Linux 4.19.133
[linux/fpc-iii.git] / drivers / remoteproc / remoteproc_core.c
blobe48069db17033bb79ca2ad68d6e3fd5ef6ca2633
1 /*
2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/devcoredump.h>
37 #include <linux/remoteproc.h>
38 #include <linux/iommu.h>
39 #include <linux/idr.h>
40 #include <linux/elf.h>
41 #include <linux/crc32.h>
42 #include <linux/virtio_ids.h>
43 #include <linux/virtio_ring.h>
44 #include <asm/byteorder.h>
46 #include "remoteproc_internal.h"
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
51 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
52 struct resource_table *table, int len);
53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 void *, int offset, int avail);
56 /* Unique indices for remoteproc devices */
57 static DEFINE_IDA(rproc_dev_index);
59 static const char * const rproc_crash_names[] = {
60 [RPROC_MMUFAULT] = "mmufault",
61 [RPROC_WATCHDOG] = "watchdog",
62 [RPROC_FATAL_ERROR] = "fatal error",
65 /* translate rproc_crash_type to string */
66 static const char *rproc_crash_to_string(enum rproc_crash_type type)
68 if (type < ARRAY_SIZE(rproc_crash_names))
69 return rproc_crash_names[type];
70 return "unknown";
74 * This is the IOMMU fault handler we register with the IOMMU API
75 * (when relevant; not all remote processors access memory through
76 * an IOMMU).
78 * IOMMU core will invoke this handler whenever the remote processor
79 * will try to access an unmapped device address.
81 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
82 unsigned long iova, int flags, void *token)
84 struct rproc *rproc = token;
86 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
88 rproc_report_crash(rproc, RPROC_MMUFAULT);
91 * Let the iommu core know we're not really handling this fault;
92 * we just used it as a recovery trigger.
94 return -ENOSYS;
97 static int rproc_enable_iommu(struct rproc *rproc)
99 struct iommu_domain *domain;
100 struct device *dev = rproc->dev.parent;
101 int ret;
103 if (!rproc->has_iommu) {
104 dev_dbg(dev, "iommu not present\n");
105 return 0;
108 domain = iommu_domain_alloc(dev->bus);
109 if (!domain) {
110 dev_err(dev, "can't alloc iommu domain\n");
111 return -ENOMEM;
114 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
116 ret = iommu_attach_device(domain, dev);
117 if (ret) {
118 dev_err(dev, "can't attach iommu device: %d\n", ret);
119 goto free_domain;
122 rproc->domain = domain;
124 return 0;
126 free_domain:
127 iommu_domain_free(domain);
128 return ret;
131 static void rproc_disable_iommu(struct rproc *rproc)
133 struct iommu_domain *domain = rproc->domain;
134 struct device *dev = rproc->dev.parent;
136 if (!domain)
137 return;
139 iommu_detach_device(domain, dev);
140 iommu_domain_free(domain);
144 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
145 * @rproc: handle of a remote processor
146 * @da: remoteproc device address to translate
147 * @len: length of the memory region @da is pointing to
149 * Some remote processors will ask us to allocate them physically contiguous
150 * memory regions (which we call "carveouts"), and map them to specific
151 * device addresses (which are hardcoded in the firmware). They may also have
152 * dedicated memory regions internal to the processors, and use them either
153 * exclusively or alongside carveouts.
155 * They may then ask us to copy objects into specific device addresses (e.g.
156 * code/data sections) or expose us certain symbols in other device address
157 * (e.g. their trace buffer).
159 * This function is a helper function with which we can go over the allocated
160 * carveouts and translate specific device addresses to kernel virtual addresses
161 * so we can access the referenced memory. This function also allows to perform
162 * translations on the internal remoteproc memory regions through a platform
163 * implementation specific da_to_va ops, if present.
165 * The function returns a valid kernel address on success or NULL on failure.
167 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
168 * but only on kernel direct mapped RAM memory. Instead, we're just using
169 * here the output of the DMA API for the carveouts, which should be more
170 * correct.
172 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
174 struct rproc_mem_entry *carveout;
175 void *ptr = NULL;
177 if (rproc->ops->da_to_va) {
178 ptr = rproc->ops->da_to_va(rproc, da, len);
179 if (ptr)
180 goto out;
183 list_for_each_entry(carveout, &rproc->carveouts, node) {
184 int offset = da - carveout->da;
186 /* try next carveout if da is too small */
187 if (offset < 0)
188 continue;
190 /* try next carveout if da is too large */
191 if (offset + len > carveout->len)
192 continue;
194 ptr = carveout->va + offset;
196 break;
199 out:
200 return ptr;
202 EXPORT_SYMBOL(rproc_da_to_va);
204 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
206 struct rproc *rproc = rvdev->rproc;
207 struct device *dev = &rproc->dev;
208 struct rproc_vring *rvring = &rvdev->vring[i];
209 struct fw_rsc_vdev *rsc;
210 dma_addr_t dma;
211 void *va;
212 int ret, size, notifyid;
214 /* actual size of vring (in bytes) */
215 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
218 * Allocate non-cacheable memory for the vring. In the future
219 * this call will also configure the IOMMU for us
221 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
222 if (!va) {
223 dev_err(dev->parent, "dma_alloc_coherent failed\n");
224 return -EINVAL;
228 * Assign an rproc-wide unique index for this vring
229 * TODO: assign a notifyid for rvdev updates as well
230 * TODO: support predefined notifyids (via resource table)
232 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
233 if (ret < 0) {
234 dev_err(dev, "idr_alloc failed: %d\n", ret);
235 dma_free_coherent(dev->parent, size, va, dma);
236 return ret;
238 notifyid = ret;
240 /* Potentially bump max_notifyid */
241 if (notifyid > rproc->max_notifyid)
242 rproc->max_notifyid = notifyid;
244 dev_dbg(dev, "vring%d: va %pK dma %pad size 0x%x idr %d\n",
245 i, va, &dma, size, notifyid);
247 rvring->va = va;
248 rvring->dma = dma;
249 rvring->notifyid = notifyid;
252 * Let the rproc know the notifyid and da of this vring.
