2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock
);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node
);
78 EXPORT_PER_CPU_SYMBOL(numa_node
);
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
90 int _node_numa_mem_
[MAX_NUMNODES
];
94 * Array of node states.
96 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
97 [N_POSSIBLE
] = NODE_MASK_ALL
,
98 [N_ONLINE
] = { { [0] = 1UL } },
100 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY
] = { { [0] = 1UL } },
107 [N_CPU
] = { { [0] = 1UL } },
110 EXPORT_SYMBOL(node_states
);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock
);
115 unsigned long totalram_pages __read_mostly
;
116 unsigned long totalreserve_pages __read_mostly
;
117 unsigned long totalcma_pages __read_mostly
;
119 int percpu_pagelist_fraction
;
120 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
130 static inline int get_pcppage_migratetype(struct page
*page
)
135 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
137 page
->index
= migratetype
;
140 #ifdef CONFIG_PM_SLEEP
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
150 static gfp_t saved_gfp_mask
;
152 void pm_restore_gfp_mask(void)
154 WARN_ON(!mutex_is_locked(&pm_mutex
));
155 if (saved_gfp_mask
) {
156 gfp_allowed_mask
= saved_gfp_mask
;
161 void pm_restrict_gfp_mask(void)
163 WARN_ON(!mutex_is_locked(&pm_mutex
));
164 WARN_ON(saved_gfp_mask
);
165 saved_gfp_mask
= gfp_allowed_mask
;
166 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
169 bool pm_suspended_storage(void)
171 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
175 #endif /* CONFIG_PM_SLEEP */
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly
;
181 static void __free_pages_ok(struct page
*page
, unsigned int order
);
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
194 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
195 #ifdef CONFIG_ZONE_DMA
198 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 EXPORT_SYMBOL(totalram_pages
);
209 static char * const zone_names
[MAX_NR_ZONES
] = {
210 #ifdef CONFIG_ZONE_DMA
213 #ifdef CONFIG_ZONE_DMA32
217 #ifdef CONFIG_HIGHMEM
221 #ifdef CONFIG_ZONE_DEVICE
226 char * const migratetype_names
[MIGRATE_TYPES
] = {
234 #ifdef CONFIG_MEMORY_ISOLATION
239 compound_page_dtor
* const compound_page_dtors
[] = {
242 #ifdef CONFIG_HUGETLB_PAGE
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
250 int min_free_kbytes
= 1024;
251 int user_min_free_kbytes
= -1;
252 int watermark_scale_factor
= 10;
254 static unsigned long __meminitdata nr_kernel_pages
;
255 static unsigned long __meminitdata nr_all_pages
;
256 static unsigned long __meminitdata dma_reserve
;
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
261 static unsigned long __initdata required_kernelcore
;
262 static unsigned long __initdata required_movablecore
;
263 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
264 static bool mirrored_kernelcore
;
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 EXPORT_SYMBOL(movable_zone
);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
272 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
273 int nr_online_nodes __read_mostly
= 1;
274 EXPORT_SYMBOL(nr_node_ids
);
275 EXPORT_SYMBOL(nr_online_nodes
);
278 int page_group_by_mobility_disabled __read_mostly
;
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
283 pgdat
->first_deferred_pfn
= ULONG_MAX
;
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
289 int nid
= early_pfn_to_nid(pfn
);
291 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
297 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
299 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
306 * Returns false when the remaining initialisation should be deferred until
307 * later in the boot cycle when it can be parallelised.
309 static inline bool update_defer_init(pg_data_t
*pgdat
,
310 unsigned long pfn
, unsigned long zone_end
,
311 unsigned long *nr_initialised
)
313 unsigned long max_initialise
;
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end
< pgdat_end_pfn(pgdat
))
319 * Initialise at least 2G of a node but also take into account that
320 * two large system hashes that can take up 1GB for 0.25TB/node.
322 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
323 (pgdat
->node_spanned_pages
>> 8));
326 if ((*nr_initialised
> max_initialise
) &&
327 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
328 pgdat
->first_deferred_pfn
= pfn
;
335 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
339 static inline bool early_page_uninitialised(unsigned long pfn
)
344 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
349 static inline bool update_defer_init(pg_data_t
*pgdat
,
350 unsigned long pfn
, unsigned long zone_end
,
351 unsigned long *nr_initialised
)
357 /* Return a pointer to the bitmap storing bits affecting a block of pages */
358 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
361 #ifdef CONFIG_SPARSEMEM
362 return __pfn_to_section(pfn
)->pageblock_flags
;
364 return page_zone(page
)->pageblock_flags
;
365 #endif /* CONFIG_SPARSEMEM */
368 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
370 #ifdef CONFIG_SPARSEMEM
371 pfn
&= (PAGES_PER_SECTION
-1);
372 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
374 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
375 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
376 #endif /* CONFIG_SPARSEMEM */
380 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381 * @page: The page within the block of interest
382 * @pfn: The target page frame number
383 * @end_bitidx: The last bit of interest to retrieve
384 * @mask: mask of bits that the caller is interested in
386 * Return: pageblock_bits flags
388 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
390 unsigned long end_bitidx
,
393 unsigned long *bitmap
;
394 unsigned long bitidx
, word_bitidx
;
397 bitmap
= get_pageblock_bitmap(page
, pfn
);
398 bitidx
= pfn_to_bitidx(page
, pfn
);
399 word_bitidx
= bitidx
/ BITS_PER_LONG
;
400 bitidx
&= (BITS_PER_LONG
-1);
402 word
= bitmap
[word_bitidx
];
403 bitidx
+= end_bitidx
;
404 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
407 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
408 unsigned long end_bitidx
,
411 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
414 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
416 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
420 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421 * @page: The page within the block of interest
422 * @flags: The flags to set
423 * @pfn: The target page frame number
424 * @end_bitidx: The last bit of interest
425 * @mask: mask of bits that the caller is interested in
427 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
429 unsigned long end_bitidx
,
432 unsigned long *bitmap
;
433 unsigned long bitidx
, word_bitidx
;
434 unsigned long old_word
, word
;
436 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
438 bitmap
= get_pageblock_bitmap(page
, pfn
);
439 bitidx
= pfn_to_bitidx(page
, pfn
);
440 word_bitidx
= bitidx
/ BITS_PER_LONG
;
441 bitidx
&= (BITS_PER_LONG
-1);
443 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
445 bitidx
+= end_bitidx
;
446 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
447 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
449 word
= READ_ONCE(bitmap
[word_bitidx
]);
451 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
452 if (word
== old_word
)
458 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
460 if (unlikely(page_group_by_mobility_disabled
&&
461 migratetype
< MIGRATE_PCPTYPES
))
462 migratetype
= MIGRATE_UNMOVABLE
;
464 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
465 PB_migrate
, PB_migrate_end
);
468 #ifdef CONFIG_DEBUG_VM
469 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
473 unsigned long pfn
= page_to_pfn(page
);
474 unsigned long sp
, start_pfn
;
477 seq
= zone_span_seqbegin(zone
);
478 start_pfn
= zone
->zone_start_pfn
;
479 sp
= zone
->spanned_pages
;
480 if (!zone_spans_pfn(zone
, pfn
))
482 } while (zone_span_seqretry(zone
, seq
));
485 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 pfn
, zone_to_nid(zone
), zone
->name
,
487 start_pfn
, start_pfn
+ sp
);
492 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
494 if (!pfn_valid_within(page_to_pfn(page
)))
496 if (zone
!= page_zone(page
))
502 * Temporary debugging check for pages not lying within a given zone.
