Linux 4.19.133
[linux/fpc-iii.git] / drivers / scsi / aic94xx / aic94xx_hwi.c
blob3b8ad55e59de13e898c44cd5fc46d0e55cdf8f68
1 /*
2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/firmware.h>
33 #include "aic94xx.h"
34 #include "aic94xx_reg.h"
35 #include "aic94xx_hwi.h"
36 #include "aic94xx_seq.h"
37 #include "aic94xx_dump.h"
39 u32 MBAR0_SWB_SIZE;
41 /* ---------- Initialization ---------- */
43 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
45 /* adapter came with a sas address */
46 if (asd_ha->hw_prof.sas_addr[0])
47 return 0;
49 return sas_request_addr(asd_ha->sas_ha.core.shost,
50 asd_ha->hw_prof.sas_addr);
53 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
55 int i;
57 for (i = 0; i < ASD_MAX_PHYS; i++) {
58 if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
59 continue;
60 /* Set a phy's address only if it has none.
62 ASD_DPRINTK("setting phy%d addr to %llx\n", i,
63 SAS_ADDR(asd_ha->hw_prof.sas_addr));
64 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
65 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
69 /* ---------- PHY initialization ---------- */
71 static void asd_init_phy_identify(struct asd_phy *phy)
73 phy->identify_frame = phy->id_frm_tok->vaddr;
75 memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
77 phy->identify_frame->dev_type = SAS_END_DEVICE;
78 if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
79 phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
80 if (phy->sas_phy.role & PHY_ROLE_TARGET)
81 phy->identify_frame->target_bits = phy->sas_phy.tproto;
82 memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
83 SAS_ADDR_SIZE);
84 phy->identify_frame->phy_id = phy->sas_phy.id;
87 static int asd_init_phy(struct asd_phy *phy)
89 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
90 struct asd_sas_phy *sas_phy = &phy->sas_phy;
92 sas_phy->enabled = 1;
93 sas_phy->class = SAS;
94 sas_phy->iproto = SAS_PROTOCOL_ALL;
95 sas_phy->tproto = 0;
96 sas_phy->type = PHY_TYPE_PHYSICAL;
97 sas_phy->role = PHY_ROLE_INITIATOR;
98 sas_phy->oob_mode = OOB_NOT_CONNECTED;
99 sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
101 phy->id_frm_tok = asd_alloc_coherent(asd_ha,
102 sizeof(*phy->identify_frame),
103 GFP_KERNEL);
104 if (!phy->id_frm_tok) {
105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
106 return -ENOMEM;
107 } else
108 asd_init_phy_identify(phy);
110 memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
112 return 0;
115 static void asd_init_ports(struct asd_ha_struct *asd_ha)
117 int i;
119 spin_lock_init(&asd_ha->asd_ports_lock);
120 for (i = 0; i < ASD_MAX_PHYS; i++) {
121 struct asd_port *asd_port = &asd_ha->asd_ports[i];
123 memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
124 memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
125 asd_port->phy_mask = 0;
126 asd_port->num_phys = 0;
130 static int asd_init_phys(struct asd_ha_struct *asd_ha)
132 u8 i;
133 u8 phy_mask = asd_ha->hw_prof.enabled_phys;
135 for (i = 0; i < ASD_MAX_PHYS; i++) {
136 struct asd_phy *phy = &asd_ha->phys[i];
138 phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
139 phy->asd_port = NULL;
141 phy->sas_phy.enabled = 0;
142 phy->sas_phy.id = i;
143 phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
144 phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
145 phy->sas_phy.ha = &asd_ha->sas_ha;
146 phy->sas_phy.lldd_phy = phy;
149 /* Now enable and initialize only the enabled phys. */
150 for_each_phy(phy_mask, phy_mask, i) {
151 int err = asd_init_phy(&asd_ha->phys[i]);
152 if (err)
153 return err;
156 return 0;
159 /* ---------- Sliding windows ---------- */
161 static int asd_init_sw(struct asd_ha_struct *asd_ha)
163 struct pci_dev *pcidev = asd_ha->pcidev;
164 int err;
165 u32 v;
167 /* Unlock MBARs */
168 err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
169 if (err) {
170 asd_printk("couldn't access conf. space of %s\n",
171 pci_name(pcidev));
172 goto Err;
174 if (v)
175 err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
176 if (err) {
177 asd_printk("couldn't write to MBAR_KEY of %s\n",
178 pci_name(pcidev));
179 goto Err;
182 /* Set sliding windows A, B and C to point to proper internal
183 * memory regions.
185 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
186 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
187 REG_BASE_ADDR_CSEQCIO);
188 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
189 asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
190 asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
191 asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
192 MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
193 if (!asd_ha->iospace) {
194 /* MBAR1 will point to OCM (On Chip Memory) */
195 pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
196 asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
198 spin_lock_init(&asd_ha->iolock);
199 Err:
200 return err;
203 /* ---------- SCB initialization ---------- */
206 * asd_init_scbs - manually allocate the first SCB.
