(u16
, BNX2X_VF_MAX_QUEUES
,
2470 BP_VFDB(bp
)->vf_sbs_pool
/ req_vfs
);
2472 /* zero previous values learned from igu cam */
2473 for (vf_idx
= 0; vf_idx
< req_vfs
; vf_idx
++) {
2474 struct bnx2x_virtf
*vf
= BP_VF(bp
, vf_idx
);
2477 vf_sb_count(BP_VF(bp
, vf_idx
)) = 0;
2479 bp
->vfdb
->vf_sbs_pool
= 0;
2481 /* prepare IGU cam */
2482 sb_idx
= BP_VFDB(bp
)->first_vf_igu_entry
;
2483 address
= IGU_REG_MAPPING_MEMORY
+ sb_idx
* IGU_ENTRY_SIZE
;
2484 for (vf_idx
= first_vf
; vf_idx
< first_vf
+ req_vfs
; vf_idx
++) {
2485 for (vfq_idx
= 0; vfq_idx
< num_vf_queues
; vfq_idx
++) {
2486 igu_entry
= vf_idx
<< IGU_REG_MAPPING_MEMORY_FID_SHIFT
|
2487 vfq_idx
<< IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT
|
2488 IGU_REG_MAPPING_MEMORY_VALID
;
2489 DP(BNX2X_MSG_IOV
, "assigning sb %d to vf %d\n",
2491 REG_WR(bp
, address
, igu_entry
);
2493 address
+= IGU_ENTRY_SIZE
;
2497 /* Reinitialize vf database according to igu cam */
2498 bnx2x_get_vf_igu_cam_info(bp
);
2500 DP(BNX2X_MSG_IOV
, "vf_sbs_pool %d, num_vf_queues %d\n",
2501 BP_VFDB(bp
)->vf_sbs_pool
, num_vf_queues
);
2504 for_each_vf(bp
, vf_idx
) {
2505 struct bnx2x_virtf
*vf
= BP_VF(bp
, vf_idx
);
2507 /* set local queue arrays */
2508 vf
->vfqs
= &bp
->vfdb
->vfqs
[qcount
];
2509 qcount
+= vf_sb_count(vf
);
2510 bnx2x_iov_static_resc(bp
, vf
);
2513 /* prepare msix vectors in VF configuration space - the value in the
2514 * PCI configuration space should be the index of the last entry,
2515 * namely one less than the actual size of the table
2517 for (vf_idx
= first_vf
; vf_idx
< first_vf
+ req_vfs
; vf_idx
++) {
2518 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf_idx
));
2519 REG_WR(bp
, PCICFG_OFFSET
+ GRC_CONFIG_REG_VF_MSIX_CONTROL
,
2521 DP(BNX2X_MSG_IOV
, "set msix vec num in VF %d cfg space to %d\n",
2522 vf_idx
, num_vf_queues
- 1);
2524 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
2526 /* enable sriov. This will probe all the VFs, and consequentially cause
2527 * the "acquire" messages to appear on the VF PF channel.
2529 DP(BNX2X_MSG_IOV
, "about to call enable sriov\n");
2530 bnx2x_disable_sriov(bp
);
2532 rc
= bnx2x_set_pf_tx_switching(bp
, true);
2536 rc
= pci_enable_sriov(bp
->pdev
, req_vfs
);
2538 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc
);
2541 DP(BNX2X_MSG_IOV
, "sriov enabled (%d vfs)\n", req_vfs
);
2545 void bnx2x_pf_set_vfs_vlan(struct bnx2x
*bp
)
2548 struct pf_vf_bulletin_content
*bulletin
;
2550 DP(BNX2X_MSG_IOV
, "configuring vlan for VFs from sp-task\n");
2551 for_each_vf(bp
, vfidx
) {
2552 bulletin
= BP_VF_BULLETIN(bp
, vfidx
);
2553 if (bulletin
->valid_bitmap
& (1 << VLAN_VALID
))
2554 bnx2x_set_vf_vlan(bp
->dev
, vfidx
, bulletin
->vlan
, 0,
2555 htons(ETH_P_8021Q
));
2559 void bnx2x_disable_sriov(struct bnx2x
*bp
)
2561 if (pci_vfs_assigned(bp
->pdev
)) {
2563 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2567 pci_disable_sriov(bp
->pdev
);
2570 static int bnx2x_vf_op_prep(struct bnx2x
*bp
, int vfidx
,
2571 struct bnx2x_virtf
**vf
,
2572 struct pf_vf_bulletin_content
**bulletin
,
2575 if (bp
->state
!= BNX2X_STATE_OPEN
) {
2576 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2580 if (!IS_SRIOV(bp
