1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
,
29 unsigned int cycle_state
,
30 unsigned int max_packet
,
33 struct xhci_segment
*seg
;
36 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
38 seg
= kzalloc_node(sizeof(*seg
), flags
, dev_to_node(dev
));
42 seg
->trbs
= dma_pool_zalloc(xhci
->segment_pool
, flags
, &dma
);
49 seg
->bounce_buf
= kzalloc_node(max_packet
, flags
,
51 if (!seg
->bounce_buf
) {
52 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, dma
);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state
== 0) {
59 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
60 seg
->trbs
[i
].link
.control
|= cpu_to_le32(TRB_CYCLE
);
68 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
71 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
74 kfree(seg
->bounce_buf
);
78 static void xhci_free_segments_for_ring(struct xhci_hcd
*xhci
,
79 struct xhci_segment
*first
)
81 struct xhci_segment
*seg
;
84 while (seg
!= first
) {
85 struct xhci_segment
*next
= seg
->next
;
86 xhci_segment_free(xhci
, seg
);
89 xhci_segment_free(xhci
, first
);
93 * Make the prev segment point to the next segment.
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
99 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
100 struct xhci_segment
*next
, enum xhci_ring_type type
)
107 if (type
!= TYPE_EVENT
) {
108 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
109 cpu_to_le64(next
->dma
);
111 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
112 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
113 val
&= ~TRB_TYPE_BITMASK
;
114 val
|= TRB_TYPE(TRB_LINK
);
115 /* Always set the chain bit with 0.95 hardware */
116 /* Set chain bit for isoc rings on AMD 0.96 host */
117 if (xhci_link_trb_quirk(xhci
) ||
118 (type
== TYPE_ISOC
&&
119 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
121 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
129 static void xhci_link_rings(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
130 struct xhci_segment
*first
, struct xhci_segment
*last
,
131 unsigned int num_segs
)
133 struct xhci_segment
*next
;
135 if (!ring
|| !first
|| !last
)
138 next
= ring
->enq_seg
->next
;
139 xhci_link_segments(xhci
, ring
->enq_seg
, first
, ring
->type
);
140 xhci_link_segments(xhci
, last
, next
, ring
->type
);
141 ring
->num_segs
+= num_segs
;
142 ring
->num_trbs_free
+= (TRBS_PER_SEGMENT
- 1) * num_segs
;
144 if (ring
->type
!= TYPE_EVENT
&& ring
->enq_seg
== ring
->last_seg
) {
145 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
146 &= ~cpu_to_le32(LINK_TOGGLE
);
147 last
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
148 |= cpu_to_le32(LINK_TOGGLE
);
149 ring
->last_seg
= last
;
154 * We need a radix tree for mapping physical addresses of TRBs to which stream
155 * ID they belong to. We need to do this because the host controller won't tell
156 * us which stream ring the TRB came from. We could store the stream ID in an
157 * event data TRB, but that doesn't help us for the cancellation case, since the
158 * endpoint may stop before it reaches that event data TRB.
160 * The radix tree maps the upper portion of the TRB DMA address to a ring
161 * segment that has the same upper portion of DMA addresses. For example, say I
162 * have segments of size 1KB, that are always 1KB aligned. A segment may
163 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
164 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
165 * pass the radix tree a key to get the right stream ID:
167 * 0x10c90fff >> 10 = 0x43243
168 * 0x10c912c0 >> 10 = 0x43244
169 * 0x10c91400 >> 10 = 0x43245
171 * Obviously, only those TRBs with DMA addresses that are within the segment
172 * will make the radix tree return the stream ID for that ring.
174 * Caveats for the radix tree:
176 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
177 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
178 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
179 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
180 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
181 * extended systems (where the DMA address can be bigger than 32-bits),
182 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
184 static int xhci_insert_segment_mapping(struct radix_tree_root
*trb_address_map
,
185 struct xhci_ring
*ring
,
186 struct xhci_segment
*seg
,
192 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
193 /* Skip any segments that were already added. */
194 if (radix_tree_lookup(trb_address_map
, key
))
197 ret
= radix_tree_maybe_preload(mem_flags
);
200 ret
= radix_tree_insert(trb_address_map
,
202 radix_tree_preload_end();
206 static void xhci_remove_segment_mapping(struct radix_tree_root
*trb_address_map
,
207 struct xhci_segment
*seg
)
211 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
212 if (radix_tree_lookup(trb_address_map
, key
))
213 radix_tree_delete(trb_address_map
, key
);
216 static int xhci_update_stream_segment_mapping(
217 struct radix_tree_root
*trb_address_map
,
218 struct xhci_ring
*ring
,
219 struct xhci_segment
*first_seg
,
220 struct xhci_segment
*last_seg
,
223 struct xhci_segment
*seg
;
224 struct xhci_segment
*failed_seg
;
227 if (WARN_ON_ONCE(trb_address_map
== NULL
))
232 ret
= xhci_insert_segment_mapping(trb_address_map
,
233 ring
, seg
, mem_flags
);
239 } while (seg
!= first_seg
);
247 xhci_remove_segment_mapping(trb_address_map
, seg
);
248 if (seg
== failed_seg
)
251 } while (seg
!= first_seg
);
256 static void xhci_remove_stream_mapping(struct xhci_ring
*ring
)
258 struct xhci_segment
*seg
;
260 if (WARN_ON_ONCE(ring
->trb_address_map
== NULL
))
263 seg
= ring
->first_seg
;
265 xhci_remove_segment_mapping(ring
->trb_address_map
, seg
);
267 } while (seg
!= ring
->first_seg
);
270 static int xhci_update_stream_mapping(struct xhci_ring
*ring
, gfp_t mem_flags
)
272 return xhci_update_stream_segment_mapping(ring
->trb_address_map
, ring
,
273 ring
->first_seg
, ring
->last_seg
, mem_flags
);
276 /* XXX: Do we need the hcd structure in all these functions? */
277 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
282 trace_xhci_ring_free(ring
);
284 if (ring
->first_seg
) {
285 if (ring
->type
== TYPE_STREAM
)
286 xhci_remove_stream_mapping(ring
);
287 xhci_free_segments_for_ring(xhci
, ring
->first_seg
);
293 static void xhci_initialize_ring_info(struct xhci_ring
*ring
,
294 unsigned int cycle_state
)
296 /* The ring is empty, so the enqueue pointer == dequeue pointer */
297 ring
->enqueue
= ring
->first_seg
->trbs
;
298 ring
->enq_seg
= ring
->first_seg
;
299 ring
->dequeue
= ring
->enqueue
;
300 ring
->deq_seg
= ring
->first_seg
;
301 /* The ring is initialized to 0. The producer must write 1 to the cycle
302 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
303 * compare CCS to the cycle bit to check ownership, so CCS = 1.
305 * New rings are initialized with cycle state equal to 1; if we are
306 * handling ring expansion, set the cycle state equal to the old ring.
308 ring
->cycle_state
= cycle_state
;
311 * Each segment has a link TRB, and leave an extra TRB for SW
314 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd
*xhci
,
319 struct xhci_segment
**first
, struct xhci_segment
**last
,
320 unsigned int num_segs
, unsigned int cycle_state
,
321 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
323 struct xhci_segment
*prev
;
325 prev
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
331 while (num_segs
> 0) {
332 struct xhci_segment
*next
;
334 next
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
339 xhci_segment_free(xhci
, prev
);
344 xhci_link_segments(xhci
, prev
, next
, type
);
349 xhci_link_segments(xhci
, prev
, *first
, type
);
356 * Create a new ring with zero or more segments.
358 * Link each segment together into a ring.
359 * Set the end flag and the cycle toggle bit on the last segment.
360 * See section 4.9.1 and figures 15 and 16.
362 struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
363 unsigned int num_segs
, unsigned int cycle_state
,
364 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
366 struct xhci_ring
*ring
;
368 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
370 ring
= kzalloc_node(sizeof(*ring
), flags
, dev_to_node(dev
));
374 ring
->num_segs
= num_segs
;
375 ring
->bounce_buf_len
= max_packet
;
376 INIT_LIST_HEAD(&ring
->td_list
);
381 ret
= xhci_alloc_segments_for_ring(xhci
, &ring
->first_seg
,
382 &ring
->last_seg
, num_segs
, cycle_state
, type
,
387 /* Only event ring does not use link TRB */
388 if (type
!= TYPE_EVENT
) {
389 /* See section 4.9.2.1 and 6.4.4.1 */
390 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
|=
391 cpu_to_le32(LINK_TOGGLE
);
393 xhci_initialize_ring_info(ring
, cycle_state
);
394 trace_xhci_ring_alloc(ring
);
402 void xhci_free_endpoint_ring(struct xhci_hcd
*xhci
,
403 struct xhci_virt_device
*virt_dev
,
404 unsigned int ep_index
)
406 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
407 virt_dev
->eps
[ep_index
].ring
= NULL
;
411 * Expand an existing ring.