504 static int bad_range(struct zone
*zone
, struct page
*page
)
506 if (page_outside_zone_boundaries(zone
, page
))
508 if (!page_is_consistent(zone
, page
))
514 static inline int bad_range(struct zone
*zone
, struct page
*page
)
520 static void bad_page(struct page
*page
, const char *reason
,
521 unsigned long bad_flags
)
523 static unsigned long resume
;
524 static unsigned long nr_shown
;
525 static unsigned long nr_unshown
;
528 * Allow a burst of 60 reports, then keep quiet for that minute;
529 * or allow a steady drip of one report per second.
531 if (nr_shown
== 60) {
532 if (time_before(jiffies
, resume
)) {
538 "BUG: Bad page state: %lu messages suppressed\n",
545 resume
= jiffies
+ 60 * HZ
;
547 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
548 current
->comm
, page_to_pfn(page
));
549 __dump_page(page
, reason
);
550 bad_flags
&= page
->flags
;
552 pr_alert("bad because of flags: %#lx(%pGp)\n",
553 bad_flags
, &bad_flags
);
554 dump_page_owner(page
);
559 /* Leave bad fields for debug, except PageBuddy could make trouble */
560 page_mapcount_reset(page
); /* remove PageBuddy */
561 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
565 * Higher-order pages are called "compound pages". They are structured thusly:
567 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
569 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
572 * The first tail page's ->compound_dtor holds the offset in array of compound
573 * page destructors. See compound_page_dtors.
575 * The first tail page's ->compound_order holds the order of allocation.
576 * This usage means that zero-order pages may not be compound.
579 void free_compound_page(struct page
*page
)
581 __free_pages_ok(page
, compound_order(page
));
584 void prep_compound_page(struct page
*page
, unsigned int order
)
587 int nr_pages
= 1 << order
;
589 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
590 set_compound_order(page
, order
);
592 for (i
= 1; i
< nr_pages
; i
++) {
593 struct page
*p
= page
+ i
;
594 set_page_count(p
, 0);
595 p
->mapping
= TAIL_MAPPING
;
596 set_compound_head(p
, page
);
598 atomic_set(compound_mapcount_ptr(page
), -1);
601 #ifdef CONFIG_DEBUG_PAGEALLOC
602 unsigned int _debug_guardpage_minorder
;
603 bool _debug_pagealloc_enabled __read_mostly
604 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
605 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
606 bool _debug_guardpage_enabled __read_mostly
;
608 static int __init
early_debug_pagealloc(char *buf
)
612 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
614 early_param("debug_pagealloc", early_debug_pagealloc
);
616 static bool need_debug_guardpage(void)
618 /* If we don't use debug_pagealloc, we don't need guard page */
619 if (!debug_pagealloc_enabled())
625 static void init_debug_guardpage(void)
627 if (!debug_pagealloc_enabled())
630 _debug_guardpage_enabled
= true;
633 struct page_ext_operations debug_guardpage_ops
= {
634 .need
= need_debug_guardpage
,
635 .init
= init_debug_guardpage
,
638 static int __init
debug_guardpage_minorder_setup(char *buf
)
642 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
643 pr_err("Bad debug_guardpage_minorder value\n");
646 _debug_guardpage_minorder
= res
;
647 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
650 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
652 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
653 unsigned int order
, int migratetype
)
655 struct page_ext
*page_ext
;
657 if (!debug_guardpage_enabled())
660 page_ext
= lookup_page_ext(page
);
661 if (unlikely(!page_ext
))
664 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
666 INIT_LIST_HEAD(&page
->lru
);
667 set_page_private(page
, order
);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
672 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
673 unsigned int order
, int migratetype
)
675 struct page_ext
*page_ext
;
677 if (!debug_guardpage_enabled())
680 page_ext
= lookup_page_ext(page
);
681 if (unlikely(!page_ext
))
684 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
686 set_page_private(page
, 0);
687 if (!is_migrate_isolate(migratetype
))
688 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
691 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
692 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
693 unsigned int order
, int migratetype
) {}
694 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
695 unsigned int order
, int migratetype
) {}
698 static inline void set_page_order(struct page
*page
, unsigned int order
)
700 set_page_private(page
, order
);
701 __SetPageBuddy(page
);
704 static inline void rmv_page_order(struct page
*page
)
706 __ClearPageBuddy(page
);
707 set_page_private(page
, 0);
711 * This function checks whether a page is free && is the buddy
712 * we can do coalesce a page and its buddy if
713 * (a) the buddy is not in a hole &&
714 * (b) the buddy is in the buddy system &&
715 * (c) a page and its buddy have the same order &&
716 * (d) a page and its buddy are in the same zone.
718 * For recording whether a page is in the buddy system, we set ->_mapcount
719 * PAGE_BUDDY_MAPCOUNT_VALUE.
720 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721 * serialized by zone->lock.
723 * For recording page's order, we use page_private(page).
725 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
728 if (!pfn_valid_within(page_to_pfn(buddy
)))
731 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
732 if (page_zone_id(page
) != page_zone_id(buddy
))
735 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
740 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
742 * zone check is done late to avoid uselessly
743 * calculating zone/node ids for pages that could
746 if (page_zone_id(page
) != page_zone_id(buddy
))
749 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
757 * Freeing function for a buddy system allocator.
759 * The concept of a buddy system is to maintain direct-mapped table
760 * (containing bit values) for memory blocks of various "orders".
761 * The bottom level table contains the map for the smallest allocatable
762 * units of memory (here, pages), and each level above it describes
763 * pairs of units from the levels below, hence, "buddies".
764 * At a high level, all that happens here is marking the table entry
765 * at the bottom level available, and propagating the changes upward
766 * as necessary, plus some accounting needed to play nicely with other
767 * parts of the VM system.
768 * At each level, we keep a list of pages, which are heads of continuous
769 * free pages of length of (1 << order) and marked with _mapcount
770 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
772 * So when we are allocating or freeing one, we can derive the state of the
773 * other. That is, if we allocate a small block, and both were
774 * free, the remainder of the region must be split into blocks.
775 * If a block is freed, and its buddy is also free, then this
776 * triggers coalescing into a block of larger size.
781 static inline void __free_one_page(struct page
*page
,
783 struct zone
*zone
, unsigned int order
,
786 unsigned long page_idx
;
787 unsigned long combined_idx
;
788 unsigned long uninitialized_var(buddy_idx
);
790 unsigned int max_order
;
792 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
794 VM_BUG_ON(!zone_is_initialized(zone
));
795 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
797 VM_BUG_ON(migratetype
== -1);
798 if (likely(!is_migrate_isolate(migratetype
)))
799 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
801 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
803 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
804 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
807 while (order
< max_order
- 1) {
808 buddy_idx
= __find_buddy_index(page_idx
, order
);
809 buddy
= page
+ (buddy_idx
- page_idx
);
810 if (!page_is_buddy(page
, buddy
, order
))
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
816 if (page_is_guard(buddy
)) {
817 clear_page_guard(zone
, buddy
, order
, migratetype
);
819 list_del(&buddy
->lru
);
820 zone
->free_area
[order
].nr_free
--;
821 rmv_page_order(buddy
);
823 combined_idx
= buddy_idx
& page_idx
;
824 page
= page
+ (combined_idx
- page_idx
);
825 page_idx
= combined_idx
;
828 if (max_order
< MAX_ORDER
) {
829 /* If we are here, it means order is >= pageblock_order.
830 * We want to prevent merge between freepages on isolate
831 * pageblock and normal pageblock. Without this, pageblock
832 * isolation could cause incorrect freepage or CMA accounting.
