Linux 4.19.133
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blob9e87c282a74357da4167894b006b1b476c733ed2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
62 seg->dma = dma;
63 seg->next = NULL;
65 return seg;
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
74 kfree(seg->bounce_buf);
75 kfree(seg);
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
81 struct xhci_segment *seg;
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
89 xhci_segment_free(xhci, first);
93 * Make the prev segment point to the next segment.
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
99 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
100 struct xhci_segment *next, enum xhci_ring_type type)
102 u32 val;
104 if (!prev || !next)
105 return;
106 prev->next = next;
107 if (type != TYPE_EVENT) {
108 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
109 cpu_to_le64(next->dma);
111 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
112 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
113 val &= ~TRB_TYPE_BITMASK;
114 val |= TRB_TYPE(TRB_LINK);
115 /* Always set the chain bit with 0.95 hardware */
116 /* Set chain bit for isoc rings on AMD 0.96 host */
117 if (xhci_link_trb_quirk(xhci) ||
118 (type == TYPE_ISOC &&
119 (xhci->quirks & XHCI_AMD_0x96_HOST)))
120 val |= TRB_CHAIN;
121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 struct xhci_segment *first, struct xhci_segment *last,
131 unsigned int num_segs)
133 struct xhci_segment *next;
135 if (!ring || !first || !last)
136 return;
138 next = ring->enq_seg->next;
139 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
140 xhci_link_segments(xhci, last, next, ring->type);
141 ring->num_segs += num_segs;
142 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
144 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
145 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
146 &= ~cpu_to_le32(LINK_TOGGLE);
147 last->trbs[TRBS_PER_SEGMENT-1].link.control
148 |= cpu_to_le32(LINK_TOGGLE);
149 ring->last_seg = last;
154 * We need a radix tree for mapping physical addresses of TRBs to which stream
155 * ID they belong to. We need to do this because the host controller won't tell
156 * us which stream ring the TRB came from. We could store the stream ID in an
157 * event data TRB, but that doesn't help us for the cancellation case, since the
158 * endpoint may stop before it reaches that event data TRB.
160 * The radix tree maps the upper portion of the TRB DMA address to a ring
161 * segment that has the same upper portion of DMA addresses. For example, say I
162 * have segments of size 1KB, that are always 1KB aligned. A segment may
163 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
164 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
165 * pass the radix tree a key to get the right stream ID:
167 * 0x10c90fff >> 10 = 0x43243
168 * 0x10c912c0 >> 10 = 0x43244
169 * 0x10c91400 >> 10 = 0x43245
171 * Obviously, only those TRBs with DMA addresses that are within the segment
172 * will make the radix tree return the stream ID for that ring.
174 * Caveats for the radix tree:
176 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
177 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
178 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
179 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
180 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
181 * extended systems (where the DMA address can be bigger than 32-bits),
182 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
184 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
185 struct xhci_ring *ring,
186 struct xhci_segment *seg,
187 gfp_t mem_flags)
189 unsigned long key;
190 int ret;
192 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
193 /* Skip any segments that were already added. */
194 if (radix_tree_lookup(trb_address_map, key))
195 return 0;
197 ret = radix_tree_maybe_preload(mem_flags);
198 if (ret)
199 return ret;
200 ret = radix_tree_insert(trb_address_map,
201 key, ring);
202 radix_tree_preload_end();
203 return ret;
206 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
207 struct xhci_segment *seg)
209 unsigned long key;
211 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
212 if (radix_tree_lookup(trb_address_map, key))
213 radix_tree_delete(trb_address_map, key);
216 static int xhci_update_stream_segment_mapping(
217 struct radix_tree_root *trb_address_map,
218 struct xhci_ring *ring,
219 struct xhci_segment *first_seg,
220 struct xhci_segment *last_seg,
221 gfp_t mem_flags)
223 struct xhci_segment *seg;
224 struct xhci_segment *failed_seg;
225 int ret;
227 if (WARN_ON_ONCE(trb_address_map == NULL))
228 return 0;
230 seg = first_seg;
231 do {
232 ret = xhci_insert_segment_mapping(trb_address_map,
233 ring, seg, mem_flags);
234 if (ret)
235 goto remove_streams;
236 if (seg == last_seg)
237 return 0;
238 seg = seg->next;
239 } while (seg != first_seg);
241 return 0;
243 remove_streams:
244 failed_seg = seg;
245 seg = first_seg;
246 do {
247 xhci_remove_segment_mapping(trb_address_map, seg);
248 if (seg == failed_seg)
249 return ret;
250 seg = seg->next;
251 } while (seg != first_seg);
253 return ret;
256 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
258 struct xhci_segment *seg;
260 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
261 return;
263 seg = ring->first_seg;
264 do {
265 xhci_remove_segment_mapping(ring->trb_address_map, seg);
266 seg = seg->next;
267 } while (seg != ring->first_seg);
270 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
272 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
273 ring->first_seg, ring->last_seg, mem_flags);
276 /* XXX: Do we need the hcd structure in all these functions? */
277 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
279 if (!ring)
280 return;
282 trace_xhci_ring_free(ring);
284 if (ring->first_seg) {
285 if (ring->type == TYPE_STREAM)
286 xhci_remove_stream_mapping(ring);
287 xhci_free_segments_for_ring(xhci, ring->first_seg);
290 kfree(ring);
293 static void xhci_initialize_ring_info(struct xhci_ring *ring,
294 unsigned int cycle_state)
296 /* The ring is empty, so the enqueue pointer == dequeue pointer */
297 ring->enqueue = ring->first_seg->trbs;
298 ring->enq_seg = ring->first_seg;
299 ring->dequeue = ring->enqueue;
300 ring->deq_seg = ring->first_seg;
301 /* The ring is initialized to 0. The producer must write 1 to the cycle
302 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
303 * compare CCS to the cycle bit to check ownership, so CCS = 1.
305 * New rings are initialized with cycle state equal to 1; if we are
306 * handling ring expansion, set the cycle state equal to the old ring.
308 ring->cycle_state = cycle_state;
311 * Each segment has a link TRB, and leave an extra TRB for SW
312 * accounting purpose
314 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319 struct xhci_segment **first, struct xhci_segment **last,
320 unsigned int num_segs, unsigned int cycle_state,
321 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
323 struct xhci_segment *prev;
325 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
326 if (!prev)
327 return -ENOMEM;
328 num_segs--;
330 *first = prev;
331 while (num_segs > 0) {
332 struct xhci_segment *next;
334 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!next) {
336 prev = *first;
337 while (prev) {
338 next = prev->next;
339 xhci_segment_free(xhci, prev);
340 prev = next;
342 return -ENOMEM;
344 xhci_link_segments(xhci, prev, next, type);
346 prev = next;
347 num_segs--;
349 xhci_link_segments(xhci, prev, *first, type);
350 *last = prev;
352 return 0;
356 * Create a new ring with zero or more segments.
358 * Link each segment together into a ring.
359 * Set the end flag and the cycle toggle bit on the last segment.
360 * See section 4.9.1 and figures 15 and 16.
362 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363 unsigned int num_segs, unsigned int cycle_state,
364 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
366 struct xhci_ring *ring;
367 int ret;
368 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
370 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
371 if (!ring)
372 return NULL;
374 ring->num_segs = num_segs;
375 ring->bounce_buf_len = max_packet;
376 INIT_LIST_HEAD(&ring->td_list);
377 ring->type = type;
378 if (num_segs == 0)
379 return ring;
381 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
382 &ring->last_seg, num_segs, cycle_state, type,
383 max_packet, flags);
384 if (ret)
385 goto fail;
387 /* Only event ring does not use link TRB */
388 if (type != TYPE_EVENT) {
389 /* See section 4.9.2.1 and 6.4.4.1 */
390 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
391 cpu_to_le32(LINK_TOGGLE);
393 xhci_initialize_ring_info(ring, cycle_state);
394 trace_xhci_ring_alloc(ring);
395 return ring;
397 fail:
398 kfree(ring);
399 return NULL;
402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 struct xhci_virt_device *virt_dev,
404 unsigned int ep_index)
406 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 virt_dev->eps[ep_index].ring = NULL;
411 * Expand an existing ring.
412 * Allocate a new ring which has same segment numbers and link the two rings.
414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 unsigned int num_trbs, gfp_t flags)
417 struct xhci_segment *first;
418 struct xhci_segment *last;
419 unsigned int num_segs;
420 unsigned int num_segs_needed;
421 int ret;
423 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
424 (TRBS_PER_SEGMENT - 1);
426 /* Allocate number of segments we needed, or double the ring size */
427 num_segs = ring->num_segs > num_segs_needed ?