)) {
2581 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2585 if (vfidx
>= BNX2X_NR_VIRTFN(bp
)) {
2586 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2587 vfidx
, BNX2X_NR_VIRTFN(bp
));
2592 *vf
= BP_VF(bp
, vfidx
);
2593 *bulletin
= BP_VF_BULLETIN(bp
, vfidx
);
2596 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx
);
2600 if (test_queue
&& !(*vf
)->vfqs
) {
2601 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2607 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2615 int bnx2x_get_vf_config(struct net_device
*dev
, int vfidx
,
2616 struct ifla_vf_info
*ivi
)
2618 struct bnx2x
*bp
= netdev_priv(dev
);
2619 struct bnx2x_virtf
*vf
= NULL
;
2620 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2621 struct bnx2x_vlan_mac_obj
*mac_obj
;
2622 struct bnx2x_vlan_mac_obj
*vlan_obj
;
2625 /* sanity and init */
2626 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2630 mac_obj
= &bnx2x_leading_vfq(vf
, mac_obj
);
2631 vlan_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2632 if (!mac_obj
|| !vlan_obj
) {
2633 BNX2X_ERR("VF partially initialized\n");
2639 ivi
->max_tx_rate
= 10000; /* always 10G. TBA take from link struct */
2640 ivi
->min_tx_rate
= 0;
2641 ivi
->spoofchk
= 1; /*always enabled */
2642 if (vf
->state
== VF_ENABLED
) {
2643 /* mac and vlan are in vlan_mac objects */
2644 if (bnx2x_validate_vf_sp_objs(bp
, vf
, false)) {
2645 mac_obj
->get_n_elements(bp
, mac_obj
, 1, (u8
*)&ivi
->mac
,
2647 vlan_obj
->get_n_elements(bp
, vlan_obj
, 1,
2648 (u8
*)&ivi
->vlan
, 0,
2652 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2654 if (bulletin
->valid_bitmap
& (1 << MAC_ADDR_VALID
))
2655 /* mac configured by ndo so its in bulletin board */
2656 memcpy(&ivi
->mac
, bulletin
->mac
, ETH_ALEN
);
2658 /* function has not been loaded yet. Show mac as 0s */
2659 eth_zero_addr(ivi
->mac
);
2662 if (bulletin
->valid_bitmap
& (1 << VLAN_VALID
))
2663 /* vlan configured by ndo so its in bulletin board */
2664 memcpy(&ivi
->vlan
, &bulletin
->vlan
, VLAN_HLEN
);
2666 /* function has not been loaded yet. Show vlans as 0s */
2667 memset(&ivi
->vlan
, 0, VLAN_HLEN
);
2669 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2675 /* New mac for VF. Consider these cases:
2676 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2677 * supply at acquire.
2678 * 2. VF has already been acquired but has not yet initialized - store in local
2679 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2680 * will configure this mac when it is ready.
2681 * 3. VF has already initialized but has not yet setup a queue - post the new
2682 * mac on VF's bulletin board right now. VF will configure this mac when it
2684 * 4. VF has already set a queue - delete any macs already configured for this
2685 * queue and manually config the new mac.
2686 * In any event, once this function has been called refuse any attempts by the
2687 * VF to configure any mac for itself except for this mac. In case of a race
2688 * where the VF fails to see the new post on its bulletin board before sending a
2689 * mac configuration request, the PF will simply fail the request and VF can try
2690 * again after consulting its bulletin board.