834 * We don't want to hit this code for the more frequent
837 if (unlikely(has_isolate_pageblock(zone
))) {
840 buddy_idx
= __find_buddy_index(page_idx
, order
);
841 buddy
= page
+ (buddy_idx
- page_idx
);
842 buddy_mt
= get_pageblock_migratetype(buddy
);
844 if (migratetype
!= buddy_mt
845 && (is_migrate_isolate(migratetype
) ||
846 is_migrate_isolate(buddy_mt
)))
850 goto continue_merging
;
854 set_page_order(page
, order
);
857 * If this is not the largest possible page, check if the buddy
858 * of the next-highest order is free. If it is, it's possible
859 * that pages are being freed that will coalesce soon. In case,
860 * that is happening, add the free page to the tail of the list
861 * so it's less likely to be used soon and more likely to be merged
862 * as a higher order page
864 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
865 struct page
*higher_page
, *higher_buddy
;
866 combined_idx
= buddy_idx
& page_idx
;
867 higher_page
= page
+ (combined_idx
- page_idx
);
868 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
869 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
870 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
871 list_add_tail(&page
->lru
,
872 &zone
->free_area
[order
].free_list
[migratetype
]);
877 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
879 zone
->free_area
[order
].nr_free
++;
883 * A bad page could be due to a number of fields. Instead of multiple branches,
884 * try and check multiple fields with one check. The caller must do a detailed
885 * check if necessary.
887 static inline bool page_expected_state(struct page
*page
,
888 unsigned long check_flags
)
890 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
893 if (unlikely((unsigned long)page
->mapping
|
894 page_ref_count(page
) |
896 (unsigned long)page
->mem_cgroup
|
898 (page
->flags
& check_flags
)))
904 static void free_pages_check_bad(struct page
*page
)
906 const char *bad_reason
;
907 unsigned long bad_flags
;
912 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
913 bad_reason
= "nonzero mapcount";
914 if (unlikely(page
->mapping
!= NULL
))
915 bad_reason
= "non-NULL mapping";
916 if (unlikely(page_ref_count(page
) != 0))
917 bad_reason
= "nonzero _refcount";
918 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
919 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
923 if (unlikely(page
->mem_cgroup
))
924 bad_reason
= "page still charged to cgroup";
926 bad_page(page
, bad_reason
, bad_flags
);
929 static inline int free_pages_check(struct page
*page
)
931 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
934 /* Something has gone sideways, find it */
935 free_pages_check_bad(page
);
939 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
944 * We rely page->lru.next never has bit 0 set, unless the page
945 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
947 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
949 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
953 switch (page
- head_page
) {
955 /* the first tail page: ->mapping is compound_mapcount() */
956 if (unlikely(compound_mapcount(page
))) {
957 bad_page(page
, "nonzero compound_mapcount", 0);
963 * the second tail page: ->mapping is
964 * page_deferred_list().next -- ignore value.
968 if (page
->mapping
!= TAIL_MAPPING
) {
969 bad_page(page
, "corrupted mapping in tail page", 0);
974 if (unlikely(!PageTail(page
))) {
975 bad_page(page
, "PageTail not set", 0);
978 if (unlikely(compound_head(page
) != head_page
)) {
979 bad_page(page
, "compound_head not consistent", 0);
984 page
->mapping
= NULL
;
985 clear_compound_head(page
);
989 static __always_inline
bool free_pages_prepare(struct page
*page
,
990 unsigned int order
, bool check_free
)
994 VM_BUG_ON_PAGE(PageTail(page
), page
);
996 trace_mm_page_free(page
, order
);
997 kmemcheck_free_shadow(page
, order
);
1000 * Check tail pages before head page information is cleared to
1001 * avoid checking PageCompound for order-0 pages.
1003 if (unlikely(order
)) {
1004 bool compound
= PageCompound(page
);
1007 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1009 for (i
= 1; i
< (1 << order
); i
++) {
1011 bad
+= free_tail_pages_check(page
, page
+ i
);
1012 if (unlikely(free_pages_check(page
+ i
))) {
1016 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1019 if (PageAnonHead(page
))
1020 page
->mapping
= NULL
;
1022 bad
+= free_pages_check(page
);
1026 page_cpupid_reset_last(page
);
1027 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1028 reset_page_owner(page
, order
);
1030 if (!PageHighMem(page
)) {
1031 debug_check_no_locks_freed(page_address(page
),
1032 PAGE_SIZE
<< order
);
1033 debug_check_no_obj_freed(page_address(page
),
1034 PAGE_SIZE
<< order
);
1036 arch_free_page(page
, order
);
1037 kernel_poison_pages(page
, 1 << order
, 0);
1038 kernel_map_pages(page
, 1 << order
, 0);
1039 kasan_free_pages(page
, order
);
1044 #ifdef CONFIG_DEBUG_VM
1045 static inline bool free_pcp_prepare(struct page
*page
)
1047 return free_pages_prepare(page
, 0, true);
1050 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1055 static bool free_pcp_prepare(struct page
*page
)
1057 return free_pages_prepare(page
, 0, false);
1060 static bool bulkfree_pcp_prepare(struct page
*page
)
1062 return free_pages_check(page
);
1064 #endif /* CONFIG_DEBUG_VM */
1067 * Frees a number of pages from the PCP lists
1068 * Assumes all pages on list are in same zone, and of same order.
1069 * count is the number of pages to free.
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1077 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1078 struct per_cpu_pages
*pcp
)
1080 int migratetype
= 0;
1082 unsigned long nr_scanned
;
1083 bool isolated_pageblocks
;
1085 spin_lock(&zone
->lock
);
1086 isolated_pageblocks
= has_isolate_pageblock(zone
);
1087 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
1089 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
1093 struct list_head
*list
;
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1104 if (++migratetype
== MIGRATE_PCPTYPES
)
1106 list
= &pcp
->lists
[migratetype
];
1107 } while (list_empty(list
));
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free
== MIGRATE_PCPTYPES
)
1114 int mt
; /* migratetype of the to-be-freed page */
1116 page
= list_last_entry(list
, struct page
, lru
);
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page
->lru
);
1120 mt
= get_pcppage_migratetype(page
);
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1123 /* Pageblock could have been isolated meanwhile */
1124 if (unlikely(isolated_pageblocks
))
1125 mt
= get_pageblock_migratetype(page
);
1127 if (bulkfree_pcp_prepare(page
))
1130 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1131 trace_mm_page_pcpu_drain(page
, 0, mt
);
1132 } while (--count
&& --batch_free
&& !list_empty(list
));
1134 spin_unlock(&zone
->lock
);
1137 static void free_one_page(struct zone
*zone
,
1138 struct page
*page
, unsigned long pfn
,
1142 unsigned long nr_scanned
;
1143 spin_lock(&zone
->lock
);
1144 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
1146 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
1148 if (unlikely(has_isolate_pageblock(zone
) ||
1149 is_migrate_isolate(migratetype
))) {
1150 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1152 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1153 spin_unlock(&zone
->lock
);
1156 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1157 unsigned long zone
, int nid
)
1159 set_page_links(page
, zone
, nid
, pfn
);
1160 init_page_count(page
);
1161 page_mapcount_reset(page
);
1162 page_cpupid_reset_last(page
);
1164 INIT_LIST_HEAD(&page
->lru
);
1165 #ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone
))
1168 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1172 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1175 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1178 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179 static void init_reserved_page(unsigned long pfn
)
1184 if (!early_page_uninitialised(pfn
))
1187 nid
= early_pfn_to_nid(pfn
);
1188 pgdat
= NODE_DATA(nid
);
1190 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1191 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1193 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1196 __init_single_pfn(pfn
, zid
, nid
);
1199 static inline void init_reserved_page(unsigned long pfn
)
1202 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1210 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1212 unsigned long start_pfn
= PFN_DOWN(start
);
1213 unsigned long end_pfn
= PFN_UP(end
);
1215 for (; start_pfn
< end_pfn
; start_pfn
++) {
1216 if (pfn_valid(start_pfn
)) {
1217 struct page
*page
= pfn_to_page(start_pfn
);
1219 init_reserved_page(start_pfn
);
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page
->lru
);
1224 SetPageReserved(page
);
1229 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1231 unsigned long flags
