1 /*******************************************************************************
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *******************************************************************************/
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
53 #include <asm/tsi108.h>
55 #include "tsi108_eth.h"
57 #define MII_READ_DELAY 10000 /* max link wait time in msec */
59 #define TSI108_RXRING_LEN 256
61 /* NOTE: The driver currently does not support receiving packets
62 * larger than the buffer size, so don't decrease this (unless you
63 * want to add such support).
65 #define TSI108_RXBUF_SIZE 1536
67 #define TSI108_TXRING_LEN 256
69 #define TSI108_TX_INT_FREQ 64
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
74 static int tsi108_init_one(struct platform_device
*pdev
);
75 static int tsi108_ether_remove(struct platform_device
*pdev
);
77 struct tsi108_prv_data
{
78 void __iomem
*regs
; /* Base of normal regs */
79 void __iomem
*phyregs
; /* Base of register bank used for PHY access */
81 struct net_device
*dev
;
82 struct napi_struct napi
;
84 unsigned int phy
; /* Index of PHY for this interface */
87 unsigned int phy_type
;
89 struct timer_list timer
;/* Timer that triggers the check phy function */
90 unsigned int rxtail
; /* Next entry in rxring to read */
91 unsigned int rxhead
; /* Next entry in rxring to give a new buffer */
92 unsigned int rxfree
; /* Number of free, allocated RX buffers */
94 unsigned int rxpending
; /* Non-zero if there are still descriptors
95 * to be processed from a previous descriptor
96 * interrupt condition that has been cleared */
98 unsigned int txtail
; /* Next TX descriptor to check status on */
99 unsigned int txhead
; /* Next TX descriptor to use */
101 /* Number of free TX descriptors. This could be calculated from
102 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 * full and empty conditions, but it's simpler to just keep track
108 unsigned int phy_ok
; /* The PHY is currently powered on. */
110 /* PHY status (duplex is 1 for half, 2 for full,
111 * so that the default 0 indicates that neither has
112 * yet been configured). */
114 unsigned int link_up
;
120 struct sk_buff
*txskbs
[TSI108_TXRING_LEN
];
121 struct sk_buff
*rxskbs
[TSI108_RXRING_LEN
];
123 dma_addr_t txdma
, rxdma
;
125 /* txlock nests in misclock and phy_lock */
127 spinlock_t txlock
, misclock
;
129 /* stats is used to hold the upper bits of each hardware counter,
130 * and tmpstats is used to hold the full values for returning
131 * to the caller of get_stats(). They must be separate in case
132 * an overflow interrupt occurs before the stats are consumed.
135 struct net_device_stats stats
;
136 struct net_device_stats tmpstats
;
138 /* These stats are kept separate in hardware, thus require individual
139 * fields for handling carry. They are combined in get_stats.
142 unsigned long rx_fcs
; /* Add to rx_frame_errors */
143 unsigned long rx_short_fcs
; /* Add to rx_frame_errors */
144 unsigned long rx_long_fcs
; /* Add to rx_frame_errors */
145 unsigned long rx_underruns
; /* Add to rx_length_errors */
146 unsigned long rx_overruns
; /* Add to rx_length_errors */
148 unsigned long tx_coll_abort
; /* Add to tx_aborted_errors/collisions */
149 unsigned long tx_pause_drop
; /* Add to tx_aborted_errors */
151 unsigned long mc_hash
[16];
152 u32 msg_enable
; /* debug message level */
153 struct mii_if_info mii_if
;
154 unsigned int init_media
;
156 struct platform_device
*pdev
;
159 /* Structure for a device driver */
161 static struct platform_driver tsi_eth_driver
= {
162 .probe
= tsi108_init_one
,
163 .remove
= tsi108_ether_remove
,
165 .name
= "tsi-ethernet",
169 static void tsi108_timed_checker(struct timer_list
*t
);
172 static void dump_eth_one(struct net_device
*dev
)
174 struct tsi108_prv_data
*data
= netdev_priv(dev
);
176 printk("Dumping %s...\n", dev
->name
);
177 printk("intstat %x intmask %x phy_ok %d"
178 " link %d speed %d duplex %d\n",
179 TSI_READ(TSI108_EC_INTSTAT
),
180 TSI_READ(TSI108_EC_INTMASK
), data
->phy_ok
,
181 data
->link_up
, data
->speed
, data
->duplex
);
183 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
184 data
->txhead
, data
->txtail
, data
->txfree
,
185 TSI_READ(TSI108_EC_TXSTAT
),
186 TSI_READ(TSI108_EC_TXESTAT
),
187 TSI_READ(TSI108_EC_TXERR
));
189 printk("RX: head %d, tail %d, free %d, stat %x,"
190 " estat %x, err %x, pending %d\n\n",
191 data
->rxhead
, data
->rxtail
, data
->rxfree
,
192 TSI_READ(TSI108_EC_RXSTAT
),
193 TSI_READ(TSI108_EC_RXESTAT
),
194 TSI_READ(TSI108_EC_RXERR
), data
->rxpending
);
198 /* Synchronization is needed between the thread and up/down events.
199 * Note that the PHY is accessed through the same registers for both
200 * interfaces, so this can't be made interface-specific.
