1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 /* Theory of operation:
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
33 * Receive: the packet's reception time is converted to an appropriate
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
47 #include "mcdi_pcol.h"
49 #include "farch_regs.h"
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
83 #define PTP_DPORT_OFFSET 22
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
97 #define PTP_V1_MIN_LENGTH 64
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
119 #define PTP_V2_MIN_LENGTH 63
121 #define PTP_MIN_LENGTH 63
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
130 #define PTP_VERSION_V1 1
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
135 enum ptp_packet_state
{
136 PTP_PACKET_STATE_UNMATCHED
= 0,
137 PTP_PACKET_STATE_MATCHED
,
138 PTP_PACKET_STATE_TIMED_OUT
,
139 PTP_PACKET_STATE_MATCH_UNWANTED
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
152 /* Precalculate scale word to avoid long long division at runtime */
153 /* This is equivalent to 2^66 / 10^9. */
154 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
156 /* How much to shift down after scaling to convert to FP40 */
157 #define PPB_SHIFT_FP40 26
159 #define PPB_SHIFT_FP44 22
161 #define PTP_SYNC_ATTEMPTS 4
164 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
165 * @words: UUID and (partial) sequence number
166 * @expiry: Time after which the packet should be delivered irrespective of
168 * @state: The state of the packet - whether it is ready for processing or
169 * whether that is of no interest.
171 struct efx_ptp_match
{
172 u32 words
[DIV_ROUND_UP(PTP_V1_UUID_LENGTH
, 4)];
173 unsigned long expiry
;
174 enum ptp_packet_state state
;
178 * struct efx_ptp_event_rx - A PTP receive event (from MC)
179 * @seq0: First part of (PTP) UUID
180 * @seq1: Second part of (PTP) UUID and sequence number
181 * @hwtimestamp: Event timestamp
183 struct efx_ptp_event_rx
{
184 struct list_head link
;
188 unsigned long expiry
;
192 * struct efx_ptp_timeset - Synchronisation between host and MC
193 * @host_start: Host time immediately before hardware timestamp taken
194 * @major: Hardware timestamp, major
195 * @minor: Hardware timestamp, minor
196 * @host_end: Host time immediately after hardware timestamp taken
197 * @wait: Number of NIC clock ticks between hardware timestamp being read and
198 * host end time being seen
199 * @window: Difference of host_end and host_start
200 * @valid: Whether this timeset is valid
202 struct efx_ptp_timeset
{
208 u32 window
; /* Derived: end - start, allowing for wrap */
212 * struct efx_ptp_data - Precision Time Protocol (PTP) state
213 * @efx: The NIC context
214 * @channel: The PTP channel (Siena only)
215 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
217 * @rxq: Receive SKB queue (awaiting timestamps)
218 * @txq: Transmit SKB queue
219 * @evt_list: List of MC receive events awaiting packets
220 * @evt_free_list: List of free events
221 * @evt_lock: Lock for manipulating evt_list and evt_free_list
222 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
223 * @workwq: Work queue for processing pending PTP operations
225 * @reset_required: A serious error has occurred and the PTP task needs to be
226 * reset (disable, enable).
227 * @rxfilter_event: Receive filter when operating
228 * @rxfilter_general: Receive filter when operating
229 * @config: Current timestamp configuration
230 * @enabled: PTP operation enabled
231 * @mode: Mode in which PTP operating (PTP version)
232 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
233 * @nic_to_kernel_time: Function to convert from NIC to kernel time
234 * @nic_time.minor_max: Wrap point for NIC minor times
235 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
236 * in packet prefix and last MCDI time sync event i.e. how much earlier than
237 * the last sync event time a packet timestamp can be.
238 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
239 * in packet prefix and last MCDI time sync event i.e. how much later than
240 * the last sync event time a packet timestamp can be.
241 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
242 * field in MCDI time sync event.
243 * @min_synchronisation_ns: Minimum acceptable corrected sync window
244 * @capabilities: Capabilities flags from the NIC
245 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
247 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
249 * @ts_corrections.pps_out: PPS output error (information only)
250 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
251 * @ts_corrections.general_tx: Required driver correction of general packet
252 * transmit timestamps
253 * @ts_corrections.general_rx: Required driver correction of general packet
255 * @evt_frags: Partly assembled PTP events
256 * @evt_frag_idx: Current fragment number
257 * @evt_code: Last event code
258 * @start: Address at which MC indicates ready for synchronisation
259 * @host_time_pps: Host time at last PPS
260 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
261 * frequency adjustment into a fixed point fractional nanosecond format.
262 * @current_adjfreq: Current ppb adjustment.
263 * @phc_clock: Pointer to registered phc device (if primary function)
264 * @phc_clock_info: Registration structure for phc device
265 * @pps_work: pps work task for handling pps events
266 * @pps_workwq: pps work queue
267 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
268 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
269 * allocations in main data path).
270 * @good_syncs: Number of successful synchronisations.
271 * @fast_syncs: Number of synchronisations requiring short delay
272 * @bad_syncs: Number of failed synchronisations.
273 * @sync_timeouts: Number of synchronisation timeouts
274 * @no_time_syncs: Number of synchronisations with no good times.
275 * @invalid_sync_windows: Number of sync windows with bad durations.
276 * @undersize_sync_windows: Number of corrected sync windows that are too small
277 * @oversize_sync_windows: Number of corrected sync windows that are too large
278 * @rx_no_timestamp: Number of packets received without a timestamp.
279 * @timeset: Last set of synchronisation statistics.
280 * @xmit_skb: Transmit SKB function.
282 struct efx_ptp_data
{
284 struct efx_channel
*channel
;
286 struct sk_buff_head rxq
;
287 struct sk_buff_head txq
;
288 struct list_head evt_list
;
289 struct list_head evt_free_list
;
291 struct efx_ptp_event_rx rx_evts
[MAX_RECEIVE_EVENTS
];
292 struct workqueue_struct
*workwq
;
293 struct work_struct work
;
296 u32 rxfilter_general
;
297 bool rxfilter_installed
;
298 struct hwtstamp_config config
;
301 void (*ns_to_nic_time
)(s64 ns
, u32
*nic_major
, u32
*nic_minor
);
302 ktime_t (*nic_to_kernel_time
)(u32 nic_major
, u32 nic_minor
,
306 u32 sync_event_diff_min
;
307 u32 sync_event_diff_max
;
308 unsigned int sync_event_minor_shift
;
310 unsigned int min_synchronisation_ns
;
311 unsigned int capabilities
;
320 efx_qword_t evt_frags
[MAX_EVENT_FRAGS
];
323 struct efx_buffer start
;
324 struct pps_event_time host_time_pps
;
325 unsigned int adjfreq_ppb_shift
;
327 struct ptp_clock
*phc_clock
;
328 struct ptp_clock_info phc_clock_info
;
329 struct work_struct pps_work
;
330 struct workqueue_struct
*pps_workwq
;
332 _MCDI_DECLARE_BUF(txbuf
, MC_CMD_PTP_IN_TRANSMIT_LENMAX
);
334 unsigned int good_syncs
;
335 unsigned int fast_syncs
;
336 unsigned int bad_syncs
;
337 unsigned int sync_timeouts
;
338 unsigned int no_time_syncs
;
339 unsigned int invalid_sync_windows
;
340 unsigned int undersize_sync_windows
;
341 unsigned int oversize_sync_windows
;
342 unsigned int rx_no_timestamp
;
343 struct efx_ptp_timeset
344 timeset
[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM
];
345 void (*xmit_skb
)(struct efx_nic
*efx
, struct sk_buff
*skb
);
348 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
);
349 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
);
350 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
);
351 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
352 const struct timespec64
*e_ts
);
353 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
354 struct ptp_clock_request
*request
, int on
);
356 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic
*efx
)
358 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
360 return ((efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) &&
361 (nic_data
->datapath_caps2
&
362 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN
)
366 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
367 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
369 static bool efx_ptp_want_txqs(struct efx_channel
*channel
)
371 return efx_ptp_use_mac_tx_timestamps(channel
->efx
);
374 #define PTP_SW_STAT(ext_name, field_name) \
375 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
376 #define PTP_MC_STAT(ext_name, mcdi_name) \
377 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
378 static const struct efx_hw_stat_desc efx_ptp_stat_desc
[] = {
379 PTP_SW_STAT(ptp_good_syncs
, good_syncs
),
380 PTP_SW_STAT(ptp_fast_syncs
, fast_syncs
),
381 PTP_SW_STAT(ptp_bad_syncs
, bad_syncs
),
382 PTP_SW_STAT(ptp_sync_timeouts
, sync_timeouts
),
383 PTP_SW_STAT(ptp_no_time_syncs
, no_time_syncs
),
384 PTP_SW_STAT(ptp_invalid_sync_windows
, invalid_sync_windows
),
385 PTP_SW_STAT(ptp_undersize_sync_windows
, undersize_sync_windows
),
386 PTP_SW_STAT(ptp_oversize_sync_windows
, oversize_sync_windows
),
387 PTP_SW_STAT(ptp_rx_no_timestamp
, rx_no_timestamp
),
388 PTP_MC_STAT(ptp_tx_timestamp_packets
, TX
),
389 PTP_MC_STAT(ptp_rx_timestamp_packets
, RX
),
390 PTP_MC_STAT(ptp_timestamp_packets
, TS
),
391 PTP_MC_STAT(ptp_filter_matches
, FM
),
392 PTP_MC_STAT(ptp_non_filter_matches
, NFM
),
394 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
395 static const unsigned long efx_ptp_stat_mask
[] = {
396 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT
) - 1] = ~0UL,
399 size_t efx_ptp_describe_stats(struct efx_nic
*efx
, u8
*strings
)
404 return efx_nic_describe_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
405 efx_ptp_stat_mask
, strings
);
408 size_t efx_ptp_update_stats(struct efx_nic
*efx
, u64
*stats
)
410 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_STATUS_LEN
);
411 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_STATUS_LEN
);
418 /* Copy software statistics */
419 for (i
= 0; i
< PTP_STAT_COUNT
; i
++) {
420 if (efx_ptp_stat_desc
[i
].dma_width
)
422 stats
[i
] = *(unsigned int *)((char *)efx
->ptp_data
+
423 efx_ptp_stat_desc
[i
].offset
);
426 /* Fetch MC statistics. We *must* fill in all statistics or
427 * risk leaking kernel memory to userland, so if the MCDI
428 * request fails we pretend we got zeroes.