;
1233 unsigned long pfn
= page_to_pfn(page
);
1235 if (!free_pages_prepare(page
, order
, true))
1238 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1239 local_irq_save(flags
);
1240 __count_vm_events(PGFREE
, 1 << order
);
1241 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1242 local_irq_restore(flags
);
1245 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1247 unsigned int nr_pages
= 1 << order
;
1248 struct page
*p
= page
;
1252 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1254 __ClearPageReserved(p
);
1255 set_page_count(p
, 0);
1257 __ClearPageReserved(p
);
1258 set_page_count(p
, 0);
1260 page_zone(page
)->managed_pages
+= nr_pages
;
1261 set_page_refcounted(page
);
1262 __free_pages(page
, order
);
1265 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1268 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1270 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1272 static DEFINE_SPINLOCK(early_pfn_lock
);
1275 spin_lock(&early_pfn_lock
);
1276 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1278 nid
= first_online_node
;
1279 spin_unlock(&early_pfn_lock
);
1285 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1287 struct mminit_pfnnid_cache
*state
)
1291 nid
= __early_pfn_to_nid(pfn
, state
);
1292 if (nid
>= 0 && nid
!= node
)
1297 /* Only safe to use early in boot when initialisation is single-threaded */
1298 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1300 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1305 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1309 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1310 struct mminit_pfnnid_cache
*state
)
1317 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1320 if (early_page_uninitialised(pfn
))
1322 return __free_pages_boot_core(page
, order
);
1326 * Check that the whole (or subset of) a pageblock given by the interval of
1327 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328 * with the migration of free compaction scanner. The scanners then need to
1329 * use only pfn_valid_within() check for arches that allow holes within
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1342 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1343 unsigned long end_pfn
, struct zone
*zone
)
1345 struct page
*start_page
;
1346 struct page
*end_page
;
1348 /* end_pfn is one past the range we are checking */
1351 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1354 start_page
= pfn_to_page(start_pfn
);
1356 if (page_zone(start_page
) != zone
)
1359 end_page
= pfn_to_page(end_pfn
);
1361 /* This gives a shorter code than deriving page_zone(end_page) */
1362 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1368 void set_zone_contiguous(struct zone
*zone
)
1370 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1371 unsigned long block_end_pfn
;
1373 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1374 for (; block_start_pfn
< zone_end_pfn(zone
);
1375 block_start_pfn
= block_end_pfn
,
1376 block_end_pfn
+= pageblock_nr_pages
) {
1378 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1380 if (!__pageblock_pfn_to_page(block_start_pfn
,
1381 block_end_pfn
, zone
))
1385 /* We confirm that there is no hole */
1386 zone
->contiguous
= true;
1389 void clear_zone_contiguous(struct zone
*zone
)
1391 zone
->contiguous
= false;
1394 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1395 static void __init
deferred_free_range(struct page
*page
,
1396 unsigned long pfn
, int nr_pages
)
1403 /* Free a large naturally-aligned chunk if possible */
1404 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1405 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1406 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1407 __free_pages_boot_core(page
, MAX_ORDER
-1);
1411 for (i
= 0; i
< nr_pages
; i
++, page
++)
1412 __free_pages_boot_core(page
, 0);
1415 /* Completion tracking for deferred_init_memmap() threads */
1416 static atomic_t pgdat_init_n_undone __initdata
;
1417 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1419 static inline void __init
pgdat_init_report_one_done(void)
1421 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1422 complete(&pgdat_init_all_done_comp
);
1425 /* Initialise remaining memory on a node */
1426 static int __init
deferred_init_memmap(void *data
)
1428 pg_data_t
*pgdat
= data
;
1429 int nid
= pgdat
->node_id
;
1430 struct mminit_pfnnid_cache nid_init_state
= { };
1431 unsigned long start
= jiffies
;
1432 unsigned long nr_pages
= 0;
1433 unsigned long walk_start
, walk_end
;
1436 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1437 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1439 if (first_init_pfn
== ULONG_MAX
) {
1440 pgdat_init_report_one_done();
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask
))
1446 set_cpus_allowed_ptr(current
, cpumask
);
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1450 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1451 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1453 /* Only the highest zone is deferred so find it */
1454 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1455 zone
= pgdat
->node_zones
+ zid
;
1456 if (first_init_pfn
< zone_end_pfn(zone
))
1460 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1461 unsigned long pfn
, end_pfn
;
1462 struct page
*page
= NULL
;
1463 struct page
*free_base_page
= NULL
;
1464 unsigned long free_base_pfn
= 0;
1467 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1468 pfn
= first_init_pfn
;
1469 if (pfn
< walk_start
)
1471 if (pfn
< zone
->zone_start_pfn
)
1472 pfn
= zone
->zone_start_pfn
;
1474 for (; pfn
< end_pfn
; pfn
++) {
1475 if (!pfn_valid_within(pfn
))
1479 * Ensure pfn_valid is checked every
1480 * MAX_ORDER_NR_PAGES for memory holes
1482 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1483 if (!pfn_valid(pfn
)) {
1489 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1494 /* Minimise pfn page lookups and scheduler checks */
1495 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1498 nr_pages
+= nr_to_free
;
1499 deferred_free_range(free_base_page
,
1500 free_base_pfn
, nr_to_free
);
1501 free_base_page
= NULL
;
1502 free_base_pfn
= nr_to_free
= 0;
1504 page
= pfn_to_page(pfn
);
1509 VM_BUG_ON(page_zone(page
) != zone
);
1513 __init_single_page(page
, pfn
, zid
, nid
);
1514 if (!free_base_page
) {
1515 free_base_page
= page
;
1516 free_base_pfn
= pfn
;
1521 /* Where possible, batch up pages for a single free */
1524 /* Free the current block of pages to allocator */
1525 nr_pages
+= nr_to_free
;
1526 deferred_free_range(free_base_page
, free_base_pfn
,
1528 free_base_page
= NULL
;
1529 free_base_pfn
= nr_to_free
= 0;
1532 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1535 /* Sanity check that the next zone really is unpopulated */
1536 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1538 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1539 jiffies_to_msecs(jiffies
- start
));
1541 pgdat_init_report_one_done();
1544 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1546 void __init
page_alloc_init_late(void)
1550 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1553 /* There will be num_node_state(N_MEMORY) threads */
1554 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1555 for_each_node_state(nid
, N_MEMORY
) {
1556 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1559 /* Block until all are initialised */
1560 wait_for_completion(&pgdat_init_all_done_comp
);
1562 /* Reinit limits that are based on free pages after the kernel is up */
1563 files_maxfiles_init();
1566 for_each_populated_zone(zone
)
1567 set_zone_contiguous(zone
);
1571 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1572 void __init
init_cma_reserved_pageblock(struct page
*page
)
1574 unsigned i
= pageblock_nr_pages
;
1575 struct page
*p
= page
;
1578 __ClearPageReserved(p
);
1579 set_page_count(p
, 0);
1582 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1584 if (pageblock_order
>= MAX_ORDER
) {
1585 i
= pageblock_nr_pages
;
1588 set_page_refcounted(p
);
1589 __free_pages(p
, MAX_ORDER
- 1);
1590 p
+= MAX_ORDER_NR_PAGES
;
1591 } while (i
-= MAX_ORDER_NR_PAGES
);
1593 set_page_refcounted(page
);
1594 __free_pages(page
, pageblock_order
);
1597 adjust_managed_page_count(page
, pageblock_nr_pages
);
1602 * The order of subdivision here is critical for the IO subsystem.
1603 * Please do not alter this order without good reasons and regression
1604 * testing. Specifically, as large blocks of memory are subdivided,
1605 * the order in which smaller blocks are delivered depends on the order
1606 * they're subdivided in this function. This is the primary factor
1607 * influencing the order in which pages are delivered to the IO
1608 * subsystem according to empirical testing, and this is also justified
1609 * by considering the behavior of a buddy system containing a single
1610 * large block of memory acted on by a series of small allocations.