203 static DEFINE_SPINLOCK(phy_lock
);
205 static int tsi108_read_mii(struct tsi108_prv_data
*data
, int reg
)
209 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
210 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
211 (reg
<< TSI108_MAC_MII_ADDR_REG
));
212 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, 0);
213 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, TSI108_MAC_MII_CMD_READ
);
214 for (i
= 0; i
< 100; i
++) {
215 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
216 (TSI108_MAC_MII_IND_NOTVALID
| TSI108_MAC_MII_IND_BUSY
)))
224 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN
);
227 static void tsi108_write_mii(struct tsi108_prv_data
*data
,
231 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
232 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
233 (reg
<< TSI108_MAC_MII_ADDR_REG
));
234 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT
, val
);
236 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
237 TSI108_MAC_MII_IND_BUSY
))
243 static int tsi108_mdio_read(struct net_device
*dev
, int addr
, int reg
)
245 struct tsi108_prv_data
*data
= netdev_priv(dev
);
246 return tsi108_read_mii(data
, reg
);
249 static void tsi108_mdio_write(struct net_device
*dev
, int addr
, int reg
, int val
)
251 struct tsi108_prv_data
*data
= netdev_priv(dev
);
252 tsi108_write_mii(data
, reg
, val
);
255 static inline void tsi108_write_tbi(struct tsi108_prv_data
*data
,
259 TSI_WRITE(TSI108_MAC_MII_ADDR
,
260 (0x1e << TSI108_MAC_MII_ADDR_PHY
)
261 | (reg
<< TSI108_MAC_MII_ADDR_REG
));
262 TSI_WRITE(TSI108_MAC_MII_DATAOUT
, val
);
264 if(!(TSI_READ(TSI108_MAC_MII_IND
) & TSI108_MAC_MII_IND_BUSY
))
268 printk(KERN_ERR
"%s function time out\n", __func__
);
271 static int mii_speed(struct mii_if_info
*mii
)
273 int advert
, lpa
, val
, media
;
277 if (!mii_link_ok(mii
))
280 val
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_BMSR
);
281 if ((val
& BMSR_ANEGCOMPLETE
) == 0)
284 advert
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_ADVERTISE
);
285 lpa
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_LPA
);
286 media
= mii_nway_result(advert
& lpa
);
288 if (mii
->supports_gmii
)
289 lpa2
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_STAT1000
);
291 speed
= lpa2
& (LPA_1000FULL
| LPA_1000HALF
) ? 1000 :
292 (media
& (ADVERTISE_100FULL
| ADVERTISE_100HALF
) ? 100 : 10);
296 static void tsi108_check_phy(struct net_device
*dev
)
298 struct tsi108_prv_data
*data
= netdev_priv(dev
);
299 u32 mac_cfg2_reg
, portctrl_reg
;
304 spin_lock_irqsave(&phy_lock
, flags
);
309 duplex
= mii_check_media(&data
->mii_if
, netif_msg_link(data
), data
->init_media
);
310 data
->init_media
= 0;
312 if (netif_carrier_ok(dev
)) {
314 speed
= mii_speed(&data
->mii_if
);
316 if ((speed
!= data
->speed
) || duplex
) {
318 mac_cfg2_reg
= TSI_READ(TSI108_MAC_CFG2
);
319 portctrl_reg
= TSI_READ(TSI108_EC_PORTCTRL
);
321 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_IFACE_MASK
;
324 mac_cfg2_reg
|= TSI108_MAC_CFG2_GIG
;
325 portctrl_reg
&= ~TSI108_EC_PORTCTRL_NOGIG
;
327 mac_cfg2_reg
|= TSI108_MAC_CFG2_NOGIG
;
328 portctrl_reg
|= TSI108_EC_PORTCTRL_NOGIG
;
333 if (data
->mii_if
.full_duplex
) {
334 mac_cfg2_reg
|= TSI108_MAC_CFG2_FULLDUPLEX
;
335 portctrl_reg
&= ~TSI108_EC_PORTCTRL_HALFDUPLEX
;
338 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_FULLDUPLEX
;
339 portctrl_reg
|= TSI108_EC_PORTCTRL_HALFDUPLEX
;
343 TSI_WRITE(TSI108_MAC_CFG2
, mac_cfg2_reg
);
344 TSI_WRITE(TSI108_EC_PORTCTRL
, portctrl_reg
);
347 if (data
->link_up
== 0) {
348 /* The manual says it can take 3-4 usecs for the speed change
353 spin_lock(&data
->txlock
);
354 if (is_valid_ether_addr(dev
->dev_addr
) && data
->txfree
)
355 netif_wake_queue(dev
);
358 spin_unlock(&data
->txlock
);
361 if (data
->link_up
== 1) {
362 netif_stop_queue(dev
);
364 printk(KERN_NOTICE
"%s : link is down\n", dev
->name
);
372 spin_unlock_irqrestore(&phy_lock
, flags
);
376 tsi108_stat_carry_one(int carry
, int carry_bit
, int carry_shift
,
377 unsigned long *upper
)
379 if (carry
& carry_bit
)
380 *upper
+= carry_shift
;
383 static void tsi108_stat_carry(struct net_device
*dev
)
385 struct tsi108_prv_data
*data
= netdev_priv(dev
);
389 spin_lock_irqsave(&data
->misclock
, flags
);
391 carry1
= TSI_READ(TSI108_STAT_CARRY1
);
392 carry2
= TSI_READ(TSI108_STAT_CARRY2
);
394 TSI_WRITE(TSI108_STAT_CARRY1
, carry1
);
395 TSI_WRITE(TSI108_STAT_CARRY2
, carry2
);
397 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXBYTES
,
398 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
400 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXPKTS
,
401 TSI108_STAT_RXPKTS_CARRY
,
402 &data
->stats
.rx_packets
);
404 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFCS
,
405 TSI108_STAT_RXFCS_CARRY
, &data
->rx_fcs
);
407 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXMCAST
,
408 TSI108_STAT_RXMCAST_CARRY
,
409 &data
->stats
.multicast
);
411 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXALIGN
,
412 TSI108_STAT_RXALIGN_CARRY
,
413 &data
->stats
.rx_frame_errors
);
415 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXLENGTH
,
416 TSI108_STAT_RXLENGTH_CARRY
,
417 &data
->stats
.rx_length_errors
);
419 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXRUNT
,
420 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
422 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJUMBO
,
423 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
425 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFRAG
,
426 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
428 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJABBER
,
429 TSI108_STAT_RXJABBER_CARRY
, &data
->rx_long_fcs
);
431 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXDROP
,
432 TSI108_STAT_RXDROP_CARRY
,
433 &data
->stats
.rx_missed_errors
);
435 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXBYTES
,
436 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
438 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPKTS
,
439 TSI108_STAT_TXPKTS_CARRY
,
440 &data
->stats
.tx_packets
);
442 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXDEF
,
443 TSI108_STAT_TXEXDEF_CARRY
,
444 &data
->stats
.tx_aborted_errors
);
446 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXCOL
,
447 TSI108_STAT_TXEXCOL_CARRY
, &data
->tx_coll_abort
);
449 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXTCOL
,
450 TSI108_STAT_TXTCOL_CARRY
,
451 &data
->stats
.collisions
);
453 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPAUSE
,
454 TSI108_STAT_TXPAUSEDROP_CARRY
,
455 &data
->tx_pause_drop
);
457 spin_unlock_irqrestore(&data
->misclock
, flags
);
460 /* Read a stat counter atomically with respect to carries.
461 * data->misclock must be held.