428 ring->num_segs : num_segs_needed;
430 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
431 num_segs, ring->cycle_state, ring->type,
432 ring->bounce_buf_len, flags);
433 if (ret)
434 return -ENOMEM;
436 if (ring->type == TYPE_STREAM)
437 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
438 ring, first, last, flags);
439 if (ret) {
440 struct xhci_segment *next;
441 do {
442 next = first->next;
443 xhci_segment_free(xhci, first);
444 if (first == last)
445 break;
446 first = next;
447 } while (true);
448 return ret;
451 xhci_link_rings(xhci, ring, first, last, num_segs);
452 trace_xhci_ring_expansion(ring);
453 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
454 "ring expansion succeed, now has %d segments",
455 ring->num_segs);
457 return 0;
460 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
461 int type, gfp_t flags)
463 struct xhci_container_ctx *ctx;
464 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
466 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
467 return NULL;
469 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
470 if (!ctx)
471 return NULL;
473 ctx->type = type;
474 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
475 if (type == XHCI_CTX_TYPE_INPUT)
476 ctx->size += CTX_SIZE(xhci->hcc_params);
478 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
479 if (!ctx->bytes) {
480 kfree(ctx);
481 return NULL;
483 return ctx;
486 void xhci_free_container_ctx(struct xhci_hcd *xhci,
487 struct xhci_container_ctx *ctx)
489 if (!ctx)
490 return;
491 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
492 kfree(ctx);
495 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
496 struct xhci_container_ctx *ctx)
498 if (ctx->type != XHCI_CTX_TYPE_INPUT)
499 return NULL;
501 return (struct xhci_input_control_ctx *)ctx->bytes;
504 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
505 struct xhci_container_ctx *ctx)
507 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
508 return (struct xhci_slot_ctx *)ctx->bytes;
510 return (struct xhci_slot_ctx *)
511 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
514 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
515 struct xhci_container_ctx *ctx,
516 unsigned int ep_index)
518 /* increment ep index by offset of start of ep ctx array */
519 ep_index++;
520 if (ctx->type == XHCI_CTX_TYPE_INPUT)
521 ep_index++;
523 return (struct xhci_ep_ctx *)
524 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
528 /***************** Streams structures manipulation *************************/
530 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
531 unsigned int num_stream_ctxs,
532 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
534 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
535 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
537 if (size > MEDIUM_STREAM_ARRAY_SIZE)
538 dma_free_coherent(dev, size,
539 stream_ctx, dma);
540 else if (size <= SMALL_STREAM_ARRAY_SIZE)
541 return dma_pool_free(xhci->small_streams_pool,
542 stream_ctx, dma);
543 else
544 return dma_pool_free(xhci->medium_streams_pool,
545 stream_ctx, dma);
549 * The stream context array for each endpoint with bulk streams enabled can
550 * vary in size, based on:
551 * - how many streams the endpoint supports,
552 * - the maximum primary stream array size the host controller supports,
553 * - and how many streams the device driver asks for.
555 * The stream context array must be a power of 2, and can be as small as
556 * 64 bytes or as large as 1MB.
558 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
559 unsigned int num_stream_ctxs, dma_addr_t *dma,
560 gfp_t mem_flags)
562 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
563 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
565 if (size > MEDIUM_STREAM_ARRAY_SIZE)
566 return dma_alloc_coherent(dev, size,
567 dma, mem_flags);
568 else if (size <= SMALL_STREAM_ARRAY_SIZE)
569 return dma_pool_alloc(xhci->small_streams_pool,
570 mem_flags, dma);
571 else
572 return dma_pool_alloc(xhci->medium_streams_pool,
573 mem_flags, dma);
576 struct xhci_ring *xhci_dma_to_transfer_ring(
577 struct xhci_virt_ep *ep,
578 u64 address)
580 if (ep->ep_state & EP_HAS_STREAMS)
581 return radix_tree_lookup(&ep->stream_info->trb_address_map,
582 address >> TRB_SEGMENT_SHIFT);
583 return ep->ring;
586 struct xhci_ring *xhci_stream_id_to_ring(
587 struct xhci_virt_device *dev,
588 unsigned int ep_index,
589 unsigned int stream_id)
591 struct xhci_virt_ep *ep = &dev->eps[ep_index];
593 if (stream_id == 0)
594 return ep->ring;
595 if (!ep->stream_info)
596 return NULL;
598 if (stream_id >= ep->stream_info->num_streams)
599 return NULL;
600 return ep->stream_info->stream_rings[stream_id];
604 * Change an endpoint's internal structure so it supports stream IDs. The
605 * number of requested streams includes stream 0, which cannot be used by device
606 * drivers.
608 * The number of stream contexts in the stream context array may be bigger than
609 * the number of streams the driver wants to use. This is because the number of
610 * stream context array entries must be a power of two.
612 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
613 unsigned int num_stream_ctxs,
614 unsigned int num_streams,
615 unsigned int max_packet, gfp_t mem_flags)
617 struct xhci_stream_info *stream_info;
618 u32 cur_stream;
619 struct xhci_ring *cur_ring;
620 u64 addr;
621 int ret;
622 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
624 xhci_dbg(xhci, "Allocating %u streams and %u "
625 "stream context array entries.\n",
626 num_streams, num_stream_ctxs);
627 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
628 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
629 return NULL;
631 xhci->cmd_ring_reserved_trbs++;
633 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
634 dev_to_node(dev));
635 if (!stream_info)
636 goto cleanup_trbs;
638 stream_info->num_streams = num_streams;
639 stream_info->num_stream_ctxs = num_stream_ctxs;
641 /* Initialize the array of virtual pointers to stream rings. */
642 stream_info->stream_rings = kcalloc_node(
643 num_streams, sizeof(struct xhci_ring *), mem_flags,
644 dev_to_node(dev));
645 if (!stream_info->stream_rings)
646 goto cleanup_info;
648 /* Initialize the array of DMA addresses for stream rings for the HW. */
649 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
650 num_stream_ctxs, &stream_info->ctx_array_dma,
651 mem_flags);
652 if (!stream_info->stream_ctx_array)
653 goto cleanup_ctx;
654 memset(stream_info->stream_ctx_array, 0,
655 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
657 /* Allocate everything needed to free the stream rings later */
658 stream_info->free_streams_command =
659 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
660 if (!stream_info->free_streams_command)
661 goto cleanup_ctx;
663 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
665 /* Allocate rings for all the streams that the driver will use,
666 * and add their segment DMA addresses to the radix tree.
667 * Stream 0 is reserved.
670 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
671 stream_info->stream_rings[cur_stream] =
672 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
673 mem_flags);
674 cur_ring = stream_info->stream_rings[cur_stream];
675 if (!cur_ring)
676 goto cleanup_rings;
677 cur_ring->stream_id = cur_stream;
678 cur_ring->trb_address_map = &stream_info->trb_address_map;
679 /* Set deq ptr, cycle bit, and stream context type */
680 addr = cur_ring->first_seg->dma |
681 SCT_FOR_CTX(SCT_PRI_TR) |
682 cur_ring->cycle_state;
683 stream_info->stream_ctx_array[cur_stream].stream_ring =
684 cpu_to_le64(addr);
685 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
686 cur_stream, (unsigned long long) addr);
688 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
689 if (ret) {
690 xhci_ring_free(xhci, cur_ring);
691 stream_info->stream_rings[cur_stream] = NULL;
692 goto cleanup_rings;
695 /* Leave the other unused stream ring pointers in the stream context
696 * array initialized to zero. This will cause the xHC to give us an
697 * error if the device asks for a stream ID we don't have setup (if it
698 * was any other way, the host controller would assume the ring is
699 * "empty" and wait forever for data to be queued to that stream ID).
702 return stream_info;
704 cleanup_rings:
705 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
706 cur_ring = stream_info->stream_rings[cur_stream];
707 if (cur_ring) {
708 xhci_ring_free(xhci, cur_ring);
709 stream_info->stream_rings[cur_stream] = NULL;
712 xhci_free_command(xhci, stream_info->free_streams_command);
713 cleanup_ctx:
714 kfree(stream_info->stream_rings);
715 cleanup_info:
716 kfree(stream_info);
717 cleanup_trbs:
718 xhci->cmd_ring_reserved_trbs--;
719 return NULL;
722 * Sets the MaxPStreams field and the Linear Stream Array field.
723 * Sets the dequeue pointer to the stream context array.
725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726 struct xhci_ep_ctx *ep_ctx,
727 struct xhci_stream_info *stream_info)
729 u32 max_primary_streams;
730 /* MaxPStreams is the number of stream context array entries, not the
731 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
732 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
734 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
736 "Setting number of stream ctx array entries to %u",
737 1 << (max_primary_streams + 1));
738 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
739 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
740 | EP_HAS_LSA);
741 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
745 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747 * not at the beginning of the ring).
