hwmon/f71882fg: Set platform drvdata to NULL later
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
blob6ad46d761732446fcbdef9078ccd521e8451d345
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
42 struct cmos_rtc {
43 struct rtc_device *rtc;
44 struct device *dev;
45 int irq;
46 struct resource *iomem;
48 void (*wake_on)(struct device *);
49 void (*wake_off)(struct device *);
51 u8 enabled_wake;
52 u8 suspend_ctrl;
54 /* newer hardware extends the original register set */
55 u8 day_alrm;
56 u8 mon_alrm;
57 u8 century;
60 /* both platform and pnp busses use negative numbers for invalid irqs */
61 #define is_valid_irq(n) ((n) >= 0)
63 static const char driver_name[] = "rtc_cmos";
65 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
66 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
67 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
69 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
71 static inline int is_intr(u8 rtc_intr)
73 if (!(rtc_intr & RTC_IRQF))
74 return 0;
75 return rtc_intr & RTC_IRQMASK;
78 /*----------------------------------------------------------------*/
80 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
81 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
82 * used in a broken "legacy replacement" mode. The breakage includes
83 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
84 * other (better) use.
86 * When that broken mode is in use, platform glue provides a partial
87 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
88 * want to use HPET for anything except those IRQs though...
90 #ifdef CONFIG_HPET_EMULATE_RTC
91 #include <asm/hpet.h>
92 #else
94 static inline int is_hpet_enabled(void)
96 return 0;
99 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
101 return 0;
104 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
106 return 0;
109 static inline int
110 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
112 return 0;
115 static inline int hpet_set_periodic_freq(unsigned long freq)
117 return 0;
120 static inline int hpet_rtc_dropped_irq(void)
122 return 0;
125 static inline int hpet_rtc_timer_init(void)
127 return 0;
130 extern irq_handler_t hpet_rtc_interrupt;
132 static inline int hpet_register_irq_handler(irq_handler_t handler)
134 return 0;
137 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
139 return 0;
142 #endif
144 /*----------------------------------------------------------------*/
146 static int cmos_read_time(struct device *dev, struct rtc_time *t)
148 /* REVISIT: if the clock has a "century" register, use
149 * that instead of the heuristic in get_rtc_time().
150 * That'll make Y3K compatility (year > 2070) easy!
152 get_rtc_time(t);
153 return 0;
156 static int cmos_set_time(struct device *dev, struct rtc_time *t)
158 /* REVISIT: set the "century" register if available
160 * NOTE: this ignores the issue whereby updating the seconds
161 * takes effect exactly 500ms after we write the register.
162 * (Also queueing and other delays before we get this far.)
164 return set_rtc_time(t);
167 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
169 struct cmos_rtc *cmos = dev_get_drvdata(dev);
170 unsigned char rtc_control;
172 if (!is_valid_irq(cmos->irq))
173 return -EIO;
175 /* Basic alarms only support hour, minute, and seconds fields.
176 * Some also support day and month, for alarms up to a year in
177 * the future.