207 * @asd_ha: pointer to host adapter structure
209 * This allocates the very first SCB which would be sent to the
210 * sequencer for execution. Its bus address is written to
211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
212 * the _next_ scb to be DMA-ed to the host adapter is read from the last
213 * SCB DMA-ed to the host adapter, we have to always stay one step
214 * ahead of the sequencer and keep one SCB already allocated.
216 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
218 struct asd_seq_data *seq = &asd_ha->seq;
219 int bitmap_bytes;
221 /* allocate the index array and bitmap */
222 asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
223 asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
224 sizeof(void *),
225 GFP_KERNEL);
226 if (!asd_ha->seq.tc_index_array)
227 return -ENOMEM;
229 bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
230 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
231 asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
232 if (!asd_ha->seq.tc_index_bitmap) {
233 kfree(asd_ha->seq.tc_index_array);
234 asd_ha->seq.tc_index_array = NULL;
235 return -ENOMEM;
238 spin_lock_init(&seq->tc_index_lock);
240 seq->next_scb.size = sizeof(struct scb);
241 seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
242 &seq->next_scb.dma_handle);
243 if (!seq->next_scb.vaddr) {
244 kfree(asd_ha->seq.tc_index_bitmap);
245 kfree(asd_ha->seq.tc_index_array);
246 asd_ha->seq.tc_index_bitmap = NULL;
247 asd_ha->seq.tc_index_array = NULL;
248 return -ENOMEM;
251 seq->pending = 0;
252 spin_lock_init(&seq->pend_q_lock);
253 INIT_LIST_HEAD(&seq->pend_q);
255 return 0;
258 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
260 asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
261 asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
262 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
263 asd_ha->hw_prof.max_scbs,
264 asd_ha->hw_prof.max_ddbs);
267 /* ---------- Done List initialization ---------- */
269 static void asd_dl_tasklet_handler(unsigned long);
271 static int asd_init_dl(struct asd_ha_struct *asd_ha)
273 asd_ha->seq.actual_dl
274 = asd_alloc_coherent(asd_ha,
275 ASD_DL_SIZE * sizeof(struct done_list_struct),
276 GFP_KERNEL);
277 if (!asd_ha->seq.actual_dl)
278 return -ENOMEM;
279 asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
280 asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
281 asd_ha->seq.dl_next = 0;
282 tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
283 (unsigned long) asd_ha);
285 return 0;
288 /* ---------- EDB and ESCB init ---------- */
290 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
292 struct asd_seq_data *seq = &asd_ha->seq;
293 int i;
295 seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
296 gfp_flags);
297 if (!seq->edb_arr)
298 return -ENOMEM;
300 for (i = 0; i < seq->num_edbs; i++) {
301 seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
302 gfp_flags);
303 if (!seq->edb_arr[i])
304 goto Err_unroll;
305 memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
308 ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
310 return 0;
312 Err_unroll:
313 for (i-- ; i >= 0; i--)
314 asd_free_coherent(asd_ha, seq->edb_arr[i]);
315 kfree(seq->edb_arr);
316 seq->edb_arr = NULL;
318 return -ENOMEM;
321 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
322 gfp_t gfp_flags)
324 struct asd_seq_data *seq = &asd_ha->seq;
325 struct asd_ascb *escb;
326 int i, escbs;
328 seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
329 gfp_flags);
330 if (!seq->escb_arr)
331 return -ENOMEM;
333 escbs = seq->num_escbs;
334 escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
335 if (!escb) {
336 asd_printk("couldn't allocate list of escbs\n");
337 goto Err;
339 seq->num_escbs -= escbs; /* subtract what was not allocated */
340 ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
342 for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
343 struct asd_ascb,
344 list)) {
345 seq->escb_arr[i] = escb;
346 escb->scb->header.opcode = EMPTY_SCB;
349 return 0;
350 Err:
351 kfree(seq->escb_arr);
352 seq->escb_arr = NULL;
353 return -ENOMEM;
357 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
359 struct asd_seq_data *seq = &asd_ha->seq;
360 int i, k, z = 0;
362 for (i = 0; i < seq->num_escbs; i++) {
363 struct asd_ascb *ascb = seq->escb_arr[i];
364 struct empty_scb *escb = &ascb->scb->escb;
366 ascb->edb_index = z;
368 escb->num_valid = ASD_EDBS_PER_SCB;
370 for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
371 struct sg_el *eb = &escb->eb[k];
372 struct asd_dma_tok *edb = seq->edb_arr[z++];
374 memset(eb, 0, sizeof(*eb));
375 eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
376 eb->size = cpu_to_le32(((u32) edb->size));
382 * asd_init_escbs -- allocate and initialize empty scbs
383 * @asd_ha: pointer to host adapter structure
385 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
386 * They transport sense data, etc.
