2 * Broadcom GENET (Gigabit Ethernet) controller driver
4 * Copyright (c) 2014-2017 Broadcom
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #define pr_fmt(fmt) "bcmgenet: " fmt
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
27 #include <linux/clk.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
47 #include <asm/unaligned.h>
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
75 /* Forward declarations */
76 static void bcmgenet_set_rx_mode(struct net_device
*dev
);
78 static inline void bcmgenet_writel(u32 value
, void __iomem
*offset
)
80 /* MIPS chips strapped for BE will automagically configure the
81 * peripheral registers for CPU-native byte order.
83 if (IS_ENABLED(CONFIG_MIPS
) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN
))
84 __raw_writel(value
, offset
);
86 writel_relaxed(value
, offset
);
89 static inline u32
bcmgenet_readl(void __iomem
*offset
)
91 if (IS_ENABLED(CONFIG_MIPS
) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN
))
92 return __raw_readl(offset
);
94 return readl_relaxed(offset
);
97 static inline void dmadesc_set_length_status(struct bcmgenet_priv
*priv
,
98 void __iomem
*d
, u32 value
)
100 bcmgenet_writel(value
, d
+ DMA_DESC_LENGTH_STATUS
);
103 static inline u32
dmadesc_get_length_status(struct bcmgenet_priv
*priv
,
106 return bcmgenet_readl(d
+ DMA_DESC_LENGTH_STATUS
);
109 static inline void dmadesc_set_addr(struct bcmgenet_priv
*priv
,
113 bcmgenet_writel(lower_32_bits(addr
), d
+ DMA_DESC_ADDRESS_LO
);
115 /* Register writes to GISB bus can take couple hundred nanoseconds
116 * and are done for each packet, save these expensive writes unless
117 * the platform is explicitly configured for 64-bits/LPAE.
119 #ifdef CONFIG_PHYS_ADDR_T_64BIT
120 if (priv
->hw_params
->flags
& GENET_HAS_40BITS
)
121 bcmgenet_writel(upper_32_bits(addr
), d
+ DMA_DESC_ADDRESS_HI
);
125 /* Combined address + length/status setter */
126 static inline void dmadesc_set(struct bcmgenet_priv
*priv
,
127 void __iomem
*d
, dma_addr_t addr
, u32 val
)
129 dmadesc_set_addr(priv
, d
, addr
);
130 dmadesc_set_length_status(priv
, d
, val
);
133 static inline dma_addr_t
dmadesc_get_addr(struct bcmgenet_priv
*priv
,
138 addr
= bcmgenet_readl(d
+ DMA_DESC_ADDRESS_LO
);
140 /* Register writes to GISB bus can take couple hundred nanoseconds
141 * and are done for each packet, save these expensive writes unless
142 * the platform is explicitly configured for 64-bits/LPAE.
144 #ifdef CONFIG_PHYS_ADDR_T_64BIT
145 if (priv
->hw_params
->flags
& GENET_HAS_40BITS
)
146 addr
|= (u64
)bcmgenet_readl(d
+ DMA_DESC_ADDRESS_HI
) << 32;
151 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
153 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
156 static inline u32
bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv
*priv
)
158 if (GENET_IS_V1(priv
))
159 return bcmgenet_rbuf_readl(priv
, RBUF_FLUSH_CTRL_V1
);
161 return bcmgenet_sys_readl(priv
, SYS_RBUF_FLUSH_CTRL
);
164 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv
*priv
, u32 val
)
166 if (GENET_IS_V1(priv
))
167 bcmgenet_rbuf_writel(priv
, val
, RBUF_FLUSH_CTRL_V1
);
169 bcmgenet_sys_writel(priv
, val
, SYS_RBUF_FLUSH_CTRL
);
172 /* These macros are defined to deal with register map change
173 * between GENET1.1 and GENET2. Only those currently being used
174 * by driver are defined.
176 static inline u32
bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv
*priv
)
178 if (GENET_IS_V1(priv
))
179 return bcmgenet_rbuf_readl(priv
, TBUF_CTRL_V1
);
181 return bcmgenet_readl(priv
->base
+
182 priv
->hw_params
->tbuf_offset
+ TBUF_CTRL
);
185 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv
*priv
, u32 val
)
187 if (GENET_IS_V1(priv
))
188 bcmgenet_rbuf_writel(priv
, val
, TBUF_CTRL_V1
);
190 bcmgenet_writel(val
, priv
->base
+
191 priv
->hw_params
->tbuf_offset
+ TBUF_CTRL
);
194 static inline u32
bcmgenet_bp_mc_get(struct bcmgenet_priv
*priv
)
196 if (GENET_IS_V1(priv
))
197 return bcmgenet_rbuf_readl(priv
, TBUF_BP_MC_V1
);
199 return bcmgenet_readl(priv
->base
+
200 priv
->hw_params
->tbuf_offset
+ TBUF_BP_MC
);
203 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv
*priv
, u32 val
)
205 if (GENET_IS_V1(priv
))
206 bcmgenet_rbuf_writel(priv
, val
, TBUF_BP_MC_V1
);
208 bcmgenet_writel(val
, priv
->base
+
209 priv
->hw_params
->tbuf_offset
+ TBUF_BP_MC
);
212 /* RX/TX DMA register accessors */
249 static const u8 bcmgenet_dma_regs_v3plus
[] = {
250 [DMA_RING_CFG
] = 0x00,
253 [DMA_SCB_BURST_SIZE
] = 0x0C,
254 [DMA_ARB_CTRL
] = 0x2C,
255 [DMA_PRIORITY_0
] = 0x30,
256 [DMA_PRIORITY_1
] = 0x34,
257 [DMA_PRIORITY_2
] = 0x38,
258 [DMA_RING0_TIMEOUT
] = 0x2C,
259 [DMA_RING1_TIMEOUT
] = 0x30,
260 [DMA_RING2_TIMEOUT
] = 0x34,
261 [DMA_RING3_TIMEOUT
] = 0x38,
262 [DMA_RING4_TIMEOUT
] = 0x3c,
263 [DMA_RING5_TIMEOUT
] = 0x40,
264 [DMA_RING6_TIMEOUT
] = 0x44,
265 [DMA_RING7_TIMEOUT
] = 0x48,
266 [DMA_RING8_TIMEOUT
] = 0x4c,
267 [DMA_RING9_TIMEOUT
] = 0x50,
268 [DMA_RING10_TIMEOUT
] = 0x54,
269 [DMA_RING11_TIMEOUT
] = 0x58,
270 [DMA_RING12_TIMEOUT
] = 0x5c,
271 [DMA_RING13_TIMEOUT
] = 0x60,
272 [DMA_RING14_TIMEOUT
] = 0x64,
273 [DMA_RING15_TIMEOUT
] = 0x68,
274 [DMA_RING16_TIMEOUT
] = 0x6C,
275 [DMA_INDEX2RING_0
] = 0x70,
276 [DMA_INDEX2RING_1
] = 0x74,
277 [DMA_INDEX2RING_2
] = 0x78,
278 [DMA_INDEX2RING_3
] = 0x7C,
279 [DMA_INDEX2RING_4
] = 0x80,
280 [DMA_INDEX2RING_5
] = 0x84,
281 [DMA_INDEX2RING_6
] = 0x88,
282 [DMA_INDEX2RING_7
] = 0x8C,
285 static const u8 bcmgenet_dma_regs_v2
[] = {
286 [DMA_RING_CFG
] = 0x00,
289 [DMA_SCB_BURST_SIZE
] = 0x0C,
290 [DMA_ARB_CTRL
] = 0x30,
291 [DMA_PRIORITY_0
] = 0x34,
292 [DMA_PRIORITY_1
] = 0x38,
293 [DMA_PRIORITY_2
] = 0x3C,
294 [DMA_RING0_TIMEOUT
] = 0x2C,
295 [DMA_RING1_TIMEOUT
] = 0x30,
296 [DMA_RING2_TIMEOUT
] = 0x34,
297 [DMA_RING3_TIMEOUT
] = 0x38,
298 [DMA_RING4_TIMEOUT
] = 0x3c,
299 [DMA_RING5_TIMEOUT
] = 0x40,
300 [DMA_RING6_TIMEOUT
] = 0x44,
301 [DMA_RING7_TIMEOUT
] = 0x48,
302 [DMA_RING8_TIMEOUT
] = 0x4c,
303 [DMA_RING9_TIMEOUT
] = 0x50,
304 [DMA_RING10_TIMEOUT
] = 0x54,
305 [DMA_RING11_TIMEOUT
] = 0x58,
306 [DMA_RING12_TIMEOUT
] = 0x5c,
307 [DMA_RING13_TIMEOUT
] = 0x60,
308 [DMA_RING14_TIMEOUT
] = 0x64,
309 [DMA_RING15_TIMEOUT
] = 0x68,
310 [DMA_RING16_TIMEOUT
] = 0x6C,
313 static const u8 bcmgenet_dma_regs_v1
[] = {
316 [DMA_SCB_BURST_SIZE
] = 0x0C,
317 [DMA_ARB_CTRL
] = 0x30,
318 [DMA_PRIORITY_0
] = 0x34,
319 [DMA_PRIORITY_1
] = 0x38,
320 [DMA_PRIORITY_2
] = 0x3C,
321 [DMA_RING0_TIMEOUT
] = 0x2C,
322 [DMA_RING1_TIMEOUT
] = 0x30,
323 [DMA_RING2_TIMEOUT
] = 0x34,
324 [DMA_RING3_TIMEOUT
] = 0x38,
325 [DMA_RING4_TIMEOUT
] = 0x3c,
326 [DMA_RING5_TIMEOUT
] = 0x40,
327 [DMA_RING6_TIMEOUT
] = 0x44,
328 [DMA_RING7_TIMEOUT
] = 0x48,
329 [DMA_RING8_TIMEOUT
] = 0x4c,
330 [DMA_RING9_TIMEOUT
] = 0x50,
331 [DMA_RING10_TIMEOUT
] = 0x54,
332 [DMA_RING11_TIMEOUT
] = 0x58,
333 [DMA_RING12_TIMEOUT
] = 0x5c,
334 [DMA_RING13_TIMEOUT
] = 0x60,
335 [DMA_RING14_TIMEOUT
] = 0x64,
336 [DMA_RING15_TIMEOUT
] = 0x68,
337 [DMA_RING16_TIMEOUT
] = 0x6C,
340 /* Set at runtime once bcmgenet version is known */
341 static const u8
*bcmgenet_dma_regs
;
343 static inline struct bcmgenet_priv
*dev_to_priv(struct device
*dev
)
345 return netdev_priv(dev_get_drvdata(dev
));
348 static inline u32
bcmgenet_tdma_readl(struct bcmgenet_priv
*priv
,
351 return bcmgenet_readl(priv
->base
+ GENET_TDMA_REG_OFF
+
352 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
355 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv
*priv
,
356 u32 val
, enum dma_reg r
)
358 bcmgenet_writel(val
, priv
->base
+ GENET_TDMA_REG_OFF
+
359 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
362 static inline u32
bcmgenet_rdma_readl(struct bcmgenet_priv
*priv
,
365 return bcmgenet_readl(priv
->base
+ GENET_RDMA_REG_OFF
+
366 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
369 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv
*priv
,
370 u32 val
, enum dma_reg r
)
372 bcmgenet_writel(val
, priv
->base
+ GENET_RDMA_REG_OFF
+
373 DMA_RINGS_SIZE
+ bcmgenet_dma_regs
[r
]);
376 /* RDMA/TDMA ring registers and accessors
377 * we merge the common fields and just prefix with T/D the registers
378 * having different meaning depending on the direction
382 RDMA_WRITE_PTR
= TDMA_READ_PTR
,
384 RDMA_WRITE_PTR_HI
= TDMA_READ_PTR_HI
,
386 RDMA_PROD_INDEX
= TDMA_CONS_INDEX
,
388 RDMA_CONS_INDEX
= TDMA_PROD_INDEX
,
394 DMA_MBUF_DONE_THRESH
,
396 RDMA_XON_XOFF_THRESH
= TDMA_FLOW_PERIOD
,
398 RDMA_READ_PTR
= TDMA_WRITE_PTR
,
400 RDMA_READ_PTR_HI
= TDMA_WRITE_PTR_HI
403 /* GENET v4 supports 40-bits pointer addressing
404 * for obvious reasons the LO and HI word parts
405 * are contiguous, but this offsets the other
408 static const u8 genet_dma_ring_regs_v4
[] = {
409 [TDMA_READ_PTR
] = 0x00,
410 [TDMA_READ_PTR_HI
] = 0x04,
411 [TDMA_CONS_INDEX
] = 0x08,
412 [TDMA_PROD_INDEX
] = 0x0C,
413 [DMA_RING_BUF_SIZE
] = 0x10,
414 [DMA_START_ADDR
] = 0x14,
415 [DMA_START_ADDR_HI
] = 0x18,
416 [DMA_END_ADDR
] = 0x1C,
417 [DMA_END_ADDR_HI
] = 0x20,
418 [DMA_MBUF_DONE_THRESH
] = 0x24,
419 [TDMA_FLOW_PERIOD
] = 0x28,
420 [TDMA_WRITE_PTR
] = 0x2C,
421 [TDMA_WRITE_PTR_HI
] = 0x30,
424 static const u8 genet_dma_ring_regs_v123
[] = {
425 [TDMA_READ_PTR
] = 0x00,
426 [TDMA_CONS_INDEX
] = 0x04,
427 [TDMA_PROD_INDEX
] = 0x08,
428 [DMA_RING_BUF_SIZE
] = 0x0C,
429 [DMA_START_ADDR
] = 0x10,
430 [DMA_END_ADDR
] = 0x14,
431 [DMA_MBUF_DONE_THRESH
] = 0x18,
432 [TDMA_FLOW_PERIOD
] = 0x1C,
433 [TDMA_WRITE_PTR
] = 0x20,
436 /* Set at runtime once GENET version is known */
437 static const u8
*genet_dma_ring_regs
;
439 static inline u32
bcmgenet_tdma_ring_readl(struct bcmgenet_priv
*priv
,
443 return bcmgenet_readl(priv
->base
+ GENET_TDMA_REG_OFF
+
444 (DMA_RING_SIZE
* ring
) +
445 genet_dma_ring_regs
[r
]);
448 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv
*priv
,
449 unsigned int ring
, u32 val
,
452 bcmgenet_writel(val
, priv
->base
+ GENET_TDMA_REG_OFF
+
453 (DMA_RING_SIZE
* ring
) +
454 genet_dma_ring_regs
[r
]);
457 static inline u32
bcmgenet_rdma_ring_readl(struct bcmgenet_priv
*priv
,
461 return bcmgenet_readl(priv
->base
+ GENET_RDMA_REG_OFF
+
462 (DMA_RING_SIZE
* ring
) +
463 genet_dma_ring_regs
[r
]);
466 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv
*priv
,
467 unsigned int ring
, u32 val
,
470 bcmgenet_writel(val
, priv
->base
+ GENET_RDMA_REG_OFF
+
471 (DMA_RING_SIZE
* ring
) +
472 genet_dma_ring_regs
[r
]);
475 static int bcmgenet_begin(struct net_device
*dev
)
477 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
479 /* Turn on the clock */
480 return clk_prepare_enable(priv
->clk
);
483 static void bcmgenet_complete(struct net_device
*dev
)
485 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
487 /* Turn off the clock */
488 clk_disable_unprepare(priv
->clk
);
491 static int bcmgenet_get_link_ksettings(struct net_device
*dev
,
492 struct ethtool_link_ksettings
*cmd
)
494 if (!netif_running(dev
))
500 phy_ethtool_ksettings_get(dev
->phydev
, cmd
);
505 static int bcmgenet_set_link_ksettings(struct net_device
*dev
,
506 const struct ethtool_link_ksettings
*cmd
)
508 if (!netif_running(dev
))
514 return phy_ethtool_ksettings_set(dev
->phydev
, cmd
);
517 static int bcmgenet_set_rx_csum(struct net_device
*dev
,
518 netdev_features_t wanted
)
520 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
524 rx_csum_en
= !!(wanted
& NETIF_F_RXCSUM
);
526 rbuf_chk_ctrl
= bcmgenet_rbuf_readl(priv
, RBUF_CHK_CTRL
);
528 /* enable rx checksumming */
530 rbuf_chk_ctrl
|= RBUF_RXCHK_EN
;
532 rbuf_chk_ctrl
&= ~RBUF_RXCHK_EN
;
533 priv
->desc_rxchk_en
= rx_csum_en
;
535 /* If UniMAC forwards CRC, we need to skip over it to get
536 * a valid CHK bit to be set in the per-packet status word
538 if (rx_csum_en
&& priv
->crc_fwd_en
)
539 rbuf_chk_ctrl
|= RBUF_SKIP_FCS
;
541 rbuf_chk_ctrl
&= ~RBUF_SKIP_FCS
;
543 bcmgenet_rbuf_writel(priv
, rbuf_chk_ctrl
, RBUF_CHK_CTRL
);
548 static int bcmgenet_set_tx_csum(struct net_device
*dev
,
549 netdev_features_t wanted
)
551 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
553 u32 tbuf_ctrl
, rbuf_ctrl
;
555 tbuf_ctrl
= bcmgenet_tbuf_ctrl_get(priv
);
556 rbuf_ctrl
= bcmgenet_rbuf_readl(priv
, RBUF_CTRL
);
558 desc_64b_en
= !!(wanted
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
));
560 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
562 tbuf_ctrl
|= RBUF_64B_EN
;
563 rbuf_ctrl
|= RBUF_64B_EN
;
565 tbuf_ctrl
&= ~RBUF_64B_EN
;
566 rbuf_ctrl
&= ~RBUF_64B_EN
;
568 priv
->desc_64b_en
= desc_64b_en
;
570 bcmgenet_tbuf_ctrl_set(priv
, tbuf_ctrl
);
571 bcmgenet_rbuf_writel(priv
, rbuf_ctrl
, RBUF_CTRL
);
576 static int bcmgenet_set_features(struct net_device
*dev
,
577 netdev_features_t features
)
579 netdev_features_t changed