253 * Not all platforms use dma_alloc_coherent to automatically
254 * set up the iommu. In this case the device address (da) will
255 * hold the physical address and not the device address.
257 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
258 rsc->vring[i].da = dma;
259 rsc->vring[i].notifyid = notifyid;
260 return 0;
263 static int
264 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
266 struct rproc *rproc = rvdev->rproc;
267 struct device *dev = &rproc->dev;
268 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
269 struct rproc_vring *rvring = &rvdev->vring[i];
271 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
272 i, vring->da, vring->num, vring->align);
274 /* verify queue size and vring alignment are sane */
275 if (!vring->num || !vring->align) {
276 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
277 vring->num, vring->align);
278 return -EINVAL;
281 rvring->len = vring->num;
282 rvring->align = vring->align;
283 rvring->rvdev = rvdev;
285 return 0;
288 void rproc_free_vring(struct rproc_vring *rvring)
290 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
291 struct rproc *rproc = rvring->rvdev->rproc;
292 int idx = rvring - rvring->rvdev->vring;
293 struct fw_rsc_vdev *rsc;
295 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
296 idr_remove(&rproc->notifyids, rvring->notifyid);
298 /* reset resource entry info */
299 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
300 rsc->vring[idx].da = 0;
301 rsc->vring[idx].notifyid = -1;
304 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
306 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
308 return rproc_add_virtio_dev(rvdev, rvdev->id);
311 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
313 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
315 rproc_remove_virtio_dev(rvdev);
319 * rproc_handle_vdev() - handle a vdev fw resource
320 * @rproc: the remote processor
321 * @rsc: the vring resource descriptor
322 * @avail: size of available data (for sanity checking the image)
324 * This resource entry requests the host to statically register a virtio
325 * device (vdev), and setup everything needed to support it. It contains
326 * everything needed to make it possible: the virtio device id, virtio
327 * device features, vrings information, virtio config space, etc...
329 * Before registering the vdev, the vrings are allocated from non-cacheable
330 * physically contiguous memory. Currently we only support two vrings per
331 * remote processor (temporary limitation). We might also want to consider
332 * doing the vring allocation only later when ->find_vqs() is invoked, and
333 * then release them upon ->del_vqs().
335 * Note: @da is currently not really handled correctly: we dynamically
336 * allocate it using the DMA API, ignoring requested hard coded addresses,
337 * and we don't take care of any required IOMMU programming. This is all
338 * going to be taken care of when the generic iommu-based DMA API will be
339 * merged. Meanwhile, statically-addressed iommu-based firmware images should
340 * use RSC_DEVMEM resource entries to map their required @da to the physical
341 * address of their base CMA region (ouch, hacky!).
343 * Returns 0 on success, or an appropriate error code otherwise
345 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
346 int offset, int avail)
348 struct device *dev = &rproc->dev;
349 struct rproc_vdev *rvdev;
350 int i, ret;
352 /* make sure resource isn't truncated */
353 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
354 + rsc->config_len > avail) {
355 dev_err(dev, "vdev rsc is truncated\n");
356 return -EINVAL;
359 /* make sure reserved bytes are zeroes */
360 if (rsc->reserved[0] || rsc->reserved[1]) {
361 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
362 return -EINVAL;
365 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
366 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
368 /* we currently support only two vrings per rvdev */
369 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
370 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
371 return -EINVAL;
374 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
375 if (!rvdev)
376 return -ENOMEM;
378 kref_init(&rvdev->refcount);
380 rvdev->id = rsc->id;
381 rvdev->rproc = rproc;
383 /* parse the vrings */
384 for (i = 0; i < rsc->num_of_vrings; i++) {
385 ret = rproc_parse_vring(rvdev, rsc, i);
386 if (ret)
387 goto free_rvdev;
390 /* remember the resource offset*/
391 rvdev->rsc_offset = offset;
393 /* allocate the vring resources */
394 for (i = 0; i < rsc->num_of_vrings; i++) {
395 ret = rproc_alloc_vring(rvdev, i);
396 if (ret)
397 goto unwind_vring_allocations;
400 list_add_tail(&rvdev->node, &rproc->rvdevs);
402 rvdev->subdev.start = rproc_vdev_do_start;
403 rvdev->subdev.stop = rproc_vdev_do_stop;
405 rproc_add_subdev(rproc, &rvdev->subdev);
407 return 0;
409 unwind_vring_allocations:
410 for (i--; i >= 0; i--)
411 rproc_free_vring(&rvdev->vring[i]);
412 free_rvdev:
413 kfree(rvdev);
414 return ret;
417 void rproc_vdev_release(struct kref *ref)
419 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
420 struct rproc_vring *rvring;
421 struct rproc *rproc = rvdev->rproc;
422 int id;
424 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
425 rvring = &rvdev->vring[id];
426 if (!rvring->va)
427 continue;
429 rproc_free_vring(rvring);
432 rproc_remove_subdev(rproc, &rvdev->subdev);
433 list_del(&rvdev->node);
434 kfree(rvdev);
438 * rproc_handle_trace() - handle a shared trace buffer resource
439 * @rproc: the remote processor
440 * @rsc: the trace resource descriptor
441 * @avail: size of available data (for sanity checking the image)
443 * In case the remote processor dumps trace logs into memory,
444 * export it via debugfs.
446 * Currently, the 'da' member of @rsc should contain the device address
447 * where the remote processor is dumping the traces. Later we could also
448 * support dynamically allocating this address using the generic
449 * DMA API (but currently there isn't a use case for that).