388 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
390 struct asd_seq_data *seq = &asd_ha->seq;
391 int err = 0;
393 /* Allocate two empty data buffers (edb) per sequencer. */
394 int edbs = 2*(1+asd_ha->hw_prof.num_phys);
396 seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
397 seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
399 err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
400 if (err) {
401 asd_printk("couldn't allocate edbs\n");
402 return err;
405 err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
406 if (err) {
407 asd_printk("couldn't allocate escbs\n");
408 return err;
411 asd_assign_edbs2escbs(asd_ha);
412 /* In order to insure that normal SCBs do not overfill sequencer
413 * memory and leave no space for escbs (halting condition),
414 * we increment pending here by the number of escbs. However,
415 * escbs are never pending.
417 seq->pending = seq->num_escbs;
418 seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
420 return 0;
423 /* ---------- HW initialization ---------- */
426 * asd_chip_hardrst -- hard reset the chip
427 * @asd_ha: pointer to host adapter structure
429 * This takes 16 cycles and is synchronous to CFCLK, which runs
430 * at 200 MHz, so this should take at most 80 nanoseconds.
432 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
434 int i;
435 int count = 100;
436 u32 reg;
438 for (i = 0 ; i < 4 ; i++) {
439 asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
442 do {
443 udelay(1);
444 reg = asd_read_reg_dword(asd_ha, CHIMINT);
445 if (reg & HARDRSTDET) {
446 asd_write_reg_dword(asd_ha, CHIMINT,
447 HARDRSTDET|PORRSTDET);
448 return 0;
450 } while (--count > 0);
452 return -ENODEV;
456 * asd_init_chip -- initialize the chip
457 * @asd_ha: pointer to host adapter structure
459 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
460 * microcode and starts the sequencers. The caller has to explicitly
461 * enable HA interrupts with asd_enable_ints(asd_ha).
463 static int asd_init_chip(struct asd_ha_struct *asd_ha)
465 int err;
467 err = asd_chip_hardrst(asd_ha);
468 if (err) {
469 asd_printk("couldn't hard reset %s\n",
470 pci_name(asd_ha->pcidev));
471 goto out;
474 asd_disable_ints(asd_ha);
476 err = asd_init_seqs(asd_ha);
477 if (err) {
478 asd_printk("couldn't init seqs for %s\n",
479 pci_name(asd_ha->pcidev));
480 goto out;
483 err = asd_start_seqs(asd_ha);
484 if (err) {
485 asd_printk("couldn't start seqs for %s\n",
486 pci_name(asd_ha->pcidev));
487 goto out;
489 out:
490 return err;
493 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
495 static int max_devs = 0;
496 module_param_named(max_devs, max_devs, int, S_IRUGO);
497 MODULE_PARM_DESC(max_devs, "\n"
498 "\tMaximum number of SAS devices to support (not LUs).\n"
499 "\tDefault: 2176, Maximum: 65663.\n");
501 static int max_cmnds = 0;
502 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
503 MODULE_PARM_DESC(max_cmnds, "\n"
504 "\tMaximum number of commands queuable.\n"
505 "\tDefault: 512, Maximum: 66047.\n");
507 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
509 unsigned long dma_addr = OCM_BASE_ADDR;
510 u32 d;
512 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
513 asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
514 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
515 d |= 4;
516 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
517 asd_ha->hw_prof.max_ddbs += MAX_DEVS;
520 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
522 dma_addr_t dma_handle;
523 unsigned long dma_addr;
524 u32 d;
525 int size;
527 asd_extend_devctx_ocm(asd_ha);
529 asd_ha->hw_prof.ddb_ext = NULL;
530 if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
531 max_devs = asd_ha->hw_prof.max_ddbs;
532 return 0;
535 size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
537 asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
538 if (!asd_ha->hw_prof.ddb_ext) {
539 asd_printk("couldn't allocate memory for %d devices\n",
540 max_devs);
541 max_devs = asd_ha->hw_prof.max_ddbs;
542 return -ENOMEM;
544 dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
545 dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
546 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
547 dma_handle = (dma_addr_t) dma_addr;
548 asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
549 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
550 d &= ~4;
551 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
553 asd_ha->hw_prof.max_ddbs = max_devs;
555 return 0;
558 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
560 dma_addr_t dma_handle;
561 unsigned long dma_addr;
562 u32 d;
563 int size;
565 asd_ha->hw_prof.scb_ext = NULL;
566 if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
567 max_cmnds = asd_ha->hw_prof.max_scbs;
568 return 0;
571 size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
573 asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
574 if (!asd_ha->hw_prof.scb_ext) {
575 asd_printk("couldn't allocate memory for %d commands\n",
576 max_cmnds);
577 max_cmnds = asd_ha->hw_prof.max_scbs;
578 return -ENOMEM;
580 dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
581 dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
582 dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
583 dma_handle = (dma_addr_t) dma_addr;
584 asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
585 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
586 d &= ~1;
587 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
589 asd_ha->hw_prof.max_scbs = max_cmnds;
591 return 0;
595 * asd_init_ctxmem -- initialize context memory
596 * asd_ha: pointer to host adapter structure
598 * This function sets the maximum number of SCBs and
599 * DDBs which can be used by the sequencer. This is normally
600 * 512 and 128 respectively. If support for more SCBs or more DDBs
601 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
602 * initialized here to extend context memory to point to host memory,
603 * thus allowing unlimited support for SCBs and DDBs -- only limited
604 * by host memory.