430 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_STATUS
);
431 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
432 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
433 outbuf
, sizeof(outbuf
), NULL
);
435 memset(outbuf
, 0, sizeof(outbuf
));
436 efx_nic_update_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
438 stats
, _MCDI_PTR(outbuf
, 0), false);
440 return PTP_STAT_COUNT
;
443 /* For Siena platforms NIC time is s and ns */
444 static void efx_ptp_ns_to_s_ns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
446 struct timespec64 ts
= ns_to_timespec64(ns
);
447 *nic_major
= (u32
)ts
.tv_sec
;
448 *nic_minor
= ts
.tv_nsec
;
451 static ktime_t
efx_ptp_s_ns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
454 ktime_t kt
= ktime_set(nic_major
, nic_minor
);
456 kt
= ktime_add_ns(kt
, (u64
)correction
);
458 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
462 /* To convert from s27 format to ns we multiply then divide by a power of 2.
463 * For the conversion from ns to s27, the operation is also converted to a
464 * multiply and shift.
466 #define S27_TO_NS_SHIFT (27)
467 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
468 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
469 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
471 /* For Huntington platforms NIC time is in seconds and fractions of a second
472 * where the minor register only uses 27 bits in units of 2^-27s.
474 static void efx_ptp_ns_to_s27(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
476 struct timespec64 ts
= ns_to_timespec64(ns
);
477 u32 maj
= (u32
)ts
.tv_sec
;
478 u32 min
= (u32
)(((u64
)ts
.tv_nsec
* NS_TO_S27_MULT
+
479 (1ULL << (NS_TO_S27_SHIFT
- 1))) >> NS_TO_S27_SHIFT
);
481 /* The conversion can result in the minor value exceeding the maximum.
482 * In this case, round up to the next second.
484 if (min
>= S27_MINOR_MAX
) {
485 min
-= S27_MINOR_MAX
;
493 static inline ktime_t
efx_ptp_s27_to_ktime(u32 nic_major
, u32 nic_minor
)
495 u32 ns
= (u32
)(((u64
)nic_minor
* NSEC_PER_SEC
+
496 (1ULL << (S27_TO_NS_SHIFT
- 1))) >> S27_TO_NS_SHIFT
);
497 return ktime_set(nic_major
, ns
);
500 static ktime_t
efx_ptp_s27_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
503 /* Apply the correction and deal with carry */
504 nic_minor
+= correction
;
505 if ((s32
)nic_minor
< 0) {
506 nic_minor
+= S27_MINOR_MAX
;
508 } else if (nic_minor
>= S27_MINOR_MAX
) {
509 nic_minor
-= S27_MINOR_MAX
;
513 return efx_ptp_s27_to_ktime(nic_major
, nic_minor
);
516 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
517 static void efx_ptp_ns_to_s_qns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
519 struct timespec64 ts
= ns_to_timespec64(ns
);
521 *nic_major
= (u32
)ts
.tv_sec
;
522 *nic_minor
= ts
.tv_nsec
* 4;
525 static ktime_t
efx_ptp_s_qns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
530 nic_minor
= DIV_ROUND_CLOSEST(nic_minor
, 4);
531 correction
= DIV_ROUND_CLOSEST(correction
, 4);
533 kt
= ktime_set(nic_major
, nic_minor
);
536 kt
= ktime_add_ns(kt
, (u64
)correction
);
538 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
542 struct efx_channel
*efx_ptp_channel(struct efx_nic
*efx
)
544 return efx
->ptp_data
? efx
->ptp_data
->channel
: NULL
;
547 static u32
last_sync_timestamp_major(struct efx_nic
*efx
)
549 struct efx_channel
*channel
= efx_ptp_channel(efx
);
553 major
= channel
->sync_timestamp_major
;
557 /* The 8000 series and later can provide the time from the MAC, which is only
558 * 48 bits long and provides meta-information in the top 2 bits.
561 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic
*efx
,
562 struct efx_ptp_data
*ptp
,
563 u32 nic_major
, u32 nic_minor
,
570 if (!(nic_major
& 0x80000000)) {
571 WARN_ON_ONCE(nic_major
>> 16);
573 /* Medford provides 48 bits of timestamp, so we must get the top
574 * 16 bits from the timesync event state.
576 * We only have the lower 16 bits of the time now, but we do
577 * have a full resolution timestamp at some point in past. As
578 * long as the difference between the (real) now and the sync
579 * is less than 2^15, then we can reconstruct the difference
580 * between those two numbers using only the lower 16 bits of
585 * a - b = ((a mod k) - b) mod k
587 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
588 * (a mod k) and b, so can calculate the delta, a - b.
591 sync_timestamp
= last_sync_timestamp_major(efx
);
593 /* Because delta is s16 this does an implicit mask down to
594 * 16 bits which is what we need, assuming
595 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
596 * we can deal with the (unlikely) case of sync timestamps
597 * arriving from the future.
599 delta
= nic_major
- sync_timestamp
;
601 /* Recover the fully specified time now, by applying the offset
602 * to the (fully specified) sync time.
604 nic_major
= sync_timestamp
+ delta
;
606 kt
= ptp
->nic_to_kernel_time(nic_major
, nic_minor
,
612 ktime_t
efx_ptp_nic_to_kernel_time(struct efx_tx_queue
*tx_queue
)
614 struct efx_nic
*efx
= tx_queue
->efx
;
615 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
618 if (efx_ptp_use_mac_tx_timestamps(efx
))
619 kt
= efx_ptp_mac_nic_to_ktime_correction(efx
, ptp
,
620 tx_queue
->completed_timestamp_major
,
621 tx_queue
->completed_timestamp_minor
,
622 ptp
->ts_corrections
.general_tx
);
624 kt
= ptp
->nic_to_kernel_time(
625 tx_queue
->completed_timestamp_major
,
626 tx_queue
->completed_timestamp_minor
,
627 ptp
->ts_corrections
.general_tx
);
631 /* Get PTP attributes and set up time conversions */
632 static int efx_ptp_get_attributes(struct efx_nic
*efx
)
634 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN
);
635 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
);
636 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
641 /* Get the PTP attributes. If the NIC doesn't support the operation we
642 * use the default format for compatibility with older NICs i.e.
643 * seconds and nanoseconds.