179 t->time.tm_mday = -1;
180 t->time.tm_mon = -1;
182 spin_lock_irq(&rtc_lock);
183 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
184 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
185 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
187 if (cmos->day_alrm) {
188 /* ignore upper bits on readback per ACPI spec */
189 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
190 if (!t->time.tm_mday)
191 t->time.tm_mday = -1;
193 if (cmos->mon_alrm) {
194 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
195 if (!t->time.tm_mon)
196 t->time.tm_mon = -1;
200 rtc_control = CMOS_READ(RTC_CONTROL);
201 spin_unlock_irq(&rtc_lock);
203 /* REVISIT this assumes PC style usage: always BCD */
205 if (((unsigned)t->time.tm_sec) < 0x60)
206 t->time.tm_sec = BCD2BIN(t->time.tm_sec);
207 else
208 t->time.tm_sec = -1;
209 if (((unsigned)t->time.tm_min) < 0x60)
210 t->time.tm_min = BCD2BIN(t->time.tm_min);
211 else
212 t->time.tm_min = -1;
213 if (((unsigned)t->time.tm_hour) < 0x24)
214 t->time.tm_hour = BCD2BIN(t->time.tm_hour);
215 else
216 t->time.tm_hour = -1;
218 if (cmos->day_alrm) {
219 if (((unsigned)t->time.tm_mday) <= 0x31)
220 t->time.tm_mday = BCD2BIN(t->time.tm_mday);
221 else
222 t->time.tm_mday = -1;
223 if (cmos->mon_alrm) {
224 if (((unsigned)t->time.tm_mon) <= 0x12)
225 t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
226 else
227 t->time.tm_mon = -1;
230 t->time.tm_year = -1;
232 t->enabled = !!(rtc_control & RTC_AIE);
233 t->pending = 0;
235 return 0;
238 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
240 unsigned char rtc_intr;
242 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
243 * allegedly some older rtcs need that to handle irqs properly
245 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
247 if (is_hpet_enabled())
248 return;
250 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
251 if (is_intr(rtc_intr))
252 rtc_update_irq(cmos->rtc, 1, rtc_intr);
255 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
257 unsigned char rtc_control;
259 /* flush any pending IRQ status, notably for update irqs,
260 * before we enable new IRQs
262 rtc_control = CMOS_READ(RTC_CONTROL);
263 cmos_checkintr(cmos, rtc_control);
265 rtc_control |= mask;
266 CMOS_WRITE(rtc_control, RTC_CONTROL);
267 hpet_set_rtc_irq_bit(mask);
269 cmos_checkintr(cmos, rtc_control);
272 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
274 unsigned char rtc_control;
276 rtc_control = CMOS_READ(RTC_CONTROL);
277 rtc_control &= ~mask;
278 CMOS_WRITE(rtc_control, RTC_CONTROL);
279 hpet_mask_rtc_irq_bit(mask);
281 cmos_checkintr(cmos, rtc_control);
284 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
286 struct cmos_rtc *cmos = dev_get_drvdata(dev);
287 unsigned char mon, mday, hrs, min, sec;
289 if (!is_valid_irq(cmos->irq))
290 return -EIO;
292 /* REVISIT this assumes PC style usage: always BCD */
294 /* Writing 0xff means "don't care" or "match all". */
296 mon = t->time.tm_mon + 1;
297 mon = (mon <= 12) ? BIN2BCD(mon) : 0xff;
299 mday = t->time.tm_mday;
300 mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
302 hrs = t->time.tm_hour;
303 hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
305 min = t->time.tm_min;
306 min = (min < 60) ? BIN2BCD(min) : 0xff;
308 sec = t->time.tm_sec;
309 sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
311 spin_lock_irq(&rtc_lock);
313 /* next rtc irq must not be from previous alarm setting */
314 cmos_irq_disable(cmos, RTC_AIE);
316 /* update alarm */
317 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
318 CMOS_WRITE(min, RTC_MINUTES_ALARM);
319 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
321 /* the system may support an "enhanced" alarm */
322 if (cmos->day_alrm) {
323 CMOS_WRITE(mday, cmos->day_alrm);
324 if (cmos->mon_alrm)
325 CMOS_WRITE(mon, cmos->mon_alrm);
328 /* FIXME the HPET alarm glue currently ignores day_alrm
329 * and mon_alrm ...