463 static inline unsigned long
464 tsi108_read_stat(struct tsi108_prv_data
* data
, int reg
, int carry_bit
,
465 int carry_shift
, unsigned long *upper
)
471 carryreg
= TSI108_STAT_CARRY1
;
473 carryreg
= TSI108_STAT_CARRY2
;
476 val
= TSI_READ(reg
) | *upper
;
478 /* Check to see if it overflowed, but the interrupt hasn't
479 * been serviced yet. If so, handle the carry here, and
483 if (unlikely(TSI_READ(carryreg
) & carry_bit
)) {
484 *upper
+= carry_shift
;
485 TSI_WRITE(carryreg
, carry_bit
);
492 static struct net_device_stats
*tsi108_get_stats(struct net_device
*dev
)
496 struct tsi108_prv_data
*data
= netdev_priv(dev
);
497 spin_lock_irq(&data
->misclock
);
499 data
->tmpstats
.rx_packets
=
500 tsi108_read_stat(data
, TSI108_STAT_RXPKTS
,
501 TSI108_STAT_CARRY1_RXPKTS
,
502 TSI108_STAT_RXPKTS_CARRY
, &data
->stats
.rx_packets
);
504 data
->tmpstats
.tx_packets
=
505 tsi108_read_stat(data
, TSI108_STAT_TXPKTS
,
506 TSI108_STAT_CARRY2_TXPKTS
,
507 TSI108_STAT_TXPKTS_CARRY
, &data
->stats
.tx_packets
);
509 data
->tmpstats
.rx_bytes
=
510 tsi108_read_stat(data
, TSI108_STAT_RXBYTES
,
511 TSI108_STAT_CARRY1_RXBYTES
,
512 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
514 data
->tmpstats
.tx_bytes
=
515 tsi108_read_stat(data
, TSI108_STAT_TXBYTES
,
516 TSI108_STAT_CARRY2_TXBYTES
,
517 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
519 data
->tmpstats
.multicast
=
520 tsi108_read_stat(data
, TSI108_STAT_RXMCAST
,
521 TSI108_STAT_CARRY1_RXMCAST
,
522 TSI108_STAT_RXMCAST_CARRY
, &data
->stats
.multicast
);
524 excol
= tsi108_read_stat(data
, TSI108_STAT_TXEXCOL
,
525 TSI108_STAT_CARRY2_TXEXCOL
,
526 TSI108_STAT_TXEXCOL_CARRY
,
527 &data
->tx_coll_abort
);
529 data
->tmpstats
.collisions
=
530 tsi108_read_stat(data
, TSI108_STAT_TXTCOL
,
531 TSI108_STAT_CARRY2_TXTCOL
,
532 TSI108_STAT_TXTCOL_CARRY
, &data
->stats
.collisions
);
534 data
->tmpstats
.collisions
+= excol
;
536 data
->tmpstats
.rx_length_errors
=
537 tsi108_read_stat(data
, TSI108_STAT_RXLENGTH
,
538 TSI108_STAT_CARRY1_RXLENGTH
,
539 TSI108_STAT_RXLENGTH_CARRY
,
540 &data
->stats
.rx_length_errors
);
542 data
->tmpstats
.rx_length_errors
+=
543 tsi108_read_stat(data
, TSI108_STAT_RXRUNT
,
544 TSI108_STAT_CARRY1_RXRUNT
,
545 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
547 data
->tmpstats
.rx_length_errors
+=
548 tsi108_read_stat(data
, TSI108_STAT_RXJUMBO
,
549 TSI108_STAT_CARRY1_RXJUMBO
,
550 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
552 data
->tmpstats
.rx_frame_errors
=
553 tsi108_read_stat(data
, TSI108_STAT_RXALIGN
,
554 TSI108_STAT_CARRY1_RXALIGN
,
555 TSI108_STAT_RXALIGN_CARRY
,
556 &data
->stats
.rx_frame_errors
);
558 data
->tmpstats
.rx_frame_errors
+=
559 tsi108_read_stat(data
, TSI108_STAT_RXFCS
,
560 TSI108_STAT_CARRY1_RXFCS
, TSI108_STAT_RXFCS_CARRY
,
563 data
->tmpstats
.rx_frame_errors
+=
564 tsi108_read_stat(data
, TSI108_STAT_RXFRAG
,
565 TSI108_STAT_CARRY1_RXFRAG
,
566 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
568 data
->tmpstats
.rx_missed_errors
=
569 tsi108_read_stat(data
, TSI108_STAT_RXDROP
,
570 TSI108_STAT_CARRY1_RXDROP
,
571 TSI108_STAT_RXDROP_CARRY
,
572 &data
->stats
.rx_missed_errors
);
574 /* These three are maintained by software. */
575 data
->tmpstats
.rx_fifo_errors
= data
->stats
.rx_fifo_errors
;
576 data
->tmpstats
.rx_crc_errors
= data
->stats
.rx_crc_errors
;
578 data
->tmpstats
.tx_aborted_errors
=
579 tsi108_read_stat(data
, TSI108_STAT_TXEXDEF
,
580 TSI108_STAT_CARRY2_TXEXDEF
,
581 TSI108_STAT_TXEXDEF_CARRY
,
582 &data
->stats
.tx_aborted_errors
);
584 data
->tmpstats
.tx_aborted_errors
+=
585 tsi108_read_stat(data
, TSI108_STAT_TXPAUSEDROP
,
586 TSI108_STAT_CARRY2_TXPAUSE
,
587 TSI108_STAT_TXPAUSEDROP_CARRY
,
588 &data
->tx_pause_drop
);
590 data
->tmpstats
.tx_aborted_errors
+= excol
;
592 data
->tmpstats
.tx_errors
= data
->tmpstats
.tx_aborted_errors
;
593 data
->tmpstats
.rx_errors
= data
->tmpstats
.rx_length_errors
+
594 data
->tmpstats
.rx_crc_errors
+
595 data
->tmpstats
.rx_frame_errors
+
596 data
->tmpstats
.rx_fifo_errors
+ data
->tmpstats
.rx_missed_errors
;
598 spin_unlock_irq(&data
->misclock
);
599 return &data
->tmpstats
;
602 static void tsi108_restart_rx(struct tsi108_prv_data
* data
, struct net_device
*dev
)
604 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH
,
605 TSI108_EC_RXQ_PTRHIGH_VALID
);
607 TSI_WRITE(TSI108_EC_RXCTRL
, TSI108_EC_RXCTRL_GO
608 | TSI108_EC_RXCTRL_QUEUE0
);
611 static void tsi108_restart_tx(struct tsi108_prv_data
* data
)
613 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH
,
614 TSI108_EC_TXQ_PTRHIGH_VALID
);
616 TSI_WRITE(TSI108_EC_TXCTRL
, TSI108_EC_TXCTRL_IDLEINT
|
617 TSI108_EC_TXCTRL_GO
| TSI108_EC_TXCTRL_QUEUE0
);
620 /* txlock must be held by caller, with IRQs disabled, and
621 * with permission to re-enable them when the lock is dropped.
623 static void tsi108_complete_tx(struct net_device
*dev
)
625 struct tsi108_prv_data
*data
= netdev_priv(dev
);
630 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
633 if (data
->txring
[tx
].misc
& TSI108_TX_OWN
)
636 skb
= data
->txskbs
[tx
];
638 if (!(data
->txring
[tx
].misc
& TSI108_TX_OK
))
639 printk("%s: bad tx packet, misc %x\n",
640 dev
->name
, data
->txring
[tx
].misc
);
642 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
645 if (data
->txring
[tx
].misc
& TSI108_TX_EOF
) {
646 dev_kfree_skb_any(skb
);
652 if (is_valid_ether_addr(dev
->dev_addr
) && data
->link_up
)
653 netif_wake_queue(dev
);
657 static int tsi108_send_packet(struct sk_buff
* skb
, struct net_device
*dev
)
659 struct tsi108_prv_data
*data
= netdev_priv(dev
);
660 int frags
= skb_shinfo(skb
)->nr_frags
+ 1;
663 if (!data
->phy_ok
&& net_ratelimit())
664 printk(KERN_ERR
"%s: Transmit while PHY is down!\n", dev
->name
);
666 if (!data
->link_up
) {
667 printk(KERN_ERR
"%s: Transmit while link is down!\n",
669 netif_stop_queue(dev
);
670 return NETDEV_TX_BUSY
;
673 if (data
->txfree
< MAX_SKB_FRAGS
+ 1) {
674 netif_stop_queue(dev
);
677 printk(KERN_ERR
"%s: Transmit with full tx ring!\n",
679 return NETDEV_TX_BUSY
;
682 if (data
->txfree
- frags
< MAX_SKB_FRAGS
+ 1) {
683 netif_stop_queue(dev
);
686 spin_lock_irq(&data
->txlock
);
688 for (i
= 0; i
< frags
; i
++) {
690 int tx
= data
->txhead
;
692 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
693 * the interrupt bit. TX descriptor-complete interrupts are
694 * enabled when the queue fills up, and masked when there is
695 * still free space. This way, when saturating the outbound
696 * link, the tx interrupts are kept to a reasonable level.