749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
750 struct xhci_virt_ep *ep)
752 dma_addr_t addr;
753 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
758 /* Frees all stream contexts associated with the endpoint,
760 * Caller should fix the endpoint context streams fields.
762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763 struct xhci_stream_info *stream_info)
765 int cur_stream;
766 struct xhci_ring *cur_ring;
768 if (!stream_info)
769 return;
771 for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 cur_stream++) {
773 cur_ring = stream_info->stream_rings[cur_stream];
774 if (cur_ring) {
775 xhci_ring_free(xhci, cur_ring);
776 stream_info->stream_rings[cur_stream] = NULL;
779 xhci_free_command(xhci, stream_info->free_streams_command);
780 xhci->cmd_ring_reserved_trbs--;
781 if (stream_info->stream_ctx_array)
782 xhci_free_stream_ctx(xhci,
783 stream_info->num_stream_ctxs,
784 stream_info->stream_ctx_array,
785 stream_info->ctx_array_dma);
787 kfree(stream_info->stream_rings);
788 kfree(stream_info);
792 /***************** Device context manipulation *************************/
794 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
795 struct xhci_virt_ep *ep)
797 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
799 ep->xhci = xhci;
802 static void xhci_free_tt_info(struct xhci_hcd *xhci,
803 struct xhci_virt_device *virt_dev,
804 int slot_id)
806 struct list_head *tt_list_head;
807 struct xhci_tt_bw_info *tt_info, *next;
808 bool slot_found = false;
810 /* If the device never made it past the Set Address stage,
811 * it may not have the real_port set correctly.
813 if (virt_dev->real_port == 0 ||
814 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
815 xhci_dbg(xhci, "Bad real port.\n");
816 return;
819 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
820 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
821 /* Multi-TT hubs will have more than one entry */
822 if (tt_info->slot_id == slot_id) {
823 slot_found = true;
824 list_del(&tt_info->tt_list);
825 kfree(tt_info);
826 } else if (slot_found) {
827 break;
832 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
833 struct xhci_virt_device *virt_dev,
834 struct usb_device *hdev,
835 struct usb_tt *tt, gfp_t mem_flags)
837 struct xhci_tt_bw_info *tt_info;
838 unsigned int num_ports;
839 int i, j;
840 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
842 if (!tt->multi)
843 num_ports = 1;
844 else
845 num_ports = hdev->maxchild;
847 for (i = 0; i < num_ports; i++, tt_info++) {
848 struct xhci_interval_bw_table *bw_table;
850 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
851 dev_to_node(dev));
852 if (!tt_info)
853 goto free_tts;
854 INIT_LIST_HEAD(&tt_info->tt_list);
855 list_add(&tt_info->tt_list,
856 &xhci->rh_bw[virt_dev->real_port - 1].tts);
857 tt_info->slot_id = virt_dev->udev->slot_id;
858 if (tt->multi)
859 tt_info->ttport = i+1;
860 bw_table = &tt_info->bw_table;
861 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
862 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
864 return 0;
866 free_tts:
867 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
868 return -ENOMEM;
872 /* All the xhci_tds in the ring's TD list should be freed at this point.
873 * Should be called with xhci->lock held if there is any chance the TT lists
874 * will be manipulated by the configure endpoint, allocate device, or update
875 * hub functions while this function is removing the TT entries from the list.
877 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
879 struct xhci_virt_device *dev;
880 int i;
881 int old_active_eps = 0;
883 /* Slot ID 0 is reserved */
884 if (slot_id == 0 || !xhci->devs[slot_id])
885 return;
887 dev = xhci->devs[slot_id];
889 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
890 if (!dev)
891 return;
893 trace_xhci_free_virt_device(dev);
895 if (dev->tt_info)
896 old_active_eps = dev->tt_info->active_eps;
898 for (i = 0; i < 31; i++) {
899 if (dev->eps[i].ring)
900 xhci_ring_free(xhci, dev->eps[i].ring);
901 if (dev->eps[i].stream_info)
902 xhci_free_stream_info(xhci,
903 dev->eps[i].stream_info);
904 /* Endpoints on the TT/root port lists should have been removed
905 * when usb_disable_device() was called for the device.
906 * We can't drop them anyway, because the udev might have gone
907 * away by this point, and we can't tell what speed it was.
909 if (!list_empty(&dev->eps[i].bw_endpoint_list))
910 xhci_warn(xhci, "Slot %u endpoint %u "
911 "not removed from BW list!\n",
912 slot_id, i);
914 /* If this is a hub, free the TT(s) from the TT list */
915 xhci_free_tt_info(xhci, dev, slot_id);
916 /* If necessary, update the number of active TTs on this root port */
917 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
919 if (dev->in_ctx)
920 xhci_free_container_ctx(xhci, dev->in_ctx);
921 if (dev->out_ctx)
922 xhci_free_container_ctx(xhci, dev->out_ctx);
924 if (dev->udev && dev->udev->slot_id)
925 dev->udev->slot_id = 0;
926 kfree(xhci->devs[slot_id]);
927 xhci->devs[slot_id] = NULL;
931 * Free a virt_device structure.
932 * If the virt_device added a tt_info (a hub) and has children pointing to
933 * that tt_info, then free the child first. Recursive.
934 * We can't rely on udev at this point to find child-parent relationships.
936 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
938 struct xhci_virt_device *vdev;
939 struct list_head *tt_list_head;
940 struct xhci_tt_bw_info *tt_info, *next;
941 int i;
943 vdev = xhci->devs[slot_id];
944 if (!vdev)
945 return;
947 if (vdev->real_port == 0 ||
948 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
949 xhci_dbg(xhci, "Bad vdev->real_port.\n");
950 goto out;
953 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
954 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
955 /* is this a hub device that added a tt_info to the tts list */
956 if (tt_info->slot_id == slot_id) {
957 /* are any devices using this tt_info? */
958 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
959 vdev = xhci->devs[i];
960 if (vdev && (vdev->tt_info == tt_info))
961 xhci_free_virt_devices_depth_first(
962 xhci, i);
966 out:
967 /* we are now at a leaf device */
968 xhci_debugfs_remove_slot(xhci, slot_id);
969 xhci_free_virt_device(xhci, slot_id);
972 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
973 struct usb_device *udev, gfp_t flags)
975 struct xhci_virt_device *dev;
976 int i;
978 /* Slot ID 0 is reserved */
979 if (slot_id == 0 || xhci->devs[slot_id]) {
980 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
981 return 0;
984 dev = kzalloc(sizeof(*dev), flags);
985 if (!dev)
986 return 0;
988 /* Allocate the (output) device context that will be used in the HC. */
989 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
990 if (!dev->out_ctx)
991 goto fail;
993 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
994 (unsigned long long)dev->out_ctx->dma);
996 /* Allocate the (input) device context for address device command */
997 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
998 if (!dev->in_ctx)
999 goto fail;
1001 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1002 (unsigned long long)dev->in_ctx->dma);
1004 /* Initialize the cancellation list and watchdog timers for each ep */
1005 for (i = 0; i < 31; i++) {
1006 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1007 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1008 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1011 /* Allocate endpoint 0 ring */
1012 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1013 if (!dev->eps[0].ring)
1014 goto fail;
1016 dev->udev = udev;
1018 /* Point to output device context in dcbaa. */
1019 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1020 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1021 slot_id,
1022 &xhci->dcbaa->dev_context_ptrs[slot_id],
1023 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1025 trace_xhci_alloc_virt_device(dev);
1027 xhci->devs[slot_id] = dev;
1029 return 1;
1030 fail:
1032 if (dev->in_ctx)
1033 xhci_free_container_ctx(xhci, dev->in_ctx);
1034 if (dev->out_ctx)
1035 xhci_free_container_ctx(xhci, dev->out_ctx);
1036 kfree(dev);
1038 return 0;
1041 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1042 struct usb_device *udev)
1044 struct xhci_virt_device *virt_dev;
1045 struct xhci_ep_ctx *ep0_ctx;
1046 struct xhci_ring *ep_ring;
1048 virt_dev = xhci->devs[udev->slot_id];
1049 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1050 ep_ring = virt_dev->eps[0].ring;
1052 * FIXME we don't keep track of the dequeue pointer very well after a
1053 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1054 * host to our enqueue pointer. This should only be called after a
1055 * configured device has reset, so all control transfers should have
1056 * been completed or cancelled before the reset.
1058 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1059 ep_ring->enqueue)
1060 | ep_ring->cycle_state);
1064 * The xHCI roothub may have ports of differing speeds in any order in the port
1065 * status registers.