606 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
608 int bitmap_bytes;
610 asd_get_max_scb_ddb(asd_ha);
611 asd_extend_devctx(asd_ha);
612 asd_extend_cmdctx(asd_ha);
614 /* The kernel wants bitmaps to be unsigned long sized. */
615 bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
616 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
617 asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
618 if (!asd_ha->hw_prof.ddb_bitmap)
619 return -ENOMEM;
620 spin_lock_init(&asd_ha->hw_prof.ddb_lock);
622 return 0;
625 int asd_init_hw(struct asd_ha_struct *asd_ha)
627 int err;
628 u32 v;
630 err = asd_init_sw(asd_ha);
631 if (err)
632 return err;
634 err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
635 if (err) {
636 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
637 pci_name(asd_ha->pcidev));
638 return err;
640 err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
641 v | SC_TMR_DIS);
642 if (err) {
643 asd_printk("couldn't disable split completion timer of %s\n",
644 pci_name(asd_ha->pcidev));
645 return err;
648 err = asd_read_ocm(asd_ha);
649 if (err) {
650 asd_printk("couldn't read ocm(%d)\n", err);
651 /* While suspicios, it is not an error that we
652 * couldn't read the OCM. */
655 err = asd_read_flash(asd_ha);
656 if (err) {
657 asd_printk("couldn't read flash(%d)\n", err);
658 /* While suspicios, it is not an error that we
659 * couldn't read FLASH memory.
663 asd_init_ctxmem(asd_ha);
665 if (asd_get_user_sas_addr(asd_ha)) {
666 asd_printk("No SAS Address provided for %s\n",
667 pci_name(asd_ha->pcidev));
668 err = -ENODEV;
669 goto Out;
672 asd_propagate_sas_addr(asd_ha);
674 err = asd_init_phys(asd_ha);
675 if (err) {
676 asd_printk("couldn't initialize phys for %s\n",
677 pci_name(asd_ha->pcidev));
678 goto Out;
681 asd_init_ports(asd_ha);
683 err = asd_init_scbs(asd_ha);
684 if (err) {
685 asd_printk("couldn't initialize scbs for %s\n",
686 pci_name(asd_ha->pcidev));
687 goto Out;
690 err = asd_init_dl(asd_ha);
691 if (err) {
692 asd_printk("couldn't initialize the done list:%d\n",
693 err);
694 goto Out;
697 err = asd_init_escbs(asd_ha);
698 if (err) {
699 asd_printk("couldn't initialize escbs\n");
700 goto Out;
703 err = asd_init_chip(asd_ha);
704 if (err) {
705 asd_printk("couldn't init the chip\n");
706 goto Out;
708 Out:
709 return err;
712 /* ---------- Chip reset ---------- */
715 * asd_chip_reset -- reset the host adapter, etc
716 * @asd_ha: pointer to host adapter structure of interest
718 * Called from the ISR. Hard reset the chip. Let everything
719 * timeout. This should be no different than hot-unplugging the
720 * host adapter. Once everything times out we'll init the chip with
721 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
722 * XXX finish.
