1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
34 #include <cluster/masklog.h>
41 #include "extent_map.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
51 #include "buffer_head_io.h"
56 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
57 struct buffer_head
*bh_result
, int create
)
61 struct ocfs2_dinode
*fe
= NULL
;
62 struct buffer_head
*bh
= NULL
;
63 struct buffer_head
*buffer_cache_bh
= NULL
;
64 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
69 (unsigned long long)iblock
, bh_result
, create
);
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
73 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
74 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock
);
79 status
= ocfs2_read_inode_block(inode
, &bh
);
84 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
86 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
87 le32_to_cpu(fe
->i_clusters
))) {
89 mlog(ML_ERROR
, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock
);
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
97 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
99 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
100 if (!buffer_cache_bh
) {
102 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh
)
111 && ocfs2_inode_is_new(inode
)) {
112 kaddr
= kmap_atomic(bh_result
->b_page
);
114 mlog(ML_ERROR
, "couldn't kmap!\n");
117 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
118 buffer_cache_bh
->b_data
,
120 kunmap_atomic(kaddr
);
121 set_buffer_uptodate(bh_result
);
123 brelse(buffer_cache_bh
);
126 map_bh(bh_result
, inode
->i_sb
,
127 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
137 static int ocfs2_lock_get_block(struct inode
*inode
, sector_t iblock
,
138 struct buffer_head
*bh_result
, int create
)
141 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
143 down_read(&oi
->ip_alloc_sem
);
144 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
145 up_read(&oi
->ip_alloc_sem
);
150 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
151 struct buffer_head
*bh_result
, int create
)
154 unsigned int ext_flags
;
155 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
156 u64 p_blkno
, count
, past_eof
;
157 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
159 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
160 (unsigned long long)iblock
, bh_result
, create
);
162 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
163 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
164 inode
, inode
->i_ino
);
166 if (S_ISLNK(inode
->i_mode
)) {
167 /* this always does I/O for some reason. */
168 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
172 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
175 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
176 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
177 (unsigned long long)p_blkno
);
181 if (max_blocks
< count
)
185 * ocfs2 never allocates in this function - the only time we
186 * need to use BH_New is when we're extending i_size on a file
187 * system which doesn't support holes, in which case BH_New
188 * allows __block_write_begin() to zero.
190 * If we see this on a sparse file system, then a truncate has
191 * raced us and removed the cluster. In this case, we clear
192 * the buffers dirty and uptodate bits and let the buffer code
193 * ignore it as a hole.
195 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
196 clear_buffer_dirty(bh_result
);
197 clear_buffer_uptodate(bh_result
);
201 /* Treat the unwritten extent as a hole for zeroing purposes. */
202 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
203 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
205 bh_result
->b_size
= count
<< inode
->i_blkbits
;
207 if (!ocfs2_sparse_alloc(osb
)) {
211 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
212 (unsigned long long)iblock
,
213 (unsigned long long)p_blkno
,
214 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
215 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
221 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
223 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
224 (unsigned long long)past_eof
);
225 if (create
&& (iblock
>= past_eof
))
226 set_buffer_new(bh_result
);
235 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
236 struct buffer_head
*di_bh
)
240 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
242 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
243 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
244 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
248 size
= i_size_read(inode
);
250 if (size
> PAGE_SIZE
||
251 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
252 ocfs2_error(inode
->i_sb
,
253 "Inode %llu has with inline data has bad size: %Lu\n",
254 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
255 (unsigned long long)size
);
259 kaddr
= kmap_atomic(page
);
261 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
262 /* Clear the remaining part of the page */
263 memset(kaddr
+ size
, 0, PAGE_SIZE
- size
);
264 flush_dcache_page(page
);
265 kunmap_atomic(kaddr
);
267 SetPageUptodate(page
);
272 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
275 struct buffer_head
*di_bh
= NULL
;
277 BUG_ON(!PageLocked(page
));
278 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
280 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
286 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
294 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
296 struct inode
*inode
= page
->mapping
->host
;
297 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
298 loff_t start
= (loff_t
)page
->index
<< PAGE_SHIFT
;
301 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
302 (page
? page
->index
: 0));
304 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
306 if (ret
== AOP_TRUNCATED_PAGE
)
312 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
314 * Unlock the page and cycle ip_alloc_sem so that we don't
315 * busyloop waiting for ip_alloc_sem to unlock
317 ret
= AOP_TRUNCATED_PAGE
;
320 down_read(&oi
->ip_alloc_sem
);
321 up_read(&oi
->ip_alloc_sem
);
322 goto out_inode_unlock
;
326 * i_size might have just been updated as we grabed the meta lock. We
327 * might now be discovering a truncate that hit on another node.
328 * block_read_full_page->get_block freaks out if it is asked to read
329 * beyond the end of a file, so we check here. Callers
330 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
331 * and notice that the page they just read isn't needed.
333 * XXX sys_readahead() seems to get that wrong?
335 if (start
>= i_size_read(inode
)) {
336 zero_user(page
, 0, PAGE_SIZE
);
337 SetPageUptodate(page
);
342 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
343 ret
= ocfs2_readpage_inline(inode
, page
);
345 ret
= block_read_full_page(page
, ocfs2_get_block
);
349 up_read(&oi
->ip_alloc_sem
);
351 ocfs2_inode_unlock(inode
, 0);
359 * This is used only for read-ahead. Failures or difficult to handle
360 * situations are safe to ignore.
362 * Right now, we don't bother with BH_Boundary - in-inode extent lists
363 * are quite large (243 extents on 4k blocks), so most inodes don't
364 * grow out to a tree. If need be, detecting boundary extents could
365 * trivially be added in a future version of ocfs2_get_block().
367 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
368 struct list_head
*pages
, unsigned nr_pages
)
371 struct inode
*inode
= mapping
->host
;
372 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
377 * Use the nonblocking flag for the dlm code to avoid page
378 * lock inversion, but don't bother with retrying.
380 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
384 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
385 ocfs2_inode_unlock(inode
, 0);
390 * Don't bother with inline-data. There isn't anything
391 * to read-ahead in that case anyway...