451 * Returns 0 on success, or an appropriate error code otherwise
453 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
454 int offset, int avail)
456 struct rproc_mem_entry *trace;
457 struct device *dev = &rproc->dev;
458 void *ptr;
459 char name[15];
461 if (sizeof(*rsc) > avail) {
462 dev_err(dev, "trace rsc is truncated\n");
463 return -EINVAL;
466 /* make sure reserved bytes are zeroes */
467 if (rsc->reserved) {
468 dev_err(dev, "trace rsc has non zero reserved bytes\n");
469 return -EINVAL;
472 /* what's the kernel address of this resource ? */
473 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
474 if (!ptr) {
475 dev_err(dev, "erroneous trace resource entry\n");
476 return -EINVAL;
479 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
480 if (!trace)
481 return -ENOMEM;
483 /* set the trace buffer dma properties */
484 trace->len = rsc->len;
485 trace->va = ptr;
487 /* make sure snprintf always null terminates, even if truncating */
488 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
490 /* create the debugfs entry */
491 trace->priv = rproc_create_trace_file(name, rproc, trace);
492 if (!trace->priv) {
493 trace->va = NULL;
494 kfree(trace);
495 return -EINVAL;
498 list_add_tail(&trace->node, &rproc->traces);
500 rproc->num_traces++;
502 dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n",
503 name, ptr, rsc->da, rsc->len);
505 return 0;
509 * rproc_handle_devmem() - handle devmem resource entry
510 * @rproc: remote processor handle
511 * @rsc: the devmem resource entry
512 * @avail: size of available data (for sanity checking the image)
514 * Remote processors commonly need to access certain on-chip peripherals.
516 * Some of these remote processors access memory via an iommu device,
517 * and might require us to configure their iommu before they can access
518 * the on-chip peripherals they need.
520 * This resource entry is a request to map such a peripheral device.
522 * These devmem entries will contain the physical address of the device in
523 * the 'pa' member. If a specific device address is expected, then 'da' will
524 * contain it (currently this is the only use case supported). 'len' will
525 * contain the size of the physical region we need to map.
527 * Currently we just "trust" those devmem entries to contain valid physical
528 * addresses, but this is going to change: we want the implementations to
529 * tell us ranges of physical addresses the firmware is allowed to request,
530 * and not allow firmwares to request access to physical addresses that
531 * are outside those ranges.
533 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
534 int offset, int avail)
536 struct rproc_mem_entry *mapping;
537 struct device *dev = &rproc->dev;
538 int ret;
540 /* no point in handling this resource without a valid iommu domain */
541 if (!rproc->domain)
542 return -EINVAL;
544 if (sizeof(*rsc) > avail) {
545 dev_err(dev, "devmem rsc is truncated\n");
546 return -EINVAL;
549 /* make sure reserved bytes are zeroes */
550 if (rsc->reserved) {
551 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
552 return -EINVAL;
555 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
556 if (!mapping)
557 return -ENOMEM;
559 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
560 if (ret) {
561 dev_err(dev, "failed to map devmem: %d\n", ret);
562 goto out;
566 * We'll need this info later when we'll want to unmap everything
567 * (e.g. on shutdown).
569 * We can't trust the remote processor not to change the resource
570 * table, so we must maintain this info independently.
572 mapping->da = rsc->da;
573 mapping->len = rsc->len;
574 list_add_tail(&mapping->node, &rproc->mappings);
576 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
577 rsc->pa, rsc->da, rsc->len);
579 return 0;
581 out:
582 kfree(mapping);
583 return ret;
587 * rproc_handle_carveout() - handle phys contig memory allocation requests
588 * @rproc: rproc handle
589 * @rsc: the resource entry
590 * @avail: size of available data (for image validation)
592 * This function will handle firmware requests for allocation of physically
593 * contiguous memory regions.
595 * These request entries should come first in the firmware's resource table,
596 * as other firmware entries might request placing other data objects inside
597 * these memory regions (e.g. data/code segments, trace resource entries, ...).
599 * Allocating memory this way helps utilizing the reserved physical memory
600 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
601 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
602 * pressure is important; it may have a substantial impact on performance.
604 static int rproc_handle_carveout(struct rproc *rproc,
605 struct fw_rsc_carveout *rsc,
606 int offset, int avail)
608 struct rproc_mem_entry *carveout, *mapping;
609 struct device *dev = &rproc->dev;
610 dma_addr_t dma;
611 void *va;
612 int ret;
614 if (sizeof(*rsc) > avail) {
615 dev_err(dev, "carveout rsc is truncated\n");
616 return -EINVAL;
619 /* make sure reserved bytes are zeroes */
620 if (rsc->reserved) {
621 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
622 return -EINVAL;
625 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
626 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
628 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
629 if (!carveout)
630 return -ENOMEM;
632 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
633 if (!va) {
634 dev_err(dev->parent,
635 "failed to allocate dma memory: len 0x%x\n", rsc->len);
636 ret = -ENOMEM;
637 goto free_carv;
640 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
641 va, &dma, rsc->len);
644 * Ok, this is non-standard.
646 * Sometimes we can't rely on the generic iommu-based DMA API
647 * to dynamically allocate the device address and then set the IOMMU
648 * tables accordingly, because some remote processors might
649 * _require_ us to use hard coded device addresses that their
650 * firmware was compiled with.
652 * In this case, we must use the IOMMU API directly and map
653 * the memory to the device address as expected by the remote
654 * processor.
656 * Obviously such remote processor devices should not be configured
657 * to use the iommu-based DMA API: we expect 'dma' to contain the
658 * physical address in this case.
660 if (rproc->domain) {
661 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
662 if (!mapping) {
663 ret = -ENOMEM;
664 goto dma_free;
667 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
668 rsc->flags);
669 if (ret) {
670 dev_err(dev, "iommu_map failed: %d\n", ret);
671 goto free_mapping;
675 * We'll need this info later when we'll want to unmap
676 * everything (e.g. on shutdown).
678 * We can't trust the remote processor not to change the
679 * resource table, so we must maintain this info independently.
681 mapping->da = rsc->da;
682 mapping->len = rsc->len;
683 list_add_tail(&mapping->node, &rproc->mappings);
685 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
686 rsc->da, &dma);
690 * Some remote processors might need to know the pa
691 * even though they are behind an IOMMU. E.g., OMAP4's
692 * remote M3 processor needs this so it can control
693 * on-chip hardware accelerators that are not behind
694 * the IOMMU, and therefor must know the pa.