1611 * This behavior is a critical factor in sglist merging's success.
1615 static inline void expand(struct zone
*zone
, struct page
*page
,
1616 int low
, int high
, struct free_area
*area
,
1619 unsigned long size
= 1 << high
;
1621 while (high
> low
) {
1625 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1627 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1628 debug_guardpage_enabled() &&
1629 high
< debug_guardpage_minorder()) {
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1636 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1639 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1641 set_page_order(&page
[size
], high
);
1645 static void check_new_page_bad(struct page
*page
)
1647 const char *bad_reason
= NULL
;
1648 unsigned long bad_flags
= 0;
1650 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1651 bad_reason
= "nonzero mapcount";
1652 if (unlikely(page
->mapping
!= NULL
))
1653 bad_reason
= "non-NULL mapping";
1654 if (unlikely(page_ref_count(page
) != 0))
1655 bad_reason
= "nonzero _count";
1656 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1657 bad_reason
= "HWPoisoned (hardware-corrupted)";
1658 bad_flags
= __PG_HWPOISON
;
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page
); /* remove PageBuddy */
1663 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1664 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1668 if (unlikely(page
->mem_cgroup
))
1669 bad_reason
= "page still charged to cgroup";
1671 bad_page(page
, bad_reason
, bad_flags
);
1675 * This page is about to be returned from the page allocator
1677 static inline int check_new_page(struct page
*page
)
1679 if (likely(page_expected_state(page
,
1680 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1683 check_new_page_bad(page
);
1687 static inline bool free_pages_prezeroed(bool poisoned
)
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1690 page_poisoning_enabled() && poisoned
;
1693 #ifdef CONFIG_DEBUG_VM
1694 static bool check_pcp_refill(struct page
*page
)
1699 static bool check_new_pcp(struct page
*page
)
1701 return check_new_page(page
);
1704 static bool check_pcp_refill(struct page
*page
)
1706 return check_new_page(page
);
1708 static bool check_new_pcp(struct page
*page
)
1712 #endif /* CONFIG_DEBUG_VM */
1714 static bool check_new_pages(struct page
*page
, unsigned int order
)
1717 for (i
= 0; i
< (1 << order
); i
++) {
1718 struct page
*p
= page
+ i
;
1720 if (unlikely(check_new_page(p
)))
1727 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1728 unsigned int alloc_flags
)
1731 bool poisoned
= true;
1733 for (i
= 0; i
< (1 << order
); i
++) {
1734 struct page
*p
= page
+ i
;
1736 poisoned
&= page_is_poisoned(p
);
1739 set_page_private(page
, 0);
1740 set_page_refcounted(page
);
1742 arch_alloc_page(page
, order
);
1743 kernel_map_pages(page
, 1 << order
, 1);
1744 kernel_poison_pages(page
, 1 << order
, 1);
1745 kasan_alloc_pages(page
, order
);
1747 if (!free_pages_prezeroed(poisoned
) && (gfp_flags
& __GFP_ZERO
))
1748 for (i
= 0; i
< (1 << order
); i
++)
1749 clear_highpage(page
+ i
);
1751 if (order
&& (gfp_flags
& __GFP_COMP
))
1752 prep_compound_page(page
, order
);
1754 set_page_owner(page
, order
, gfp_flags
);
1757 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1758 * allocate the page. The expectation is that the caller is taking
1759 * steps that will free more memory. The caller should avoid the page
1760 * being used for !PFMEMALLOC purposes.
1762 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1763 set_page_pfmemalloc(page
);
1765 clear_page_pfmemalloc(page
);
1769 * Go through the free lists for the given migratetype and remove
1770 * the smallest available page from the freelists
1773 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1776 unsigned int current_order
;
1777 struct free_area
*area
;
1780 /* Find a page of the appropriate size in the preferred list */
1781 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1782 area
= &(zone
->free_area
[current_order
]);
1783 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1787 list_del(&page
->lru
);
1788 rmv_page_order(page
);
1790 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1791 set_pcppage_migratetype(page
, migratetype
);
1800 * This array describes the order lists are fallen back to when
1801 * the free lists for the desirable migrate type are depleted
1803 static int fallbacks
[MIGRATE_TYPES
][4] = {
1804 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1805 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1806 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1808 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1810 #ifdef CONFIG_MEMORY_ISOLATION
1811 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1816 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1819 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1822 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1823 unsigned int order
) { return NULL
; }
1827 * Move the free pages in a range to the free lists of the requested type.
1828 * Note that start_page and end_pages are not aligned on a pageblock
1829 * boundary. If alignment is required, use move_freepages_block()
1831 int move_freepages(struct zone
*zone
,
1832 struct page
*start_page
, struct page
*end_page
,
1837 int pages_moved
= 0;
1839 #ifndef CONFIG_HOLES_IN_ZONE
1841 * page_zone is not safe to call in this context when
1842 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1843 * anyway as we check zone boundaries in move_freepages_block().
1844 * Remove at a later date when no bug reports exist related to
1845 * grouping pages by mobility
1847 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1850 for (page
= start_page
; page
<= end_page
;) {
1851 /* Make sure we are not inadvertently changing nodes */
1852 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1854 if (!pfn_valid_within(page_to_pfn(page
))) {
1859 if (!PageBuddy(page
)) {
1864 order
= page_order(page
);
1865 list_move(&page
->lru
,
1866 &zone
->free_area
[order
].free_list
[migratetype
]);
1868 pages_moved
+= 1 << order
;
1874 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1877 unsigned long start_pfn
, end_pfn
;
1878 struct page
*start_page
, *end_page
;
1880 start_pfn
= page_to_pfn(page
);
1881 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1882 start_page
= pfn_to_page(start_pfn
);
1883 end_page
= start_page
+ pageblock_nr_pages
- 1;
1884 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1886 /* Do not cross zone boundaries */
1887 if (!zone_spans_pfn(zone
, start_pfn
))
1889 if (!zone_spans_pfn(zone
, end_pfn
))
1892 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1895 static void change_pageblock_range(struct page
*pageblock_page
,
1896 int start_order
, int migratetype
)
1898 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1900 while (nr_pageblocks
--) {
1901 set_pageblock_migratetype(pageblock_page
, migratetype
);
1902 pageblock_page
+= pageblock_nr_pages
;
1907 * When we are falling back to another migratetype during allocation, try to
1908 * steal extra free pages from the same pageblocks to satisfy further
1909 * allocations, instead of polluting multiple pageblocks.
1911 * If we are stealing a relatively large buddy page, it is likely there will
1912 * be more free pages in the pageblock, so try to steal them all. For
1913 * reclaimable and unmovable allocations, we steal regardless of page size,
1914 * as fragmentation caused by those allocations polluting movable pageblocks
1915 * is worse than movable allocations stealing from unmovable and reclaimable
1918 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1921 * Leaving this order check is intended, although there is
1922 * relaxed order check in next check. The reason is that
1923 * we can actually steal whole pageblock if this condition met,
1924 * but, below check doesn't guarantee it and that is just heuristic
1925 * so could be changed anytime.
1927 if (order
>= pageblock_order
)
1930 if (order
>= pageblock_order
/ 2 ||
1931 start_mt
== MIGRATE_RECLAIMABLE
||
1932 start_mt
== MIGRATE_UNMOVABLE
||
1933 page_group_by_mobility_disabled
)
1940 * This function implements actual steal behaviour. If order is large enough,
1941 * we can steal whole pageblock. If not, we first move freepages in this
1942 * pageblock and check whether half of pages are moved or not. If half of
1943 * pages are moved, we can change migratetype of pageblock and permanently
1944 * use it's pages as requested migratetype in the future.