412 * Allocate a new ring which has same segment numbers and link the two rings.
414 int xhci_ring_expansion(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
415 unsigned int num_trbs
, gfp_t flags
)
417 struct xhci_segment
*first
;
418 struct xhci_segment
*last
;
419 unsigned int num_segs
;
420 unsigned int num_segs_needed
;
423 num_segs_needed
= (num_trbs
+ (TRBS_PER_SEGMENT
- 1) - 1) /
424 (TRBS_PER_SEGMENT
- 1);
426 /* Allocate number of segments we needed, or double the ring size */
427 num_segs
= ring
->num_segs
> num_segs_needed
?
428 ring
->num_segs
: num_segs_needed
;
430 ret
= xhci_alloc_segments_for_ring(xhci
, &first
, &last
,
431 num_segs
, ring
->cycle_state
, ring
->type
,
432 ring
->bounce_buf_len
, flags
);
436 if (ring
->type
== TYPE_STREAM
)
437 ret
= xhci_update_stream_segment_mapping(ring
->trb_address_map
,
438 ring
, first
, last
, flags
);
440 struct xhci_segment
*next
;
443 xhci_segment_free(xhci
, first
);
451 xhci_link_rings(xhci
, ring
, first
, last
, num_segs
);
452 trace_xhci_ring_expansion(ring
);
453 xhci_dbg_trace(xhci
, trace_xhci_dbg_ring_expansion
,
454 "ring expansion succeed, now has %d segments",
460 struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
461 int type
, gfp_t flags
)
463 struct xhci_container_ctx
*ctx
;
464 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
466 if ((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
))
469 ctx
= kzalloc_node(sizeof(*ctx
), flags
, dev_to_node(dev
));
474 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
475 if (type
== XHCI_CTX_TYPE_INPUT
)
476 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
478 ctx
->bytes
= dma_pool_zalloc(xhci
->device_pool
, flags
, &ctx
->dma
);
486 void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
487 struct xhci_container_ctx
*ctx
)
491 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
495 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(
496 struct xhci_container_ctx
*ctx
)
498 if (ctx
->type
!= XHCI_CTX_TYPE_INPUT
)
501 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
504 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
505 struct xhci_container_ctx
*ctx
)
507 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
508 return (struct xhci_slot_ctx
*)ctx
->bytes
;
510 return (struct xhci_slot_ctx
*)
511 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
514 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
515 struct xhci_container_ctx
*ctx
,
516 unsigned int ep_index
)
518 /* increment ep index by offset of start of ep ctx array */
520 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
523 return (struct xhci_ep_ctx
*)
524 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
528 /***************** Streams structures manipulation *************************/
530 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
531 unsigned int num_stream_ctxs
,
532 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
534 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
535 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
537 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
538 dma_free_coherent(dev
, size
,
540 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
541 return dma_pool_free(xhci
->small_streams_pool
,
544 return dma_pool_free(xhci
->medium_streams_pool
,
549 * The stream context array for each endpoint with bulk streams enabled can
550 * vary in size, based on:
551 * - how many streams the endpoint supports,
552 * - the maximum primary stream array size the host controller supports,
553 * - and how many streams the device driver asks for.
555 * The stream context array must be a power of 2, and can be as small as
556 * 64 bytes or as large as 1MB.
558 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
559 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
562 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
563 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
565 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
566 return dma_alloc_coherent(dev
, size
,
568 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
569 return dma_pool_alloc(xhci
->small_streams_pool
,
572 return dma_pool_alloc(xhci
->medium_streams_pool
,
576 struct xhci_ring
*xhci_dma_to_transfer_ring(
577 struct xhci_virt_ep
*ep
,
580 if (ep
->ep_state
& EP_HAS_STREAMS
)
581 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
582 address
>> TRB_SEGMENT_SHIFT
);
586 struct xhci_ring
*xhci_stream_id_to_ring(
587 struct xhci_virt_device
*dev
,
588 unsigned int ep_index
,
589 unsigned int stream_id
)
591 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
595 if (!ep
->stream_info
)
598 if (stream_id
>= ep
->stream_info
->num_streams
)
600 return ep
->stream_info
->stream_rings
[stream_id
];
604 * Change an endpoint's internal structure so it supports stream IDs. The
605 * number of requested streams includes stream 0, which cannot be used by device
608 * The number of stream contexts in the stream context array may be bigger than
609 * the number of streams the driver wants to use. This is because the number of
610 * stream context array entries must be a power of two.
612 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
613 unsigned int num_stream_ctxs
,
614 unsigned int num_streams
,
615 unsigned int max_packet
, gfp_t mem_flags
)
617 struct xhci_stream_info
*stream_info
;
619 struct xhci_ring
*cur_ring
;
622 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
624 xhci_dbg(xhci
, "Allocating %u streams and %u "
625 "stream context array entries.\n",
626 num_streams
, num_stream_ctxs
);
627 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
628 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
631 xhci
->cmd_ring_reserved_trbs
++;
633 stream_info
= kzalloc_node(sizeof(*stream_info
), mem_flags
,
638 stream_info
->num_streams
= num_streams
;
639 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
641 /* Initialize the array of virtual pointers to stream rings. */
642 stream_info
->stream_rings
= kcalloc_node(
643 num_streams
, sizeof(struct xhci_ring
*), mem_flags
,
645 if (!stream_info
->stream_rings
)
648 /* Initialize the array of DMA addresses for stream rings for the HW. */
649 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
650 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
652 if (!stream_info
->stream_ctx_array
)
654 memset(stream_info
->stream_ctx_array
, 0,
655 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
657 /* Allocate everything needed to free the stream rings later */
658 stream_info
->free_streams_command
=
659 xhci_alloc_command_with_ctx(xhci
, true, mem_flags
);
660 if (!stream_info
->free_streams_command
)
663 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
665 /* Allocate rings for all the streams that the driver will use,
666 * and add their segment DMA addresses to the radix tree.
667 * Stream 0 is reserved.
670 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
671 stream_info
->stream_rings
[cur_stream
] =
672 xhci_ring_alloc(xhci
, 2, 1, TYPE_STREAM
, max_packet
,
674 cur_ring
= stream_info
->stream_rings
[cur_stream
];
677 cur_ring
->stream_id
= cur_stream
;
678 cur_ring
->trb_address_map
= &stream_info
->trb_address_map
;
679 /* Set deq ptr, cycle bit, and stream context type */
680 addr
= cur_ring
->first_seg
->dma
|
681 SCT_FOR_CTX(SCT_PRI_TR
) |
682 cur_ring
->cycle_state
;
683 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
685 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
686 cur_stream
, (unsigned long long) addr
);
688 ret
= xhci_update_stream_mapping(cur_ring
, mem_flags
);
690 xhci_ring_free(xhci
, cur_ring
);
691 stream_info
->stream_rings
[cur_stream
] = NULL
;
695 /* Leave the other unused stream ring pointers in the stream context
696 * array initialized to zero. This will cause the xHC to give us an
697 * error if the device asks for a stream ID we don't have setup (if it
698 * was any other way, the host controller would assume the ring is
699 * "empty" and wait forever for data to be queued to that stream ID).
705 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
706 cur_ring
= stream_info
->stream_rings
[cur_stream
];
708 xhci_ring_free(xhci
, cur_ring
);
709 stream_info
->stream_rings
[cur_stream
] = NULL
;
712 xhci_free_command(xhci
, stream_info
->free_streams_command
);
714 kfree(stream_info
->stream_rings
);
718 xhci
->cmd_ring_reserved_trbs
--;
722 * Sets the MaxPStreams field and the Linear Stream Array field.
723 * Sets the dequeue pointer to the stream context array.
725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
726 struct xhci_ep_ctx
*ep_ctx
,
727 struct xhci_stream_info
*stream_info
)
729 u32 max_primary_streams
;
730 /* MaxPStreams is the number of stream context array entries, not the
731 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
732 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
734 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
735 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
736 "Setting number of stream ctx array entries to %u",
737 1 << (max_primary_streams
+ 1));
738 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
739 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
741 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
745 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747 * not at the beginning of the ring).
749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx
*ep_ctx
,
750 struct xhci_virt_ep
*ep
)
753 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
754 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
755 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
758 /* Frees all stream contexts associated with the endpoint,
760 * Caller should fix the endpoint context streams fields.