724 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
726 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
727 asd_chip_hardrst(asd_ha);
730 /* ---------- Done List Routines ---------- */
732 static void asd_dl_tasklet_handler(unsigned long data)
734 struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
735 struct asd_seq_data *seq = &asd_ha->seq;
736 unsigned long flags;
738 while (1) {
739 struct done_list_struct *dl = &seq->dl[seq->dl_next];
740 struct asd_ascb *ascb;
742 if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
743 break;
745 /* find the aSCB */
746 spin_lock_irqsave(&seq->tc_index_lock, flags);
747 ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
748 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
749 if (unlikely(!ascb)) {
750 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
751 goto next_1;
752 } else if (ascb->scb->header.opcode == EMPTY_SCB) {
753 goto out;
754 } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
755 goto next_1;
757 spin_lock_irqsave(&seq->pend_q_lock, flags);
758 list_del_init(&ascb->list);
759 seq->pending--;
760 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
761 out:
762 ascb->tasklet_complete(ascb, dl);
764 next_1:
765 seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
766 if (!seq->dl_next)
767 seq->dl_toggle ^= DL_TOGGLE_MASK;
771 /* ---------- Interrupt Service Routines ---------- */
774 * asd_process_donelist_isr -- schedule processing of done list entries
775 * @asd_ha: pointer to host adapter structure
777 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
779 tasklet_schedule(&asd_ha->seq.dl_tasklet);
783 * asd_com_sas_isr -- process device communication interrupt (COMINT)
784 * @asd_ha: pointer to host adapter structure
786 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
788 u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
790 /* clear COMSTAT int */
791 asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
793 if (comstat & CSBUFPERR) {
794 asd_printk("%s: command/status buffer dma parity error\n",
795 pci_name(asd_ha->pcidev));
796 } else if (comstat & CSERR) {
797 int i;
798 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
799 dmaerr &= 0xFF;
800 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
801 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
802 pci_name(asd_ha->pcidev),
803 dmaerr,
804 asd_read_reg_dword(asd_ha, CSDMAADR),
805 asd_read_reg_dword(asd_ha, CSDMAADR+4));
806 asd_printk("CSBUFFER:\n");
807 for (i = 0; i < 8; i++) {
808 asd_printk("%08x %08x %08x %08x\n",
809 asd_read_reg_dword(asd_ha, CSBUFFER),
810 asd_read_reg_dword(asd_ha, CSBUFFER+4),
811 asd_read_reg_dword(asd_ha, CSBUFFER+8),
812 asd_read_reg_dword(asd_ha, CSBUFFER+12));
814 asd_dump_seq_state(asd_ha, 0);
815 } else if (comstat & OVLYERR) {
816 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
817 dmaerr = (dmaerr >> 8) & 0xFF;
818 asd_printk("%s: overlay dma error:0x%x\n",
819 pci_name(asd_ha->pcidev),
820 dmaerr);
822 asd_chip_reset(asd_ha);
825 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
827 static const char *halt_code[256] = {
828 "UNEXPECTED_INTERRUPT0",
829 "UNEXPECTED_INTERRUPT1",
830 "UNEXPECTED_INTERRUPT2",
831 "UNEXPECTED_INTERRUPT3",
832 "UNEXPECTED_INTERRUPT4",
833 "UNEXPECTED_INTERRUPT5",
834 "UNEXPECTED_INTERRUPT6",
835 "UNEXPECTED_INTERRUPT7",
836 "UNEXPECTED_INTERRUPT8",
837 "UNEXPECTED_INTERRUPT9",
838 "UNEXPECTED_INTERRUPT10",
839 [11 ... 19] = "unknown[11,19]",
840 "NO_FREE_SCB_AVAILABLE",
841 "INVALID_SCB_OPCODE",
842 "INVALID_MBX_OPCODE",
843 "INVALID_ATA_STATE",
844 "ATA_QUEUE_FULL",
845 "ATA_TAG_TABLE_FAULT",
846 "ATA_TAG_MASK_FAULT",
847 "BAD_LINK_QUEUE_STATE",
848 "DMA2CHIM_QUEUE_ERROR",
849 "EMPTY_SCB_LIST_FULL",
850 "unknown[30]",
851 "IN_USE_SCB_ON_FREE_LIST",
852 "BAD_OPEN_WAIT_STATE",
853 "INVALID_STP_AFFILIATION",
854 "unknown[34]",
855 "EXEC_QUEUE_ERROR",
856 "TOO_MANY_EMPTIES_NEEDED",
857 "EMPTY_REQ_QUEUE_ERROR",
858 "Q_MONIRTT_MGMT_ERROR",
859 "TARGET_MODE_FLOW_ERROR",
860 "DEVICE_QUEUE_NOT_FOUND",
861 "START_IRTT_TIMER_ERROR",
862 "ABORT_TASK_ILLEGAL_REQ",
863 [43 ... 255] = "unknown[43,255]"
866 if (dchstatus & CSEQINT) {
867 u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
869 if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
870 asd_printk("%s: CSEQ arp2int:0x%x\n",
871 pci_name(asd_ha->pcidev),
872 arp2int);
873 } else if (arp2int & ARP2HALTC)
874 asd_printk("%s: CSEQ halted: %s\n",
875 pci_name(asd_ha->pcidev),
876 halt_code[(arp2int>>16)&0xFF]);
877 else
878 asd_printk("%s: CARP2INT:0x%x\n",
879 pci_name(asd_ha->pcidev),
880 arp2int);
882 if (dchstatus & LSEQINT_MASK) {
883 int lseq;
884 u8 lseq_mask = dchstatus & LSEQINT_MASK;
886 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
887 u32 arp2int = asd_read_reg_dword(asd_ha,
888 LmARP2INT(lseq));
889 if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
890 | ARP2CIOPERR)) {
891 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
892 pci_name(asd_ha->pcidev),
893 lseq, arp2int);
894 /* XXX we should only do lseq reset */
895 } else if (arp2int & ARP2HALTC)
896 asd_printk("%s: LSEQ%d halted: %s\n",
897 pci_name(asd_ha->pcidev),
898 lseq,halt_code[(arp2int>>16)&0xFF]);
899 else
900 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
901 pci_name(asd_ha->pcidev), lseq,
902 arp2int);
905 asd_chip_reset(asd_ha);
909 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
910 * @asd_ha: pointer to host adapter structure