1946 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1949 unsigned int current_order
= page_order(page
);
1952 /* Take ownership for orders >= pageblock_order */
1953 if (current_order
>= pageblock_order
) {
1954 change_pageblock_range(page
, current_order
, start_type
);
1958 pages
= move_freepages_block(zone
, page
, start_type
);
1960 /* Claim the whole block if over half of it is free */
1961 if (pages
>= (1 << (pageblock_order
-1)) ||
1962 page_group_by_mobility_disabled
)
1963 set_pageblock_migratetype(page
, start_type
);
1967 * Check whether there is a suitable fallback freepage with requested order.
1968 * If only_stealable is true, this function returns fallback_mt only if
1969 * we can steal other freepages all together. This would help to reduce
1970 * fragmentation due to mixed migratetype pages in one pageblock.
1972 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1973 int migratetype
, bool only_stealable
, bool *can_steal
)
1978 if (area
->nr_free
== 0)
1983 fallback_mt
= fallbacks
[migratetype
][i
];
1984 if (fallback_mt
== MIGRATE_TYPES
)
1987 if (list_empty(&area
->free_list
[fallback_mt
]))
1990 if (can_steal_fallback(order
, migratetype
))
1993 if (!only_stealable
)
2004 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2005 * there are no empty page blocks that contain a page with a suitable order
2007 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2008 unsigned int alloc_order
)
2011 unsigned long max_managed
, flags
;
2014 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2015 * Check is race-prone but harmless.
2017 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2018 if (zone
->nr_reserved_highatomic
>= max_managed
)
2021 spin_lock_irqsave(&zone
->lock
, flags
);
2023 /* Recheck the nr_reserved_highatomic limit under the lock */
2024 if (zone
->nr_reserved_highatomic
>= max_managed
)
2028 mt
= get_pageblock_migratetype(page
);
2029 if (mt
!= MIGRATE_HIGHATOMIC
&&
2030 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
2031 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2032 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2033 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
2037 spin_unlock_irqrestore(&zone
->lock
, flags
);
2041 * Used when an allocation is about to fail under memory pressure. This
2042 * potentially hurts the reliability of high-order allocations when under
2043 * intense memory pressure but failed atomic allocations should be easier
2044 * to recover from than an OOM.
2046 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
2048 struct zonelist
*zonelist
= ac
->zonelist
;
2049 unsigned long flags
;
2055 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2057 /* Preserve at least one pageblock */
2058 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
2061 spin_lock_irqsave(&zone
->lock
, flags
);
2062 for (order
= 0; order
< MAX_ORDER
; order
++) {
2063 struct free_area
*area
= &(zone
->free_area
[order
]);
2065 page
= list_first_entry_or_null(
2066 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2072 * It should never happen but changes to locking could
2073 * inadvertently allow a per-cpu drain to add pages
2074 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2075 * and watch for underflows.
2077 zone
->nr_reserved_highatomic
-= min(pageblock_nr_pages
,
2078 zone
->nr_reserved_highatomic
);
2081 * Convert to ac->migratetype and avoid the normal
2082 * pageblock stealing heuristics. Minimally, the caller
2083 * is doing the work and needs the pages. More
2084 * importantly, if the block was always converted to
2085 * MIGRATE_UNMOVABLE or another type then the number
2086 * of pageblocks that cannot be completely freed
2089 set_pageblock_migratetype(page
, ac
->migratetype
);
2090 move_freepages_block(zone
, page
, ac
->migratetype
);
2091 spin_unlock_irqrestore(&zone
->lock
, flags
);
2094 spin_unlock_irqrestore(&zone
->lock
, flags
);
2098 /* Remove an element from the buddy allocator from the fallback list */
2099 static inline struct page
*
2100 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
2102 struct free_area
*area
;
2103 unsigned int current_order
;
2108 /* Find the largest possible block of pages in the other list */
2109 for (current_order
= MAX_ORDER
-1;
2110 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
2112 area
= &(zone
->free_area
[current_order
]);
2113 fallback_mt
= find_suitable_fallback(area
, current_order
,
2114 start_migratetype
, false, &can_steal
);
2115 if (fallback_mt
== -1)
2118 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2121 steal_suitable_fallback(zone
, page
, start_migratetype
);
2123 /* Remove the page from the freelists */
2125 list_del(&page
->lru
);
2126 rmv_page_order(page
);
2128 expand(zone
, page
, order
, current_order
, area
,
2131 * The pcppage_migratetype may differ from pageblock's
2132 * migratetype depending on the decisions in
2133 * find_suitable_fallback(). This is OK as long as it does not
2134 * differ for MIGRATE_CMA pageblocks. Those can be used as
2135 * fallback only via special __rmqueue_cma_fallback() function
2137 set_pcppage_migratetype(page
, start_migratetype
);
2139 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2140 start_migratetype
, fallback_mt
);
2149 * Do the hard work of removing an element from the buddy allocator.
2150 * Call me with the zone->lock already held.
2152 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2157 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2158 if (unlikely(!page
)) {
2159 if (migratetype
== MIGRATE_MOVABLE
)
2160 page
= __rmqueue_cma_fallback(zone
, order
);
2163 page
= __rmqueue_fallback(zone
, order
, migratetype
);
2166 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2171 * Obtain a specified number of elements from the buddy allocator, all under
2172 * a single hold of the lock, for efficiency. Add them to the supplied list.
2173 * Returns the number of new pages which were placed at *list.
2175 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2176 unsigned long count
, struct list_head
*list
,
2177 int migratetype
, bool cold
)
2181 spin_lock(&zone
->lock
);
2182 for (i
= 0; i
< count
; ++i
) {
2183 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2184 if (unlikely(page
== NULL
))
2187 if (unlikely(check_pcp_refill(page
)))
2191 * Split buddy pages returned by expand() are received here
2192 * in physical page order. The page is added to the callers and
2193 * list and the list head then moves forward. From the callers
2194 * perspective, the linked list is ordered by page number in
2195 * some conditions. This is useful for IO devices that can
2196 * merge IO requests if the physical pages are ordered
2200 list_add(&page
->lru
, list
);
2202 list_add_tail(&page
->lru
, list
);
2204 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2205 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2208 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2209 spin_unlock(&zone
->lock
);
2215 * Called from the vmstat counter updater to drain pagesets of this
2216 * currently executing processor on remote nodes after they have
2219 * Note that this function must be called with the thread pinned to
2220 * a single processor.
2222 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2224 unsigned long flags
;
2225 int to_drain
, batch
;
2227 local_irq_save(flags
);
2228 batch
= READ_ONCE(pcp
->batch
);
2229 to_drain
= min(pcp
->count
, batch
);
2231 free_pcppages_bulk(zone
, to_drain
, pcp
);
2232 pcp
->count
-= to_drain
;
2234 local_irq_restore(flags
);
2239 * Drain pcplists of the indicated processor and zone.
2241 * The processor must either be the current processor and the
2242 * thread pinned to the current processor or a processor that
2245 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2247 unsigned long flags
;
2248 struct per_cpu_pageset
*pset
;
2249 struct per_cpu_pages
*pcp
;
2251 local_irq_save(flags
);
2252 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2256 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2259 local_irq_restore(flags
);
2263 * Drain pcplists of all zones on the indicated processor.
2265 * The processor must either be the current processor and the
2266 * thread pinned to the current processor or a processor that
2269 static void drain_pages(unsigned int cpu
)
2273 for_each_populated_zone(zone
) {
2274 drain_pages_zone(cpu
, zone
);
2279 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2281 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2282 * the single zone's pages.
2284 void drain_local_pages(struct zone
*zone
)
2286 int cpu
= smp_processor_id();
2289 drain_pages_zone(cpu
, zone
);
2295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2297 * When zone parameter is non-NULL, spill just the single zone's pages.
2299 * Note that this code is protected against sending an IPI to an offline
2300 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2301 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2302 * nothing keeps CPUs from showing up after we populated the cpumask and
2303 * before the call to on_each_cpu_mask().