762 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
763 struct xhci_stream_info
*stream_info
)
766 struct xhci_ring
*cur_ring
;
771 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
773 cur_ring
= stream_info
->stream_rings
[cur_stream
];
775 xhci_ring_free(xhci
, cur_ring
);
776 stream_info
->stream_rings
[cur_stream
] = NULL
;
779 xhci_free_command(xhci
, stream_info
->free_streams_command
);
780 xhci
->cmd_ring_reserved_trbs
--;
781 if (stream_info
->stream_ctx_array
)
782 xhci_free_stream_ctx(xhci
,
783 stream_info
->num_stream_ctxs
,
784 stream_info
->stream_ctx_array
,
785 stream_info
->ctx_array_dma
);
787 kfree(stream_info
->stream_rings
);
792 /***************** Device context manipulation *************************/
794 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
795 struct xhci_virt_ep
*ep
)
797 timer_setup(&ep
->stop_cmd_timer
, xhci_stop_endpoint_command_watchdog
,
802 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
803 struct xhci_virt_device
*virt_dev
,
806 struct list_head
*tt_list_head
;
807 struct xhci_tt_bw_info
*tt_info
, *next
;
808 bool slot_found
= false;
810 /* If the device never made it past the Set Address stage,
811 * it may not have the real_port set correctly.
813 if (virt_dev
->real_port
== 0 ||
814 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
815 xhci_dbg(xhci
, "Bad real port.\n");
819 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
820 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
821 /* Multi-TT hubs will have more than one entry */
822 if (tt_info
->slot_id
== slot_id
) {
824 list_del(&tt_info
->tt_list
);
826 } else if (slot_found
) {
832 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
833 struct xhci_virt_device
*virt_dev
,
834 struct usb_device
*hdev
,
835 struct usb_tt
*tt
, gfp_t mem_flags
)
837 struct xhci_tt_bw_info
*tt_info
;
838 unsigned int num_ports
;
840 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
845 num_ports
= hdev
->maxchild
;
847 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
848 struct xhci_interval_bw_table
*bw_table
;
850 tt_info
= kzalloc_node(sizeof(*tt_info
), mem_flags
,
854 INIT_LIST_HEAD(&tt_info
->tt_list
);
855 list_add(&tt_info
->tt_list
,
856 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
857 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
859 tt_info
->ttport
= i
+1;
860 bw_table
= &tt_info
->bw_table
;
861 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
862 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
867 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
872 /* All the xhci_tds in the ring's TD list should be freed at this point.
873 * Should be called with xhci->lock held if there is any chance the TT lists
874 * will be manipulated by the configure endpoint, allocate device, or update
875 * hub functions while this function is removing the TT entries from the list.
877 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
879 struct xhci_virt_device
*dev
;
881 int old_active_eps
= 0;
883 /* Slot ID 0 is reserved */
884 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
887 dev
= xhci
->devs
[slot_id
];
889 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
893 trace_xhci_free_virt_device(dev
);
896 old_active_eps
= dev
->tt_info
->active_eps
;
898 for (i
= 0; i
< 31; i
++) {
899 if (dev
->eps
[i
].ring
)
900 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
901 if (dev
->eps
[i
].stream_info
)
902 xhci_free_stream_info(xhci
,
903 dev
->eps
[i
].stream_info
);
904 /* Endpoints on the TT/root port lists should have been removed
905 * when usb_disable_device() was called for the device.
906 * We can't drop them anyway, because the udev might have gone
907 * away by this point, and we can't tell what speed it was.
909 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
910 xhci_warn(xhci
, "Slot %u endpoint %u "
911 "not removed from BW list!\n",
914 /* If this is a hub, free the TT(s) from the TT list */
915 xhci_free_tt_info(xhci
, dev
, slot_id
);
916 /* If necessary, update the number of active TTs on this root port */
917 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
920 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
922 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
924 if (dev
->udev
&& dev
->udev
->slot_id
)
925 dev
->udev
->slot_id
= 0;
926 kfree(xhci
->devs
[slot_id
]);
927 xhci
->devs
[slot_id
] = NULL
;
931 * Free a virt_device structure.
932 * If the virt_device added a tt_info (a hub) and has children pointing to
933 * that tt_info, then free the child first. Recursive.
934 * We can't rely on udev at this point to find child-parent relationships.
936 void xhci_free_virt_devices_depth_first(struct xhci_hcd
*xhci
, int slot_id
)
938 struct xhci_virt_device
*vdev
;
939 struct list_head
*tt_list_head
;
940 struct xhci_tt_bw_info
*tt_info
, *next
;
943 vdev
= xhci
->devs
[slot_id
];
947 if (vdev
->real_port
== 0 ||
948 vdev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
949 xhci_dbg(xhci
, "Bad vdev->real_port.\n");
953 tt_list_head
= &(xhci
->rh_bw
[vdev
->real_port
- 1].tts
);
954 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
955 /* is this a hub device that added a tt_info to the tts list */
956 if (tt_info
->slot_id
== slot_id
) {
957 /* are any devices using this tt_info? */
958 for (i
= 1; i
< HCS_MAX_SLOTS(xhci
->hcs_params1
); i
++) {
959 vdev
= xhci
->devs
[i
];
960 if (vdev
&& (vdev
->tt_info
== tt_info
))
961 xhci_free_virt_devices_depth_first(
967 /* we are now at a leaf device */
968 xhci_debugfs_remove_slot(xhci
, slot_id
);
969 xhci_free_virt_device(xhci
, slot_id
);
972 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
973 struct usb_device
*udev
, gfp_t flags
)
975 struct xhci_virt_device
*dev
;
978 /* Slot ID 0 is reserved */
979 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
980 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
984 dev
= kzalloc(sizeof(*dev
), flags
);
988 /* Allocate the (output) device context that will be used in the HC. */
989 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
993 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
994 (unsigned long long)dev
->out_ctx
->dma
);
996 /* Allocate the (input) device context for address device command */
997 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
1001 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
1002 (unsigned long long)dev
->in_ctx
->dma
);
1004 /* Initialize the cancellation list and watchdog timers for each ep */
1005 for (i
= 0; i
< 31; i
++) {
1006 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
1007 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
1008 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
1011 /* Allocate endpoint 0 ring */
1012 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 2, 1, TYPE_CTRL
, 0, flags
);
1013 if (!dev
->eps
[0].ring
)
1018 /* Point to output device context in dcbaa. */
1019 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
1020 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1022 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
1023 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
1025 trace_xhci_alloc_virt_device(dev
);
1027 xhci
->devs
[slot_id
] = dev
;
1033 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
1035 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
1041 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
1042 struct usb_device
*udev
)
1044 struct xhci_virt_device
*virt_dev
;
1045 struct xhci_ep_ctx
*ep0_ctx
;
1046 struct xhci_ring
*ep_ring
;
1048 virt_dev
= xhci
->devs
[udev
->slot_id
];
1049 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
1050 ep_ring
= virt_dev
->eps
[0].ring
;
1052 * FIXME we don't keep track of the dequeue pointer very well after a
1053 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1054 * host to our enqueue pointer. This should only be called after a
1055 * configured device has reset, so all control transfers should have
1056 * been completed or cancelled before the reset.
1058 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
1060 | ep_ring
->cycle_state
);
1064 * The xHCI roothub may have ports of differing speeds in any order in the port
1067 * The xHCI hardware wants to know the roothub port number that the USB device
1068 * is attached to (or the roothub port its ancestor hub is attached to). All we
1069 * know is the index of that port under either the USB 2.0 or the USB 3.0
1070 * roothub, but that doesn't give us the real index into the HW port status
1071 * registers. Call xhci_find_raw_port_number() to get real index.
1073 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
1074 struct usb_device
*udev
)
1076 struct usb_device
*top_dev
;
1077 struct usb_hcd
*hcd
;
1079 if (udev
->speed
>= USB_SPEED_SUPER
)
1080 hcd
= xhci
->shared_hcd
;
1082 hcd
= xhci
->main_hcd
;
1084 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1085 top_dev
= top_dev
->parent
)
1086 /* Found device below root hub */;
1088 return xhci_find_raw_port_number(hcd
, top_dev
->portnum
);
1091 /* Setup an xHCI virtual device for a Set Address command */
1092 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
1094 struct xhci_virt_device
*dev
;
1095 struct xhci_ep_ctx
*ep0_ctx
;
1096 struct xhci_slot_ctx
*slot_ctx
;
1099 struct usb_device
*top_dev
;
1101 dev
= xhci
->devs
[udev
->slot_id
];
1102 /* Slot ID 0 is reserved */
1103 if (udev
->slot_id
== 0 || !dev
) {
1104 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
1108 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
1109 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
1111 /* 3) Only the control endpoint is valid - one endpoint context */
1112 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1113 switch (udev
->speed
) {
1114 case USB_SPEED_SUPER_PLUS
:
1115 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SSP
);
1116 max_packets
= MAX_PACKET(512);
1118 case USB_SPEED_SUPER
:
1119 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1120 max_packets
= MAX_PACKET(512);
1122 case USB_SPEED_HIGH
:
1123 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1124 max_packets
= MAX_PACKET(64);
1126 /* USB core guesses at a 64-byte max packet first for FS devices */
1127 case USB_SPEED_FULL
:
1128 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1129 max_packets
= MAX_PACKET(64);
1132 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1133 max_packets
= MAX_PACKET(8);
1135 case USB_SPEED_WIRELESS
:
1136 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1140 /* Speed was set earlier, this shouldn't happen. */
1143 /* Find the root hub port this device is under */
1144 port_num
= xhci_find_real_port_number(xhci
, udev
);
1147 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1148 /* Set the port number in the virtual_device to the faked port number */
1149 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1150 top_dev
= top_dev
->parent
)
1151 /* Found device below root hub */;
1152 dev
->fake_port
= top_dev
->portnum
;
1153 dev
->real_port
= port_num
;
1154 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1155 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1157 /* Find the right bandwidth table that this device will be a part of.