697 * When the queue is not full, reclamation of skbs still occurs
698 * as new packets are transmitted, or on a queue-empty
702 if ((tx
% TSI108_TX_INT_FREQ
== 0) &&
703 ((TSI108_TXRING_LEN
- data
->txfree
) >= TSI108_TX_INT_FREQ
))
704 misc
= TSI108_TX_INT
;
706 data
->txskbs
[tx
] = skb
;
709 data
->txring
[tx
].buf0
= dma_map_single(&data
->pdev
->dev
,
710 skb
->data
, skb_headlen(skb
),
712 data
->txring
[tx
].len
= skb_headlen(skb
);
713 misc
|= TSI108_TX_SOF
;
715 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
717 data
->txring
[tx
].buf0
=
718 skb_frag_dma_map(&data
->pdev
->dev
, frag
,
719 0, skb_frag_size(frag
),
721 data
->txring
[tx
].len
= skb_frag_size(frag
);
725 misc
|= TSI108_TX_EOF
;
727 if (netif_msg_pktdata(data
)) {
729 printk("%s: Tx Frame contents (%d)\n", dev
->name
,
731 for (i
= 0; i
< skb
->len
; i
++)
732 printk(" %2.2x", skb
->data
[i
]);
735 data
->txring
[tx
].misc
= misc
| TSI108_TX_OWN
;
737 data
->txhead
= (data
->txhead
+ 1) % TSI108_TXRING_LEN
;
741 tsi108_complete_tx(dev
);
743 /* This must be done after the check for completed tx descriptors,
744 * so that the tail pointer is correct.
747 if (!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_QUEUE0
))
748 tsi108_restart_tx(data
);
750 spin_unlock_irq(&data
->txlock
);
754 static int tsi108_complete_rx(struct net_device
*dev
, int budget
)
756 struct tsi108_prv_data
*data
= netdev_priv(dev
);
759 while (data
->rxfree
&& done
!= budget
) {
760 int rx
= data
->rxtail
;
763 if (data
->rxring
[rx
].misc
& TSI108_RX_OWN
)
766 skb
= data
->rxskbs
[rx
];
767 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
771 if (data
->rxring
[rx
].misc
& TSI108_RX_BAD
) {
772 spin_lock_irq(&data
->misclock
);
774 if (data
->rxring
[rx
].misc
& TSI108_RX_CRC
)
775 data
->stats
.rx_crc_errors
++;
776 if (data
->rxring
[rx
].misc
& TSI108_RX_OVER
)
777 data
->stats
.rx_fifo_errors
++;
779 spin_unlock_irq(&data
->misclock
);
781 dev_kfree_skb_any(skb
);
784 if (netif_msg_pktdata(data
)) {
786 printk("%s: Rx Frame contents (%d)\n",
787 dev
->name
, data
->rxring
[rx
].len
);
788 for (i
= 0; i
< data
->rxring
[rx
].len
; i
++)
789 printk(" %2.2x", skb
->data
[i
]);
793 skb_put(skb
, data
->rxring
[rx
].len
);
794 skb
->protocol
= eth_type_trans(skb
, dev
);
795 netif_receive_skb(skb
);
801 static int tsi108_refill_rx(struct net_device
*dev
, int budget
)
803 struct tsi108_prv_data
*data
= netdev_priv(dev
);
806 while (data
->rxfree
!= TSI108_RXRING_LEN
&& done
!= budget
) {
807 int rx
= data
->rxhead
;
810 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
811 data
->rxskbs
[rx
] = skb
;
815 data
->rxring
[rx
].buf0
= dma_map_single(&data
->pdev
->dev
,
816 skb
->data
, TSI108_RX_SKB_SIZE
,
819 /* Sometimes the hardware sets blen to zero after packet
820 * reception, even though the manual says that it's only ever
821 * modified by the driver.
824 data
->rxring
[rx
].blen
= TSI108_RX_SKB_SIZE
;
825 data
->rxring
[rx
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
827 data
->rxhead
= (data
->rxhead
+ 1) % TSI108_RXRING_LEN
;
832 if (done
!= 0 && !(TSI_READ(TSI108_EC_RXSTAT
) &
833 TSI108_EC_RXSTAT_QUEUE0
))
834 tsi108_restart_rx(data
, dev
);
839 static int tsi108_poll(struct napi_struct
*napi
, int budget
)
841 struct tsi108_prv_data
*data
= container_of(napi
, struct tsi108_prv_data
, napi
);
842 struct net_device
*dev
= data
->dev
;
843 u32 estat
= TSI_READ(TSI108_EC_RXESTAT
);
844 u32 intstat
= TSI_READ(TSI108_EC_INTSTAT
);
845 int num_received
= 0, num_filled
= 0;
847 intstat
&= TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
848 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
| TSI108_INT_RXWAIT
;
850 TSI_WRITE(TSI108_EC_RXESTAT
, estat
);
851 TSI_WRITE(TSI108_EC_INTSTAT
, intstat
);
853 if (data
->rxpending
|| (estat
& TSI108_EC_RXESTAT_Q0_DESCINT
))
854 num_received
= tsi108_complete_rx(dev
, budget
);
856 /* This should normally fill no more slots than the number of
857 * packets received in tsi108_complete_rx(). The exception
858 * is when we previously ran out of memory for RX SKBs. In that
859 * case, it's helpful to obey the budget, not only so that the
860 * CPU isn't hogged, but so that memory (which may still be low)
861 * is not hogged by one device.
863 * A work unit is considered to be two SKBs to allow us to catch
864 * up when the ring has shrunk due to out-of-memory but we're
865 * still removing the full budget's worth of packets each time.
