2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.14"
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION
);
77 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
78 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
81 static int debug
= -1; /* defaults above */
82 module_param(debug
, int, 0);
83 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
85 static const struct pci_device_id skge_id_table
[] = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x1700) }, /* 3Com 3C940 */
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x80EB) }, /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4300) }, /* SK-9xx */
91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4320) }, /* SK-98xx V2.0 */
92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4c00) }, /* D-Link DGE-530T */
94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4302) }, /* D-Link DGE-530T Rev C1 */
95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
97 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, 0x434E) }, /* CNet PowerG-2000 */
98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, 0x1064) }, /* Linksys EG1064 v2 */
99 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 }, /* Linksys EG1032 v2 */
102 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
104 static int skge_up(struct net_device
*dev
);
105 static int skge_down(struct net_device
*dev
);
106 static void skge_phy_reset(struct skge_port
*skge
);
107 static void skge_tx_clean(struct net_device
*dev
);
108 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
109 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
110 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
111 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
112 static void yukon_init(struct skge_hw
*hw
, int port
);
113 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
114 static void genesis_link_up(struct skge_port
*skge
);
115 static void skge_set_multicast(struct net_device
*dev
);
116 static irqreturn_t
skge_intr(int irq
, void *dev_id
);
118 /* Avoid conditionals by using array */
119 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
120 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
121 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
122 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
123 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
124 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
126 static inline bool is_genesis(const struct skge_hw
*hw
)
128 #ifdef CONFIG_SKGE_GENESIS
129 return hw
->chip_id
== CHIP_ID_GENESIS
;
135 static int skge_get_regs_len(struct net_device
*dev
)
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
145 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
148 const struct skge_port
*skge
= netdev_priv(dev
);
149 const void __iomem
*io
= skge
->hw
->regs
;
152 memset(p
, 0, regs
->len
);
153 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
155 if (regs
->len
> B3_RI_WTO_R1
) {
156 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
157 regs
->len
- B3_RI_WTO_R1
);
161 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
162 static u32
wol_supported(const struct skge_hw
*hw
)
167 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
170 return WAKE_MAGIC
| WAKE_PHY
;
173 static void skge_wol_init(struct skge_port
*skge
)
175 struct skge_hw
*hw
= skge
->hw
;
176 int port
= skge
->port
;
179 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
180 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
183 skge_write8(hw
, B0_POWER_CTRL
,
184 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
186 /* WA code for COMA mode -- clear PHY reset */
187 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
188 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
189 u32 reg
= skge_read32(hw
, B2_GP_IO
);
192 skge_write32(hw
, B2_GP_IO
, reg
);
195 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
197 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
198 GPC_ANEG_1
| GPC_RST_SET
);
200 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
202 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
203 GPC_ANEG_1
| GPC_RST_CLR
);
205 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
207 /* Force to 10/100 skge_reset will re-enable on resume */
208 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
209 (PHY_AN_100FULL
| PHY_AN_100HALF
|
210 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
212 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
213 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
214 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
215 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
218 /* Set GMAC to no flow control and auto update for speed/duplex */
219 gma_write16(hw
, port
, GM_GP_CTRL
,
220 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
221 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
223 /* Set WOL address */
224 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
225 skge
->netdev
->dev_addr
, ETH_ALEN
);
227 /* Turn on appropriate WOL control bits */
228 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
230 if (skge
->wol
& WAKE_PHY
)
231 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
233 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
235 if (skge
->wol
& WAKE_MAGIC
)
236 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
238 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
240 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
241 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
244 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
247 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
249 struct skge_port
*skge
= netdev_priv(dev
);
251 wol
->supported
= wol_supported(skge
->hw
);
252 wol
->wolopts
= skge
->wol
;
255 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
257 struct skge_port
*skge
= netdev_priv(dev
);
258 struct skge_hw
*hw
= skge
->hw
;
260 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
261 !device_can_wakeup(&hw
->pdev
->dev
))
264 skge
->wol
= wol
->wolopts
;
266 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
271 /* Determine supported/advertised modes based on hardware.
272 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
274 static u32
skge_supported_modes(const struct skge_hw
*hw
)
279 supported
= (SUPPORTED_10baseT_Half
|
280 SUPPORTED_10baseT_Full
|
281 SUPPORTED_100baseT_Half
|
282 SUPPORTED_100baseT_Full
|
283 SUPPORTED_1000baseT_Half
|
284 SUPPORTED_1000baseT_Full
|
289 supported
&= ~(SUPPORTED_10baseT_Half
|
290 SUPPORTED_10baseT_Full
|
291 SUPPORTED_100baseT_Half
|
292 SUPPORTED_100baseT_Full
);
294 else if (hw
->chip_id
== CHIP_ID_YUKON
)
295 supported
&= ~SUPPORTED_1000baseT_Half
;
297 supported
= (SUPPORTED_1000baseT_Full
|
298 SUPPORTED_1000baseT_Half
|
305 static int skge_get_link_ksettings(struct net_device
*dev
,
306 struct ethtool_link_ksettings
*cmd
)
308 struct skge_port
*skge
= netdev_priv(dev
);
309 struct skge_hw
*hw
= skge
->hw
;
310 u32 supported
, advertising
;
312 supported
= skge_supported_modes(hw
);
315 cmd
->base
.port
= PORT_TP
;
316 cmd
->base
.phy_address
= hw
->phy_addr
;
318 cmd
->base
.port
= PORT_FIBRE
;
320 advertising
= skge
->advertising
;
321 cmd
->base
.autoneg
= skge
->autoneg
;
322 cmd
->base
.speed
= skge
->speed
;
323 cmd
->base
.duplex
= skge
->duplex
;
325 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
327 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
333 static int skge_set_link_ksettings(struct net_device
*dev
,
334 const struct ethtool_link_ksettings
*cmd
)
336 struct skge_port
*skge
= netdev_priv(dev
);
337 const struct skge_hw
*hw
= skge
->hw
;
338 u32 supported
= skge_supported_modes(hw
);
342 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
343 cmd
->link_modes
.advertising
);
345 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
346 advertising
= supported
;
351 u32 speed
= cmd
->base
.speed
;
355 if (cmd
->base
.duplex
== DUPLEX_FULL
)
356 setting
= SUPPORTED_1000baseT_Full
;
357 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
358 setting
= SUPPORTED_1000baseT_Half
;
363 if (cmd
->base
.duplex
== DUPLEX_FULL
)
364 setting
= SUPPORTED_100baseT_Full
;
365 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
366 setting
= SUPPORTED_100baseT_Half
;
372 if (cmd
->base
.duplex
== DUPLEX_FULL
)
373 setting
= SUPPORTED_10baseT_Full
;
374 else if (cmd
->base
.duplex
== DUPLEX_HALF
)
375 setting
= SUPPORTED_10baseT_Half
;
383 if ((setting
& supported
) == 0)
387 skge
->duplex
= cmd
->base
.duplex
;
390 skge
->autoneg
= cmd
->base
.autoneg
;
391 skge
->advertising
= advertising
;
393 if (netif_running(dev
)) {
405 static void skge_get_drvinfo(struct net_device
*dev
,
406 struct ethtool_drvinfo
*info
)
408 struct skge_port
*skge
= netdev_priv(dev
);
410 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
411 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
412 strlcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
),
413 sizeof(info
->bus_info
));
416 static const struct skge_stat
{
417 char name
[ETH_GSTRING_LEN
];
421 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
422 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
424 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
425 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
426 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
427 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
428 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
429 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
430 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
431 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
433 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
434 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
435 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
436 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
437 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
438 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
440 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
441 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
442 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
443 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
444 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
447 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
451 return ARRAY_SIZE(skge_stats
);
457 static void skge_get_ethtool_stats(struct net_device
*dev
,
458 struct ethtool_stats
*stats
, u64
*data
)
460 struct skge_port
*skge
= netdev_priv(dev
);
462 if (is_genesis(skge
->hw
))
463 genesis_get_stats(skge
, data
);
465 yukon_get_stats(skge
, data
);
468 /* Use hardware MIB variables for critical path statistics and
469 * transmit feedback not reported at interrupt.
470 * Other errors are accounted for in interrupt handler.
