2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
55 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
57 * If cleared, ACPI SCI is only used to wake up the system from suspend
59 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
62 static bool use_acpi_alarm
;
63 module_param(use_acpi_alarm
, bool, 0444);
65 static inline int cmos_use_acpi_alarm(void)
67 return use_acpi_alarm
;
69 #else /* !CONFIG_ACPI */
71 static inline int cmos_use_acpi_alarm(void)
78 struct rtc_device
*rtc
;
81 struct resource
*iomem
;
82 time64_t alarm_expires
;
84 void (*wake_on
)(struct device
*);
85 void (*wake_off
)(struct device
*);
90 /* newer hardware extends the original register set */
95 struct rtc_wkalrm saved_wkalrm
;
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n) ((n) > 0)
101 static const char driver_name
[] = "rtc_cmos";
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
105 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
107 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
109 static inline int is_intr(u8 rtc_intr
)
111 if (!(rtc_intr
& RTC_IRQF
))
113 return rtc_intr
& RTC_IRQMASK
;
116 /*----------------------------------------------------------------*/
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120 * used in a broken "legacy replacement" mode. The breakage includes
121 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122 * other (better) use.
124 * When that broken mode is in use, platform glue provides a partial
125 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
126 * want to use HPET for anything except those IRQs though...
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
132 static inline int is_hpet_enabled(void)
137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
142 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
148 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
153 static inline int hpet_set_periodic_freq(unsigned long freq
)
158 static inline int hpet_rtc_dropped_irq(void)
163 static inline int hpet_rtc_timer_init(void)
168 extern irq_handler_t hpet_rtc_interrupt
;
170 static inline int hpet_register_irq_handler(irq_handler_t handler
)
175 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
183 static inline int use_hpet_alarm(void)
185 return is_hpet_enabled() && !cmos_use_acpi_alarm();
188 /*----------------------------------------------------------------*/
192 /* Most newer x86 systems have two register banks, the first used
193 * for RTC and NVRAM and the second only for NVRAM. Caller must
194 * own rtc_lock ... and we won't worry about access during NMI.
196 #define can_bank2 true
198 static inline unsigned char cmos_read_bank2(unsigned char addr
)
200 outb(addr
, RTC_PORT(2));
201 return inb(RTC_PORT(3));
204 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
206 outb(addr
, RTC_PORT(2));
207 outb(val
, RTC_PORT(3));
212 #define can_bank2 false
214 static inline unsigned char cmos_read_bank2(unsigned char addr
)
219 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
225 /*----------------------------------------------------------------*/
227 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
230 * If pm_trace abused the RTC for storage, set the timespec to 0,
231 * which tells the caller that this RTC value is unusable.
233 if (!pm_trace_rtc_valid())
236 /* REVISIT: if the clock has a "century" register, use
237 * that instead of the heuristic in mc146818_get_time().
238 * That'll make Y3K compatility (year > 2070) easy!
240 mc146818_get_time(t
);
244 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
246 /* REVISIT: set the "century" register if available
248 * NOTE: this ignores the issue whereby updating the seconds
249 * takes effect exactly 500ms after we write the register.
250 * (Also queueing and other delays before we get this far.)
252 return mc146818_set_time(t
);
255 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
257 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
258 unsigned char rtc_control
;
260 /* This not only a rtc_op, but also called directly */
261 if (!is_valid_irq(cmos
->irq
))
264 /* Basic alarms only support hour, minute, and seconds fields.