696 * Generally we don't want to expose physical addresses
697 * if we don't have to (remote processors are generally
698 * _not_ trusted), so we might want to do this only for
699 * remote processor that _must_ have this (e.g. OMAP4's
700 * dual M3 subsystem).
702 * Non-IOMMU processors might also want to have this info.
703 * In this case, the device address and the physical address
704 * are the same.
706 rsc->pa = dma;
708 carveout->va = va;
709 carveout->len = rsc->len;
710 carveout->dma = dma;
711 carveout->da = rsc->da;
713 list_add_tail(&carveout->node, &rproc->carveouts);
715 return 0;
717 free_mapping:
718 kfree(mapping);
719 dma_free:
720 dma_free_coherent(dev->parent, rsc->len, va, dma);
721 free_carv:
722 kfree(carveout);
723 return ret;
727 * A lookup table for resource handlers. The indices are defined in
728 * enum fw_resource_type.
730 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
731 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
732 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
733 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
734 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
737 /* handle firmware resource entries before booting the remote processor */
738 static int rproc_handle_resources(struct rproc *rproc,
739 rproc_handle_resource_t handlers[RSC_LAST])
741 struct device *dev = &rproc->dev;
742 rproc_handle_resource_t handler;
743 int ret = 0, i;
745 if (!rproc->table_ptr)
746 return 0;
748 for (i = 0; i < rproc->table_ptr->num; i++) {
749 int offset = rproc->table_ptr->offset[i];
750 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
751 int avail = rproc->table_sz - offset - sizeof(*hdr);
752 void *rsc = (void *)hdr + sizeof(*hdr);
754 /* make sure table isn't truncated */
755 if (avail < 0) {
756 dev_err(dev, "rsc table is truncated\n");
757 return -EINVAL;
760 dev_dbg(dev, "rsc: type %d\n", hdr->type);
762 if (hdr->type >= RSC_LAST) {
763 dev_warn(dev, "unsupported resource %d\n", hdr->type);
764 continue;
767 handler = handlers[hdr->type];
768 if (!handler)
769 continue;
771 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
772 if (ret)
773 break;
776 return ret;
779 static int rproc_prepare_subdevices(struct rproc *rproc)
781 struct rproc_subdev *subdev;
782 int ret;
784 list_for_each_entry(subdev, &rproc->subdevs, node) {
785 if (subdev->prepare) {
786 ret = subdev->prepare(subdev);
787 if (ret)
788 goto unroll_preparation;
792 return 0;
794 unroll_preparation:
795 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
796 if (subdev->unprepare)
797 subdev->unprepare(subdev);
800 return ret;
803 static int rproc_start_subdevices(struct rproc *rproc)
805 struct rproc_subdev *subdev;
806 int ret;
808 list_for_each_entry(subdev, &rproc->subdevs, node) {
809 if (subdev->start) {
810 ret = subdev->start(subdev);
811 if (ret)
812 goto unroll_registration;
816 return 0;
818 unroll_registration:
819 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
820 if (subdev->stop)
821 subdev->stop(subdev, true);
824 return ret;
827 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
829 struct rproc_subdev *subdev;
831 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
832 if (subdev->stop)
833 subdev->stop(subdev, crashed);
837 static void rproc_unprepare_subdevices(struct rproc *rproc)
839 struct rproc_subdev *subdev;
841 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
842 if (subdev->unprepare)
843 subdev->unprepare(subdev);
848 * rproc_coredump_cleanup() - clean up dump_segments list
849 * @rproc: the remote processor handle
851 static void rproc_coredump_cleanup(struct rproc *rproc)
853 struct rproc_dump_segment *entry, *tmp;
855 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
856 list_del(&entry->node);
857 kfree(entry);
862 * rproc_resource_cleanup() - clean up and free all acquired resources
863 * @rproc: rproc handle
865 * This function will free all resources acquired for @rproc, and it
866 * is called whenever @rproc either shuts down or fails to boot.
868 static void rproc_resource_cleanup(struct rproc *rproc)
870 struct rproc_mem_entry *entry, *tmp;
871 struct rproc_vdev *rvdev, *rvtmp;
872 struct device *dev = &rproc->dev;
874 /* clean up debugfs trace entries */
875 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
876 rproc_remove_trace_file(entry->priv);
877 rproc->num_traces--;
878 list_del(&entry->node);
879 kfree(entry);
882 /* clean up iommu mapping entries */
883 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
884 size_t unmapped;
886 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
887 if (unmapped != entry->len) {
888 /* nothing much to do besides complaining */
889 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
890 unmapped);
893 list_del(&entry->node);
894 kfree(entry);
897 /* clean up carveout allocations */
898 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
899 dma_free_coherent(dev->parent, entry->len, entry->va,
900 entry->dma);
901 list_del(&entry->node);
902 kfree(entry);
905 /* clean up remote vdev entries */
906 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
907 kref_put(&rvdev->refcount, rproc_vdev_release);
909 rproc_coredump_cleanup(rproc);
912 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
914 struct resource_table *loaded_table;
915 struct device *dev = &rproc->dev;
916 int ret;
918 /* load the ELF segments to memory */
919 ret = rproc_load_segments(rproc, fw);
920 if (ret) {
921 dev_err(dev, "Failed to load program segments: %d\n", ret);
922 return ret;
926 * The starting device has been given the rproc->cached_table as the
927 * resource table. The address of the vring along with the other
928 * allocated resources (carveouts etc) is stored in cached_table.
929 * In order to pass this information to the remote device we must copy
930 * this information to device memory. We also update the table_ptr so
931 * that any subsequent changes will be applied to the loaded version.