= features
^ dev
->features
;
580 netdev_features_t wanted
= dev
->wanted_features
;
583 if (changed
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
))
584 ret
= bcmgenet_set_tx_csum(dev
, wanted
);
585 if (changed
& (NETIF_F_RXCSUM
))
586 ret
= bcmgenet_set_rx_csum(dev
, wanted
);
591 static u32
bcmgenet_get_msglevel(struct net_device
*dev
)
593 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
595 return priv
->msg_enable
;
598 static void bcmgenet_set_msglevel(struct net_device
*dev
, u32 level
)
600 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
602 priv
->msg_enable
= level
;
605 static int bcmgenet_get_coalesce(struct net_device
*dev
,
606 struct ethtool_coalesce
*ec
)
608 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
609 struct bcmgenet_rx_ring
*ring
;
612 ec
->tx_max_coalesced_frames
=
613 bcmgenet_tdma_ring_readl(priv
, DESC_INDEX
,
614 DMA_MBUF_DONE_THRESH
);
615 ec
->rx_max_coalesced_frames
=
616 bcmgenet_rdma_ring_readl(priv
, DESC_INDEX
,
617 DMA_MBUF_DONE_THRESH
);
618 ec
->rx_coalesce_usecs
=
619 bcmgenet_rdma_readl(priv
, DMA_RING16_TIMEOUT
) * 8192 / 1000;
621 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++) {
622 ring
= &priv
->rx_rings
[i
];
623 ec
->use_adaptive_rx_coalesce
|= ring
->dim
.use_dim
;
625 ring
= &priv
->rx_rings
[DESC_INDEX
];
626 ec
->use_adaptive_rx_coalesce
|= ring
->dim
.use_dim
;
631 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring
*ring
,
634 struct bcmgenet_priv
*priv
= ring
->priv
;
635 unsigned int i
= ring
->index
;
638 bcmgenet_rdma_ring_writel(priv
, i
, pkts
, DMA_MBUF_DONE_THRESH
);
640 reg
= bcmgenet_rdma_readl(priv
, DMA_RING0_TIMEOUT
+ i
);
641 reg
&= ~DMA_TIMEOUT_MASK
;
642 reg
|= DIV_ROUND_UP(usecs
* 1000, 8192);
643 bcmgenet_rdma_writel(priv
, reg
, DMA_RING0_TIMEOUT
+ i
);
646 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring
*ring
,
647 struct ethtool_coalesce
*ec
)
649 struct net_dim_cq_moder moder
;
652 ring
->rx_coalesce_usecs
= ec
->rx_coalesce_usecs
;
653 ring
->rx_max_coalesced_frames
= ec
->rx_max_coalesced_frames
;
654 usecs
= ring
->rx_coalesce_usecs
;
655 pkts
= ring
->rx_max_coalesced_frames
;
657 if (ec
->use_adaptive_rx_coalesce
&& !ring
->dim
.use_dim
) {
658 moder
= net_dim_get_def_rx_moderation(ring
->dim
.dim
.mode
);
663 ring
->dim
.use_dim
= ec
->use_adaptive_rx_coalesce
;
664 bcmgenet_set_rx_coalesce(ring
, usecs
, pkts
);
667 static int bcmgenet_set_coalesce(struct net_device
*dev
,
668 struct ethtool_coalesce
*ec
)
670 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
673 /* Base system clock is 125Mhz, DMA timeout is this reference clock
674 * divided by 1024, which yields roughly 8.192us, our maximum value
675 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
677 if (ec
->tx_max_coalesced_frames
> DMA_INTR_THRESHOLD_MASK
||
678 ec
->tx_max_coalesced_frames
== 0 ||
679 ec
->rx_max_coalesced_frames
> DMA_INTR_THRESHOLD_MASK
||
680 ec
->rx_coalesce_usecs
> (DMA_TIMEOUT_MASK
* 8) + 1)
683 if (ec
->rx_coalesce_usecs
== 0 && ec
->rx_max_coalesced_frames
== 0)
686 /* GENET TDMA hardware does not support a configurable timeout, but will
687 * always generate an interrupt either after MBDONE packets have been
688 * transmitted, or when the ring is empty.
690 if (ec
->tx_coalesce_usecs
|| ec
->tx_coalesce_usecs_high
||
691 ec
->tx_coalesce_usecs_irq
|| ec
->tx_coalesce_usecs_low
||
692 ec
->use_adaptive_tx_coalesce
)
695 /* Program all TX queues with the same values, as there is no
696 * ethtool knob to do coalescing on a per-queue basis
698 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++)
699 bcmgenet_tdma_ring_writel(priv
, i
,
700 ec
->tx_max_coalesced_frames
,
701 DMA_MBUF_DONE_THRESH
);
702 bcmgenet_tdma_ring_writel(priv
, DESC_INDEX
,
703 ec
->tx_max_coalesced_frames
,
704 DMA_MBUF_DONE_THRESH
);
706 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++)
707 bcmgenet_set_ring_rx_coalesce(&priv
->rx_rings
[i
], ec
);
708 bcmgenet_set_ring_rx_coalesce(&priv
->rx_rings
[DESC_INDEX
], ec
);
713 /* standard ethtool support functions. */
714 enum bcmgenet_stat_type
{
715 BCMGENET_STAT_NETDEV
= -1,
716 BCMGENET_STAT_MIB_RX
,
717 BCMGENET_STAT_MIB_TX
,
723 struct bcmgenet_stats
{
724 char stat_string
[ETH_GSTRING_LEN
];
727 enum bcmgenet_stat_type type
;
728 /* reg offset from UMAC base for misc counters */
732 #define STAT_NETDEV(m) { \
733 .stat_string = __stringify(m), \
734 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
735 .stat_offset = offsetof(struct net_device_stats, m), \
736 .type = BCMGENET_STAT_NETDEV, \
739 #define STAT_GENET_MIB(str, m, _type) { \
740 .stat_string = str, \
741 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
742 .stat_offset = offsetof(struct bcmgenet_priv, m), \
746 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
747 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
748 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
749 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
751 #define STAT_GENET_MISC(str, m, offset) { \
752 .stat_string = str, \
753 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
754 .stat_offset = offsetof(struct bcmgenet_priv, m), \
755 .type = BCMGENET_STAT_MISC, \
756 .reg_offset = offset, \
759 #define STAT_GENET_Q(num) \
760 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
761 tx_rings[num].packets), \
762 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
763 tx_rings[num].bytes), \
764 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
765 rx_rings[num].bytes), \
766 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
767 rx_rings[num].packets), \
768 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
769 rx_rings[num].errors), \
770 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
771 rx_rings[num].dropped)
773 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
774 * between the end of TX stats and the beginning of the RX RUNT
776 #define BCMGENET_STAT_OFFSET 0xc
778 /* Hardware counters must be kept in sync because the order/offset
779 * is important here (order in structure declaration = order in hardware)
781 static const struct bcmgenet_stats bcmgenet_gstrings_stats
[] = {
783 STAT_NETDEV(rx_packets
),
784 STAT_NETDEV(tx_packets
),
785 STAT_NETDEV(rx_bytes
),
786 STAT_NETDEV(tx_bytes
),
787 STAT_NETDEV(rx_errors
),
788 STAT_NETDEV(tx_errors
),
789 STAT_NETDEV(rx_dropped
),
790 STAT_NETDEV(tx_dropped
),
791 STAT_NETDEV(multicast
),
792 /* UniMAC RSV counters */
793 STAT_GENET_MIB_RX("rx_64_octets", mib
.rx
.pkt_cnt
.cnt_64
),
794 STAT_GENET_MIB_RX("rx_65_127_oct", mib
.rx
.pkt_cnt
.cnt_127
),
795 STAT_GENET_MIB_RX("rx_128_255_oct", mib
.rx
.pkt_cnt
.cnt_255
),
796 STAT_GENET_MIB_RX("rx_256_511_oct", mib
.rx
.pkt_cnt
.cnt_511
),
797 STAT_GENET_MIB_RX("rx_512_1023_oct", mib
.rx
.pkt_cnt
.cnt_1023
),
798 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib
.rx
.pkt_cnt
.cnt_1518
),
799 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib
.rx
.pkt_cnt
.cnt_mgv
),
800 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib
.rx
.pkt_cnt
.cnt_2047
),
801 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib
.rx
.pkt_cnt
.cnt_4095
),
802 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib
.rx
.pkt_cnt
.cnt_9216
),
803 STAT_GENET_MIB_RX("rx_pkts", mib
.rx
.pkt
),
804 STAT_GENET_MIB_RX("rx_bytes", mib
.rx
.bytes
),
805 STAT_GENET_MIB_RX("rx_multicast", mib
.rx
.mca
),
806 STAT_GENET_MIB_RX("rx_broadcast", mib
.rx
.bca
),
807 STAT_GENET_MIB_RX("rx_fcs", mib
.rx
.fcs
),
808 STAT_GENET_MIB_RX("rx_control", mib
.rx
.cf
),
809 STAT_GENET_MIB_RX("rx_pause", mib
.rx
.pf
),
810 STAT_GENET_MIB_RX("rx_unknown", mib
.rx
.uo
),
811 STAT_GENET_MIB_RX("rx_align", mib
.rx
.aln
),
812 STAT_GENET_MIB_RX("rx_outrange", mib
.rx
.flr
),
813 STAT_GENET_MIB_RX("rx_code", mib
.rx
.cde
),
814 STAT_GENET_MIB_RX("rx_carrier", mib
.rx
.fcr
),
815 STAT_GENET_MIB_RX("rx_oversize", mib
.rx
.ovr
),
816 STAT_GENET_MIB_RX("rx_jabber", mib
.rx
.jbr
),
817 STAT_GENET_MIB_RX("rx_mtu_err", mib
.rx
.mtue
),
818 STAT_GENET_MIB_RX("rx_good_pkts", mib
.rx
.pok
),
819 STAT_GENET_MIB_RX("rx_unicast", mib
.rx
.uc
),
820 STAT_GENET_MIB_RX("rx_ppp", mib
.rx
.ppp
),
821 STAT_GENET_MIB_RX("rx_crc", mib
.rx
.rcrc
),
822 /* UniMAC TSV counters */
823 STAT_GENET_MIB_TX("tx_64_octets", mib
.tx
.pkt_cnt
.cnt_64
),
824 STAT_GENET_MIB_TX("tx_65_127_oct", mib
.tx
.pkt_cnt
.cnt_127
),
825 STAT_GENET_MIB_TX("tx_128_255_oct", mib
.tx
.pkt_cnt
.cnt_255
),
826 STAT_GENET_MIB_TX("tx_256_511_oct", mib
.tx
.pkt_cnt
.cnt_511
),
827 STAT_GENET_MIB_TX("tx_512_1023_oct", mib
.tx
.pkt_cnt
.cnt_1023
),
828 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib
.tx
.pkt_cnt
.cnt_1518
),
829 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib
.tx
.pkt_cnt
.cnt_mgv
),
830 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib
.tx
.pkt_cnt
.cnt_2047
),
831 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib
.tx
.pkt_cnt
.cnt_4095
),
832 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib
.tx
.pkt_cnt
.cnt_9216
),
833 STAT_GENET_MIB_TX("tx_pkts", mib
.tx
.pkts
),
834 STAT_GENET_MIB_TX("tx_multicast", mib
.tx
.mca
),
835 STAT_GENET_MIB_TX("tx_broadcast", mib
.tx
.bca
),
836 STAT_GENET_MIB_TX("tx_pause", mib
.tx
.pf
),
837 STAT_GENET_MIB_TX("tx_control", mib
.tx
.cf
),
838 STAT_GENET_MIB_TX("tx_fcs_err", mib
.tx
.fcs
),
839 STAT_GENET_MIB_TX("tx_oversize", mib
.tx
.ovr
),
840 STAT_GENET_MIB_TX("tx_defer", mib
.tx
.drf
),
841 STAT_GENET_MIB_TX("tx_excess_defer", mib
.tx
.edf
),
842 STAT_GENET_MIB_TX("tx_single_col", mib
.tx
.scl
),
843 STAT_GENET_MIB_TX("tx_multi_col", mib
.tx
.mcl
),
844 STAT_GENET_MIB_TX("tx_late_col", mib
.tx
.lcl
),
845 STAT_GENET_MIB_TX("tx_excess_col", mib
.tx
.ecl
),
846 STAT_GENET_MIB_TX("tx_frags", mib
.tx
.frg
),
847 STAT_GENET_MIB_TX("tx_total_col", mib
.tx
.ncl
),
848 STAT_GENET_MIB_TX("tx_jabber", mib
.tx
.jbr
),
849 STAT_GENET_MIB_TX("tx_bytes", mib
.tx
.bytes
),
850 STAT_GENET_MIB_TX("tx_good_pkts", mib
.tx
.pok
),
851 STAT_GENET_MIB_TX("tx_unicast", mib
.tx
.uc
),
852 /* UniMAC RUNT counters */
853 STAT_GENET_RUNT("rx_runt_pkts", mib
.rx_runt_cnt
),
854 STAT_GENET_RUNT("rx_runt_valid_fcs", mib
.rx_runt_fcs
),
855 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib
.rx_runt_fcs_align
),
856 STAT_GENET_RUNT("rx_runt_bytes", mib
.rx_runt_bytes
),
857 /* Misc UniMAC counters */
858 STAT_GENET_MISC("rbuf_ovflow_cnt", mib
.rbuf_ovflow_cnt
,
859 UMAC_RBUF_OVFL_CNT_V1
),
860 STAT_GENET_MISC("rbuf_err_cnt", mib
.rbuf_err_cnt
,
861 UMAC_RBUF_ERR_CNT_V1
),
862 STAT_GENET_MISC("mdf_err_cnt", mib
.mdf_err_cnt
, UMAC_MDF_ERR_CNT
),
863 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib
.alloc_rx_buff_failed
),
864 STAT_GENET_SOFT_MIB("rx_dma_failed", mib
.rx_dma_failed
),
865 STAT_GENET_SOFT_MIB("tx_dma_failed", mib
.tx_dma_failed
),
874 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
876 static void bcmgenet_get_drvinfo(struct net_device
*dev
,
877 struct ethtool_drvinfo
*info
)
879 strlcpy(info
->driver
, "bcmgenet", sizeof(info
->driver
));
880 strlcpy(info
->version
, "v2.0", sizeof(info
->version
));
883 static int bcmgenet_get_sset_count(struct net_device
*dev
, int string_set
)
885 switch (string_set
) {
887 return BCMGENET_STATS_LEN
;
893 static void bcmgenet_get_strings(struct net_device
*dev
, u32 stringset
,
900 for (i
= 0; i
< BCMGENET_STATS_LEN
; i
++) {
901 memcpy(data
+ i
* ETH_GSTRING_LEN
,
902 bcmgenet_gstrings_stats
[i
].stat_string
,
909 static u32
bcmgenet_update_stat_misc(struct bcmgenet_priv
*priv
, u16 offset
)
915 case UMAC_RBUF_OVFL_CNT_V1
:
916 if (GENET_IS_V2(priv
))
917 new_offset
= RBUF_OVFL_CNT_V2
;
919 new_offset
= RBUF_OVFL_CNT_V3PLUS
;
921 val
= bcmgenet_rbuf_readl(priv
, new_offset
);
922 /* clear if overflowed */
924 bcmgenet_rbuf_writel(priv
, 0, new_offset
);
926 case UMAC_RBUF_ERR_CNT_V1
:
927 if (GENET_IS_V2(priv
))
928 new_offset
= RBUF_ERR_CNT_V2
;
930 new_offset
= RBUF_ERR_CNT_V3PLUS
;
932 val
= bcmgenet_rbuf_readl(priv
, new_offset
);
933 /* clear if overflowed */
935 bcmgenet_rbuf_writel(priv
, 0, new_offset
);
938 val
= bcmgenet_umac_readl(priv
, offset
);
939 /* clear if overflowed */
941 bcmgenet_umac_writel(priv
, 0, offset
);
948 static void bcmgenet_update_mib_counters(struct bcmgenet_priv
*priv
)
952 for (i
= 0; i
< BCMGENET_STATS_LEN
; i
++) {
953 const struct bcmgenet_stats
*s
;
958 s
= &bcmgenet_gstrings_stats
[i
];
960 case BCMGENET_STAT_NETDEV
:
961 case BCMGENET_STAT_SOFT
:
963 case BCMGENET_STAT_RUNT
:
964 offset
+= BCMGENET_STAT_OFFSET
;
966 case BCMGENET_STAT_MIB_TX
:
967 offset
+= BCMGENET_STAT_OFFSET
;
969 case BCMGENET_STAT_MIB_RX
:
970 val
= bcmgenet_umac_readl(priv
,
971 UMAC_MIB_START
+ j
+ offset
);
972 offset
= 0; /* Reset Offset */