265 * Some also support day and month, for alarms up to a year in
269 spin_lock_irq(&rtc_lock
);
270 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
271 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
272 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
274 if (cmos
->day_alrm
) {
275 /* ignore upper bits on readback per ACPI spec */
276 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
277 if (!t
->time
.tm_mday
)
278 t
->time
.tm_mday
= -1;
280 if (cmos
->mon_alrm
) {
281 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
287 rtc_control
= CMOS_READ(RTC_CONTROL
);
288 spin_unlock_irq(&rtc_lock
);
290 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
291 if (((unsigned)t
->time
.tm_sec
) < 0x60)
292 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
295 if (((unsigned)t
->time
.tm_min
) < 0x60)
296 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
299 if (((unsigned)t
->time
.tm_hour
) < 0x24)
300 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
302 t
->time
.tm_hour
= -1;
304 if (cmos
->day_alrm
) {
305 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
306 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
308 t
->time
.tm_mday
= -1;
310 if (cmos
->mon_alrm
) {
311 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
312 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
319 t
->enabled
= !!(rtc_control
& RTC_AIE
);
325 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
327 unsigned char rtc_intr
;
329 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
330 * allegedly some older rtcs need that to handle irqs properly
332 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
334 if (use_hpet_alarm())
337 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
338 if (is_intr(rtc_intr
))
339 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
342 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
344 unsigned char rtc_control
;
346 /* flush any pending IRQ status, notably for update irqs,
347 * before we enable new IRQs
349 rtc_control
= CMOS_READ(RTC_CONTROL
);
350 cmos_checkintr(cmos
, rtc_control
);
353 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
354 if (use_hpet_alarm())
355 hpet_set_rtc_irq_bit(mask
);
357 if ((mask
& RTC_AIE
) && cmos_use_acpi_alarm()) {
359 cmos
->wake_on(cmos
->dev
);
362 cmos_checkintr(cmos
, rtc_control
);
365 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
367 unsigned char rtc_control
;
369 rtc_control
= CMOS_READ(RTC_CONTROL
);
370 rtc_control
&= ~mask
;
371 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
372 if (use_hpet_alarm())
373 hpet_mask_rtc_irq_bit(mask
);
375 if ((mask
& RTC_AIE
) && cmos_use_acpi_alarm()) {
377 cmos
->wake_off(cmos
->dev
);
380 cmos_checkintr(cmos
, rtc_control
);
383 static int cmos_validate_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
385 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
388 cmos_read_time(dev
, &now
);
390 if (!cmos
->day_alrm
) {
394 t_max_date
= rtc_tm_to_time64(&now
);
395 t_max_date
+= 24 * 60 * 60 - 1;
396 t_alrm
= rtc_tm_to_time64(&t
->time
);
397 if (t_alrm
> t_max_date
) {
399 "Alarms can be up to one day in the future\n");
402 } else if (!cmos
->mon_alrm
) {
403 struct rtc_time max_date
= now
;
408 if (max_date
.tm_mon
== 11) {
410 max_date
.tm_year
+= 1;
412 max_date
.tm_mon
+= 1;
414 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
415 if (max_date
.tm_mday
> max_mday
)
416 max_date
.tm_mday
= max_mday
;
418 t_max_date
= rtc_tm_to_time64(&max_date
);
420 t_alrm
= rtc_tm_to_time64(&t
->time
);
421 if (t_alrm
> t_max_date
) {
423 "Alarms can be up to one month in the future\n");
427 struct rtc_time max_date
= now
;
432 max_date
.tm_year
+= 1;
433 max_mday
= rtc_month_days(max_date
.tm_mon
, max_date
.tm_year
);
434 if (max_date
.tm_mday
> max_mday
)
435 max_date
.tm_mday
= max_mday
;
437 t_max_date
= rtc_tm_to_time64(&max_date
);
439 t_alrm
= rtc_tm_to_time64(&t
->time
);
440 if (t_alrm
> t_max_date
) {
442 "Alarms can be up to one year in the future\n");
450 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
452 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
453 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
456 /* This not only a rtc_op, but also called directly */
457 if (!is_valid_irq(cmos
->irq
))
460 ret
= cmos_validate_alarm(dev
, t
);
464 mon
= t
->time
.tm_mon
+ 1;
465 mday
= t
->time
.tm_mday
;
466 hrs
= t
->time
.tm_hour
;
467 min
= t
->time
.tm_min
;
468 sec
= t
->time
.tm_sec
;
470 rtc_control
= CMOS_READ(RTC_CONTROL