912 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
914 u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
916 if (dchstatus & CFIFTOERR) {
917 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
918 asd_chip_reset(asd_ha);
919 } else
920 asd_arp2_err(asd_ha, dchstatus);
924 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
925 * @asd_ha: pointer to host adapter structure
927 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
929 u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
931 if (!(stat0r & ASIERR)) {
932 asd_printk("hmm, EXSI interrupted but no error?\n");
933 return;
936 if (stat0r & ASIFMTERR) {
937 asd_printk("ASI SEEPROM format error for %s\n",
938 pci_name(asd_ha->pcidev));
939 } else if (stat0r & ASISEECHKERR) {
940 u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
941 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
942 stat1r & CHECKSUM_MASK,
943 pci_name(asd_ha->pcidev));
944 } else {
945 u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
947 if (!(statr & CPI2ASIMSTERR_MASK)) {
948 ASD_DPRINTK("hmm, ASIERR?\n");
949 return;
950 } else {
951 u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
952 u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
954 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
955 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
956 "master id: 0x%x, master err: 0x%x\n",
957 pci_name(asd_ha->pcidev),
958 addr, data,
959 (statr & CPI2ASIBYTECNT_MASK) >> 16,
960 (statr & CPI2ASIBYTEEN_MASK) >> 12,
961 (statr & CPI2ASITARGERR_MASK) >> 8,
962 (statr & CPI2ASITARGMID_MASK) >> 4,
963 (statr & CPI2ASIMSTERR_MASK));
966 asd_chip_reset(asd_ha);
970 * asd_hst_pcix_isr -- process host interface interrupts
971 * @asd_ha: pointer to host adapter structure
973 * Asserted on PCIX errors: target abort, etc.
975 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
977 u16 status;
978 u32 pcix_status;
979 u32 ecc_status;
981 pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
982 pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
983 pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
985 if (status & PCI_STATUS_DETECTED_PARITY)
986 asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
987 else if (status & PCI_STATUS_REC_MASTER_ABORT)
988 asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
989 else if (status & PCI_STATUS_REC_TARGET_ABORT)
990 asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
991 else if (status & PCI_STATUS_PARITY)
992 asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
993 else if (pcix_status & RCV_SCE) {
994 asd_printk("received split completion error for %s\n",
995 pci_name(asd_ha->pcidev));
996 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
997 /* XXX: Abort task? */
998 return;
999 } else if (pcix_status & UNEXP_SC) {
1000 asd_printk("unexpected split completion for %s\n",
1001 pci_name(asd_ha->pcidev));
1002 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
1003 /* ignore */
1004 return;
1005 } else if (pcix_status & SC_DISCARD)
1006 asd_printk("split completion discarded for %s\n",
1007 pci_name(asd_ha->pcidev));
1008 else if (ecc_status & UNCOR_ECCERR)
1009 asd_printk("uncorrectable ECC error for %s\n",
1010 pci_name(asd_ha->pcidev));
1011 asd_chip_reset(asd_ha);
1015 * asd_hw_isr -- host adapter interrupt service routine
1016 * @irq: ignored
1017 * @dev_id: pointer to host adapter structure
1019 * The ISR processes done list entries and level 3 error handling.
1021 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1023 struct asd_ha_struct *asd_ha = dev_id;
1024 u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1026 if (!chimint)
1027 return IRQ_NONE;
1029 asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1030 (void) asd_read_reg_dword(asd_ha, CHIMINT);
1032 if (chimint & DLAVAIL)
1033 asd_process_donelist_isr(asd_ha);
1034 if (chimint & COMINT)
1035 asd_com_sas_isr(asd_ha);
1036 if (chimint & DEVINT)
1037 asd_dch_sas_isr(asd_ha);
1038 if (chimint & INITERR)
1039 asd_rbi_exsi_isr(asd_ha);
1040 if (chimint & HOSTERR)
1041 asd_hst_pcix_isr(asd_ha);
1043 return IRQ_HANDLED;
1046 /* ---------- SCB handling ---------- */
1048 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1049 gfp_t gfp_flags)
1051 extern struct kmem_cache *asd_ascb_cache;
1052 struct asd_seq_data *seq = &asd_ha->seq;
1053 struct asd_ascb *ascb;
1054 unsigned long flags;
1056 ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1058 if (ascb) {
1059 ascb->dma_scb.size = sizeof(struct scb);
1060 ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1061 gfp_flags,
1062 &ascb->dma_scb.dma_handle);
1063 if (!ascb->dma_scb.vaddr) {
1064 kmem_cache_free(asd_ascb_cache, ascb);
1065 return NULL;
1067 memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1068 asd_init_ascb(asd_ha, ascb);
1070 spin_lock_irqsave(&seq->tc_index_lock, flags);
1071 ascb->tc_index = asd_tc_index_get(seq, ascb);
1072 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1073 if (ascb->tc_index == -1)
1074 goto undo;
1076 ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1079 return ascb;
1080 undo:
1081 dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1082 ascb->dma_scb.dma_handle);
1083 kmem_cache_free(asd_ascb_cache, ascb);
1084 ASD_DPRINTK("no index for ascb\n");
1085 return NULL;
1089 * asd_ascb_alloc_list -- allocate a list of aSCBs
1090 * @asd_ha: pointer to host adapter structure
1091 * @num: pointer to integer number of aSCBs
1092 * @gfp_flags: GFP_ flags.