331 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
333 if (t->enabled)
334 cmos_irq_enable(cmos, RTC_AIE);
336 spin_unlock_irq(&rtc_lock);
338 return 0;
341 static int cmos_irq_set_freq(struct device *dev, int freq)
343 struct cmos_rtc *cmos = dev_get_drvdata(dev);
344 int f;
345 unsigned long flags;
347 if (!is_valid_irq(cmos->irq))
348 return -ENXIO;
350 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
351 f = ffs(freq);
352 if (f-- > 16)
353 return -EINVAL;
354 f = 16 - f;
356 spin_lock_irqsave(&rtc_lock, flags);
357 hpet_set_periodic_freq(freq);
358 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
359 spin_unlock_irqrestore(&rtc_lock, flags);
361 return 0;
364 static int cmos_irq_set_state(struct device *dev, int enabled)
366 struct cmos_rtc *cmos = dev_get_drvdata(dev);
367 unsigned long flags;
369 if (!is_valid_irq(cmos->irq))
370 return -ENXIO;
372 spin_lock_irqsave(&rtc_lock, flags);
374 if (enabled)
375 cmos_irq_enable(cmos, RTC_PIE);
376 else
377 cmos_irq_disable(cmos, RTC_PIE);
379 spin_unlock_irqrestore(&rtc_lock, flags);
380 return 0;
383 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
385 static int
386 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
388 struct cmos_rtc *cmos = dev_get_drvdata(dev);
389 unsigned long flags;
391 switch (cmd) {
392 case RTC_AIE_OFF:
393 case RTC_AIE_ON:
394 case RTC_UIE_OFF:
395 case RTC_UIE_ON:
396 if (!is_valid_irq(cmos->irq))
397 return -EINVAL;
398 break;
399 /* PIE ON/OFF is handled by cmos_irq_set_state() */
400 default:
401 return -ENOIOCTLCMD;
404 spin_lock_irqsave(&rtc_lock, flags);
405 switch (cmd) {
406 case RTC_AIE_OFF: /* alarm off */
407 cmos_irq_disable(cmos, RTC_AIE);
408 break;
409 case RTC_AIE_ON: /* alarm on */
410 cmos_irq_enable(cmos, RTC_AIE);
411 break;
412 case RTC_UIE_OFF: /* update off */
413 cmos_irq_disable(cmos, RTC_UIE);
414 break;
415 case RTC_UIE_ON: /* update on */
416 cmos_irq_enable(cmos, RTC_UIE);
417 break;
419 spin_unlock_irqrestore(&rtc_lock, flags);
420 return 0;
423 #else
424 #define cmos_rtc_ioctl NULL
425 #endif
427 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
429 static int cmos_procfs(struct device *dev, struct seq_file *seq)
431 struct cmos_rtc *cmos = dev_get_drvdata(dev);
432 unsigned char rtc_control, valid;
434 spin_lock_irq(&rtc_lock);
435 rtc_control = CMOS_READ(RTC_CONTROL);
436 valid = CMOS_READ(RTC_VALID);
437 spin_unlock_irq(&rtc_lock);
439 /* NOTE: at least ICH6 reports battery status using a different
440 * (non-RTC) bit; and SQWE is ignored on many current systems.
442 return seq_printf(seq,
443 "periodic_IRQ\t: %s\n"
444 "update_IRQ\t: %s\n"
445 "HPET_emulated\t: %s\n"
446 // "square_wave\t: %s\n"
447 // "BCD\t\t: %s\n"
448 "DST_enable\t: %s\n"
449 "periodic_freq\t: %d\n"
450 "batt_status\t: %s\n",
451 (rtc_control & RTC_PIE) ? "yes" : "no",
452 (rtc_control & RTC_UIE) ? "yes" : "no",
453 is_hpet_enabled() ? "yes" : "no",
454 // (rtc_control & RTC_SQWE) ? "yes" : "no",
455 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
456 (rtc_control & RTC_DST_EN) ? "yes" : "no",
457 cmos->rtc->irq_freq,
458 (valid & RTC_VRT) ? "okay" : "dead");
461 #else
462 #define cmos_procfs NULL
463 #endif
465 static const struct rtc_class_ops cmos_rtc_ops = {
466 .ioctl = cmos_rtc_ioctl,
467 .read_time = cmos_read_time,
468 .set_time = cmos_set_time,
469 .read_alarm = cmos_read_alarm,
470 .set_alarm = cmos_set_alarm,
471 .proc = cmos_procfs,
472 .irq_set_freq = cmos_irq_set_freq,
473 .irq_set_state = cmos_irq_set_state,
476 /*----------------------------------------------------------------*/
479 * All these chips have at least 64 bytes of address space, shared by
480 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
481 * by boot firmware. Modern chips have 128 or 256 bytes.