472 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
474 struct skge_port
*skge
= netdev_priv(dev
);
475 u64 data
[ARRAY_SIZE(skge_stats
)];
477 if (is_genesis(skge
->hw
))
478 genesis_get_stats(skge
, data
);
480 yukon_get_stats(skge
, data
);
482 dev
->stats
.tx_bytes
= data
[0];
483 dev
->stats
.rx_bytes
= data
[1];
484 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
485 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
486 dev
->stats
.multicast
= data
[3] + data
[5];
487 dev
->stats
.collisions
= data
[10];
488 dev
->stats
.tx_aborted_errors
= data
[12];
493 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
499 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
500 memcpy(data
+ i
* ETH_GSTRING_LEN
,
501 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
506 static void skge_get_ring_param(struct net_device
*dev
,
507 struct ethtool_ringparam
*p
)
509 struct skge_port
*skge
= netdev_priv(dev
);
511 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
512 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
514 p
->rx_pending
= skge
->rx_ring
.count
;
515 p
->tx_pending
= skge
->tx_ring
.count
;
518 static int skge_set_ring_param(struct net_device
*dev
,
519 struct ethtool_ringparam
*p
)
521 struct skge_port
*skge
= netdev_priv(dev
);
524 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
525 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
528 skge
->rx_ring
.count
= p
->rx_pending
;
529 skge
->tx_ring
.count
= p
->tx_pending
;
531 if (netif_running(dev
)) {
541 static u32
skge_get_msglevel(struct net_device
*netdev
)
543 struct skge_port
*skge
= netdev_priv(netdev
);
544 return skge
->msg_enable
;
547 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
549 struct skge_port
*skge
= netdev_priv(netdev
);
550 skge
->msg_enable
= value
;
553 static int skge_nway_reset(struct net_device
*dev
)
555 struct skge_port
*skge
= netdev_priv(dev
);
557 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
560 skge_phy_reset(skge
);
564 static void skge_get_pauseparam(struct net_device
*dev
,
565 struct ethtool_pauseparam
*ecmd
)
567 struct skge_port
*skge
= netdev_priv(dev
);
569 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
570 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
571 ecmd
->tx_pause
= (ecmd
->rx_pause
||
572 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
574 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
577 static int skge_set_pauseparam(struct net_device
*dev
,
578 struct ethtool_pauseparam
*ecmd
)
580 struct skge_port
*skge
= netdev_priv(dev
);
581 struct ethtool_pauseparam old
;
584 skge_get_pauseparam(dev
, &old
);
586 if (ecmd
->autoneg
!= old
.autoneg
)
587 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
589 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
590 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
591 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
592 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
593 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
594 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
596 skge
->flow_control
= FLOW_MODE_NONE
;
599 if (netif_running(dev
)) {
611 /* Chip internal frequency for clock calculations */
612 static inline u32
hwkhz(const struct skge_hw
*hw
)
614 return is_genesis(hw
) ? 53125 : 78125;
617 /* Chip HZ to microseconds */
618 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
620 return (ticks
* 1000) / hwkhz(hw
);
623 /* Microseconds to chip HZ */
624 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
626 return hwkhz(hw
) * usec
/ 1000;
629 static int skge_get_coalesce(struct net_device
*dev
,
630 struct ethtool_coalesce
*ecmd
)
632 struct skge_port
*skge
= netdev_priv(dev
);
633 struct skge_hw
*hw
= skge
->hw
;
634 int port
= skge
->port
;
636 ecmd
->rx_coalesce_usecs
= 0;
637 ecmd
->tx_coalesce_usecs
= 0;
639 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
640 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
641 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
643 if (msk
& rxirqmask
[port
])
644 ecmd
->rx_coalesce_usecs
= delay
;
645 if (msk
& txirqmask
[port
])
646 ecmd
->tx_coalesce_usecs
= delay
;
652 /* Note: interrupt timer is per board, but can turn on/off per port */
653 static int skge_set_coalesce(struct net_device
*dev
,
654 struct ethtool_coalesce
*ecmd
)
656 struct skge_port
*skge
= netdev_priv(dev
);
657 struct skge_hw
*hw
= skge
->hw
;
658 int port
= skge
->port
;
659 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
662 if (ecmd
->rx_coalesce_usecs
== 0)
663 msk
&= ~rxirqmask
[port
];
664 else if (ecmd
->rx_coalesce_usecs
< 25 ||
665 ecmd
->rx_coalesce_usecs
> 33333)
668 msk
|= rxirqmask
[port
];
669 delay
= ecmd
->rx_coalesce_usecs
;
672 if (ecmd
->tx_coalesce_usecs
== 0)
673 msk
&= ~txirqmask
[port
];
674 else if (ecmd
->tx_coalesce_usecs
< 25 ||
675 ecmd
->tx_coalesce_usecs
> 33333)
678 msk
|= txirqmask
[port
];
679 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
682 skge_write32(hw
, B2_IRQM_MSK
, msk
);
684 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
686 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
687 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
692 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
693 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
695 struct skge_hw
*hw
= skge
->hw
;
696 int port
= skge
->port
;
698 spin_lock_bh(&hw
->phy_lock
);
699 if (is_genesis(hw
)) {
702 if (hw
->phy_type
== SK_PHY_BCOM
)
703 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
705 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
706 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
708 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
709 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
710 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
714 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
715 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
717 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
718 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
723 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
724 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
725 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
727 if (hw
->phy_type
== SK_PHY_BCOM
)
728 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
730 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
731 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
732 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
739 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
740 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
741 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
742 PHY_M_LED_MO_10(MO_LED_OFF
) |
743 PHY_M_LED_MO_100(MO_LED_OFF
) |
744 PHY_M_LED_MO_1000(MO_LED_OFF
) |
745 PHY_M_LED_MO_RX(MO_LED_OFF
));
748 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
749 PHY_M_LED_PULS_DUR(PULS_170MS
) |
750 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
754 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
755 PHY_M_LED_MO_RX(MO_LED_OFF
) |
756 (skge
->speed
== SPEED_100
?
757 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
760 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
761 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
762 PHY_M_LED_MO_DUP(MO_LED_ON
) |
763 PHY_M_LED_MO_10(MO_LED_ON
) |
764 PHY_M_LED_MO_100(MO_LED_ON
) |
765 PHY_M_LED_MO_1000(MO_LED_ON
) |
766 PHY_M_LED_MO_RX(MO_LED_ON
));
769 spin_unlock_bh(&hw
->phy_lock
);
772 /* blink LED's for finding board */
773 static int skge_set_phys_id(struct net_device
*dev
,
774 enum ethtool_phys_id_state state
)
776 struct skge_port
*skge
= netdev_priv(dev
);
779 case ETHTOOL_ID_ACTIVE
:
780 return 2; /* cycle on/off twice per second */
783 skge_led(skge
, LED_MODE_TST
);
787 skge_led(skge
, LED_MODE_OFF
);
790 case ETHTOOL_ID_INACTIVE
:
791 /* back to regular LED state */
792 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
798 static int skge_get_eeprom_len(struct net_device
*dev
)
800 struct skge_port
*skge
= netdev_priv(dev
);
803 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
804 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
807 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
811 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
814 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
815 } while (!(offset
& PCI_VPD_ADDR_F
));
817 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
821 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
823 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
824 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
825 offset
| PCI_VPD_ADDR_F
);
828 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
829 } while (offset
& PCI_VPD_ADDR_F
);
832 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
835 struct skge_port
*skge
= netdev_priv(dev
);
836 struct pci_dev
*pdev
= skge
->hw
->pdev
;
837 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
838 int length
= eeprom
->len
;
839 u16 offset
= eeprom
->offset
;
844 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
847 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
848 int n
= min_t(int, length
, sizeof(val
));
850 memcpy(data
, &val
, n
);
858 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
861 struct skge_port
*skge
= netdev_priv(dev
);
862 struct pci_dev
*pdev
= skge
->hw
->pdev
;
863 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
864 int length
= eeprom
->len
;
865 u16 offset
= eeprom
->offset
;
870 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
875 int n
= min_t(int, length
, sizeof(val
));
878 val
= skge_vpd_read(pdev
, cap
, offset
);
879 memcpy(&val
, data
, n
);
881 skge_vpd_write(pdev
, cap
, offset
, val
);
890 static const struct ethtool_ops skge_ethtool_ops
= {
891 .get_drvinfo
= skge_get_drvinfo
,
892 .get_regs_len
= skge_get_regs_len
,
893 .get_regs
= skge_get_regs
,
894 .get_wol
= skge_get_wol
,
895 .set_wol
= skge_set_wol
,
896 .get_msglevel
= skge_get_msglevel
,
897 .set_msglevel
= skge_set_msglevel
,
898 .nway_reset
= skge_nway_reset
,
899 .get_link
= ethtool_op_get_link
,
900 .get_eeprom_len
= skge_get_eeprom_len
,
901 .get_eeprom
= skge_get_eeprom
,
902 .set_eeprom
= skge_set_eeprom
,
903 .get_ringparam
= skge_get_ring_param
,
904 .set_ringparam
= skge_set_ring_param
,
905 .get_pauseparam
= skge_get_pauseparam
,
906 .set_pauseparam
= skge_set_pauseparam
,
907 .get_coalesce
= skge_get_coalesce
,
908 .set_coalesce
= skge_set_coalesce
,
909 .get_strings
= skge_get_strings
,
910 .set_phys_id
= skge_set_phys_id
,
911 .get_sset_count
= skge_get_sset_count
,
912 .get_ethtool_stats
= skge_get_ethtool_stats
,
913 .get_link_ksettings
= skge_get_link_ksettings
,
914 .set_link_ksettings
= skge_set_link_ksettings
,
918 * Allocate ring elements and chain them together
919 * One-to-one association of board descriptors with ring elements
921 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
923 struct skge_tx_desc
*d
;
924 struct skge_element
*e
;
927 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
931 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
933 if (i
== ring
->count
- 1) {
934 e
->next
= ring
->start
;
935 d
->next_offset
= base
;
938 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
941 ring
->to_use
= ring
->to_clean
= ring
->start
;
946 /* Allocate and setup a new buffer for receiving */
947 static int skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
948 struct sk_buff
*skb
, unsigned int bufsize
)
950 struct skge_rx_desc
*rd
= e
->desc
;
953 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
956 if (pci_dma_mapping_error(skge
->hw
->pdev
, map
))
959 rd
->dma_lo
= lower_32_bits(map
);
960 rd
->dma_hi
= upper_32_bits(map
);
962 rd
->csum1_start
= ETH_HLEN
;
963 rd
->csum2_start
= ETH_HLEN
;
969 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
970 dma_unmap_addr_set(e
, mapaddr
, map
);
971 dma_unmap_len_set(e
, maplen
, bufsize
);
975 /* Resume receiving using existing skb,
976 * Note: DMA address is not changed by chip.
977 * MTU not changed while receiver active.
979 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
981 struct skge_rx_desc
*rd
= e
->desc
;
984 rd
->csum2_start
= ETH_HLEN
;
988 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
992 /* Free all buffers in receive ring, assumes receiver stopped */
993 static void skge_rx_clean(struct skge_port
*skge
)
995 struct skge_hw
*hw
= skge
->hw
;
996 struct skge_ring
*ring
= &skge
->rx_ring
;
997 struct skge_element
*e
;
1001 struct skge_rx_desc
*rd
= e
->desc
;
1004 pci_unmap_single(hw
->pdev
,
1005 dma_unmap_addr(e
, mapaddr
),
1006 dma_unmap_len(e
, maplen
),
1007 PCI_DMA_FROMDEVICE
);
1008 dev_kfree_skb(e
->skb
);
1011 } while ((e
= e
->next
) != ring
->start
);
1015 /* Allocate buffers for receive ring
1016 * For receive: to_clean is next received frame.