933 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
934 if (loaded_table) {
935 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
936 rproc->table_ptr = loaded_table;
939 ret = rproc_prepare_subdevices(rproc);
940 if (ret) {
941 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
942 rproc->name, ret);
943 goto reset_table_ptr;
946 /* power up the remote processor */
947 ret = rproc->ops->start(rproc);
948 if (ret) {
949 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
950 goto unprepare_subdevices;
953 /* Start any subdevices for the remote processor */
954 ret = rproc_start_subdevices(rproc);
955 if (ret) {
956 dev_err(dev, "failed to probe subdevices for %s: %d\n",
957 rproc->name, ret);
958 goto stop_rproc;
961 rproc->state = RPROC_RUNNING;
963 dev_info(dev, "remote processor %s is now up\n", rproc->name);
965 return 0;
967 stop_rproc:
968 rproc->ops->stop(rproc);
969 unprepare_subdevices:
970 rproc_unprepare_subdevices(rproc);
971 reset_table_ptr:
972 rproc->table_ptr = rproc->cached_table;
974 return ret;
978 * take a firmware and boot a remote processor with it.
980 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
982 struct device *dev = &rproc->dev;
983 const char *name = rproc->firmware;
984 int ret;
986 ret = rproc_fw_sanity_check(rproc, fw);
987 if (ret)
988 return ret;
990 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
993 * if enabling an IOMMU isn't relevant for this rproc, this is
994 * just a nop
996 ret = rproc_enable_iommu(rproc);
997 if (ret) {
998 dev_err(dev, "can't enable iommu: %d\n", ret);
999 return ret;
1002 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1004 /* Load resource table, core dump segment list etc from the firmware */
1005 ret = rproc_parse_fw(rproc, fw);
1006 if (ret)
1007 goto disable_iommu;
1009 /* reset max_notifyid */
1010 rproc->max_notifyid = -1;
1012 /* handle fw resources which are required to boot rproc */
1013 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1014 if (ret) {
1015 dev_err(dev, "Failed to process resources: %d\n", ret);
1016 goto clean_up_resources;
1019 ret = rproc_start(rproc, fw);
1020 if (ret)
1021 goto clean_up_resources;
1023 return 0;
1025 clean_up_resources:
1026 rproc_resource_cleanup(rproc);
1027 kfree(rproc->cached_table);
1028 rproc->cached_table = NULL;
1029 rproc->table_ptr = NULL;
1030 disable_iommu:
1031 rproc_disable_iommu(rproc);
1032 return ret;
1036 * take a firmware and boot it up.
1038 * Note: this function is called asynchronously upon registration of the
1039 * remote processor (so we must wait until it completes before we try
1040 * to unregister the device. one other option is just to use kref here,
1041 * that might be cleaner).
1043 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1045 struct rproc *rproc = context;
1047 rproc_boot(rproc);
1049 release_firmware(fw);
1052 static int rproc_trigger_auto_boot(struct rproc *rproc)
1054 int ret;
1057 * We're initiating an asynchronous firmware loading, so we can
1058 * be built-in kernel code, without hanging the boot process.
1060 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1061 rproc->firmware, &rproc->dev, GFP_KERNEL,
1062 rproc, rproc_auto_boot_callback);
1063 if (ret < 0)
1064 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1066 return ret;
1069 static int rproc_stop(struct rproc *rproc, bool crashed)
1071 struct device *dev = &rproc->dev;
1072 int ret;
1074 /* Stop any subdevices for the remote processor */
1075 rproc_stop_subdevices(rproc, crashed);
1077 /* the installed resource table is no longer accessible */
1078 rproc->table_ptr = rproc->cached_table;
1080 /* power off the remote processor */
1081 ret = rproc->ops->stop(rproc);
1082 if (ret) {
1083 dev_err(dev, "can't stop rproc: %d\n", ret);
1084 return ret;
1087 rproc_unprepare_subdevices(rproc);
1089 rproc->state = RPROC_OFFLINE;
1091 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1093 return 0;
1097 * rproc_coredump_add_segment() - add segment of device memory to coredump
1098 * @rproc: handle of a remote processor
1099 * @da: device address
1100 * @size: size of segment
1102 * Add device memory to the list of segments to be included in a coredump for
1103 * the remoteproc.
1105 * Return: 0 on success, negative errno on error.
1107 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1109 struct rproc_dump_segment *segment;
1111 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1112 if (!segment)
1113 return -ENOMEM;
1115 segment->da = da;
1116 segment->size = size;
1118 list_add_tail(&segment->node, &rproc->dump_segments);
1120 return 0;
1122 EXPORT_SYMBOL(rproc_coredump_add_segment);
1125 * rproc_coredump() - perform coredump
1126 * @rproc: rproc handle
1128 * This function will generate an ELF header for the registered segments
1129 * and create a devcoredump device associated with rproc.
1131 static void rproc_coredump(struct rproc *rproc)
1133 struct rproc_dump_segment *segment;
1134 struct elf32_phdr *phdr;
1135 struct elf32_hdr *ehdr;
1136 size_t data_size;
1137 size_t offset;
1138 void *data;
1139 void *ptr;
1140 int phnum = 0;
1142 if (list_empty(&rproc->dump_segments))
1143 return;
1145 data_size = sizeof(*ehdr);
1146 list_for_each_entry(segment, &rproc->dump_segments, node) {
1147 data_size += sizeof(*phdr) + segment->size;
1149 phnum++;
1152 data = vmalloc(data_size);
1153 if (!data)
1154 return;
1156 ehdr = data;
1158 memset(ehdr, 0, sizeof(*ehdr));
1159 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1160 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1161 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1162 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1163 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1164 ehdr->e_type = ET_CORE;
1165 ehdr->e_machine = EM_NONE;
1166 ehdr->e_version = EV_CURRENT;
1167 ehdr->e_entry = rproc->bootaddr;
1168 ehdr->e_phoff = sizeof(*ehdr);
1169 ehdr->e_ehsize = sizeof(*ehdr);
1170 ehdr->e_phentsize = sizeof(*phdr);
1171 ehdr->e_phnum = phnum;
1173 phdr = data + ehdr->e_phoff;
1174 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1175 list_for_each_entry(segment, &rproc->dump_segments, node) {
1176 memset(phdr, 0, sizeof(*phdr));
1177 phdr->p_type = PT_LOAD;
1178 phdr->p_offset = offset;
1179 phdr->p_vaddr = segment->da;
1180 phdr->p_paddr = segment->da;
1181 phdr->p_filesz = segment->size;
1182 phdr->p_memsz = segment->size;
1183 phdr->p_flags = PF_R | PF_W | PF_X;
1184 phdr->p_align = 0;
1186 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1187 if (!ptr) {
1188 dev_err(&rproc->dev,
1189 "invalid coredump segment (%pad, %zu)\n",
1190 &segment->da, segment->size);
1191 memset(data + offset, 0xff, segment->size);
1192 } else {
1193 memcpy(data + offset, ptr, segment->size);
1196 offset += phdr->p_filesz;
1197 phdr++;
1200 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1204 * rproc_trigger_recovery() - recover a remoteproc
1205 * @rproc: the remote processor
1207 * The recovery is done by resetting all the virtio devices, that way all the
1208 * rpmsg drivers will be reseted along with the remote processor making the
1209 * remoteproc functional again.