393 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
397 * Check whether a remote node truncated this file - we just
398 * drop out in that case as it's not worth handling here.
400 last
= list_entry(pages
->prev
, struct page
, lru
);
401 start
= (loff_t
)last
->index
<< PAGE_SHIFT
;
402 if (start
>= i_size_read(inode
))
405 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
408 up_read(&oi
->ip_alloc_sem
);
409 ocfs2_inode_unlock(inode
, 0);
414 /* Note: Because we don't support holes, our allocation has
415 * already happened (allocation writes zeros to the file data)
416 * so we don't have to worry about ordered writes in
419 * ->writepage is called during the process of invalidating the page cache
420 * during blocked lock processing. It can't block on any cluster locks
421 * to during block mapping. It's relying on the fact that the block
422 * mapping can't have disappeared under the dirty pages that it is
423 * being asked to write back.
425 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
427 trace_ocfs2_writepage(
428 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
431 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
434 /* Taken from ext3. We don't necessarily need the full blown
435 * functionality yet, but IMHO it's better to cut and paste the whole
436 * thing so we can avoid introducing our own bugs (and easily pick up
437 * their fixes when they happen) --Mark */
438 int walk_page_buffers( handle_t
*handle
,
439 struct buffer_head
*head
,
443 int (*fn
)( handle_t
*handle
,
444 struct buffer_head
*bh
))
446 struct buffer_head
*bh
;
447 unsigned block_start
, block_end
;
448 unsigned blocksize
= head
->b_size
;
450 struct buffer_head
*next
;
452 for ( bh
= head
, block_start
= 0;
453 ret
== 0 && (bh
!= head
|| !block_start
);
454 block_start
= block_end
, bh
= next
)
456 next
= bh
->b_this_page
;
457 block_end
= block_start
+ blocksize
;
458 if (block_end
<= from
|| block_start
>= to
) {
459 if (partial
&& !buffer_uptodate(bh
))
463 err
= (*fn
)(handle
, bh
);
470 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
475 struct inode
*inode
= mapping
->host
;
477 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
478 (unsigned long long)block
);
481 * The swap code (ab-)uses ->bmap to get a block mapping and then
482 * bypasseѕ the file system for actual I/O. We really can't allow
483 * that on refcounted inodes, so we have to skip out here. And yes,
484 * 0 is the magic code for a bmap error..
486 if (ocfs2_is_refcount_inode(inode
))
489 /* We don't need to lock journal system files, since they aren't
490 * accessed concurrently from multiple nodes.
492 if (!INODE_JOURNAL(inode
)) {
493 err
= ocfs2_inode_lock(inode
, NULL
, 0);
499 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
502 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
503 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
506 if (!INODE_JOURNAL(inode
)) {
507 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
508 ocfs2_inode_unlock(inode
, 0);
512 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
513 (unsigned long long)block
);
519 status
= err
? 0 : p_blkno
;
524 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
526 if (!page_has_buffers(page
))
528 return try_to_free_buffers(page
);
531 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
536 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
538 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
541 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
543 cluster_start
= cpos
% cpp
;
544 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
546 cluster_end
= cluster_start
+ osb
->s_clustersize
;
549 BUG_ON(cluster_start
> PAGE_SIZE
);
550 BUG_ON(cluster_end
> PAGE_SIZE
);
553 *start
= cluster_start
;
559 * 'from' and 'to' are the region in the page to avoid zeroing.
561 * If pagesize > clustersize, this function will avoid zeroing outside
562 * of the cluster boundary.
564 * from == to == 0 is code for "zero the entire cluster region"
566 static void ocfs2_clear_page_regions(struct page
*page
,
567 struct ocfs2_super
*osb
, u32 cpos
,
568 unsigned from
, unsigned to
)
571 unsigned int cluster_start
, cluster_end
;
573 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
575 kaddr
= kmap_atomic(page
);
578 if (from
> cluster_start
)
579 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
580 if (to
< cluster_end
)
581 memset(kaddr
+ to
, 0, cluster_end
- to
);
583 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
586 kunmap_atomic(kaddr
);
590 * Nonsparse file systems fully allocate before we get to the write
591 * code. This prevents ocfs2_write() from tagging the write as an
592 * allocating one, which means ocfs2_map_page_blocks() might try to
593 * read-in the blocks at the tail of our file. Avoid reading them by
594 * testing i_size against each block offset.
596 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
597 unsigned int block_start
)
599 u64 offset
= page_offset(page
) + block_start
;
601 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
604 if (i_size_read(inode
) > offset
)
611 * Some of this taken from __block_write_begin(). We already have our
612 * mapping by now though, and the entire write will be allocating or
613 * it won't, so not much need to use BH_New.
615 * This will also skip zeroing, which is handled externally.
617 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
618 struct inode
*inode
, unsigned int from
,
619 unsigned int to
, int new)
622 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
623 unsigned int block_end
, block_start
;
624 unsigned int bsize
= i_blocksize(inode
);
626 if (!page_has_buffers(page
))
627 create_empty_buffers(page
, bsize
, 0);
629 head
= page_buffers(page
);
630 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
631 bh
= bh
->b_this_page
, block_start
+= bsize
) {
632 block_end
= block_start
+ bsize
;
634 clear_buffer_new(bh
);
637 * Ignore blocks outside of our i/o range -
638 * they may belong to unallocated clusters.
640 if (block_start
>= to
|| block_end
<= from
) {
641 if (PageUptodate(page
))
642 set_buffer_uptodate(bh
);
647 * For an allocating write with cluster size >= page
648 * size, we always write the entire page.
653 if (!buffer_mapped(bh
)) {
654 map_bh(bh
, inode
->i_sb
, *p_blkno
);
655 clean_bdev_bh_alias(bh
);
658 if (PageUptodate(page
)) {
659 if (!buffer_uptodate(bh
))
660 set_buffer_uptodate(bh
);
661 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
663 ocfs2_should_read_blk(inode
, page
, block_start
) &&
664 (block_start
< from
|| block_end
> to
)) {
665 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
669 *p_blkno
= *p_blkno
+ 1;
673 * If we issued read requests - let them complete.