484 #define NVRAM_OFFSET (RTC_REG_D + 1)
486 static ssize_t
487 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
488 char *buf, loff_t off, size_t count)
490 int retval;
492 if (unlikely(off >= attr->size))
493 return 0;
494 if ((off + count) > attr->size)
495 count = attr->size - off;
497 spin_lock_irq(&rtc_lock);
498 for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++)
499 *buf++ = CMOS_READ(off);
500 spin_unlock_irq(&rtc_lock);
502 return retval;
505 static ssize_t
506 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
507 char *buf, loff_t off, size_t count)
509 struct cmos_rtc *cmos;
510 int retval;
512 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
513 if (unlikely(off >= attr->size))
514 return -EFBIG;
515 if ((off + count) > attr->size)
516 count = attr->size - off;
518 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
519 * checksum on part of the NVRAM data. That's currently ignored
520 * here. If userspace is smart enough to know what fields of
521 * NVRAM to update, updating checksums is also part of its job.
523 spin_lock_irq(&rtc_lock);
524 for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++) {
525 /* don't trash RTC registers */
526 if (off == cmos->day_alrm
527 || off == cmos->mon_alrm
528 || off == cmos->century)
529 buf++;
530 else
531 CMOS_WRITE(*buf++, off);
533 spin_unlock_irq(&rtc_lock);
535 return retval;
538 static struct bin_attribute nvram = {
539 .attr = {
540 .name = "nvram",
541 .mode = S_IRUGO | S_IWUSR,
542 .owner = THIS_MODULE,
545 .read = cmos_nvram_read,
546 .write = cmos_nvram_write,
547 /* size gets set up later */
550 /*----------------------------------------------------------------*/
552 static struct cmos_rtc cmos_rtc;
554 static irqreturn_t cmos_interrupt(int irq, void *p)
556 u8 irqstat;
557 u8 rtc_control;
559 spin_lock(&rtc_lock);
561 /* When the HPET interrupt handler calls us, the interrupt
562 * status is passed as arg1 instead of the irq number. But
563 * always clear irq status, even when HPET is in the way.
565 * Note that HPET and RTC are almost certainly out of phase,
566 * giving different IRQ status ...
568 irqstat = CMOS_READ(RTC_INTR_FLAGS);
569 rtc_control = CMOS_READ(RTC_CONTROL);
570 if (is_hpet_enabled())
571 irqstat = (unsigned long)irq & 0xF0;
572 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
574 /* All Linux RTC alarms should be treated as if they were oneshot.
575 * Similar code may be needed in system wakeup paths, in case the
576 * alarm woke the system.
578 if (irqstat & RTC_AIE) {
579 rtc_control &= ~RTC_AIE;
580 CMOS_WRITE(rtc_control, RTC_CONTROL);
581 hpet_mask_rtc_irq_bit(RTC_AIE);
583 CMOS_READ(RTC_INTR_FLAGS);
585 spin_unlock(&rtc_lock);
587 if (is_intr(irqstat)) {
588 rtc_update_irq(p, 1, irqstat);
589 return IRQ_HANDLED;
590 } else
591 return IRQ_NONE;
594 #ifdef CONFIG_PNP
595 #define INITSECTION
597 #else
598 #define INITSECTION __init
599 #endif
601 static int INITSECTION
602 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
604 struct cmos_rtc_board_info *info = dev->platform_data;
605 int retval = 0;
606 unsigned char rtc_control;
607 unsigned address_space;
609 /* there can be only one ... */
610 if (cmos_rtc.dev)
611 return -EBUSY;
613 if (!ports)
614 return -ENODEV;
616 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
618 * REVISIT non-x86 systems may instead use memory space resources
619 * (needing ioremap etc), not i/o space resources like this ...
621 ports = request_region(ports->start,
622 ports->end + 1 - ports->start,
623 driver_name);
624 if (!ports) {
625 dev_dbg(dev, "i/o registers already in use\n");
626 return -EBUSY;
629 cmos_rtc.irq = rtc_irq;
630 cmos_rtc.iomem = ports;
632 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
633 * driver did, but don't reject unknown configs. Old hardware
634 * won't address 128 bytes, and for now we ignore the way newer
635 * chips can address 256 bytes (using two more i/o ports).