1018 static int skge_rx_fill(struct net_device
*dev
)
1020 struct skge_port
*skge
= netdev_priv(dev
);
1021 struct skge_ring
*ring
= &skge
->rx_ring
;
1022 struct skge_element
*e
;
1026 struct sk_buff
*skb
;
1028 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1033 skb_reserve(skb
, NET_IP_ALIGN
);
1034 if (skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
) < 0) {
1038 } while ((e
= e
->next
) != ring
->start
);
1040 ring
->to_clean
= ring
->start
;
1044 static const char *skge_pause(enum pause_status status
)
1047 case FLOW_STAT_NONE
:
1049 case FLOW_STAT_REM_SEND
:
1051 case FLOW_STAT_LOC_SEND
:
1053 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1056 return "indeterminated";
1061 static void skge_link_up(struct skge_port
*skge
)
1063 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1064 LED_BLK_OFF
|LED_SYNC_OFF
|LED_REG_ON
);
1066 netif_carrier_on(skge
->netdev
);
1067 netif_wake_queue(skge
->netdev
);
1069 netif_info(skge
, link
, skge
->netdev
,
1070 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1072 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1073 skge_pause(skge
->flow_status
));
1076 static void skge_link_down(struct skge_port
*skge
)
1078 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
1079 netif_carrier_off(skge
->netdev
);
1080 netif_stop_queue(skge
->netdev
);
1082 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1085 static void xm_link_down(struct skge_hw
*hw
, int port
)
1087 struct net_device
*dev
= hw
->dev
[port
];
1088 struct skge_port
*skge
= netdev_priv(dev
);
1090 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1092 if (netif_carrier_ok(dev
))
1093 skge_link_down(skge
);
1096 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1100 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1101 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1103 if (hw
->phy_type
== SK_PHY_XMAC
)
1106 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1107 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1114 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1119 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1122 if (__xm_phy_read(hw
, port
, reg
, &v
))
1123 pr_warn("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1127 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1131 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1132 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1133 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1140 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1141 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1142 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1149 static void genesis_init(struct skge_hw
*hw
)
1151 /* set blink source counter */
1152 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1153 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1155 /* configure mac arbiter */
1156 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1158 /* configure mac arbiter timeout values */
1159 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1160 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1161 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1162 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1164 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1165 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1166 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1167 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1169 /* configure packet arbiter timeout */
1170 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1171 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1172 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1173 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1174 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1177 static void genesis_reset(struct skge_hw
*hw
, int port
)
1179 static const u8 zero
[8] = { 0 };
1182 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1184 /* reset the statistics module */
1185 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1186 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1187 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1188 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1189 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1191 /* disable Broadcom PHY IRQ */
1192 if (hw
->phy_type
== SK_PHY_BCOM
)
1193 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1195 xm_outhash(hw
, port
, XM_HSM
, zero
);
1197 /* Flush TX and RX fifo */
1198 reg
= xm_read32(hw
, port
, XM_MODE
);
1199 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1200 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1203 /* Convert mode to MII values */
1204 static const u16 phy_pause_map
[] = {
1205 [FLOW_MODE_NONE
] = 0,
1206 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1207 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1208 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1211 /* special defines for FIBER (88E1011S only) */
1212 static const u16 fiber_pause_map
[] = {
1213 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1214 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1215 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1216 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1220 /* Check status of Broadcom phy link */
1221 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1223 struct net_device
*dev
= hw
->dev
[port
];
1224 struct skge_port
*skge
= netdev_priv(dev
);
1227 /* read twice because of latch */
1228 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1229 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1231 if ((status
& PHY_ST_LSYNC
) == 0) {
1232 xm_link_down(hw
, port
);
1236 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1239 if (!(status
& PHY_ST_AN_OVER
))
1242 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1243 if (lpa
& PHY_B_AN_RF
) {
1244 netdev_notice(dev
, "remote fault\n");
1248 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1250 /* Check Duplex mismatch */
1251 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1252 case PHY_B_RES_1000FD
:
1253 skge
->duplex
= DUPLEX_FULL
;
1255 case PHY_B_RES_1000HD
:
1256 skge
->duplex
= DUPLEX_HALF
;
1259 netdev_notice(dev
, "duplex mismatch\n");
1263 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1264 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1265 case PHY_B_AS_PAUSE_MSK
:
1266 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1269 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1272 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1275 skge
->flow_status
= FLOW_STAT_NONE
;
1277 skge
->speed
= SPEED_1000
;
1280 if (!netif_carrier_ok(dev
))
1281 genesis_link_up(skge
);
1284 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1285 * Phy on for 100 or 10Mbit operation
1287 static void bcom_phy_init(struct skge_port
*skge
)
1289 struct skge_hw
*hw
= skge
->hw
;
1290 int port
= skge
->port
;
1292 u16 id1
, r
, ext
, ctl
;
1294 /* magic workaround patterns for Broadcom */
1295 static const struct {
1299 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1300 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1301 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1302 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1304 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1305 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1308 /* read Id from external PHY (all have the same address) */
1309 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1311 /* Optimize MDIO transfer by suppressing preamble. */
1312 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1314 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1317 case PHY_BCOM_ID1_C0
:
1319 * Workaround BCOM Errata for the C0 type.
1320 * Write magic patterns to reserved registers.
1322 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1323 xm_phy_write(hw
, port
,
1324 C0hack
[i
].reg
, C0hack
[i
].val
);
1327 case PHY_BCOM_ID1_A1
:
1329 * Workaround BCOM Errata for the A1 type.
1330 * Write magic patterns to reserved registers.
1332 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1333 xm_phy_write(hw
, port
,
1334 A1hack
[i
].reg
, A1hack
[i
].val
);
1339 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1340 * Disable Power Management after reset.
1342 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1343 r
|= PHY_B_AC_DIS_PM
;
1344 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1347 xm_read16(hw
, port
, XM_ISRC
);
1349 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1350 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1352 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1354 * Workaround BCOM Errata #1 for the C5 type.
1355 * 1000Base-T Link Acquisition Failure in Slave Mode
1356 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1358 u16 adv
= PHY_B_1000C_RD
;
1359 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1360 adv
|= PHY_B_1000C_AHD
;
1361 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1362 adv
|= PHY_B_1000C_AFD
;
1363 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1365 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1367 if (skge
->duplex
== DUPLEX_FULL
)
1368 ctl
|= PHY_CT_DUP_MD
;
1369 /* Force to slave */
1370 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1373 /* Set autonegotiation pause parameters */
1374 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1375 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1377 /* Handle Jumbo frames */
1378 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1379 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1380 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1382 ext
|= PHY_B_PEC_HIGH_LA
;
1386 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1387 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1389 /* Use link status change interrupt */
1390 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1393 static void xm_phy_init(struct skge_port
*skge
)
1395 struct skge_hw
*hw
= skge
->hw
;
1396 int port
= skge
->port
;
1399 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1400 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1401 ctrl
|= PHY_X_AN_HD
;
1402 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1403 ctrl
|= PHY_X_AN_FD
;
1405 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1407 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1409 /* Restart Auto-negotiation */
1410 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1412 /* Set DuplexMode in Config register */
1413 if (skge
->duplex
== DUPLEX_FULL
)
1414 ctrl
|= PHY_CT_DUP_MD
;
1416 * Do NOT enable Auto-negotiation here. This would hold
1417 * the link down because no IDLEs are transmitted
1421 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1423 /* Poll PHY for status changes */
1424 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1427 static int xm_check_link(struct net_device
*dev
)
1429 struct skge_port
*skge
= netdev_priv(dev
);
1430 struct skge_hw
*hw
= skge
->hw
;
1431 int port
= skge
->port
;
1434 /* read twice because of latch */
1435 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1436 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1438 if ((status
& PHY_ST_LSYNC
) == 0) {
1439 xm_link_down(hw
, port
);
1443 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1446 if (!(status
& PHY_ST_AN_OVER
))
1449 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1450 if (lpa
& PHY_B_AN_RF
) {
1451 netdev_notice(dev
, "remote fault\n");
1455 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1457 /* Check Duplex mismatch */
1458 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1460 skge
->duplex
= DUPLEX_FULL
;
1463 skge
->duplex
= DUPLEX_HALF
;
1466 netdev_notice(dev
, "duplex mismatch\n");
1470 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1471 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1472 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1473 (lpa
& PHY_X_P_SYM_MD
))
1474 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1475 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1476 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1477 /* Enable PAUSE receive, disable PAUSE transmit */
1478 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1479 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1480 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1481 /* Disable PAUSE receive, enable PAUSE transmit */
1482 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1484 skge
->flow_status
= FLOW_STAT_NONE
;
1486 skge
->speed
= SPEED_1000
;
1489 if (!netif_carrier_ok(dev
))
1490 genesis_link_up(skge
);
1494 /* Poll to check for link coming up.
1496 * Since internal PHY is wired to a level triggered pin, can't
1497 * get an interrupt when carrier is detected, need to poll for
1500 static void xm_link_timer(struct timer_list
*t
)
1502 struct skge_port
*skge
= from_timer(skge
, t
, link_timer
);
1503 struct net_device
*dev
= skge
->netdev
;
1504 struct skge_hw
*hw
= skge
->hw
;
1505 int port
= skge
->port
;
1507 unsigned long flags
;
1509 if (!netif_running(dev
))
1512 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1515 * Verify that the link by checking GPIO register three times.
1516 * This pin has the signal from the link_sync pin connected to it.
1518 for (i
= 0; i
< 3; i
++) {
1519 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1523 /* Re-enable interrupt to detect link down */
1524 if (xm_check_link(dev
)) {
1525 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1526 msk
&= ~XM_IS_INP_ASS
;
1527 xm_write16(hw
, port
, XM_IMSK
, msk
);
1528 xm_read16(hw
, port
, XM_ISRC
);
1531 mod_timer(&skge
->link_timer
,
1532 round_jiffies(jiffies
+ LINK_HZ
));
1534 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1537 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1539 struct net_device
*dev
= hw
->dev
[port
];
1540 struct skge_port
*skge
= netdev_priv(dev
);
1541 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1544 static const u8 zero
[6] = { 0 };
1546 for (i
= 0; i
< 10; i
++) {
1547 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1549 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1554 netdev_warn(dev
, "genesis reset failed\n");
1557 /* Unreset the XMAC. */
1558 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1561 * Perform additional initialization for external PHYs,
1562 * namely for the 1000baseTX cards that use the XMAC's
1565 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1566 /* Take external Phy out of reset */
1567 r
= skge_read32(hw
, B2_GP_IO
);
1569 r
|= GP_DIR_0
|GP_IO_0
;
1571 r
|= GP_DIR_2
|GP_IO_2
;
1573 skge_write32(hw
, B2_GP_IO
, r
);
1575 /* Enable GMII interface */
1576 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1580 switch (hw
->phy_type
) {
1585 bcom_phy_init(skge
);
1586 bcom_check_link(hw
, port
);
1589 /* Set Station Address */
1590 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1592 /* We don't use match addresses so clear */
1593 for (i
= 1; i
< 16; i
++)
1594 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1596 /* Clear MIB counters */
1597 xm_write16(hw
, port
, XM_STAT_CMD
,
1598 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1599 /* Clear two times according to Errata #3 */
1600 xm_write16(hw
, port
, XM_STAT_CMD
,
1601 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1603 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1604 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1606 /* We don't need the FCS appended to the packet. */
1607 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1609 r
|= XM_RX_BIG_PK_OK
;
1611 if (skge
->duplex
== DUPLEX_HALF
) {
1613 * If in manual half duplex mode the other side might be in
1614 * full duplex mode, so ignore if a carrier extension is not seen
1615 * on frames received
1617 r
|= XM_RX_DIS_CEXT
;
1619 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1621 /* We want short frames padded to 60 bytes. */
1622 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1624 /* Increase threshold for jumbo frames on dual port */
1625 if (hw
->ports
> 1 && jumbo
)
1626 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1628 xm_write16(hw
, port
, XM_TX_THR
, 512);
1631 * Enable the reception of all error frames. This is is
1632 * a necessary evil due to the design of the XMAC. The
1633 * XMAC's receive FIFO is only 8K in size, however jumbo
1634 * frames can be up to 9000 bytes in length. When bad
1635 * frame filtering is enabled, the XMAC's RX FIFO operates
1636 * in 'store and forward' mode. For this to work, the
1637 * entire frame has to fit into the FIFO, but that means
1638 * that jumbo frames larger than 8192 bytes will be
1639 * truncated. Disabling all bad frame filtering causes
1640 * the RX FIFO to operate in streaming mode, in which
1641 * case the XMAC will start transferring frames out of the
1642 * RX FIFO as soon as the FIFO threshold is reached.
1644 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1648 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1649 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1650 * and 'Octets Rx OK Hi Cnt Ov'.