868 if (data
->rxfree
< TSI108_RXRING_LEN
)
869 num_filled
= tsi108_refill_rx(dev
, budget
* 2);
871 if (intstat
& TSI108_INT_RXERROR
) {
872 u32 err
= TSI_READ(TSI108_EC_RXERR
);
873 TSI_WRITE(TSI108_EC_RXERR
, err
);
877 printk(KERN_DEBUG
"%s: RX error %x\n",
880 if (!(TSI_READ(TSI108_EC_RXSTAT
) &
881 TSI108_EC_RXSTAT_QUEUE0
))
882 tsi108_restart_rx(data
, dev
);
886 if (intstat
& TSI108_INT_RXOVERRUN
) {
887 spin_lock_irq(&data
->misclock
);
888 data
->stats
.rx_fifo_errors
++;
889 spin_unlock_irq(&data
->misclock
);
892 if (num_received
< budget
) {
894 napi_complete_done(napi
, num_received
);
896 TSI_WRITE(TSI108_EC_INTMASK
,
897 TSI_READ(TSI108_EC_INTMASK
)
898 & ~(TSI108_INT_RXQUEUE0
899 | TSI108_INT_RXTHRESH
|
900 TSI108_INT_RXOVERRUN
|
910 static void tsi108_rx_int(struct net_device
*dev
)
912 struct tsi108_prv_data
*data
= netdev_priv(dev
);
914 /* A race could cause dev to already be scheduled, so it's not an
915 * error if that happens (and interrupts shouldn't be re-masked,
916 * because that can cause harmful races, if poll has already
917 * unmasked them but not cleared LINK_STATE_SCHED).
919 * This can happen if this code races with tsi108_poll(), which masks
920 * the interrupts after tsi108_irq_one() read the mask, but before
921 * napi_schedule is called. It could also happen due to calls
922 * from tsi108_check_rxring().
925 if (napi_schedule_prep(&data
->napi
)) {
926 /* Mask, rather than ack, the receive interrupts. The ack
927 * will happen in tsi108_poll().
930 TSI_WRITE(TSI108_EC_INTMASK
,
931 TSI_READ(TSI108_EC_INTMASK
) |
933 | TSI108_INT_RXTHRESH
|
934 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
|
936 __napi_schedule(&data
->napi
);
938 if (!netif_running(dev
)) {
939 /* This can happen if an interrupt occurs while the
940 * interface is being brought down, as the START
941 * bit is cleared before the stop function is called.
943 * In this case, the interrupts must be masked, or
944 * they will continue indefinitely.
946 * There's a race here if the interface is brought down
947 * and then up in rapid succession, as the device could
948 * be made running after the above check and before
949 * the masking below. This will only happen if the IRQ
950 * thread has a lower priority than the task brining
951 * up the interface. Fixing this race would likely
952 * require changes in generic code.
955 TSI_WRITE(TSI108_EC_INTMASK
,
957 (TSI108_EC_INTMASK
) |
958 TSI108_INT_RXQUEUE0
|
959 TSI108_INT_RXTHRESH
|
960 TSI108_INT_RXOVERRUN
|
967 /* If the RX ring has run out of memory, try periodically
968 * to allocate some more, as otherwise poll would never
969 * get called (apart from the initial end-of-queue condition).
971 * This is called once per second (by default) from the thread.
974 static void tsi108_check_rxring(struct net_device
*dev
)
976 struct tsi108_prv_data
*data
= netdev_priv(dev
);
978 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
979 * directly, so as to keep the receive path single-threaded
980 * (and thus not needing a lock).
983 if (netif_running(dev
) && data
->rxfree
< TSI108_RXRING_LEN
/ 4)
987 static void tsi108_tx_int(struct net_device
*dev
)
989 struct tsi108_prv_data
*data
= netdev_priv(dev
);
990 u32 estat
= TSI_READ(TSI108_EC_TXESTAT
);
992 TSI_WRITE(TSI108_EC_TXESTAT
, estat
);
993 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_TXQUEUE0
|
994 TSI108_INT_TXIDLE
| TSI108_INT_TXERROR
);
995 if (estat
& TSI108_EC_TXESTAT_Q0_ERR
) {
996 u32 err
= TSI_READ(TSI108_EC_TXERR
);
997 TSI_WRITE(TSI108_EC_TXERR
, err
);
999 if (err
&& net_ratelimit())
1000 printk(KERN_ERR
"%s: TX error %x\n", dev
->name
, err
);
1003 if (estat
& (TSI108_EC_TXESTAT_Q0_DESCINT
| TSI108_EC_TXESTAT_Q0_EOQ
)) {
1004 spin_lock(&data
->txlock
);
1005 tsi108_complete_tx(dev
);
1006 spin_unlock(&data
->txlock
);
1011 static irqreturn_t
tsi108_irq(int irq
, void *dev_id
)
1013 struct net_device
*dev
= dev_id
;
1014 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1015 u32 stat
= TSI_READ(TSI108_EC_INTSTAT
);
1017 if (!(stat
& TSI108_INT_ANY
))
1018 return IRQ_NONE
; /* Not our interrupt */
1020 stat
&= ~TSI_READ(TSI108_EC_INTMASK
);
1022 if (stat
& (TSI108_INT_TXQUEUE0
| TSI108_INT_TXIDLE
|
1023 TSI108_INT_TXERROR
))
1025 if (stat
& (TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
1026 TSI108_INT_RXWAIT
| TSI108_INT_RXOVERRUN
|
1027 TSI108_INT_RXERROR
))
1030 if (stat
& TSI108_INT_SFN
) {
1031 if (net_ratelimit())
1032 printk(KERN_DEBUG
"%s: SFN error\n", dev
->name
);
1033 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_SFN
);
1036 if (stat
& TSI108_INT_STATCARRY
) {
1037 tsi108_stat_carry(dev
);
1038 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_STATCARRY
);
1044 static void tsi108_stop_ethernet(struct net_device
*dev
)
1046 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1048 /* Disable all TX and RX queues ... */
1049 TSI_WRITE(TSI108_EC_TXCTRL
, 0);
1050 TSI_WRITE(TSI108_EC_RXCTRL
, 0);
1052 /* ...and wait for them to become idle */
1054 if(!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_ACTIVE
))
1060 if(!(TSI_READ(TSI108_EC_RXSTAT
) & TSI108_EC_RXSTAT_ACTIVE
))
1064 printk(KERN_ERR
"%s function time out\n", __func__
);
1067 static void tsi108_reset_ether(struct tsi108_prv_data
* data
)
1069 TSI_WRITE(TSI108_MAC_CFG1
, TSI108_MAC_CFG1_SOFTRST
);
1071 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1073 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATRST
);
1075 TSI_WRITE(TSI108_EC_PORTCTRL
,
1076 TSI_READ(TSI108_EC_PORTCTRL
) &
1077 ~TSI108_EC_PORTCTRL_STATRST
);
1079 TSI_WRITE(TSI108_EC_TXCFG
, TSI108_EC_TXCFG_RST
);
1081 TSI_WRITE(TSI108_EC_TXCFG
,
1082 TSI_READ(TSI108_EC_TXCFG
) &
1083 ~TSI108_EC_TXCFG_RST
);
1085 TSI_WRITE(TSI108_EC_RXCFG
, TSI108_EC_RXCFG_RST
);
1087 TSI_WRITE(TSI108_EC_RXCFG
,
1088 TSI_READ(TSI108_EC_RXCFG
) &
1089 ~TSI108_EC_RXCFG_RST
);
1091 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1092 TSI_READ(TSI108_MAC_MII_MGMT_CFG
) |
1093 TSI108_MAC_MII_MGMT_RST
);
1095 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1096 (TSI_READ(TSI108_MAC_MII_MGMT_CFG
) &
1097 ~(TSI108_MAC_MII_MGMT_RST
|
1098 TSI108_MAC_MII_MGMT_CLK
)) | 0x07);
1101 static int tsi108_get_mac(struct net_device
*dev
)
1103 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1104 u32 word1
= TSI_READ(TSI108_MAC_ADDR1
);
1105 u32 word2
= TSI_READ(TSI108_MAC_ADDR2
);
1107 /* Note that the octets are reversed from what the manual says,
1108 * producing an even weirder ordering...