974 case BCMGENET_STAT_MISC
:
975 if (GENET_IS_V1(priv
)) {
976 val
= bcmgenet_umac_readl(priv
, s
->reg_offset
);
977 /* clear if overflowed */
979 bcmgenet_umac_writel(priv
, 0,
982 val
= bcmgenet_update_stat_misc(priv
,
989 p
= (char *)priv
+ s
->stat_offset
;
994 static void bcmgenet_get_ethtool_stats(struct net_device
*dev
,
995 struct ethtool_stats
*stats
,
998 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1001 if (netif_running(dev
))
1002 bcmgenet_update_mib_counters(priv
);
1004 dev
->netdev_ops
->ndo_get_stats(dev
);
1006 for (i
= 0; i
< BCMGENET_STATS_LEN
; i
++) {
1007 const struct bcmgenet_stats
*s
;
1010 s
= &bcmgenet_gstrings_stats
[i
];
1011 if (s
->type
== BCMGENET_STAT_NETDEV
)
1012 p
= (char *)&dev
->stats
;
1015 p
+= s
->stat_offset
;
1016 if (sizeof(unsigned long) != sizeof(u32
) &&
1017 s
->stat_sizeof
== sizeof(unsigned long))
1018 data
[i
] = *(unsigned long *)p
;
1020 data
[i
] = *(u32
*)p
;
1024 static void bcmgenet_eee_enable_set(struct net_device
*dev
, bool enable
)
1026 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1027 u32 off
= priv
->hw_params
->tbuf_offset
+ TBUF_ENERGY_CTRL
;
1030 if (enable
&& !priv
->clk_eee_enabled
) {
1031 clk_prepare_enable(priv
->clk_eee
);
1032 priv
->clk_eee_enabled
= true;
1035 reg
= bcmgenet_umac_readl(priv
, UMAC_EEE_CTRL
);
1040 bcmgenet_umac_writel(priv
, reg
, UMAC_EEE_CTRL
);
1042 /* Enable EEE and switch to a 27Mhz clock automatically */
1043 reg
= bcmgenet_readl(priv
->base
+ off
);
1045 reg
|= TBUF_EEE_EN
| TBUF_PM_EN
;
1047 reg
&= ~(TBUF_EEE_EN
| TBUF_PM_EN
);
1048 bcmgenet_writel(reg
, priv
->base
+ off
);
1050 /* Do the same for thing for RBUF */
1051 reg
= bcmgenet_rbuf_readl(priv
, RBUF_ENERGY_CTRL
);
1053 reg
|= RBUF_EEE_EN
| RBUF_PM_EN
;
1055 reg
&= ~(RBUF_EEE_EN
| RBUF_PM_EN
);
1056 bcmgenet_rbuf_writel(priv
, reg
, RBUF_ENERGY_CTRL
);
1058 if (!enable
&& priv
->clk_eee_enabled
) {
1059 clk_disable_unprepare(priv
->clk_eee
);
1060 priv
->clk_eee_enabled
= false;
1063 priv
->eee
.eee_enabled
= enable
;
1064 priv
->eee
.eee_active
= enable
;
1067 static int bcmgenet_get_eee(struct net_device
*dev
, struct ethtool_eee
*e
)
1069 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1070 struct ethtool_eee
*p
= &priv
->eee
;
1072 if (GENET_IS_V1(priv
))
1078 e
->eee_enabled
= p
->eee_enabled
;
1079 e
->eee_active
= p
->eee_active
;
1080 e
->tx_lpi_timer
= bcmgenet_umac_readl(priv
, UMAC_EEE_LPI_TIMER
);
1082 return phy_ethtool_get_eee(dev
->phydev
, e
);
1085 static int bcmgenet_set_eee(struct net_device
*dev
, struct ethtool_eee
*e
)
1087 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1088 struct ethtool_eee
*p
= &priv
->eee
;
1091 if (GENET_IS_V1(priv
))
1097 p
->eee_enabled
= e
->eee_enabled
;
1099 if (!p
->eee_enabled
) {
1100 bcmgenet_eee_enable_set(dev
, false);
1102 ret
= phy_init_eee(dev
->phydev
, 0);
1104 netif_err(priv
, hw
, dev
, "EEE initialization failed\n");
1108 bcmgenet_umac_writel(priv
, e
->tx_lpi_timer
, UMAC_EEE_LPI_TIMER
);
1109 bcmgenet_eee_enable_set(dev
, true);
1112 return phy_ethtool_set_eee(dev
->phydev
, e
);
1115 /* standard ethtool support functions. */
1116 static const struct ethtool_ops bcmgenet_ethtool_ops
= {
1117 .begin
= bcmgenet_begin
,
1118 .complete
= bcmgenet_complete
,
1119 .get_strings
= bcmgenet_get_strings
,
1120 .get_sset_count
= bcmgenet_get_sset_count
,
1121 .get_ethtool_stats
= bcmgenet_get_ethtool_stats
,
1122 .get_drvinfo
= bcmgenet_get_drvinfo
,
1123 .get_link
= ethtool_op_get_link
,
1124 .get_msglevel
= bcmgenet_get_msglevel
,
1125 .set_msglevel
= bcmgenet_set_msglevel
,
1126 .get_wol
= bcmgenet_get_wol
,
1127 .set_wol
= bcmgenet_set_wol
,
1128 .get_eee
= bcmgenet_get_eee
,
1129 .set_eee
= bcmgenet_set_eee
,
1130 .nway_reset
= phy_ethtool_nway_reset
,
1131 .get_coalesce
= bcmgenet_get_coalesce
,
1132 .set_coalesce
= bcmgenet_set_coalesce
,
1133 .get_link_ksettings
= bcmgenet_get_link_ksettings
,
1134 .set_link_ksettings
= bcmgenet_set_link_ksettings
,
1137 /* Power down the unimac, based on mode. */
1138 static int bcmgenet_power_down(struct bcmgenet_priv
*priv
,
1139 enum bcmgenet_power_mode mode
)
1145 case GENET_POWER_CABLE_SENSE
:
1146 phy_detach(priv
->dev
->phydev
);
1149 case GENET_POWER_WOL_MAGIC
:
1150 ret
= bcmgenet_wol_power_down_cfg(priv
, mode
);
1153 case GENET_POWER_PASSIVE
:
1154 /* Power down LED */
1155 if (priv
->hw_params
->flags
& GENET_HAS_EXT
) {
1156 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
1157 if (GENET_IS_V5(priv
))
1158 reg
|= EXT_PWR_DOWN_PHY_EN
|
1159 EXT_PWR_DOWN_PHY_RD
|
1160 EXT_PWR_DOWN_PHY_SD
|
1161 EXT_PWR_DOWN_PHY_RX
|
1162 EXT_PWR_DOWN_PHY_TX
|
1165 reg
|= EXT_PWR_DOWN_PHY
;
1167 reg
|= (EXT_PWR_DOWN_DLL
| EXT_PWR_DOWN_BIAS
);
1168 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1170 bcmgenet_phy_power_set(priv
->dev
, false);
1180 static void bcmgenet_power_up(struct bcmgenet_priv
*priv
,
1181 enum bcmgenet_power_mode mode
)
1185 if (!(priv
->hw_params
->flags
& GENET_HAS_EXT
))
1188 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
1191 case GENET_POWER_PASSIVE
:
1192 reg
&= ~(EXT_PWR_DOWN_DLL
| EXT_PWR_DOWN_BIAS
);
1193 if (GENET_IS_V5(priv
)) {
1194 reg
&= ~(EXT_PWR_DOWN_PHY_EN
|
1195 EXT_PWR_DOWN_PHY_RD
|
1196 EXT_PWR_DOWN_PHY_SD
|
1197 EXT_PWR_DOWN_PHY_RX
|
1198 EXT_PWR_DOWN_PHY_TX
|
1200 reg
|= EXT_PHY_RESET
;
1201 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1204 reg
&= ~EXT_PHY_RESET
;
1206 reg
&= ~EXT_PWR_DOWN_PHY
;
1207 reg
|= EXT_PWR_DN_EN_LD
;
1209 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1210 bcmgenet_phy_power_set(priv
->dev
, true);
1213 case GENET_POWER_CABLE_SENSE
:
1215 if (!GENET_IS_V5(priv
)) {
1216 reg
|= EXT_PWR_DN_EN_LD
;
1217 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
1220 case GENET_POWER_WOL_MAGIC
:
1221 bcmgenet_wol_power_up_cfg(priv
, mode
);
1228 /* ioctl handle special commands that are not present in ethtool. */
1229 static int bcmgenet_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1231 if (!netif_running(dev
))
1237 return phy_mii_ioctl(dev
->phydev
, rq
, cmd
);
1240 static struct enet_cb
*bcmgenet_get_txcb(struct bcmgenet_priv
*priv
,
1241 struct bcmgenet_tx_ring
*ring
)
1243 struct enet_cb
*tx_cb_ptr
;
1245 tx_cb_ptr
= ring
->cbs
;
1246 tx_cb_ptr
+= ring
->write_ptr
- ring
->cb_ptr
;
1248 /* Advancing local write pointer */
1249 if (ring
->write_ptr
== ring
->end_ptr
)
1250 ring
->write_ptr
= ring
->cb_ptr
;
1257 static struct enet_cb
*bcmgenet_put_txcb(struct bcmgenet_priv
*priv
,
1258 struct bcmgenet_tx_ring
*ring
)
1260 struct enet_cb
*tx_cb_ptr
;
1262 tx_cb_ptr
= ring
->cbs
;
1263 tx_cb_ptr
+= ring
->write_ptr
- ring
->cb_ptr
;
1265 /* Rewinding local write pointer */
1266 if (ring
->write_ptr
== ring
->cb_ptr
)
1267 ring
->write_ptr
= ring
->end_ptr
;
1274 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring
*ring
)
1276 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_RXDMA_DONE
,
1277 INTRL2_CPU_MASK_SET
);
1280 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring
*ring
)
1282 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_RXDMA_DONE
,
1283 INTRL2_CPU_MASK_CLEAR
);
1286 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring
*ring
)
1288 bcmgenet_intrl2_1_writel(ring
->priv
,
1289 1 << (UMAC_IRQ1_RX_INTR_SHIFT
+ ring
->index
),
1290 INTRL2_CPU_MASK_SET
);
1293 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring
*ring
)
1295 bcmgenet_intrl2_1_writel(ring
->priv
,
1296 1 << (UMAC_IRQ1_RX_INTR_SHIFT
+ ring
->index
),
1297 INTRL2_CPU_MASK_CLEAR
);
1300 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring
*ring
)
1302 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_TXDMA_DONE
,
1303 INTRL2_CPU_MASK_SET
);
1306 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring
*ring
)
1308 bcmgenet_intrl2_0_writel(ring
->priv
, UMAC_IRQ_TXDMA_DONE
,
1309 INTRL2_CPU_MASK_CLEAR
);
1312 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring
*ring
)
1314 bcmgenet_intrl2_1_writel(ring
->priv
, 1 << ring
->index
,
1315 INTRL2_CPU_MASK_CLEAR
);
1318 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring
*ring
)
1320 bcmgenet_intrl2_1_writel(ring
->priv
, 1 << ring
->index
,
1321 INTRL2_CPU_MASK_SET
);
1324 /* Simple helper to free a transmit control block's resources
1325 * Returns an skb when the last transmit control block associated with the
1326 * skb is freed. The skb should be freed by the caller if necessary.
1328 static struct sk_buff
*bcmgenet_free_tx_cb(struct device
*dev
,
1331 struct sk_buff
*skb
;
1337 if (cb
== GENET_CB(skb
)->first_cb
)
1338 dma_unmap_single(dev
, dma_unmap_addr(cb
, dma_addr
),
1339 dma_unmap_len(cb
, dma_len
),
1342 dma_unmap_page(dev
, dma_unmap_addr(cb
, dma_addr
),
1343 dma_unmap_len(cb
, dma_len
),
1345 dma_unmap_addr_set(cb
, dma_addr
, 0);
1347 if (cb
== GENET_CB(skb
)->last_cb
)
1350 } else if (dma_unmap_addr(cb
, dma_addr
)) {
1352 dma_unmap_addr(cb
, dma_addr
),
1353 dma_unmap_len(cb
, dma_len
),
1355 dma_unmap_addr_set(cb
, dma_addr
, 0);
1361 /* Simple helper to free a receive control block's resources */
1362 static struct sk_buff
*bcmgenet_free_rx_cb(struct device
*dev
,
1365 struct sk_buff
*skb
;
1370 if (dma_unmap_addr(cb
, dma_addr
)) {
1371 dma_unmap_single(dev
, dma_unmap_addr(cb
, dma_addr
),
1372 dma_unmap_len(cb
, dma_len
), DMA_FROM_DEVICE
);
1373 dma_unmap_addr_set(cb
, dma_addr
, 0);
1379 /* Unlocked version of the reclaim routine */
1380 static unsigned int __bcmgenet_tx_reclaim(struct net_device
*dev
,
1381 struct bcmgenet_tx_ring
*ring
)
1383 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1384 unsigned int txbds_processed
= 0;
1385 unsigned int bytes_compl
= 0;
1386 unsigned int pkts_compl
= 0;
1387 unsigned int txbds_ready
;
1388 unsigned int c_index
;
1389 struct sk_buff
*skb
;
1391 /* Clear status before servicing to reduce spurious interrupts */
1392 if (ring
->index
== DESC_INDEX
)
1393 bcmgenet_intrl2_0_writel(priv
, UMAC_IRQ_TXDMA_DONE
,
1396 bcmgenet_intrl2_1_writel(priv
, (1 << ring
->index
),
1399 /* Compute how many buffers are transmitted since last xmit call */
1400 c_index
= bcmgenet_tdma_ring_readl(priv
, ring
->index
, TDMA_CONS_INDEX
)
1402 txbds_ready
= (c_index
- ring
->c_index
) & DMA_C_INDEX_MASK
;
1404 netif_dbg(priv
, tx_done
, dev
,
1405 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1406 __func__
, ring
->index
, ring
->c_index
, c_index
, txbds_ready
);
1408 /* Reclaim transmitted buffers */
1409 while (txbds_processed
< txbds_ready
) {
1410 skb
= bcmgenet_free_tx_cb(&priv
->pdev
->dev
,
1411 &priv
->tx_cbs
[ring
->clean_ptr
]);
1414 bytes_compl
+= GENET_CB(skb
)->bytes_sent
;
1415 dev_consume_skb_any(skb
);
1419 if (likely(ring
->clean_ptr
< ring
->end_ptr
))
1422 ring
->clean_ptr
= ring
->cb_ptr
;
1425 ring
->free_bds
+= txbds_processed
;
1426 ring
->c_index
= c_index
;
1428 ring
->packets
+= pkts_compl
;
1429 ring
->bytes
+= bytes_compl
;
1431 netdev_tx_completed_queue(netdev_get_tx_queue(dev
, ring
->queue
),
1432 pkts_compl
, bytes_compl
);
1434 return txbds_processed
;
1437 static unsigned int bcmgenet_tx_reclaim(struct net_device
*dev
,
1438 struct bcmgenet_tx_ring
*ring
)
1440 unsigned int released
;
1442 spin_lock_bh(&ring
->lock
);
1443 released
= __bcmgenet_tx_reclaim(dev
, ring
);
1444 spin_unlock_bh(&ring
->lock
);
1449 static int bcmgenet_tx_poll(struct napi_struct
*napi
, int budget
)
1451 struct bcmgenet_tx_ring
*ring
=
1452 container_of(napi
, struct bcmgenet_tx_ring
, napi
);
1453 unsigned int work_done
= 0;
1454 struct netdev_queue
*txq
;
1456 spin_lock(&ring
->lock
);
1457 work_done
= __bcmgenet_tx_reclaim(ring
->priv
->dev
, ring
);
1458 if (ring
->free_bds
> (MAX_SKB_FRAGS
+ 1)) {
1459 txq
= netdev_get_tx_queue(ring
->priv
->dev
, ring
->queue
);
1460 netif_tx_wake_queue(txq
);
1462 spin_unlock(&ring
->lock
);
1464 if (work_done
== 0) {
1465 napi_complete(napi
);
1466 ring
->int_enable(ring
);
1474 static void bcmgenet_tx_reclaim_all(struct net_device
*dev
)
1476 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1479 if (netif_is_multiqueue(dev
)) {
1480 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++)
1481 bcmgenet_tx_reclaim(dev
, &priv
->tx_rings
[i
]);
1484 bcmgenet_tx_reclaim(dev
, &priv
->tx_rings
[DESC_INDEX
]);
1487 /* Reallocate the SKB to put enough headroom in front of it and insert
1488 * the transmit checksum offsets in the descriptors
1490 static struct sk_buff
*bcmgenet_put_tx_csum(struct net_device
*dev
,
1491 struct sk_buff
*skb
)
1493 struct status_64
*status
= NULL
;
1494 struct sk_buff
*new_skb
;
1500 if (unlikely(skb_headroom(skb
) < sizeof(*status
))) {
1501 /* If 64 byte status block enabled, must make sure skb has
1502 * enough headroom for us to insert 64B status block.