1652 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1655 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1656 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1657 * and 'Octets Tx OK Hi Cnt Ov'.
1659 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1661 /* Configure MAC arbiter */
1662 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1664 /* configure timeout values */
1665 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1666 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1667 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1668 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1670 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1671 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1672 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1673 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1675 /* Configure Rx MAC FIFO */
1676 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1677 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1678 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1680 /* Configure Tx MAC FIFO */
1681 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1682 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1683 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1686 /* Enable frame flushing if jumbo frames used */
1687 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1689 /* enable timeout timers if normal frames */
1690 skge_write16(hw
, B3_PA_CTRL
,
1691 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1695 static void genesis_stop(struct skge_port
*skge
)
1697 struct skge_hw
*hw
= skge
->hw
;
1698 int port
= skge
->port
;
1699 unsigned retries
= 1000;
1702 /* Disable Tx and Rx */
1703 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1704 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1705 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1707 genesis_reset(hw
, port
);
1709 /* Clear Tx packet arbiter timeout IRQ */
1710 skge_write16(hw
, B3_PA_CTRL
,
1711 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1714 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1716 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1717 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1719 } while (--retries
> 0);
1721 /* For external PHYs there must be special handling */
1722 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1723 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1731 skge_write32(hw
, B2_GP_IO
, reg
);
1732 skge_read32(hw
, B2_GP_IO
);
1735 xm_write16(hw
, port
, XM_MMU_CMD
,
1736 xm_read16(hw
, port
, XM_MMU_CMD
)
1737 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1739 xm_read16(hw
, port
, XM_MMU_CMD
);
1743 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1745 struct skge_hw
*hw
= skge
->hw
;
1746 int port
= skge
->port
;
1748 unsigned long timeout
= jiffies
+ HZ
;
1750 xm_write16(hw
, port
,
1751 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1753 /* wait for update to complete */
1754 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1755 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1756 if (time_after(jiffies
, timeout
))
1761 /* special case for 64 bit octet counter */
1762 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1763 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1764 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1765 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1767 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1768 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1771 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1773 struct net_device
*dev
= hw
->dev
[port
];
1774 struct skge_port
*skge
= netdev_priv(dev
);
1775 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1777 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1778 "mac interrupt status 0x%x\n", status
);
1780 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1781 xm_link_down(hw
, port
);
1782 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1785 if (status
& XM_IS_TXF_UR
) {
1786 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1787 ++dev
->stats
.tx_fifo_errors
;
1791 static void genesis_link_up(struct skge_port
*skge
)
1793 struct skge_hw
*hw
= skge
->hw
;
1794 int port
= skge
->port
;
1798 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1801 * enabling pause frame reception is required for 1000BT
1802 * because the XMAC is not reset if the link is going down
1804 if (skge
->flow_status
== FLOW_STAT_NONE
||
1805 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1806 /* Disable Pause Frame Reception */
1807 cmd
|= XM_MMU_IGN_PF
;
1809 /* Enable Pause Frame Reception */
1810 cmd
&= ~XM_MMU_IGN_PF
;
1812 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1814 mode
= xm_read32(hw
, port
, XM_MODE
);
1815 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1816 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1818 * Configure Pause Frame Generation
1819 * Use internal and external Pause Frame Generation.
1820 * Sending pause frames is edge triggered.
1821 * Send a Pause frame with the maximum pause time if
1822 * internal oder external FIFO full condition occurs.
1823 * Send a zero pause time frame to re-start transmission.
1825 /* XM_PAUSE_DA = '010000C28001' (default) */
1826 /* XM_MAC_PTIME = 0xffff (maximum) */
1827 /* remember this value is defined in big endian (!) */
1828 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1830 mode
|= XM_PAUSE_MODE
;
1831 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1834 * disable pause frame generation is required for 1000BT
1835 * because the XMAC is not reset if the link is going down
1837 /* Disable Pause Mode in Mode Register */
1838 mode
&= ~XM_PAUSE_MODE
;
1840 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1843 xm_write32(hw
, port
, XM_MODE
, mode
);
1845 /* Turn on detection of Tx underrun */
1846 msk
= xm_read16(hw
, port
, XM_IMSK
);
1847 msk
&= ~XM_IS_TXF_UR
;
1848 xm_write16(hw
, port
, XM_IMSK
, msk
);
1850 xm_read16(hw
, port
, XM_ISRC
);
1852 /* get MMU Command Reg. */
1853 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1854 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1855 cmd
|= XM_MMU_GMII_FD
;
1858 * Workaround BCOM Errata (#10523) for all BCom Phys
1859 * Enable Power Management after link up
1861 if (hw
->phy_type
== SK_PHY_BCOM
) {
1862 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1863 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1864 & ~PHY_B_AC_DIS_PM
);
1865 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1869 xm_write16(hw
, port
, XM_MMU_CMD
,
1870 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1875 static inline void bcom_phy_intr(struct skge_port
*skge
)
1877 struct skge_hw
*hw
= skge
->hw
;
1878 int port
= skge
->port
;
1881 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1882 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1883 "phy interrupt status 0x%x\n", isrc
);
1885 if (isrc
& PHY_B_IS_PSE
)
1886 pr_err("%s: uncorrectable pair swap error\n",
1887 hw
->dev
[port
]->name
);
1889 /* Workaround BCom Errata:
1890 * enable and disable loopback mode if "NO HCD" occurs.
1892 if (isrc
& PHY_B_IS_NO_HDCL
) {
1893 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1894 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1895 ctrl
| PHY_CT_LOOP
);
1896 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1897 ctrl
& ~PHY_CT_LOOP
);
1900 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1901 bcom_check_link(hw
, port
);
1905 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1909 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1910 gma_write16(hw
, port
, GM_SMI_CTRL
,
1911 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1912 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1915 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1919 pr_warn("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1923 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1927 gma_write16(hw
, port
, GM_SMI_CTRL
,
1928 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1929 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1931 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1933 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1939 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1943 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1946 if (__gm_phy_read(hw
, port
, reg
, &v
))
1947 pr_warn("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1951 /* Marvell Phy Initialization */
1952 static void yukon_init(struct skge_hw
*hw
, int port
)
1954 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1955 u16 ctrl
, ct1000
, adv
;
1957 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1958 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1960 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1961 PHY_M_EC_MAC_S_MSK
);
1962 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1964 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1966 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1969 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1970 if (skge
->autoneg
== AUTONEG_DISABLE
)
1971 ctrl
&= ~PHY_CT_ANE
;
1973 ctrl
|= PHY_CT_RESET
;
1974 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1980 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1982 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1983 ct1000
|= PHY_M_1000C_AFD
;
1984 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1985 ct1000
|= PHY_M_1000C_AHD
;
1986 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1987 adv
|= PHY_M_AN_100_FD
;
1988 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1989 adv
|= PHY_M_AN_100_HD
;
1990 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1991 adv
|= PHY_M_AN_10_FD
;
1992 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1993 adv
|= PHY_M_AN_10_HD
;
1995 /* Set Flow-control capabilities */
1996 adv
|= phy_pause_map
[skge
->flow_control
];
1998 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1999 adv
|= PHY_M_AN_1000X_AFD
;
2000 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2001 adv
|= PHY_M_AN_1000X_AHD
;
2003 adv
|= fiber_pause_map
[skge
->flow_control
];
2006 /* Restart Auto-negotiation */
2007 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2009 /* forced speed/duplex settings */
2010 ct1000
= PHY_M_1000C_MSE
;
2012 if (skge
->duplex
== DUPLEX_FULL
)
2013 ctrl
|= PHY_CT_DUP_MD
;
2015 switch (skge
->speed
) {
2017 ctrl
|= PHY_CT_SP1000
;
2020 ctrl
|= PHY_CT_SP100
;
2024 ctrl
|= PHY_CT_RESET
;
2027 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2029 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2030 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2032 /* Enable phy interrupt on autonegotiation complete (or link up) */
2033 if (skge
->autoneg
== AUTONEG_ENABLE
)
2034 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2036 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2039 static void yukon_reset(struct skge_hw
*hw
, int port
)
2041 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2042 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2043 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2044 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2045 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2047 gma_write16(hw
, port
, GM_RX_CTRL
,
2048 gma_read16(hw
, port
, GM_RX_CTRL
)
2049 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2052 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2053 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2058 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2061 reg
= skge_read32(hw
, B2_FAR
);
2062 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2063 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2064 skge_write32(hw
, B2_FAR
, reg
);
2068 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2070 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2073 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2075 /* WA code for COMA mode -- set PHY reset */
2076 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2077 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2078 reg
= skge_read32(hw
, B2_GP_IO
);
2079 reg
|= GP_DIR_9
| GP_IO_9
;
2080 skge_write32(hw
, B2_GP_IO
, reg
);
2084 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2085 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2087 /* WA code for COMA mode -- clear PHY reset */
2088 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2089 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2090 reg
= skge_read32(hw
, B2_GP_IO
);
2093 skge_write32(hw
, B2_GP_IO
, reg
);
2096 /* Set hardware config mode */
2097 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2098 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2099 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2101 /* Clear GMC reset */
2102 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2103 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2104 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2106 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2107 reg
= GM_GPCR_AU_ALL_DIS
;
2108 gma_write16(hw
, port
, GM_GP_CTRL
,
2109 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2111 switch (skge
->speed
) {
2113 reg
&= ~GM_GPCR_SPEED_100
;
2114 reg
|= GM_GPCR_SPEED_1000
;
2117 reg
&= ~GM_GPCR_SPEED_1000
;
2118 reg
|= GM_GPCR_SPEED_100
;
2121 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2125 if (skge
->duplex
== DUPLEX_FULL
)
2126 reg
|= GM_GPCR_DUP_FULL
;
2128 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2130 switch (skge
->flow_control
) {
2131 case FLOW_MODE_NONE
:
2132 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2133 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2135 case FLOW_MODE_LOC_SEND
:
2136 /* disable Rx flow-control */
2137 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2139 case FLOW_MODE_SYMMETRIC
:
2140 case FLOW_MODE_SYM_OR_REM
:
2141 /* enable Tx & Rx flow-control */
2145 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2146 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2148 yukon_init(hw
, port
);
2151 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2152 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2154 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2155 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2156 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2158 /* transmit control */
2159 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2161 /* receive control reg: unicast + multicast + no FCS */
2162 gma_write16(hw
, port
, GM_RX_CTRL
,
2163 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2165 /* transmit flow control */
2166 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2168 /* transmit parameter */
2169 gma_write16(hw
, port
, GM_TX_PARAM
,
2170 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2171 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2172 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2174 /* configure the Serial Mode Register */
2175 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2177 | IPG_DATA_VAL(IPG_DATA_DEF
);
2179 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2180 reg
|= GM_SMOD_JUMBO_ENA
;
2182 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2184 /* physical address: used for pause frames */
2185 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2186 /* virtual address for data */