);
471 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
472 /* Writing 0xff means "don't care" or "match all". */
473 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
474 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
475 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
476 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
477 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
480 spin_lock_irq(&rtc_lock
);
482 /* next rtc irq must not be from previous alarm setting */
483 cmos_irq_disable(cmos
, RTC_AIE
);
486 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
487 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
488 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
490 /* the system may support an "enhanced" alarm */
491 if (cmos
->day_alrm
) {
492 CMOS_WRITE(mday
, cmos
->day_alrm
);
494 CMOS_WRITE(mon
, cmos
->mon_alrm
);
497 if (use_hpet_alarm()) {
499 * FIXME the HPET alarm glue currently ignores day_alrm
502 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
,
507 cmos_irq_enable(cmos
, RTC_AIE
);
509 spin_unlock_irq(&rtc_lock
);
511 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
516 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
518 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
521 spin_lock_irqsave(&rtc_lock
, flags
);
524 cmos_irq_enable(cmos
, RTC_AIE
);
526 cmos_irq_disable(cmos
, RTC_AIE
);
528 spin_unlock_irqrestore(&rtc_lock
, flags
);
532 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
534 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
536 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
537 unsigned char rtc_control
, valid
;
539 spin_lock_irq(&rtc_lock
);
540 rtc_control
= CMOS_READ(RTC_CONTROL
);
541 valid
= CMOS_READ(RTC_VALID
);
542 spin_unlock_irq(&rtc_lock
);
544 /* NOTE: at least ICH6 reports battery status using a different
545 * (non-RTC) bit; and SQWE is ignored on many current systems.
548 "periodic_IRQ\t: %s\n"
550 "HPET_emulated\t: %s\n"
551 // "square_wave\t: %s\n"
554 "periodic_freq\t: %d\n"
555 "batt_status\t: %s\n",
556 (rtc_control
& RTC_PIE
) ? "yes" : "no",
557 (rtc_control
& RTC_UIE
) ? "yes" : "no",
558 use_hpet_alarm() ? "yes" : "no",
559 // (rtc_control & RTC_SQWE) ? "yes" : "no",
560 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
561 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
563 (valid
& RTC_VRT
) ? "okay" : "dead");
569 #define cmos_procfs NULL
572 static const struct rtc_class_ops cmos_rtc_ops
= {
573 .read_time
= cmos_read_time
,
574 .set_time
= cmos_set_time
,
575 .read_alarm
= cmos_read_alarm
,
576 .set_alarm
= cmos_set_alarm
,
578 .alarm_irq_enable
= cmos_alarm_irq_enable
,
581 static const struct rtc_class_ops cmos_rtc_ops_no_alarm
= {
582 .read_time
= cmos_read_time
,
583 .set_time
= cmos_set_time
,
587 /*----------------------------------------------------------------*/
590 * All these chips have at least 64 bytes of address space, shared by
591 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
592 * by boot firmware. Modern chips have 128 or 256 bytes.
595 #define NVRAM_OFFSET (RTC_REG_D + 1)
597 static int cmos_nvram_read(void *priv
, unsigned int off
, void *val
,
600 unsigned char *buf
= val
;
604 spin_lock_irq(&rtc_lock
);
605 for (retval
= 0; count
; count
--, off
++, retval
++) {
607 *buf
++ = CMOS_READ(off
);
609 *buf
++ = cmos_read_bank2(off
);
613 spin_unlock_irq(&rtc_lock
);
618 static int cmos_nvram_write(void *priv
, unsigned int off
, void *val
,
621 struct cmos_rtc
*cmos
= priv
;
622 unsigned char *buf
= val
;
625 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
626 * checksum on part of the NVRAM data. That's currently ignored
627 * here. If userspace is smart enough to know what fields of
628 * NVRAM to update, updating checksums is also part of its job.
631 spin_lock_irq(&rtc_lock
);
632 for (retval
= 0; count
; count
--, off
++, retval
++) {
633 /* don't trash RTC registers */
634 if (off
== cmos
->day_alrm
635 || off
== cmos
->mon_alrm
636 || off
== cmos
->century
)
639 CMOS_WRITE(*buf
++, off
);
641 cmos_write_bank2(*buf
++, off
);
645 spin_unlock_irq(&rtc_lock
);
650 /*----------------------------------------------------------------*/
652 static struct cmos_rtc cmos_rtc
;
654 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
659 spin_lock(&rtc_lock
);
661 /* When the HPET interrupt handler calls us, the interrupt
662 * status is passed as arg1 instead of the irq number. But
663 * always clear irq status, even when HPET is in the way.