675 while(wait_bh
> wait
) {
676 wait_on_buffer(*--wait_bh
);
677 if (!buffer_uptodate(*wait_bh
))
681 if (ret
== 0 || !new)
685 * If we get -EIO above, zero out any newly allocated blocks
686 * to avoid exposing stale data.
691 block_end
= block_start
+ bsize
;
692 if (block_end
<= from
)
694 if (block_start
>= to
)
697 zero_user(page
, block_start
, bh
->b_size
);
698 set_buffer_uptodate(bh
);
699 mark_buffer_dirty(bh
);
702 block_start
= block_end
;
703 bh
= bh
->b_this_page
;
704 } while (bh
!= head
);
709 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
710 #define OCFS2_MAX_CTXT_PAGES 1
712 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
715 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
717 struct ocfs2_unwritten_extent
{
718 struct list_head ue_node
;
719 struct list_head ue_ip_node
;
725 * Describe the state of a single cluster to be written to.
727 struct ocfs2_write_cluster_desc
{
731 * Give this a unique field because c_phys eventually gets
735 unsigned c_clear_unwritten
;
736 unsigned c_needs_zero
;
739 struct ocfs2_write_ctxt
{
740 /* Logical cluster position / len of write */
744 /* First cluster allocated in a nonsparse extend */
745 u32 w_first_new_cpos
;
747 /* Type of caller. Must be one of buffer, mmap, direct. */
748 ocfs2_write_type_t w_type
;
750 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
753 * This is true if page_size > cluster_size.
755 * It triggers a set of special cases during write which might
756 * have to deal with allocating writes to partial pages.
758 unsigned int w_large_pages
;
761 * Pages involved in this write.
763 * w_target_page is the page being written to by the user.
765 * w_pages is an array of pages which always contains
766 * w_target_page, and in the case of an allocating write with
767 * page_size < cluster size, it will contain zero'd and mapped
768 * pages adjacent to w_target_page which need to be written
769 * out in so that future reads from that region will get
772 unsigned int w_num_pages
;
773 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
774 struct page
*w_target_page
;
777 * w_target_locked is used for page_mkwrite path indicating no unlocking
778 * against w_target_page in ocfs2_write_end_nolock.
780 unsigned int w_target_locked
:1;
783 * ocfs2_write_end() uses this to know what the real range to
784 * write in the target should be.
786 unsigned int w_target_from
;
787 unsigned int w_target_to
;
790 * We could use journal_current_handle() but this is cleaner,
795 struct buffer_head
*w_di_bh
;
797 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
799 struct list_head w_unwritten_list
;
800 unsigned int w_unwritten_count
;
803 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
807 for(i
= 0; i
< num_pages
; i
++) {
809 unlock_page(pages
[i
]);
810 mark_page_accessed(pages
[i
]);
816 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt
*wc
)
821 * w_target_locked is only set to true in the page_mkwrite() case.
822 * The intent is to allow us to lock the target page from write_begin()
823 * to write_end(). The caller must hold a ref on w_target_page.
825 if (wc
->w_target_locked
) {
826 BUG_ON(!wc
->w_target_page
);
827 for (i
= 0; i
< wc
->w_num_pages
; i
++) {
828 if (wc
->w_target_page
== wc
->w_pages
[i
]) {
829 wc
->w_pages
[i
] = NULL
;
833 mark_page_accessed(wc
->w_target_page
);
834 put_page(wc
->w_target_page
);
836 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
839 static void ocfs2_free_unwritten_list(struct inode
*inode
,
840 struct list_head
*head
)
842 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
843 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
845 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
846 list_del(&ue
->ue_node
);
847 spin_lock(&oi
->ip_lock
);
848 list_del(&ue
->ue_ip_node
);
849 spin_unlock(&oi
->ip_lock
);
854 static void ocfs2_free_write_ctxt(struct inode
*inode
,
855 struct ocfs2_write_ctxt
*wc
)
857 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
858 ocfs2_unlock_pages(wc
);
863 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
864 struct ocfs2_super
*osb
, loff_t pos
,
865 unsigned len
, ocfs2_write_type_t type
,
866 struct buffer_head
*di_bh
)
869 struct ocfs2_write_ctxt
*wc
;
871 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
875 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
876 wc
->w_first_new_cpos
= UINT_MAX
;
877 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
878 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
883 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
884 wc
->w_large_pages
= 1;
886 wc
->w_large_pages
= 0;
888 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
889 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
897 * If a page has any new buffers, zero them out here, and mark them uptodate
898 * and dirty so they'll be written out (in order to prevent uninitialised
899 * block data from leaking). And clear the new bit.
901 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
903 unsigned int block_start
, block_end
;
904 struct buffer_head
*head
, *bh
;
906 BUG_ON(!PageLocked(page
));
907 if (!page_has_buffers(page
))
910 bh
= head
= page_buffers(page
);
913 block_end
= block_start
+ bh
->b_size
;
915 if (buffer_new(bh
)) {
916 if (block_end
> from
&& block_start
< to
) {
917 if (!PageUptodate(page
)) {
920 start
= max(from
, block_start
);
921 end
= min(to
, block_end
);
923 zero_user_segment(page
, start
, end
);
924 set_buffer_uptodate(bh
);
927 clear_buffer_new(bh
);
928 mark_buffer_dirty(bh
);
932 block_start
= block_end
;
933 bh
= bh
->b_this_page
;
934 } while (bh
!= head
);
938 * Only called when we have a failure during allocating write to write
939 * zero's to the newly allocated region.