645 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_GET_ATTRIBUTES
);
646 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
647 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
648 outbuf
, sizeof(outbuf
), &out_len
);
650 fmt
= MCDI_DWORD(outbuf
, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT
);
651 } else if (rc
== -EINVAL
) {
652 fmt
= MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
;
653 } else if (rc
== -EPERM
) {
654 netif_info(efx
, probe
, efx
->net_dev
, "no PTP support\n");
657 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
),
658 outbuf
, sizeof(outbuf
), rc
);
663 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION
:
664 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s27
;
665 ptp
->nic_to_kernel_time
= efx_ptp_s27_to_ktime_correction
;
666 ptp
->nic_time
.minor_max
= 1 << 27;
667 ptp
->nic_time
.sync_event_minor_shift
= 19;
669 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
:
670 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_ns
;
671 ptp
->nic_to_kernel_time
= efx_ptp_s_ns_to_ktime_correction
;
672 ptp
->nic_time
.minor_max
= 1000000000;
673 ptp
->nic_time
.sync_event_minor_shift
= 22;
675 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS
:
676 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_qns
;
677 ptp
->nic_to_kernel_time
= efx_ptp_s_qns_to_ktime_correction
;
678 ptp
->nic_time
.minor_max
= 4000000000UL;
679 ptp
->nic_time
.sync_event_minor_shift
= 24;
685 /* Precalculate acceptable difference between the minor time in the
686 * packet prefix and the last MCDI time sync event. We expect the
687 * packet prefix timestamp to be after of sync event by up to one
688 * sync event interval (0.25s) but we allow it to exceed this by a
689 * fuzz factor of (0.1s)
691 ptp
->nic_time
.sync_event_diff_min
= ptp
->nic_time
.minor_max
692 - (ptp
->nic_time
.minor_max
/ 10);
693 ptp
->nic_time
.sync_event_diff_max
= (ptp
->nic_time
.minor_max
/ 4)
694 + (ptp
->nic_time
.minor_max
/ 10);
696 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
697 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
698 * a value to use for the minimum acceptable corrected synchronization
699 * window and may return further capabilities.
700 * If we have the extra information store it. For older firmware that
701 * does not implement the extended command use the default value.
704 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST
)
705 ptp
->min_synchronisation_ns
=
707 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN
);
709 ptp
->min_synchronisation_ns
= DEFAULT_MIN_SYNCHRONISATION_NS
;
712 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
)
713 ptp
->capabilities
= MCDI_DWORD(outbuf
,
714 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES
);
716 ptp
->capabilities
= 0;
718 /* Set up the shift for conversion between frequency
719 * adjustments in parts-per-billion and the fixed-point
720 * fractional ns format that the adapter uses.
722 if (ptp
->capabilities
& (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN
))
723 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP44
;
725 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP40
;
730 /* Get PTP timestamp corrections */
731 static int efx_ptp_get_timestamp_corrections(struct efx_nic
*efx
)
733 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN
);
734 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
);
738 /* Get the timestamp corrections from the NIC. If this operation is
739 * not supported (older NICs) then no correction is required.
741 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
,
742 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS
);
743 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
745 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
746 outbuf
, sizeof(outbuf
), &out_len
);
748 efx
->ptp_data
->ts_corrections
.ptp_tx
= MCDI_DWORD(outbuf
,
749 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT
);
750 efx
->ptp_data
->ts_corrections
.ptp_rx
= MCDI_DWORD(outbuf
,
751 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE
);
752 efx
->ptp_data
->ts_corrections
.pps_out
= MCDI_DWORD(outbuf
,
753 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT
);
754 efx
->ptp_data
->ts_corrections
.pps_in
= MCDI_DWORD(outbuf
,
755 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN
);
757 if (out_len
>= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
) {
758 efx
->ptp_data
->ts_corrections
.general_tx
= MCDI_DWORD(
760 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX
);
761 efx
->ptp_data
->ts_corrections
.general_rx
= MCDI_DWORD(
763 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX
);
765 efx
->ptp_data
->ts_corrections
.general_tx
=
766 efx
->ptp_data
->ts_corrections
.ptp_tx
;
767 efx
->ptp_data
->ts_corrections
.general_rx
=
768 efx
->ptp_data
->ts_corrections
.ptp_rx
;
770 } else if (rc
== -EINVAL
) {
771 efx
->ptp_data
->ts_corrections
.ptp_tx
= 0;
772 efx
->ptp_data
->ts_corrections
.ptp_rx
= 0;
773 efx
->ptp_data
->ts_corrections
.pps_out
= 0;
774 efx
->ptp_data
->ts_corrections
.pps_in
= 0;
775 efx
->ptp_data
->ts_corrections
.general_tx
= 0;
776 efx
->ptp_data
->ts_corrections
.general_rx
= 0;
778 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
), outbuf
,
786 /* Enable MCDI PTP support. */
787 static int efx_ptp_enable(struct efx_nic
*efx
)
789 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ENABLE_LEN
);
790 MCDI_DECLARE_BUF_ERR(outbuf
);
793 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ENABLE
);
794 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
795 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_QUEUE
,
796 efx
->ptp_data
->channel
?
797 efx
->ptp_data
->channel
->channel
: 0);
798 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_MODE
, efx
->ptp_data
->mode
);
800 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
801 outbuf
, sizeof(outbuf
), NULL
);
802 rc
= (rc
== -EALREADY
) ? 0 : rc
;
804 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
805 MC_CMD_PTP_IN_ENABLE_LEN
,
806 outbuf
, sizeof(outbuf
), rc
);
810 /* Disable MCDI PTP support.
812 * Note that this function should never rely on the presence of ptp_data -
813 * may be called before that exists.
815 static int efx_ptp_disable(struct efx_nic
*efx
)
817 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_DISABLE_LEN
);
818 MCDI_DECLARE_BUF_ERR(outbuf
);
821 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_DISABLE
);
822 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
823 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
824 outbuf
, sizeof(outbuf
), NULL
);
825 rc
= (rc
== -EALREADY
) ? 0 : rc
;
826 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
827 * should only have been called during probe.
829 if (rc
== -ENOSYS
|| rc
== -EPERM
)
830 netif_info(efx
, probe
, efx
->net_dev
, "no PTP support\n");
832 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
833 MC_CMD_PTP_IN_DISABLE_LEN
,
834 outbuf
, sizeof(outbuf
), rc
);
838 static void efx_ptp_deliver_rx_queue(struct sk_buff_head
*q
)
842 while ((skb
= skb_dequeue(q
))) {
844 netif_receive_skb(skb
);
849 static void efx_ptp_handle_no_channel(struct efx_nic
*efx
)
851 netif_err(efx
, drv
, efx
->net_dev
,
852 "ERROR: PTP requires MSI-X and 1 additional interrupt"
853 "vector. PTP disabled\n");
856 /* Repeatedly send the host time to the MC which will capture the hardware
859 static void efx_ptp_send_times(struct efx_nic
*efx
,
860 struct pps_event_time
*last_time
)
862 struct pps_event_time now
;
863 struct timespec64 limit
;
864 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
865 int *mc_running
= ptp
->start
.addr
;
869 timespec64_add_ns(&limit
, SYNCHRONISE_PERIOD_NS
);
871 /* Write host time for specified period or until MC is done */
872 while ((timespec64_compare(&now
.ts_real
, &limit
) < 0) &&
873 READ_ONCE(*mc_running
)) {
874 struct timespec64 update_time
;
875 unsigned int host_time
;
877 /* Don't update continuously to avoid saturating the PCIe bus */
878 update_time
= now
.ts_real
;
879 timespec64_add_ns(&update_time
, SYNCHRONISATION_GRANULARITY_NS
);
882 } while ((timespec64_compare(&now
.ts_real
, &update_time
) < 0) &&
883 READ_ONCE(*mc_running
));
885 /* Synchronise NIC with single word of time only */
886 host_time
= (now
.ts_real
.tv_sec
<< MC_NANOSECOND_BITS
|
887 now
.ts_real
.tv_nsec
);
888 /* Update host time in NIC memory */
889 efx
->type
->ptp_write_host_time(efx
, host_time
);
894 /* Read a timeset from the MC's results and partial process. */
895 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data
),
896 struct efx_ptp_timeset
*timeset
)
898 unsigned start_ns
, end_ns
;
900 timeset
->host_start
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTSTART
);
901 timeset
->major
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MAJOR
);
902 timeset
->minor
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MINOR
);
903 timeset
->host_end
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTEND
),
904 timeset
->wait
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_WAITNS
);
907 start_ns
= timeset
->host_start
& MC_NANOSECOND_MASK
;
908 end_ns
= timeset
->host_end
& MC_NANOSECOND_MASK
;
909 /* Allow for rollover */
910 if (end_ns
< start_ns
)
911 end_ns
+= NSEC_PER_SEC
;
912 /* Determine duration of operation */
913 timeset
->window
= end_ns
- start_ns
;
916 /* Process times received from MC.
