1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the BSD-type
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
17 * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
20 * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
25 * Neither the name of the Network Appliance, Inc. nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * Author: Tom Tucker <tom@opengridcomputing.com>
47 * The main entry point is svc_rdma_recvfrom. This is called from
48 * svc_recv when the transport indicates there is incoming data to
49 * be read. "Data Ready" is signaled when an RDMA Receive completes,
50 * or when a set of RDMA Reads complete.
52 * An svc_rqst is passed in. This structure contains an array of
53 * free pages (rq_pages) that will contain the incoming RPC message.
55 * Short messages are moved directly into svc_rqst::rq_arg, and
56 * the RPC Call is ready to be processed by the Upper Layer.
57 * svc_rdma_recvfrom returns the length of the RPC Call message,
58 * completing the reception of the RPC Call.
60 * However, when an incoming message has Read chunks,
61 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
62 * data payload from the client. svc_rdma_recvfrom sets up the
63 * RDMA Reads using pages in svc_rqst::rq_pages, which are
64 * transferred to an svc_rdma_recv_ctxt for the duration of the
65 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
66 * is still not yet ready.
68 * When the Read chunk payloads have become available on the
69 * server, "Data Ready" is raised again, and svc_recv calls
70 * svc_rdma_recvfrom again. This second call may use a different
71 * svc_rqst than the first one, thus any information that needs
72 * to be preserved across these two calls is kept in an
75 * The second call to svc_rdma_recvfrom performs final assembly
76 * of the RPC Call message, using the RDMA Read sink pages kept in
77 * the svc_rdma_recv_ctxt. The xdr_buf is copied from the
78 * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns
79 * the length of the completed RPC Call message.
83 * Pages under I/O must be transferred from the first svc_rqst to an
84 * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns.
86 * The first svc_rqst supplies pages for RDMA Reads. These are moved
87 * from rqstp::rq_pages into ctxt::pages. The consumed elements of
88 * the rq_pages array are set to NULL and refilled with the first
89 * svc_rdma_recvfrom call returns.
91 * During the second svc_rdma_recvfrom call, RDMA Read sink pages
92 * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst
93 * (see rdma_read_complete() below).
96 #include <linux/spinlock.h>
97 #include <asm/unaligned.h>
98 #include <rdma/ib_verbs.h>
99 #include <rdma/rdma_cm.h>
101 #include <linux/sunrpc/xdr.h>
102 #include <linux/sunrpc/debug.h>
103 #include <linux/sunrpc/rpc_rdma.h>
104 #include <linux/sunrpc/svc_rdma.h>
106 #include "xprt_rdma.h"
107 #include <trace/events/rpcrdma.h>
109 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
111 static void svc_rdma_wc_receive(struct ib_cq
*cq
, struct ib_wc
*wc
);
113 static inline struct svc_rdma_recv_ctxt
*
114 svc_rdma_next_recv_ctxt(struct list_head
*list
)
116 return list_first_entry_or_null(list
, struct svc_rdma_recv_ctxt
,
120 static struct svc_rdma_recv_ctxt
*
121 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma
*rdma
)
123 struct svc_rdma_recv_ctxt
*ctxt
;
127 ctxt
= kmalloc(sizeof(*ctxt
), GFP_KERNEL
);
130 buffer
= kmalloc(rdma
->sc_max_req_size
, GFP_KERNEL
);
133 addr
= ib_dma_map_single(rdma
->sc_pd