1504 new_skb
= skb_realloc_headroom(skb
, sizeof(*status
));
1507 dev
->stats
.tx_dropped
++;
1513 skb_push(skb
, sizeof(*status
));
1514 status
= (struct status_64
*)skb
->data
;
1516 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1517 ip_ver
= skb
->protocol
;
1519 case htons(ETH_P_IP
):
1520 ip_proto
= ip_hdr(skb
)->protocol
;
1522 case htons(ETH_P_IPV6
):
1523 ip_proto
= ipv6_hdr(skb
)->nexthdr
;
1529 offset
= skb_checksum_start_offset(skb
) - sizeof(*status
);
1530 tx_csum_info
= (offset
<< STATUS_TX_CSUM_START_SHIFT
) |
1531 (offset
+ skb
->csum_offset
);
1533 /* Set the length valid bit for TCP and UDP and just set
1534 * the special UDP flag for IPv4, else just set to 0.
1536 if (ip_proto
== IPPROTO_TCP
|| ip_proto
== IPPROTO_UDP
) {
1537 tx_csum_info
|= STATUS_TX_CSUM_LV
;
1538 if (ip_proto
== IPPROTO_UDP
&&
1539 ip_ver
== htons(ETH_P_IP
))
1540 tx_csum_info
|= STATUS_TX_CSUM_PROTO_UDP
;
1545 status
->tx_csum_info
= tx_csum_info
;
1551 static netdev_tx_t
bcmgenet_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1553 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
1554 struct device
*kdev
= &priv
->pdev
->dev
;
1555 struct bcmgenet_tx_ring
*ring
= NULL
;
1556 struct enet_cb
*tx_cb_ptr
;
1557 struct netdev_queue
*txq
;
1558 int nr_frags
, index
;
1566 index
= skb_get_queue_mapping(skb
);
1567 /* Mapping strategy:
1568 * queue_mapping = 0, unclassified, packet xmited through ring16
1569 * queue_mapping = 1, goes to ring 0. (highest priority queue
1570 * queue_mapping = 2, goes to ring 1.
1571 * queue_mapping = 3, goes to ring 2.
1572 * queue_mapping = 4, goes to ring 3.
1579 ring
= &priv
->tx_rings
[index
];
1580 txq
= netdev_get_tx_queue(dev
, ring
->queue
);
1582 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1584 spin_lock(&ring
->lock
);
1585 if (ring
->free_bds
<= (nr_frags
+ 1)) {
1586 if (!netif_tx_queue_stopped(txq
)) {
1587 netif_tx_stop_queue(txq
);
1589 "%s: tx ring %d full when queue %d awake\n",
1590 __func__
, index
, ring
->queue
);
1592 ret
= NETDEV_TX_BUSY
;
1596 /* Retain how many bytes will be sent on the wire, without TSB inserted
1597 * by transmit checksum offload
1599 GENET_CB(skb
)->bytes_sent
= skb
->len
;
1601 /* set the SKB transmit checksum */
1602 if (priv
->desc_64b_en
) {
1603 skb
= bcmgenet_put_tx_csum(dev
, skb
);
1610 for (i
= 0; i
<= nr_frags
; i
++) {
1611 tx_cb_ptr
= bcmgenet_get_txcb(priv
, ring
);
1616 /* Transmit single SKB or head of fragment list */
1617 GENET_CB(skb
)->first_cb
= tx_cb_ptr
;
1618 size
= skb_headlen(skb
);
1619 mapping
= dma_map_single(kdev
, skb
->data
, size
,
1623 frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1624 size
= skb_frag_size(frag
);
1625 mapping
= skb_frag_dma_map(kdev
, frag
, 0, size
,
1629 ret
= dma_mapping_error(kdev
, mapping
);
1631 priv
->mib
.tx_dma_failed
++;
1632 netif_err(priv
, tx_err
, dev
, "Tx DMA map failed\n");
1634 goto out_unmap_frags
;
1636 dma_unmap_addr_set(tx_cb_ptr
, dma_addr
, mapping
);
1637 dma_unmap_len_set(tx_cb_ptr
, dma_len
, size
);
1639 tx_cb_ptr
->skb
= skb
;
1641 len_stat
= (size
<< DMA_BUFLENGTH_SHIFT
) |
1642 (priv
->hw_params
->qtag_mask
<< DMA_TX_QTAG_SHIFT
);
1644 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
1645 * will need to restore software padding of "runt" packets
1648 len_stat
|= DMA_TX_APPEND_CRC
| DMA_SOP
;
1649 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1650 len_stat
|= DMA_TX_DO_CSUM
;
1653 len_stat
|= DMA_EOP
;
1655 dmadesc_set(priv
, tx_cb_ptr
->bd_addr
, mapping
, len_stat
);
1658 GENET_CB(skb
)->last_cb
= tx_cb_ptr
;
1659 skb_tx_timestamp(skb
);
1661 /* Decrement total BD count and advance our write pointer */
1662 ring
->free_bds
-= nr_frags
+ 1;
1663 ring
->prod_index
+= nr_frags
+ 1;
1664 ring
->prod_index
&= DMA_P_INDEX_MASK
;
1666 netdev_tx_sent_queue(txq
, GENET_CB(skb
)->bytes_sent
);
1668 if (ring
->free_bds
<= (MAX_SKB_FRAGS
+ 1))
1669 netif_tx_stop_queue(txq
);
1671 if (!skb
->xmit_more
|| netif_xmit_stopped(txq
))
1672 /* Packets are ready, update producer index */
1673 bcmgenet_tdma_ring_writel(priv
, ring
->index
,
1674 ring
->prod_index
, TDMA_PROD_INDEX
);
1676 spin_unlock(&ring
->lock
);
1681 /* Back up for failed control block mapping */
1682 bcmgenet_put_txcb(priv
, ring
);
1684 /* Unmap successfully mapped control blocks */
1686 tx_cb_ptr
= bcmgenet_put_txcb(priv
, ring
);
1687 bcmgenet_free_tx_cb(kdev
, tx_cb_ptr
);
1694 static struct sk_buff
*bcmgenet_rx_refill(struct bcmgenet_priv
*priv
,
1697 struct device
*kdev
= &priv
->pdev
->dev
;
1698 struct sk_buff
*skb
;
1699 struct sk_buff
*rx_skb
;
1702 /* Allocate a new Rx skb */
1703 skb
= __netdev_alloc_skb(priv
->dev
, priv
->rx_buf_len
+ SKB_ALIGNMENT
,
1704 GFP_ATOMIC
| __GFP_NOWARN
);
1706 priv
->mib
.alloc_rx_buff_failed
++;
1707 netif_err(priv
, rx_err
, priv
->dev
,
1708 "%s: Rx skb allocation failed\n", __func__
);
1712 /* DMA-map the new Rx skb */
1713 mapping
= dma_map_single(kdev
, skb
->data
, priv
->rx_buf_len
,
1715 if (dma_mapping_error(kdev
, mapping
)) {
1716 priv
->mib
.rx_dma_failed
++;
1717 dev_kfree_skb_any(skb
);
1718 netif_err(priv
, rx_err
, priv
->dev
,
1719 "%s: Rx skb DMA mapping failed\n", __func__
);
1723 /* Grab the current Rx skb from the ring and DMA-unmap it */
1724 rx_skb
= bcmgenet_free_rx_cb(kdev
, cb
);
1726 /* Put the new Rx skb on the ring */
1728 dma_unmap_addr_set(cb
, dma_addr
, mapping
);
1729 dma_unmap_len_set(cb
, dma_len
, priv
->rx_buf_len
);
1730 dmadesc_set_addr(priv
, cb
->bd_addr
, mapping
);
1732 /* Return the current Rx skb to caller */
1736 /* bcmgenet_desc_rx - descriptor based rx process.
1737 * this could be called from bottom half, or from NAPI polling method.
1739 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring
*ring
,
1740 unsigned int budget
)
1742 struct bcmgenet_priv
*priv
= ring
->priv
;
1743 struct net_device
*dev
= priv
->dev
;
1745 struct sk_buff
*skb
;
1746 u32 dma_length_status
;
1747 unsigned long dma_flag
;
1749 unsigned int rxpktprocessed
= 0, rxpkttoprocess
;
1750 unsigned int bytes_processed
= 0;
1751 unsigned int p_index
, mask
;
1752 unsigned int discards
;
1753 unsigned int chksum_ok
= 0;
1755 /* Clear status before servicing to reduce spurious interrupts */
1756 if (ring
->index
== DESC_INDEX
) {
1757 bcmgenet_intrl2_0_writel(priv
, UMAC_IRQ_RXDMA_DONE
,
1760 mask
= 1 << (UMAC_IRQ1_RX_INTR_SHIFT
+ ring
->index
);
1761 bcmgenet_intrl2_1_writel(priv
,
1766 p_index
= bcmgenet_rdma_ring_readl(priv
, ring
->index
, RDMA_PROD_INDEX
);
1768 discards
= (p_index
>> DMA_P_INDEX_DISCARD_CNT_SHIFT
) &
1769 DMA_P_INDEX_DISCARD_CNT_MASK
;
1770 if (discards
> ring
->old_discards
) {
1771 discards
= discards
- ring
->old_discards
;
1772 ring
->errors
+= discards
;
1773 ring
->old_discards
+= discards
;
1775 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1776 if (ring
->old_discards
>= 0xC000) {
1777 ring
->old_discards
= 0;
1778 bcmgenet_rdma_ring_writel(priv
, ring
->index
, 0,
1783 p_index
&= DMA_P_INDEX_MASK
;
1784 rxpkttoprocess
= (p_index
- ring
->c_index
) & DMA_C_INDEX_MASK
;
1786 netif_dbg(priv
, rx_status
, dev
,
1787 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess
);
1789 while ((rxpktprocessed
< rxpkttoprocess
) &&
1790 (rxpktprocessed
< budget
)) {
1791 cb
= &priv
->rx_cbs
[ring
->read_ptr
];
1792 skb
= bcmgenet_rx_refill(priv
, cb
);
1794 if (unlikely(!skb
)) {
1799 if (!priv
->desc_64b_en
) {
1801 dmadesc_get_length_status(priv
, cb
->bd_addr
);
1803 struct status_64
*status
;
1805 status
= (struct status_64
*)skb
->data
;
1806 dma_length_status
= status
->length_status
;
1809 /* DMA flags and length are still valid no matter how
1810 * we got the Receive Status Vector (64B RSB or register)
1812 dma_flag
= dma_length_status
& 0xffff;
1813 len
= dma_length_status
>> DMA_BUFLENGTH_SHIFT
;
1815 netif_dbg(priv
, rx_status
, dev
,
1816 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1817 __func__
, p_index
, ring
->c_index
,
1818 ring
->read_ptr
, dma_length_status
);
1820 if (unlikely(!(dma_flag
& DMA_EOP
) || !(dma_flag
& DMA_SOP
))) {
1821 netif_err(priv
, rx_status
, dev
,
1822 "dropping fragmented packet!\n");
1824 dev_kfree_skb_any(skb
);
1829 if (unlikely(dma_flag
& (DMA_RX_CRC_ERROR
|
1834 netif_err(priv
, rx_status
, dev
, "dma_flag=0x%x\n",
1835 (unsigned int)dma_flag
);
1836 if (dma_flag
& DMA_RX_CRC_ERROR
)
1837 dev
->stats
.rx_crc_errors
++;
1838 if (dma_flag
& DMA_RX_OV
)
1839 dev
->stats
.rx_over_errors
++;
1840 if (dma_flag
& DMA_RX_NO
)
1841 dev
->stats
.rx_frame_errors
++;
1842 if (dma_flag
& DMA_RX_LG
)
1843 dev
->stats
.rx_length_errors
++;
1844 dev
->stats
.rx_errors
++;
1845 dev_kfree_skb_any(skb
);
1847 } /* error packet */
1849 chksum_ok
= (dma_flag
& priv
->dma_rx_chk_bit
) &&
1850 priv
->desc_rxchk_en
;
1853 if (priv
->desc_64b_en
) {
1858 if (likely(chksum_ok
))
1859 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1861 /* remove hardware 2bytes added for IP alignment */
1865 if (priv
->crc_fwd_en
) {
1866 skb_trim(skb
, len
- ETH_FCS_LEN
);
1870 bytes_processed
+= len
;
1872 /*Finish setting up the received SKB and send it to the kernel*/
1873 skb
->protocol
= eth_type_trans(skb
, priv
->dev
);
1876 if (dma_flag
& DMA_RX_MULT
)
1877 dev
->stats
.multicast
++;
1880 napi_gro_receive(&ring
->napi
, skb
);
1881 netif_dbg(priv
, rx_status
, dev
, "pushed up to kernel\n");
1885 if (likely(ring
->read_ptr
< ring
->end_ptr
))
1888 ring
->read_ptr
= ring
->cb_ptr
;
1890 ring
->c_index
= (ring
->c_index
+ 1) & DMA_C_INDEX_MASK
;
1891 bcmgenet_rdma_ring_writel(priv
, ring
->index
, ring
->c_index
, RDMA_CONS_INDEX
);
1894 ring
->dim
.bytes
= bytes_processed
;
1895 ring
->dim
.packets
= rxpktprocessed
;
1897 return rxpktprocessed
;
1900 /* Rx NAPI polling method */
1901 static int bcmgenet_rx_poll(struct napi_struct
*napi
, int budget
)
1903 struct bcmgenet_rx_ring
*ring
= container_of(napi
,
1904 struct bcmgenet_rx_ring
, napi
);
1905 struct net_dim_sample dim_sample
;
1906 unsigned int work_done
;
1908 work_done
= bcmgenet_desc_rx(ring
, budget
);
1910 if (work_done
< budget
) {
1911 napi_complete_done(napi
, work_done
);
1912 ring
->int_enable(ring
);
1915 if (ring
->dim
.use_dim
) {
1916 net_dim_sample(ring
->dim
.event_ctr
, ring
->dim
.packets
,
1917 ring
->dim
.bytes
, &dim_sample
);
1918 net_dim(&ring
->dim
.dim
, dim_sample
);
1924 static void bcmgenet_dim_work(struct work_struct
*work
)
1926 struct net_dim
*dim
= container_of(work
, struct net_dim
, work
);
1927 struct bcmgenet_net_dim
*ndim
=
1928 container_of(dim
, struct bcmgenet_net_dim
, dim
);
1929 struct bcmgenet_rx_ring
*ring
=
1930 container_of(ndim
, struct bcmgenet_rx_ring
, dim
);
1931 struct net_dim_cq_moder cur_profile
=
1932 net_dim_get_rx_moderation(dim
->mode
, dim
->profile_ix
);
1934 bcmgenet_set_rx_coalesce(ring
, cur_profile
.usec
, cur_profile
.pkts
);
1935 dim
->state
= NET_DIM_START_MEASURE
;
1938 /* Assign skb to RX DMA descriptor. */
1939 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv
*priv
,
1940 struct bcmgenet_rx_ring
*ring
)
1943 struct sk_buff
*skb
;
1946 netif_dbg(priv
, hw
, priv
->dev
, "%s\n", __func__
);
1948 /* loop here for each buffer needing assign */
1949 for (i
= 0; i
< ring
->size
; i
++) {
1951 skb
= bcmgenet_rx_refill(priv
, cb
);
1953 dev_consume_skb_any(skb
);
1961 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv
*priv
)
1963 struct sk_buff
*skb
;
1967 for (i
= 0; i
< priv
->num_rx_bds
; i
++) {
1968 cb
= &priv
->rx_cbs
[i
];
1970 skb
= bcmgenet_free_rx_cb(&priv
->pdev
->dev
, cb
);
1972 dev_consume_skb_any(skb
);
1976 static void umac_enable_set(struct bcmgenet_priv
*priv
, u32 mask
, bool enable
)
1980 reg
= bcmgenet_umac_readl(priv
, UMAC_CMD
);
1985 bcmgenet_umac_writel(priv
, reg
, UMAC_CMD
);
1987 /* UniMAC stops on a packet boundary, wait for a full-size packet
1991 usleep_range(1000, 2000);
1994 static void reset_umac(struct bcmgenet_priv
*priv
)