2692 int bnx2x_set_vf_mac(struct net_device
*dev
, int vfidx
, u8
*mac
)
2694 struct bnx2x
*bp
= netdev_priv(dev
);
2695 int rc
, q_logical_state
;
2696 struct bnx2x_virtf
*vf
= NULL
;
2697 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2699 if (!is_valid_ether_addr(mac
)) {
2700 BNX2X_ERR("mac address invalid\n");
2704 /* sanity and init */
2705 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2709 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2711 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2712 * configuration requests from vf unless match this mac
2714 bulletin
->valid_bitmap
|= 1 << MAC_ADDR_VALID
;
2715 memcpy(bulletin
->mac
, mac
, ETH_ALEN
);
2717 /* Post update on VF's bulletin board */
2718 rc
= bnx2x_post_vf_bulletin(bp
, vfidx
);
2720 /* release lock before checking return code */
2721 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2724 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx
);
2729 bnx2x_get_q_logical_state(bp
, &bnx2x_leading_vfq(vf
, sp_obj
));
2730 if (vf
->state
== VF_ENABLED
&&
2731 q_logical_state
== BNX2X_Q_LOGICAL_STATE_ACTIVE
) {
2732 /* configure the mac in device on this vf's queue */
2733 unsigned long ramrod_flags
= 0;
2734 struct bnx2x_vlan_mac_obj
*mac_obj
;
2736 /* User should be able to see failure reason in system logs */
2737 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
2740 /* must lock vfpf channel to protect against vf flows */
2741 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_MAC
);
2743 /* remove existing eth macs */
2744 mac_obj
= &bnx2x_leading_vfq(vf
, mac_obj
);
2745 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_ETH_MAC
, true);
2747 BNX2X_ERR("failed to delete eth macs\n");
2752 /* remove existing uc list macs */
2753 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_UC_LIST_MAC
, true);
2755 BNX2X_ERR("failed to delete uc_list macs\n");
2760 /* configure the new mac to device */
2761 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2762 bnx2x_set_mac_one(bp
, (u8
*)&bulletin
->mac
, mac_obj
, true,
2763 BNX2X_ETH_MAC
, &ramrod_flags
);
2766 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_MAC
);
2772 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x
*bp
,
2773 struct bnx2x_virtf
*vf
, bool accept
)
2775 struct bnx2x_rx_mode_ramrod_params rx_ramrod
;
2776 unsigned long accept_flags
;
2778 /* need to remove/add the VF's accept_any_vlan bit */
2779 accept_flags
= bnx2x_leading_vfq(vf
, accept_flags
);
2781 set_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
2783 clear_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
2785 bnx2x_vf_prep_rx_mode(bp
, LEADING_IDX
, &rx_ramrod
, vf
,
2787 bnx2x_leading_vfq(vf
, accept_flags
) = accept_flags
;
2788 bnx2x_config_rx_mode(bp
, &rx_ramrod
);
2791 static int bnx2x_set_vf_vlan_filter(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2794 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
2795 unsigned long ramrod_flags
= 0;
2798 /* configure the new vlan to device */
2799 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
2800 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2801 ramrod_param
.vlan_mac_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2802 ramrod_param
.ramrod_flags
= ramrod_flags
;
2803 ramrod_param
.user_req
.u
.vlan
.vlan
= vlan
;
2804 ramrod_param
.user_req
.cmd
= add
? BNX2X_VLAN_MAC_ADD
2805 : BNX2X_VLAN_MAC_DEL
;
2806 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
2808 BNX2X_ERR("failed to configure vlan\n");
2815 int bnx2x_set_vf_vlan(struct net_device
*dev
, int vfidx
, u16 vlan
, u8 qos
,
2818 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2819 struct bnx2x
*bp
= netdev_priv(dev
);
2820 struct bnx2x_vlan_mac_obj
*vlan_obj
;
2821 unsigned long vlan_mac_flags
= 0;
2822 unsigned long ramrod_flags
= 0;
2823 struct bnx2x_virtf
*vf
= NULL
;
2827 BNX2X_ERR("illegal vlan value %d\n", vlan
);
2831 if (vlan_proto
!= htons(ETH_P_8021Q
))
2832 return -EPROTONOSUPPORT
;
2834 DP(BNX2X_MSG_IOV
, "configuring VF %d with VLAN %d qos %d\n",
2837 /* sanity and init */
2838 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2842 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2843 * to the VF since it doesn't have anything to do with it. But it useful
2844 * to store it here in case the VF is not up yet and we can only
2845 * configure the vlan later when it does. Treat vlan id 0 as remove the
2848 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2851 bulletin
->valid_bitmap
|= 1 << VLAN_VALID
;
2853 bulletin
->valid_bitmap
&= ~(1 << VLAN_VALID
);
2854 bulletin
->vlan
= vlan
;
2856 /* Post update on VF's bulletin board */
2857 rc
= bnx2x_post_vf_bulletin(bp
, vfidx
);
2859 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx
);
2860 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2862 /* is vf initialized and queue set up? */
2863 if (vf
->state
!= VF_ENABLED
||
2864 bnx2x_get_q_logical_state(bp
, &bnx2x_leading_vfq(vf
, sp_obj
)) !=
2865 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2868 /* User should be able to see error in system logs */
2869 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
2872 /* must lock vfpf channel to protect against vf flows */
2873 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_VLAN
);
2875 /* remove existing vlans */
2876 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2877 vlan_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2878 rc
= vlan_obj
->delete_all(bp
, vlan_obj
, &vlan_mac_flags
,
2881 BNX2X_ERR("failed to delete vlans\n");
2886 /* clear accept_any_vlan when HV forces vlan, otherwise
2887 * according to VF capabilities
2889 if (vlan
|| !(vf
->cfg_flags
& VF_CFG_VLAN_FILTER
))
2890 bnx2x_set_vf_vlan_acceptance(bp
, vf
, !vlan
);
2892 rc
= bnx2x_set_vf_vlan_filter(bp
, vf
, vlan
, true);
2896 /* send queue update ramrods to configure default vlan and
2897 * silent vlan removal
2899 for_each_vfq(vf
, i
) {
2900 struct bnx2x_queue_state_params q_params
= {NULL
};
2901 struct bnx2x_queue_update_params
*update_params
;
2903 q_params
.q_obj
= &bnx2x_vfq(vf
, i
, sp_obj
);
2905 /* validate the Q is UP */
2906 if (bnx2x_get_q_logical_state(bp
, q_params
.q_obj
) !=
2907 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2910 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
2911 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
2912 update_params
= &q_params
.params
.update
;
2913 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG
,
2914 &update_params
->update_flags
);
2915 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG
,
2916 &update_params
->update_flags
);
2918 /* if vlan is 0 then we want to leave the VF traffic
2919 * untagged, and leave the incoming traffic untouched
2920 * (i.e. do not remove any vlan tags).