2187 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2189 /* enable interrupt mask for counter overflows */
2190 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2191 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2192 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2194 /* Initialize Mac Fifo */
2196 /* Configure Rx MAC FIFO */
2197 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2198 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2200 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2201 if (is_yukon_lite_a0(hw
))
2202 reg
&= ~GMF_RX_F_FL_ON
;
2204 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2205 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2207 * because Pause Packet Truncation in GMAC is not working
2208 * we have to increase the Flush Threshold to 64 bytes
2209 * in order to flush pause packets in Rx FIFO on Yukon-1
2211 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2213 /* Configure Tx MAC FIFO */
2214 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2215 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2218 /* Go into power down mode */
2219 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2223 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2224 ctrl
|= PHY_M_PC_POL_R_DIS
;
2225 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2227 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2228 ctrl
|= PHY_CT_RESET
;
2229 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2231 /* switch IEEE compatible power down mode on */
2232 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2233 ctrl
|= PHY_CT_PDOWN
;
2234 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2237 static void yukon_stop(struct skge_port
*skge
)
2239 struct skge_hw
*hw
= skge
->hw
;
2240 int port
= skge
->port
;
2242 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2243 yukon_reset(hw
, port
);
2245 gma_write16(hw
, port
, GM_GP_CTRL
,
2246 gma_read16(hw
, port
, GM_GP_CTRL
)
2247 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2248 gma_read16(hw
, port
, GM_GP_CTRL
);
2250 yukon_suspend(hw
, port
);
2252 /* set GPHY Control reset */
2253 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2254 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2257 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2259 struct skge_hw
*hw
= skge
->hw
;
2260 int port
= skge
->port
;
2263 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2264 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2265 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2266 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2268 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2269 data
[i
] = gma_read32(hw
, port
,
2270 skge_stats
[i
].gma_offset
);
2273 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2275 struct net_device
*dev
= hw
->dev
[port
];
2276 struct skge_port
*skge
= netdev_priv(dev
);
2277 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2279 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2280 "mac interrupt status 0x%x\n", status
);
2282 if (status
& GM_IS_RX_FF_OR
) {
2283 ++dev
->stats
.rx_fifo_errors
;
2284 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2287 if (status
& GM_IS_TX_FF_UR
) {
2288 ++dev
->stats
.tx_fifo_errors
;
2289 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2294 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2296 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2297 case PHY_M_PS_SPEED_1000
:
2299 case PHY_M_PS_SPEED_100
:
2306 static void yukon_link_up(struct skge_port
*skge
)
2308 struct skge_hw
*hw
= skge
->hw
;
2309 int port
= skge
->port
;
2312 /* Enable Transmit FIFO Underrun */
2313 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2315 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2316 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2317 reg
|= GM_GPCR_DUP_FULL
;
2320 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2321 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2323 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2327 static void yukon_link_down(struct skge_port
*skge
)
2329 struct skge_hw
*hw
= skge
->hw
;
2330 int port
= skge
->port
;
2333 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2334 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2335 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2337 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2338 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2339 ctrl
|= PHY_M_AN_ASP
;
2340 /* restore Asymmetric Pause bit */
2341 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2344 skge_link_down(skge
);
2346 yukon_init(hw
, port
);
2349 static void yukon_phy_intr(struct skge_port
*skge
)
2351 struct skge_hw
*hw
= skge
->hw
;
2352 int port
= skge
->port
;
2353 const char *reason
= NULL
;
2354 u16 istatus
, phystat
;
2356 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2357 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2359 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2360 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2362 if (istatus
& PHY_M_IS_AN_COMPL
) {
2363 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2365 reason
= "remote fault";
2369 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2370 reason
= "master/slave fault";
2374 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2375 reason
= "speed/duplex";
2379 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2380 ? DUPLEX_FULL
: DUPLEX_HALF
;
2381 skge
->speed
= yukon_speed(hw
, phystat
);
2383 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2384 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2385 case PHY_M_PS_PAUSE_MSK
:
2386 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2388 case PHY_M_PS_RX_P_EN
:
2389 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2391 case PHY_M_PS_TX_P_EN
:
2392 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2395 skge
->flow_status
= FLOW_STAT_NONE
;
2398 if (skge
->flow_status
== FLOW_STAT_NONE
||
2399 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2400 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2402 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2403 yukon_link_up(skge
);
2407 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2408 skge
->speed
= yukon_speed(hw
, phystat
);
2410 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2411 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2412 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2413 if (phystat
& PHY_M_PS_LINK_UP
)
2414 yukon_link_up(skge
);
2416 yukon_link_down(skge
);
2420 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2422 /* XXX restart autonegotiation? */
2425 static void skge_phy_reset(struct skge_port
*skge
)
2427 struct skge_hw
*hw
= skge
->hw
;
2428 int port
= skge
->port
;
2429 struct net_device
*dev
= hw
->dev
[port
];
2431 netif_stop_queue(skge
->netdev
);
2432 netif_carrier_off(skge
->netdev
);
2434 spin_lock_bh(&hw
->phy_lock
);
2435 if (is_genesis(hw
)) {
2436 genesis_reset(hw
, port
);
2437 genesis_mac_init(hw
, port
);
2439 yukon_reset(hw
, port
);
2440 yukon_init(hw
, port
);
2442 spin_unlock_bh(&hw
->phy_lock
);
2444 skge_set_multicast(dev
);
2447 /* Basic MII support */
2448 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2450 struct mii_ioctl_data
*data
= if_mii(ifr
);
2451 struct skge_port
*skge
= netdev_priv(dev
);
2452 struct skge_hw
*hw
= skge
->hw
;
2453 int err
= -EOPNOTSUPP
;
2455 if (!netif_running(dev
))
2456 return -ENODEV
; /* Phy still in reset */
2460 data
->phy_id
= hw
->phy_addr
;
2465 spin_lock_bh(&hw
->phy_lock
);
2468 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2470 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2471 spin_unlock_bh(&hw
->phy_lock
);
2472 data
->val_out
= val
;
2477 spin_lock_bh(&hw
->phy_lock
);
2479 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2482 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2484 spin_unlock_bh(&hw
->phy_lock
);
2490 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2496 end
= start
+ len
- 1;
2498 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2499 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2500 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2501 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2502 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2504 if (q
== Q_R1
|| q
== Q_R2
) {
2505 /* Set thresholds on receive queue's */
2506 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2508 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2511 /* Enable store & forward on Tx queue's because
2512 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2514 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2517 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2520 /* Setup Bus Memory Interface */
2521 static void skge_qset(struct skge_port
*skge
, u16 q
,
2522 const struct skge_element
*e
)
2524 struct skge_hw
*hw
= skge
->hw
;
2525 u32 watermark
= 0x600;
2526 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2528 /* optimization to reduce window on 32bit/33mhz */
2529 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2532 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2533 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2534 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2535 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2538 static int skge_up(struct net_device
*dev
)
2540 struct skge_port
*skge
= netdev_priv(dev
);
2541 struct skge_hw
*hw
= skge
->hw
;
2542 int port
= skge
->port
;
2543 u32 chunk
, ram_addr
;
2544 size_t rx_size
, tx_size
;
2547 if (!is_valid_ether_addr(dev
->dev_addr
))
2550 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2552 if (dev
->mtu
> RX_BUF_SIZE
)
2553 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2555 skge
->rx_buf_size
= RX_BUF_SIZE
;
2558 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2559 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2560 skge
->mem_size
= tx_size
+ rx_size
;
2561 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2565 BUG_ON(skge
->dma
& 7);
2567 if (upper_32_bits(skge
->dma
) != upper_32_bits(skge
->dma
+ skge
->mem_size
)) {
2568 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2573 memset(skge
->mem
, 0, skge
->mem_size
);
2575 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2579 err
= skge_rx_fill(dev
);
2583 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2584 skge
->dma
+ rx_size
);
2588 if (hw
->ports
== 1) {
2589 err
= request_irq(hw
->pdev
->irq
, skge_intr
, IRQF_SHARED
,
2592 netdev_err(dev
, "Unable to allocate interrupt %d error: %d\n",
2593 hw
->pdev
->irq
, err
);
2598 /* Initialize MAC */
2599 netif_carrier_off(dev
);
2600 spin_lock_bh(&hw
->phy_lock
);
2602 genesis_mac_init(hw
, port
);
2604 yukon_mac_init(hw
, port
);
2605 spin_unlock_bh(&hw
->phy_lock
);
2607 /* Configure RAMbuffers - equally between ports and tx/rx */
2608 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2609 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2611 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2612 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2614 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2615 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2616 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2618 /* Start receiver BMU */
2620 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2621 skge_led(skge
, LED_MODE_ON
);
2623 spin_lock_irq(&hw
->hw_lock
);
2624 hw
->intr_mask
|= portmask
[port
];
2625 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2626 skge_read32(hw
, B0_IMSK
);
2627 spin_unlock_irq(&hw
->hw_lock
);
2629 napi_enable(&skge
->napi
);
2631 skge_set_multicast(dev
);
2636 kfree(skge
->tx_ring
.start
);
2638 skge_rx_clean(skge
);
2639 kfree(skge
->rx_ring
.start
);
2641 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2648 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2650 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2651 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2652 RB_RST_SET
|RB_DIS_OP_MD
);
2653 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2656 static int skge_down(struct net_device
*dev
)
2658 struct skge_port
*skge
= netdev_priv(dev
);
2659 struct skge_hw
*hw
= skge
->hw
;
2660 int port
= skge
->port
;
2665 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2667 netif_tx_disable(dev
);
2669 if (is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
)
2670 del_timer_sync(&skge
->link_timer
);
2672 napi_disable(&skge
->napi
);
2673 netif_carrier_off(dev
);
2675 spin_lock_irq(&hw
->hw_lock
);
2676 hw
->intr_mask
&= ~portmask
[port
];
2677 skge_write32(hw
, B0_IMSK
, (hw
->ports
== 1) ? 0 : hw
->intr_mask
);
2678 skge_read32(hw
, B0_IMSK
);
2679 spin_unlock_irq(&hw
->hw_lock
);
2682 free_irq(hw
->pdev
->irq
, hw
);
2684 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_REG_OFF
);
2690 /* Stop transmitter */
2691 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2692 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2693 RB_RST_SET
|RB_DIS_OP_MD
);
2696 /* Disable Force Sync bit and Enable Alloc bit */
2697 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2698 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2700 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2701 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2702 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2704 /* Reset PCI FIFO */
2705 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2706 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2708 /* Reset the RAM Buffer async Tx queue */
2709 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2711 skge_rx_stop(hw
, port
);
2713 if (is_genesis(hw
)) {
2714 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2715 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2717 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2718 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2721 skge_led(skge
, LED_MODE_OFF
);
2723 netif_tx_lock_bh(dev
);
2725 netif_tx_unlock_bh(dev
);
2727 skge_rx_clean(skge
);
2729 kfree(skge
->rx_ring
.start
);
2730 kfree(skge
->tx_ring
.start
);
2731 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2736 static inline int skge_avail(const struct skge_ring
*ring
)
2739 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2740 + (ring
->to_clean
- ring
->to_use
) - 1;
2743 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2744 struct net_device
*dev
)
2746 struct skge_port
*skge
= netdev_priv(dev
);
2747 struct skge_hw
*hw
= skge
->hw
;
2748 struct skge_element
*e
;
2749 struct skge_tx_desc
*td
;
2754 if (skb_padto(skb
, ETH_ZLEN
))
2755 return NETDEV_TX_OK
;
2757 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2758 return NETDEV_TX_BUSY
;
2760 e
= skge
->tx_ring
.to_use
;
2762 BUG_ON(td
->control
& BMU_OWN
);
2764 len
= skb_headlen(skb
);
2765 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2766 if (pci_dma_mapping_error(hw
->pdev
, map
))
2769 dma_unmap_addr_set(e
, mapaddr
, map
);
2770 dma_unmap_len_set(e
, maplen
, len
);
2772 td
->dma_lo
= lower_32_bits(map
);
2773 td
->dma_hi
= upper_32_bits(map
);
2775 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2776 const int offset
= skb_checksum_start_offset(skb
);
2778 /* This seems backwards, but it is what the sk98lin
2779 * does. Looks like hardware is wrong?