->device
, buffer
,
134 rdma
->sc_max_req_size
, DMA_FROM_DEVICE
);
135 if (ib_dma_mapping_error(rdma
->sc_pd
->device
, addr
))
138 ctxt
->rc_recv_wr
.next
= NULL
;
139 ctxt
->rc_recv_wr
.wr_cqe
= &ctxt
->rc_cqe
;
140 ctxt
->rc_recv_wr
.sg_list
= &ctxt
->rc_recv_sge
;
141 ctxt
->rc_recv_wr
.num_sge
= 1;
142 ctxt
->rc_cqe
.done
= svc_rdma_wc_receive
;
143 ctxt
->rc_recv_sge
.addr
= addr
;
144 ctxt
->rc_recv_sge
.length
= rdma
->sc_max_req_size
;
145 ctxt
->rc_recv_sge
.lkey
= rdma
->sc_pd
->local_dma_lkey
;
146 ctxt
->rc_recv_buf
= buffer
;
147 ctxt
->rc_temp
= false;
158 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma
*rdma
,
159 struct svc_rdma_recv_ctxt
*ctxt
)
161 ib_dma_unmap_single(rdma
->sc_pd
->device
, ctxt
->rc_recv_sge
.addr
,
162 ctxt
->rc_recv_sge
.length
, DMA_FROM_DEVICE
);
163 kfree(ctxt
->rc_recv_buf
);
168 * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt
169 * @rdma: svcxprt_rdma being torn down
172 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma
*rdma
)
174 struct svc_rdma_recv_ctxt
*ctxt
;
176 while ((ctxt
= svc_rdma_next_recv_ctxt(&rdma
->sc_recv_ctxts
))) {
177 list_del(&ctxt
->rc_list
);
178 svc_rdma_recv_ctxt_destroy(rdma
, ctxt
);
182 static struct svc_rdma_recv_ctxt
*
183 svc_rdma_recv_ctxt_get(struct svcxprt_rdma
*rdma
)
185 struct svc_rdma_recv_ctxt
*ctxt
;
187 spin_lock(&rdma
->sc_recv_lock
);
188 ctxt
= svc_rdma_next_recv_ctxt(&rdma
->sc_recv_ctxts
);
191 list_del(&ctxt
->rc_list
);
192 spin_unlock(&rdma
->sc_recv_lock
);
195 ctxt
->rc_page_count
= 0;
199 spin_unlock(&rdma
->sc_recv_lock
);
201 ctxt
= svc_rdma_recv_ctxt_alloc(rdma
);
208 * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list
209 * @rdma: controlling svcxprt_rdma
210 * @ctxt: object to return to the free list
213 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma
*rdma
,
214 struct svc_rdma_recv_ctxt
*ctxt
)
218 for (i
= 0; i
< ctxt
->rc_page_count
; i
++)
219 put_page(ctxt
->rc_pages
[i
]);
221 if (!ctxt
->rc_temp
) {
222 spin_lock(&rdma
->sc_recv_lock
);
223 list_add(&ctxt
->rc_list
, &rdma
->sc_recv_ctxts
);
224 spin_unlock(&rdma
->sc_recv_lock
);
226 svc_rdma_recv_ctxt_destroy(rdma
, ctxt
);
230 * svc_rdma_release_rqst - Release transport-specific per-rqst resources
231 * @rqstp: svc_rqst being released
233 * Ensure that the recv_ctxt is released whether or not a Reply
234 * was sent. For example, the client could close the connection,
235 * or svc_process could drop an RPC, before the Reply is sent.
237 void svc_rdma_release_rqst(struct svc_rqst
*rqstp
)
239 struct svc_rdma_recv_ctxt
*ctxt
= rqstp
->rq_xprt_ctxt
;
240 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
241 struct svcxprt_rdma
*rdma
=
242 container_of(xprt
, struct svcxprt_rdma
, sc_xprt
);
244 rqstp
->rq_xprt_ctxt
= NULL
;
246 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
249 static int __svc_rdma_post_recv(struct svcxprt_rdma
*rdma
,
250 struct svc_rdma_recv_ctxt
*ctxt
)
254 svc_xprt_get(&rdma
->sc_xprt
);
255 ret
= ib_post_recv(rdma
->sc_qp
, &ctxt
->rc_recv_wr
, NULL
);
256 trace_svcrdma_post_recv(&ctxt
->rc_recv_wr
, ret
);
262 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
263 svc_xprt_put(&rdma
->sc_xprt
);
267 static int svc_rdma_post_recv(struct svcxprt_rdma
*rdma
)
269 struct svc_rdma_recv_ctxt
*ctxt
;
271 ctxt
= svc_rdma_recv_ctxt_get(rdma
);
274 return __svc_rdma_post_recv(rdma
, ctxt
);
278 * svc_rdma_post_recvs - Post initial set of Recv WRs
279 * @rdma: fresh svcxprt_rdma
281 * Returns true if successful, otherwise false.