1067 * The xHCI hardware wants to know the roothub port number that the USB device
1068 * is attached to (or the roothub port its ancestor hub is attached to). All we
1069 * know is the index of that port under either the USB 2.0 or the USB 3.0
1070 * roothub, but that doesn't give us the real index into the HW port status
1071 * registers. Call xhci_find_raw_port_number() to get real index.
1073 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1074 struct usb_device *udev)
1076 struct usb_device *top_dev;
1077 struct usb_hcd *hcd;
1079 if (udev->speed >= USB_SPEED_SUPER)
1080 hcd = xhci->shared_hcd;
1081 else
1082 hcd = xhci->main_hcd;
1084 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1085 top_dev = top_dev->parent)
1086 /* Found device below root hub */;
1088 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1091 /* Setup an xHCI virtual device for a Set Address command */
1092 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1094 struct xhci_virt_device *dev;
1095 struct xhci_ep_ctx *ep0_ctx;
1096 struct xhci_slot_ctx *slot_ctx;
1097 u32 port_num;
1098 u32 max_packets;
1099 struct usb_device *top_dev;
1101 dev = xhci->devs[udev->slot_id];
1102 /* Slot ID 0 is reserved */
1103 if (udev->slot_id == 0 || !dev) {
1104 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1105 udev->slot_id);
1106 return -EINVAL;
1108 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1109 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1111 /* 3) Only the control endpoint is valid - one endpoint context */
1112 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1113 switch (udev->speed) {
1114 case USB_SPEED_SUPER_PLUS:
1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1116 max_packets = MAX_PACKET(512);
1117 break;
1118 case USB_SPEED_SUPER:
1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1120 max_packets = MAX_PACKET(512);
1121 break;
1122 case USB_SPEED_HIGH:
1123 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1124 max_packets = MAX_PACKET(64);
1125 break;
1126 /* USB core guesses at a 64-byte max packet first for FS devices */
1127 case USB_SPEED_FULL:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1129 max_packets = MAX_PACKET(64);
1130 break;
1131 case USB_SPEED_LOW:
1132 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1133 max_packets = MAX_PACKET(8);
1134 break;
1135 case USB_SPEED_WIRELESS:
1136 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1137 return -EINVAL;
1138 break;
1139 default:
1140 /* Speed was set earlier, this shouldn't happen. */
1141 return -EINVAL;
1143 /* Find the root hub port this device is under */
1144 port_num = xhci_find_real_port_number(xhci, udev);
1145 if (!port_num)
1146 return -EINVAL;
1147 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1148 /* Set the port number in the virtual_device to the faked port number */
1149 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1150 top_dev = top_dev->parent)
1151 /* Found device below root hub */;
1152 dev->fake_port = top_dev->portnum;
1153 dev->real_port = port_num;
1154 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1155 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1157 /* Find the right bandwidth table that this device will be a part of.
1158 * If this is a full speed device attached directly to a root port (or a
1159 * decendent of one), it counts as a primary bandwidth domain, not a
1160 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1161 * will never be created for the HS root hub.
1163 if (!udev->tt || !udev->tt->hub->parent) {
1164 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1165 } else {
1166 struct xhci_root_port_bw_info *rh_bw;
1167 struct xhci_tt_bw_info *tt_bw;
1169 rh_bw = &xhci->rh_bw[port_num - 1];
1170 /* Find the right TT. */
1171 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1172 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1173 continue;
1175 if (!dev->udev->tt->multi ||
1176 (udev->tt->multi &&
1177 tt_bw->ttport == dev->udev->ttport)) {
1178 dev->bw_table = &tt_bw->bw_table;
1179 dev->tt_info = tt_bw;
1180 break;
1183 if (!dev->tt_info)
1184 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1187 /* Is this a LS/FS device under an external HS hub? */
1188 if (udev->tt && udev->tt->hub->parent) {
1189 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1190 (udev->ttport << 8));
1191 if (udev->tt->multi)
1192 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1194 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1195 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1197 /* Step 4 - ring already allocated */
1198 /* Step 5 */
1199 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1201 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1203 max_packets);
1205 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1206 dev->eps[0].ring->cycle_state);
1208 trace_xhci_setup_addressable_virt_device(dev);
1210 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1212 return 0;
1216 * Convert interval expressed as 2^(bInterval - 1) == interval into
1217 * straight exponent value 2^n == interval.
1220 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1221 struct usb_host_endpoint *ep)
1223 unsigned int interval;
1225 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1226 if (interval != ep->desc.bInterval - 1)
1227 dev_warn(&udev->dev,
1228 "ep %#x - rounding interval to %d %sframes\n",
1229 ep->desc.bEndpointAddress,
1230 1 << interval,
1231 udev->speed == USB_SPEED_FULL ? "" : "micro");
1233 if (udev->speed == USB_SPEED_FULL) {
1235 * Full speed isoc endpoints specify interval in frames,
1236 * not microframes. We are using microframes everywhere,
1237 * so adjust accordingly.
1239 interval += 3; /* 1 frame = 2^3 uframes */
1242 return interval;
1246 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1247 * microframes, rounded down to nearest power of 2.
1249 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1250 struct usb_host_endpoint *ep, unsigned int desc_interval,
1251 unsigned int min_exponent, unsigned int max_exponent)
1253 unsigned int interval;
1255 interval = fls(desc_interval) - 1;
1256 interval = clamp_val(interval, min_exponent, max_exponent);
1257 if ((1 << interval) != desc_interval)
1258 dev_dbg(&udev->dev,
1259 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1260 ep->desc.bEndpointAddress,
1261 1 << interval,
1262 desc_interval);
1264 return interval;
1267 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1268 struct usb_host_endpoint *ep)
1270 if (ep->desc.bInterval == 0)
1271 return 0;
1272 return xhci_microframes_to_exponent(udev, ep,
1273 ep->desc.bInterval, 0, 15);
1277 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1278 struct usb_host_endpoint *ep)
1280 return xhci_microframes_to_exponent(udev, ep,
1281 ep->desc.bInterval * 8, 3, 10);
1284 /* Return the polling or NAK interval.
1286 * The polling interval is expressed in "microframes". If xHCI's Interval field
1287 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1289 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1290 * is set to 0.
1292 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1293 struct usb_host_endpoint *ep)
1295 unsigned int interval = 0;
1297 switch (udev->speed) {
1298 case USB_SPEED_HIGH:
1299 /* Max NAK rate */
1300 if (usb_endpoint_xfer_control(&ep->desc) ||
1301 usb_endpoint_xfer_bulk(&ep->desc)) {
1302 interval = xhci_parse_microframe_interval(udev, ep);
1303 break;
1305 /* Fall through - SS and HS isoc/int have same decoding */
1307 case USB_SPEED_SUPER_PLUS:
1308 case USB_SPEED_SUPER:
1309 if (usb_endpoint_xfer_int(&ep->desc) ||
1310 usb_endpoint_xfer_isoc(&ep->desc)) {
1311 interval = xhci_parse_exponent_interval(udev, ep);
1313 break;
1315 case USB_SPEED_FULL:
1316 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1317 interval = xhci_parse_exponent_interval(udev, ep);
1318 break;
1321 * Fall through for interrupt endpoint interval decoding
1322 * since it uses the same rules as low speed interrupt
1323 * endpoints.
1325 /* fall through */
1327 case USB_SPEED_LOW:
1328 if (usb_endpoint_xfer_int(&ep->desc) ||
1329 usb_endpoint_xfer_isoc(&ep->desc)) {
1331 interval = xhci_parse_frame_interval(udev, ep);
1333 break;
1335 default:
1336 BUG();
1338 return interval;
1341 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1342 * High speed endpoint descriptors can define "the number of additional
1343 * transaction opportunities per microframe", but that goes in the Max Burst
1344 * endpoint context field.
1346 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1347 struct usb_host_endpoint *ep)
1349 if (udev->speed < USB_SPEED_SUPER ||
1350 !usb_endpoint_xfer_isoc(&ep->desc))
1351 return 0;
1352 return ep->ss_ep_comp.bmAttributes;
1355 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1356 struct usb_host_endpoint *ep)
1358 /* Super speed and Plus have max burst in ep companion desc */
1359 if (udev->speed >= USB_SPEED_SUPER)
1360 return ep->ss_ep_comp.bMaxBurst;
1362 if (udev->speed == USB_SPEED_HIGH &&
1363 (usb_endpoint_xfer_isoc(&ep->desc) ||
1364 usb_endpoint_xfer_int(&ep->desc)))
1365 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1367 return 0;
1370 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1372 int in;
1374 in = usb_endpoint_dir_in(&ep->desc);
1376 switch (usb_endpoint_type(&ep->desc)) {
1377 case USB_ENDPOINT_XFER_CONTROL:
1378 return CTRL_EP;
1379 case USB_ENDPOINT_XFER_BULK:
1380 return in ? BULK_IN_EP : BULK_OUT_EP;
1381 case USB_ENDPOINT_XFER_ISOC:
1382 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1383 case USB_ENDPOINT_XFER_INT:
1384 return in ? INT_IN_EP : INT_OUT_EP;
1386 return 0;
1389 /* Return the maximum endpoint service interval time (ESIT) payload.