1996 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1997 bcmgenet_rbuf_ctrl_set(priv
, 0);
2000 /* disable MAC while updating its registers */
2001 bcmgenet_umac_writel(priv
, 0, UMAC_CMD
);
2003 /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
2004 bcmgenet_umac_writel(priv
, CMD_SW_RESET
| CMD_LCL_LOOP_EN
, UMAC_CMD
);
2007 static void bcmgenet_intr_disable(struct bcmgenet_priv
*priv
)
2009 /* Mask all interrupts.*/
2010 bcmgenet_intrl2_0_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_MASK_SET
);
2011 bcmgenet_intrl2_0_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_CLEAR
);
2012 bcmgenet_intrl2_1_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_MASK_SET
);
2013 bcmgenet_intrl2_1_writel(priv
, 0xFFFFFFFF, INTRL2_CPU_CLEAR
);
2016 static void bcmgenet_link_intr_enable(struct bcmgenet_priv
*priv
)
2018 u32 int0_enable
= 0;
2020 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2023 if (priv
->internal_phy
) {
2024 int0_enable
|= UMAC_IRQ_LINK_EVENT
;
2025 if (GENET_IS_V1(priv
) || GENET_IS_V2(priv
) || GENET_IS_V3(priv
))
2026 int0_enable
|= UMAC_IRQ_PHY_DET_R
;
2027 } else if (priv
->ext_phy
) {
2028 int0_enable
|= UMAC_IRQ_LINK_EVENT
;
2029 } else if (priv
->phy_interface
== PHY_INTERFACE_MODE_MOCA
) {
2030 if (priv
->hw_params
->flags
& GENET_HAS_MOCA_LINK_DET
)
2031 int0_enable
|= UMAC_IRQ_LINK_EVENT
;
2033 bcmgenet_intrl2_0_writel(priv
, int0_enable
, INTRL2_CPU_MASK_CLEAR
);
2036 static void init_umac(struct bcmgenet_priv
*priv
)
2038 struct device
*kdev
= &priv
->pdev
->dev
;
2040 u32 int0_enable
= 0;
2042 dev_dbg(&priv
->pdev
->dev
, "bcmgenet: init_umac\n");
2046 /* clear tx/rx counter */
2047 bcmgenet_umac_writel(priv
,
2048 MIB_RESET_RX
| MIB_RESET_TX
| MIB_RESET_RUNT
,
2050 bcmgenet_umac_writel(priv
, 0, UMAC_MIB_CTRL
);
2052 bcmgenet_umac_writel(priv
, ENET_MAX_MTU_SIZE
, UMAC_MAX_FRAME_LEN
);
2054 /* init rx registers, enable ip header optimization */
2055 reg
= bcmgenet_rbuf_readl(priv
, RBUF_CTRL
);
2056 reg
|= RBUF_ALIGN_2B
;
2057 bcmgenet_rbuf_writel(priv
, reg
, RBUF_CTRL
);
2059 if (!GENET_IS_V1(priv
) && !GENET_IS_V2(priv
))
2060 bcmgenet_rbuf_writel(priv
, 1, RBUF_TBUF_SIZE_CTRL
);
2062 bcmgenet_intr_disable(priv
);
2064 /* Configure backpressure vectors for MoCA */
2065 if (priv
->phy_interface
== PHY_INTERFACE_MODE_MOCA
) {
2066 reg
= bcmgenet_bp_mc_get(priv
);
2067 reg
|= BIT(priv
->hw_params
->bp_in_en_shift
);
2069 /* bp_mask: back pressure mask */
2070 if (netif_is_multiqueue(priv
->dev
))
2071 reg
|= priv
->hw_params
->bp_in_mask
;
2073 reg
&= ~priv
->hw_params
->bp_in_mask
;
2074 bcmgenet_bp_mc_set(priv
, reg
);
2077 /* Enable MDIO interrupts on GENET v3+ */
2078 if (priv
->hw_params
->flags
& GENET_HAS_MDIO_INTR
)
2079 int0_enable
|= (UMAC_IRQ_MDIO_DONE
| UMAC_IRQ_MDIO_ERROR
);
2081 bcmgenet_intrl2_0_writel(priv
, int0_enable
, INTRL2_CPU_MASK_CLEAR
);
2083 dev_dbg(kdev
, "done init umac\n");
2086 static void bcmgenet_init_dim(struct bcmgenet_rx_ring
*ring
,
2087 void (*cb
)(struct work_struct
*work
))
2089 struct bcmgenet_net_dim
*dim
= &ring
->dim
;
2091 INIT_WORK(&dim
->dim
.work
, cb
);
2092 dim
->dim
.mode
= NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE
;
2098 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring
*ring
)
2100 struct bcmgenet_net_dim
*dim
= &ring
->dim
;
2101 struct net_dim_cq_moder moder
;
2104 usecs
= ring
->rx_coalesce_usecs
;
2105 pkts
= ring
->rx_max_coalesced_frames
;
2107 /* If DIM was enabled, re-apply default parameters */
2109 moder
= net_dim_get_def_rx_moderation(dim
->dim
.mode
);
2114 bcmgenet_set_rx_coalesce(ring
, usecs
, pkts
);
2117 /* Initialize a Tx ring along with corresponding hardware registers */
2118 static void bcmgenet_init_tx_ring(struct bcmgenet_priv
*priv
,
2119 unsigned int index
, unsigned int size
,
2120 unsigned int start_ptr
, unsigned int end_ptr
)
2122 struct bcmgenet_tx_ring
*ring
= &priv
->tx_rings
[index
];
2123 u32 words_per_bd
= WORDS_PER_BD(priv
);
2124 u32 flow_period_val
= 0;
2126 spin_lock_init(&ring
->lock
);
2128 ring
->index
= index
;
2129 if (index
== DESC_INDEX
) {
2131 ring
->int_enable
= bcmgenet_tx_ring16_int_enable
;
2132 ring
->int_disable
= bcmgenet_tx_ring16_int_disable
;
2134 ring
->queue
= index
+ 1;
2135 ring
->int_enable
= bcmgenet_tx_ring_int_enable
;
2136 ring
->int_disable
= bcmgenet_tx_ring_int_disable
;
2138 ring
->cbs
= priv
->tx_cbs
+ start_ptr
;
2140 ring
->clean_ptr
= start_ptr
;
2142 ring
->free_bds
= size
;
2143 ring
->write_ptr
= start_ptr
;
2144 ring
->cb_ptr
= start_ptr
;
2145 ring
->end_ptr
= end_ptr
- 1;
2146 ring
->prod_index
= 0;
2148 /* Set flow period for ring != 16 */
2149 if (index
!= DESC_INDEX
)
2150 flow_period_val
= ENET_MAX_MTU_SIZE
<< 16;
2152 bcmgenet_tdma_ring_writel(priv
, index
, 0, TDMA_PROD_INDEX
);
2153 bcmgenet_tdma_ring_writel(priv
, index
, 0, TDMA_CONS_INDEX
);
2154 bcmgenet_tdma_ring_writel(priv
, index
, 1, DMA_MBUF_DONE_THRESH
);
2155 /* Disable rate control for now */
2156 bcmgenet_tdma_ring_writel(priv
, index
, flow_period_val
,
2158 bcmgenet_tdma_ring_writel(priv
, index
,
2159 ((size
<< DMA_RING_SIZE_SHIFT
) |
2160 RX_BUF_LENGTH
), DMA_RING_BUF_SIZE
);
2162 /* Set start and end address, read and write pointers */
2163 bcmgenet_tdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2165 bcmgenet_tdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2167 bcmgenet_tdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2169 bcmgenet_tdma_ring_writel(priv
, index
, end_ptr
* words_per_bd
- 1,
2172 /* Initialize Tx NAPI */
2173 netif_tx_napi_add(priv
->dev
, &ring
->napi
, bcmgenet_tx_poll
,
2177 /* Initialize a RDMA ring */
2178 static int bcmgenet_init_rx_ring(struct bcmgenet_priv
*priv
,
2179 unsigned int index
, unsigned int size
,
2180 unsigned int start_ptr
, unsigned int end_ptr
)
2182 struct bcmgenet_rx_ring
*ring
= &priv
->rx_rings
[index
];
2183 u32 words_per_bd
= WORDS_PER_BD(priv
);
2187 ring
->index
= index
;
2188 if (index
== DESC_INDEX
) {
2189 ring
->int_enable
= bcmgenet_rx_ring16_int_enable
;
2190 ring
->int_disable
= bcmgenet_rx_ring16_int_disable
;
2192 ring
->int_enable
= bcmgenet_rx_ring_int_enable
;
2193 ring
->int_disable
= bcmgenet_rx_ring_int_disable
;
2195 ring
->cbs
= priv
->rx_cbs
+ start_ptr
;
2198 ring
->read_ptr
= start_ptr
;
2199 ring
->cb_ptr
= start_ptr
;
2200 ring
->end_ptr
= end_ptr
- 1;
2202 ret
= bcmgenet_alloc_rx_buffers(priv
, ring
);
2206 bcmgenet_init_dim(ring
, bcmgenet_dim_work
);
2207 bcmgenet_init_rx_coalesce(ring
);
2209 /* Initialize Rx NAPI */
2210 netif_napi_add(priv
->dev
, &ring
->napi
, bcmgenet_rx_poll
,
2213 bcmgenet_rdma_ring_writel(priv
, index
, 0, RDMA_PROD_INDEX
);
2214 bcmgenet_rdma_ring_writel(priv
, index
, 0, RDMA_CONS_INDEX
);
2215 bcmgenet_rdma_ring_writel(priv
, index
,
2216 ((size
<< DMA_RING_SIZE_SHIFT
) |
2217 RX_BUF_LENGTH
), DMA_RING_BUF_SIZE
);
2218 bcmgenet_rdma_ring_writel(priv
, index
,
2219 (DMA_FC_THRESH_LO
<<
2220 DMA_XOFF_THRESHOLD_SHIFT
) |
2221 DMA_FC_THRESH_HI
, RDMA_XON_XOFF_THRESH
);
2223 /* Set start and end address, read and write pointers */
2224 bcmgenet_rdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2226 bcmgenet_rdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2228 bcmgenet_rdma_ring_writel(priv
, index
, start_ptr
* words_per_bd
,
2230 bcmgenet_rdma_ring_writel(priv
, index
, end_ptr
* words_per_bd
- 1,
2236 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv
*priv
)
2239 struct bcmgenet_tx_ring
*ring
;
2241 for (i
= 0; i
< priv
->hw_params
->tx_queues
; ++i
) {
2242 ring
= &priv
->tx_rings
[i
];
2243 napi_enable(&ring
->napi
);
2244 ring
->int_enable(ring
);
2247 ring
= &priv
->tx_rings
[DESC_INDEX
];
2248 napi_enable(&ring
->napi
);
2249 ring
->int_enable(ring
);
2252 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv
*priv
)
2255 struct bcmgenet_tx_ring
*ring
;
2257 for (i
= 0; i
< priv
->hw_params
->tx_queues
; ++i
) {
2258 ring
= &priv
->tx_rings
[i
];
2259 napi_disable(&ring
->napi
);
2262 ring
= &priv
->tx_rings
[DESC_INDEX
];
2263 napi_disable(&ring
->napi
);
2266 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv
*priv
)
2269 struct bcmgenet_tx_ring
*ring
;
2271 for (i
= 0; i
< priv
->hw_params
->tx_queues
; ++i
) {
2272 ring
= &priv
->tx_rings
[i
];
2273 netif_napi_del(&ring
->napi
);
2276 ring
= &priv
->tx_rings
[DESC_INDEX
];
2277 netif_napi_del(&ring
->napi
);
2280 /* Initialize Tx queues
2282 * Queues 0-3 are priority-based, each one has 32 descriptors,
2283 * with queue 0 being the highest priority queue.
2285 * Queue 16 is the default Tx queue with
2286 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2288 * The transmit control block pool is then partitioned as follows:
2289 * - Tx queue 0 uses tx_cbs[0..31]
2290 * - Tx queue 1 uses tx_cbs[32..63]
2291 * - Tx queue 2 uses tx_cbs[64..95]
2292 * - Tx queue 3 uses tx_cbs[96..127]
2293 * - Tx queue 16 uses tx_cbs[128..255]
2295 static void bcmgenet_init_tx_queues(struct net_device
*dev
)
2297 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2299 u32 dma_ctrl
, ring_cfg
;
2300 u32 dma_priority
[3] = {0, 0, 0};
2302 dma_ctrl
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2303 dma_enable
= dma_ctrl
& DMA_EN
;
2304 dma_ctrl
&= ~DMA_EN
;
2305 bcmgenet_tdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2310 /* Enable strict priority arbiter mode */
2311 bcmgenet_tdma_writel(priv
, DMA_ARBITER_SP
, DMA_ARB_CTRL
);
2313 /* Initialize Tx priority queues */
2314 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++) {
2315 bcmgenet_init_tx_ring(priv
, i
, priv
->hw_params
->tx_bds_per_q
,
2316 i
* priv
->hw_params
->tx_bds_per_q
,
2317 (i
+ 1) * priv
->hw_params
->tx_bds_per_q
);
2318 ring_cfg
|= (1 << i
);
2319 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2320 dma_priority
[DMA_PRIO_REG_INDEX(i
)] |=
2321 ((GENET_Q0_PRIORITY
+ i
) << DMA_PRIO_REG_SHIFT(i
));
2324 /* Initialize Tx default queue 16 */
2325 bcmgenet_init_tx_ring(priv
, DESC_INDEX
, GENET_Q16_TX_BD_CNT
,
2326 priv
->hw_params
->tx_queues
*
2327 priv
->hw_params
->tx_bds_per_q
,
2329 ring_cfg
|= (1 << DESC_INDEX
);
2330 dma_ctrl
|= (1 << (DESC_INDEX
+ DMA_RING_BUF_EN_SHIFT
));
2331 dma_priority
[DMA_PRIO_REG_INDEX(DESC_INDEX
)] |=
2332 ((GENET_Q0_PRIORITY
+ priv
->hw_params
->tx_queues
) <<
2333 DMA_PRIO_REG_SHIFT(DESC_INDEX
));
2335 /* Set Tx queue priorities */
2336 bcmgenet_tdma_writel(priv
, dma_priority
[0], DMA_PRIORITY_0
);
2337 bcmgenet_tdma_writel(priv
, dma_priority
[1], DMA_PRIORITY_1
);
2338 bcmgenet_tdma_writel(priv
, dma_priority
[2], DMA_PRIORITY_2
);
2340 /* Enable Tx queues */
2341 bcmgenet_tdma_writel(priv
, ring_cfg
, DMA_RING_CFG
);
2346 bcmgenet_tdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2349 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv
*priv
)
2352 struct bcmgenet_rx_ring
*ring
;
2354 for (i
= 0; i
< priv
->hw_params
->rx_queues
; ++i
) {
2355 ring
= &priv
->rx_rings
[i
];
2356 napi_enable(&ring
->napi
);
2357 ring
->int_enable(ring
);
2360 ring
= &priv
->rx_rings
[DESC_INDEX
];
2361 napi_enable(&ring
->napi
);
2362 ring
->int_enable(ring
);
2365 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv
*priv
)
2368 struct bcmgenet_rx_ring
*ring
;
2370 for (i
= 0; i
< priv
->hw_params
->rx_queues
; ++i
) {
2371 ring
= &priv
->rx_rings
[i
];
2372 napi_disable(&ring
->napi
);
2373 cancel_work_sync(&ring
->dim
.dim
.work
);
2376 ring
= &priv
->rx_rings
[DESC_INDEX
];
2377 napi_disable(&ring
->napi
);
2378 cancel_work_sync(&ring
->dim
.dim
.work
);
2381 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv
*priv
)
2384 struct bcmgenet_rx_ring
*ring
;
2386 for (i
= 0; i
< priv
->hw_params
->rx_queues
; ++i
) {
2387 ring
= &priv
->rx_rings
[i
];
2388 netif_napi_del(&ring
->napi
);
2391 ring
= &priv
->rx_rings
[DESC_INDEX
];
2392 netif_napi_del(&ring
->napi
);
2395 /* Initialize Rx queues
2397 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2398 * used to direct traffic to these queues.