283 bool svc_rdma_post_recvs(struct svcxprt_rdma
*rdma
)
285 struct svc_rdma_recv_ctxt
*ctxt
;
289 for (i
= 0; i
< rdma
->sc_max_requests
; i
++) {
290 ctxt
= svc_rdma_recv_ctxt_get(rdma
);
293 ctxt
->rc_temp
= true;
294 ret
= __svc_rdma_post_recv(rdma
, ctxt
);
296 pr_err("svcrdma: failure posting recv buffers: %d\n",
305 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
306 * @cq: Completion Queue context
307 * @wc: Work Completion object
309 * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that
310 * the Receive completion handler could be running.
312 static void svc_rdma_wc_receive(struct ib_cq
*cq
, struct ib_wc
*wc
)
314 struct svcxprt_rdma
*rdma
= cq
->cq_context
;
315 struct ib_cqe
*cqe
= wc
->wr_cqe
;
316 struct svc_rdma_recv_ctxt
*ctxt
;
318 trace_svcrdma_wc_receive(wc
);
320 /* WARNING: Only wc->wr_cqe and wc->status are reliable */
321 ctxt
= container_of(cqe
, struct svc_rdma_recv_ctxt
, rc_cqe
);
323 if (wc
->status
!= IB_WC_SUCCESS
)
326 if (svc_rdma_post_recv(rdma
))
329 /* All wc fields are now known to be valid */
330 ctxt
->rc_byte_len
= wc
->byte_len
;
331 ib_dma_sync_single_for_cpu(rdma
->sc_pd
->device
,
332 ctxt
->rc_recv_sge
.addr
,
333 wc
->byte_len
, DMA_FROM_DEVICE
);
335 spin_lock(&rdma
->sc_rq_dto_lock
);
336 list_add_tail(&ctxt
->rc_list
, &rdma
->sc_rq_dto_q
);
337 spin_unlock(&rdma
->sc_rq_dto_lock
);
338 set_bit(XPT_DATA
, &rdma
->sc_xprt
.xpt_flags
);
339 if (!test_bit(RDMAXPRT_CONN_PENDING
, &rdma
->sc_flags
))
340 svc_xprt_enqueue(&rdma
->sc_xprt
);
344 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
)
345 pr_err("svcrdma: Recv: %s (%u/0x%x)\n",
346 ib_wc_status_msg(wc
->status
),
347 wc
->status
, wc
->vendor_err
);
349 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
350 set_bit(XPT_CLOSE
, &rdma
->sc_xprt
.xpt_flags
);
351 svc_xprt_enqueue(&rdma
->sc_xprt
);
353 svc_xprt_put(&rdma
->sc_xprt
);
357 * svc_rdma_flush_recv_queues - Drain pending Receive work
358 * @rdma: svcxprt_rdma being shut down
361 void svc_rdma_flush_recv_queues(struct svcxprt_rdma
*rdma
)
363 struct svc_rdma_recv_ctxt
*ctxt
;
365 while ((ctxt
= svc_rdma_next_recv_ctxt(&rdma
->sc_read_complete_q
))) {
366 list_del(&ctxt
->rc_list
);
367 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
369 while ((ctxt
= svc_rdma_next_recv_ctxt(&rdma
->sc_rq_dto_q
))) {
370 list_del(&ctxt
->rc_list
);
371 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
375 static void svc_rdma_build_arg_xdr(struct svc_rqst
*rqstp
,
376 struct svc_rdma_recv_ctxt
*ctxt
)
378 struct xdr_buf
*arg
= &rqstp
->rq_arg
;
380 arg
->head
[0].iov_base
= ctxt
->rc_recv_buf
;
381 arg
->head
[0].iov_len
= ctxt
->rc_byte_len
;
382 arg
->tail
[0].iov_base
= NULL
;
383 arg
->tail
[0].iov_len
= 0;
386 arg
->buflen
= ctxt
->rc_byte_len
;
387 arg
->len
= ctxt
->rc_byte_len
;
390 /* This accommodates the largest possible Write chunk,
393 #define MAX_BYTES_WRITE_SEG ((u32)(RPCSVC_MAXPAGES << PAGE_SHIFT))
395 /* This accommodates the largest possible Position-Zero
396 * Read chunk or Reply chunk, in one segment.