1110 if (word2
== 0 && word1
== 0) {
1111 dev
->dev_addr
[0] = 0x00;
1112 dev
->dev_addr
[1] = 0x06;
1113 dev
->dev_addr
[2] = 0xd2;
1114 dev
->dev_addr
[3] = 0x00;
1115 dev
->dev_addr
[4] = 0x00;
1116 if (0x8 == data
->phy
)
1117 dev
->dev_addr
[5] = 0x01;
1119 dev
->dev_addr
[5] = 0x02;
1121 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1123 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1124 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1126 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1127 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1129 dev
->dev_addr
[0] = (word2
>> 16) & 0xff;
1130 dev
->dev_addr
[1] = (word2
>> 24) & 0xff;
1131 dev
->dev_addr
[2] = (word1
>> 0) & 0xff;
1132 dev
->dev_addr
[3] = (word1
>> 8) & 0xff;
1133 dev
->dev_addr
[4] = (word1
>> 16) & 0xff;
1134 dev
->dev_addr
[5] = (word1
>> 24) & 0xff;
1137 if (!is_valid_ether_addr(dev
->dev_addr
)) {
1139 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1140 dev
->name
, word1
, word2
);
1147 static int tsi108_set_mac(struct net_device
*dev
, void *addr
)
1149 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1153 if (!is_valid_ether_addr(addr
))
1154 return -EADDRNOTAVAIL
;
1156 for (i
= 0; i
< 6; i
++)
1157 /* +2 is for the offset of the HW addr type */
1158 dev
->dev_addr
[i
] = ((unsigned char *)addr
)[i
+ 2];
1160 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1162 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1163 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1165 spin_lock_irq(&data
->misclock
);
1166 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1167 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1168 spin_lock(&data
->txlock
);
1170 if (data
->txfree
&& data
->link_up
)
1171 netif_wake_queue(dev
);
1173 spin_unlock(&data
->txlock
);
1174 spin_unlock_irq(&data
->misclock
);
1178 /* Protected by dev->xmit_lock. */
1179 static void tsi108_set_rx_mode(struct net_device
*dev
)
1181 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1182 u32 rxcfg
= TSI_READ(TSI108_EC_RXCFG
);
1184 if (dev
->flags
& IFF_PROMISC
) {
1185 rxcfg
&= ~(TSI108_EC_RXCFG_UC_HASH
| TSI108_EC_RXCFG_MC_HASH
);
1186 rxcfg
|= TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
;
1190 rxcfg
&= ~(TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
);
1192 if (dev
->flags
& IFF_ALLMULTI
|| !netdev_mc_empty(dev
)) {
1194 struct netdev_hw_addr
*ha
;
1195 rxcfg
|= TSI108_EC_RXCFG_MFE
| TSI108_EC_RXCFG_MC_HASH
;
1197 memset(data
->mc_hash
, 0, sizeof(data
->mc_hash
));
1199 netdev_for_each_mc_addr(ha
, dev
) {
1202 crc
= ether_crc(6, ha
->addr
);
1204 __set_bit(hash
, &data
->mc_hash
[0]);
1207 TSI_WRITE(TSI108_EC_HASHADDR
,
1208 TSI108_EC_HASHADDR_AUTOINC
|
1209 TSI108_EC_HASHADDR_MCAST
);
1211 for (i
= 0; i
< 16; i
++) {
1212 /* The manual says that the hardware may drop
1213 * back-to-back writes to the data register.
1216 TSI_WRITE(TSI108_EC_HASHDATA
,
1222 TSI_WRITE(TSI108_EC_RXCFG
, rxcfg
);
1225 static void tsi108_init_phy(struct net_device
*dev
)
1227 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1230 unsigned long flags
;
1232 spin_lock_irqsave(&phy_lock
, flags
);
1234 tsi108_write_mii(data
, MII_BMCR
, BMCR_RESET
);
1236 if(!(tsi108_read_mii(data
, MII_BMCR
) & BMCR_RESET
))
1241 printk(KERN_ERR
"%s function time out\n", __func__
);
1243 if (data
->phy_type
== TSI108_PHY_BCM54XX
) {
1244 tsi108_write_mii(data
, 0x09, 0x0300);
1245 tsi108_write_mii(data
, 0x10, 0x1020);
1246 tsi108_write_mii(data
, 0x1c, 0x8c00);
1249 tsi108_write_mii(data
,
1251 BMCR_ANENABLE
| BMCR_ANRESTART
);
1252 while (tsi108_read_mii(data
, MII_BMCR
) & BMCR_ANRESTART
)
1255 /* Set G/MII mode and receive clock select in TBI control #2. The
1256 * second port won't work if this isn't done, even though we don't
1260 tsi108_write_tbi(data
, 0x11, 0x30);
1262 /* FIXME: It seems to take more than 2 back-to-back reads to the
1263 * PHY_STAT register before the link up status bit is set.
1268 while (!((phyval
= tsi108_read_mii(data
, MII_BMSR
)) &
1270 if (i
++ > (MII_READ_DELAY
/ 10)) {
1273 spin_unlock_irqrestore(&phy_lock
, flags
);
1275 spin_lock_irqsave(&phy_lock
, flags
);
1278 data
->mii_if
.supports_gmii
= mii_check_gmii_support(&data
->mii_if
);
1279 printk(KERN_DEBUG
"PHY_STAT reg contains %08x\n", phyval
);
1281 data
->init_media
= 1;
1282 spin_unlock_irqrestore(&phy_lock
, flags
);
1285 static void tsi108_kill_phy(struct net_device
*dev
)
1287 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1288 unsigned long flags
;
1290 spin_lock_irqsave(&phy_lock
, flags
);
1291 tsi108_write_mii(data
, MII_BMCR
, BMCR_PDOWN
);
1293 spin_unlock_irqrestore(&phy_lock
, flags
);
1296 static int tsi108_open(struct net_device
*dev
)
1299 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1300 unsigned int rxring_size
= TSI108_RXRING_LEN
* sizeof(rx_desc
);
1301 unsigned int txring_size
= TSI108_TXRING_LEN
* sizeof(tx_desc
);
1303 i
= request_irq(data
->irq_num
, tsi108_irq
, 0, dev
->name
, dev
);
1305 printk(KERN_ERR
"tsi108_eth%d: Could not allocate IRQ%d.\n",
1306 data
->id
, data
->irq_num
);
1309 dev
->irq
= data
->irq_num
;
1311 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1312 data
->id
, dev
->irq
, dev
->name
);
1315 data
->rxring
= dma_zalloc_coherent(&data
->pdev
->dev
, rxring_size
,
1316 &data
->rxdma
, GFP_KERNEL
);
1320 data
->txring
= dma_zalloc_coherent(&data
->pdev
->dev
, txring_size
,
1321 &data
->txdma
, GFP_KERNEL
);
1322 if (!data
->txring
) {
1323 dma_free_coherent(&data
->pdev
->dev
, rxring_size
, data
->rxring
,
1328 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1329 data
->rxring
[i
].next0
= data
->rxdma
+ (i
+ 1) * sizeof(rx_desc
);
1330 data
->rxring
[i
].blen
= TSI108_RXBUF_SIZE
;
1331 data
->rxring
[i
].vlan
= 0;
1334 data
->rxring
[TSI108_RXRING_LEN
- 1].next0
= data
->rxdma
;
1339 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1340 struct sk_buff
*skb
;
1342 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
1344 /* Bah. No memory for now, but maybe we'll get
1346 * For now, we'll live with the smaller ring.