1390 * Basically, this is the maxpacket size, multiplied by the burst size
1391 * and mult size.
1393 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1394 struct usb_host_endpoint *ep)
1396 int max_burst;
1397 int max_packet;
1399 /* Only applies for interrupt or isochronous endpoints */
1400 if (usb_endpoint_xfer_control(&ep->desc) ||
1401 usb_endpoint_xfer_bulk(&ep->desc))
1402 return 0;
1404 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1405 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1406 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1407 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1408 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1409 else if (udev->speed >= USB_SPEED_SUPER)
1410 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1412 max_packet = usb_endpoint_maxp(&ep->desc);
1413 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1414 /* A 0 in max burst means 1 transfer per ESIT */
1415 return max_packet * max_burst;
1418 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1419 * Drivers will have to call usb_alloc_streams() to do that.
1421 int xhci_endpoint_init(struct xhci_hcd *xhci,
1422 struct xhci_virt_device *virt_dev,
1423 struct usb_device *udev,
1424 struct usb_host_endpoint *ep,
1425 gfp_t mem_flags)
1427 unsigned int ep_index;
1428 struct xhci_ep_ctx *ep_ctx;
1429 struct xhci_ring *ep_ring;
1430 unsigned int max_packet;
1431 enum xhci_ring_type ring_type;
1432 u32 max_esit_payload;
1433 u32 endpoint_type;
1434 unsigned int max_burst;
1435 unsigned int interval;
1436 unsigned int mult;
1437 unsigned int avg_trb_len;
1438 unsigned int err_count = 0;
1440 ep_index = xhci_get_endpoint_index(&ep->desc);
1441 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1443 endpoint_type = xhci_get_endpoint_type(ep);
1444 if (!endpoint_type)
1445 return -EINVAL;
1447 ring_type = usb_endpoint_type(&ep->desc);
1450 * Get values to fill the endpoint context, mostly from ep descriptor.
1451 * The average TRB buffer lengt for bulk endpoints is unclear as we
1452 * have no clue on scatter gather list entry size. For Isoc and Int,
1453 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1455 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1456 interval = xhci_get_endpoint_interval(udev, ep);
1458 /* Periodic endpoint bInterval limit quirk */
1459 if (usb_endpoint_xfer_int(&ep->desc) ||
1460 usb_endpoint_xfer_isoc(&ep->desc)) {
1461 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1462 udev->speed >= USB_SPEED_HIGH &&
1463 interval >= 7) {
1464 interval = 6;
1468 mult = xhci_get_endpoint_mult(udev, ep);
1469 max_packet = usb_endpoint_maxp(&ep->desc);
1470 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1471 avg_trb_len = max_esit_payload;
1473 /* FIXME dig Mult and streams info out of ep companion desc */
1475 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1476 if (!usb_endpoint_xfer_isoc(&ep->desc))
1477 err_count = 3;
1478 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1479 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1480 if (udev->speed == USB_SPEED_HIGH)
1481 max_packet = 512;
1482 if (udev->speed == USB_SPEED_FULL) {
1483 max_packet = rounddown_pow_of_two(max_packet);
1484 max_packet = clamp_val(max_packet, 8, 64);
1487 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1488 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1489 avg_trb_len = 8;
1490 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1491 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1492 mult = 0;
1494 /* Set up the endpoint ring */
1495 virt_dev->eps[ep_index].new_ring =
1496 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1497 if (!virt_dev->eps[ep_index].new_ring)
1498 return -ENOMEM;
1500 virt_dev->eps[ep_index].skip = false;
1501 ep_ring = virt_dev->eps[ep_index].new_ring;
1503 /* Fill the endpoint context */
1504 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1505 EP_INTERVAL(interval) |
1506 EP_MULT(mult));
1507 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1508 MAX_PACKET(max_packet) |
1509 MAX_BURST(max_burst) |
1510 ERROR_COUNT(err_count));
1511 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1512 ep_ring->cycle_state);
1514 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1515 EP_AVG_TRB_LENGTH(avg_trb_len));
1517 return 0;
1520 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1521 struct xhci_virt_device *virt_dev,
1522 struct usb_host_endpoint *ep)
1524 unsigned int ep_index;
1525 struct xhci_ep_ctx *ep_ctx;
1527 ep_index = xhci_get_endpoint_index(&ep->desc);
1528 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1530 ep_ctx->ep_info = 0;
1531 ep_ctx->ep_info2 = 0;
1532 ep_ctx->deq = 0;
1533 ep_ctx->tx_info = 0;
1534 /* Don't free the endpoint ring until the set interface or configuration
1535 * request succeeds.
1539 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1541 bw_info->ep_interval = 0;
1542 bw_info->mult = 0;
1543 bw_info->num_packets = 0;
1544 bw_info->max_packet_size = 0;
1545 bw_info->type = 0;
1546 bw_info->max_esit_payload = 0;
1549 void xhci_update_bw_info(struct xhci_hcd *xhci,
1550 struct xhci_container_ctx *in_ctx,
1551 struct xhci_input_control_ctx *ctrl_ctx,
1552 struct xhci_virt_device *virt_dev)
1554 struct xhci_bw_info *bw_info;
1555 struct xhci_ep_ctx *ep_ctx;
1556 unsigned int ep_type;
1557 int i;
1559 for (i = 1; i < 31; i++) {
1560 bw_info = &virt_dev->eps[i].bw_info;
1562 /* We can't tell what endpoint type is being dropped, but
1563 * unconditionally clearing the bandwidth info for non-periodic
1564 * endpoints should be harmless because the info will never be
1565 * set in the first place.
1567 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1568 /* Dropped endpoint */
1569 xhci_clear_endpoint_bw_info(bw_info);
1570 continue;
1573 if (EP_IS_ADDED(ctrl_ctx, i)) {
1574 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1575 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1577 /* Ignore non-periodic endpoints */
1578 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1579 ep_type != ISOC_IN_EP &&
1580 ep_type != INT_IN_EP)
1581 continue;
1583 /* Added or changed endpoint */
1584 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1585 le32_to_cpu(ep_ctx->ep_info));
1586 /* Number of packets and mult are zero-based in the
1587 * input context, but we want one-based for the
1588 * interval table.
1590 bw_info->mult = CTX_TO_EP_MULT(
1591 le32_to_cpu(ep_ctx->ep_info)) + 1;
1592 bw_info->num_packets = CTX_TO_MAX_BURST(
1593 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1594 bw_info->max_packet_size = MAX_PACKET_DECODED(
1595 le32_to_cpu(ep_ctx->ep_info2));
1596 bw_info->type = ep_type;
1597 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1598 le32_to_cpu(ep_ctx->tx_info));
1603 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1604 * Useful when you want to change one particular aspect of the endpoint and then
1605 * issue a configure endpoint command.
1607 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1608 struct xhci_container_ctx *in_ctx,
1609 struct xhci_container_ctx *out_ctx,
1610 unsigned int ep_index)
1612 struct xhci_ep_ctx *out_ep_ctx;
1613 struct xhci_ep_ctx *in_ep_ctx;
1615 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1616 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1618 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1619 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1620 in_ep_ctx->deq = out_ep_ctx->deq;
1621 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1622 if (xhci->quirks & XHCI_MTK_HOST) {
1623 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1624 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1628 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1629 * Useful when you want to change one particular aspect of the endpoint and then
1630 * issue a configure endpoint command. Only the context entries field matters,
1631 * but we'll copy the whole thing anyway.