2781 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2782 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2783 control
= BMU_TCP_CHECK
;
2785 control
= BMU_UDP_CHECK
;
2788 td
->csum_start
= offset
;
2789 td
->csum_write
= offset
+ skb
->csum_offset
;
2791 control
= BMU_CHECK
;
2793 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2794 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2796 struct skge_tx_desc
*tf
= td
;
2798 control
|= BMU_STFWD
;
2799 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2800 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2802 map
= skb_frag_dma_map(&hw
->pdev
->dev
, frag
, 0,
2803 skb_frag_size(frag
), DMA_TO_DEVICE
);
2804 if (dma_mapping_error(&hw
->pdev
->dev
, map
))
2805 goto mapping_unwind
;
2810 BUG_ON(tf
->control
& BMU_OWN
);
2812 tf
->dma_lo
= lower_32_bits(map
);
2813 tf
->dma_hi
= upper_32_bits(map
);
2814 dma_unmap_addr_set(e
, mapaddr
, map
);
2815 dma_unmap_len_set(e
, maplen
, skb_frag_size(frag
));
2817 tf
->control
= BMU_OWN
| BMU_SW
| control
| skb_frag_size(frag
);
2819 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2821 /* Make sure all the descriptors written */
2823 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2826 netdev_sent_queue(dev
, skb
->len
);
2828 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2830 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2831 "tx queued, slot %td, len %d\n",
2832 e
- skge
->tx_ring
.start
, skb
->len
);
2834 skge
->tx_ring
.to_use
= e
->next
;
2837 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2838 netdev_dbg(dev
, "transmit queue full\n");
2839 netif_stop_queue(dev
);
2842 return NETDEV_TX_OK
;
2845 e
= skge
->tx_ring
.to_use
;
2846 pci_unmap_single(hw
->pdev
,
2847 dma_unmap_addr(e
, mapaddr
),
2848 dma_unmap_len(e
, maplen
),
2852 pci_unmap_page(hw
->pdev
,
2853 dma_unmap_addr(e
, mapaddr
),
2854 dma_unmap_len(e
, maplen
),
2859 if (net_ratelimit())
2860 dev_warn(&hw
->pdev
->dev
, "%s: tx mapping error\n", dev
->name
);
2861 dev_kfree_skb_any(skb
);
2862 return NETDEV_TX_OK
;
2866 /* Free resources associated with this reing element */
2867 static inline void skge_tx_unmap(struct pci_dev
*pdev
, struct skge_element
*e
,
2870 /* skb header vs. fragment */
2871 if (control
& BMU_STF
)
2872 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2873 dma_unmap_len(e
, maplen
),
2876 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2877 dma_unmap_len(e
, maplen
),
2881 /* Free all buffers in transmit ring */
2882 static void skge_tx_clean(struct net_device
*dev
)
2884 struct skge_port
*skge
= netdev_priv(dev
);
2885 struct skge_element
*e
;
2887 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2888 struct skge_tx_desc
*td
= e
->desc
;
2890 skge_tx_unmap(skge
->hw
->pdev
, e
, td
->control
);
2892 if (td
->control
& BMU_EOF
)
2893 dev_kfree_skb(e
->skb
);
2897 netdev_reset_queue(dev
);
2898 skge
->tx_ring
.to_clean
= e
;
2901 static void skge_tx_timeout(struct net_device
*dev
)
2903 struct skge_port
*skge
= netdev_priv(dev
);
2905 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2907 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2909 netif_wake_queue(dev
);
2912 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2916 if (!netif_running(dev
)) {
2932 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2934 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2938 crc
= ether_crc_le(ETH_ALEN
, addr
);
2940 filter
[bit
/8] |= 1 << (bit
%8);
2943 static void genesis_set_multicast(struct net_device
*dev
)
2945 struct skge_port
*skge
= netdev_priv(dev
);
2946 struct skge_hw
*hw
= skge
->hw
;
2947 int port
= skge
->port
;
2948 struct netdev_hw_addr
*ha
;
2952 mode
= xm_read32(hw
, port
, XM_MODE
);
2953 mode
|= XM_MD_ENA_HASH
;
2954 if (dev
->flags
& IFF_PROMISC
)
2955 mode
|= XM_MD_ENA_PROM
;
2957 mode
&= ~XM_MD_ENA_PROM
;
2959 if (dev
->flags
& IFF_ALLMULTI
)
2960 memset(filter
, 0xff, sizeof(filter
));
2962 memset(filter
, 0, sizeof(filter
));
2964 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2965 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2966 genesis_add_filter(filter
, pause_mc_addr
);
2968 netdev_for_each_mc_addr(ha
, dev
)
2969 genesis_add_filter(filter
, ha
->addr
);
2972 xm_write32(hw
, port
, XM_MODE
, mode
);
2973 xm_outhash(hw
, port
, XM_HSM
, filter
);
2976 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2978 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2979 filter
[bit
/8] |= 1 << (bit
%8);
2982 static void yukon_set_multicast(struct net_device
*dev
)
2984 struct skge_port
*skge
= netdev_priv(dev
);
2985 struct skge_hw
*hw
= skge
->hw
;
2986 int port
= skge
->port
;
2987 struct netdev_hw_addr
*ha
;
2988 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2989 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2993 memset(filter
, 0, sizeof(filter
));
2995 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2996 reg
|= GM_RXCR_UCF_ENA
;
2998 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2999 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
3000 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
3001 memset(filter
, 0xff, sizeof(filter
));
3002 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
3003 reg
&= ~GM_RXCR_MCF_ENA
;
3005 reg
|= GM_RXCR_MCF_ENA
;
3008 yukon_add_filter(filter
, pause_mc_addr
);
3010 netdev_for_each_mc_addr(ha
, dev
)
3011 yukon_add_filter(filter
, ha
->addr
);
3015 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3016 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3017 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3018 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3019 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3020 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3021 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3022 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3024 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3027 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3030 return status
>> XMR_FS_LEN_SHIFT
;
3032 return status
>> GMR_FS_LEN_SHIFT
;
3035 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3038 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3040 return (status
& GMR_FS_ANY_ERR
) ||
3041 (status
& GMR_FS_RX_OK
) == 0;
3044 static void skge_set_multicast(struct net_device
*dev
)
3046 struct skge_port
*skge
= netdev_priv(dev
);
3048 if (is_genesis(skge
->hw
))
3049 genesis_set_multicast(dev
);
3051 yukon_set_multicast(dev
);
3056 /* Get receive buffer from descriptor.
3057 * Handles copy of small buffers and reallocation failures
3059 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3060 struct skge_element
*e
,
3061 u32 control
, u32 status
, u16 csum
)
3063 struct skge_port
*skge
= netdev_priv(dev
);
3064 struct sk_buff
*skb
;
3065 u16 len
= control
& BMU_BBC
;
3067 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3068 "rx slot %td status 0x%x len %d\n",
3069 e
- skge
->rx_ring
.start
, status
, len
);
3071 if (len
> skge
->rx_buf_size
)
3074 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3077 if (bad_phy_status(skge
->hw
, status
))
3080 if (phy_length(skge
->hw
, status
) != len
)
3083 if (len
< RX_COPY_THRESHOLD
) {
3084 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3088 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3089 dma_unmap_addr(e
, mapaddr
),
3090 dma_unmap_len(e
, maplen
),
3091 PCI_DMA_FROMDEVICE
);
3092 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3093 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3094 dma_unmap_addr(e
, mapaddr
),
3095 dma_unmap_len(e
, maplen
),
3096 PCI_DMA_FROMDEVICE
);
3097 skge_rx_reuse(e
, skge
->rx_buf_size
);
3099 struct skge_element ee
;
3100 struct sk_buff
*nskb
;
3102 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3109 prefetch(skb
->data
);
3111 if (skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
) < 0) {
3112 dev_kfree_skb(nskb
);
3116 pci_unmap_single(skge
->hw
->pdev
,
3117 dma_unmap_addr(&ee
, mapaddr
),
3118 dma_unmap_len(&ee
, maplen
),
3119 PCI_DMA_FROMDEVICE
);
3124 if (dev
->features
& NETIF_F_RXCSUM
) {
3125 skb
->csum
= le16_to_cpu(csum
);
3126 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3129 skb
->protocol
= eth_type_trans(skb
, dev
);
3134 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3135 "rx err, slot %td control 0x%x status 0x%x\n",
3136 e
- skge
->rx_ring
.start
, control
, status
);
3138 if (is_genesis(skge
->hw
)) {
3139 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3140 dev
->stats
.rx_length_errors
++;
3141 if (status
& XMR_FS_FRA_ERR
)
3142 dev
->stats
.rx_frame_errors
++;
3143 if (status
& XMR_FS_FCS_ERR
)
3144 dev
->stats
.rx_crc_errors
++;
3146 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3147 dev
->stats
.rx_length_errors
++;
3148 if (status
& GMR_FS_FRAGMENT
)
3149 dev
->stats
.rx_frame_errors
++;
3150 if (status
& GMR_FS_CRC_ERR
)
3151 dev
->stats
.rx_crc_errors
++;
3155 skge_rx_reuse(e
, skge
->rx_buf_size
);
3159 /* Free all buffers in Tx ring which are no longer owned by device */
3160 static void skge_tx_done(struct net_device
*dev
)
3162 struct skge_port
*skge
= netdev_priv(dev
);
3163 struct skge_ring
*ring
= &skge
->tx_ring
;
3164 struct skge_element
*e
;
3165 unsigned int bytes_compl
= 0, pkts_compl
= 0;
3167 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3169 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3170 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3172 if (control
& BMU_OWN
)
3175 skge_tx_unmap(skge
->hw
->pdev
, e
, control
);
3177 if (control
& BMU_EOF
) {
3178 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
3179 "tx done slot %td\n",
3180 e
- skge
->tx_ring
.start
);
3183 bytes_compl
+= e
->skb
->len
;
3185 dev_consume_skb_any(e
->skb
);
3188 netdev_completed_queue(dev
, pkts_compl
, bytes_compl
);
3189 skge
->tx_ring
.to_clean
= e
;
3191 /* Can run lockless until we need to synchronize to restart queue. */
3194 if (unlikely(netif_queue_stopped(dev
) &&
3195 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3197 if (unlikely(netif_queue_stopped(dev
) &&
3198 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3199 netif_wake_queue(dev
);
3202 netif_tx_unlock(dev
);
3206 static int skge_poll(struct napi_struct
*napi
, int budget
)
3208 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3209 struct net_device
*dev
= skge
->netdev
;
3210 struct skge_hw
*hw
= skge
->hw
;
3211 struct skge_ring
*ring
= &skge
->rx_ring
;
3212 struct skge_element
*e
;
3217 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3219 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< budget
; e
= e
->next
) {
3220 struct skge_rx_desc
*rd
= e
->desc
;
3221 struct sk_buff
*skb
;
3225 control
= rd
->control
;
3226 if (control
& BMU_OWN
)
3229 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3231 napi_gro_receive(napi
, skb
);
3237 /* restart receiver */
3239 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3241 if (work_done
< budget
&& napi_complete_done(napi
, work_done
)) {
3242 unsigned long flags
;
3244 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3245 hw
->intr_mask
|= napimask
[skge
->port
];
3246 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3247 skge_read32(hw
, B0_IMSK
);
3248 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3254 /* Parity errors seem to happen when Genesis is connected to a switch
3255 * with no other ports present. Heartbeat error??