398 #define MAX_BYTES_SPECIAL_SEG ((u32)((RPCSVC_MAXPAGES + 2) << PAGE_SHIFT))
400 /* Sanity check the Read list.
402 * Implementation limits:
403 * - This implementation supports only one Read chunk.
406 * - Read list does not overflow buffer.
407 * - Segment size limited by largest NFS data payload.
409 * The segment count is limited to how many segments can
410 * fit in the transport header without overflowing the
411 * buffer. That's about 40 Read segments for a 1KB inline
414 * Returns pointer to the following Write list.
416 static __be32
*xdr_check_read_list(__be32
*p
, const __be32
*end
)
422 while (*p
++ != xdr_zero
) {
424 position
= be32_to_cpup(p
++);
426 } else if (be32_to_cpup(p
++) != position
) {
430 if (be32_to_cpup(p
++) > MAX_BYTES_SPECIAL_SEG
)
440 /* The segment count is limited to how many segments can
441 * fit in the transport header without overflowing the
442 * buffer. That's about 60 Write segments for a 1KB inline
445 static __be32
*xdr_check_write_chunk(__be32
*p
, const __be32
*end
,
450 segcount
= be32_to_cpup(p
++);
451 for (i
= 0; i
< segcount
; i
++) {
453 if (be32_to_cpup(p
++) > maxlen
)
464 /* Sanity check the Write list.
466 * Implementation limits:
467 * - This implementation supports only one Write chunk.
470 * - Write list does not overflow buffer.
471 * - Segment size limited by largest NFS data payload.
473 * Returns pointer to the following Reply chunk.
475 static __be32
*xdr_check_write_list(__be32
*p
, const __be32
*end
)
480 while (*p
++ != xdr_zero
) {
481 p
= xdr_check_write_chunk(p
, end
, MAX_BYTES_WRITE_SEG
);
490 /* Sanity check the Reply chunk.
493 * - Reply chunk does not overflow buffer.
494 * - Segment size limited by largest NFS data payload.
496 * Returns pointer to the following RPC header.
498 static __be32
*xdr_check_reply_chunk(__be32
*p
, const __be32
*end
)
500 if (*p
++ != xdr_zero
) {
501 p
= xdr_check_write_chunk(p
, end
, MAX_BYTES_SPECIAL_SEG
);
508 /* On entry, xdr->head[0].iov_base points to first byte in the
509 * RPC-over-RDMA header.
511 * On successful exit, head[0] points to first byte past the
512 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
513 * The length of the RPC-over-RDMA header is returned.
516 * - The transport header is entirely contained in the head iovec.