665 * Note that HPET and RTC are almost certainly out of phase,
666 * giving different IRQ status ...
668 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
669 rtc_control
= CMOS_READ(RTC_CONTROL
);
670 if (use_hpet_alarm())
671 irqstat
= (unsigned long)irq
& 0xF0;
673 /* If we were suspended, RTC_CONTROL may not be accurate since the
674 * bios may have cleared it.
676 if (!cmos_rtc
.suspend_ctrl
)
677 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
679 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
681 /* All Linux RTC alarms should be treated as if they were oneshot.
682 * Similar code may be needed in system wakeup paths, in case the
683 * alarm woke the system.
685 if (irqstat
& RTC_AIE
) {
686 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
687 rtc_control
&= ~RTC_AIE
;
688 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
689 if (use_hpet_alarm())
690 hpet_mask_rtc_irq_bit(RTC_AIE
);
691 CMOS_READ(RTC_INTR_FLAGS
);
693 spin_unlock(&rtc_lock
);
695 if (is_intr(irqstat
)) {
696 rtc_update_irq(p
, 1, irqstat
);
706 #define INITSECTION __init
709 static int INITSECTION
710 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
712 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
714 unsigned char rtc_control
;
715 unsigned address_space
;
717 struct nvmem_config nvmem_cfg
= {
718 .name
= "cmos_nvram",
721 .reg_read
= cmos_nvram_read
,
722 .reg_write
= cmos_nvram_write
,
726 /* there can be only one ... */
733 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
735 * REVISIT non-x86 systems may instead use memory space resources
736 * (needing ioremap etc), not i/o space resources like this ...
739 ports
= request_region(ports
->start
, resource_size(ports
),
742 ports
= request_mem_region(ports
->start
, resource_size(ports
),
745 dev_dbg(dev
, "i/o registers already in use\n");
749 cmos_rtc
.irq
= rtc_irq
;
750 cmos_rtc
.iomem
= ports
;
752 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
753 * driver did, but don't reject unknown configs. Old hardware
754 * won't address 128 bytes. Newer chips have multiple banks,
755 * though they may not be listed in one I/O resource.
757 #if defined(CONFIG_ATARI)
759 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
760 || defined(__sparc__) || defined(__mips__) \
761 || defined(__powerpc__)
764 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
767 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
770 /* For ACPI systems extension info comes from the FADT. On others,
771 * board specific setup provides it as appropriate. Systems where
772 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
773 * some almost-clones) can provide hooks to make that behave.
775 * Note that ACPI doesn't preclude putting these registers into
776 * "extended" areas of the chip, including some that we won't yet
777 * expect CMOS_READ and friends to handle.
782 if (info
->address_space
)
783 address_space
= info
->address_space
;
785 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
786 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
787 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
788 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
789 if (info
->rtc_century
&& info
->rtc_century
< 128)
790 cmos_rtc
.century
= info
->rtc_century
;
792 if (info
->wake_on
&& info
->wake_off
) {
793 cmos_rtc
.wake_on
= info
->wake_on
;
794 cmos_rtc
.wake_off
= info
->wake_off
;
799 dev_set_drvdata(dev
, &cmos_rtc
);
801 cmos_rtc
.rtc
= devm_rtc_allocate_device(dev
);
802 if (IS_ERR(cmos_rtc
.rtc
)) {
803 retval
= PTR_ERR(cmos_rtc
.rtc
);
807 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
809 spin_lock_irq(&rtc_lock
);
811 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
812 /* force periodic irq to CMOS reset default of 1024Hz;
814 * REVISIT it's been reported that at least one x86_64 ALI
815 * mobo doesn't use 32KHz here ... for portability we might
816 * need to do something about other clock frequencies.