2922 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
,
2923 &update_params
->update_flags
);
2924 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
2925 &update_params
->update_flags
);
2927 /* configure default vlan to vf queue and set silent
2928 * vlan removal (the vf remains unaware of this vlan).
2930 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
,
2931 &update_params
->update_flags
);
2932 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
2933 &update_params
->update_flags
);
2934 update_params
->def_vlan
= vlan
;
2935 update_params
->silent_removal_value
=
2936 vlan
& VLAN_VID_MASK
;
2937 update_params
->silent_removal_mask
= VLAN_VID_MASK
;
2940 /* Update the Queue state */
2941 rc
= bnx2x_queue_state_change(bp
, &q_params
);
2943 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2949 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_VLAN
);
2953 "updated VF[%d] vlan configuration (vlan = %d)\n",
2959 /* crc is the first field in the bulletin board. Compute the crc over the
2960 * entire bulletin board excluding the crc field itself. Use the length field
2961 * as the Bulletin Board was posted by a PF with possibly a different version
2962 * from the vf which will sample it. Therefore, the length is computed by the
2963 * PF and then used blindly by the VF.
2965 u32
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content
*bulletin
)
2967 return crc32(BULLETIN_CRC_SEED
,
2968 ((u8
*)bulletin
) + sizeof(bulletin
->crc
),
2969 bulletin
->length
- sizeof(bulletin
->crc
));
2972 /* Check for new posts on the bulletin board */
2973 enum sample_bulletin_result
bnx2x_sample_bulletin(struct bnx2x
*bp
)
2975 struct pf_vf_bulletin_content
*bulletin
;
2978 /* sampling structure in mid post may result with corrupted data
2979 * validate crc to ensure coherency.
2981 for (attempts
= 0; attempts
< BULLETIN_ATTEMPTS
; attempts
++) {
2984 /* sample the bulletin board */
2985 memcpy(&bp
->shadow_bulletin
, bp
->pf2vf_bulletin
,
2986 sizeof(union pf_vf_bulletin
));
2988 crc
= bnx2x_crc_vf_bulletin(&bp
->shadow_bulletin
.content
);
2990 if (bp
->shadow_bulletin
.content
.crc
== crc
)
2993 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2994 bp
->shadow_bulletin
.content
.crc
, crc
);
2997 if (attempts
>= BULLETIN_ATTEMPTS
) {
2998 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3000 return PFVF_BULLETIN_CRC_ERR
;
3002 bulletin
= &bp
->shadow_bulletin
.content
;
3004 /* bulletin board hasn't changed since last sample */
3005 if (bp
->old_bulletin
.version
== bulletin
->version
)
3006 return PFVF_BULLETIN_UNCHANGED
;
3008 /* the mac address in bulletin board is valid and is new */
3009 if (bulletin
->valid_bitmap
& 1 << MAC_ADDR_VALID
&&
3010 !ether_addr_equal(bulletin
->mac
, bp
->old_bulletin
.mac
)) {
3011 /* update new mac to net device */
3012 memcpy(bp
->dev
->dev_addr
, bulletin
->mac
, ETH_ALEN
);
3015 if (bulletin
->valid_bitmap
& (1 << LINK_VALID
)) {
3016 DP(BNX2X_MSG_IOV
, "link update speed %d flags %x\n",
3017 bulletin
->link_speed
, bulletin
->link_flags
);
3019 bp
->vf_link_vars
.line_speed
= bulletin
->link_speed
;
3020 bp
->vf_link_vars
.link_report_flags
= 0;
3022 if (bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)