918 * Extract times from returned results, and establish the minimum value
919 * seen. The minimum value represents the "best" possible time and events
920 * too much greater than this are rejected - the machine is, perhaps, too
921 * busy. A number of readings are taken so that, hopefully, at least one good
922 * synchronisation will be seen in the results.
925 efx_ptp_process_times(struct efx_nic
*efx
, MCDI_DECLARE_STRUCT_PTR(synch_buf
),
926 size_t response_length
,
927 const struct pps_event_time
*last_time
)
929 unsigned number_readings
=
930 MCDI_VAR_ARRAY_LEN(response_length
,
931 PTP_OUT_SYNCHRONIZE_TIMESET
);
934 unsigned last_good
= 0;
935 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
938 struct timespec64 delta
;
941 if (number_readings
== 0)
944 /* Read the set of results and find the last good host-MC
945 * synchronization result. The MC times when it finishes reading the
946 * host time so the corrected window time should be fairly constant
947 * for a given platform. Increment stats for any results that appear
950 for (i
= 0; i
< number_readings
; i
++) {
951 s32 window
, corrected
;
952 struct timespec64 wait
;
954 efx_ptp_read_timeset(
955 MCDI_ARRAY_STRUCT_PTR(synch_buf
,
956 PTP_OUT_SYNCHRONIZE_TIMESET
, i
),
959 wait
= ktime_to_timespec64(
960 ptp
->nic_to_kernel_time(0, ptp
->timeset
[i
].wait
, 0));
961 window
= ptp
->timeset
[i
].window
;
962 corrected
= window
- wait
.tv_nsec
;
964 /* We expect the uncorrected synchronization window to be at
965 * least as large as the interval between host start and end
966 * times. If it is smaller than this then this is mostly likely
967 * to be a consequence of the host's time being adjusted.
968 * Check that the corrected sync window is in a reasonable
969 * range. If it is out of range it is likely to be because an
970 * interrupt or other delay occurred between reading the system
971 * time and writing it to MC memory.
973 if (window
< SYNCHRONISATION_GRANULARITY_NS
) {
974 ++ptp
->invalid_sync_windows
;
975 } else if (corrected
>= MAX_SYNCHRONISATION_NS
) {
976 ++ptp
->oversize_sync_windows
;
977 } else if (corrected
< ptp
->min_synchronisation_ns
) {
978 ++ptp
->undersize_sync_windows
;
986 netif_warn(efx
, drv
, efx
->net_dev
,
987 "PTP no suitable synchronisations\n");
991 /* Calculate delay from last good sync (host time) to last_time.
992 * It is possible that the seconds rolled over between taking
993 * the start reading and the last value written by the host. The
994 * timescales are such that a gap of more than one second is never
995 * expected. delta is *not* normalised.
997 start_sec
= ptp
->timeset
[last_good
].host_start
>> MC_NANOSECOND_BITS
;
998 last_sec
= last_time
->ts_real
.tv_sec
& MC_SECOND_MASK
;
999 if (start_sec
!= last_sec
&&
1000 ((start_sec
+ 1) & MC_SECOND_MASK
) != last_sec
) {
1001 netif_warn(efx
, hw
, efx
->net_dev
,
1002 "PTP bad synchronisation seconds\n");
1005 delta
.tv_sec
= (last_sec
- start_sec
) & 1;
1007 last_time
->ts_real
.tv_nsec
-
1008 (ptp
->timeset
[last_good
].host_start
& MC_NANOSECOND_MASK
);
1010 /* Convert the NIC time at last good sync into kernel time.
1011 * No correction is required - this time is the output of a
1014 mc_time
= ptp
->nic_to_kernel_time(ptp
->timeset
[last_good
].major
,
1015 ptp
->timeset
[last_good
].minor
, 0);
1017 /* Calculate delay from NIC top of second to last_time */
1018 delta
.tv_nsec
+= ktime_to_timespec64(mc_time
).tv_nsec
;
1020 /* Set PPS timestamp to match NIC top of second */
1021 ptp
->host_time_pps
= *last_time
;
1022 pps_sub_ts(&ptp
->host_time_pps
, delta
);
1027 /* Synchronize times between the host and the MC */
1028 static int efx_ptp_synchronize(struct efx_nic
*efx
, unsigned int num_readings
)
1030 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1031 MCDI_DECLARE_BUF(synch_buf
, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX
);
1032 size_t response_length
;
1034 unsigned long timeout
;
1035 struct pps_event_time last_time
= {};
1036 unsigned int loops
= 0;
1037 int *start
= ptp
->start
.addr
;
1039 MCDI_SET_DWORD(synch_buf
, PTP_IN_OP
, MC_CMD_PTP_OP_SYNCHRONIZE
);
1040 MCDI_SET_DWORD(synch_buf
, PTP_IN_PERIPH_ID
, 0);
1041 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_NUMTIMESETS
,
1043 MCDI_SET_QWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR
,
1044 ptp
->start
.dma_addr
);
1046 /* Clear flag that signals MC ready */
1047 WRITE_ONCE(*start
, 0);
1048 rc
= efx_mcdi_rpc_start(efx
, MC_CMD_PTP
, synch_buf
,
1049 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
);
1050 EFX_WARN_ON_ONCE_PARANOID(rc
);
1052 /* Wait for start from MCDI (or timeout) */
1053 timeout
= jiffies
+ msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS
);
1054 while (!READ_ONCE(*start
) && (time_before(jiffies
, timeout
))) {
1055 udelay(20); /* Usually start MCDI execution quickly */
1061 if (!time_before(jiffies
, timeout
))
1062 ++ptp
->sync_timeouts
;
1064 if (READ_ONCE(*start
))
1065 efx_ptp_send_times(efx
, &last_time
);
1067 /* Collect results */
1068 rc
= efx_mcdi_rpc_finish(efx
, MC_CMD_PTP
,
1069 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
,
1070 synch_buf
, sizeof(synch_buf
),
1073 rc
= efx_ptp_process_times(efx
, synch_buf
, response_length
,
1078 ++ptp
->no_time_syncs
;
1081 /* Increment the bad syncs counter if the synchronize fails, whatever
1090 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1091 static void efx_ptp_xmit_skb_queue(struct efx_nic
*efx
, struct sk_buff
*skb
)
1093 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1094 struct efx_tx_queue
*tx_queue
;
1095 u8 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
1097 tx_queue
= &ptp_data
->channel
->tx_queue
[type
];
1098 if (tx_queue
&& tx_queue
->timestamping
) {
1099 efx_enqueue_skb(tx_queue
, skb
);
1101 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1102 dev_kfree_skb_any(skb
);
1106 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1107 static void efx_ptp_xmit_skb_mc(struct efx_nic
*efx
, struct sk_buff
*skb
)
1109 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1110 struct skb_shared_hwtstamps timestamps
;
1112 MCDI_DECLARE_BUF(txtime
, MC_CMD_PTP_OUT_TRANSMIT_LEN
);
1115 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TRANSMIT
);
1116 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_PERIPH_ID
, 0);
1117 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_TRANSMIT_LENGTH
, skb
->len
);
1118 if (skb_shinfo(skb
)->nr_frags
!= 0) {
1119 rc
= skb_linearize(skb
);
1124 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1125 rc
= skb_checksum_help(skb
);
1129 skb_copy_from_linear_data(skb
,
1130 MCDI_PTR(ptp_data
->txbuf
,
1131 PTP_IN_TRANSMIT_PACKET
),
1133 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
,
1134 ptp_data
->txbuf
, MC_CMD_PTP_IN_TRANSMIT_LEN(skb
->len
),
1135 txtime
, sizeof(txtime
), &len
);
1139 memset(×tamps
, 0, sizeof(timestamps
));
1140 timestamps
.hwtstamp
= ptp_data
->nic_to_kernel_time(
1141 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MAJOR
),
1142 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MINOR
),
1143 ptp_data
->ts_corrections
.ptp_tx
);
1145 skb_tstamp_tx(skb
, ×tamps
);
1150 dev_kfree_skb_any(skb
);
1155 static void efx_ptp_drop_time_expired_events(struct efx_nic
*efx
)
1157 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1158 struct list_head
*cursor
;
1159 struct list_head
*next
;
1161 if (ptp
->rx_ts_inline
)
1164 /* Drop time-expired events */
1165 spin_lock_bh(&ptp
->evt_lock
);
1166 if (!list_empty(&ptp
->evt_list
)) {
1167 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
1168 struct efx_ptp_event_rx
*evt
;
1170 evt
= list_entry(cursor
, struct efx_ptp_event_rx
,
1172 if (time_after(jiffies
, evt
->expiry
)) {
1173 list_move(&evt
->link
, &ptp
->evt_free_list
);
1174 netif_warn(efx
, hw
, efx
->net_dev
,
1175 "PTP rx event dropped\n");
1179 spin_unlock_bh(&ptp
->evt_lock
);
1182 static enum ptp_packet_state
efx_ptp_match_rx(struct efx_nic
*efx
,
1183 struct sk_buff
*skb
)
1185 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1187 struct list_head
*cursor
;
1188 struct list_head
*next
;
1189 struct efx_ptp_match
*match
;
1190 enum ptp_packet_state rc
= PTP_PACKET_STATE_UNMATCHED
;
1192 WARN_ON_ONCE(ptp
->rx_ts_inline
);
1194 spin_lock_bh(&ptp
->evt_lock
);
1195 evts_waiting
= !list_empty(&ptp
->evt_list
);
1196 spin_unlock_bh(&ptp
->evt_lock
);
1199 return PTP_PACKET_STATE_UNMATCHED
;
1201 match
= (struct efx_ptp_match
*)skb
->cb
;
1202 /* Look for a matching timestamp in the event queue */
1203 spin_lock_bh(&ptp
->evt_lock
);
1204 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
1205 struct efx_ptp_event_rx
*evt
;
1207 evt
= list_entry(cursor
, struct efx_ptp_event_rx
, link
);
1208 if ((evt
->seq0
== match
->words
[0]) &&
1209 (evt
->seq1
== match
->words
[1])) {
1210 struct skb_shared_hwtstamps
*timestamps
;
1212 /* Match - add in hardware timestamp */
1213 timestamps
= skb_hwtstamps(skb
);
1214 timestamps
->hwtstamp
= evt
->hwtimestamp
;
1216 match
->state
= PTP_PACKET_STATE_MATCHED
;
1217 rc
= PTP_PACKET_STATE_MATCHED
;
1218 list_move(&evt
->link
, &ptp
->evt_free_list
);
1222 spin_unlock_bh(&ptp
->evt_lock
);
1227 /* Process any queued receive events and corresponding packets
1229 * q is returned with all the packets that are ready for delivery.