3257 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3259 struct net_device
*dev
= hw
->dev
[port
];
3261 ++dev
->stats
.tx_heartbeat_errors
;
3264 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3267 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3268 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3269 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3270 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3273 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3276 genesis_mac_intr(hw
, port
);
3278 yukon_mac_intr(hw
, port
);
3281 /* Handle device specific framing and timeout interrupts */
3282 static void skge_error_irq(struct skge_hw
*hw
)
3284 struct pci_dev
*pdev
= hw
->pdev
;
3285 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3287 if (is_genesis(hw
)) {
3288 /* clear xmac errors */
3289 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3290 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3291 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3292 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3294 /* Timestamp (unused) overflow */
3295 if (hwstatus
& IS_IRQ_TIST_OV
)
3296 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3299 if (hwstatus
& IS_RAM_RD_PAR
) {
3300 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3301 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3304 if (hwstatus
& IS_RAM_WR_PAR
) {
3305 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3306 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3309 if (hwstatus
& IS_M1_PAR_ERR
)
3310 skge_mac_parity(hw
, 0);
3312 if (hwstatus
& IS_M2_PAR_ERR
)
3313 skge_mac_parity(hw
, 1);
3315 if (hwstatus
& IS_R1_PAR_ERR
) {
3316 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3318 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3321 if (hwstatus
& IS_R2_PAR_ERR
) {
3322 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3324 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3327 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3328 u16 pci_status
, pci_cmd
;
3330 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3331 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3333 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3334 pci_cmd
, pci_status
);
3336 /* Write the error bits back to clear them. */
3337 pci_status
&= PCI_STATUS_ERROR_BITS
;
3338 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3339 pci_write_config_word(pdev
, PCI_COMMAND
,
3340 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3341 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3342 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3344 /* if error still set then just ignore it */
3345 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3346 if (hwstatus
& IS_IRQ_STAT
) {
3347 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3348 hw
->intr_mask
&= ~IS_HW_ERR
;
3354 * Interrupt from PHY are handled in tasklet (softirq)
3355 * because accessing phy registers requires spin wait which might
3356 * cause excess interrupt latency.
3358 static void skge_extirq(unsigned long arg
)
3360 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3363 for (port
= 0; port
< hw
->ports
; port
++) {
3364 struct net_device
*dev
= hw
->dev
[port
];
3366 if (netif_running(dev
)) {
3367 struct skge_port
*skge
= netdev_priv(dev
);
3369 spin_lock(&hw
->phy_lock
);
3370 if (!is_genesis(hw
))
3371 yukon_phy_intr(skge
);
3372 else if (hw
->phy_type
== SK_PHY_BCOM
)
3373 bcom_phy_intr(skge
);
3374 spin_unlock(&hw
->phy_lock
);
3378 spin_lock_irq(&hw
->hw_lock
);
3379 hw
->intr_mask
|= IS_EXT_REG
;
3380 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3381 skge_read32(hw
, B0_IMSK
);
3382 spin_unlock_irq(&hw
->hw_lock
);
3385 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3387 struct skge_hw
*hw
= dev_id
;
3391 spin_lock(&hw
->hw_lock
);
3392 /* Reading this register masks IRQ */
3393 status
= skge_read32(hw
, B0_SP_ISRC
);
3394 if (status
== 0 || status
== ~0)
3398 status
&= hw
->intr_mask
;
3399 if (status
& IS_EXT_REG
) {
3400 hw
->intr_mask
&= ~IS_EXT_REG
;
3401 tasklet_schedule(&hw
->phy_task
);
3404 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3405 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3406 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3407 napi_schedule(&skge
->napi
);
3410 if (status
& IS_PA_TO_TX1
)
3411 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3413 if (status
& IS_PA_TO_RX1
) {
3414 ++hw
->dev
[0]->stats
.rx_over_errors
;
3415 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3419 if (status
& IS_MAC1
)
3420 skge_mac_intr(hw
, 0);
3423 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3425 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3426 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3427 napi_schedule(&skge
->napi
);
3430 if (status
& IS_PA_TO_RX2
) {
3431 ++hw
->dev
[1]->stats
.rx_over_errors
;
3432 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3435 if (status
& IS_PA_TO_TX2
)
3436 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3438 if (status
& IS_MAC2
)
3439 skge_mac_intr(hw
, 1);
3442 if (status
& IS_HW_ERR
)
3445 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3446 skge_read32(hw
, B0_IMSK
);
3447 spin_unlock(&hw
->hw_lock
);
3449 return IRQ_RETVAL(handled
);
3452 #ifdef CONFIG_NET_POLL_CONTROLLER
3453 static void skge_netpoll(struct net_device
*dev
)
3455 struct skge_port
*skge
= netdev_priv(dev
);
3457 disable_irq(dev
->irq
);
3458 skge_intr(dev
->irq
, skge
->hw
);
3459 enable_irq(dev
->irq
);
3463 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3465 struct skge_port
*skge
= netdev_priv(dev
);
3466 struct skge_hw
*hw
= skge
->hw
;
3467 unsigned port
= skge
->port
;
3468 const struct sockaddr
*addr
= p
;
3471 if (!is_valid_ether_addr(addr
->sa_data
))
3472 return -EADDRNOTAVAIL
;
3474 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3476 if (!netif_running(dev
)) {
3477 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3478 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3481 spin_lock_bh(&hw
->phy_lock
);
3482 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3483 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3485 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3486 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3489 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3491 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3492 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3495 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3496 spin_unlock_bh(&hw
->phy_lock
);
3502 static const struct {
3506 { CHIP_ID_GENESIS
, "Genesis" },
3507 { CHIP_ID_YUKON
, "Yukon" },
3508 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3509 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3512 static const char *skge_board_name(const struct skge_hw
*hw
)
3515 static char buf
[16];
3517 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3518 if (skge_chips
[i
].id
== hw
->chip_id
)
3519 return skge_chips
[i
].name
;
3521 snprintf(buf
, sizeof(buf
), "chipid 0x%x", hw
->chip_id
);
3527 * Setup the board data structure, but don't bring up
3530 static int skge_reset(struct skge_hw
*hw
)
3533 u16 ctst
, pci_status
;
3534 u8 t8
, mac_cfg
, pmd_type
;
3537 ctst
= skge_read16(hw
, B0_CTST
);
3540 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3541 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3543 /* clear PCI errors, if any */
3544 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3545 skge_write8(hw
, B2_TST_CTRL2
, 0);
3547 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3548 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3549 pci_status
| PCI_STATUS_ERROR_BITS
);
3550 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3551 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3553 /* restore CLK_RUN bits (for Yukon-Lite) */
3554 skge_write16(hw
, B0_CTST
,
3555 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3557 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3558 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3559 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3560 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3562 switch (hw
->chip_id
) {
3563 case CHIP_ID_GENESIS
:
3564 #ifdef CONFIG_SKGE_GENESIS
3565 switch (hw
->phy_type
) {
3567 hw
->phy_addr
= PHY_ADDR_XMAC
;
3570 hw
->phy_addr
= PHY_ADDR_BCOM
;
3573 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3579 dev_err(&hw
->pdev
->dev
, "Genesis chip detected but not configured\n");
3584 case CHIP_ID_YUKON_LITE
:
3585 case CHIP_ID_YUKON_LP
:
3586 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3589 hw
->phy_addr
= PHY_ADDR_MARV
;
3593 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3598 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3599 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3600 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3602 /* read the adapters RAM size */
3603 t8
= skge_read8(hw
, B2_E_0
);
3604 if (is_genesis(hw
)) {
3606 /* special case: 4 x 64k x 36, offset = 0x80000 */
3607 hw
->ram_size
= 0x100000;
3608 hw
->ram_offset
= 0x80000;
3610 hw
->ram_size
= t8
* 512;
3612 hw
->ram_size
= 0x20000;
3614 hw
->ram_size
= t8
* 4096;
3616 hw
->intr_mask
= IS_HW_ERR
;
3618 /* Use PHY IRQ for all but fiber based Genesis board */
3619 if (!(is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
))
3620 hw
->intr_mask
|= IS_EXT_REG
;
3625 /* switch power to VCC (WA for VAUX problem) */
3626 skge_write8(hw
, B0_POWER_CTRL
,
3627 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3629 /* avoid boards with stuck Hardware error bits */
3630 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3631 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3632 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3633 hw
->intr_mask
&= ~IS_HW_ERR
;
3636 /* Clear PHY COMA */
3637 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3638 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3639 reg
&= ~PCI_PHY_COMA
;
3640 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3641 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3644 for (i
= 0; i
< hw
->ports
; i
++) {
3645 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3646 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3650 /* turn off hardware timer (unused) */
3651 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3652 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3653 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3655 /* enable the Tx Arbiters */
3656 for (i
= 0; i
< hw
->ports
; i
++)
3657 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3659 /* Initialize ram interface */
3660 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3662 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3663 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3664 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3665 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3666 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3667 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3668 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3669 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3670 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3671 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3672 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3673 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3675 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3677 /* Set interrupt moderation for Transmit only