2305 void drain_all_pages(struct zone
*zone
)
2310 * Allocate in the BSS so we wont require allocation in
2311 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2313 static cpumask_t cpus_with_pcps
;
2316 * We don't care about racing with CPU hotplug event
2317 * as offline notification will cause the notified
2318 * cpu to drain that CPU pcps and on_each_cpu_mask
2319 * disables preemption as part of its processing
2321 for_each_online_cpu(cpu
) {
2322 struct per_cpu_pageset
*pcp
;
2324 bool has_pcps
= false;
2327 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2331 for_each_populated_zone(z
) {
2332 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2333 if (pcp
->pcp
.count
) {
2341 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2343 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2345 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2349 #ifdef CONFIG_HIBERNATION
2351 void mark_free_pages(struct zone
*zone
)
2353 unsigned long pfn
, max_zone_pfn
;
2354 unsigned long flags
;
2355 unsigned int order
, t
;
2358 if (zone_is_empty(zone
))
2361 spin_lock_irqsave(&zone
->lock
, flags
);
2363 max_zone_pfn
= zone_end_pfn(zone
);
2364 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2365 if (pfn_valid(pfn
)) {
2366 page
= pfn_to_page(pfn
);
2368 if (page_zone(page
) != zone
)
2371 if (!swsusp_page_is_forbidden(page
))
2372 swsusp_unset_page_free(page
);
2375 for_each_migratetype_order(order
, t
) {
2376 list_for_each_entry(page
,
2377 &zone
->free_area
[order
].free_list
[t
], lru
) {
2380 pfn
= page_to_pfn(page
);
2381 for (i
= 0; i
< (1UL << order
); i
++)
2382 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2385 spin_unlock_irqrestore(&zone
->lock
, flags
);
2387 #endif /* CONFIG_PM */
2390 * Free a 0-order page
2391 * cold == true ? free a cold page : free a hot page
2393 void free_hot_cold_page(struct page
*page
, bool cold
)
2395 struct zone
*zone
= page_zone(page
);
2396 struct per_cpu_pages
*pcp
;
2397 unsigned long flags
;
2398 unsigned long pfn
= page_to_pfn(page
);
2401 if (!free_pcp_prepare(page
))
2404 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2405 set_pcppage_migratetype(page
, migratetype
);
2406 local_irq_save(flags
);
2407 __count_vm_event(PGFREE
);
2410 * We only track unmovable, reclaimable and movable on pcp lists.
2411 * Free ISOLATE pages back to the allocator because they are being
2412 * offlined but treat RESERVE as movable pages so we can get those
2413 * areas back if necessary. Otherwise, we may have to free
2414 * excessively into the page allocator
2416 if (migratetype
>= MIGRATE_PCPTYPES
) {
2417 if (unlikely(is_migrate_isolate(migratetype
))) {
2418 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2421 migratetype
= MIGRATE_MOVABLE
;
2424 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2426 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2428 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2430 if (pcp
->count
>= pcp
->high
) {
2431 unsigned long batch
= READ_ONCE(pcp
->batch
);
2432 free_pcppages_bulk(zone
, batch
, pcp
);
2433 pcp
->count
-= batch
;
2437 local_irq_restore(flags
);
2441 * Free a list of 0-order pages
2443 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2445 struct page
*page
, *next
;
2447 list_for_each_entry_safe(page
, next
, list
, lru
) {
2448 trace_mm_page_free_batched(page
, cold
);
2449 free_hot_cold_page(page
, cold
);
2454 * split_page takes a non-compound higher-order page, and splits it into
2455 * n (1<<order) sub-pages: page[0..n]
2456 * Each sub-page must be freed individually.
2458 * Note: this is probably too low level an operation for use in drivers.
2459 * Please consult with lkml before using this in your driver.
2461 void split_page(struct page
*page
, unsigned int order
)
2466 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2467 VM_BUG_ON_PAGE(!page_count(page
), page
);
2469 #ifdef CONFIG_KMEMCHECK
2471 * Split shadow pages too, because free(page[0]) would
2472 * otherwise free the whole shadow.
2474 if (kmemcheck_page_is_tracked(page
))
2475 split_page(virt_to_page(page
[0].shadow
), order
);
2478 gfp_mask
= get_page_owner_gfp(page
);
2479 set_page_owner(page
, 0, gfp_mask
);
2480 for (i
= 1; i
< (1 << order
); i
++) {
2481 set_page_refcounted(page
+ i
);
2482 set_page_owner(page
+ i
, 0, gfp_mask
);
2485 EXPORT_SYMBOL_GPL(split_page
);
2487 int __isolate_free_page(struct page
*page
, unsigned int order
)
2489 unsigned long watermark
;
2493 BUG_ON(!PageBuddy(page
));
2495 zone
= page_zone(page
);
2496 mt
= get_pageblock_migratetype(page
);
2498 if (!is_migrate_isolate(mt
)) {
2499 /* Obey watermarks as if the page was being allocated */
2500 watermark
= low_wmark_pages(zone
) + (1 << order
);
2501 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2504 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2507 /* Remove page from free list */
2508 list_del(&page
->lru
);
2509 zone
->free_area
[order
].nr_free
--;
2510 rmv_page_order(page
);
2512 set_page_owner(page
, order
, __GFP_MOVABLE
);
2514 /* Set the pageblock if the isolated page is at least a pageblock */
2515 if (order
>= pageblock_order
- 1) {
2516 struct page
*endpage
= page
+ (1 << order
) - 1;
2517 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2518 int mt
= get_pageblock_migratetype(page
);
2519 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2520 set_pageblock_migratetype(page
,
2526 return 1UL << order
;
2530 * Similar to split_page except the page is already free. As this is only
2531 * being used for migration, the migratetype of the block also changes.
2532 * As this is called with interrupts disabled, the caller is responsible
2533 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2536 * Note: this is probably too low level an operation for use in drivers.
2537 * Please consult with lkml before using this in your driver.
2539 int split_free_page(struct page
*page
)
2544 order
= page_order(page
);
2546 nr_pages
= __isolate_free_page(page
, order
);
2550 /* Split into individual pages */
2551 set_page_refcounted(page
);
2552 split_page(page
, order
);
2557 * Update NUMA hit/miss statistics
2559 * Must be called with interrupts disabled.
2561 * When __GFP_OTHER_NODE is set assume the node of the preferred
2562 * zone is the local node. This is useful for daemons who allocate
2563 * memory on behalf of other processes.
2565 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
,
2569 int local_nid
= numa_node_id();
2570 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2572 if (unlikely(flags
& __GFP_OTHER_NODE
)) {
2573 local_stat
= NUMA_OTHER
;
2574 local_nid
= preferred_zone
->node
;
2577 if (z
->node
== local_nid
) {
2578 __inc_zone_state(z
, NUMA_HIT
);
2579 __inc_zone_state(z
, local_stat
);
2581 __inc_zone_state(z
, NUMA_MISS
);
2582 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2588 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2591 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2592 struct zone
*zone
, unsigned int order
,
2593 gfp_t gfp_flags
, unsigned int alloc_flags
,
2596 unsigned long flags
;
2598 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2600 if (likely(order
== 0)) {
2601 struct per_cpu_pages
*pcp
;
2602 struct list_head
*list
;
2604 local_irq_save(flags
);
2606 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2607 list
= &pcp
->lists
[migratetype
];
2608 if (list_empty(list
)) {
2609 pcp
->count
+= rmqueue_bulk(zone
, 0,
2612 if (unlikely(list_empty(list
)))
2617 page
= list_last_entry(list
, struct page
, lru
);
2619 page
= list_first_entry(list
, struct page
, lru
);
2621 __dec_zone_state(zone
, NR_ALLOC_BATCH
);
2622 list_del(&page
->lru
);
2625 } while (check_new_pcp(page
));
2628 * We most definitely don't want callers attempting to
2629 * allocate greater than order-1 page units with __GFP_NOFAIL.