637 #if defined(CONFIG_ATARI)
638 address_space = 64;
639 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__)
640 address_space = 128;
641 #else
642 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
643 address_space = 128;
644 #endif
646 /* For ACPI systems extension info comes from the FADT. On others,
647 * board specific setup provides it as appropriate. Systems where
648 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
649 * some almost-clones) can provide hooks to make that behave.
651 * Note that ACPI doesn't preclude putting these registers into
652 * "extended" areas of the chip, including some that we won't yet
653 * expect CMOS_READ and friends to handle.
655 if (info) {
656 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
657 cmos_rtc.day_alrm = info->rtc_day_alarm;
658 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
659 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
660 if (info->rtc_century && info->rtc_century < 128)
661 cmos_rtc.century = info->rtc_century;
663 if (info->wake_on && info->wake_off) {
664 cmos_rtc.wake_on = info->wake_on;
665 cmos_rtc.wake_off = info->wake_off;
669 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
670 &cmos_rtc_ops, THIS_MODULE);
671 if (IS_ERR(cmos_rtc.rtc)) {
672 retval = PTR_ERR(cmos_rtc.rtc);
673 goto cleanup0;
676 cmos_rtc.dev = dev;
677 dev_set_drvdata(dev, &cmos_rtc);
678 rename_region(ports, cmos_rtc.rtc->dev.bus_id);
680 spin_lock_irq(&rtc_lock);
682 /* force periodic irq to CMOS reset default of 1024Hz;
684 * REVISIT it's been reported that at least one x86_64 ALI mobo
685 * doesn't use 32KHz here ... for portability we might need to
686 * do something about other clock frequencies.
688 cmos_rtc.rtc->irq_freq = 1024;
689 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
690 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
692 /* disable irqs */
693 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
695 rtc_control = CMOS_READ(RTC_CONTROL);
697 spin_unlock_irq(&rtc_lock);
699 /* FIXME teach the alarm code how to handle binary mode;
700 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
702 if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
703 dev_dbg(dev, "only 24-hr BCD mode supported\n");
704 retval = -ENXIO;
705 goto cleanup1;
708 if (is_valid_irq(rtc_irq)) {
709 irq_handler_t rtc_cmos_int_handler;
711 if (is_hpet_enabled()) {
712 int err;
714 rtc_cmos_int_handler = hpet_rtc_interrupt;
715 err = hpet_register_irq_handler(cmos_interrupt);
716 if (err != 0) {
717 printk(KERN_WARNING "hpet_register_irq_handler "
718 " failed in rtc_init().");
719 goto cleanup1;
721 } else
722 rtc_cmos_int_handler = cmos_interrupt;
724 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
725 IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
726 cmos_rtc.rtc);
727 if (retval < 0) {
728 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
729 goto cleanup1;
732 hpet_rtc_timer_init();
734 /* export at least the first block of NVRAM */
735 nvram.size = address_space - NVRAM_OFFSET;
736 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
737 if (retval < 0) {
738 dev_dbg(dev, "can't create nvram file? %d\n", retval);
739 goto cleanup2;
742 pr_info("%s: alarms up to one %s%s%s\n",
743 cmos_rtc.rtc->dev.bus_id,
744 is_valid_irq(rtc_irq)
745 ? (cmos_rtc.mon_alrm
746 ? "year"
747 : (cmos_rtc.day_alrm
748 ? "month" : "day"))
749 : "no",
750 cmos_rtc.century ? ", y3k" : "",
751 is_hpet_enabled() ? ", hpet irqs" : "");
753 return 0;
755 cleanup2:
756 if (is_valid_irq(rtc_irq))
757 free_irq(rtc_irq, cmos_rtc.rtc);
758 cleanup1:
759 cmos_rtc.dev = NULL;