3678 * Receive interrupts avoided by NAPI
3680 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3681 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3682 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3684 /* Leave irq disabled until first port is brought up. */
3685 skge_write32(hw
, B0_IMSK
, 0);
3687 for (i
= 0; i
< hw
->ports
; i
++) {
3689 genesis_reset(hw
, i
);
3698 #ifdef CONFIG_SKGE_DEBUG
3700 static struct dentry
*skge_debug
;
3702 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3704 struct net_device
*dev
= seq
->private;
3705 const struct skge_port
*skge
= netdev_priv(dev
);
3706 const struct skge_hw
*hw
= skge
->hw
;
3707 const struct skge_element
*e
;
3709 if (!netif_running(dev
))
3712 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3713 skge_read32(hw
, B0_IMSK
));
3715 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3716 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3717 const struct skge_tx_desc
*t
= e
->desc
;
3718 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3719 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3720 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3723 seq_puts(seq
, "\nRx Ring:\n");
3724 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3725 const struct skge_rx_desc
*r
= e
->desc
;
3727 if (r
->control
& BMU_OWN
)
3730 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3731 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3732 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3738 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3740 return single_open(file
, skge_debug_show
, inode
->i_private
);
3743 static const struct file_operations skge_debug_fops
= {
3744 .owner
= THIS_MODULE
,
3745 .open
= skge_debug_open
,
3747 .llseek
= seq_lseek
,
3748 .release
= single_release
,
3752 * Use network device events to create/remove/rename
3753 * debugfs file entries
3755 static int skge_device_event(struct notifier_block
*unused
,
3756 unsigned long event
, void *ptr
)
3758 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
3759 struct skge_port
*skge
;
3762 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3765 skge
= netdev_priv(dev
);
3767 case NETDEV_CHANGENAME
:
3768 if (skge
->debugfs
) {
3769 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3770 skge_debug
, dev
->name
);
3774 netdev_info(dev
, "rename failed\n");
3775 debugfs_remove(skge
->debugfs
);
3780 case NETDEV_GOING_DOWN
:
3781 if (skge
->debugfs
) {
3782 debugfs_remove(skge
->debugfs
);
3783 skge
->debugfs
= NULL
;
3788 d
= debugfs_create_file(dev
->name
, 0444,
3791 if (!d
|| IS_ERR(d
))
3792 netdev_info(dev
, "debugfs create failed\n");
3802 static struct notifier_block skge_notifier
= {
3803 .notifier_call
= skge_device_event
,
3807 static __init
void skge_debug_init(void)
3811 ent
= debugfs_create_dir("skge", NULL
);
3812 if (!ent
|| IS_ERR(ent
)) {
3813 pr_info("debugfs create directory failed\n");
3818 register_netdevice_notifier(&skge_notifier
);
3821 static __exit
void skge_debug_cleanup(void)
3824 unregister_netdevice_notifier(&skge_notifier
);
3825 debugfs_remove(skge_debug
);
3831 #define skge_debug_init()
3832 #define skge_debug_cleanup()
3835 static const struct net_device_ops skge_netdev_ops
= {
3836 .ndo_open
= skge_up
,
3837 .ndo_stop
= skge_down
,
3838 .ndo_start_xmit
= skge_xmit_frame
,
3839 .ndo_do_ioctl
= skge_ioctl
,
3840 .ndo_get_stats
= skge_get_stats
,
3841 .ndo_tx_timeout
= skge_tx_timeout
,
3842 .ndo_change_mtu
= skge_change_mtu
,
3843 .ndo_validate_addr
= eth_validate_addr
,
3844 .ndo_set_rx_mode
= skge_set_multicast
,
3845 .ndo_set_mac_address
= skge_set_mac_address
,
3846 #ifdef CONFIG_NET_POLL_CONTROLLER
3847 .ndo_poll_controller
= skge_netpoll
,
3852 /* Initialize network device */
3853 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3856 struct skge_port
*skge
;
3857 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3862 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3863 dev
->netdev_ops
= &skge_netdev_ops
;
3864 dev
->ethtool_ops
= &skge_ethtool_ops
;
3865 dev
->watchdog_timeo
= TX_WATCHDOG
;
3866 dev
->irq
= hw
->pdev
->irq
;
3868 /* MTU range: 60 - 9000 */
3869 dev
->min_mtu
= ETH_ZLEN
;
3870 dev
->max_mtu
= ETH_JUMBO_MTU
;
3873 dev
->features
|= NETIF_F_HIGHDMA
;
3875 skge
= netdev_priv(dev
);
3876 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3879 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3881 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3882 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3884 /* Auto speed and flow control */
3885 skge
->autoneg
= AUTONEG_ENABLE
;
3886 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3889 skge
->advertising
= skge_supported_modes(hw
);
3891 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3892 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3893 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3896 hw
->dev
[port
] = dev
;
3900 /* Only used for Genesis XMAC */
3902 timer_setup(&skge
->link_timer
, xm_link_timer
, 0);
3904 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3906 dev
->features
|= dev
->hw_features
;
3909 /* read the mac address */
3910 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3915 static void skge_show_addr(struct net_device
*dev
)
3917 const struct skge_port
*skge
= netdev_priv(dev
);
3919 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3922 static int only_32bit_dma
;
3924 static int skge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
3926 struct net_device
*dev
, *dev1
;
3928 int err
, using_dac
= 0;
3930 err
= pci_enable_device(pdev
);
3932 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3936 err
= pci_request_regions(pdev
, DRV_NAME
);
3938 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3939 goto err_out_disable_pdev
;
3942 pci_set_master(pdev
);
3944 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3946 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3947 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3949 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3953 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3954 goto err_out_free_regions
;
3958 /* byte swap descriptors in hardware */
3962 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3963 reg
|= PCI_REV_DESC
;
3964 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3969 /* space for skge@pci:0000:04:00.0 */
3970 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3971 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3973 goto err_out_free_regions
;
3975 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3978 spin_lock_init(&hw
->hw_lock
);
3979 spin_lock_init(&hw
->phy_lock
);
3980 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3982 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3984 dev_err(&pdev
->dev
, "cannot map device registers\n");
3985 goto err_out_free_hw
;
3988 err
= skge_reset(hw
);
3990 goto err_out_iounmap
;
3992 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3994 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3995 skge_board_name(hw
), hw
->chip_rev
);
3997 dev
= skge_devinit(hw
, 0, using_dac
);
4000 goto err_out_led_off
;
4003 /* Some motherboards are broken and has zero in ROM. */
4004 if (!is_valid_ether_addr(dev
->dev_addr
))
4005 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
4007 err
= register_netdev(dev
);
4009 dev_err(&pdev
->dev
, "cannot register net device\n");
4010 goto err_out_free_netdev
;
4013 skge_show_addr(dev
);
4015 if (hw
->ports
> 1) {
4016 dev1
= skge_devinit(hw
, 1, using_dac
);
4019 goto err_out_unregister
;
4022 err
= register_netdev(dev1
);
4024 dev_err(&pdev
->dev
, "cannot register second net device\n");
4025 goto err_out_free_dev1
;
4028 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
,
4031 dev_err(&pdev
->dev
, "cannot assign irq %d\n",
4033 goto err_out_unregister_dev1
;
4036 skge_show_addr(dev1
);
4038 pci_set_drvdata(pdev
, hw
);
4042 err_out_unregister_dev1
:
4043 unregister_netdev(dev1
);
4047 unregister_netdev(dev
);
4048 err_out_free_netdev
:
4051 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4056 err_out_free_regions
:
4057 pci_release_regions(pdev
);
4058 err_out_disable_pdev
:
4059 pci_disable_device(pdev
);
4064 static void skge_remove(struct pci_dev
*pdev
)
4066 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4067 struct net_device
*dev0
, *dev1
;
4074 unregister_netdev(dev1
);
4076 unregister_netdev(dev0
);
4078 tasklet_kill(&hw
->phy_task
);
4080 spin_lock_irq(&hw
->hw_lock
);
4083 if (hw
->ports
> 1) {
4084 skge_write32(hw
, B0_IMSK
, 0);
4085 skge_read32(hw
, B0_IMSK
);
4087 spin_unlock_irq(&hw
->hw_lock
);
4089 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4090 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4093 free_irq(pdev
->irq
, hw
);
4094 pci_release_regions(pdev
);
4095 pci_disable_device(pdev
);
4104 #ifdef CONFIG_PM_SLEEP
4105 static int skge_suspend(struct device
*dev
)
4107 struct pci_dev
*pdev
= to_pci_dev(dev
);
4108 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4114 for (i
= 0; i
< hw
->ports
; i
++) {
4115 struct net_device
*dev
= hw
->dev
[i
];
4116 struct skge_port
*skge
= netdev_priv(dev
);
4118 if (netif_running(dev
))
4122 skge_wol_init(skge
);
4125 skge_write32(hw
, B0_IMSK
, 0);
4130 static int skge_resume(struct device
*dev
)
4132 struct pci_dev
*pdev
= to_pci_dev(dev
);
4133 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4139 err
= skge_reset(hw
);
4143 for (i
= 0; i
< hw
->ports
; i
++) {
4144 struct net_device
*dev
= hw
->dev
[i
];
4146 if (netif_running(dev
)) {
4150 netdev_err(dev
, "could not up: %d\n", err
);
4160 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4161 #define SKGE_PM_OPS (&skge_pm_ops)
4165 #define SKGE_PM_OPS NULL
4166 #endif /* CONFIG_PM_SLEEP */
4168 static void skge_shutdown(struct pci_dev
*pdev
)
4170 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4176 for (i
= 0; i
< hw
->ports
; i
++) {
4177 struct net_device
*dev
= hw
->dev
[i
];
4178 struct skge_port
*skge
= netdev_priv(dev
);
4181 skge_wol_init(skge
);
4184 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4185 pci_set_power_state(pdev
, PCI_D3hot
);
4188 static struct pci_driver skge_driver
= {
4190 .id_table
= skge_id_table
,
4191 .probe
= skge_probe
,
4192 .remove
= skge_remove
,
4193 .shutdown
= skge_shutdown
,
4194 .driver
.pm
= SKGE_PM_OPS
,
4197 static const struct dmi_system_id skge_32bit_dma_boards
[] = {
4199 .ident
= "Gigabyte nForce boards",
4201 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4202 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4206 .ident
= "ASUS P5NSLI",
4208 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTeK Computer INC."),
4209 DMI_MATCH(DMI_BOARD_NAME
, "P5NSLI")
4213 .ident
= "FUJITSU SIEMENS A8NE-FM",
4215 DMI_MATCH(DMI_BOARD_VENDOR
, "ASUSTek Computer INC."),
4216 DMI_MATCH(DMI_BOARD_NAME
, "A8NE-FM")
4222 static int __init
skge_init_module(void)
4224 if (dmi_check_system(skge_32bit_dma_boards
))
4227 return pci_register_driver(&skge_driver
);
4230 static void __exit
skge_cleanup_module(void)
4232 pci_unregister_driver(&skge_driver
);
4233 skge_debug_cleanup();
4236 module_init(skge_init_module
);
4237 module_exit(skge_cleanup_module
);