1231 static void efx_ptp_process_events(struct efx_nic
*efx
, struct sk_buff_head
*q
)
1233 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1234 struct sk_buff
*skb
;
1236 while ((skb
= skb_dequeue(&ptp
->rxq
))) {
1237 struct efx_ptp_match
*match
;
1239 match
= (struct efx_ptp_match
*)skb
->cb
;
1240 if (match
->state
== PTP_PACKET_STATE_MATCH_UNWANTED
) {
1241 __skb_queue_tail(q
, skb
);
1242 } else if (efx_ptp_match_rx(efx
, skb
) ==
1243 PTP_PACKET_STATE_MATCHED
) {
1244 __skb_queue_tail(q
, skb
);
1245 } else if (time_after(jiffies
, match
->expiry
)) {
1246 match
->state
= PTP_PACKET_STATE_TIMED_OUT
;
1247 ++ptp
->rx_no_timestamp
;
1248 __skb_queue_tail(q
, skb
);
1250 /* Replace unprocessed entry and stop */
1251 skb_queue_head(&ptp
->rxq
, skb
);
1257 /* Complete processing of a received packet */
1258 static inline void efx_ptp_process_rx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1261 netif_receive_skb(skb
);
1265 static void efx_ptp_remove_multicast_filters(struct efx_nic
*efx
)
1267 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1269 if (ptp
->rxfilter_installed
) {
1270 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1271 ptp
->rxfilter_general
);
1272 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1273 ptp
->rxfilter_event
);
1274 ptp
->rxfilter_installed
= false;
1278 static int efx_ptp_insert_multicast_filters(struct efx_nic
*efx
)
1280 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1281 struct efx_filter_spec rxfilter
;
1284 if (!ptp
->channel
|| ptp
->rxfilter_installed
)
1287 /* Must filter on both event and general ports to ensure
1288 * that there is no packet re-ordering.
1290 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1292 efx_channel_get_rx_queue(ptp
->channel
)));
1293 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1295 htons(PTP_EVENT_PORT
));
1299 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1302 ptp
->rxfilter_event
= rc
;
1304 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1306 efx_channel_get_rx_queue(ptp
->channel
)));
1307 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1309 htons(PTP_GENERAL_PORT
));
1313 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1316 ptp
->rxfilter_general
= rc
;
1318 ptp
->rxfilter_installed
= true;
1322 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1323 ptp
->rxfilter_event
);
1327 static int efx_ptp_start(struct efx_nic
*efx
)
1329 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1332 ptp
->reset_required
= false;
1334 rc
= efx_ptp_insert_multicast_filters(efx
);
1338 rc
= efx_ptp_enable(efx
);
1342 ptp
->evt_frag_idx
= 0;
1343 ptp
->current_adjfreq
= 0;
1348 efx_ptp_remove_multicast_filters(efx
);
1352 static int efx_ptp_stop(struct efx_nic
*efx
)
1354 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1355 struct list_head
*cursor
;
1356 struct list_head
*next
;
1362 rc
= efx_ptp_disable(efx
);
1364 efx_ptp_remove_multicast_filters(efx
);
1366 /* Make sure RX packets are really delivered */
1367 efx_ptp_deliver_rx_queue(&efx
->ptp_data
->rxq
);
1368 skb_queue_purge(&efx
->ptp_data
->txq
);
1370 /* Drop any pending receive events */
1371 spin_lock_bh(&efx
->ptp_data
->evt_lock
);
1372 list_for_each_safe(cursor
, next
, &efx
->ptp_data
->evt_list
) {
1373 list_move(cursor
, &efx
->ptp_data
->evt_free_list
);
1375 spin_unlock_bh(&efx
->ptp_data
->evt_lock
);
1380 static int efx_ptp_restart(struct efx_nic
*efx
)
1382 if (efx
->ptp_data
&& efx
->ptp_data
->enabled
)
1383 return efx_ptp_start(efx
);
1387 static void efx_ptp_pps_worker(struct work_struct
*work
)
1389 struct efx_ptp_data
*ptp
=
1390 container_of(work
, struct efx_ptp_data
, pps_work
);
1391 struct efx_nic
*efx
= ptp
->efx
;
1392 struct ptp_clock_event ptp_evt
;
1394 if (efx_ptp_synchronize(efx
, PTP_SYNC_ATTEMPTS
))
1397 ptp_evt
.type
= PTP_CLOCK_PPSUSR
;
1398 ptp_evt
.pps_times
= ptp
->host_time_pps
;
1399 ptp_clock_event(ptp
->phc_clock
, &ptp_evt
);
1402 static void efx_ptp_worker(struct work_struct
*work
)
1404 struct efx_ptp_data
*ptp_data
=
1405 container_of(work
, struct efx_ptp_data
, work
);
1406 struct efx_nic
*efx
= ptp_data
->efx
;
1407 struct sk_buff
*skb
;
1408 struct sk_buff_head tempq
;
1410 if (ptp_data
->reset_required
) {
1416 efx_ptp_drop_time_expired_events(efx
);
1418 __skb_queue_head_init(&tempq
);
1419 efx_ptp_process_events(efx
, &tempq
);
1421 while ((skb
= skb_dequeue(&ptp_data
->txq
)))
1422 ptp_data
->xmit_skb(efx
, skb
);
1424 while ((skb
= __skb_dequeue(&tempq
)))
1425 efx_ptp_process_rx(efx
, skb
);
1428 static const struct ptp_clock_info efx_phc_clock_info
= {
1429 .owner
= THIS_MODULE
,
1437 .adjfreq
= efx_phc_adjfreq
,
1438 .adjtime
= efx_phc_adjtime
,
1439 .gettime64
= efx_phc_gettime
,
1440 .settime64
= efx_phc_settime
,
1441 .enable
= efx_phc_enable
,
1444 /* Initialise PTP state. */
1445 int efx_ptp_probe(struct efx_nic
*efx
, struct efx_channel
*channel
)
1447 struct efx_ptp_data
*ptp
;
1451 ptp
= kzalloc(sizeof(struct efx_ptp_data
), GFP_KERNEL
);
1452 efx
->ptp_data
= ptp
;
1457 ptp
->channel
= channel
;
1458 ptp
->rx_ts_inline
= efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
;
1460 rc
= efx_nic_alloc_buffer(efx
, &ptp
->start
, sizeof(int), GFP_KERNEL
);
1464 skb_queue_head_init(&ptp
->rxq
);
1465 skb_queue_head_init(&ptp
->txq
);
1466 ptp
->workwq
= create_singlethread_workqueue("sfc_ptp");
1472 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1473 ptp
->xmit_skb
= efx_ptp_xmit_skb_queue
;
1474 /* Request sync events on this channel. */
1475 channel
->sync_events_state
= SYNC_EVENTS_QUIESCENT
;
1477 ptp
->xmit_skb
= efx_ptp_xmit_skb_mc
;
1480 INIT_WORK(&ptp
->work
, efx_ptp_worker
);
1481 ptp
->config
.flags
= 0;
1482 ptp
->config
.tx_type
= HWTSTAMP_TX_OFF
;
1483 ptp
->config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1484 INIT_LIST_HEAD(&ptp
->evt_list
);
1485 INIT_LIST_HEAD(&ptp
->evt_free_list
);
1486 spin_lock_init(&ptp
->evt_lock
);
1487 for (pos
= 0; pos
< MAX_RECEIVE_EVENTS
; pos
++)
1488 list_add(&ptp
->rx_evts
[pos
].link
, &ptp
->evt_free_list
);
1490 /* Get the NIC PTP attributes and set up time conversions */