760 rtc_device_unregister(cmos_rtc.rtc);
761 cleanup0:
762 release_region(ports->start, ports->end + 1 - ports->start);
763 return retval;
766 static void cmos_do_shutdown(void)
768 spin_lock_irq(&rtc_lock);
769 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
770 spin_unlock_irq(&rtc_lock);
773 static void __exit cmos_do_remove(struct device *dev)
775 struct cmos_rtc *cmos = dev_get_drvdata(dev);
776 struct resource *ports;
778 cmos_do_shutdown();
780 sysfs_remove_bin_file(&dev->kobj, &nvram);
782 if (is_valid_irq(cmos->irq)) {
783 free_irq(cmos->irq, cmos->rtc);
784 hpet_unregister_irq_handler(cmos_interrupt);
787 rtc_device_unregister(cmos->rtc);
788 cmos->rtc = NULL;
790 ports = cmos->iomem;
791 release_region(ports->start, ports->end + 1 - ports->start);
792 cmos->iomem = NULL;
794 cmos->dev = NULL;
795 dev_set_drvdata(dev, NULL);
798 #ifdef CONFIG_PM
800 static int cmos_suspend(struct device *dev, pm_message_t mesg)
802 struct cmos_rtc *cmos = dev_get_drvdata(dev);
803 unsigned char tmp;
805 /* only the alarm might be a wakeup event source */
806 spin_lock_irq(&rtc_lock);
807 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
808 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
809 unsigned char mask;
811 if (device_may_wakeup(dev))
812 mask = RTC_IRQMASK & ~RTC_AIE;
813 else
814 mask = RTC_IRQMASK;
815 tmp &= ~mask;
816 CMOS_WRITE(tmp, RTC_CONTROL);
817 hpet_mask_rtc_irq_bit(mask);
819 cmos_checkintr(cmos, tmp);
821 spin_unlock_irq(&rtc_lock);
823 if (tmp & RTC_AIE) {
824 cmos->enabled_wake = 1;
825 if (cmos->wake_on)
826 cmos->wake_on(dev);
827 else
828 enable_irq_wake(cmos->irq);
831 pr_debug("%s: suspend%s, ctrl %02x\n",
832 cmos_rtc.rtc->dev.bus_id,
833 (tmp & RTC_AIE) ? ", alarm may wake" : "",
834 tmp);
836 return 0;
839 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
840 * after a detour through G3 "mechanical off", although the ACPI spec
841 * says wakeup should only work from G1/S4 "hibernate". To most users,
842 * distinctions between S4 and S5 are pointless. So when the hardware
843 * allows, don't draw that distinction.
845 static inline int cmos_poweroff(struct device *dev)
847 return cmos_suspend(dev, PMSG_HIBERNATE);
850 static int cmos_resume(struct device *dev)
852 struct cmos_rtc *cmos = dev_get_drvdata(dev);
853 unsigned char tmp = cmos->suspend_ctrl;
855 /* re-enable any irqs previously active */
856 if (tmp & RTC_IRQMASK) {
857 unsigned char mask;
859 if (cmos->enabled_wake) {
860 if (cmos->wake_off)
861 cmos->wake_off(dev);
862 else
863 disable_irq_wake(cmos->irq);
864 cmos->enabled_wake = 0;
867 spin_lock_irq(&rtc_lock);
868 do {
869 CMOS_WRITE(tmp, RTC_CONTROL);
870 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
872 mask = CMOS_READ(RTC_INTR_FLAGS);
873 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
874 if (!is_hpet_enabled() || !is_intr(mask))
875 break;
877 /* force one-shot behavior if HPET blocked
878 * the wake alarm's irq
880 rtc_update_irq(cmos->rtc, 1, mask);
881 tmp &= ~RTC_AIE;
882 hpet_mask_rtc_irq_bit(RTC_AIE);
883 } while (mask & RTC_AIE);
884 spin_unlock_irq(&rtc_lock);
887 pr_debug("%s: resume, ctrl %02x\n",
888 cmos_rtc.rtc->dev.bus_id,
889 tmp);
891 return 0;
894 #else
895 #define cmos_suspend NULL
896 #define cmos_resume NULL
898 static inline int cmos_poweroff(struct device *dev)
900 return -ENOSYS;
903 #endif
905 /*----------------------------------------------------------------*/
907 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
908 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
909 * probably list them in similar PNPBIOS tables; so PNP is more common.