1633 void xhci_slot_copy(struct xhci_hcd *xhci,
1634 struct xhci_container_ctx *in_ctx,
1635 struct xhci_container_ctx *out_ctx)
1637 struct xhci_slot_ctx *in_slot_ctx;
1638 struct xhci_slot_ctx *out_slot_ctx;
1640 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1641 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1643 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1644 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1645 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1646 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1649 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1650 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1652 int i;
1653 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1654 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1656 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1657 "Allocating %d scratchpad buffers", num_sp);
1659 if (!num_sp)
1660 return 0;
1662 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1663 dev_to_node(dev));
1664 if (!xhci->scratchpad)
1665 goto fail_sp;
1667 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1668 num_sp * sizeof(u64),
1669 &xhci->scratchpad->sp_dma, flags);
1670 if (!xhci->scratchpad->sp_array)
1671 goto fail_sp2;
1673 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1674 flags, dev_to_node(dev));
1675 if (!xhci->scratchpad->sp_buffers)
1676 goto fail_sp3;
1678 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1679 for (i = 0; i < num_sp; i++) {
1680 dma_addr_t dma;
1681 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1682 flags);
1683 if (!buf)
1684 goto fail_sp4;
1686 xhci->scratchpad->sp_array[i] = dma;
1687 xhci->scratchpad->sp_buffers[i] = buf;
1690 return 0;
1692 fail_sp4:
1693 for (i = i - 1; i >= 0; i--) {
1694 dma_free_coherent(dev, xhci->page_size,
1695 xhci->scratchpad->sp_buffers[i],
1696 xhci->scratchpad->sp_array[i]);
1699 kfree(xhci->scratchpad->sp_buffers);
1701 fail_sp3:
1702 dma_free_coherent(dev, num_sp * sizeof(u64),
1703 xhci->scratchpad->sp_array,
1704 xhci->scratchpad->sp_dma);
1706 fail_sp2:
1707 kfree(xhci->scratchpad);
1708 xhci->scratchpad = NULL;
1710 fail_sp:
1711 return -ENOMEM;
1714 static void scratchpad_free(struct xhci_hcd *xhci)
1716 int num_sp;
1717 int i;
1718 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1720 if (!xhci->scratchpad)
1721 return;
1723 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1725 for (i = 0; i < num_sp; i++) {
1726 dma_free_coherent(dev, xhci->page_size,
1727 xhci->scratchpad->sp_buffers[i],
1728 xhci->scratchpad->sp_array[i]);
1730 kfree(xhci->scratchpad->sp_buffers);
1731 dma_free_coherent(dev, num_sp * sizeof(u64),
1732 xhci->scratchpad->sp_array,
1733 xhci->scratchpad->sp_dma);
1734 kfree(xhci->scratchpad);
1735 xhci->scratchpad = NULL;
1738 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1739 bool allocate_completion, gfp_t mem_flags)
1741 struct xhci_command *command;
1742 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1744 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1745 if (!command)
1746 return NULL;
1748 if (allocate_completion) {
1749 command->completion =
1750 kzalloc_node(sizeof(struct completion), mem_flags,
1751 dev_to_node(dev));
1752 if (!command->completion) {
1753 kfree(command);
1754 return NULL;
1756 init_completion(command->completion);
1759 command->status = 0;
1760 INIT_LIST_HEAD(&command->cmd_list);
1761 return command;
1764 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1765 bool allocate_completion, gfp_t mem_flags)
1767 struct xhci_command *command;
1769 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1770 if (!command)
1771 return NULL;
1773 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1774 mem_flags);
1775 if (!command->in_ctx) {
1776 kfree(command->completion);
1777 kfree(command);
1778 return NULL;
1780 return command;
1783 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1785 kfree(urb_priv);
1788 void xhci_free_command(struct xhci_hcd *xhci,
1789 struct xhci_command *command)
1791 xhci_free_container_ctx(xhci,
1792 command->in_ctx);
1793 kfree(command->completion);
1794 kfree(command);
1797 int xhci_alloc_erst(struct xhci_hcd *xhci,
1798 struct xhci_ring *evt_ring,
1799 struct xhci_erst *erst,
1800 gfp_t flags)
1802 size_t size;
1803 unsigned int val;
1804 struct xhci_segment *seg;
1805 struct xhci_erst_entry *entry;
1807 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1808 erst->entries = dma_zalloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1809 size, &erst->erst_dma_addr, flags);
1810 if (!erst->entries)
1811 return -ENOMEM;
1813 erst->num_entries = evt_ring->num_segs;
1815 seg = evt_ring->first_seg;
1816 for (val = 0; val < evt_ring->num_segs; val++) {
1817 entry = &erst->entries[val];
1818 entry->seg_addr = cpu_to_le64(seg->dma);
1819 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1820 entry->rsvd = 0;
1821 seg = seg->next;
1824 return 0;
1827 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1829 size_t size;
1830 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1832 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1833 if (erst->entries)
1834 dma_free_coherent(dev, size,
1835 erst->entries,
1836 erst->erst_dma_addr);
1837 erst->entries = NULL;
1840 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1842 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1843 int i, j, num_ports;
1845 cancel_delayed_work_sync(&xhci->cmd_timer);
1847 xhci_free_erst(xhci, &xhci->erst);
1849 if (xhci->event_ring)
1850 xhci_ring_free(xhci, xhci->event_ring);
1851 xhci->event_ring = NULL;
1852 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1854 if (xhci->lpm_command)
1855 xhci_free_command(xhci, xhci->lpm_command);
1856 xhci->lpm_command = NULL;
1857 if (xhci->cmd_ring)
1858 xhci_ring_free(xhci, xhci->cmd_ring);
1859 xhci->cmd_ring = NULL;
1860 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1861 xhci_cleanup_command_queue(xhci);
1863 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1864 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1865 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1866 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1867 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1868 while (!list_empty(ep))
1869 list_del_init(ep->next);
1873 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1874 xhci_free_virt_devices_depth_first(xhci, i);
1876 dma_pool_destroy(xhci->segment_pool);
1877 xhci->segment_pool = NULL;
1878 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1880 dma_pool_destroy(xhci->device_pool);
1881 xhci->device_pool = NULL;
1882 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1884 dma_pool_destroy(xhci->small_streams_pool);
1885 xhci->small_streams_pool = NULL;
1886 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1887 "Freed small stream array pool");
1889 dma_pool_destroy(xhci->medium_streams_pool);
1890 xhci->medium_streams_pool = NULL;
1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1892 "Freed medium stream array pool");
1894 if (xhci->dcbaa)
1895 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1896 xhci->dcbaa, xhci->dcbaa->dma);
1897 xhci->dcbaa = NULL;
1899 scratchpad_free(xhci);
1901 if (!xhci->rh_bw)
1902 goto no_bw;
1904 for (i = 0; i < num_ports; i++) {
1905 struct xhci_tt_bw_info *tt, *n;
1906 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1907 list_del(&tt->tt_list);
1908 kfree(tt);
1912 no_bw:
1913 xhci->cmd_ring_reserved_trbs = 0;
1914 xhci->usb2_rhub.num_ports = 0;
1915 xhci->usb3_rhub.num_ports = 0;
1916 xhci->num_active_eps = 0;
1917 kfree(xhci->usb2_rhub.ports);
1918 kfree(xhci->usb3_rhub.ports);
1919 kfree(xhci->hw_ports);
1920 kfree(xhci->rh_bw);
1921 kfree(xhci->ext_caps);
1922 for (i = 0; i < xhci->num_port_caps; i++)
1923 kfree(xhci->port_caps[i].psi);
1924 kfree(xhci->port_caps);
1925 xhci->num_port_caps = 0;
1927 xhci->usb2_rhub.ports = NULL;
1928 xhci->usb3_rhub.ports = NULL;
1929 xhci->hw_ports = NULL;
1930 xhci->rh_bw = NULL;
1931 xhci->ext_caps = NULL;
1933 xhci->page_size = 0;
1934 xhci->page_shift = 0;
1935 xhci->bus_state[0].bus_suspended = 0;
1936 xhci->bus_state[1].bus_suspended = 0;
1939 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1940 struct xhci_segment *input_seg,
1941 union xhci_trb *start_trb,
1942 union xhci_trb *end_trb,
1943 dma_addr_t input_dma,
1944 struct xhci_segment *result_seg,
1945 char *test_name, int test_number)
1947 unsigned long long start_dma;
1948 unsigned long long end_dma;
1949 struct xhci_segment *seg;
1951 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1952 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1954 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1955 if (seg != result_seg) {
1956 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1957 test_name, test_number);
1958 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1959 "input DMA 0x%llx\n",
1960 input_seg,
1961 (unsigned long long) input_dma);
1962 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1963 "ending TRB %p (0x%llx DMA)\n",
1964 start_trb, start_dma,
1965 end_trb, end_dma);
1966 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1967 result_seg, seg);
1968 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1969 true);
1970 return -1;
1972 return 0;
1975 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1976 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1978 struct {
1979 dma_addr_t input_dma;
1980 struct xhci_segment *result_seg;
1981 } simple_test_vector [] = {
1982 /* A zeroed DMA field should fail */
1983 { 0, NULL },
1984 /* One TRB before the ring start should fail */
1985 { xhci->event_ring->first_seg->dma - 16, NULL },
1986 /* One byte before the ring start should fail */
1987 { xhci->event_ring->first_seg->dma - 1, NULL },
1988 /* Starting TRB should succeed */
1989 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1990 /* Ending TRB should succeed */
1991 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1992 xhci->event_ring->first_seg },