1491 rc
= efx_ptp_get_attributes(efx
);
1495 /* Get the timestamp corrections */
1496 rc
= efx_ptp_get_timestamp_corrections(efx
);
1500 if (efx
->mcdi
->fn_flags
&
1501 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
)) {
1502 ptp
->phc_clock_info
= efx_phc_clock_info
;
1503 ptp
->phc_clock
= ptp_clock_register(&ptp
->phc_clock_info
,
1504 &efx
->pci_dev
->dev
);
1505 if (IS_ERR(ptp
->phc_clock
)) {
1506 rc
= PTR_ERR(ptp
->phc_clock
);
1508 } else if (ptp
->phc_clock
) {
1509 INIT_WORK(&ptp
->pps_work
, efx_ptp_pps_worker
);
1510 ptp
->pps_workwq
= create_singlethread_workqueue("sfc_pps");
1511 if (!ptp
->pps_workwq
) {
1517 ptp
->nic_ts_enabled
= false;
1521 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1524 destroy_workqueue(efx
->ptp_data
->workwq
);
1527 efx_nic_free_buffer(efx
, &ptp
->start
);
1530 kfree(efx
->ptp_data
);
1531 efx
->ptp_data
= NULL
;
1536 /* Initialise PTP channel.
1538 * Setting core_index to zero causes the queue to be initialised and doesn't
1539 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1541 static int efx_ptp_probe_channel(struct efx_channel
*channel
)
1543 struct efx_nic
*efx
= channel
->efx
;
1546 channel
->irq_moderation_us
= 0;
1547 channel
->rx_queue
.core_index
= 0;
1549 rc
= efx_ptp_probe(efx
, channel
);
1550 /* Failure to probe PTP is not fatal; this channel will just not be
1551 * used for anything.
1552 * In the case of EPERM, efx_ptp_probe will print its own message (in
1553 * efx_ptp_get_attributes()), so we don't need to.
1555 if (rc
&& rc
!= -EPERM
)
1556 netif_warn(efx
, drv
, efx
->net_dev
,
1557 "Failed to probe PTP, rc=%d\n", rc
);
1561 void efx_ptp_remove(struct efx_nic
*efx
)
1566 (void)efx_ptp_disable(efx
);
1568 cancel_work_sync(&efx
->ptp_data
->work
);
1569 if (efx
->ptp_data
->pps_workwq
)
1570 cancel_work_sync(&efx
->ptp_data
->pps_work
);
1572 skb_queue_purge(&efx
->ptp_data
->rxq
);
1573 skb_queue_purge(&efx
->ptp_data
->txq
);
1575 if (efx
->ptp_data
->phc_clock
) {
1576 destroy_workqueue(efx
->ptp_data
->pps_workwq
);
1577 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1580 destroy_workqueue(efx
->ptp_data
->workwq
);
1582 efx_nic_free_buffer(efx
, &efx
->ptp_data
->start
);
1583 kfree(efx
->ptp_data
);
1584 efx
->ptp_data
= NULL
;
1587 static void efx_ptp_remove_channel(struct efx_channel
*channel
)
1589 efx_ptp_remove(channel
->efx
);
1592 static void efx_ptp_get_channel_name(struct efx_channel
*channel
,
1593 char *buf
, size_t len
)
1595 snprintf(buf
, len
, "%s-ptp", channel
->efx
->name
);
1598 /* Determine whether this packet should be processed by the PTP module
1599 * or transmitted conventionally.
1601 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1603 return efx
->ptp_data
&&
1604 efx
->ptp_data
->enabled
&&
1605 skb
->len
>= PTP_MIN_LENGTH
&&
1606 skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
&&
1607 likely(skb
->protocol
== htons(ETH_P_IP
)) &&
1608 skb_transport_header_was_set(skb
) &&
1609 skb_network_header_len(skb
) >= sizeof(struct iphdr
) &&
1610 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
1612 skb_transport_offset(skb
) + sizeof(struct udphdr
) &&
1613 udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
);
1616 /* Receive a PTP packet. Packets are queued until the arrival of
1617 * the receive timestamp from the MC - this will probably occur after the
1618 * packet arrival because of the processing in the MC.
1620 static bool efx_ptp_rx(struct efx_channel
*channel
, struct sk_buff
*skb
)
1622 struct efx_nic
*efx
= channel
->efx
;
1623 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1624 struct efx_ptp_match
*match
= (struct efx_ptp_match
*)skb
->cb
;
1625 u8
*match_data_012
, *match_data_345
;
1626 unsigned int version
;
1629 match
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1631 /* Correct version? */
1632 if (ptp
->mode
== MC_CMD_PTP_MODE_V1
) {
1633 if (!pskb_may_pull(skb
, PTP_V1_MIN_LENGTH
)) {
1637 version
= ntohs(*(__be16
*)&data
[PTP_V1_VERSION_OFFSET
]);
1638 if (version
!= PTP_VERSION_V1
) {
1642 /* PTP V1 uses all six bytes of the UUID to match the packet
1645 match_data_012
= data
+ PTP_V1_UUID_OFFSET
;
1646 match_data_345
= data
+ PTP_V1_UUID_OFFSET
+ 3;
1648 if (!pskb_may_pull(skb
, PTP_V2_MIN_LENGTH
)) {
1652 version
= data
[PTP_V2_VERSION_OFFSET
];
1653 if ((version
& PTP_VERSION_V2_MASK
) != PTP_VERSION_V2
) {
1657 /* The original V2 implementation uses bytes 2-7 of
1658 * the UUID to match the packet to the timestamp. This
1659 * discards two of the bytes of the MAC address used
1660 * to create the UUID (SF bug 33070). The PTP V2
1661 * enhanced mode fixes this issue and uses bytes 0-2
1662 * and byte 5-7 of the UUID.
1664 match_data_345
= data
+ PTP_V2_UUID_OFFSET
+ 5;
1665 if (ptp
->mode
== MC_CMD_PTP_MODE_V2
) {
1666 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 2;
1668 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 0;
1669 BUG_ON(ptp
->mode
!= MC_CMD_PTP_MODE_V2_ENHANCED
);
1673 /* Does this packet require timestamping? */
1674 if (ntohs(*(__be16
*)&data
[PTP_DPORT_OFFSET
]) == PTP_EVENT_PORT
) {
1675 match
->state
= PTP_PACKET_STATE_UNMATCHED
;
1677 /* We expect the sequence number to be in the same position in
1678 * the packet for PTP V1 and V2
1680 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET
!= PTP_V2_SEQUENCE_OFFSET
);
1681 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH
!= PTP_V2_SEQUENCE_LENGTH
);
1683 /* Extract UUID/Sequence information */
1684 match
->words
[0] = (match_data_012
[0] |
1685 (match_data_012
[1] << 8) |
1686 (match_data_012
[2] << 16) |
1687 (match_data_345
[0] << 24));
1688 match
->words
[1] = (match_data_345
[1] |
1689 (match_data_345
[2] << 8) |
1690 (data
[PTP_V1_SEQUENCE_OFFSET
+
1691 PTP_V1_SEQUENCE_LENGTH
- 1] <<
1694 match
->state
= PTP_PACKET_STATE_MATCH_UNWANTED
;
1697 skb_queue_tail(&ptp
->rxq
, skb
);
1698 queue_work(ptp
->workwq
, &ptp
->work
);
1703 /* Transmit a PTP packet. This has to be transmitted by the MC
1704 * itself, through an MCDI call. MCDI calls aren't permitted
1705 * in the transmit path so defer the actual transmission to a suitable worker.