1158 * If this is a full speed device attached directly to a root port (or a
1159 * decendent of one), it counts as a primary bandwidth domain, not a
1160 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1161 * will never be created for the HS root hub.
1163 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1164 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1166 struct xhci_root_port_bw_info
*rh_bw
;
1167 struct xhci_tt_bw_info
*tt_bw
;
1169 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1170 /* Find the right TT. */
1171 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1172 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1175 if (!dev
->udev
->tt
->multi
||
1177 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1178 dev
->bw_table
= &tt_bw
->bw_table
;
1179 dev
->tt_info
= tt_bw
;
1184 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1187 /* Is this a LS/FS device under an external HS hub? */
1188 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1189 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1190 (udev
->ttport
<< 8));
1191 if (udev
->tt
->multi
)
1192 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1194 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1195 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1197 /* Step 4 - ring already allocated */
1199 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1201 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1205 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1206 dev
->eps
[0].ring
->cycle_state
);
1208 trace_xhci_setup_addressable_virt_device(dev
);
1210 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1216 * Convert interval expressed as 2^(bInterval - 1) == interval into
1217 * straight exponent value 2^n == interval.
1220 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1221 struct usb_host_endpoint
*ep
)
1223 unsigned int interval
;
1225 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1226 if (interval
!= ep
->desc
.bInterval
- 1)
1227 dev_warn(&udev
->dev
,
1228 "ep %#x - rounding interval to %d %sframes\n",
1229 ep
->desc
.bEndpointAddress
,
1231 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1233 if (udev
->speed
== USB_SPEED_FULL
) {
1235 * Full speed isoc endpoints specify interval in frames,
1236 * not microframes. We are using microframes everywhere,
1237 * so adjust accordingly.
1239 interval
+= 3; /* 1 frame = 2^3 uframes */
1246 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1247 * microframes, rounded down to nearest power of 2.
1249 static unsigned int xhci_microframes_to_exponent(struct usb_device
*udev
,
1250 struct usb_host_endpoint
*ep
, unsigned int desc_interval
,
1251 unsigned int min_exponent
, unsigned int max_exponent
)
1253 unsigned int interval
;
1255 interval
= fls(desc_interval
) - 1;
1256 interval
= clamp_val(interval
, min_exponent
, max_exponent
);
1257 if ((1 << interval
) != desc_interval
)
1259 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1260 ep
->desc
.bEndpointAddress
,
1267 static unsigned int xhci_parse_microframe_interval(struct usb_device
*udev
,
1268 struct usb_host_endpoint
*ep
)
1270 if (ep
->desc
.bInterval
== 0)
1272 return xhci_microframes_to_exponent(udev
, ep
,
1273 ep
->desc
.bInterval
, 0, 15);
1277 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1278 struct usb_host_endpoint
*ep
)
1280 return xhci_microframes_to_exponent(udev
, ep
,
1281 ep
->desc
.bInterval
* 8, 3, 10);
1284 /* Return the polling or NAK interval.
1286 * The polling interval is expressed in "microframes". If xHCI's Interval field
1287 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1289 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1292 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1293 struct usb_host_endpoint
*ep
)
1295 unsigned int interval
= 0;
1297 switch (udev
->speed
) {
1298 case USB_SPEED_HIGH
:
1300 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1301 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1302 interval
= xhci_parse_microframe_interval(udev
, ep
);
1305 /* Fall through - SS and HS isoc/int have same decoding */
1307 case USB_SPEED_SUPER_PLUS
:
1308 case USB_SPEED_SUPER
:
1309 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1310 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1311 interval
= xhci_parse_exponent_interval(udev
, ep
);
1315 case USB_SPEED_FULL
:
1316 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1317 interval
= xhci_parse_exponent_interval(udev
, ep
);
1321 * Fall through for interrupt endpoint interval decoding
1322 * since it uses the same rules as low speed interrupt
1328 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1329 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1331 interval
= xhci_parse_frame_interval(udev
, ep
);
1341 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1342 * High speed endpoint descriptors can define "the number of additional
1343 * transaction opportunities per microframe", but that goes in the Max Burst
1344 * endpoint context field.
1346 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1347 struct usb_host_endpoint
*ep
)
1349 if (udev
->speed
< USB_SPEED_SUPER
||
1350 !usb_endpoint_xfer_isoc(&ep
->desc
))
1352 return ep
->ss_ep_comp
.bmAttributes
;
1355 static u32
xhci_get_endpoint_max_burst(struct usb_device
*udev
,
1356 struct usb_host_endpoint
*ep
)
1358 /* Super speed and Plus have max burst in ep companion desc */
1359 if (udev
->speed
>= USB_SPEED_SUPER
)
1360 return ep
->ss_ep_comp
.bMaxBurst
;
1362 if (udev
->speed
== USB_SPEED_HIGH
&&
1363 (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1364 usb_endpoint_xfer_int(&ep
->desc
)))
1365 return usb_endpoint_maxp_mult(&ep
->desc
) - 1;
1370 static u32
xhci_get_endpoint_type(struct usb_host_endpoint
*ep
)
1374 in
= usb_endpoint_dir_in(&ep
->desc
);
1376 switch (usb_endpoint_type(&ep
->desc
)) {
1377 case USB_ENDPOINT_XFER_CONTROL
:
1379 case USB_ENDPOINT_XFER_BULK
:
1380 return in
? BULK_IN_EP
: BULK_OUT_EP
;
1381 case USB_ENDPOINT_XFER_ISOC
:
1382 return in
? ISOC_IN_EP
: ISOC_OUT_EP
;
1383 case USB_ENDPOINT_XFER_INT
:
1384 return in
? INT_IN_EP
: INT_OUT_EP
;
1389 /* Return the maximum endpoint service interval time (ESIT) payload.
1390 * Basically, this is the maxpacket size, multiplied by the burst size
1393 static u32
xhci_get_max_esit_payload(struct usb_device
*udev
,
1394 struct usb_host_endpoint
*ep
)
1399 /* Only applies for interrupt or isochronous endpoints */
1400 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1401 usb_endpoint_xfer_bulk(&ep
->desc
))
1404 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1405 if ((udev
->speed
>= USB_SPEED_SUPER_PLUS
) &&
1406 USB_SS_SSP_ISOC_COMP(ep
->ss_ep_comp
.bmAttributes
))
1407 return le32_to_cpu(ep
->ssp_isoc_ep_comp
.dwBytesPerInterval
);
1408 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1409 else if (udev
->speed
>= USB_SPEED_SUPER
)
1410 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1412 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1413 max_burst
= usb_endpoint_maxp_mult(&ep
->desc
);
1414 /* A 0 in max burst means 1 transfer per ESIT */
1415 return max_packet
* max_burst
;
1418 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1419 * Drivers will have to call usb_alloc_streams() to do that.
1421 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1422 struct xhci_virt_device
*virt_dev
,
1423 struct usb_device
*udev
,
1424 struct usb_host_endpoint
*ep
,
1427 unsigned int ep_index
;
1428 struct xhci_ep_ctx
*ep_ctx
;
1429 struct xhci_ring
*ep_ring
;
1430 unsigned int max_packet
;
1431 enum xhci_ring_type ring_type
;
1432 u32 max_esit_payload
;
1434 unsigned int max_burst
;
1435 unsigned int interval
;
1437 unsigned int avg_trb_len
;
1438 unsigned int err_count
= 0;
1440 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1441 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1443 endpoint_type
= xhci_get_endpoint_type(ep
);
1447 ring_type
= usb_endpoint_type(&ep
->desc
);
1450 * Get values to fill the endpoint context, mostly from ep descriptor.