941 static void ocfs2_write_failure(struct inode
*inode
,
942 struct ocfs2_write_ctxt
*wc
,
943 loff_t user_pos
, unsigned user_len
)
946 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
947 to
= user_pos
+ user_len
;
948 struct page
*tmppage
;
950 if (wc
->w_target_page
)
951 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
953 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
954 tmppage
= wc
->w_pages
[i
];
956 if (tmppage
&& page_has_buffers(tmppage
)) {
957 if (ocfs2_should_order_data(inode
))
958 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
960 block_commit_write(tmppage
, from
, to
);
965 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
966 struct ocfs2_write_ctxt
*wc
,
967 struct page
*page
, u32 cpos
,
968 loff_t user_pos
, unsigned user_len
,
972 unsigned int map_from
= 0, map_to
= 0;
973 unsigned int cluster_start
, cluster_end
;
974 unsigned int user_data_from
= 0, user_data_to
= 0;
976 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
977 &cluster_start
, &cluster_end
);
979 /* treat the write as new if the a hole/lseek spanned across
982 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
983 (page_offset(page
) <= user_pos
));
985 if (page
== wc
->w_target_page
) {
986 map_from
= user_pos
& (PAGE_SIZE
- 1);
987 map_to
= map_from
+ user_len
;
990 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
991 cluster_start
, cluster_end
,
994 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
995 map_from
, map_to
, new);
1001 user_data_from
= map_from
;
1002 user_data_to
= map_to
;
1004 map_from
= cluster_start
;
1005 map_to
= cluster_end
;
1009 * If we haven't allocated the new page yet, we
1010 * shouldn't be writing it out without copying user
1011 * data. This is likely a math error from the caller.
1015 map_from
= cluster_start
;
1016 map_to
= cluster_end
;
1018 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1019 cluster_start
, cluster_end
, new);
1027 * Parts of newly allocated pages need to be zero'd.
1029 * Above, we have also rewritten 'to' and 'from' - as far as
1030 * the rest of the function is concerned, the entire cluster
1031 * range inside of a page needs to be written.
1033 * We can skip this if the page is up to date - it's already
1034 * been zero'd from being read in as a hole.
1036 if (new && !PageUptodate(page
))
1037 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1038 cpos
, user_data_from
, user_data_to
);
1040 flush_dcache_page(page
);
1047 * This function will only grab one clusters worth of pages.
1049 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1050 struct ocfs2_write_ctxt
*wc
,
1051 u32 cpos
, loff_t user_pos
,
1052 unsigned user_len
, int new,
1053 struct page
*mmap_page
)
1056 unsigned long start
, target_index
, end_index
, index
;
1057 struct inode
*inode
= mapping
->host
;
1060 target_index
= user_pos
>> PAGE_SHIFT
;
1063 * Figure out how many pages we'll be manipulating here. For
1064 * non allocating write, we just change the one
1065 * page. Otherwise, we'll need a whole clusters worth. If we're
1066 * writing past i_size, we only need enough pages to cover the
1067 * last page of the write.
1070 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1071 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1073 * We need the index *past* the last page we could possibly
1074 * touch. This is the page past the end of the write or
1075 * i_size, whichever is greater.
1077 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1078 BUG_ON(last_byte
< 1);
1079 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1080 if ((start
+ wc
->w_num_pages
) > end_index
)
1081 wc
->w_num_pages
= end_index
- start
;
1083 wc
->w_num_pages
= 1;
1084 start
= target_index
;
1086 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1088 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1091 if (index
>= target_index
&& index
<= end_index
&&
1092 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1094 * ocfs2_pagemkwrite() is a little different
1095 * and wants us to directly use the page
1098 lock_page(mmap_page
);
1100 /* Exit and let the caller retry */
1101 if (mmap_page
->mapping
!= mapping
) {
1102 WARN_ON(mmap_page
->mapping
);
1103 unlock_page(mmap_page
);
1108 get_page(mmap_page
);
1109 wc
->w_pages
[i
] = mmap_page
;
1110 wc
->w_target_locked
= true;
1111 } else if (index
>= target_index
&& index
<= end_index
&&
1112 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1113 /* Direct write has no mapping page. */
1114 wc
->w_pages
[i
] = NULL
;
1117 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1119 if (!wc
->w_pages
[i
]) {
1125 wait_for_stable_page(wc
->w_pages
[i
]);
1127 if (index
== target_index
)
1128 wc
->w_target_page
= wc
->w_pages
[i
];
1132 wc
->w_target_locked
= false;
1137 * Prepare a single cluster for write one cluster into the file.
1139 static int ocfs2_write_cluster(struct address_space
*mapping
,
1140 u32
*phys
, unsigned int new,
1141 unsigned int clear_unwritten
,
1142 unsigned int should_zero
,
1143 struct ocfs2_alloc_context
*data_ac
,
1144 struct ocfs2_alloc_context
*meta_ac
,
1145 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1146 loff_t user_pos
, unsigned user_len
)
1150 struct inode
*inode
= mapping
->host
;
1151 struct ocfs2_extent_tree et
;
1152 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1158 * This is safe to call with the page locks - it won't take
1159 * any additional semaphores or cluster locks.
1162 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1163 &tmp_pos
, 1, !clear_unwritten
,
1164 wc
->w_di_bh
, wc
->w_handle
,
1165 data_ac
, meta_ac
, NULL
);
1167 * This shouldn't happen because we must have already
1168 * calculated the correct meta data allocation required. The
1169 * internal tree allocation code should know how to increase
1170 * transaction credits itself.
1172 * If need be, we could handle -EAGAIN for a
1173 * RESTART_TRANS here.
1175 mlog_bug_on_msg(ret
== -EAGAIN
,
1176 "Inode %llu: EAGAIN return during allocation.\n",
1177 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1182 } else if (clear_unwritten
) {
1183 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1185 ret
= ocfs2_mark_extent_written(inode
, &et
,
1186 wc
->w_handle
, cpos
, 1, *phys
,
1187 meta_ac
, &wc
->w_dealloc
);
1195 * The only reason this should fail is due to an inability to
1196 * find the extent added.
1198 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1200 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1201 "at logical cluster %u",
1202 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1208 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1210 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1212 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1215 /* This is the direct io target page. */
1216 if (wc
->w_pages
[i
] == NULL
) {
1221 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1222 wc
->w_pages
[i
], cpos
,
1233 * We only have cleanup to do in case of allocating write.