1707 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1709 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1711 skb_queue_tail(&ptp
->txq
, skb
);
1713 if ((udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
)) &&
1714 (skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
))
1715 efx_xmit_hwtstamp_pending(skb
);
1716 queue_work(ptp
->workwq
, &ptp
->work
);
1718 return NETDEV_TX_OK
;
1721 int efx_ptp_get_mode(struct efx_nic
*efx
)
1723 return efx
->ptp_data
->mode
;
1726 int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
1727 unsigned int new_mode
)
1729 if ((enable_wanted
!= efx
->ptp_data
->enabled
) ||
1730 (enable_wanted
&& (efx
->ptp_data
->mode
!= new_mode
))) {
1733 if (enable_wanted
) {
1734 /* Change of mode requires disable */
1735 if (efx
->ptp_data
->enabled
&&
1736 (efx
->ptp_data
->mode
!= new_mode
)) {
1737 efx
->ptp_data
->enabled
= false;
1738 rc
= efx_ptp_stop(efx
);
1743 /* Set new operating mode and establish
1744 * baseline synchronisation, which must
1747 efx
->ptp_data
->mode
= new_mode
;
1748 if (netif_running(efx
->net_dev
))
1749 rc
= efx_ptp_start(efx
);
1751 rc
= efx_ptp_synchronize(efx
,
1752 PTP_SYNC_ATTEMPTS
* 2);
1757 rc
= efx_ptp_stop(efx
);
1763 efx
->ptp_data
->enabled
= enable_wanted
;
1769 static int efx_ptp_ts_init(struct efx_nic
*efx
, struct hwtstamp_config
*init
)
1776 if ((init
->tx_type
!= HWTSTAMP_TX_OFF
) &&
1777 (init
->tx_type
!= HWTSTAMP_TX_ON
))
1780 rc
= efx
->type
->ptp_set_ts_config(efx
, init
);
1784 efx
->ptp_data
->config
= *init
;
1788 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
)
1790 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1791 struct efx_nic
*primary
= efx
->primary
;
1798 ts_info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
1799 SOF_TIMESTAMPING_RX_HARDWARE
|
1800 SOF_TIMESTAMPING_RAW_HARDWARE
);
1801 /* Check licensed features. If we don't have the license for TX
1802 * timestamps, the NIC will not support them.
1804 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1805 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1807 if (!(nic_data
->licensed_features
&
1808 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN
)))
1809 ts_info
->so_timestamping
&=
1810 ~SOF_TIMESTAMPING_TX_HARDWARE
;
1812 if (primary
&& primary
->ptp_data
&& primary
->ptp_data
->phc_clock
)
1813 ts_info
->phc_index
=
1814 ptp_clock_index(primary
->ptp_data
->phc_clock
);
1815 ts_info
->tx_types
= 1 << HWTSTAMP_TX_OFF
| 1 << HWTSTAMP_TX_ON
;
1816 ts_info
->rx_filters
= ptp
->efx
->type
->hwtstamp_filters
;
1819 int efx_ptp_set_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1821 struct hwtstamp_config config
;
1824 /* Not a PTP enabled port */
1828 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1831 rc
= efx_ptp_ts_init(efx
, &config
);
1835 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
))
1839 int efx_ptp_get_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1844 return copy_to_user(ifr
->ifr_data
, &efx
->ptp_data
->config
,
1845 sizeof(efx
->ptp_data
->config
)) ? -EFAULT
: 0;
1848 static void ptp_event_failure(struct efx_nic
*efx
, int expected_frag_len
)
1850 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1852 netif_err(efx
, hw
, efx
->net_dev
,
1853 "PTP unexpected event length: got %d expected %d\n",
1854 ptp
->evt_frag_idx
, expected_frag_len
);
1855 ptp
->reset_required
= true;
1856 queue_work(ptp
->workwq
, &ptp
->work
);
1859 /* Process a completed receive event. Put it on the event queue and
1860 * start worker thread. This is required because event and their
1861 * correspoding packets may come in either order.
1863 static void ptp_event_rx(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1865 struct efx_ptp_event_rx
*evt
= NULL
;
1867 if (WARN_ON_ONCE(ptp
->rx_ts_inline
))
1870 if (ptp
->evt_frag_idx
!= 3) {
1871 ptp_event_failure(efx
, 3);
1875 spin_lock_bh(&ptp
->evt_lock
);
1876 if (!list_empty(&ptp
->evt_free_list
)) {
1877 evt
= list_first_entry(&ptp
->evt_free_list
,
1878 struct efx_ptp_event_rx
, link
);
1879 list_del(&evt
->link
);
1881 evt
->seq0
= EFX_QWORD_FIELD(ptp
->evt_frags
[2], MCDI_EVENT_DATA
);
1882 evt
->seq1
= (EFX_QWORD_FIELD(ptp
->evt_frags
[2],
1884 (EFX_QWORD_FIELD(ptp
->evt_frags
[1],
1885 MCDI_EVENT_SRC
) << 8) |
1886 (EFX_QWORD_FIELD(ptp
->evt_frags
[0],
1887 MCDI_EVENT_SRC
) << 16));
1888 evt
->hwtimestamp
= efx
->ptp_data
->nic_to_kernel_time(
1889 EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
),
1890 EFX_QWORD_FIELD(ptp
->evt_frags
[1], MCDI_EVENT_DATA
),
1891 ptp
->ts_corrections
.ptp_rx
);
1892 evt
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1893 list_add_tail(&evt
->link
, &ptp
->evt_list
);
1895 queue_work(ptp
->workwq
, &ptp
->work
);
1896 } else if (net_ratelimit()) {
1897 /* Log a rate-limited warning message. */
1898 netif_err(efx
, rx_err
, efx
->net_dev
, "PTP event queue overflow\n");
1900 spin_unlock_bh(&ptp
->evt_lock
);
1903 static void ptp_event_fault(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1905 int code
= EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
);
1906 if (ptp
->evt_frag_idx
!= 1) {
1907 ptp_event_failure(efx
, 1);
1911 netif_err(efx
, hw
, efx
->net_dev
, "PTP error %d\n", code
);
1914 static void ptp_event_pps(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1916 if (ptp
->nic_ts_enabled
)
1917 queue_work(ptp
->pps_workwq
, &ptp
->pps_work
);
1920 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
)
1922 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1923 int code
= EFX_QWORD_FIELD(*ev
, MCDI_EVENT_CODE
);
1926 if (!efx
->ptp_warned
) {
1927 netif_warn(efx
, drv
, efx
->net_dev
,
1928 "Received PTP event but PTP not set up\n");
1929 efx
->ptp_warned
= true;
1937 if (ptp
->evt_frag_idx
== 0) {
1938 ptp
->evt_code
= code
;
1939 } else if (ptp
->evt_code
!= code
) {
1940 netif_err(efx
, hw
, efx
->net_dev
,
1941 "PTP out of sequence event %d\n", code
);
1942 ptp
->evt_frag_idx
= 0;
1945 ptp
->evt_frags
[ptp
->evt_frag_idx
++] = *ev
;
1946 if (!MCDI_EVENT_FIELD(*ev
, CONT
)) {
1947 /* Process resulting event */
1949 case MCDI_EVENT_CODE_PTP_RX
:
1950 ptp_event_rx(efx
, ptp
);
1952 case MCDI_EVENT_CODE_PTP_FAULT
:
1953 ptp_event_fault(efx
, ptp
);
1955 case MCDI_EVENT_CODE_PTP_PPS
:
1956 ptp_event_pps(efx
, ptp
);
1959 netif_err(efx
, hw
, efx
->net_dev
,
1960 "PTP unknown event %d\n", code
);
1963 ptp
->evt_frag_idx
= 0;
1964 } else if (MAX_EVENT_FRAGS
== ptp
->evt_frag_idx
) {
1965 netif_err(efx
, hw
, efx
->net_dev
,
1966 "PTP too many event fragments\n");
1967 ptp
->evt_frag_idx
= 0;
1971 void efx_time_sync_event(struct efx_channel
*channel
, efx_qword_t
*ev
)
1973 struct efx_nic
*efx
= channel
->efx
;
1974 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1976 /* When extracting the sync timestamp minor value, we should discard
1977 * the least significant two bits. These are not required in order
1978 * to reconstruct full-range timestamps and they are optionally used
1979 * to report status depending on the options supplied when subscribing
1982 channel
->sync_timestamp_major
= MCDI_EVENT_FIELD(*ev
, PTP_TIME_MAJOR
);
1983 channel
->sync_timestamp_minor
=
1984 (MCDI_EVENT_FIELD(*ev
, PTP_TIME_MINOR_MS_8BITS
) & 0xFC)
1985 << ptp
->nic_time
.sync_event_minor_shift
;
1987 /* if sync events have been disabled then we want to silently ignore
1988 * this event, so throw away result.