818 cmos_rtc
.rtc
->irq_freq
= 1024;
819 if (use_hpet_alarm())
820 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
821 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
825 if (is_valid_irq(rtc_irq
))
826 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
828 rtc_control
= CMOS_READ(RTC_CONTROL
);
830 spin_unlock_irq(&rtc_lock
);
832 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
833 dev_warn(dev
, "only 24-hr supported\n");
838 if (use_hpet_alarm())
839 hpet_rtc_timer_init();
841 if (is_valid_irq(rtc_irq
)) {
842 irq_handler_t rtc_cmos_int_handler
;
844 if (use_hpet_alarm()) {
845 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
846 retval
= hpet_register_irq_handler(cmos_interrupt
);
848 hpet_mask_rtc_irq_bit(RTC_IRQMASK
);
849 dev_warn(dev
, "hpet_register_irq_handler "
850 " failed in rtc_init().");
854 rtc_cmos_int_handler
= cmos_interrupt
;
856 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
857 0, dev_name(&cmos_rtc
.rtc
->dev
),
860 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
864 cmos_rtc
.rtc
->ops
= &cmos_rtc_ops
;
866 cmos_rtc
.rtc
->ops
= &cmos_rtc_ops_no_alarm
;
869 cmos_rtc
.rtc
->nvram_old_abi
= true;
870 retval
= rtc_register_device(cmos_rtc
.rtc
);
874 /* export at least the first block of NVRAM */
875 nvmem_cfg
.size
= address_space
- NVRAM_OFFSET
;
876 if (rtc_nvmem_register(cmos_rtc
.rtc
, &nvmem_cfg
))
877 dev_err(dev
, "nvmem registration failed\n");
879 dev_info(dev
, "%s%s, %d bytes nvram%s\n",
880 !is_valid_irq(rtc_irq
) ? "no alarms" :
881 cmos_rtc
.mon_alrm
? "alarms up to one year" :
882 cmos_rtc
.day_alrm
? "alarms up to one month" :
883 "alarms up to one day",
884 cmos_rtc
.century
? ", y3k" : "",
886 use_hpet_alarm() ? ", hpet irqs" : "");
891 if (is_valid_irq(rtc_irq
))
892 free_irq(rtc_irq
, cmos_rtc
.rtc
);
897 release_region(ports
->start
, resource_size(ports
));
899 release_mem_region(ports
->start
, resource_size(ports
));
903 static void cmos_do_shutdown(int rtc_irq
)
905 spin_lock_irq(&rtc_lock
);
906 if (is_valid_irq(rtc_irq
))
907 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
908 spin_unlock_irq(&rtc_lock
);
911 static void cmos_do_remove(struct device
*dev
)
913 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
914 struct resource
*ports
;
916 cmos_do_shutdown(cmos
->irq
);
918 if (is_valid_irq(cmos
->irq
)) {
919 free_irq(cmos
->irq
, cmos
->rtc
);
920 if (use_hpet_alarm())
921 hpet_unregister_irq_handler(cmos_interrupt
);
928 release_region(ports
->start
, resource_size(ports
));
930 release_mem_region(ports
->start
, resource_size(ports
));
936 static int cmos_aie_poweroff(struct device
*dev
)
938 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
942 unsigned char rtc_control
;
944 if (!cmos
->alarm_expires
)
947 spin_lock_irq(&rtc_lock
);
948 rtc_control
= CMOS_READ(RTC_CONTROL
);
949 spin_unlock_irq(&rtc_lock
);
951 /* We only care about the situation where AIE is disabled. */
952 if (rtc_control
& RTC_AIE
)
955 cmos_read_time(dev
, &now
);
956 t_now
= rtc_tm_to_time64(&now
);
959 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
960 * automatically right after shutdown on some buggy boxes.
961 * This automatic rebooting issue won't happen when the alarm
962 * time is larger than now+1 seconds.
964 * If the alarm time is equal to now+1 seconds, the issue can be
965 * prevented by cancelling the alarm.