1451 * The average TRB buffer lengt for bulk endpoints is unclear as we
1452 * have no clue on scatter gather list entry size. For Isoc and Int,
1453 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1455 max_esit_payload
= xhci_get_max_esit_payload(udev
, ep
);
1456 interval
= xhci_get_endpoint_interval(udev
, ep
);
1458 /* Periodic endpoint bInterval limit quirk */
1459 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1460 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1461 if ((xhci
->quirks
& XHCI_LIMIT_ENDPOINT_INTERVAL_7
) &&
1462 udev
->speed
>= USB_SPEED_HIGH
&&
1468 mult
= xhci_get_endpoint_mult(udev
, ep
);
1469 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1470 max_burst
= xhci_get_endpoint_max_burst(udev
, ep
);
1471 avg_trb_len
= max_esit_payload
;
1473 /* FIXME dig Mult and streams info out of ep companion desc */
1475 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1476 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1478 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1479 if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1480 if (udev
->speed
== USB_SPEED_HIGH
)
1482 if (udev
->speed
== USB_SPEED_FULL
) {
1483 max_packet
= rounddown_pow_of_two(max_packet
);
1484 max_packet
= clamp_val(max_packet
, 8, 64);
1487 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1488 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
>= 0x100)
1490 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1491 if ((xhci
->hci_version
> 0x100) && HCC2_LEC(xhci
->hcc_params2
))
1494 /* Set up the endpoint ring */
1495 virt_dev
->eps
[ep_index
].new_ring
=
1496 xhci_ring_alloc(xhci
, 2, 1, ring_type
, max_packet
, mem_flags
);
1497 if (!virt_dev
->eps
[ep_index
].new_ring
)
1500 virt_dev
->eps
[ep_index
].skip
= false;
1501 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1503 /* Fill the endpoint context */
1504 ep_ctx
->ep_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload
) |
1505 EP_INTERVAL(interval
) |
1507 ep_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(endpoint_type
) |
1508 MAX_PACKET(max_packet
) |
1509 MAX_BURST(max_burst
) |
1510 ERROR_COUNT(err_count
));
1511 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
|
1512 ep_ring
->cycle_state
);
1514 ep_ctx
->tx_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload
) |
1515 EP_AVG_TRB_LENGTH(avg_trb_len
));
1520 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1521 struct xhci_virt_device
*virt_dev
,
1522 struct usb_host_endpoint
*ep
)
1524 unsigned int ep_index
;
1525 struct xhci_ep_ctx
*ep_ctx
;
1527 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1528 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1530 ep_ctx
->ep_info
= 0;
1531 ep_ctx
->ep_info2
= 0;
1533 ep_ctx
->tx_info
= 0;
1534 /* Don't free the endpoint ring until the set interface or configuration
1539 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1541 bw_info
->ep_interval
= 0;
1543 bw_info
->num_packets
= 0;
1544 bw_info
->max_packet_size
= 0;
1546 bw_info
->max_esit_payload
= 0;
1549 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1550 struct xhci_container_ctx
*in_ctx
,
1551 struct xhci_input_control_ctx
*ctrl_ctx
,
1552 struct xhci_virt_device
*virt_dev
)
1554 struct xhci_bw_info
*bw_info
;
1555 struct xhci_ep_ctx
*ep_ctx
;
1556 unsigned int ep_type
;
1559 for (i
= 1; i
< 31; i
++) {
1560 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1562 /* We can't tell what endpoint type is being dropped, but
1563 * unconditionally clearing the bandwidth info for non-periodic
1564 * endpoints should be harmless because the info will never be
1565 * set in the first place.
1567 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1568 /* Dropped endpoint */
1569 xhci_clear_endpoint_bw_info(bw_info
);
1573 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1574 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1575 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1577 /* Ignore non-periodic endpoints */
1578 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1579 ep_type
!= ISOC_IN_EP
&&
1580 ep_type
!= INT_IN_EP
)
1583 /* Added or changed endpoint */
1584 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1585 le32_to_cpu(ep_ctx
->ep_info
));
1586 /* Number of packets and mult are zero-based in the
1587 * input context, but we want one-based for the
1590 bw_info
->mult
= CTX_TO_EP_MULT(
1591 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1592 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1593 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1594 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1595 le32_to_cpu(ep_ctx
->ep_info2
));
1596 bw_info
->type
= ep_type
;
1597 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1598 le32_to_cpu(ep_ctx
->tx_info
));
1603 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1604 * Useful when you want to change one particular aspect of the endpoint and then
1605 * issue a configure endpoint command.
1607 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1608 struct xhci_container_ctx
*in_ctx
,
1609 struct xhci_container_ctx
*out_ctx
,
1610 unsigned int ep_index
)
1612 struct xhci_ep_ctx
*out_ep_ctx
;
1613 struct xhci_ep_ctx
*in_ep_ctx
;
1615 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1616 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1618 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1619 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1620 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1621 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1622 if (xhci
->quirks
& XHCI_MTK_HOST
) {
1623 in_ep_ctx
->reserved
[0] = out_ep_ctx
->reserved
[0];
1624 in_ep_ctx
->reserved
[1] = out_ep_ctx
->reserved
[1];
1628 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1629 * Useful when you want to change one particular aspect of the endpoint and then
1630 * issue a configure endpoint command. Only the context entries field matters,
1631 * but we'll copy the whole thing anyway.
1633 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1634 struct xhci_container_ctx
*in_ctx
,
1635 struct xhci_container_ctx
*out_ctx
)
1637 struct xhci_slot_ctx
*in_slot_ctx
;
1638 struct xhci_slot_ctx
*out_slot_ctx
;
1640 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1641 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1643 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1644 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1645 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1646 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1649 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1650 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1653 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1654 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1656 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1657 "Allocating %d scratchpad buffers", num_sp
);
1662 xhci
->scratchpad
= kzalloc_node(sizeof(*xhci
->scratchpad
), flags
,
1664 if (!xhci
->scratchpad
)
1667 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1668 num_sp
* sizeof(u64
),
1669 &xhci
->scratchpad
->sp_dma
, flags
);
1670 if (!xhci
->scratchpad
->sp_array
)
1673 xhci
->scratchpad
->sp_buffers
= kcalloc_node(num_sp
, sizeof(void *),
1674 flags
, dev_to_node(dev
));
1675 if (!xhci
->scratchpad
->sp_buffers
)
1678 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1679 for (i
= 0; i
< num_sp
; i
++) {
1681 void *buf
= dma_zalloc_coherent(dev
, xhci
->page_size
, &dma
,
1686 xhci
->scratchpad
->sp_array
[i
] = dma
;
1687 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1693 for (i
= i
- 1; i
>= 0; i
--) {
1694 dma_free_coherent(dev
, xhci
->page_size
,
1695 xhci
->scratchpad
->sp_buffers
[i
],
1696 xhci
->scratchpad
->sp_array
[i
]);
1699 kfree(xhci
->scratchpad
->sp_buffers
);
1702 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1703 xhci
->scratchpad
->sp_array
,
1704 xhci
->scratchpad
->sp_dma
);
1707 kfree(xhci
->scratchpad
);
1708 xhci
->scratchpad
= NULL
;
1714 static void scratchpad_free(struct xhci_hcd
*xhci
)
1718 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1720 if (!xhci
->scratchpad
)
1723 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1725 for (i
= 0; i
< num_sp
; i
++) {
1726 dma_free_coherent(dev
, xhci
->page_size
,
1727 xhci
->scratchpad
->sp_buffers
[i
],
1728 xhci
->scratchpad
->sp_array
[i
]);
1730 kfree(xhci
->scratchpad
->sp_buffers
);
1731 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1732 xhci
->scratchpad
->sp_array
,
1733 xhci
->scratchpad
->sp_dma
);
1734 kfree(xhci
->scratchpad
);
1735 xhci
->scratchpad
= NULL
;
1738 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1739 bool allocate_completion
, gfp_t mem_flags
)
1741 struct xhci_command
*command
;
1742 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1744 command
= kzalloc_node(sizeof(*command
), mem_flags
, dev_to_node(dev
));
1748 if (allocate_completion
) {
1749 command
->completion
=
1750 kzalloc_node(sizeof(struct completion
), mem_flags
,
1752 if (!command
->completion
) {
1756 init_completion(command
->completion
);
1759 command
->status
= 0;
1760 INIT_LIST_HEAD(&command
->cmd_list
);
1764 struct xhci_command
*xhci_alloc_command_with_ctx(struct xhci_hcd
*xhci
,
1765 bool allocate_completion
, gfp_t mem_flags
)
1767 struct xhci_command
*command
;
1769 command
= xhci_alloc_command(xhci
, allocate_completion
, mem_flags
);
1773 command
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1775 if (!command
->in_ctx
) {
1776 kfree(command
->completion
);
1783 void xhci_urb_free_priv(struct urb_priv
*urb_priv
)
1788 void xhci_free_command(struct xhci_hcd
*xhci
,
1789 struct xhci_command
*command
)
1791 xhci_free_container_ctx(xhci
,
1793 kfree(command
->completion