1236 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1243 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1244 struct ocfs2_alloc_context
*data_ac
,
1245 struct ocfs2_alloc_context
*meta_ac
,
1246 struct ocfs2_write_ctxt
*wc
,
1247 loff_t pos
, unsigned len
)
1251 unsigned int local_len
= len
;
1252 struct ocfs2_write_cluster_desc
*desc
;
1253 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1255 for (i
= 0; i
< wc
->w_clen
; i
++) {
1256 desc
= &wc
->w_desc
[i
];
1259 * We have to make sure that the total write passed in
1260 * doesn't extend past a single cluster.
1263 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1264 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1265 local_len
= osb
->s_clustersize
- cluster_off
;
1267 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1269 desc
->c_clear_unwritten
,
1272 wc
, desc
->c_cpos
, pos
, local_len
);
1288 * ocfs2_write_end() wants to know which parts of the target page it
1289 * should complete the write on. It's easiest to compute them ahead of
1290 * time when a more complete view of the write is available.
1292 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1293 struct ocfs2_write_ctxt
*wc
,
1294 loff_t pos
, unsigned len
, int alloc
)
1296 struct ocfs2_write_cluster_desc
*desc
;
1298 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1299 wc
->w_target_to
= wc
->w_target_from
+ len
;
1305 * Allocating write - we may have different boundaries based
1306 * on page size and cluster size.
1308 * NOTE: We can no longer compute one value from the other as
1309 * the actual write length and user provided length may be
1313 if (wc
->w_large_pages
) {
1315 * We only care about the 1st and last cluster within
1316 * our range and whether they should be zero'd or not. Either
1317 * value may be extended out to the start/end of a
1318 * newly allocated cluster.
1320 desc
= &wc
->w_desc
[0];
1321 if (desc
->c_needs_zero
)
1322 ocfs2_figure_cluster_boundaries(osb
,
1327 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1328 if (desc
->c_needs_zero
)
1329 ocfs2_figure_cluster_boundaries(osb
,
1334 wc
->w_target_from
= 0;
1335 wc
->w_target_to
= PAGE_SIZE
;
1340 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1341 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1342 * by the direct io procedure.
1343 * If this is a new extent that allocated by direct io, we should mark it in
1344 * the ip_unwritten_list.
1346 static int ocfs2_unwritten_check(struct inode
*inode
,
1347 struct ocfs2_write_ctxt
*wc
,
1348 struct ocfs2_write_cluster_desc
*desc
)
1350 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1351 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1354 if (!desc
->c_needs_zero
)
1358 spin_lock(&oi
->ip_lock
);
1359 /* Needs not to zero no metter buffer or direct. The one who is zero
1360 * the cluster is doing zero. And he will clear unwritten after all
1361 * cluster io finished. */
1362 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1363 if (desc
->c_cpos
== ue
->ue_cpos
) {
1364 BUG_ON(desc
->c_new
);
1365 desc
->c_needs_zero
= 0;
1366 desc
->c_clear_unwritten
= 0;
1371 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1375 spin_unlock(&oi
->ip_lock
);
1376 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1384 /* This direct write will doing zero. */
1385 new->ue_cpos
= desc
->c_cpos
;
1386 new->ue_phys
= desc
->c_phys
;
1387 desc
->c_clear_unwritten
= 0;
1388 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1389 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1390 wc
->w_unwritten_count
++;
1393 spin_unlock(&oi
->ip_lock
);
1401 * Populate each single-cluster write descriptor in the write context
1402 * with information about the i/o to be done.
1404 * Returns the number of clusters that will have to be allocated, as
1405 * well as a worst case estimate of the number of extent records that
1406 * would have to be created during a write to an unwritten region.
1408 static int ocfs2_populate_write_desc(struct inode
*inode
,
1409 struct ocfs2_write_ctxt
*wc
,
1410 unsigned int *clusters_to_alloc
,
1411 unsigned int *extents_to_split
)
1414 struct ocfs2_write_cluster_desc
*desc
;
1415 unsigned int num_clusters
= 0;
1416 unsigned int ext_flags
= 0;
1420 *clusters_to_alloc
= 0;
1421 *extents_to_split
= 0;
1423 for (i
= 0; i
< wc
->w_clen
; i
++) {
1424 desc
= &wc
->w_desc
[i
];
1425 desc
->c_cpos
= wc
->w_cpos
+ i
;
1427 if (num_clusters
== 0) {
1429 * Need to look up the next extent record.
1431 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1432 &num_clusters
, &ext_flags
);
1438 /* We should already CoW the refcountd extent. */
1439 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1442 * Assume worst case - that we're writing in
1443 * the middle of the extent.
1445 * We can assume that the write proceeds from
1446 * left to right, in which case the extent
1447 * insert code is smart enough to coalesce the
1448 * next splits into the previous records created.
1450 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1451 *extents_to_split
= *extents_to_split
+ 2;
1454 * Only increment phys if it doesn't describe
1461 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1462 * file that got extended. w_first_new_cpos tells us
1463 * where the newly allocated clusters are so we can
1466 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1468 desc
->c_needs_zero
= 1;
1471 desc
->c_phys
= phys
;
1474 desc
->c_needs_zero
= 1;
1475 desc
->c_clear_unwritten
= 1;
1476 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1479 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1480 desc
->c_clear_unwritten
= 1;
1481 desc
->c_needs_zero
= 1;
1484 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1498 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1499 struct inode
*inode
,
1500 struct ocfs2_write_ctxt
*wc
)
1503 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1506 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1508 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1509 if (IS_ERR(handle
)) {
1510 ret
= PTR_ERR(handle
);
1515 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1517 ocfs2_commit_trans(osb
, handle
);
1523 * If we don't set w_num_pages then this page won't get unlocked
1524 * and freed on cleanup of the write context.
1526 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1527 wc
->w_num_pages
= 1;
1529 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1530 OCFS2_JOURNAL_ACCESS_WRITE
);
1532 ocfs2_commit_trans(osb
, handle
);
1538 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1539 ocfs2_set_inode_data_inline(inode
, di
);
1541 if (!PageUptodate(page
)) {
1542 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1544 ocfs2_commit_trans(osb
, handle
);
1550 wc
->w_handle
= handle
;
1555 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1557 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1559 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1564 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1565 struct inode
*inode
, loff_t pos
,
1566 unsigned len
, struct page
*mmap_page
,
1567 struct ocfs2_write_ctxt
*wc
)
1569 int ret
, written
= 0;
1570 loff_t end
= pos
+ len
;
1571 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1572 struct ocfs2_dinode
*di
= NULL
;
1574 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1575 len
, (unsigned long long)pos
,
1576 oi
->ip_dyn_features
);
1579 * Handle inodes which already have inline data 1st.