518 static int svc_rdma_xdr_decode_req(struct xdr_buf
*rq_arg
)
520 __be32
*p
, *end
, *rdma_argp
;
521 unsigned int hdr_len
;
523 /* Verify that there's enough bytes for header + something */
524 if (rq_arg
->len
<= RPCRDMA_HDRLEN_ERR
)
527 rdma_argp
= rq_arg
->head
[0].iov_base
;
528 if (*(rdma_argp
+ 1) != rpcrdma_version
)
531 switch (*(rdma_argp
+ 3)) {
547 end
= (__be32
*)((unsigned long)rdma_argp
+ rq_arg
->len
);
548 p
= xdr_check_read_list(rdma_argp
+ 4, end
);
551 p
= xdr_check_write_list(p
, end
);
554 p
= xdr_check_reply_chunk(p
, end
);
560 rq_arg
->head
[0].iov_base
= p
;
561 hdr_len
= (unsigned long)p
- (unsigned long)rdma_argp
;
562 rq_arg
->head
[0].iov_len
-= hdr_len
;
563 rq_arg
->len
-= hdr_len
;
564 trace_svcrdma_decode_rqst(rdma_argp
, hdr_len
);
568 trace_svcrdma_decode_short(rq_arg
->len
);
572 trace_svcrdma_decode_badvers(rdma_argp
);
573 return -EPROTONOSUPPORT
;
576 trace_svcrdma_decode_drop(rdma_argp
);
580 trace_svcrdma_decode_badproc(rdma_argp
);
584 trace_svcrdma_decode_parse(rdma_argp
);
588 static void rdma_read_complete(struct svc_rqst
*rqstp
,
589 struct svc_rdma_recv_ctxt
*head
)
593 /* Move Read chunk pages to rqstp so that they will be released
594 * when svc_process is done with them.
596 for (page_no
= 0; page_no
< head
->rc_page_count
; page_no
++) {
597 put_page(rqstp
->rq_pages
[page_no
]);
598 rqstp
->rq_pages
[page_no
] = head
->rc_pages
[page_no
];
600 head
->rc_page_count
= 0;
602 /* Point rq_arg.pages past header */
603 rqstp
->rq_arg
.pages
= &rqstp
->rq_pages
[head
->rc_hdr_count
];
604 rqstp
->rq_arg
.page_len
= head
->rc_arg
.page_len
;
606 /* rq_respages starts after the last arg page */
607 rqstp
->rq_respages
= &rqstp
->rq_pages
[page_no
];
608 rqstp
->rq_next_page
= rqstp
->rq_respages
+ 1;
610 /* Rebuild rq_arg head and tail. */
611 rqstp
->rq_arg
.head
[0] = head
->rc_arg
.head
[0];
612 rqstp
->rq_arg
.tail
[0] = head
->rc_arg
.tail
[0];
613 rqstp
->rq_arg
.len
= head
->rc_arg
.len
;
614 rqstp
->rq_arg
.buflen
= head
->rc_arg
.buflen
;
617 static void svc_rdma_send_error(struct svcxprt_rdma
*xprt
,
618 __be32
*rdma_argp
, int status
)
620 struct svc_rdma_send_ctxt
*ctxt
;
625 ctxt
= svc_rdma_send_ctxt_get(xprt
);
629 p
= ctxt
->sc_xprt_buf
;
631 *p
++ = *(rdma_argp
+ 1);
632 *p
++ = xprt
->sc_fc_credits
;
635 case -EPROTONOSUPPORT
:
637 *p
++ = rpcrdma_version
;
638 *p
++ = rpcrdma_version
;
639 trace_svcrdma_err_vers(*rdma_argp
);
643 trace_svcrdma_err_chunk(*rdma_argp
);
645 length
= (unsigned long)p
- (unsigned long)ctxt
->sc_xprt_buf
;
646 svc_rdma_sync_reply_hdr(xprt
, ctxt
, length
);
648 ctxt
->sc_send_wr
.opcode
= IB_WR_SEND
;
649 ret
= svc_rdma_send(xprt
, &ctxt
->sc_send_wr
);
651 svc_rdma_send_ctxt_put(xprt
, ctxt
);
654 /* By convention, backchannel calls arrive via rdma_msg type
655 * messages, and never populate the chunk lists. This makes
656 * the RPC/RDMA header small and fixed in size, so it is
657 * straightforward to check the RPC header's direction field.