);
1797 int xhci_alloc_erst(struct xhci_hcd
*xhci
,
1798 struct xhci_ring
*evt_ring
,
1799 struct xhci_erst
*erst
,
1804 struct xhci_segment
*seg
;
1805 struct xhci_erst_entry
*entry
;
1807 size
= sizeof(struct xhci_erst_entry
) * evt_ring
->num_segs
;
1808 erst
->entries
= dma_zalloc_coherent(xhci_to_hcd(xhci
)->self
.sysdev
,
1809 size
, &erst
->erst_dma_addr
, flags
);
1813 erst
->num_entries
= evt_ring
->num_segs
;
1815 seg
= evt_ring
->first_seg
;
1816 for (val
= 0; val
< evt_ring
->num_segs
; val
++) {
1817 entry
= &erst
->entries
[val
];
1818 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
1819 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
1827 void xhci_free_erst(struct xhci_hcd
*xhci
, struct xhci_erst
*erst
)
1830 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1832 size
= sizeof(struct xhci_erst_entry
) * (erst
->num_entries
);
1834 dma_free_coherent(dev
, size
,
1836 erst
->erst_dma_addr
);
1837 erst
->entries
= NULL
;
1840 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1842 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1843 int i
, j
, num_ports
;
1845 cancel_delayed_work_sync(&xhci
->cmd_timer
);
1847 xhci_free_erst(xhci
, &xhci
->erst
);
1849 if (xhci
->event_ring
)
1850 xhci_ring_free(xhci
, xhci
->event_ring
);
1851 xhci
->event_ring
= NULL
;
1852 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed event ring");
1854 if (xhci
->lpm_command
)
1855 xhci_free_command(xhci
, xhci
->lpm_command
);
1856 xhci
->lpm_command
= NULL
;
1858 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1859 xhci
->cmd_ring
= NULL
;
1860 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed command ring");
1861 xhci_cleanup_command_queue(xhci
);
1863 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1864 for (i
= 0; i
< num_ports
&& xhci
->rh_bw
; i
++) {
1865 struct xhci_interval_bw_table
*bwt
= &xhci
->rh_bw
[i
].bw_table
;
1866 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++) {
1867 struct list_head
*ep
= &bwt
->interval_bw
[j
].endpoints
;
1868 while (!list_empty(ep
))
1869 list_del_init(ep
->next
);
1873 for (i
= HCS_MAX_SLOTS(xhci
->hcs_params1
); i
> 0; i
--)
1874 xhci_free_virt_devices_depth_first(xhci
, i
);
1876 dma_pool_destroy(xhci
->segment_pool
);
1877 xhci
->segment_pool
= NULL
;
1878 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed segment pool");
1880 dma_pool_destroy(xhci
->device_pool
);
1881 xhci
->device_pool
= NULL
;
1882 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed device context pool");
1884 dma_pool_destroy(xhci
->small_streams_pool
);
1885 xhci
->small_streams_pool
= NULL
;
1886 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1887 "Freed small stream array pool");
1889 dma_pool_destroy(xhci
->medium_streams_pool
);
1890 xhci
->medium_streams_pool
= NULL
;
1891 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1892 "Freed medium stream array pool");
1895 dma_free_coherent(dev
, sizeof(*xhci
->dcbaa
),
1896 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1899 scratchpad_free(xhci
);
1904 for (i
= 0; i
< num_ports
; i
++) {
1905 struct xhci_tt_bw_info
*tt
, *n
;
1906 list_for_each_entry_safe(tt
, n
, &xhci
->rh_bw
[i
].tts
, tt_list
) {
1907 list_del(&tt
->tt_list
);
1913 xhci
->cmd_ring_reserved_trbs
= 0;
1914 xhci
->usb2_rhub
.num_ports
= 0;
1915 xhci
->usb3_rhub
.num_ports
= 0;
1916 xhci
->num_active_eps
= 0;
1917 kfree(xhci
->usb2_rhub
.ports
);
1918 kfree(xhci
->usb3_rhub
.ports
);
1919 kfree(xhci
->hw_ports
);
1921 kfree(xhci
->ext_caps
);
1922 for (i
= 0; i
< xhci
->num_port_caps
; i
++)
1923 kfree(xhci
->port_caps
[i
].psi
);
1924 kfree(xhci
->port_caps
);
1925 xhci
->num_port_caps
= 0;
1927 xhci
->usb2_rhub
.ports
= NULL
;
1928 xhci
->usb3_rhub
.ports
= NULL
;
1929 xhci
->hw_ports
= NULL
;
1931 xhci
->ext_caps
= NULL
;
1933 xhci
->page_size
= 0;
1934 xhci
->page_shift
= 0;
1935 xhci
->bus_state
[0].bus_suspended
= 0;
1936 xhci
->bus_state
[1].bus_suspended
= 0;
1939 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1940 struct xhci_segment
*input_seg
,
1941 union xhci_trb
*start_trb
,
1942 union xhci_trb
*end_trb
,
1943 dma_addr_t input_dma
,
1944 struct xhci_segment
*result_seg
,
1945 char *test_name
, int test_number
)
1947 unsigned long long start_dma
;
1948 unsigned long long end_dma
;
1949 struct xhci_segment
*seg
;
1951 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1952 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1954 seg
= trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
, false);
1955 if (seg
!= result_seg
) {
1956 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1957 test_name
, test_number
);
1958 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1959 "input DMA 0x%llx\n",
1961 (unsigned long long) input_dma
);
1962 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1963 "ending TRB %p (0x%llx DMA)\n",
1964 start_trb
, start_dma
,
1966 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1968 trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
,
1975 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1976 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
)
1979 dma_addr_t input_dma
;
1980 struct xhci_segment
*result_seg
;
1981 } simple_test_vector
[] = {
1982 /* A zeroed DMA field should fail */
1984 /* One TRB before the ring start should fail */
1985 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1986 /* One byte before the ring start should fail */
1987 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1988 /* Starting TRB should succeed */
1989 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1990 /* Ending TRB should succeed */
1991 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1992 xhci
->event_ring
->first_seg
},
1993 /* One byte after the ring end should fail */
1994 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1995 /* One TRB after the ring end should fail */
1996 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1997 /* An address of all ones should fail */
1998 { (dma_addr_t
) (~0), NULL
},
2001 struct xhci_segment
*input_seg
;
2002 union xhci_trb
*start_trb
;
2003 union xhci_trb
*end_trb
;
2004 dma_addr_t input_dma
;
2005 struct xhci_segment
*result_seg
;
2006 } complex_test_vector
[] = {
2007 /* Test feeding a valid DMA address from a different ring */
2008 { .input_seg
= xhci
->event_ring
->first_seg
,
2009 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
2010 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2011 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
2014 /* Test feeding a valid end TRB from a different ring */
2015 { .input_seg
= xhci
->event_ring
->first_seg
,
2016 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
2017 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2018 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
2021 /* Test feeding a valid start and end TRB from a different ring */
2022 { .input_seg
= xhci
->event_ring
->first_seg
,
2023 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
2024 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2025 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
2028 /* TRB in this ring, but after this TD */
2029 { .input_seg
= xhci
->event_ring
->first_seg
,
2030 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
2031 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
2032 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
2035 /* TRB in this ring, but before this TD */
2036 { .input_seg
= xhci
->event_ring
->first_seg
,
2037 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
2038 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
2039 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
2042 /* TRB in this ring, but after this wrapped TD */
2043 { .input_seg
= xhci
->event_ring
->first_seg
,
2044 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2045 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2046 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
2049 /* TRB in this ring, but before this wrapped TD */
2050 { .input_seg
= xhci
->event_ring
->first_seg
,
2051 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2052 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2053 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
2056 /* TRB not in this ring, and we have a wrapped TD */
2057 { .input_seg
= xhci
->event_ring
->first_seg
,
2058 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2059 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2060 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
2065 unsigned int num_tests
;
2068 num_tests
= ARRAY_SIZE(simple_test_vector
);
2069 for (i
= 0; i
< num_tests
; i
++) {
2070 ret
= xhci_test_trb_in_td(xhci
,
2071 xhci
->event_ring
->first_seg
,
2072 xhci
->event_ring
->first_seg
->trbs
,
2073 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2074 simple_test_vector
[i
].input_dma
,
2075 simple_test_vector
[i
].result_seg
,
2081 num_tests
= ARRAY_SIZE(complex_test_vector
);
2082 for (i
= 0; i
< num_tests
; i
++) {
2083 ret
= xhci_test_trb_in_td(xhci
,
2084 complex_test_vector
[i
].input_seg
,
2085 complex_test_vector
[i
].start_trb
,
2086 complex_test_vector
[i
].end_trb
,
2087 complex_test_vector
[i
].input_dma
,
2088 complex_test_vector
[i
].result_seg
,
2093 xhci_dbg(xhci
, "TRB math tests passed.\n");
2097 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
2102 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2103 xhci
->event_ring
->dequeue
);
2104 if (deq
== 0 && !in_interrupt())
2105 xhci_warn(xhci
, "WARN something wrong with SW event ring "
2107 /* Update HC event ring dequeue pointer */
2108 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2109 temp
&= ERST_PTR_MASK
;
2110 /* Don't clear the EHB bit (which is RW1C) because
2111 * there might be more events to service.