1993 /* One byte after the ring end should fail */
1994 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1995 /* One TRB after the ring end should fail */
1996 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1997 /* An address of all ones should fail */
1998 { (dma_addr_t) (~0), NULL },
2000 struct {
2001 struct xhci_segment *input_seg;
2002 union xhci_trb *start_trb;
2003 union xhci_trb *end_trb;
2004 dma_addr_t input_dma;
2005 struct xhci_segment *result_seg;
2006 } complex_test_vector [] = {
2007 /* Test feeding a valid DMA address from a different ring */
2008 { .input_seg = xhci->event_ring->first_seg,
2009 .start_trb = xhci->event_ring->first_seg->trbs,
2010 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011 .input_dma = xhci->cmd_ring->first_seg->dma,
2012 .result_seg = NULL,
2014 /* Test feeding a valid end TRB from a different ring */
2015 { .input_seg = xhci->event_ring->first_seg,
2016 .start_trb = xhci->event_ring->first_seg->trbs,
2017 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2018 .input_dma = xhci->cmd_ring->first_seg->dma,
2019 .result_seg = NULL,
2021 /* Test feeding a valid start and end TRB from a different ring */
2022 { .input_seg = xhci->event_ring->first_seg,
2023 .start_trb = xhci->cmd_ring->first_seg->trbs,
2024 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2025 .input_dma = xhci->cmd_ring->first_seg->dma,
2026 .result_seg = NULL,
2028 /* TRB in this ring, but after this TD */
2029 { .input_seg = xhci->event_ring->first_seg,
2030 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2031 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2032 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2033 .result_seg = NULL,
2035 /* TRB in this ring, but before this TD */
2036 { .input_seg = xhci->event_ring->first_seg,
2037 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2038 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2039 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2040 .result_seg = NULL,
2042 /* TRB in this ring, but after this wrapped TD */
2043 { .input_seg = xhci->event_ring->first_seg,
2044 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2045 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2046 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2047 .result_seg = NULL,
2049 /* TRB in this ring, but before this wrapped TD */
2050 { .input_seg = xhci->event_ring->first_seg,
2051 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2052 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2053 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2054 .result_seg = NULL,
2056 /* TRB not in this ring, and we have a wrapped TD */
2057 { .input_seg = xhci->event_ring->first_seg,
2058 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2059 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2060 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2061 .result_seg = NULL,
2065 unsigned int num_tests;
2066 int i, ret;
2068 num_tests = ARRAY_SIZE(simple_test_vector);
2069 for (i = 0; i < num_tests; i++) {
2070 ret = xhci_test_trb_in_td(xhci,
2071 xhci->event_ring->first_seg,
2072 xhci->event_ring->first_seg->trbs,
2073 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2074 simple_test_vector[i].input_dma,
2075 simple_test_vector[i].result_seg,
2076 "Simple", i);
2077 if (ret < 0)
2078 return ret;
2081 num_tests = ARRAY_SIZE(complex_test_vector);
2082 for (i = 0; i < num_tests; i++) {
2083 ret = xhci_test_trb_in_td(xhci,
2084 complex_test_vector[i].input_seg,
2085 complex_test_vector[i].start_trb,
2086 complex_test_vector[i].end_trb,
2087 complex_test_vector[i].input_dma,
2088 complex_test_vector[i].result_seg,
2089 "Complex", i);
2090 if (ret < 0)
2091 return ret;
2093 xhci_dbg(xhci, "TRB math tests passed.\n");
2094 return 0;
2097 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2099 u64 temp;
2100 dma_addr_t deq;
2102 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2103 xhci->event_ring->dequeue);
2104 if (deq == 0 && !in_interrupt())
2105 xhci_warn(xhci, "WARN something wrong with SW event ring "
2106 "dequeue ptr.\n");
2107 /* Update HC event ring dequeue pointer */
2108 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2109 temp &= ERST_PTR_MASK;
2110 /* Don't clear the EHB bit (which is RW1C) because
2111 * there might be more events to service.
2113 temp &= ~ERST_EHB;
2114 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2115 "// Write event ring dequeue pointer, "
2116 "preserving EHB bit");
2117 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2118 &xhci->ir_set->erst_dequeue);
2121 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2122 __le32 __iomem *addr, int max_caps)
2124 u32 temp, port_offset, port_count;
2125 int i;
2126 u8 major_revision, minor_revision;
2127 struct xhci_hub *rhub;
2128 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2129 struct xhci_port_cap *port_cap;
2131 temp = readl(addr);
2132 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2133 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2135 if (major_revision == 0x03) {
2136 rhub = &xhci->usb3_rhub;
2137 } else if (major_revision <= 0x02) {
2138 rhub = &xhci->usb2_rhub;
2139 } else {
2140 xhci_warn(xhci, "Ignoring unknown port speed, "
2141 "Ext Cap %p, revision = 0x%x\n",
2142 addr, major_revision);
2143 /* Ignoring port protocol we can't understand. FIXME */
2144 return;
2146 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2148 if (rhub->min_rev < minor_revision)
2149 rhub->min_rev = minor_revision;
2151 /* Port offset and count in the third dword, see section 7.2 */
2152 temp = readl(addr + 2);
2153 port_offset = XHCI_EXT_PORT_OFF(temp);
2154 port_count = XHCI_EXT_PORT_COUNT(temp);
2155 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2156 "Ext Cap %p, port offset = %u, "
2157 "count = %u, revision = 0x%x",
2158 addr, port_offset, port_count, major_revision);
2159 /* Port count includes the current port offset */
2160 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2161 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2162 return;
2164 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2165 if (xhci->num_port_caps > max_caps)
2166 return;
2168 port_cap->maj_rev = major_revision;
2169 port_cap->min_rev = minor_revision;
2170 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2172 if (port_cap->psi_count) {
2173 port_cap->psi = kcalloc_node(port_cap->psi_count,
2174 sizeof(*port_cap->psi),
2175 GFP_KERNEL, dev_to_node(dev));
2176 if (!port_cap->psi)
2177 port_cap->psi_count = 0;
2179 port_cap->psi_uid_count++;
2180 for (i = 0; i < port_cap->psi_count; i++) {
2181 port_cap->psi[i] = readl(addr + 4 + i);
2183 /* count unique ID values, two consecutive entries can
2184 * have the same ID if link is assymetric
2186 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2187 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2188 port_cap->psi_uid_count++;
2190 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2191 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2192 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2193 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2194 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2195 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2196 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2199 /* cache usb2 port capabilities */
2200 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2201 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2203 /* Check the host's USB2 LPM capability */
2204 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2205 (temp & XHCI_L1C)) {
2206 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2207 "xHCI 0.96: support USB2 software lpm");
2208 xhci->sw_lpm_support = 1;
2211 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2212 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2213 "xHCI 1.0: support USB2 software lpm");
2214 xhci->sw_lpm_support = 1;
2215 if (temp & XHCI_HLC) {
2216 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2217 "xHCI 1.0: support USB2 hardware lpm");
2218 xhci->hw_lpm_support = 1;
2222 port_offset--;
2223 for (i = port_offset; i < (port_offset + port_count); i++) {
2224 struct xhci_port *hw_port = &xhci->hw_ports[i];
2225 /* Duplicate entry. Ignore the port if the revisions differ. */
2226 if (hw_port->rhub) {
2227 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2228 " port %u\n", addr, i);
2229 xhci_warn(xhci, "Port was marked as USB %u, "
2230 "duplicated as USB %u\n",
2231 hw_port->rhub->maj_rev, major_revision);
2232 /* Only adjust the roothub port counts if we haven't
2233 * found a similar duplicate.
2235 if (hw_port->rhub != rhub &&
2236 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2237 hw_port->rhub->num_ports--;
2238 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2240 continue;
2242 hw_port->rhub = rhub;
2243 hw_port->port_cap = port_cap;
2244 rhub->num_ports++;
2246 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2249 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2250 struct xhci_hub *rhub, gfp_t flags)
2252 int port_index = 0;
2253 int i;
2254 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2256 if (!rhub->num_ports)
2257 return;
2258 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2259 dev_to_node(dev));
2260 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2261 if (xhci->hw_ports[i].rhub != rhub ||
2262 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2263 continue;
2264 xhci->hw_ports[i].hcd_portnum = port_index;
2265 rhub->ports[port_index] = &xhci->hw_ports[i];
2266 port_index++;
2267 if (port_index == rhub->num_ports)
2268 break;
2273 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2274 * specify what speeds each port is supposed to be. We can't count on the port
2275 * speed bits in the PORTSC register being correct until a device is connected,
2276 * but we need to set up the two fake roothubs with the correct number of USB
2277 * 3.0 and USB 2.0 ports at host controller initialization time.