1990 (void) cmpxchg(&channel
->sync_events_state
, SYNC_EVENTS_REQUESTED
,
1994 static inline u32
efx_rx_buf_timestamp_minor(struct efx_nic
*efx
, const u8
*eh
)
1996 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1997 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_ts_offset
));
1999 const u8
*data
= eh
+ efx
->rx_packet_ts_offset
;
2000 return (u32
)data
[0] |
2002 (u32
)data
[2] << 16 |
2007 void __efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
2008 struct sk_buff
*skb
)
2010 struct efx_nic
*efx
= channel
->efx
;
2011 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
2012 u32 pkt_timestamp_major
, pkt_timestamp_minor
;
2014 struct skb_shared_hwtstamps
*timestamps
;
2016 if (channel
->sync_events_state
!= SYNC_EVENTS_VALID
)
2019 pkt_timestamp_minor
= efx_rx_buf_timestamp_minor(efx
, skb_mac_header(skb
));
2021 /* get the difference between the packet and sync timestamps,
2024 diff
= pkt_timestamp_minor
- channel
->sync_timestamp_minor
;
2025 if (pkt_timestamp_minor
< channel
->sync_timestamp_minor
)
2026 diff
+= ptp
->nic_time
.minor_max
;
2028 /* do we roll over a second boundary and need to carry the one? */
2029 carry
= (channel
->sync_timestamp_minor
>= ptp
->nic_time
.minor_max
- diff
) ?
2032 if (diff
<= ptp
->nic_time
.sync_event_diff_max
) {
2033 /* packet is ahead of the sync event by a quarter of a second or
2034 * less (allowing for fuzz)
2036 pkt_timestamp_major
= channel
->sync_timestamp_major
+ carry
;
2037 } else if (diff
>= ptp
->nic_time
.sync_event_diff_min
) {
2038 /* packet is behind the sync event but within the fuzz factor.
2039 * This means the RX packet and sync event crossed as they were
2040 * placed on the event queue, which can sometimes happen.
2042 pkt_timestamp_major
= channel
->sync_timestamp_major
- 1 + carry
;
2044 /* it's outside tolerance in both directions. this might be
2045 * indicative of us missing sync events for some reason, so
2046 * we'll call it an error rather than risk giving a bogus
2049 netif_vdbg(efx
, drv
, efx
->net_dev
,
2050 "packet timestamp %x too far from sync event %x:%x\n",
2051 pkt_timestamp_minor
, channel
->sync_timestamp_major
,
2052 channel
->sync_timestamp_minor
);
2056 /* attach the timestamps to the skb */
2057 timestamps
= skb_hwtstamps(skb
);
2058 timestamps
->hwtstamp
=
2059 ptp
->nic_to_kernel_time(pkt_timestamp_major
,
2060 pkt_timestamp_minor
,
2061 ptp
->ts_corrections
.general_rx
);
2064 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
)
2066 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2067 struct efx_ptp_data
,
2069 struct efx_nic
*efx
= ptp_data
->efx
;
2070 MCDI_DECLARE_BUF(inadj
, MC_CMD_PTP_IN_ADJUST_LEN
);
2074 if (delta
> MAX_PPB
)
2076 else if (delta
< -MAX_PPB
)
2079 /* Convert ppb to fixed point ns taking care to round correctly. */
2080 adjustment_ns
= ((s64
)delta
* PPB_SCALE_WORD
+
2081 (1 << (ptp_data
->adjfreq_ppb_shift
- 1))) >>
2082 ptp_data
->adjfreq_ppb_shift
;
2084 MCDI_SET_DWORD(inadj
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2085 MCDI_SET_DWORD(inadj
, PTP_IN_PERIPH_ID
, 0);
2086 MCDI_SET_QWORD(inadj
, PTP_IN_ADJUST_FREQ
, adjustment_ns
);
2087 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_SECONDS
, 0);
2088 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_NANOSECONDS
, 0);
2089 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inadj
, sizeof(inadj
),
2094 ptp_data
->current_adjfreq
= adjustment_ns
;
2098 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
2100 u32 nic_major
, nic_minor
;
2101 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2102 struct efx_ptp_data
,
2104 struct efx_nic
*efx
= ptp_data
->efx
;
2105 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ADJUST_LEN
);
2107 efx
->ptp_data
->ns_to_nic_time(delta
, &nic_major
, &nic_minor
);
2109 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2110 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2111 MCDI_SET_QWORD(inbuf
, PTP_IN_ADJUST_FREQ
, ptp_data
->current_adjfreq
);
2112 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MAJOR
, nic_major
);
2113 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MINOR
, nic_minor
);
2114 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2118 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
)
2120 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2121 struct efx_ptp_data
,
2123 struct efx_nic
*efx
= ptp_data
->efx
;
2124 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_READ_NIC_TIME_LEN
);
2125 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN
);
2129 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_READ_NIC_TIME
);
2130 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2132 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2133 outbuf
, sizeof(outbuf
), NULL
);
2137 kt
= ptp_data
->nic_to_kernel_time(
2138 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MAJOR
),
2139 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MINOR
), 0);
2140 *ts
= ktime_to_timespec64(kt
);
2144 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
2145 const struct timespec64
*e_ts
)
2147 /* Get the current NIC time, efx_phc_gettime.
2148 * Subtract from the desired time to get the offset
2149 * call efx_phc_adjtime with the offset
2152 struct timespec64 time_now
;
2153 struct timespec64 delta
;
2155 rc
= efx_phc_gettime(ptp
, &time_now
);
2159 delta
= timespec64_sub(*e_ts
, time_now
);
2161 rc
= efx_phc_adjtime(ptp
, timespec64_to_ns(&delta
));
2168 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
2169 struct ptp_clock_request
*request
,
2172 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2173 struct efx_ptp_data
,
2175 if (request
->type
!= PTP_CLK_REQ_PPS
)
2178 ptp_data
->nic_ts_enabled
= !!enable
;
2182 static const struct efx_channel_type efx_ptp_channel_type
= {
2183 .handle_no_channel
= efx_ptp_handle_no_channel
,
2184 .pre_probe
= efx_ptp_probe_channel
,
2185 .post_remove
= efx_ptp_remove_channel
,
2186 .get_name
= efx_ptp_get_channel_name
,
2187 /* no copy operation; there is no need to reallocate this channel */
2188 .receive_skb
= efx_ptp_rx
,
2189 .want_txqs
= efx_ptp_want_txqs
,
2190 .keep_eventq
= false,
2193 void efx_ptp_defer_probe_with_channel(struct efx_nic
*efx
)
2195 /* Check whether PTP is implemented on this NIC. The DISABLE
2196 * operation will succeed if and only if it is implemented.
2198 if (efx_ptp_disable(efx
) == 0)
2199 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_PTP
] =
2200 &efx_ptp_channel_type
;
2203 void efx_ptp_start_datapath(struct efx_nic
*efx
)
2205 if (efx_ptp_restart(efx
))
2206 netif_err(efx
, drv
, efx
->net_dev
, "Failed to restart PTP.\n");
2207 /* re-enable timestamping if it was previously enabled */
2208 if (efx
->type
->ptp_set_ts_sync_events
)
2209 efx
->type
->ptp_set_ts_sync_events(efx
, true, true);
2212 void efx_ptp_stop_datapath(struct efx_nic
*efx
)
2214 /* temporarily disable timestamping */
2215 if (efx
->type
->ptp_set_ts_sync_events
)
2216 efx
->type
->ptp_set_ts_sync_events(efx
, false, true);