2114 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2115 "// Write event ring dequeue pointer, "
2116 "preserving EHB bit");
2117 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
2118 &xhci
->ir_set
->erst_dequeue
);
2121 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
2122 __le32 __iomem
*addr
, int max_caps
)
2124 u32 temp
, port_offset
, port_count
;
2126 u8 major_revision
, minor_revision
;
2127 struct xhci_hub
*rhub
;
2128 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2129 struct xhci_port_cap
*port_cap
;
2132 major_revision
= XHCI_EXT_PORT_MAJOR(temp
);
2133 minor_revision
= XHCI_EXT_PORT_MINOR(temp
);
2135 if (major_revision
== 0x03) {
2136 rhub
= &xhci
->usb3_rhub
;
2137 } else if (major_revision
<= 0x02) {
2138 rhub
= &xhci
->usb2_rhub
;
2140 xhci_warn(xhci
, "Ignoring unknown port speed, "
2141 "Ext Cap %p, revision = 0x%x\n",
2142 addr
, major_revision
);
2143 /* Ignoring port protocol we can't understand. FIXME */
2146 rhub
->maj_rev
= XHCI_EXT_PORT_MAJOR(temp
);
2148 if (rhub
->min_rev
< minor_revision
)
2149 rhub
->min_rev
= minor_revision
;
2151 /* Port offset and count in the third dword, see section 7.2 */
2152 temp
= readl(addr
+ 2);
2153 port_offset
= XHCI_EXT_PORT_OFF(temp
);
2154 port_count
= XHCI_EXT_PORT_COUNT(temp
);
2155 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2156 "Ext Cap %p, port offset = %u, "
2157 "count = %u, revision = 0x%x",
2158 addr
, port_offset
, port_count
, major_revision
);
2159 /* Port count includes the current port offset */
2160 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
2161 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2164 port_cap
= &xhci
->port_caps
[xhci
->num_port_caps
++];
2165 if (xhci
->num_port_caps
> max_caps
)
2168 port_cap
->maj_rev
= major_revision
;
2169 port_cap
->min_rev
= minor_revision
;
2170 port_cap
->psi_count
= XHCI_EXT_PORT_PSIC(temp
);
2172 if (port_cap
->psi_count
) {
2173 port_cap
->psi
= kcalloc_node(port_cap
->psi_count
,
2174 sizeof(*port_cap
->psi
),
2175 GFP_KERNEL
, dev_to_node(dev
));
2177 port_cap
->psi_count
= 0;
2179 port_cap
->psi_uid_count
++;
2180 for (i
= 0; i
< port_cap
->psi_count
; i
++) {
2181 port_cap
->psi
[i
] = readl(addr
+ 4 + i
);
2183 /* count unique ID values, two consecutive entries can
2184 * have the same ID if link is assymetric
2186 if (i
&& (XHCI_EXT_PORT_PSIV(port_cap
->psi
[i
]) !=
2187 XHCI_EXT_PORT_PSIV(port_cap
->psi
[i
- 1])))
2188 port_cap
->psi_uid_count
++;
2190 xhci_dbg(xhci
, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2191 XHCI_EXT_PORT_PSIV(port_cap
->psi
[i
]),
2192 XHCI_EXT_PORT_PSIE(port_cap
->psi
[i
]),
2193 XHCI_EXT_PORT_PLT(port_cap
->psi
[i
]),
2194 XHCI_EXT_PORT_PFD(port_cap
->psi
[i
]),
2195 XHCI_EXT_PORT_LP(port_cap
->psi
[i
]),
2196 XHCI_EXT_PORT_PSIM(port_cap
->psi
[i
]));
2199 /* cache usb2 port capabilities */
2200 if (major_revision
< 0x03 && xhci
->num_ext_caps
< max_caps
)
2201 xhci
->ext_caps
[xhci
->num_ext_caps
++] = temp
;
2203 /* Check the host's USB2 LPM capability */
2204 if ((xhci
->hci_version
== 0x96) && (major_revision
!= 0x03) &&
2205 (temp
& XHCI_L1C
)) {
2206 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2207 "xHCI 0.96: support USB2 software lpm");
2208 xhci
->sw_lpm_support
= 1;
2211 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03)) {
2212 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2213 "xHCI 1.0: support USB2 software lpm");
2214 xhci
->sw_lpm_support
= 1;
2215 if (temp
& XHCI_HLC
) {
2216 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2217 "xHCI 1.0: support USB2 hardware lpm");
2218 xhci
->hw_lpm_support
= 1;
2223 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
2224 struct xhci_port
*hw_port
= &xhci
->hw_ports
[i
];
2225 /* Duplicate entry. Ignore the port if the revisions differ. */
2226 if (hw_port
->rhub
) {
2227 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
2228 " port %u\n", addr
, i
);
2229 xhci_warn(xhci
, "Port was marked as USB %u, "
2230 "duplicated as USB %u\n",
2231 hw_port
->rhub
->maj_rev
, major_revision
);
2232 /* Only adjust the roothub port counts if we haven't
2233 * found a similar duplicate.
2235 if (hw_port
->rhub
!= rhub
&&
2236 hw_port
->hcd_portnum
!= DUPLICATE_ENTRY
) {
2237 hw_port
->rhub
->num_ports
--;
2238 hw_port
->hcd_portnum
= DUPLICATE_ENTRY
;
2242 hw_port
->rhub
= rhub
;
2243 hw_port
->port_cap
= port_cap
;
2246 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2249 static void xhci_create_rhub_port_array(struct xhci_hcd
*xhci
,
2250 struct xhci_hub
*rhub
, gfp_t flags
)
2254 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2256 if (!rhub
->num_ports
)
2258 rhub
->ports
= kcalloc_node(rhub
->num_ports
, sizeof(rhub
->ports
), flags
,
2260 for (i
= 0; i
< HCS_MAX_PORTS(xhci
->hcs_params1
); i
++) {
2261 if (xhci
->hw_ports
[i
].rhub
!= rhub
||
2262 xhci
->hw_ports
[i
].hcd_portnum
== DUPLICATE_ENTRY
)
2264 xhci
->hw_ports
[i
].hcd_portnum
= port_index
;
2265 rhub
->ports
[port_index
] = &xhci
->hw_ports
[i
];
2267 if (port_index
== rhub
->num_ports
)
2273 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2274 * specify what speeds each port is supposed to be. We can't count on the port
2275 * speed bits in the PORTSC register being correct until a device is connected,
2276 * but we need to set up the two fake roothubs with the correct number of USB
2277 * 3.0 and USB 2.0 ports at host controller initialization time.