1094 * This is the only function which is used to allocate aSCBs.
1095 * It can allocate one or many. If more than one, then they form
1096 * a linked list in two ways: by their list field of the ascb struct
1097 * and by the next_scb field of the scb_header.
1099 * Returns NULL if no memory was available, else pointer to a list
1100 * of ascbs. When this function returns, @num would be the number
1101 * of SCBs which were not able to be allocated, 0 if all requested
1102 * were able to be allocated.
1104 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1105 *asd_ha, int *num,
1106 gfp_t gfp_flags)
1108 struct asd_ascb *first = NULL;
1110 for ( ; *num > 0; --*num) {
1111 struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1113 if (!ascb)
1114 break;
1115 else if (!first)
1116 first = ascb;
1117 else {
1118 struct asd_ascb *last = list_entry(first->list.prev,
1119 struct asd_ascb,
1120 list);
1121 list_add_tail(&ascb->list, &first->list);
1122 last->scb->header.next_scb =
1123 cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1127 return first;
1131 * asd_swap_head_scb -- swap the head scb
1132 * @asd_ha: pointer to host adapter structure
1133 * @ascb: pointer to the head of an ascb list
1135 * The sequencer knows the DMA address of the next SCB to be DMAed to
1136 * the host adapter, from initialization or from the last list DMAed.
1137 * seq->next_scb keeps the address of this SCB. The sequencer will
1138 * DMA to the host adapter this list of SCBs. But the head (first
1139 * element) of this list is not known to the sequencer. Here we swap
1140 * the head of the list with the known SCB (memcpy()).
1141 * Only one memcpy() is required per list so it is in our interest
1142 * to keep the list of SCB as long as possible so that the ratio
1143 * of number of memcpy calls to the number of SCB DMA-ed is as small
1144 * as possible.
1146 * LOCKING: called with the pending list lock held.
1148 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1149 struct asd_ascb *ascb)
1151 struct asd_seq_data *seq = &asd_ha->seq;
1152 struct asd_ascb *last = list_entry(ascb->list.prev,
1153 struct asd_ascb,
1154 list);
1155 struct asd_dma_tok t = ascb->dma_scb;
1157 memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1158 ascb->dma_scb = seq->next_scb;
1159 ascb->scb = ascb->dma_scb.vaddr;
1160 seq->next_scb = t;
1161 last->scb->header.next_scb =
1162 cpu_to_le64(((u64)seq->next_scb.dma_handle));
1166 * asd_start_timers -- (add and) start timers of SCBs
1167 * @list: pointer to struct list_head of the scbs
1168 * @to: timeout in jiffies
1170 * If an SCB in the @list has no timer function, assign the default
1171 * one, then start the timer of the SCB. This function is
1172 * intended to be called from asd_post_ascb_list(), just prior to
1173 * posting the SCBs to the sequencer.
1175 static void asd_start_scb_timers(struct list_head *list)
1177 struct asd_ascb *ascb;
1178 list_for_each_entry(ascb, list, list) {
1179 if (!ascb->uldd_timer) {
1180 ascb->timer.function = asd_ascb_timedout;
1181 ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1182 add_timer(&ascb->timer);
1188 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1189 * @asd_ha: pointer to a host adapter structure
1190 * @ascb: pointer to the first aSCB in the list
1191 * @num: number of aSCBs in the list (to be posted)
1193 * See queueing comment in asd_post_escb_list().
1195 * Additional note on queuing: In order to minimize the ratio of memcpy()
1196 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1197 * in one go.
1198 * Two cases are possible:
1199 * A) can_queue >= num,
1200 * B) can_queue < num.
1201 * Case A: we can send the whole batch at once. Increment "pending"
1202 * in the beginning of this function, when it is checked, in order to
1203 * eliminate races when this function is called by multiple processes.
1204 * Case B: should never happen.