2279 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2281 void __iomem *base;
2282 u32 offset;
2283 unsigned int num_ports;
2284 int i, j;
2285 int cap_count = 0;
2286 u32 cap_start;
2287 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2289 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2290 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2291 flags, dev_to_node(dev));
2292 if (!xhci->hw_ports)
2293 return -ENOMEM;
2295 for (i = 0; i < num_ports; i++) {
2296 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2297 NUM_PORT_REGS * i;
2298 xhci->hw_ports[i].hw_portnum = i;
2301 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2302 dev_to_node(dev));
2303 if (!xhci->rh_bw)
2304 return -ENOMEM;
2305 for (i = 0; i < num_ports; i++) {
2306 struct xhci_interval_bw_table *bw_table;
2308 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2309 bw_table = &xhci->rh_bw[i].bw_table;
2310 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2311 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2313 base = &xhci->cap_regs->hc_capbase;
2315 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2316 if (!cap_start) {
2317 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2318 return -ENODEV;
2321 offset = cap_start;
2322 /* count extended protocol capability entries for later caching */
2323 while (offset) {
2324 cap_count++;
2325 offset = xhci_find_next_ext_cap(base, offset,
2326 XHCI_EXT_CAPS_PROTOCOL);
2329 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2330 flags, dev_to_node(dev));
2331 if (!xhci->ext_caps)
2332 return -ENOMEM;
2334 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2335 flags, dev_to_node(dev));
2336 if (!xhci->port_caps)
2337 return -ENOMEM;
2339 offset = cap_start;
2341 while (offset) {
2342 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2343 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2344 num_ports)
2345 break;
2346 offset = xhci_find_next_ext_cap(base, offset,
2347 XHCI_EXT_CAPS_PROTOCOL);
2349 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2350 xhci_warn(xhci, "No ports on the roothubs?\n");
2351 return -ENODEV;
2353 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2354 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2355 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2357 /* Place limits on the number of roothub ports so that the hub
2358 * descriptors aren't longer than the USB core will allocate.
2360 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2361 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2362 "Limiting USB 3.0 roothub ports to %u.",
2363 USB_SS_MAXPORTS);
2364 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2366 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2367 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2368 "Limiting USB 2.0 roothub ports to %u.",
2369 USB_MAXCHILDREN);
2370 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2374 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2375 * Not sure how the USB core will handle a hub with no ports...
2378 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2379 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2381 return 0;
2384 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2386 dma_addr_t dma;
2387 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2388 unsigned int val, val2;
2389 u64 val_64;
2390 u32 page_size, temp;
2391 int i, ret;
2393 INIT_LIST_HEAD(&xhci->cmd_list);
2395 /* init command timeout work */
2396 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2397 init_completion(&xhci->cmd_ring_stop_completion);
2399 page_size = readl(&xhci->op_regs->page_size);
2400 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2401 "Supported page size register = 0x%x", page_size);
2402 for (i = 0; i < 16; i++) {
2403 if ((0x1 & page_size) != 0)
2404 break;
2405 page_size = page_size >> 1;
2407 if (i < 16)
2408 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409 "Supported page size of %iK", (1 << (i+12)) / 1024);
2410 else
2411 xhci_warn(xhci, "WARN: no supported page size\n");
2412 /* Use 4K pages, since that's common and the minimum the HC supports */
2413 xhci->page_shift = 12;
2414 xhci->page_size = 1 << xhci->page_shift;
2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 "HCD page size set to %iK", xhci->page_size / 1024);
2419 * Program the Number of Device Slots Enabled field in the CONFIG
2420 * register with the max value of slots the HC can handle.
2422 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2423 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424 "// xHC can handle at most %d device slots.", val);
2425 val2 = readl(&xhci->op_regs->config_reg);
2426 val |= (val2 & ~HCS_SLOTS_MASK);
2427 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2428 "// Setting Max device slots reg = 0x%x.", val);
2429 writel(val, &xhci->op_regs->config_reg);
2432 * xHCI section 5.4.6 - doorbell array must be
2433 * "physically contiguous and 64-byte (cache line) aligned".
2435 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2436 flags);
2437 if (!xhci->dcbaa)
2438 goto fail;
2439 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2440 xhci->dcbaa->dma = dma;
2441 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2442 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2443 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2444 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2447 * Initialize the ring segment pool. The ring must be a contiguous
2448 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2449 * however, the command ring segment needs 64-byte aligned segments
2450 * and our use of dma addresses in the trb_address_map radix tree needs
2451 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2453 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2454 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2456 /* See Table 46 and Note on Figure 55 */
2457 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2458 2112, 64, xhci->page_size);
2459 if (!xhci->segment_pool || !xhci->device_pool)
2460 goto fail;
2462 /* Linear stream context arrays don't have any boundary restrictions,
2463 * and only need to be 16-byte aligned.
2465 xhci->small_streams_pool =
2466 dma_pool_create("xHCI 256 byte stream ctx arrays",
2467 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2468 xhci->medium_streams_pool =
2469 dma_pool_create("xHCI 1KB stream ctx arrays",
2470 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2471 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2472 * will be allocated with dma_alloc_coherent()
2475 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2476 goto fail;
2478 /* Set up the command ring to have one segments for now. */
2479 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2480 if (!xhci->cmd_ring)
2481 goto fail;
2482 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2483 "Allocated command ring at %p", xhci->cmd_ring);
2484 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2485 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2487 /* Set the address in the Command Ring Control register */
2488 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2489 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2490 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2491 xhci->cmd_ring->cycle_state;
2492 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2493 "// Setting command ring address to 0x%016llx", val_64);
2494 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2496 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2497 if (!xhci->lpm_command)
2498 goto fail;
2500 /* Reserve one command ring TRB for disabling LPM.
2501 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2502 * disabling LPM, we only need to reserve one TRB for all devices.
2504 xhci->cmd_ring_reserved_trbs++;
2506 val = readl(&xhci->cap_regs->db_off);
2507 val &= DBOFF_MASK;
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509 "// Doorbell array is located at offset 0x%x"
2510 " from cap regs base addr", val);
2511 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2512 /* Set ir_set to interrupt register set 0 */
2513 xhci->ir_set = &xhci->run_regs->ir_set[0];
2516 * Event ring setup: Allocate a normal ring, but also setup
2517 * the event ring segment table (ERST). Section 4.9.3.
2519 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2520 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2521 0, flags);
2522 if (!xhci->event_ring)
2523 goto fail;
2524 if (xhci_check_trb_in_td_math(xhci) < 0)
2525 goto fail;
2527 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2528 if (ret)
2529 goto fail;
2531 /* set ERST count with the number of entries in the segment table */
2532 val = readl(&xhci->ir_set->erst_size);
2533 val &= ERST_SIZE_MASK;
2534 val |= ERST_NUM_SEGS;
2535 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2536 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2537 val);
2538 writel(val, &xhci->ir_set->erst_size);
2540 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2541 "// Set ERST entries to point to event ring.");
2542 /* set the segment table base address */
2543 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2544 "// Set ERST base address for ir_set 0 = 0x%llx",
2545 (unsigned long long)xhci->erst.erst_dma_addr);
2546 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2547 val_64 &= ERST_PTR_MASK;
2548 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2549 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2551 /* Set the event ring dequeue address */
2552 xhci_set_hc_event_deq(xhci);
2553 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2554 "Wrote ERST address to ir_set 0.");
2557 * XXX: Might need to set the Interrupter Moderation Register to
2558 * something other than the default (~1ms minimum between interrupts).
2559 * See section 5.5.1.2.
2561 for (i = 0; i < MAX_HC_SLOTS; i++)
2562 xhci->devs[i] = NULL;
2563 for (i = 0; i < USB_MAXCHILDREN; i++) {
2564 xhci->bus_state[0].resume_done[i] = 0;
2565 xhci->bus_state[1].resume_done[i] = 0;
2566 /* Only the USB 2.0 completions will ever be used. */
2567 init_completion(&xhci->bus_state[1].rexit_done[i]);
2570 if (scratchpad_alloc(xhci, flags))
2571 goto fail;
2572 if (xhci_setup_port_arrays(xhci, flags))
2573 goto fail;
2575 /* Enable USB 3.0 device notifications for function remote wake, which
2576 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2577 * U3 (device suspend).
2579 temp = readl(&xhci->op_regs->dev_notification);
2580 temp &= ~DEV_NOTE_MASK;
2581 temp |= DEV_NOTE_FWAKE;
2582 writel(temp, &xhci->op_regs->dev_notification);
2584 return 0;
2586 fail:
2587 xhci_halt(xhci);
2588 xhci_reset(xhci);
2589 xhci_mem_cleanup(xhci);
2590 return -ENOMEM;