2279 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2283 unsigned int num_ports
;
2287 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2289 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2290 xhci
->hw_ports
= kcalloc_node(num_ports
, sizeof(*xhci
->hw_ports
),
2291 flags
, dev_to_node(dev
));
2292 if (!xhci
->hw_ports
)
2295 for (i
= 0; i
< num_ports
; i
++) {
2296 xhci
->hw_ports
[i
].addr
= &xhci
->op_regs
->port_status_base
+
2298 xhci
->hw_ports
[i
].hw_portnum
= i
;
2301 xhci
->rh_bw
= kcalloc_node(num_ports
, sizeof(*xhci
->rh_bw
), flags
,
2305 for (i
= 0; i
< num_ports
; i
++) {
2306 struct xhci_interval_bw_table
*bw_table
;
2308 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2309 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2310 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2311 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2313 base
= &xhci
->cap_regs
->hc_capbase
;
2315 cap_start
= xhci_find_next_ext_cap(base
, 0, XHCI_EXT_CAPS_PROTOCOL
);
2317 xhci_err(xhci
, "No Extended Capability registers, unable to set up roothub\n");
2322 /* count extended protocol capability entries for later caching */
2325 offset
= xhci_find_next_ext_cap(base
, offset
,
2326 XHCI_EXT_CAPS_PROTOCOL
);
2329 xhci
->ext_caps
= kcalloc_node(cap_count
, sizeof(*xhci
->ext_caps
),
2330 flags
, dev_to_node(dev
));
2331 if (!xhci
->ext_caps
)
2334 xhci
->port_caps
= kcalloc_node(cap_count
, sizeof(*xhci
->port_caps
),
2335 flags
, dev_to_node(dev
));
2336 if (!xhci
->port_caps
)
2342 xhci_add_in_port(xhci
, num_ports
, base
+ offset
, cap_count
);
2343 if (xhci
->usb2_rhub
.num_ports
+ xhci
->usb3_rhub
.num_ports
==
2346 offset
= xhci_find_next_ext_cap(base
, offset
,
2347 XHCI_EXT_CAPS_PROTOCOL
);
2349 if (xhci
->usb2_rhub
.num_ports
== 0 && xhci
->usb3_rhub
.num_ports
== 0) {
2350 xhci_warn(xhci
, "No ports on the roothubs?\n");
2353 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2354 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2355 xhci
->usb2_rhub
.num_ports
, xhci
->usb3_rhub
.num_ports
);
2357 /* Place limits on the number of roothub ports so that the hub
2358 * descriptors aren't longer than the USB core will allocate.
2360 if (xhci
->usb3_rhub
.num_ports
> USB_SS_MAXPORTS
) {
2361 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2362 "Limiting USB 3.0 roothub ports to %u.",
2364 xhci
->usb3_rhub
.num_ports
= USB_SS_MAXPORTS
;
2366 if (xhci
->usb2_rhub
.num_ports
> USB_MAXCHILDREN
) {
2367 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2368 "Limiting USB 2.0 roothub ports to %u.",
2370 xhci
->usb2_rhub
.num_ports
= USB_MAXCHILDREN
;
2374 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2375 * Not sure how the USB core will handle a hub with no ports...
2378 xhci_create_rhub_port_array(xhci
, &xhci
->usb2_rhub
, flags
);
2379 xhci_create_rhub_port_array(xhci
, &xhci
->usb3_rhub
, flags
);
2384 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2387 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2388 unsigned int val
, val2
;
2390 u32 page_size
, temp
;
2393 INIT_LIST_HEAD(&xhci
->cmd_list
);
2395 /* init command timeout work */
2396 INIT_DELAYED_WORK(&xhci
->cmd_timer
, xhci_handle_command_timeout
);
2397 init_completion(&xhci
->cmd_ring_stop_completion
);
2399 page_size
= readl(&xhci
->op_regs
->page_size
);
2400 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2401 "Supported page size register = 0x%x", page_size
);
2402 for (i
= 0; i
< 16; i
++) {
2403 if ((0x1 & page_size
) != 0)
2405 page_size
= page_size
>> 1;
2408 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2409 "Supported page size of %iK", (1 << (i
+12)) / 1024);
2411 xhci_warn(xhci
, "WARN: no supported page size\n");
2412 /* Use 4K pages, since that's common and the minimum the HC supports */
2413 xhci
->page_shift
= 12;
2414 xhci
->page_size
= 1 << xhci
->page_shift
;
2415 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2416 "HCD page size set to %iK", xhci
->page_size
/ 1024);
2419 * Program the Number of Device Slots Enabled field in the CONFIG
2420 * register with the max value of slots the HC can handle.
2422 val
= HCS_MAX_SLOTS(readl(&xhci
->cap_regs
->hcs_params1
));
2423 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2424 "// xHC can handle at most %d device slots.", val
);
2425 val2
= readl(&xhci
->op_regs
->config_reg
);
2426 val
|= (val2
& ~HCS_SLOTS_MASK
);
2427 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2428 "// Setting Max device slots reg = 0x%x.", val
);
2429 writel(val
, &xhci
->op_regs
->config_reg
);
2432 * xHCI section 5.4.6 - doorbell array must be
2433 * "physically contiguous and 64-byte (cache line) aligned".
2435 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2439 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2440 xhci
->dcbaa
->dma
= dma
;
2441 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2442 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2443 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2444 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2447 * Initialize the ring segment pool. The ring must be a contiguous
2448 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2449 * however, the command ring segment needs 64-byte aligned segments
2450 * and our use of dma addresses in the trb_address_map radix tree needs
2451 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2453 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2454 TRB_SEGMENT_SIZE
, TRB_SEGMENT_SIZE
, xhci
->page_size
);
2456 /* See Table 46 and Note on Figure 55 */
2457 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2458 2112, 64, xhci
->page_size
);
2459 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2462 /* Linear stream context arrays don't have any boundary restrictions,
2463 * and only need to be 16-byte aligned.
2465 xhci
->small_streams_pool
=
2466 dma_pool_create("xHCI 256 byte stream ctx arrays",
2467 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2468 xhci
->medium_streams_pool
=
2469 dma_pool_create("xHCI 1KB stream ctx arrays",
2470 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2471 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2472 * will be allocated with dma_alloc_coherent()
2475 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2478 /* Set up the command ring to have one segments for now. */
2479 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, 1, TYPE_COMMAND
, 0, flags
);
2480 if (!xhci
->cmd_ring
)
2482 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2483 "Allocated command ring at %p", xhci
->cmd_ring
);
2484 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "First segment DMA is 0x%llx",
2485 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2487 /* Set the address in the Command Ring Control register */
2488 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2489 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2490 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2491 xhci
->cmd_ring
->cycle_state
;
2492 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2493 "// Setting command ring address to 0x%016llx", val_64
);
2494 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2496 xhci
->lpm_command
= xhci_alloc_command_with_ctx(xhci
, true, flags
);
2497 if (!xhci
->lpm_command
)
2500 /* Reserve one command ring TRB for disabling LPM.
2501 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2502 * disabling LPM, we only need to reserve one TRB for all devices.
2504 xhci
->cmd_ring_reserved_trbs
++;
2506 val
= readl(&xhci
->cap_regs
->db_off
);
2508 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2509 "// Doorbell array is located at offset 0x%x"
2510 " from cap regs base addr", val
);
2511 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2512 /* Set ir_set to interrupt register set 0 */
2513 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2516 * Event ring setup: Allocate a normal ring, but also setup
2517 * the event ring segment table (ERST). Section 4.9.3.
2519 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Allocating event ring");
2520 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, 1, TYPE_EVENT
,
2522 if (!xhci
->event_ring
)
2524 if (xhci_check_trb_in_td_math(xhci
) < 0)
2527 ret
= xhci_alloc_erst(xhci
, xhci
->event_ring
, &xhci
->erst
, flags
);
2531 /* set ERST count with the number of entries in the segment table */
2532 val
= readl(&xhci
->ir_set
->erst_size
);
2533 val
&= ERST_SIZE_MASK
;
2534 val
|= ERST_NUM_SEGS
;
2535 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2536 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2538 writel(val
, &xhci
->ir_set
->erst_size
);
2540 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2541 "// Set ERST entries to point to event ring.");
2542 /* set the segment table base address */
2543 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2544 "// Set ERST base address for ir_set 0 = 0x%llx",
2545 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2546 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2547 val_64
&= ERST_PTR_MASK
;
2548 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2549 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2551 /* Set the event ring dequeue address */
2552 xhci_set_hc_event_deq(xhci
);
2553 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2554 "Wrote ERST address to ir_set 0.");
2557 * XXX: Might need to set the Interrupter Moderation Register to
2558 * something other than the default (~1ms minimum between interrupts).
2559 * See section 5.5.1.2.
2561 for (i
= 0; i
< MAX_HC_SLOTS
; i
++)
2562 xhci
->devs
[i
] = NULL
;
2563 for (i
= 0; i
< USB_MAXCHILDREN
; i
++) {
2564 xhci
->bus_state
[0].resume_done
[i
] = 0;
2565 xhci
->bus_state
[1].resume_done
[i
] = 0;
2566 /* Only the USB 2.0 completions will ever be used. */
2567 init_completion(&xhci
->bus_state
[1].rexit_done
[i
]);
2570 if (scratchpad_alloc(xhci
, flags
))
2572 if (xhci_setup_port_arrays(xhci
, flags
))
2575 /* Enable USB 3.0 device notifications for function remote wake, which
2576 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2577 * U3 (device suspend).
2579 temp
= readl(&xhci
->op_regs
->dev_notification
);
2580 temp
&= ~DEV_NOTE_MASK
;
2581 temp
|= DEV_NOTE_FWAKE
;
2582 writel(temp
, &xhci
->op_regs
->dev_notification
);
2589 xhci_mem_cleanup(xhci
);