911 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
912 * predate even PNPBIOS should set up platform_bus devices.
915 #ifdef CONFIG_PNP
917 #include <linux/pnp.h>
919 static int __devinit
920 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
922 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
923 /* Some machines contain a PNP entry for the RTC, but
924 * don't define the IRQ. It should always be safe to
925 * hardcode it in these cases
927 return cmos_do_probe(&pnp->dev,
928 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
929 else
930 return cmos_do_probe(&pnp->dev,
931 pnp_get_resource(pnp, IORESOURCE_IO, 0),
932 pnp_irq(pnp, 0));
935 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
937 cmos_do_remove(&pnp->dev);
940 #ifdef CONFIG_PM
942 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
944 return cmos_suspend(&pnp->dev, mesg);
947 static int cmos_pnp_resume(struct pnp_dev *pnp)
949 return cmos_resume(&pnp->dev);
952 #else
953 #define cmos_pnp_suspend NULL
954 #define cmos_pnp_resume NULL
955 #endif
957 static void cmos_pnp_shutdown(struct device *pdev)
959 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
960 return;
962 cmos_do_shutdown();
965 static const struct pnp_device_id rtc_ids[] = {
966 { .id = "PNP0b00", },
967 { .id = "PNP0b01", },
968 { .id = "PNP0b02", },
969 { },
971 MODULE_DEVICE_TABLE(pnp, rtc_ids);
973 static struct pnp_driver cmos_pnp_driver = {
974 .name = (char *) driver_name,
975 .id_table = rtc_ids,
976 .probe = cmos_pnp_probe,
977 .remove = __exit_p(cmos_pnp_remove),
979 /* flag ensures resume() gets called, and stops syslog spam */
980 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
981 .suspend = cmos_pnp_suspend,
982 .resume = cmos_pnp_resume,
983 .driver = {
984 .name = (char *)driver_name,
985 .shutdown = cmos_pnp_shutdown,
989 #endif /* CONFIG_PNP */
991 /*----------------------------------------------------------------*/
993 /* Platform setup should have set up an RTC device, when PNP is
994 * unavailable ... this could happen even on (older) PCs.
997 static int __init cmos_platform_probe(struct platform_device *pdev)
999 return cmos_do_probe(&pdev->dev,
1000 platform_get_resource(pdev, IORESOURCE_IO, 0),
1001 platform_get_irq(pdev, 0));
1004 static int __exit cmos_platform_remove(struct platform_device *pdev)
1006 cmos_do_remove(&pdev->dev);
1007 return 0;
1010 static void cmos_platform_shutdown(struct platform_device *pdev)
1012 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1013 return;
1015 cmos_do_shutdown();
1018 /* work with hotplug and coldplug */
1019 MODULE_ALIAS("platform:rtc_cmos");
1021 static struct platform_driver cmos_platform_driver = {
1022 .remove = __exit_p(cmos_platform_remove),
1023 .shutdown = cmos_platform_shutdown,
1024 .driver = {
1025 .name = (char *) driver_name,
1026 .suspend = cmos_suspend,
1027 .resume = cmos_resume,
1031 static int __init cmos_init(void)
1033 int retval = 0;
1035 #ifdef CONFIG_PNP
1036 pnp_register_driver(&cmos_pnp_driver);
1037 #endif
1039 if (!cmos_rtc.dev)
1040 retval = platform_driver_probe(&cmos_platform_driver,
1041 cmos_platform_probe);
1043 if (retval == 0)
1044 return 0;
1046 #ifdef CONFIG_PNP
1047 pnp_unregister_driver(&cmos_pnp_driver);
1048 #endif
1049 return retval;
1051 module_init(cmos_init);
1053 static void __exit cmos_exit(void)
1055 #ifdef CONFIG_PNP
1056 pnp_unregister_driver(&cmos_pnp_driver);
1057 #endif
1058 platform_driver_unregister(&cmos_platform_driver);
1060 module_exit(cmos_exit);
1063 MODULE_AUTHOR("David Brownell");
1064 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1065 MODULE_LICENSE("GPL");