967 if (cmos
->alarm_expires
== t_now
+ 1) {
968 struct rtc_wkalrm alarm
;
970 /* Cancel the AIE timer by configuring the past time. */
971 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
973 retval
= cmos_set_alarm(dev
, &alarm
);
974 } else if (cmos
->alarm_expires
> t_now
+ 1) {
981 static int cmos_suspend(struct device
*dev
)
983 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
986 /* only the alarm might be a wakeup event source */
987 spin_lock_irq(&rtc_lock
);
988 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
989 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
992 if (device_may_wakeup(dev
))
993 mask
= RTC_IRQMASK
& ~RTC_AIE
;
997 CMOS_WRITE(tmp
, RTC_CONTROL
);
998 if (use_hpet_alarm())
999 hpet_mask_rtc_irq_bit(mask
);
1000 cmos_checkintr(cmos
, tmp
);
1002 spin_unlock_irq(&rtc_lock
);
1004 if ((tmp
& RTC_AIE
) && !cmos_use_acpi_alarm()) {
1005 cmos
->enabled_wake
= 1;
1009 enable_irq_wake(cmos
->irq
);
1012 cmos_read_alarm(dev
, &cmos
->saved_wkalrm
);
1014 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
1015 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
1021 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1022 * after a detour through G3 "mechanical off", although the ACPI spec
1023 * says wakeup should only work from G1/S4 "hibernate". To most users,
1024 * distinctions between S4 and S5 are pointless. So when the hardware
1025 * allows, don't draw that distinction.
1027 static inline int cmos_poweroff(struct device
*dev
)
1029 if (!IS_ENABLED(CONFIG_PM
))
1032 return cmos_suspend(dev
);
1035 static void cmos_check_wkalrm(struct device
*dev
)
1037 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1038 struct rtc_wkalrm current_alarm
;
1040 time64_t t_current_expires
;
1041 time64_t t_saved_expires
;
1042 struct rtc_time now
;
1044 /* Check if we have RTC Alarm armed */
1045 if (!(cmos
->suspend_ctrl
& RTC_AIE
))
1048 cmos_read_time(dev
, &now
);
1049 t_now
= rtc_tm_to_time64(&now
);
1052 * ACPI RTC wake event is cleared after resume from STR,
1053 * ACK the rtc irq here
1055 if (t_now
>= cmos
->alarm_expires
&& cmos_use_acpi_alarm()) {
1056 cmos_interrupt(0, (void *)cmos
->rtc
);
1060 cmos_read_alarm(dev
, ¤t_alarm
);
1061 t_current_expires
= rtc_tm_to_time64(¤t_alarm
.time
);
1062 t_saved_expires
= rtc_tm_to_time64(&cmos
->saved_wkalrm
.time
);
1063 if (t_current_expires
!= t_saved_expires
||
1064 cmos
->saved_wkalrm
.enabled
!= current_alarm
.enabled
) {
1065 cmos_set_alarm(dev
, &cmos
->saved_wkalrm
);
1069 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1070 unsigned char *rtc_control
);
1072 static int __maybe_unused
cmos_resume(struct device
*dev
)
1074 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1077 if (cmos
->enabled_wake
&& !cmos_use_acpi_alarm()) {
1079 cmos
->wake_off(dev
);
1081 disable_irq_wake(cmos
->irq
);
1082 cmos
->enabled_wake
= 0;
1085 /* The BIOS might have changed the alarm, restore it */
1086 cmos_check_wkalrm(dev
);
1088 spin_lock_irq(&rtc_lock
);
1089 tmp
= cmos
->suspend_ctrl
;
1090 cmos
->suspend_ctrl
= 0;
1091 /* re-enable any irqs previously active */
1092 if (tmp
& RTC_IRQMASK
) {
1095 if (device_may_wakeup(dev
) && use_hpet_alarm())
1096 hpet_rtc_timer_init();
1099 CMOS_WRITE(tmp
, RTC_CONTROL
);
1100 if (use_hpet_alarm())
1101 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
1103 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1104 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
1105 if (!use_hpet_alarm() || !is_intr(mask
))
1108 /* force one-shot behavior if HPET blocked
1109 * the wake alarm's irq
1111 rtc_update_irq(cmos
->rtc
, 1, mask
);
1113 hpet_mask_rtc_irq_bit(RTC_AIE
);
1114 } while (mask
& RTC_AIE
);
1117 cmos_check_acpi_rtc_status(dev
, &tmp
);
1119 spin_unlock_irq(&rtc_lock
);
1121 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
1126 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
1128 /*----------------------------------------------------------------*/
1130 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1131 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1132 * probably list them in similar PNPBIOS tables; so PNP is more common.