2400 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2402 static int bcmgenet_init_rx_queues(struct net_device
*dev
)
2404 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2411 dma_ctrl
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2412 dma_enable
= dma_ctrl
& DMA_EN
;
2413 dma_ctrl
&= ~DMA_EN
;
2414 bcmgenet_rdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2419 /* Initialize Rx priority queues */
2420 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++) {
2421 ret
= bcmgenet_init_rx_ring(priv
, i
,
2422 priv
->hw_params
->rx_bds_per_q
,
2423 i
* priv
->hw_params
->rx_bds_per_q
,
2425 priv
->hw_params
->rx_bds_per_q
);
2429 ring_cfg
|= (1 << i
);
2430 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2433 /* Initialize Rx default queue 16 */
2434 ret
= bcmgenet_init_rx_ring(priv
, DESC_INDEX
, GENET_Q16_RX_BD_CNT
,
2435 priv
->hw_params
->rx_queues
*
2436 priv
->hw_params
->rx_bds_per_q
,
2441 ring_cfg
|= (1 << DESC_INDEX
);
2442 dma_ctrl
|= (1 << (DESC_INDEX
+ DMA_RING_BUF_EN_SHIFT
));
2445 bcmgenet_rdma_writel(priv
, ring_cfg
, DMA_RING_CFG
);
2447 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2450 bcmgenet_rdma_writel(priv
, dma_ctrl
, DMA_CTRL
);
2455 static int bcmgenet_dma_teardown(struct bcmgenet_priv
*priv
)
2463 /* Disable TDMA to stop add more frames in TX DMA */
2464 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2466 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2468 /* Check TDMA status register to confirm TDMA is disabled */
2469 while (timeout
++ < DMA_TIMEOUT_VAL
) {
2470 reg
= bcmgenet_tdma_readl(priv
, DMA_STATUS
);
2471 if (reg
& DMA_DISABLED
)
2477 if (timeout
== DMA_TIMEOUT_VAL
) {
2478 netdev_warn(priv
->dev
, "Timed out while disabling TX DMA\n");
2482 /* Wait 10ms for packet drain in both tx and rx dma */
2483 usleep_range(10000, 20000);
2486 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2488 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2491 /* Check RDMA status register to confirm RDMA is disabled */
2492 while (timeout
++ < DMA_TIMEOUT_VAL
) {
2493 reg
= bcmgenet_rdma_readl(priv
, DMA_STATUS
);
2494 if (reg
& DMA_DISABLED
)
2500 if (timeout
== DMA_TIMEOUT_VAL
) {
2501 netdev_warn(priv
->dev
, "Timed out while disabling RX DMA\n");
2506 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++)
2507 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2508 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2510 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2513 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++)
2514 dma_ctrl
|= (1 << (i
+ DMA_RING_BUF_EN_SHIFT
));
2515 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2517 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2522 static void bcmgenet_fini_dma(struct bcmgenet_priv
*priv
)
2524 struct netdev_queue
*txq
;
2525 struct sk_buff
*skb
;
2529 bcmgenet_fini_rx_napi(priv
);
2530 bcmgenet_fini_tx_napi(priv
);
2532 for (i
= 0; i
< priv
->num_tx_bds
; i
++) {
2533 cb
= priv
->tx_cbs
+ i
;
2534 skb
= bcmgenet_free_tx_cb(&priv
->pdev
->dev
, cb
);
2539 for (i
= 0; i
< priv
->hw_params
->tx_queues
; i
++) {
2540 txq
= netdev_get_tx_queue(priv
->dev
, priv
->tx_rings
[i
].queue
);
2541 netdev_tx_reset_queue(txq
);
2544 txq
= netdev_get_tx_queue(priv
->dev
, priv
->tx_rings
[DESC_INDEX
].queue
);
2545 netdev_tx_reset_queue(txq
);
2547 bcmgenet_free_rx_buffers(priv
);
2548 kfree(priv
->rx_cbs
);
2549 kfree(priv
->tx_cbs
);
2552 /* init_edma: Initialize DMA control register */
2553 static int bcmgenet_init_dma(struct bcmgenet_priv
*priv
)
2559 netif_dbg(priv
, hw
, priv
->dev
, "%s\n", __func__
);
2561 /* Initialize common Rx ring structures */
2562 priv
->rx_bds
= priv
->base
+ priv
->hw_params
->rdma_offset
;
2563 priv
->num_rx_bds
= TOTAL_DESC
;
2564 priv
->rx_cbs
= kcalloc(priv
->num_rx_bds
, sizeof(struct enet_cb
),
2569 for (i
= 0; i
< priv
->num_rx_bds
; i
++) {
2570 cb
= priv
->rx_cbs
+ i
;
2571 cb
->bd_addr
= priv
->rx_bds
+ i
* DMA_DESC_SIZE
;
2574 /* Initialize common TX ring structures */
2575 priv
->tx_bds
= priv
->base
+ priv
->hw_params
->tdma_offset
;
2576 priv
->num_tx_bds
= TOTAL_DESC
;
2577 priv
->tx_cbs
= kcalloc(priv
->num_tx_bds
, sizeof(struct enet_cb
),
2579 if (!priv
->tx_cbs
) {
2580 kfree(priv
->rx_cbs
);
2584 for (i
= 0; i
< priv
->num_tx_bds
; i
++) {
2585 cb
= priv
->tx_cbs
+ i
;
2586 cb
->bd_addr
= priv
->tx_bds
+ i
* DMA_DESC_SIZE
;
2590 bcmgenet_rdma_writel(priv
, DMA_MAX_BURST_LENGTH
, DMA_SCB_BURST_SIZE
);
2592 /* Initialize Rx queues */
2593 ret
= bcmgenet_init_rx_queues(priv
->dev
);
2595 netdev_err(priv
->dev
, "failed to initialize Rx queues\n");
2596 bcmgenet_free_rx_buffers(priv
);
2597 kfree(priv
->rx_cbs
);
2598 kfree(priv
->tx_cbs
);
2603 bcmgenet_tdma_writel(priv
, DMA_MAX_BURST_LENGTH
, DMA_SCB_BURST_SIZE
);
2605 /* Initialize Tx queues */
2606 bcmgenet_init_tx_queues(priv
->dev
);
2611 /* Interrupt bottom half */
2612 static void bcmgenet_irq_task(struct work_struct
*work
)
2614 unsigned int status
;
2615 struct bcmgenet_priv
*priv
= container_of(
2616 work
, struct bcmgenet_priv
, bcmgenet_irq_work
);
2618 netif_dbg(priv
, intr
, priv
->dev
, "%s\n", __func__
);
2620 spin_lock_irq(&priv
->lock
);
2621 status
= priv
->irq0_stat
;
2622 priv
->irq0_stat
= 0;
2623 spin_unlock_irq(&priv
->lock
);
2625 if (status
& UMAC_IRQ_PHY_DET_R
&&
2626 priv
->dev
->phydev
->autoneg
!= AUTONEG_ENABLE
) {
2627 phy_init_hw(priv
->dev
->phydev
);
2628 genphy_config_aneg(priv
->dev
->phydev
);
2631 /* Link UP/DOWN event */
2632 if (status
& UMAC_IRQ_LINK_EVENT
)
2633 phy_mac_interrupt(priv
->dev
->phydev
);
2637 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2638 static irqreturn_t
bcmgenet_isr1(int irq
, void *dev_id
)
2640 struct bcmgenet_priv
*priv
= dev_id
;
2641 struct bcmgenet_rx_ring
*rx_ring
;
2642 struct bcmgenet_tx_ring
*tx_ring
;
2643 unsigned int index
, status
;
2645 /* Read irq status */
2646 status
= bcmgenet_intrl2_1_readl(priv
, INTRL2_CPU_STAT
) &
2647 ~bcmgenet_intrl2_1_readl(priv
, INTRL2_CPU_MASK_STATUS
);
2649 /* clear interrupts */
2650 bcmgenet_intrl2_1_writel(priv
, status
, INTRL2_CPU_CLEAR
);
2652 netif_dbg(priv
, intr
, priv
->dev
,
2653 "%s: IRQ=0x%x\n", __func__
, status
);
2655 /* Check Rx priority queue interrupts */
2656 for (index
= 0; index
< priv
->hw_params
->rx_queues
; index
++) {
2657 if (!(status
& BIT(UMAC_IRQ1_RX_INTR_SHIFT
+ index
)))
2660 rx_ring
= &priv
->rx_rings
[index
];
2661 rx_ring
->dim
.event_ctr
++;
2663 if (likely(napi_schedule_prep(&rx_ring
->napi
))) {
2664 rx_ring
->int_disable(rx_ring
);
2665 __napi_schedule_irqoff(&rx_ring
->napi
);
2669 /* Check Tx priority queue interrupts */
2670 for (index
= 0; index
< priv
->hw_params
->tx_queues
; index
++) {
2671 if (!(status
& BIT(index
)))
2674 tx_ring
= &priv
->tx_rings
[index
];
2676 if (likely(napi_schedule_prep(&tx_ring
->napi
))) {
2677 tx_ring
->int_disable(tx_ring
);
2678 __napi_schedule_irqoff(&tx_ring
->napi
);
2685 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2686 static irqreturn_t
bcmgenet_isr0(int irq
, void *dev_id
)
2688 struct bcmgenet_priv
*priv
= dev_id
;
2689 struct bcmgenet_rx_ring
*rx_ring
;
2690 struct bcmgenet_tx_ring
*tx_ring
;
2691 unsigned int status
;
2692 unsigned long flags
;
2694 /* Read irq status */
2695 status
= bcmgenet_intrl2_0_readl(priv
, INTRL2_CPU_STAT
) &
2696 ~bcmgenet_intrl2_0_readl(priv
, INTRL2_CPU_MASK_STATUS
);
2698 /* clear interrupts */
2699 bcmgenet_intrl2_0_writel(priv
, status
, INTRL2_CPU_CLEAR
);
2701 netif_dbg(priv
, intr
, priv
->dev
,
2702 "IRQ=0x%x\n", status
);
2704 if (status
& UMAC_IRQ_RXDMA_DONE
) {
2705 rx_ring
= &priv
->rx_rings
[DESC_INDEX
];
2706 rx_ring
->dim
.event_ctr
++;
2708 if (likely(napi_schedule_prep(&rx_ring
->napi
))) {
2709 rx_ring
->int_disable(rx_ring
);
2710 __napi_schedule_irqoff(&rx_ring
->napi
);
2714 if (status
& UMAC_IRQ_TXDMA_DONE
) {
2715 tx_ring
= &priv
->tx_rings
[DESC_INDEX
];
2717 if (likely(napi_schedule_prep(&tx_ring
->napi
))) {
2718 tx_ring
->int_disable(tx_ring
);
2719 __napi_schedule_irqoff(&tx_ring
->napi
);
2723 if ((priv
->hw_params
->flags
& GENET_HAS_MDIO_INTR
) &&
2724 status
& (UMAC_IRQ_MDIO_DONE
| UMAC_IRQ_MDIO_ERROR
)) {
2728 /* all other interested interrupts handled in bottom half */
2729 status
&= (UMAC_IRQ_LINK_EVENT
| UMAC_IRQ_PHY_DET_R
);
2731 /* Save irq status for bottom-half processing. */
2732 spin_lock_irqsave(&priv
->lock
, flags
);
2733 priv
->irq0_stat
|= status
;
2734 spin_unlock_irqrestore(&priv
->lock
, flags
);
2736 schedule_work(&priv
->bcmgenet_irq_work
);
2742 static irqreturn_t
bcmgenet_wol_isr(int irq
, void *dev_id
)
2744 struct bcmgenet_priv
*priv
= dev_id
;
2746 pm_wakeup_event(&priv
->pdev
->dev
, 0);
2751 #ifdef CONFIG_NET_POLL_CONTROLLER
2752 static void bcmgenet_poll_controller(struct net_device
*dev
)
2754 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2756 /* Invoke the main RX/TX interrupt handler */
2757 disable_irq(priv
->irq0
);
2758 bcmgenet_isr0(priv
->irq0
, priv
);
2759 enable_irq(priv
->irq0
);
2761 /* And the interrupt handler for RX/TX priority queues */
2762 disable_irq(priv
->irq1
);
2763 bcmgenet_isr1(priv
->irq1
, priv
);
2764 enable_irq(priv
->irq1
);
2768 static void bcmgenet_umac_reset(struct bcmgenet_priv
*priv
)
2772 reg
= bcmgenet_rbuf_ctrl_get(priv
);
2774 bcmgenet_rbuf_ctrl_set(priv
, reg
);
2778 bcmgenet_rbuf_ctrl_set(priv
, reg
);
2782 static void bcmgenet_set_hw_addr(struct bcmgenet_priv
*priv
,
2783 unsigned char *addr
)
2785 bcmgenet_umac_writel(priv
, (addr
[0] << 24) | (addr
[1] << 16) |
2786 (addr
[2] << 8) | addr
[3], UMAC_MAC0
);
2787 bcmgenet_umac_writel(priv
, (addr
[4] << 8) | addr
[5], UMAC_MAC1
);
2790 /* Returns a reusable dma control register value */
2791 static u32
bcmgenet_dma_disable(struct bcmgenet_priv
*priv
)
2797 dma_ctrl
= 1 << (DESC_INDEX
+ DMA_RING_BUF_EN_SHIFT
) | DMA_EN
;
2798 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2800 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2802 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2804 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2806 bcmgenet_umac_writel(priv
, 1, UMAC_TX_FLUSH
);
2808 bcmgenet_umac_writel(priv
, 0, UMAC_TX_FLUSH
);
2813 static void bcmgenet_enable_dma(struct bcmgenet_priv
*priv
, u32 dma_ctrl
)
2817 reg
= bcmgenet_rdma_readl(priv
, DMA_CTRL
);
2819 bcmgenet_rdma_writel(priv
, reg
, DMA_CTRL
);
2821 reg
= bcmgenet_tdma_readl(priv
, DMA_CTRL
);
2823 bcmgenet_tdma_writel(priv
, reg
, DMA_CTRL
);
2826 /* bcmgenet_hfb_clear
2828 * Clear Hardware Filter Block and disable all filtering.