1581 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1582 if (mmap_page
== NULL
&&
1583 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1584 goto do_inline_write
;
1587 * The write won't fit - we have to give this inode an
1588 * inline extent list now.
1590 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1597 * Check whether the inode can accept inline data.
1599 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1603 * Check whether the write can fit.
1605 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1607 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1611 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1618 * This signals to the caller that the data can be written
1623 return written
? written
: ret
;
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1635 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1636 struct buffer_head
*di_bh
,
1637 loff_t pos
, unsigned len
,
1638 struct ocfs2_write_ctxt
*wc
)
1641 loff_t newsize
= pos
+ len
;
1643 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1645 if (newsize
<= i_size_read(inode
))
1648 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1652 /* There is no wc if this is call from direct. */
1654 wc
->w_first_new_cpos
=
1655 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1660 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1665 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1666 if (pos
> i_size_read(inode
))
1667 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1672 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1673 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1674 struct page
**pagep
, void **fsdata
,
1675 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1677 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1678 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1679 struct ocfs2_write_ctxt
*wc
;
1680 struct inode
*inode
= mapping
->host
;
1681 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1682 struct ocfs2_dinode
*di
;
1683 struct ocfs2_alloc_context
*data_ac
= NULL
;
1684 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1686 struct ocfs2_extent_tree et
;
1687 int try_free
= 1, ret1
;
1690 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1696 if (ocfs2_supports_inline_data(osb
)) {
1697 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1709 /* Direct io change i_size late, should not zero tail here. */
1710 if (type
!= OCFS2_WRITE_DIRECT
) {
1711 if (ocfs2_sparse_alloc(osb
))
1712 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1714 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1722 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1726 } else if (ret
== 1) {
1727 clusters_need
= wc
->w_clen
;
1728 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1729 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1736 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1742 clusters_need
+= clusters_to_alloc
;
1744 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1746 trace_ocfs2_write_begin_nolock(
1747 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1748 (long long)i_size_read(inode
),
1749 le32_to_cpu(di
->i_clusters
),
1750 pos
, len
, type
, mmap_page
,
1751 clusters_to_alloc
, extents_to_split
);
1754 * We set w_target_from, w_target_to here so that
1755 * ocfs2_write_end() knows which range in the target page to
1756 * write out. An allocation requires that we write the entire
1759 if (clusters_to_alloc
|| extents_to_split
) {
1761 * XXX: We are stretching the limits of
1762 * ocfs2_lock_allocators(). It greatly over-estimates
1763 * the work to be done.
1765 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1767 ret
= ocfs2_lock_allocators(inode
, &et
,
1768 clusters_to_alloc
, extents_to_split
,
1769 &data_ac
, &meta_ac
);
1776 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1778 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1780 } else if (type
== OCFS2_WRITE_DIRECT
)
1781 /* direct write needs not to start trans if no extents alloc. */
1785 * We have to zero sparse allocated clusters, unwritten extent clusters,
1786 * and non-sparse clusters we just extended. For non-sparse writes,
1787 * we know zeros will only be needed in the first and/or last cluster.
1789 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1790 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1791 cluster_of_pages
= 1;
1793 cluster_of_pages
= 0;
1795 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1797 handle
= ocfs2_start_trans(osb
, credits
);
1798 if (IS_ERR(handle
)) {
1799 ret
= PTR_ERR(handle
);
1804 wc
->w_handle
= handle
;
1806 if (clusters_to_alloc
) {
1807 ret
= dquot_alloc_space_nodirty(inode
,
1808 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1813 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1814 OCFS2_JOURNAL_ACCESS_WRITE
);
1821 * Fill our page array first. That way we've grabbed enough so
1822 * that we can zero and flush if we error after adding the
1825 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1826 cluster_of_pages
, mmap_page
);
1827 if (ret
&& ret
!= -EAGAIN
) {
1833 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1834 * the target page. In this case, we exit with no error and no target
1835 * page. This will trigger the caller, page_mkwrite(), to re-try
1838 if (ret
== -EAGAIN
) {
1839 BUG_ON(wc
->w_target_page
);
1844 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1852 ocfs2_free_alloc_context(data_ac
);
1854 ocfs2_free_alloc_context(meta_ac
);
1858 *pagep
= wc
->w_target_page
;
1862 if (clusters_to_alloc
)
1863 dquot_free_space(inode
,
1864 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1866 ocfs2_commit_trans(osb
, handle
);
1870 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1871 * even in case of error here like ENOSPC and ENOMEM. So, we need
1872 * to unlock the target page manually to prevent deadlocks when
1873 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1876 if (wc
->w_target_locked
)
1877 unlock_page(mmap_page
);
1879 ocfs2_free_write_ctxt(inode
, wc
);
1882 ocfs2_free_alloc_context(data_ac
);
1886 ocfs2_free_alloc_context(meta_ac
);
1890 if (ret
== -ENOSPC
&& try_free
) {
1892 * Try to free some truncate log so that we can have enough
1893 * clusters to allocate.