1211 * This function can sleep, so it cannot be called from atomic context.
1213 int rproc_trigger_recovery(struct rproc *rproc)
1215 const struct firmware *firmware_p;
1216 struct device *dev = &rproc->dev;
1217 int ret;
1219 dev_err(dev, "recovering %s\n", rproc->name);
1221 ret = mutex_lock_interruptible(&rproc->lock);
1222 if (ret)
1223 return ret;
1225 ret = rproc_stop(rproc, true);
1226 if (ret)
1227 goto unlock_mutex;
1229 /* generate coredump */
1230 rproc_coredump(rproc);
1232 /* load firmware */
1233 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1234 if (ret < 0) {
1235 dev_err(dev, "request_firmware failed: %d\n", ret);
1236 goto unlock_mutex;
1239 /* boot the remote processor up again */
1240 ret = rproc_start(rproc, firmware_p);
1242 release_firmware(firmware_p);
1244 unlock_mutex:
1245 mutex_unlock(&rproc->lock);
1246 return ret;
1250 * rproc_crash_handler_work() - handle a crash
1252 * This function needs to handle everything related to a crash, like cpu
1253 * registers and stack dump, information to help to debug the fatal error, etc.
1255 static void rproc_crash_handler_work(struct work_struct *work)
1257 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1258 struct device *dev = &rproc->dev;
1260 dev_dbg(dev, "enter %s\n", __func__);
1262 mutex_lock(&rproc->lock);
1264 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1265 /* handle only the first crash detected */
1266 mutex_unlock(&rproc->lock);
1267 return;
1270 rproc->state = RPROC_CRASHED;
1271 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1272 rproc->name);
1274 mutex_unlock(&rproc->lock);
1276 if (!rproc->recovery_disabled)
1277 rproc_trigger_recovery(rproc);
1281 * rproc_boot() - boot a remote processor
1282 * @rproc: handle of a remote processor
1284 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1286 * If the remote processor is already powered on, this function immediately
1287 * returns (successfully).
1289 * Returns 0 on success, and an appropriate error value otherwise.
1291 int rproc_boot(struct rproc *rproc)
1293 const struct firmware *firmware_p;
1294 struct device *dev;
1295 int ret;
1297 if (!rproc) {
1298 pr_err("invalid rproc handle\n");
1299 return -EINVAL;
1302 dev = &rproc->dev;
1304 ret = mutex_lock_interruptible(&rproc->lock);
1305 if (ret) {
1306 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1307 return ret;
1310 if (rproc->state == RPROC_DELETED) {
1311 ret = -ENODEV;
1312 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1313 goto unlock_mutex;
1316 /* skip the boot process if rproc is already powered up */
1317 if (atomic_inc_return(&rproc->power) > 1) {
1318 ret = 0;
1319 goto unlock_mutex;
1322 dev_info(dev, "powering up %s\n", rproc->name);
1324 /* load firmware */
1325 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1326 if (ret < 0) {
1327 dev_err(dev, "request_firmware failed: %d\n", ret);
1328 goto downref_rproc;
1331 ret = rproc_fw_boot(rproc, firmware_p);
1333 release_firmware(firmware_p);
1335 downref_rproc:
1336 if (ret)
1337 atomic_dec(&rproc->power);
1338 unlock_mutex:
1339 mutex_unlock(&rproc->lock);
1340 return ret;
1342 EXPORT_SYMBOL(rproc_boot);
1345 * rproc_shutdown() - power off the remote processor
1346 * @rproc: the remote processor
1348 * Power off a remote processor (previously booted with rproc_boot()).
1350 * In case @rproc is still being used by an additional user(s), then
1351 * this function will just decrement the power refcount and exit,
1352 * without really powering off the device.
1354 * Every call to rproc_boot() must (eventually) be accompanied by a call
1355 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1357 * Notes:
1358 * - we're not decrementing the rproc's refcount, only the power refcount.
1359 * which means that the @rproc handle stays valid even after rproc_shutdown()
1360 * returns, and users can still use it with a subsequent rproc_boot(), if
1361 * needed.
1363 void rproc_shutdown(struct rproc *rproc)
1365 struct device *dev = &rproc->dev;
1366 int ret;
1368 ret = mutex_lock_interruptible(&rproc->lock);
1369 if (ret) {
1370 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1371 return;
1374 /* if the remote proc is still needed, bail out */
1375 if (!atomic_dec_and_test(&rproc->power))
1376 goto out;
1378 ret = rproc_stop(rproc, false);
1379 if (ret) {
1380 atomic_inc(&rproc->power);
1381 goto out;
1384 /* clean up all acquired resources */
1385 rproc_resource_cleanup(rproc);
1387 rproc_disable_iommu(rproc);
1389 /* Free the copy of the resource table */
1390 kfree(rproc->cached_table);
1391 rproc->cached_table = NULL;
1392 rproc->table_ptr = NULL;
1393 out:
1394 mutex_unlock(&rproc->lock);
1396 EXPORT_SYMBOL(rproc_shutdown);
1399 * rproc_get_by_phandle() - find a remote processor by phandle
1400 * @phandle: phandle to the rproc
1402 * Finds an rproc handle using the remote processor's phandle, and then
1403 * return a handle to the rproc.