3023 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
3024 &bp
->vf_link_vars
.link_report_flags
);
3026 if (bulletin
->link_flags
& VFPF_LINK_REPORT_FULL_DUPLEX
)
3027 __set_bit(BNX2X_LINK_REPORT_FD
,
3028 &bp
->vf_link_vars
.link_report_flags
);
3029 /* Rx Flow Control is ON */
3030 if (bulletin
->link_flags
& VFPF_LINK_REPORT_RX_FC_ON
)
3031 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
3032 &bp
->vf_link_vars
.link_report_flags
);
3033 /* Tx Flow Control is ON */
3034 if (bulletin
->link_flags
& VFPF_LINK_REPORT_TX_FC_ON
)
3035 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
3036 &bp
->vf_link_vars
.link_report_flags
);
3037 __bnx2x_link_report(bp
);
3040 /* copy new bulletin board to bp */
3041 memcpy(&bp
->old_bulletin
, bulletin
,
3042 sizeof(struct pf_vf_bulletin_content
));
3044 return PFVF_BULLETIN_UPDATED
;
3047 void bnx2x_timer_sriov(struct bnx2x
*bp
)
3049 bnx2x_sample_bulletin(bp
);
3051 /* if channel is down we need to self destruct */
3052 if (bp
->old_bulletin
.valid_bitmap
& 1 << CHANNEL_DOWN
)
3053 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN
,
3057 void __iomem
*bnx2x_vf_doorbells(struct bnx2x
*bp
)
3059 /* vf doorbells are embedded within the regview */
3060 return bp
->regview
+ PXP_VF_ADDR_DB_START
;
3063 void bnx2x_vf_pci_dealloc(struct bnx2x
*bp
)
3065 BNX2X_PCI_FREE(bp
->vf2pf_mbox
, bp
->vf2pf_mbox_mapping
,
3066 sizeof(struct bnx2x_vf_mbx_msg
));
3067 BNX2X_PCI_FREE(bp
->pf2vf_bulletin
, bp
->pf2vf_bulletin_mapping
,
3068 sizeof(union pf_vf_bulletin
));
3071 int bnx2x_vf_pci_alloc(struct bnx2x
*bp
)
3073 mutex_init(&bp
->vf2pf_mutex
);
3075 /* allocate vf2pf mailbox for vf to pf channel */
3076 bp
->vf2pf_mbox
= BNX2X_PCI_ALLOC(&bp
->vf2pf_mbox_mapping
,
3077 sizeof(struct bnx2x_vf_mbx_msg
));
3078 if (!bp
->vf2pf_mbox
)
3081 /* allocate pf 2 vf bulletin board */
3082 bp
->pf2vf_bulletin
= BNX2X_PCI_ALLOC(&bp
->pf2vf_bulletin_mapping
,
3083 sizeof(union pf_vf_bulletin
));
3084 if (!bp
->pf2vf_bulletin
)
3087 bnx2x_vf_bulletin_finalize(&bp
->pf2vf_bulletin
->content
, true);
3092 bnx2x_vf_pci_dealloc(bp
);
3096 void bnx2x_iov_channel_down(struct bnx2x
*bp
)
3099 struct pf_vf_bulletin_content
*bulletin
;
3104 for_each_vf(bp
, vf_idx
) {
3105 /* locate this VFs bulletin board and update the channel down
3108 bulletin
= BP_VF_BULLETIN(bp
, vf_idx
);
3109 bulletin
->valid_bitmap
|= 1 << CHANNEL_DOWN
;
3111 /* update vf bulletin board */
3112 bnx2x_post_vf_bulletin(bp
, vf_idx
);
3116 void bnx2x_iov_task(struct work_struct
*work
)
3118 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, iov_task
.work
);
3120 if (!netif_running(bp
->dev
))
3123 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR
,
3124 &bp
->iov_task_state
))
3125 bnx2x_vf_handle_flr_event(bp
);
3127 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG
,
3128 &bp
->iov_task_state
))
3132 void bnx2x_schedule_iov_task(struct bnx2x
*bp
, enum bnx2x_iov_flag flag
)
3134 smp_mb__before_atomic();
3135 set_bit(flag
, &bp
->iov_task_state
);
3136 smp_mb__after_atomic();
3137 DP(BNX2X_MSG_IOV
, "Scheduling iov task [Flag: %d]\n", flag
);
3138 queue_delayed_work(bnx2x_iov_wq
, &bp
->iov_task
, 0);