1349 "%s: Could only allocate %d receive skb(s).\n",
1355 data
->rxskbs
[i
] = skb
;
1356 data
->rxring
[i
].buf0
= virt_to_phys(data
->rxskbs
[i
]->data
);
1357 data
->rxring
[i
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
1361 TSI_WRITE(TSI108_EC_RXQ_PTRLOW
, data
->rxdma
);
1363 for (i
= 0; i
< TSI108_TXRING_LEN
; i
++) {
1364 data
->txring
[i
].next0
= data
->txdma
+ (i
+ 1) * sizeof(tx_desc
);
1365 data
->txring
[i
].misc
= 0;
1368 data
->txring
[TSI108_TXRING_LEN
- 1].next0
= data
->txdma
;
1371 data
->txfree
= TSI108_TXRING_LEN
;
1372 TSI_WRITE(TSI108_EC_TXQ_PTRLOW
, data
->txdma
);
1373 tsi108_init_phy(dev
);
1375 napi_enable(&data
->napi
);
1377 timer_setup(&data
->timer
, tsi108_timed_checker
, 0);
1378 mod_timer(&data
->timer
, jiffies
+ 1);
1380 tsi108_restart_rx(data
, dev
);
1382 TSI_WRITE(TSI108_EC_INTSTAT
, ~0);
1384 TSI_WRITE(TSI108_EC_INTMASK
,
1385 ~(TSI108_INT_TXQUEUE0
| TSI108_INT_RXERROR
|
1386 TSI108_INT_RXTHRESH
| TSI108_INT_RXQUEUE0
|
1387 TSI108_INT_RXOVERRUN
| TSI108_INT_RXWAIT
|
1388 TSI108_INT_SFN
| TSI108_INT_STATCARRY
));
1390 TSI_WRITE(TSI108_MAC_CFG1
,
1391 TSI108_MAC_CFG1_RXEN
| TSI108_MAC_CFG1_TXEN
);
1392 netif_start_queue(dev
);
1396 static int tsi108_close(struct net_device
*dev
)
1398 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1400 netif_stop_queue(dev
);
1401 napi_disable(&data
->napi
);
1403 del_timer_sync(&data
->timer
);
1405 tsi108_stop_ethernet(dev
);
1406 tsi108_kill_phy(dev
);
1407 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1408 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1410 /* Check for any pending TX packets, and drop them. */
1412 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
1413 int tx
= data
->txtail
;
1414 struct sk_buff
*skb
;
1415 skb
= data
->txskbs
[tx
];
1416 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
1421 free_irq(data
->irq_num
, dev
);
1423 /* Discard the RX ring. */
1425 while (data
->rxfree
) {
1426 int rx
= data
->rxtail
;
1427 struct sk_buff
*skb
;
1429 skb
= data
->rxskbs
[rx
];
1430 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
1435 dma_free_coherent(&data
->pdev
->dev
,
1436 TSI108_RXRING_LEN
* sizeof(rx_desc
),
1437 data
->rxring
, data
->rxdma
);
1438 dma_free_coherent(&data
->pdev
->dev
,
1439 TSI108_TXRING_LEN
* sizeof(tx_desc
),
1440 data
->txring
, data
->txdma
);
1445 static void tsi108_init_mac(struct net_device
*dev
)
1447 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1449 TSI_WRITE(TSI108_MAC_CFG2
, TSI108_MAC_CFG2_DFLT_PREAMBLE
|
1450 TSI108_MAC_CFG2_PADCRC
);
1452 TSI_WRITE(TSI108_EC_TXTHRESH
,
1453 (192 << TSI108_EC_TXTHRESH_STARTFILL
) |
1454 (192 << TSI108_EC_TXTHRESH_STOPFILL
));
1456 TSI_WRITE(TSI108_STAT_CARRYMASK1
,
1457 ~(TSI108_STAT_CARRY1_RXBYTES
|
1458 TSI108_STAT_CARRY1_RXPKTS
|
1459 TSI108_STAT_CARRY1_RXFCS
|
1460 TSI108_STAT_CARRY1_RXMCAST
|
1461 TSI108_STAT_CARRY1_RXALIGN
|
1462 TSI108_STAT_CARRY1_RXLENGTH
|
1463 TSI108_STAT_CARRY1_RXRUNT
|
1464 TSI108_STAT_CARRY1_RXJUMBO
|
1465 TSI108_STAT_CARRY1_RXFRAG
|
1466 TSI108_STAT_CARRY1_RXJABBER
|
1467 TSI108_STAT_CARRY1_RXDROP
));
1469 TSI_WRITE(TSI108_STAT_CARRYMASK2
,
1470 ~(TSI108_STAT_CARRY2_TXBYTES
|
1471 TSI108_STAT_CARRY2_TXPKTS
|
1472 TSI108_STAT_CARRY2_TXEXDEF
|
1473 TSI108_STAT_CARRY2_TXEXCOL
|
1474 TSI108_STAT_CARRY2_TXTCOL
|
1475 TSI108_STAT_CARRY2_TXPAUSE
));
1477 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATEN
);
1478 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1480 TSI_WRITE(TSI108_EC_RXCFG
,
1481 TSI108_EC_RXCFG_SE
| TSI108_EC_RXCFG_BFE
);
1483 TSI_WRITE(TSI108_EC_TXQ_CFG
, TSI108_EC_TXQ_CFG_DESC_INT
|
1484 TSI108_EC_TXQ_CFG_EOQ_OWN_INT
|
1485 TSI108_EC_TXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1486 TSI108_EC_TXQ_CFG_SFNPORT
));
1488 TSI_WRITE(TSI108_EC_RXQ_CFG
, TSI108_EC_RXQ_CFG_DESC_INT
|
1489 TSI108_EC_RXQ_CFG_EOQ_OWN_INT
|
1490 TSI108_EC_RXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1491 TSI108_EC_RXQ_CFG_SFNPORT
));
1493 TSI_WRITE(TSI108_EC_TXQ_BUFCFG
,
1494 TSI108_EC_TXQ_BUFCFG_BURST256
|
1495 TSI108_EC_TXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1496 TSI108_EC_TXQ_BUFCFG_SFNPORT
));
1498 TSI_WRITE(TSI108_EC_RXQ_BUFCFG
,
1499 TSI108_EC_RXQ_BUFCFG_BURST256
|
1500 TSI108_EC_RXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1501 TSI108_EC_RXQ_BUFCFG_SFNPORT
));
1503 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1506 static int tsi108_get_link_ksettings(struct net_device
*dev
,
1507 struct ethtool_link_ksettings
*cmd
)
1509 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1510 unsigned long flags
;
1512 spin_lock_irqsave(&data
->txlock
, flags
);
1513 mii_ethtool_get_link_ksettings(&data
->mii_if
, cmd
);