2830 static void bcmgenet_hfb_clear(struct bcmgenet_priv
*priv
)
2834 bcmgenet_hfb_reg_writel(priv
, 0x0, HFB_CTRL
);
2835 bcmgenet_hfb_reg_writel(priv
, 0x0, HFB_FLT_ENABLE_V3PLUS
);
2836 bcmgenet_hfb_reg_writel(priv
, 0x0, HFB_FLT_ENABLE_V3PLUS
+ 4);
2838 for (i
= DMA_INDEX2RING_0
; i
<= DMA_INDEX2RING_7
; i
++)
2839 bcmgenet_rdma_writel(priv
, 0x0, i
);
2841 for (i
= 0; i
< (priv
->hw_params
->hfb_filter_cnt
/ 4); i
++)
2842 bcmgenet_hfb_reg_writel(priv
, 0x0,
2843 HFB_FLT_LEN_V3PLUS
+ i
* sizeof(u32
));
2845 for (i
= 0; i
< priv
->hw_params
->hfb_filter_cnt
*
2846 priv
->hw_params
->hfb_filter_size
; i
++)
2847 bcmgenet_hfb_writel(priv
, 0x0, i
* sizeof(u32
));
2850 static void bcmgenet_hfb_init(struct bcmgenet_priv
*priv
)
2852 if (GENET_IS_V1(priv
) || GENET_IS_V2(priv
))
2855 bcmgenet_hfb_clear(priv
);
2858 static void bcmgenet_netif_start(struct net_device
*dev
)
2860 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2862 /* Start the network engine */
2863 bcmgenet_set_rx_mode(dev
);
2864 bcmgenet_enable_rx_napi(priv
);
2866 umac_enable_set(priv
, CMD_TX_EN
| CMD_RX_EN
, true);
2868 bcmgenet_enable_tx_napi(priv
);
2870 /* Monitor link interrupts now */
2871 bcmgenet_link_intr_enable(priv
);
2873 phy_start(dev
->phydev
);
2876 static int bcmgenet_open(struct net_device
*dev
)
2878 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2879 unsigned long dma_ctrl
;
2883 netif_dbg(priv
, ifup
, dev
, "bcmgenet_open\n");
2885 /* Turn on the clock */
2886 clk_prepare_enable(priv
->clk
);
2888 /* If this is an internal GPHY, power it back on now, before UniMAC is
2889 * brought out of reset as absolutely no UniMAC activity is allowed
2891 if (priv
->internal_phy
)
2892 bcmgenet_power_up(priv
, GENET_POWER_PASSIVE
);
2894 /* take MAC out of reset */
2895 bcmgenet_umac_reset(priv
);
2899 /* Make sure we reflect the value of CRC_CMD_FWD */
2900 reg
= bcmgenet_umac_readl(priv
, UMAC_CMD
);
2901 priv
->crc_fwd_en
= !!(reg
& CMD_CRC_FWD
);
2903 bcmgenet_set_hw_addr(priv
, dev
->dev_addr
);
2905 if (priv
->internal_phy
) {
2906 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
2907 reg
|= EXT_ENERGY_DET_MASK
;
2908 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
2911 /* Disable RX/TX DMA and flush TX queues */
2912 dma_ctrl
= bcmgenet_dma_disable(priv
);
2914 /* Reinitialize TDMA and RDMA and SW housekeeping */
2915 ret
= bcmgenet_init_dma(priv
);
2917 netdev_err(dev
, "failed to initialize DMA\n");
2918 goto err_clk_disable
;
2921 /* Always enable ring 16 - descriptor ring */
2922 bcmgenet_enable_dma(priv
, dma_ctrl
);
2925 bcmgenet_hfb_init(priv
);
2927 ret
= request_irq(priv
->irq0
, bcmgenet_isr0
, IRQF_SHARED
,
2930 netdev_err(dev
, "can't request IRQ %d\n", priv
->irq0
);
2934 ret
= request_irq(priv
->irq1
, bcmgenet_isr1
, IRQF_SHARED
,
2937 netdev_err(dev
, "can't request IRQ %d\n", priv
->irq1
);
2941 ret
= bcmgenet_mii_probe(dev
);
2943 netdev_err(dev
, "failed to connect to PHY\n");
2947 bcmgenet_netif_start(dev
);
2949 netif_tx_start_all_queues(dev
);
2954 free_irq(priv
->irq1
, priv
);
2956 free_irq(priv
->irq0
, priv
);
2958 bcmgenet_dma_teardown(priv
);
2959 bcmgenet_fini_dma(priv
);
2961 if (priv
->internal_phy
)
2962 bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
2963 clk_disable_unprepare(priv
->clk
);
2967 static void bcmgenet_netif_stop(struct net_device
*dev
)
2969 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
2971 bcmgenet_disable_tx_napi(priv
);
2972 netif_tx_disable(dev
);
2974 /* Disable MAC receive */
2975 umac_enable_set(priv
, CMD_RX_EN
, false);
2977 bcmgenet_dma_teardown(priv
);
2979 /* Disable MAC transmit. TX DMA disabled must be done before this */
2980 umac_enable_set(priv
, CMD_TX_EN
, false);
2982 phy_stop(dev
->phydev
);
2983 bcmgenet_disable_rx_napi(priv
);
2984 bcmgenet_intr_disable(priv
);
2986 /* Wait for pending work items to complete. Since interrupts are
2987 * disabled no new work will be scheduled.
2989 cancel_work_sync(&priv
->bcmgenet_irq_work
);
2991 priv
->old_link
= -1;
2992 priv
->old_speed
= -1;
2993 priv
->old_duplex
= -1;
2994 priv
->old_pause
= -1;
2997 bcmgenet_tx_reclaim_all(dev
);
2998 bcmgenet_fini_dma(priv
);
3001 static int bcmgenet_close(struct net_device
*dev
)
3003 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3006 netif_dbg(priv
, ifdown
, dev
, "bcmgenet_close\n");
3008 bcmgenet_netif_stop(dev
);
3010 /* Really kill the PHY state machine and disconnect from it */
3011 phy_disconnect(dev
->phydev
);
3013 free_irq(priv
->irq0
, priv
);
3014 free_irq(priv
->irq1
, priv
);
3016 if (priv
->internal_phy
)
3017 ret
= bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
3019 clk_disable_unprepare(priv
->clk
);
3024 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring
*ring
)
3026 struct bcmgenet_priv
*priv
= ring
->priv
;
3027 u32 p_index
, c_index
, intsts
, intmsk
;
3028 struct netdev_queue
*txq
;
3029 unsigned int free_bds
;
3032 if (!netif_msg_tx_err(priv
))
3035 txq
= netdev_get_tx_queue(priv
->dev
, ring
->queue
);
3037 spin_lock(&ring
->lock
);
3038 if (ring
->index
== DESC_INDEX
) {
3039 intsts
= ~bcmgenet_intrl2_0_readl(priv
, INTRL2_CPU_MASK_STATUS
);
3040 intmsk
= UMAC_IRQ_TXDMA_DONE
| UMAC_IRQ_TXDMA_MBDONE
;
3042 intsts
= ~bcmgenet_intrl2_1_readl(priv
, INTRL2_CPU_MASK_STATUS
);
3043 intmsk
= 1 << ring
->index
;
3045 c_index
= bcmgenet_tdma_ring_readl(priv
, ring
->index
, TDMA_CONS_INDEX
);
3046 p_index
= bcmgenet_tdma_ring_readl(priv
, ring
->index
, TDMA_PROD_INDEX
);
3047 txq_stopped
= netif_tx_queue_stopped(txq
);
3048 free_bds
= ring
->free_bds
;
3049 spin_unlock(&ring
->lock
);
3051 netif_err(priv
, tx_err
, priv
->dev
, "Ring %d queue %d status summary\n"
3052 "TX queue status: %s, interrupts: %s\n"
3053 "(sw)free_bds: %d (sw)size: %d\n"
3054 "(sw)p_index: %d (hw)p_index: %d\n"
3055 "(sw)c_index: %d (hw)c_index: %d\n"
3056 "(sw)clean_p: %d (sw)write_p: %d\n"
3057 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3058 ring
->index
, ring
->queue
,
3059 txq_stopped
? "stopped" : "active",
3060 intsts
& intmsk
? "enabled" : "disabled",
3061 free_bds
, ring
->size
,
3062 ring
->prod_index
, p_index
& DMA_P_INDEX_MASK
,
3063 ring
->c_index
, c_index
& DMA_C_INDEX_MASK
,
3064 ring
->clean_ptr
, ring
->write_ptr
,
3065 ring
->cb_ptr
, ring
->end_ptr
);
3068 static void bcmgenet_timeout(struct net_device
*dev
)
3070 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3071 u32 int0_enable
= 0;
3072 u32 int1_enable
= 0;
3075 netif_dbg(priv
, tx_err
, dev
, "bcmgenet_timeout\n");
3077 for (q
= 0; q
< priv
->hw_params
->tx_queues
; q
++)
3078 bcmgenet_dump_tx_queue(&priv
->tx_rings
[q
]);
3079 bcmgenet_dump_tx_queue(&priv
->tx_rings
[DESC_INDEX
]);
3081 bcmgenet_tx_reclaim_all(dev
);
3083 for (q
= 0; q
< priv
->hw_params
->tx_queues
; q
++)
3084 int1_enable
|= (1 << q
);
3086 int0_enable
= UMAC_IRQ_TXDMA_DONE
;
3088 /* Re-enable TX interrupts if disabled */
3089 bcmgenet_intrl2_0_writel(priv
, int0_enable
, INTRL2_CPU_MASK_CLEAR
);
3090 bcmgenet_intrl2_1_writel(priv
, int1_enable
, INTRL2_CPU_MASK_CLEAR
);
3092 netif_trans_update(dev
);
3094 dev
->stats
.tx_errors
++;
3096 netif_tx_wake_all_queues(dev
);
3099 #define MAX_MDF_FILTER 17
3101 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv
*priv
,
3102 unsigned char *addr
,
3105 bcmgenet_umac_writel(priv
, addr
[0] << 8 | addr
[1],
3106 UMAC_MDF_ADDR
+ (*i
* 4));
3107 bcmgenet_umac_writel(priv
, addr
[2] << 24 | addr
[3] << 16 |
3108 addr
[4] << 8 | addr
[5],
3109 UMAC_MDF_ADDR
+ ((*i
+ 1) * 4));
3113 static void bcmgenet_set_rx_mode(struct net_device
*dev
)
3115 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3116 struct netdev_hw_addr
*ha
;
3120 netif_dbg(priv
, hw
, dev
, "%s: %08X\n", __func__
, dev
->flags
);
3122 /* Number of filters needed */
3123 nfilter
= netdev_uc_count(dev
) + netdev_mc_count(dev
) + 2;
3126 * Turn on promicuous mode for three scenarios
3127 * 1. IFF_PROMISC flag is set
3128 * 2. IFF_ALLMULTI flag is set
3129 * 3. The number of filters needed exceeds the number filters
3130 * supported by the hardware.
3132 reg
= bcmgenet_umac_readl(priv
, UMAC_CMD
);
3133 if ((dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
)) ||
3134 (nfilter
> MAX_MDF_FILTER
)) {
3136 bcmgenet_umac_writel(priv
, reg
, UMAC_CMD
);
3137 bcmgenet_umac_writel(priv
, 0, UMAC_MDF_CTRL
);
3140 reg
&= ~CMD_PROMISC
;
3141 bcmgenet_umac_writel(priv
, reg
, UMAC_CMD
);
3144 /* update MDF filter */
3147 bcmgenet_set_mdf_addr(priv
, dev
->broadcast
, &i
);
3148 /* my own address.*/
3149 bcmgenet_set_mdf_addr(priv
, dev
->dev_addr
, &i
);
3152 netdev_for_each_uc_addr(ha
, dev
)
3153 bcmgenet_set_mdf_addr(priv
, ha
->addr
, &i
);
3156 netdev_for_each_mc_addr(ha
, dev
)
3157 bcmgenet_set_mdf_addr(priv
, ha
->addr
, &i
);
3159 /* Enable filters */
3160 reg
= GENMASK(MAX_MDF_FILTER
- 1, MAX_MDF_FILTER
- nfilter
);
3161 bcmgenet_umac_writel(priv
, reg
, UMAC_MDF_CTRL
);
3164 /* Set the hardware MAC address. */
3165 static int bcmgenet_set_mac_addr(struct net_device
*dev
, void *p
)
3167 struct sockaddr
*addr
= p
;
3169 /* Setting the MAC address at the hardware level is not possible
3170 * without disabling the UniMAC RX/TX enable bits.
3172 if (netif_running(dev
))
3175 ether_addr_copy(dev
->dev_addr
, addr
->sa_data
);
3180 static struct net_device_stats
*bcmgenet_get_stats(struct net_device
*dev
)
3182 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3183 unsigned long tx_bytes
= 0, tx_packets
= 0;
3184 unsigned long rx_bytes
= 0, rx_packets
= 0;
3185 unsigned long rx_errors
= 0, rx_dropped
= 0;
3186 struct bcmgenet_tx_ring
*tx_ring
;
3187 struct bcmgenet_rx_ring
*rx_ring
;
3190 for (q
= 0; q
< priv
->hw_params
->tx_queues
; q
++) {
3191 tx_ring
= &priv
->tx_rings
[q
];
3192 tx_bytes
+= tx_ring
->bytes
;
3193 tx_packets
+= tx_ring
->packets
;
3195 tx_ring
= &priv
->tx_rings
[DESC_INDEX
];
3196 tx_bytes
+= tx_ring
->bytes
;
3197 tx_packets
+= tx_ring
->packets
;
3199 for (q
= 0; q
< priv
->hw_params
->rx_queues
; q
++) {
3200 rx_ring
= &priv
->rx_rings
[q
];
3202 rx_bytes
+= rx_ring
->bytes
;
3203 rx_packets
+= rx_ring
->packets
;
3204 rx_errors
+= rx_ring
->errors
;
3205 rx_dropped
+= rx_ring
->dropped
;
3207 rx_ring
= &priv
->rx_rings
[DESC_INDEX
];
3208 rx_bytes
+= rx_ring
->bytes
;
3209 rx_packets
+= rx_ring
->packets
;
3210 rx_errors
+= rx_ring
->errors
;
3211 rx_dropped
+= rx_ring
->dropped
;
3213 dev
->stats
.tx_bytes
= tx_bytes
;
3214 dev
->stats
.tx_packets
= tx_packets
;
3215 dev
->stats
.rx_bytes
= rx_bytes
;
3216 dev
->stats
.rx_packets
= rx_packets
;
3217 dev
->stats
.rx_errors
= rx_errors
;
3218 dev
->stats
.rx_missed_errors
= rx_errors
;
3219 dev
->stats
.rx_dropped
= rx_dropped
;
3223 static const struct net_device_ops bcmgenet_netdev_ops
= {
3224 .ndo_open
= bcmgenet_open
,
3225 .ndo_stop
= bcmgenet_close
,
3226 .ndo_start_xmit
= bcmgenet_xmit
,
3227 .ndo_tx_timeout
= bcmgenet_timeout
,
3228 .ndo_set_rx_mode
= bcmgenet_set_rx_mode
,
3229 .ndo_set_mac_address
= bcmgenet_set_mac_addr
,
3230 .ndo_do_ioctl
= bcmgenet_ioctl
,
3231 .ndo_set_features
= bcmgenet_set_features
,
3232 #ifdef CONFIG_NET_POLL_CONTROLLER
3233 .ndo_poll_controller
= bcmgenet_poll_controller
,
3235 .ndo_get_stats
= bcmgenet_get_stats
,
3238 /* Array of GENET hardware parameters/characteristics */
3239 static struct bcmgenet_hw_params bcmgenet_hw_params
[] = {
3245 .bp_in_en_shift
= 16,
3246 .bp_in_mask
= 0xffff,
3247 .hfb_filter_cnt
= 16,
3249 .hfb_offset
= 0x1000,
3250 .rdma_offset
= 0x2000,
3251 .tdma_offset
= 0x3000,
3259 .bp_in_en_shift
= 16,
3260 .bp_in_mask
= 0xffff,
3261 .hfb_filter_cnt
= 16,
3263 .tbuf_offset
= 0x0600,
3264 .hfb_offset
= 0x1000,
3265 .hfb_reg_offset
= 0x2000,
3266 .rdma_offset
= 0x3000,
3267 .tdma_offset
= 0x4000,
3269 .flags
= GENET_HAS_EXT
,
3276 .bp_in_en_shift
= 17,
3277 .bp_in_mask
= 0x1ffff,
3278 .hfb_filter_cnt
= 48,
3279 .hfb_filter_size
= 128,
3281 .tbuf_offset
= 0x0600,
3282 .hfb_offset
= 0x8000,
3283 .hfb_reg_offset
= 0xfc00,
3284 .rdma_offset
= 0x10000,
3285 .tdma_offset
= 0x11000,
3287 .flags
= GENET_HAS_EXT
| GENET_HAS_MDIO_INTR
|
3288 GENET_HAS_MOCA_LINK_DET
,
3295 .bp_in_en_shift
= 17,
3296 .bp_in_mask
= 0x1ffff,
3297 .hfb_filter_cnt
= 48,
3298 .hfb_filter_size
= 128,
3300 .tbuf_offset
= 0x0600,
3301 .hfb_offset
= 0x8000,
3302 .hfb_reg_offset
= 0xfc00,
3303 .rdma_offset
= 0x2000,
3304 .tdma_offset
= 0x4000,
3306 .flags
= GENET_HAS_40BITS
| GENET_HAS_EXT
|
3307 GENET_HAS_MDIO_INTR
| GENET_HAS_MOCA_LINK_DET
,
3314 .bp_in_en_shift
= 17,
3315 .bp_in_mask
= 0x1ffff,
3316 .hfb_filter_cnt
= 48,
3317 .hfb_filter_size
= 128,
3319 .tbuf_offset
= 0x0600,
3320 .hfb_offset
= 0x8000,
3321 .hfb_reg_offset
= 0xfc00,
3322 .rdma_offset
= 0x2000,
3323 .tdma_offset
= 0x4000,
3325 .flags
= GENET_HAS_40BITS
| GENET_HAS_EXT
|
3326 GENET_HAS_MDIO_INTR
| GENET_HAS_MOCA_LINK_DET
,
3330 /* Infer hardware parameters from the detected GENET version */
3331 static void bcmgenet_set_hw_params(struct bcmgenet_priv
*priv
)
3333 struct bcmgenet_hw_params
*params
;
3338 if (GENET_IS_V5(priv
) || GENET_IS_V4(priv
)) {
3339 bcmgenet_dma_regs
= bcmgenet_dma_regs_v3plus
;
3340 genet_dma_ring_regs
= genet_dma_ring_regs_v4
;
3341 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V3PLUS
;
3342 } else if (GENET_IS_V3(priv
)) {
3343 bcmgenet_dma_regs
= bcmgenet_dma_regs_v3plus
;
3344 genet_dma_ring_regs
= genet_dma_ring_regs_v123
;
3345 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V3PLUS
;
3346 } else if (GENET_IS_V2(priv
)) {
3347 bcmgenet_dma_regs
= bcmgenet_dma_regs_v2
;
3348 genet_dma_ring_regs
= genet_dma_ring_regs_v123
;
3349 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V12
;
3350 } else if (GENET_IS_V1(priv
)) {
3351 bcmgenet_dma_regs
= bcmgenet_dma_regs_v1
;
3352 genet_dma_ring_regs
= genet_dma_ring_regs_v123
;
3353 priv
->dma_rx_chk_bit
= DMA_RX_CHK_V12
;
3356 /* enum genet_version starts at 1 */
3357 priv
->hw_params
= &bcmgenet_hw_params
[priv
->version
];
3358 params
= priv
->hw_params
;
3360 /* Read GENET HW version */
3361 reg
= bcmgenet_sys_readl(priv
, SYS_REV_CTRL
);
3362 major
= (reg
>> 24 & 0x0f);
3365 else if (major
== 5)
3367 else if (major
== 0)
3369 if (major
!= priv
->version
) {
3370 dev_err(&priv
->pdev
->dev
,
3371 "GENET version mismatch, got: %d, configured for: %d\n",
3372 major
, priv
->version
);
3375 /* Print the GENET core version */
3376 dev_info(&priv
->pdev
->dev
, "GENET " GENET_VER_FMT
,
3377 major
, (reg
>> 16) & 0x0f, reg
& 0xffff);
3379 /* Store the integrated PHY revision for the MDIO probing function
3380 * to pass this information to the PHY driver. The PHY driver expects
3381 * to find the PHY major revision in bits 15:8 while the GENET register
3382 * stores that information in bits 7:0, account for that.