1134 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1135 * predate even PNPBIOS should set up platform_bus devices.
1140 #include <linux/acpi.h>
1142 static u32
rtc_handler(void *context
)
1144 struct device
*dev
= context
;
1145 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1146 unsigned char rtc_control
= 0;
1147 unsigned char rtc_intr
;
1148 unsigned long flags
;
1152 * Always update rtc irq when ACPI is used as RTC Alarm.
1153 * Or else, ACPI SCI is enabled during suspend/resume only,
1154 * update rtc irq in that case.
1156 if (cmos_use_acpi_alarm())
1157 cmos_interrupt(0, (void *)cmos
->rtc
);
1159 /* Fix me: can we use cmos_interrupt() here as well? */
1160 spin_lock_irqsave(&rtc_lock
, flags
);
1161 if (cmos_rtc
.suspend_ctrl
)
1162 rtc_control
= CMOS_READ(RTC_CONTROL
);
1163 if (rtc_control
& RTC_AIE
) {
1164 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
1165 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
1166 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
1167 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
1169 spin_unlock_irqrestore(&rtc_lock
, flags
);
1172 pm_wakeup_hard_event(dev
);
1173 acpi_clear_event(ACPI_EVENT_RTC
);
1174 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1175 return ACPI_INTERRUPT_HANDLED
;
1178 static inline void rtc_wake_setup(struct device
*dev
)
1180 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
1182 * After the RTC handler is installed, the Fixed_RTC event should
1183 * be disabled. Only when the RTC alarm is set will it be enabled.
1185 acpi_clear_event(ACPI_EVENT_RTC
);
1186 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1189 static void rtc_wake_on(struct device
*dev
)
1191 acpi_clear_event(ACPI_EVENT_RTC
);
1192 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1195 static void rtc_wake_off(struct device
*dev
)
1197 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1201 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1202 static void use_acpi_alarm_quirks(void)
1206 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
1209 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_LOW_POWER_S0
))
1212 if (!is_hpet_enabled())
1215 if (dmi_get_date(DMI_BIOS_DATE
, &year
, NULL
, NULL
) && year
>= 2015)
1216 use_acpi_alarm
= true;
1219 static inline void use_acpi_alarm_quirks(void) { }
1222 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1223 * its device node and pass extra config data. This helps its driver use
1224 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1225 * that this board's RTC is wakeup-capable (per ACPI spec).
1227 static struct cmos_rtc_board_info acpi_rtc_info
;
1229 static void cmos_wake_setup(struct device
*dev
)
1234 use_acpi_alarm_quirks();
1236 rtc_wake_setup(dev
);
1237 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1238 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1240 /* workaround bug in some ACPI tables */
1241 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1242 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1243 acpi_gbl_FADT
.month_alarm
);
1244 acpi_gbl_FADT
.month_alarm
= 0;
1247 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1248 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1249 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1251 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1252 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1253 dev_info(dev
, "RTC can wake from S4\n");
1255 dev
->platform_data
= &acpi_rtc_info
;
1257 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1258 device_init_wakeup(dev
, 1);
1261 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1262 unsigned char *rtc_control
)
1264 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1265 acpi_event_status rtc_status
;
1268 if (acpi_gbl_FADT
.flags
& ACPI_FADT_FIXED_RTC
)
1271 status
= acpi_get_event_status(ACPI_EVENT_RTC
, &rtc_status
);
1272 if (ACPI_FAILURE(status
)) {
1273 dev_err(dev
, "Could not get RTC status\n");
1274 } else if (rtc_status
& ACPI_EVENT_FLAG_SET
) {
1276 *rtc_control
&= ~RTC_AIE
;
1277 CMOS_WRITE(*rtc_control
, RTC_CONTROL
);
1278 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1279 rtc_update_irq(cmos
->rtc
, 1, mask
);
1285 static void cmos_wake_setup(struct device
*dev
)
1289 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1290 unsigned char *rtc_control
)
1298 #include <linux/pnp.h>
1300 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1302 cmos_wake_setup(&pnp
->dev
);
1304 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0)) {
1305 unsigned int irq
= 0;
1307 /* Some machines contain a PNP entry for the RTC, but
1308 * don't define the IRQ. It should always be safe to
1309 * hardcode it on systems with a legacy PIC.