1897 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1908 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1909 loff_t pos
, unsigned len
, unsigned flags
,
1910 struct page
**pagep
, void **fsdata
)
1913 struct buffer_head
*di_bh
= NULL
;
1914 struct inode
*inode
= mapping
->host
;
1916 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1923 * Take alloc sem here to prevent concurrent lookups. That way
1924 * the mapping, zeroing and tree manipulation within
1925 * ocfs2_write() will be safe against ->readpage(). This
1926 * should also serve to lock out allocation from a shared
1929 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1931 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1932 pagep
, fsdata
, di_bh
, NULL
);
1943 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1946 ocfs2_inode_unlock(inode
, 1);
1951 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1952 unsigned len
, unsigned *copied
,
1953 struct ocfs2_dinode
*di
,
1954 struct ocfs2_write_ctxt
*wc
)
1958 if (unlikely(*copied
< len
)) {
1959 if (!PageUptodate(wc
->w_target_page
)) {
1965 kaddr
= kmap_atomic(wc
->w_target_page
);
1966 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1967 kunmap_atomic(kaddr
);
1969 trace_ocfs2_write_end_inline(
1970 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1971 (unsigned long long)pos
, *copied
,
1972 le16_to_cpu(di
->id2
.i_data
.id_count
),
1973 le16_to_cpu(di
->i_dyn_features
));
1976 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1977 loff_t pos
, unsigned len
, unsigned copied
, void *fsdata
)
1980 unsigned from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1981 struct inode
*inode
= mapping
->host
;
1982 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1983 struct ocfs2_write_ctxt
*wc
= fsdata
;
1984 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1985 handle_t
*handle
= wc
->w_handle
;
1986 struct page
*tmppage
;
1988 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1991 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1992 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
2000 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
2001 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
2002 goto out_write_size
;
2005 if (unlikely(copied
< len
) && wc
->w_target_page
) {
2006 if (!PageUptodate(wc
->w_target_page
))
2009 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
2012 if (wc
->w_target_page
)
2013 flush_dcache_page(wc
->w_target_page
);
2015 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
2016 tmppage
= wc
->w_pages
[i
];
2018 /* This is the direct io target page. */
2019 if (tmppage
== NULL
)
2022 if (tmppage
== wc
->w_target_page
) {
2023 from
= wc
->w_target_from
;
2024 to
= wc
->w_target_to
;
2026 BUG_ON(from
> PAGE_SIZE
||
2031 * Pages adjacent to the target (if any) imply
2032 * a hole-filling write in which case we want
2033 * to flush their entire range.
2039 if (page_has_buffers(tmppage
)) {
2040 if (handle
&& ocfs2_should_order_data(inode
))
2041 ocfs2_jbd2_file_inode(handle
, inode
);
2042 block_commit_write(tmppage
, from
, to
);
2047 /* Direct io do not update i_size here. */
2048 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2050 if (pos
> i_size_read(inode
)) {
2051 i_size_write(inode
, pos
);
2052 mark_inode_dirty(inode
);
2054 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2055 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2056 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2057 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2058 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2060 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2063 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2066 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2067 * lock, or it will cause a deadlock since journal commit threads holds
2068 * this lock and will ask for the page lock when flushing the data.
2069 * put it here to preserve the unlock order.
2071 ocfs2_unlock_pages(wc
);
2074 ocfs2_commit_trans(osb
, handle
);
2076 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2078 brelse(wc
->w_di_bh
);
2084 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2085 loff_t pos
, unsigned len
, unsigned copied
,
2086 struct page
*page
, void *fsdata
)
2089 struct inode
*inode
= mapping
->host
;
2091 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, fsdata
);
2093 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2094 ocfs2_inode_unlock(inode
, 1);
2099 struct ocfs2_dio_write_ctxt
{
2100 struct list_head dw_zero_list
;
2101 unsigned dw_zero_count
;
2103 pid_t dw_writer_pid
;
2106 static struct ocfs2_dio_write_ctxt
*
2107 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2109 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2112 return bh
->b_private
;
2114 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2117 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2118 dwc
->dw_zero_count
= 0;
2119 dwc
->dw_orphaned
= 0;
2120 dwc
->dw_writer_pid
= task_pid_nr(current
);
2121 bh
->b_private
= dwc
;
2127 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2128 struct ocfs2_dio_write_ctxt
*dwc
)
2130 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2135 * TODO: Make this into a generic get_blocks function.
2137 * From do_direct_io in direct-io.c:
2138 * "So what we do is to permit the ->get_blocks function to populate
2139 * bh.b_size with the size of IO which is permitted at this offset and
2142 * This function is called directly from get_more_blocks in direct-io.c.
2144 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2145 * fs_count, map_bh, dio->rw == WRITE);
2147 static int ocfs2_dio_wr_get_block(struct inode
*inode
, sector_t iblock
,
2148 struct buffer_head
*bh_result
, int create
)
2150 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2151 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2152 struct ocfs2_write_ctxt
*wc
;
2153 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2154 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2155 struct buffer_head
*di_bh
= NULL
;
2157 unsigned int i_blkbits
= inode
->i_sb
->s_blocksize_bits
;
2158 loff_t pos
= iblock
<< i_blkbits
;
2159 sector_t endblk
= (i_size_read(inode
) - 1) >> i_blkbits
;
2160 unsigned len
, total_len
= bh_result
->b_size
;
2161 int ret
= 0, first_get_block
= 0;
2163 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2164 len
= min(total_len
, len
);
2167 * bh_result->b_size is count in get_more_blocks according to write
2168 * "pos" and "end", we need map twice to return different buffer state:
2169 * 1. area in file size, not set NEW;
2170 * 2. area out file size, set NEW.
2173 * |--------|---------|---------|---------
2174 * |<-------area in file------->|
2177 if ((iblock
<= endblk
) &&
2178 ((iblock
+ ((len
- 1) >> i_blkbits
)) > endblk
))
2179 len
= (endblk
- iblock
+ 1) << i_blkbits
;
2181 mlog(0, "get block of %lu at %llu:%u req %u\n",
2182 inode
->i_ino
, pos
, len
, total_len
);
2185 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2186 * we may need to add it to orphan dir. So can not fall to fast path
2187 * while file size will be changed.
2189 if (pos
+ total_len
<= i_size_read(inode
)) {
2191 /* This is the fast path for re-write. */
2192 ret
= ocfs2_lock_get_block(inode
, iblock
, bh_result
, create
);
2193 if (buffer_mapped(bh_result
) &&
2194 !buffer_new(bh_result
) &&
2198 /* Clear state set by ocfs2_get_block. */
2199 bh_result
->b_state
= 0;
2202 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2203 if (unlikely(dwc
== NULL
)) {
2209 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2210 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2211 !dwc
->dw_orphaned
) {
2213 * when we are going to alloc extents beyond file size, add the
2214 * inode to orphan dir, so we can recall those spaces when
2215 * system crashed during write.