3384 * On newer chips, starting with PHY revision G0, a new scheme is
3385 * deployed similar to the Starfighter 2 switch with GPHY major
3386 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3387 * is reserved as well as special value 0x01ff, we have a small
3388 * heuristic to check for the new GPHY revision and re-arrange things
3389 * so the GPHY driver is happy.
3391 gphy_rev
= reg
& 0xffff;
3393 if (GENET_IS_V5(priv
)) {
3394 /* The EPHY revision should come from the MDIO registers of
3395 * the PHY not from GENET.
3397 if (gphy_rev
!= 0) {
3398 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3401 /* This is reserved so should require special treatment */
3402 } else if (gphy_rev
== 0 || gphy_rev
== 0x01ff) {
3403 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev
);
3405 /* This is the good old scheme, just GPHY major, no minor nor patch */
3406 } else if ((gphy_rev
& 0xf0) != 0) {
3407 priv
->gphy_rev
= gphy_rev
<< 8;
3408 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3409 } else if ((gphy_rev
& 0xff00) != 0) {
3410 priv
->gphy_rev
= gphy_rev
;
3413 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3414 if (!(params
->flags
& GENET_HAS_40BITS
))
3415 pr_warn("GENET does not support 40-bits PA\n");
3418 pr_debug("Configuration for version: %d\n"
3419 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3420 "BP << en: %2d, BP msk: 0x%05x\n"
3421 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3422 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3423 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3426 params
->tx_queues
, params
->tx_bds_per_q
,
3427 params
->rx_queues
, params
->rx_bds_per_q
,
3428 params
->bp_in_en_shift
, params
->bp_in_mask
,
3429 params
->hfb_filter_cnt
, params
->qtag_mask
,
3430 params
->tbuf_offset
, params
->hfb_offset
,
3431 params
->hfb_reg_offset
,
3432 params
->rdma_offset
, params
->tdma_offset
,
3433 params
->words_per_bd
);
3436 static const struct of_device_id bcmgenet_match
[] = {
3437 { .compatible
= "brcm,genet-v1", .data
= (void *)GENET_V1
},
3438 { .compatible
= "brcm,genet-v2", .data
= (void *)GENET_V2
},
3439 { .compatible
= "brcm,genet-v3", .data
= (void *)GENET_V3
},
3440 { .compatible
= "brcm,genet-v4", .data
= (void *)GENET_V4
},
3441 { .compatible
= "brcm,genet-v5", .data
= (void *)GENET_V5
},
3444 MODULE_DEVICE_TABLE(of
, bcmgenet_match
);
3446 static int bcmgenet_probe(struct platform_device
*pdev
)
3448 struct bcmgenet_platform_data
*pd
= pdev
->dev
.platform_data
;
3449 struct device_node
*dn
= pdev
->dev
.of_node
;
3450 const struct of_device_id
*of_id
= NULL
;
3451 struct bcmgenet_priv
*priv
;
3452 struct net_device
*dev
;
3453 const void *macaddr
;
3457 const char *phy_mode_str
;
3459 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3460 dev
= alloc_etherdev_mqs(sizeof(*priv
), GENET_MAX_MQ_CNT
+ 1,
3461 GENET_MAX_MQ_CNT
+ 1);
3463 dev_err(&pdev
->dev
, "can't allocate net device\n");
3468 of_id
= of_match_node(bcmgenet_match
, dn
);
3473 priv
= netdev_priv(dev
);
3474 priv
->irq0
= platform_get_irq(pdev
, 0);
3475 priv
->irq1
= platform_get_irq(pdev
, 1);
3476 priv
->wol_irq
= platform_get_irq(pdev
, 2);
3477 if (!priv
->irq0
|| !priv
->irq1
) {
3478 dev_err(&pdev
->dev
, "can't find IRQs\n");
3484 macaddr
= of_get_mac_address(dn
);
3486 dev_err(&pdev
->dev
, "can't find MAC address\n");
3491 macaddr
= pd
->mac_address
;
3494 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3495 priv
->base
= devm_ioremap_resource(&pdev
->dev
, r
);
3496 if (IS_ERR(priv
->base
)) {
3497 err
= PTR_ERR(priv
->base
);
3501 spin_lock_init(&priv
->lock
);
3503 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3504 dev_set_drvdata(&pdev
->dev
, dev
);
3505 ether_addr_copy(dev
->dev_addr
, macaddr
);
3506 dev
->watchdog_timeo
= 2 * HZ
;
3507 dev
->ethtool_ops
= &bcmgenet_ethtool_ops
;
3508 dev
->netdev_ops
= &bcmgenet_netdev_ops
;
3510 priv
->msg_enable
= netif_msg_init(-1, GENET_MSG_DEFAULT
);
3512 /* Set hardware features */
3513 dev
->hw_features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
|
3514 NETIF_F_IPV6_CSUM
| NETIF_F_RXCSUM
;
3516 /* Request the WOL interrupt and advertise suspend if available */
3517 priv
->wol_irq_disabled
= true;
3518 err
= devm_request_irq(&pdev
->dev
, priv
->wol_irq
, bcmgenet_wol_isr
, 0,
3521 device_set_wakeup_capable(&pdev
->dev
, 1);
3523 /* Set the needed headroom to account for any possible
3524 * features enabling/disabling at runtime
3526 dev
->needed_headroom
+= 64;
3528 netdev_boot_setup_check(dev
);
3533 priv
->version
= (enum bcmgenet_version
)of_id
->data
;
3535 priv
->version
= pd
->genet_version
;
3537 priv
->clk
= devm_clk_get(&priv
->pdev
->dev
, "enet");
3538 if (IS_ERR(priv
->clk
)) {
3539 dev_warn(&priv
->pdev
->dev
, "failed to get enet clock\n");
3543 clk_prepare_enable(priv
->clk
);
3545 bcmgenet_set_hw_params(priv
);
3547 /* Mii wait queue */
3548 init_waitqueue_head(&priv
->wq
);
3549 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3550 priv
->rx_buf_len
= RX_BUF_LENGTH
;
3551 INIT_WORK(&priv
->bcmgenet_irq_work
, bcmgenet_irq_task
);
3553 priv
->clk_wol
= devm_clk_get(&priv
->pdev
->dev
, "enet-wol");
3554 if (IS_ERR(priv
->clk_wol
)) {
3555 dev_warn(&priv
->pdev
->dev
, "failed to get enet-wol clock\n");
3556 priv
->clk_wol
= NULL
;
3559 priv
->clk_eee
= devm_clk_get(&priv
->pdev
->dev
, "enet-eee");
3560 if (IS_ERR(priv
->clk_eee
)) {
3561 dev_warn(&priv
->pdev
->dev
, "failed to get enet-eee clock\n");
3562 priv
->clk_eee
= NULL
;
3565 /* If this is an internal GPHY, power it on now, before UniMAC is
3566 * brought out of reset as absolutely no UniMAC activity is allowed
3568 if (dn
&& !of_property_read_string(dn
, "phy-mode", &phy_mode_str
) &&
3569 !strcasecmp(phy_mode_str
, "internal"))
3570 bcmgenet_power_up(priv
, GENET_POWER_PASSIVE
);
3574 err
= bcmgenet_mii_init(dev
);
3576 goto err_clk_disable
;
3578 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3579 * just the ring 16 descriptor based TX
3581 netif_set_real_num_tx_queues(priv
->dev
, priv
->hw_params
->tx_queues
+ 1);
3582 netif_set_real_num_rx_queues(priv
->dev
, priv
->hw_params
->rx_queues
+ 1);
3584 /* Set default coalescing parameters */
3585 for (i
= 0; i
< priv
->hw_params
->rx_queues
; i
++)
3586 priv
->rx_rings
[i
].rx_max_coalesced_frames
= 1;
3587 priv
->rx_rings
[DESC_INDEX
].rx_max_coalesced_frames
= 1;
3589 /* libphy will determine the link state */
3590 netif_carrier_off(dev
);
3592 /* Turn off the main clock, WOL clock is handled separately */
3593 clk_disable_unprepare(priv
->clk
);
3595 err
= register_netdev(dev
);
3602 clk_disable_unprepare(priv
->clk
);
3608 static int bcmgenet_remove(struct platform_device
*pdev
)
3610 struct bcmgenet_priv
*priv
= dev_to_priv(&pdev
->dev
);
3612 dev_set_drvdata(&pdev
->dev
, NULL
);
3613 unregister_netdev(priv
->dev
);
3614 bcmgenet_mii_exit(priv
->dev
);
3615 free_netdev(priv
->dev
);
3620 #ifdef CONFIG_PM_SLEEP
3621 static int bcmgenet_resume(struct device
*d
)
3623 struct net_device
*dev
= dev_get_drvdata(d
);
3624 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3625 unsigned long dma_ctrl
;
3629 if (!netif_running(dev
))
3632 /* Turn on the clock */
3633 ret
= clk_prepare_enable(priv
->clk
);
3637 /* If this is an internal GPHY, power it back on now, before UniMAC is
3638 * brought out of reset as absolutely no UniMAC activity is allowed
3640 if (priv
->internal_phy
)
3641 bcmgenet_power_up(priv
, GENET_POWER_PASSIVE
);
3643 bcmgenet_umac_reset(priv
);
3647 /* From WOL-enabled suspend, switch to regular clock */
3649 clk_disable_unprepare(priv
->clk_wol
);
3651 phy_init_hw(dev
->phydev
);
3653 /* Speed settings must be restored */
3654 genphy_config_aneg(dev
->phydev
);
3655 bcmgenet_mii_config(priv
->dev
, false);
3657 bcmgenet_set_hw_addr(priv
, dev
->dev_addr
);
3659 if (priv
->internal_phy
) {
3660 reg
= bcmgenet_ext_readl(priv
, EXT_EXT_PWR_MGMT
);
3661 reg
|= EXT_ENERGY_DET_MASK
;
3662 bcmgenet_ext_writel(priv
, reg
, EXT_EXT_PWR_MGMT
);
3666 bcmgenet_power_up(priv
, GENET_POWER_WOL_MAGIC
);
3668 /* Disable RX/TX DMA and flush TX queues */
3669 dma_ctrl
= bcmgenet_dma_disable(priv
);
3671 /* Reinitialize TDMA and RDMA and SW housekeeping */
3672 ret
= bcmgenet_init_dma(priv
);
3674 netdev_err(dev
, "failed to initialize DMA\n");
3675 goto out_clk_disable
;
3678 /* Always enable ring 16 - descriptor ring */
3679 bcmgenet_enable_dma(priv
, dma_ctrl
);
3681 if (!device_may_wakeup(d
))
3682 phy_resume(dev
->phydev
);
3684 if (priv
->eee
.eee_enabled
)
3685 bcmgenet_eee_enable_set(dev
, true);
3687 bcmgenet_netif_start(dev
);
3689 netif_device_attach(dev
);
3694 if (priv
->internal_phy
)
3695 bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
3696 clk_disable_unprepare(priv
->clk
);
3700 static int bcmgenet_suspend(struct device
*d
)
3702 struct net_device
*dev
= dev_get_drvdata(d
);
3703 struct bcmgenet_priv
*priv
= netdev_priv(dev
);
3706 if (!netif_running(dev
))
3709 netif_device_detach(dev
);
3711 bcmgenet_netif_stop(dev
);
3713 if (!device_may_wakeup(d
))
3714 phy_suspend(dev
->phydev
);
3716 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3717 if (device_may_wakeup(d
) && priv
->wolopts
) {
3718 ret
= bcmgenet_power_down(priv
, GENET_POWER_WOL_MAGIC
);
3719 clk_prepare_enable(priv
->clk_wol
);
3720 } else if (priv
->internal_phy
) {
3721 ret
= bcmgenet_power_down(priv
, GENET_POWER_PASSIVE
);
3724 /* Turn off the clocks */
3725 clk_disable_unprepare(priv
->clk
);
3732 #endif /* CONFIG_PM_SLEEP */
3734 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops
, bcmgenet_suspend
, bcmgenet_resume
);
3736 static struct platform_driver bcmgenet_driver
= {
3737 .probe
= bcmgenet_probe
,
3738 .remove
= bcmgenet_remove
,
3741 .of_match_table
= bcmgenet_match
,
3742 .pm
= &bcmgenet_pm_ops
,
3745 module_platform_driver(bcmgenet_driver
);
3747 MODULE_AUTHOR("Broadcom Corporation");
3748 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3749 MODULE_ALIAS("platform:bcmgenet");
3750 MODULE_LICENSE("GPL");