659 static bool svc_rdma_is_backchannel_reply(struct svc_xprt
*xprt
,
664 if (!xprt
->xpt_bc_xprt
)
668 if (*p
++ != rdma_msg
)
671 if (*p
++ != xdr_zero
)
673 if (*p
++ != xdr_zero
)
675 if (*p
++ != xdr_zero
)
679 if (*p
++ != *rdma_resp
)
682 if (*p
== cpu_to_be32(RPC_CALL
))
689 * svc_rdma_recvfrom - Receive an RPC call
690 * @rqstp: request structure into which to receive an RPC Call
693 * The positive number of bytes in the RPC Call message,
694 * %0 if there were no Calls ready to return,
695 * %-EINVAL if the Read chunk data is too large,
696 * %-ENOMEM if rdma_rw context pool was exhausted,
697 * %-ENOTCONN if posting failed (connection is lost),
698 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
700 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
701 * when there are no remaining ctxt's to process.
703 * The next ctxt is removed from the "receive" lists.
705 * - If the ctxt completes a Read, then finish assembling the Call
706 * message and return the number of bytes in the message.
708 * - If the ctxt completes a Receive, then construct the Call
709 * message from the contents of the Receive buffer.
711 * - If there are no Read chunks in this message, then finish
712 * assembling the Call message and return the number of bytes
715 * - If there are Read chunks in this message, post Read WRs to
716 * pull that payload and return 0.
718 int svc_rdma_recvfrom(struct svc_rqst
*rqstp
)
720 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
721 struct svcxprt_rdma
*rdma_xprt
=
722 container_of(xprt
, struct svcxprt_rdma
, sc_xprt
);
723 struct svc_rdma_recv_ctxt
*ctxt
;
727 rqstp
->rq_xprt_ctxt
= NULL
;
729 spin_lock(&rdma_xprt
->sc_rq_dto_lock
);
730 ctxt
= svc_rdma_next_recv_ctxt(&rdma_xprt
->sc_read_complete_q
);
732 list_del(&ctxt
->rc_list
);
733 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
734 rdma_read_complete(rqstp
, ctxt
);
737 ctxt
= svc_rdma_next_recv_ctxt(&rdma_xprt
->sc_rq_dto_q
);
739 /* No new incoming requests, terminate the loop */
740 clear_bit(XPT_DATA
, &xprt
->xpt_flags
);
741 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
744 list_del(&ctxt
->rc_list
);
745 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
747 atomic_inc(&rdma_stat_recv
);
749 svc_rdma_build_arg_xdr(rqstp
, ctxt
);
751 /* Prevent svc_xprt_release from releasing pages in rq_pages
752 * if we return 0 or an error.
754 rqstp
->rq_respages
= rqstp
->rq_pages
;
755 rqstp
->rq_next_page
= rqstp
->rq_respages
;
757 p
= (__be32
*)rqstp
->rq_arg
.head
[0].iov_base
;
758 ret
= svc_rdma_xdr_decode_req(&rqstp
->rq_arg
);
763 rqstp
->rq_xprt_hlen
= ret
;
765 if (svc_rdma_is_backchannel_reply(xprt
, p
)) {
766 ret
= svc_rdma_handle_bc_reply(xprt
->xpt_bc_xprt
, p
,
768 svc_rdma_recv_ctxt_put(rdma_xprt
, ctxt
);
772 p
+= rpcrdma_fixed_maxsz
;
777 rqstp
->rq_xprt_ctxt
= ctxt
;
778 rqstp
->rq_prot
= IPPROTO_MAX
;
779 svc_xprt_copy_addrs(rqstp
, xprt
);
780 return rqstp
->rq_arg
.len
;
783 ret
= svc_rdma_recv_read_chunk(rdma_xprt
, rqstp
, ctxt
, p
);
789 svc_rdma_send_error(rdma_xprt
, p
, ret
);
790 svc_rdma_recv_ctxt_put(rdma_xprt
, ctxt
);
795 svc_rdma_send_error(rdma_xprt
, p
, ret
);
796 svc_rdma_recv_ctxt_put(rdma_xprt
, ctxt
);
800 svc_rdma_recv_ctxt_put(rdma_xprt
, ctxt
);