1311 if (nr_legacy_irqs())
1314 return cmos_do_probe(&pnp
->dev
,
1315 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), irq
);
1317 return cmos_do_probe(&pnp
->dev
,
1318 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1323 static void cmos_pnp_remove(struct pnp_dev
*pnp
)
1325 cmos_do_remove(&pnp
->dev
);
1328 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1330 struct device
*dev
= &pnp
->dev
;
1331 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1333 if (system_state
== SYSTEM_POWER_OFF
) {
1334 int retval
= cmos_poweroff(dev
);
1336 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1340 cmos_do_shutdown(cmos
->irq
);
1343 static const struct pnp_device_id rtc_ids
[] = {
1344 { .id
= "PNP0b00", },
1345 { .id
= "PNP0b01", },
1346 { .id
= "PNP0b02", },
1349 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1351 static struct pnp_driver cmos_pnp_driver
= {
1352 .name
= (char *) driver_name
,
1353 .id_table
= rtc_ids
,
1354 .probe
= cmos_pnp_probe
,
1355 .remove
= cmos_pnp_remove
,
1356 .shutdown
= cmos_pnp_shutdown
,
1358 /* flag ensures resume() gets called, and stops syslog spam */
1359 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1365 #endif /* CONFIG_PNP */
1368 static const struct of_device_id of_cmos_match
[] = {
1370 .compatible
= "motorola,mc146818",
1374 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1376 static __init
void cmos_of_init(struct platform_device
*pdev
)
1378 struct device_node
*node
= pdev
->dev
.of_node
;
1384 val
= of_get_property(node
, "ctrl-reg", NULL
);
1386 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1388 val
= of_get_property(node
, "freq-reg", NULL
);
1390 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1393 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1395 /*----------------------------------------------------------------*/
1397 /* Platform setup should have set up an RTC device, when PNP is
1398 * unavailable ... this could happen even on (older) PCs.
1401 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1403 struct resource
*resource
;
1407 cmos_wake_setup(&pdev
->dev
);
1410 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1412 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1413 irq
= platform_get_irq(pdev
, 0);
1417 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1420 static int cmos_platform_remove(struct platform_device
*pdev
)
1422 cmos_do_remove(&pdev
->dev
);
1426 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1428 struct device
*dev
= &pdev
->dev
;
1429 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1431 if (system_state
== SYSTEM_POWER_OFF
) {
1432 int retval
= cmos_poweroff(dev
);
1434 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1438 cmos_do_shutdown(cmos
->irq
);
1441 /* work with hotplug and coldplug */
1442 MODULE_ALIAS("platform:rtc_cmos");
1444 static struct platform_driver cmos_platform_driver
= {
1445 .remove
= cmos_platform_remove
,
1446 .shutdown
= cmos_platform_shutdown
,
1448 .name
= driver_name
,
1450 .of_match_table
= of_match_ptr(of_cmos_match
),
1455 static bool pnp_driver_registered
;
1457 static bool platform_driver_registered
;
1459 static int __init
cmos_init(void)
1464 retval
= pnp_register_driver(&cmos_pnp_driver
);
1466 pnp_driver_registered
= true;
1469 if (!cmos_rtc
.dev
) {
1470 retval
= platform_driver_probe(&cmos_platform_driver
,
1471 cmos_platform_probe
);
1473 platform_driver_registered
= true;
1480 if (pnp_driver_registered
)
1481 pnp_unregister_driver(&cmos_pnp_driver
);
1485 module_init(cmos_init
);
1487 static void __exit
cmos_exit(void)
1490 if (pnp_driver_registered
)
1491 pnp_unregister_driver(&cmos_pnp_driver
);
1493 if (platform_driver_registered
)
1494 platform_driver_unregister(&cmos_platform_driver
);
1496 module_exit(cmos_exit
);
1499 MODULE_AUTHOR("David Brownell");
1500 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1501 MODULE_LICENSE("GPL");