1405 * This function increments the remote processor's refcount, so always
1406 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1408 * Returns the rproc handle on success, and NULL on failure.
1410 #ifdef CONFIG_OF
1411 struct rproc *rproc_get_by_phandle(phandle phandle)
1413 struct rproc *rproc = NULL, *r;
1414 struct device_node *np;
1416 np = of_find_node_by_phandle(phandle);
1417 if (!np)
1418 return NULL;
1420 mutex_lock(&rproc_list_mutex);
1421 list_for_each_entry(r, &rproc_list, node) {
1422 if (r->dev.parent && r->dev.parent->of_node == np) {
1423 /* prevent underlying implementation from being removed */
1424 if (!try_module_get(r->dev.parent->driver->owner)) {
1425 dev_err(&r->dev, "can't get owner\n");
1426 break;
1429 rproc = r;
1430 get_device(&rproc->dev);
1431 break;
1434 mutex_unlock(&rproc_list_mutex);
1436 of_node_put(np);
1438 return rproc;
1440 #else
1441 struct rproc *rproc_get_by_phandle(phandle phandle)
1443 return NULL;
1445 #endif
1446 EXPORT_SYMBOL(rproc_get_by_phandle);
1449 * rproc_add() - register a remote processor
1450 * @rproc: the remote processor handle to register
1452 * Registers @rproc with the remoteproc framework, after it has been
1453 * allocated with rproc_alloc().
1455 * This is called by the platform-specific rproc implementation, whenever
1456 * a new remote processor device is probed.
1458 * Returns 0 on success and an appropriate error code otherwise.
1460 * Note: this function initiates an asynchronous firmware loading
1461 * context, which will look for virtio devices supported by the rproc's
1462 * firmware.
1464 * If found, those virtio devices will be created and added, so as a result
1465 * of registering this remote processor, additional virtio drivers might be
1466 * probed.
1468 int rproc_add(struct rproc *rproc)
1470 struct device *dev = &rproc->dev;
1471 int ret;
1473 ret = device_add(dev);
1474 if (ret < 0)
1475 return ret;
1477 dev_info(dev, "%s is available\n", rproc->name);
1479 /* create debugfs entries */
1480 rproc_create_debug_dir(rproc);
1482 /* if rproc is marked always-on, request it to boot */
1483 if (rproc->auto_boot) {
1484 ret = rproc_trigger_auto_boot(rproc);
1485 if (ret < 0)
1486 return ret;
1489 /* expose to rproc_get_by_phandle users */
1490 mutex_lock(&rproc_list_mutex);
1491 list_add(&rproc->node, &rproc_list);
1492 mutex_unlock(&rproc_list_mutex);
1494 return 0;
1496 EXPORT_SYMBOL(rproc_add);
1499 * rproc_type_release() - release a remote processor instance
1500 * @dev: the rproc's device
1502 * This function should _never_ be called directly.
1504 * It will be called by the driver core when no one holds a valid pointer
1505 * to @dev anymore.
1507 static void rproc_type_release(struct device *dev)
1509 struct rproc *rproc = container_of(dev, struct rproc, dev);
1511 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1513 idr_destroy(&rproc->notifyids);
1515 if (rproc->index >= 0)
1516 ida_simple_remove(&rproc_dev_index, rproc->index);
1518 kfree(rproc->firmware);
1519 kfree(rproc->ops);
1520 kfree(rproc);
1523 static const struct device_type rproc_type = {
1524 .name = "remoteproc",
1525 .release = rproc_type_release,
1529 * rproc_alloc() - allocate a remote processor handle
1530 * @dev: the underlying device
1531 * @name: name of this remote processor
1532 * @ops: platform-specific handlers (mainly start/stop)
1533 * @firmware: name of firmware file to load, can be NULL
1534 * @len: length of private data needed by the rproc driver (in bytes)
1536 * Allocates a new remote processor handle, but does not register
1537 * it yet. if @firmware is NULL, a default name is used.
1539 * This function should be used by rproc implementations during initialization
1540 * of the remote processor.
1542 * After creating an rproc handle using this function, and when ready,
1543 * implementations should then call rproc_add() to complete
1544 * the registration of the remote processor.
1546 * On success the new rproc is returned, and on failure, NULL.
1548 * Note: _never_ directly deallocate @rproc, even if it was not registered
1549 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1551 struct rproc *rproc_alloc(struct device *dev, const char *name,
1552 const struct rproc_ops *ops,
1553 const char *firmware, int len)
1555 struct rproc *rproc;
1556 char *p, *template = "rproc-%s-fw";
1557 int name_len;
1559 if (!dev || !name || !ops)
1560 return NULL;
1562 if (!firmware) {
1564 * If the caller didn't pass in a firmware name then
1565 * construct a default name.