1206 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1207 int num)
1209 unsigned long flags;
1210 LIST_HEAD(list);
1211 int can_queue;
1213 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1214 can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1215 if (can_queue >= num)
1216 asd_ha->seq.pending += num;
1217 else
1218 can_queue = 0;
1220 if (!can_queue) {
1221 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1222 asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1223 return -SAS_QUEUE_FULL;
1226 asd_swap_head_scb(asd_ha, ascb);
1228 __list_add(&list, ascb->list.prev, &ascb->list);
1230 asd_start_scb_timers(&list);
1232 asd_ha->seq.scbpro += num;
1233 list_splice_init(&list, asd_ha->seq.pend_q.prev);
1234 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1235 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1237 return 0;
1241 * asd_post_escb_list -- post a list of 1 or more empty scb
1242 * @asd_ha: pointer to a host adapter structure
1243 * @ascb: pointer to the first empty SCB in the list
1244 * @num: number of aSCBs in the list (to be posted)
1246 * This is essentially the same as asd_post_ascb_list, but we do not
1247 * increment pending, add those to the pending list or get indexes.
1248 * See asd_init_escbs() and asd_init_post_escbs().
1250 * Since sending a list of ascbs is a superset of sending a single
1251 * ascb, this function exists to generalize this. More specifically,
1252 * when sending a list of those, we want to do only a _single_
1253 * memcpy() at swap head, as opposed to for each ascb sent (in the
1254 * case of sending them one by one). That is, we want to minimize the
1255 * ratio of memcpy() operations to the number of ascbs sent. The same
1256 * logic applies to asd_post_ascb_list().
1258 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1259 int num)
1261 unsigned long flags;
1263 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1264 asd_swap_head_scb(asd_ha, ascb);
1265 asd_ha->seq.scbpro += num;
1266 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1267 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1269 return 0;
1272 /* ---------- LED ---------- */
1275 * asd_turn_led -- turn on/off an LED
1276 * @asd_ha: pointer to host adapter structure
1277 * @phy_id: the PHY id whose LED we want to manupulate
1278 * @op: 1 to turn on, 0 to turn off
1280 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1282 if (phy_id < ASD_MAX_PHYS) {
1283 u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1284 if (op)
1285 v |= LEDPOL;
1286 else
1287 v &= ~LEDPOL;
1288 asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1293 * asd_control_led -- enable/disable an LED on the board
1294 * @asd_ha: pointer to host adapter structure
1295 * @phy_id: integer, the phy id
1296 * @op: integer, 1 to enable, 0 to disable the LED
1298 * First we output enable the LED, then we set the source
1299 * to be an external module.
1301 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1303 if (phy_id < ASD_MAX_PHYS) {
1304 u32 v;
1306 v = asd_read_reg_dword(asd_ha, GPIOOER);
1307 if (op)
1308 v |= (1 << phy_id);
1309 else
1310 v &= ~(1 << phy_id);
1311 asd_write_reg_dword(asd_ha, GPIOOER, v);
1313 v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1314 if (op)
1315 v |= (1 << phy_id);
1316 else
1317 v &= ~(1 << phy_id);
1318 asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1322 /* ---------- PHY enable ---------- */
1324 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1326 struct asd_phy *phy = &asd_ha->phys[phy_id];
1328 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1329 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1330 HOTPLUG_DELAY_TIMEOUT);
1332 /* Get defaults from manuf. sector */
1333 /* XXX we need defaults for those in case MS is broken. */
1334 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1335 phy->phy_desc->phy_control_0);
1336 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1337 phy->phy_desc->phy_control_1);
1338 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1339 phy->phy_desc->phy_control_2);
1340 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1341 phy->phy_desc->phy_control_3);
1343 asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1344 ASD_COMINIT_TIMEOUT);
1346 asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1347 phy->id_frm_tok->dma_handle);
1349 asd_control_led(asd_ha, phy_id, 1);
1351 return 0;
1354 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1356 u8 phy_m;
1357 u8 i;
1358 int num = 0, k;
1359 struct asd_ascb *ascb;
1360 struct asd_ascb *ascb_list;
1362 if (!phy_mask) {
1363 asd_printk("%s called with phy_mask of 0!?\n", __func__);
1364 return 0;
1367 for_each_phy(phy_mask, phy_m, i) {
1368 num++;
1369 asd_enable_phy(asd_ha, i);
1372 k = num;
1373 ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1374 if (!ascb_list) {
1375 asd_printk("no memory for control phy ascb list\n");
1376 return -ENOMEM;
1378 num -= k;
1380 ascb = ascb_list;
1381 for_each_phy(phy_mask, phy_m, i) {
1382 asd_build_control_phy(ascb, i, ENABLE_PHY);
1383 ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1385 ASD_DPRINTK("posting %d control phy scbs\n", num);
1386 k = asd_post_ascb_list(asd_ha, ascb_list, num);
1387 if (k)
1388 asd_ascb_free_list(ascb_list);
1390 return k;