2217 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2222 dwc
->dw_orphaned
= 1;
2225 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2231 down_write(&oi
->ip_alloc_sem
);
2233 if (first_get_block
) {
2234 if (ocfs2_sparse_alloc(osb
))
2235 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2237 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2245 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2246 OCFS2_WRITE_DIRECT
, NULL
,
2247 (void **)&wc
, di_bh
, NULL
);
2253 desc
= &wc
->w_desc
[0];
2255 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2256 BUG_ON(p_blkno
== 0);
2257 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2259 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2260 bh_result
->b_size
= len
;
2261 if (desc
->c_needs_zero
)
2262 set_buffer_new(bh_result
);
2264 if (iblock
> endblk
)
2265 set_buffer_new(bh_result
);
2267 /* May sleep in end_io. It should not happen in a irq context. So defer
2268 * it to dio work queue. */
2269 set_buffer_defer_completion(bh_result
);
2271 if (!list_empty(&wc
->w_unwritten_list
)) {
2272 struct ocfs2_unwritten_extent
*ue
= NULL
;
2274 ue
= list_first_entry(&wc
->w_unwritten_list
,
2275 struct ocfs2_unwritten_extent
,
2277 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2278 /* The physical address may be 0, fill it. */
2279 ue
->ue_phys
= desc
->c_phys
;
2281 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2282 dwc
->dw_zero_count
+= wc
->w_unwritten_count
;
2285 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, wc
);
2289 up_write(&oi
->ip_alloc_sem
);
2290 ocfs2_inode_unlock(inode
, 1);
2298 static int ocfs2_dio_end_io_write(struct inode
*inode
,
2299 struct ocfs2_dio_write_ctxt
*dwc
,
2303 struct ocfs2_cached_dealloc_ctxt dealloc
;
2304 struct ocfs2_extent_tree et
;
2305 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2306 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2307 struct ocfs2_unwritten_extent
*ue
= NULL
;
2308 struct buffer_head
*di_bh
= NULL
;
2309 struct ocfs2_dinode
*di
;
2310 struct ocfs2_alloc_context
*data_ac
= NULL
;
2311 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2312 handle_t
*handle
= NULL
;
2313 loff_t end
= offset
+ bytes
;
2314 int ret
= 0, credits
= 0, locked
= 0;
2316 ocfs2_init_dealloc_ctxt(&dealloc
);
2318 /* We do clear unwritten, delete orphan, change i_size here. If neither
2319 * of these happen, we can skip all this. */
2320 if (list_empty(&dwc
->dw_zero_list
) &&
2321 end
<= i_size_read(inode
) &&
2325 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2326 * are in that context. */
2327 if (dwc
->dw_writer_pid
!= task_pid_nr(current
)) {
2332 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2338 down_write(&oi
->ip_alloc_sem
);
2340 /* Delete orphan before acquire i_mutex. */
2341 if (dwc
->dw_orphaned
) {
2342 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2344 end
= end
> i_size_read(inode
) ? end
: 0;
2346 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2352 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2354 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2356 /* Attach dealloc with extent tree in case that we may reuse extents
2357 * which are already unlinked from current extent tree due to extent
2358 * rotation and merging.
2360 et
.et_dealloc
= &dealloc
;
2362 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2363 &data_ac
, &meta_ac
);
2369 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2371 handle
= ocfs2_start_trans(osb
, credits
);
2372 if (IS_ERR(handle
)) {
2373 ret
= PTR_ERR(handle
);
2377 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2378 OCFS2_JOURNAL_ACCESS_WRITE
);
2384 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2385 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2395 if (end
> i_size_read(inode
)) {
2396 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2401 ocfs2_commit_trans(osb
, handle
);
2403 up_write(&oi
->ip_alloc_sem
);
2404 ocfs2_inode_unlock(inode
, 1);
2408 ocfs2_free_alloc_context(data_ac
);
2410 ocfs2_free_alloc_context(meta_ac
);
2411 ocfs2_run_deallocs(osb
, &dealloc
);
2413 inode_unlock(inode
);
2414 ocfs2_dio_free_write_ctx(inode
, dwc
);
2420 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2421 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2422 * to protect io on one node from truncation on another.
2424 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2429 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2433 /* this io's submitter should not have unlocked this before we could */
2434 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2437 mlog_ratelimited(ML_ERROR
, "Direct IO failed, bytes = %lld",
2441 ret
= ocfs2_dio_end_io_write(inode
, private, offset
,
2444 ocfs2_dio_free_write_ctx(inode
, private);
2447 ocfs2_iocb_clear_rw_locked(iocb
);
2449 level
= ocfs2_iocb_rw_locked_level(iocb
);
2450 ocfs2_rw_unlock(inode
, level
);
2454 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2456 struct file
*file
= iocb
->ki_filp
;
2457 struct inode
*inode
= file
->f_mapping
->host
;
2458 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2459 get_block_t
*get_block
;
2462 * Fallback to buffered I/O if we see an inode without
2465 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2468 /* Fallback to buffered I/O if we do not support append dio. */
2469 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2470 !ocfs2_supports_append_dio(osb
))
2473 if (iov_iter_rw(iter
) == READ
)
2474 get_block
= ocfs2_lock_get_block
;
2476 get_block
= ocfs2_dio_wr_get_block
;
2478 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2480 ocfs2_dio_end_io
, NULL
, 0);
2483 const struct address_space_operations ocfs2_aops
= {
2484 .readpage
= ocfs2_readpage
,
2485 .readpages
= ocfs2_readpages
,
2486 .writepage
= ocfs2_writepage
,
2487 .write_begin
= ocfs2_write_begin
,
2488 .write_end
= ocfs2_write_end
,
2490 .direct_IO
= ocfs2_direct_IO
,
2491 .invalidatepage
= block_invalidatepage
,
2492 .releasepage
= ocfs2_releasepage
,
2493 .migratepage
= buffer_migrate_page
,
2494 .is_partially_uptodate
= block_is_partially_uptodate
,
2495 .error_remove_page
= generic_error_remove_page
,