1567 name_len = strlen(name) + strlen(template) - 2 + 1;
1568 p = kmalloc(name_len, GFP_KERNEL);
1569 if (!p)
1570 return NULL;
1571 snprintf(p, name_len, template, name);
1572 } else {
1573 p = kstrdup(firmware, GFP_KERNEL);
1574 if (!p)
1575 return NULL;
1578 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1579 if (!rproc) {
1580 kfree(p);
1581 return NULL;
1584 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1585 if (!rproc->ops) {
1586 kfree(p);
1587 kfree(rproc);
1588 return NULL;
1591 rproc->firmware = p;
1592 rproc->name = name;
1593 rproc->priv = &rproc[1];
1594 rproc->auto_boot = true;
1596 device_initialize(&rproc->dev);
1597 rproc->dev.parent = dev;
1598 rproc->dev.type = &rproc_type;
1599 rproc->dev.class = &rproc_class;
1600 rproc->dev.driver_data = rproc;
1601 idr_init(&rproc->notifyids);
1603 /* Assign a unique device index and name */
1604 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1605 if (rproc->index < 0) {
1606 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1607 put_device(&rproc->dev);
1608 return NULL;
1611 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1613 atomic_set(&rproc->power, 0);
1615 /* Default to ELF loader if no load function is specified */
1616 if (!rproc->ops->load) {
1617 rproc->ops->load = rproc_elf_load_segments;
1618 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
1619 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1620 rproc->ops->sanity_check = rproc_elf_sanity_check;
1621 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1624 mutex_init(&rproc->lock);
1626 INIT_LIST_HEAD(&rproc->carveouts);
1627 INIT_LIST_HEAD(&rproc->mappings);
1628 INIT_LIST_HEAD(&rproc->traces);
1629 INIT_LIST_HEAD(&rproc->rvdevs);
1630 INIT_LIST_HEAD(&rproc->subdevs);
1631 INIT_LIST_HEAD(&rproc->dump_segments);
1633 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1635 rproc->state = RPROC_OFFLINE;
1637 return rproc;
1639 EXPORT_SYMBOL(rproc_alloc);
1642 * rproc_free() - unroll rproc_alloc()
1643 * @rproc: the remote processor handle
1645 * This function decrements the rproc dev refcount.
1647 * If no one holds any reference to rproc anymore, then its refcount would
1648 * now drop to zero, and it would be freed.
1650 void rproc_free(struct rproc *rproc)
1652 put_device(&rproc->dev);
1654 EXPORT_SYMBOL(rproc_free);
1657 * rproc_put() - release rproc reference
1658 * @rproc: the remote processor handle
1660 * This function decrements the rproc dev refcount.
1662 * If no one holds any reference to rproc anymore, then its refcount would
1663 * now drop to zero, and it would be freed.
1665 void rproc_put(struct rproc *rproc)
1667 module_put(rproc->dev.parent->driver->owner);
1668 put_device(&rproc->dev);
1670 EXPORT_SYMBOL(rproc_put);
1673 * rproc_del() - unregister a remote processor
1674 * @rproc: rproc handle to unregister
1676 * This function should be called when the platform specific rproc
1677 * implementation decides to remove the rproc device. it should
1678 * _only_ be called if a previous invocation of rproc_add()
1679 * has completed successfully.
1681 * After rproc_del() returns, @rproc isn't freed yet, because
1682 * of the outstanding reference created by rproc_alloc. To decrement that
1683 * one last refcount, one still needs to call rproc_free().
1685 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1687 int rproc_del(struct rproc *rproc)
1689 if (!rproc)
1690 return -EINVAL;
1692 /* if rproc is marked always-on, rproc_add() booted it */
1693 /* TODO: make sure this works with rproc->power > 1 */
1694 if (rproc->auto_boot)
1695 rproc_shutdown(rproc);
1697 mutex_lock(&rproc->lock);
1698 rproc->state = RPROC_DELETED;
1699 mutex_unlock(&rproc->lock);
1701 rproc_delete_debug_dir(rproc);
1703 /* the rproc is downref'ed as soon as it's removed from the klist */
1704 mutex_lock(&rproc_list_mutex);
1705 list_del(&rproc->node);
1706 mutex_unlock(&rproc_list_mutex);
1708 device_del(&rproc->dev);
1710 return 0;
1712 EXPORT_SYMBOL(rproc_del);
1715 * rproc_add_subdev() - add a subdevice to a remoteproc
1716 * @rproc: rproc handle to add the subdevice to
1717 * @subdev: subdev handle to register
1719 * Caller is responsible for populating optional subdevice function pointers.
1721 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1723 list_add_tail(&subdev->node, &rproc->subdevs);
1725 EXPORT_SYMBOL(rproc_add_subdev);
1728 * rproc_remove_subdev() - remove a subdevice from a remoteproc
1729 * @rproc: rproc handle to remove the subdevice from
1730 * @subdev: subdev handle, previously registered with rproc_add_subdev()
1732 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1734 list_del(&subdev->node);
1736 EXPORT_SYMBOL(rproc_remove_subdev);
1739 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
1740 * @dev: child device to find ancestor of
1742 * Returns the ancestor rproc instance, or NULL if not found.
1744 struct rproc *rproc_get_by_child(struct device *dev)
1746 for (dev = dev->parent; dev; dev = dev->parent) {
1747 if (dev->type == &rproc_type)
1748 return dev->driver_data;
1751 return NULL;
1753 EXPORT_SYMBOL(rproc_get_by_child);
1756 * rproc_report_crash() - rproc crash reporter function
1757 * @rproc: remote processor
1758 * @type: crash type
1760 * This function must be called every time a crash is detected by the low-level
1761 * drivers implementing a specific remoteproc. This should not be called from a
1762 * non-remoteproc driver.
1764 * This function can be called from atomic/interrupt context.
1766 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1768 if (!rproc) {
1769 pr_err("NULL rproc pointer\n");
1770 return;
1773 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1774 rproc->name, rproc_crash_to_string(type));
1776 /* create a new task to handle the error */
1777 schedule_work(&rproc->crash_handler);
1779 EXPORT_SYMBOL(rproc_report_crash);
1781 static int __init remoteproc_init(void)
1783 rproc_init_sysfs();
1784 rproc_init_debugfs();
1786 return 0;
1788 subsys_initcall(remoteproc_init);
1790 static void __exit remoteproc_exit(void)
1792 ida_destroy(&rproc_dev_index);
1794 rproc_exit_debugfs();
1795 rproc_exit_sysfs();
1797 module_exit(remoteproc_exit);
1799 MODULE_LICENSE("GPL v2");
1800 MODULE_DESCRIPTION("Generic Remote Processor Framework");