1514 spin_unlock_irqrestore(&data
->txlock
, flags
);
1519 static int tsi108_set_link_ksettings(struct net_device
*dev
,
1520 const struct ethtool_link_ksettings
*cmd
)
1522 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1523 unsigned long flags
;
1526 spin_lock_irqsave(&data
->txlock
, flags
);
1527 rc
= mii_ethtool_set_link_ksettings(&data
->mii_if
, cmd
);
1528 spin_unlock_irqrestore(&data
->txlock
, flags
);
1533 static int tsi108_do_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1535 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1536 if (!netif_running(dev
))
1538 return generic_mii_ioctl(&data
->mii_if
, if_mii(rq
), cmd
, NULL
);
1541 static const struct ethtool_ops tsi108_ethtool_ops
= {
1542 .get_link
= ethtool_op_get_link
,
1543 .get_link_ksettings
= tsi108_get_link_ksettings
,
1544 .set_link_ksettings
= tsi108_set_link_ksettings
,
1547 static const struct net_device_ops tsi108_netdev_ops
= {
1548 .ndo_open
= tsi108_open
,
1549 .ndo_stop
= tsi108_close
,
1550 .ndo_start_xmit
= tsi108_send_packet
,
1551 .ndo_set_rx_mode
= tsi108_set_rx_mode
,
1552 .ndo_get_stats
= tsi108_get_stats
,
1553 .ndo_do_ioctl
= tsi108_do_ioctl
,
1554 .ndo_set_mac_address
= tsi108_set_mac
,
1555 .ndo_validate_addr
= eth_validate_addr
,
1559 tsi108_init_one(struct platform_device
*pdev
)
1561 struct net_device
*dev
= NULL
;
1562 struct tsi108_prv_data
*data
= NULL
;
1566 einfo
= dev_get_platdata(&pdev
->dev
);
1568 if (NULL
== einfo
) {
1569 printk(KERN_ERR
"tsi-eth %d: Missing additional data!\n",
1574 /* Create an ethernet device instance */
1576 dev
= alloc_etherdev(sizeof(struct tsi108_prv_data
));
1580 printk("tsi108_eth%d: probe...\n", pdev
->id
);
1581 data
= netdev_priv(dev
);
1585 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1586 pdev
->id
, einfo
->regs
, einfo
->phyregs
,
1587 einfo
->phy
, einfo
->irq_num
);
1589 data
->regs
= ioremap(einfo
->regs
, 0x400);
1590 if (NULL
== data
->regs
) {
1595 data
->phyregs
= ioremap(einfo
->phyregs
, 0x400);
1596 if (NULL
== data
->phyregs
) {
1601 data
->mii_if
.dev
= dev
;
1602 data
->mii_if
.mdio_read
= tsi108_mdio_read
;
1603 data
->mii_if
.mdio_write
= tsi108_mdio_write
;
1604 data
->mii_if
.phy_id
= einfo
->phy
;
1605 data
->mii_if
.phy_id_mask
= 0x1f;
1606 data
->mii_if
.reg_num_mask
= 0x1f;
1608 data
->phy
= einfo
->phy
;
1609 data
->phy_type
= einfo
->phy_type
;
1610 data
->irq_num
= einfo
->irq_num
;
1611 data
->id
= pdev
->id
;
1612 netif_napi_add(dev
, &data
->napi
, tsi108_poll
, 64);
1613 dev
->netdev_ops
= &tsi108_netdev_ops
;
1614 dev
->ethtool_ops
= &tsi108_ethtool_ops
;
1616 /* Apparently, the Linux networking code won't use scatter-gather
1617 * if the hardware doesn't do checksums. However, it's faster
1618 * to checksum in place and use SG, as (among other reasons)
1619 * the cache won't be dirtied (which then has to be flushed
1620 * before DMA). The checksumming is done by the driver (via
1621 * a new function skb_csum_dev() in net/core/skbuff.c).
1624 dev
->features
= NETIF_F_HIGHDMA
;
1626 spin_lock_init(&data
->txlock
);
1627 spin_lock_init(&data
->misclock
);
1629 tsi108_reset_ether(data
);
1630 tsi108_kill_phy(dev
);
1632 if ((err
= tsi108_get_mac(dev
)) != 0) {
1633 printk(KERN_ERR
"%s: Invalid MAC address. Please correct.\n",
1638 tsi108_init_mac(dev
);
1639 err
= register_netdev(dev
);
1641 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1646 platform_set_drvdata(pdev
, dev
);
1647 printk(KERN_INFO
"%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1648 dev
->name
, dev
->dev_addr
);
1650 data
->msg_enable
= DEBUG
;
1657 iounmap(data
->phyregs
);
1660 iounmap(data
->regs
);
1667 /* There's no way to either get interrupts from the PHY when
1668 * something changes, or to have the Tsi108 automatically communicate
1669 * with the PHY to reconfigure itself.
1671 * Thus, we have to do it using a timer.
1674 static void tsi108_timed_checker(struct timer_list
*t
)
1676 struct tsi108_prv_data
*data
= from_timer(data
, t
, timer
);
1677 struct net_device
*dev
= data
->dev
;
1679 tsi108_check_phy(dev
);
1680 tsi108_check_rxring(dev
);
1681 mod_timer(&data
->timer
, jiffies
+ CHECK_PHY_INTERVAL
);
1684 static int tsi108_ether_remove(struct platform_device
*pdev
)
1686 struct net_device
*dev
= platform_get_drvdata(pdev
);
1687 struct tsi108_prv_data
*priv
= netdev_priv(dev
);
1689 unregister_netdev(dev
);
1690 tsi108_stop_ethernet(dev
);
1691 iounmap(priv
->regs
);
1692 iounmap(priv
->phyregs
);
1697 module_platform_driver(tsi_eth_driver
);
1699 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1700 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1701 MODULE_LICENSE("GPL");
1702 MODULE_ALIAS("platform:tsi-ethernet");