2631 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2632 spin_lock_irqsave(&zone
->lock
, flags
);
2636 if (alloc_flags
& ALLOC_HARDER
) {
2637 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2639 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2642 page
= __rmqueue(zone
, order
, migratetype
);
2643 } while (page
&& check_new_pages(page
, order
));
2644 spin_unlock(&zone
->lock
);
2647 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2648 __mod_zone_freepage_state(zone
, -(1 << order
),
2649 get_pcppage_migratetype(page
));
2652 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2653 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2654 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2656 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2657 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2658 local_irq_restore(flags
);
2660 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2664 local_irq_restore(flags
);
2668 #ifdef CONFIG_FAIL_PAGE_ALLOC
2671 struct fault_attr attr
;
2673 bool ignore_gfp_highmem
;
2674 bool ignore_gfp_reclaim
;
2676 } fail_page_alloc
= {
2677 .attr
= FAULT_ATTR_INITIALIZER
,
2678 .ignore_gfp_reclaim
= true,
2679 .ignore_gfp_highmem
= true,
2683 static int __init
setup_fail_page_alloc(char *str
)
2685 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2687 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2689 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2691 if (order
< fail_page_alloc
.min_order
)
2693 if (gfp_mask
& __GFP_NOFAIL
)
2695 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2697 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2698 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2701 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2704 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2706 static int __init
fail_page_alloc_debugfs(void)
2708 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2711 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2712 &fail_page_alloc
.attr
);
2714 return PTR_ERR(dir
);
2716 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2717 &fail_page_alloc
.ignore_gfp_reclaim
))
2719 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2720 &fail_page_alloc
.ignore_gfp_highmem
))
2722 if (!debugfs_create_u32("min-order", mode
, dir
,
2723 &fail_page_alloc
.min_order
))
2728 debugfs_remove_recursive(dir
);
2733 late_initcall(fail_page_alloc_debugfs
);
2735 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2737 #else /* CONFIG_FAIL_PAGE_ALLOC */
2739 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2744 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2747 * Return true if free base pages are above 'mark'. For high-order checks it
2748 * will return true of the order-0 watermark is reached and there is at least
2749 * one free page of a suitable size. Checking now avoids taking the zone lock
2750 * to check in the allocation paths if no pages are free.
2752 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2753 int classzone_idx
, unsigned int alloc_flags
,
2758 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2760 /* free_pages may go negative - that's OK */
2761 free_pages
-= (1 << order
) - 1;
2763 if (alloc_flags
& ALLOC_HIGH
)
2767 * If the caller does not have rights to ALLOC_HARDER then subtract
2768 * the high-atomic reserves. This will over-estimate the size of the
2769 * atomic reserve but it avoids a search.
2771 if (likely(!alloc_harder
))
2772 free_pages
-= z
->nr_reserved_highatomic
;
2777 /* If allocation can't use CMA areas don't use free CMA pages */
2778 if (!(alloc_flags
& ALLOC_CMA
))
2779 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2783 * Check watermarks for an order-0 allocation request. If these
2784 * are not met, then a high-order request also cannot go ahead
2785 * even if a suitable page happened to be free.
2787 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2790 /* If this is an order-0 request then the watermark is fine */
2794 /* For a high-order request, check at least one suitable page is free */
2795 for (o
= order
; o
< MAX_ORDER
; o
++) {
2796 struct free_area
*area
= &z
->free_area
[o
];
2805 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2806 if (!list_empty(&area
->free_list
[mt
]))
2811 if ((alloc_flags
& ALLOC_CMA
) &&
2812 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2820 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2821 int classzone_idx
, unsigned int alloc_flags
)
2823 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2824 zone_page_state(z
, NR_FREE_PAGES
));
2827 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
2828 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
2830 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2834 /* If allocation can't use CMA areas don't use free CMA pages */
2835 if (!(alloc_flags
& ALLOC_CMA
))
2836 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2840 * Fast check for order-0 only. If this fails then the reserves
2841 * need to be calculated. There is a corner case where the check
2842 * passes but only the high-order atomic reserve are free. If
2843 * the caller is !atomic then it'll uselessly search the free
2844 * list. That corner case is then slower but it is harmless.
2846 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
2849 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2853 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2854 unsigned long mark
, int classzone_idx
)
2856 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2858 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2859 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2861 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2866 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2868 return local_zone
->node
== zone
->node
;
2871 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2873 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
2876 #else /* CONFIG_NUMA */
2877 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2882 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2886 #endif /* CONFIG_NUMA */
2888 static void reset_alloc_batches(struct zone
*preferred_zone
)
2890 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2893 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2894 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2895 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2896 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2897 } while (zone
++ != preferred_zone
);
2901 * get_page_from_freelist goes through the zonelist trying to allocate
2904 static struct page
*
2905 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2906 const struct alloc_context
*ac
)
2908 struct zoneref
*z
= ac
->preferred_zoneref
;
2910 bool fair_skipped
= false;
2911 bool apply_fair
= (alloc_flags
& ALLOC_FAIR
);
2915 * Scan zonelist, looking for a zone with enough free.
2916 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2918 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
2923 if (cpusets_enabled() &&
2924 (alloc_flags
& ALLOC_CPUSET
) &&
2925 !__cpuset_zone_allowed(zone
, gfp_mask
))
2928 * Distribute pages in proportion to the individual
2929 * zone size to ensure fair page aging. The zone a
2930 * page was allocated in should have no effect on the
2931 * time the page has in memory before being reclaimed.
2934 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2935 fair_skipped
= true;
2938 if (!zone_local(ac
->preferred_zoneref
->zone
, zone
)) {
2945 * When allocating a page cache page for writing, we
2946 * want to get it from a zone that is within its dirty
2947 * limit, such that no single zone holds more than its
2948 * proportional share of globally allowed dirty pages.
2949 * The dirty limits take into account the zone's
2950 * lowmem reserves and high watermark so that kswapd
2951 * should be able to balance it without having to
2952 * write pages from its LRU list.
2954 * This may look like it could increase pressure on
2955 * lower zones by failing allocations in higher zones
2956 * before they are full. But the pages that do spill
2957 * over are limited as the lower zones are protected
2958 * by this very same mechanism. It should not become
2959 * a practical burden to them.
2961 * XXX: For now, allow allocations to potentially
2962 * exceed the per-zone dirty limit in the slowpath
2963 * (spread_dirty_pages unset) before going into reclaim,
2964 * which is important when on a NUMA setup the allowed
2965 * zones are together not big enough to reach the
2966 * global limit. The proper fix for these situations
2967 * will require awareness of zones in the
2968 * dirty-throttling and the flusher threads.
2970 if (ac
->spread_dirty_pages
&& !zone_dirty_ok(zone
))
2973 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2974 if (!zone_watermark_fast(zone
, order
, mark
,
2975 ac_classzone_idx(ac
), alloc_flags
)) {
2978 /* Checked here to keep the fast path fast */
2979 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2980 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2983 if (zone_reclaim_mode
== 0 ||
2984 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
2987 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2989 case ZONE_RECLAIM_NOSCAN
:
2992 case ZONE_RECLAIM_FULL
:
2993 /* scanned but unreclaimable */
2996 /* did we reclaim enough */
2997 if (zone_watermark_ok(zone
, order
, mark
,
2998 ac_classzone_idx(ac
), alloc_flags
))
3006 page
= buffered_rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3007 gfp_mask
, alloc_flags
, ac
->migratetype
);
3009 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3012 * If this is a high-order atomic allocation then check
3013 * if the pageblock should be reserved for the future
3015 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3016 reserve_highatomic_pageblock(page
, zone
, order
);
3023 * The first pass makes sure allocations are spread fairly within the
3024 * local node. However, the local node might have free pages left
3025 * after the fairness batches are exhausted, and remote zones haven't
3026 * even been considered yet. Try once more without fairness, and
3027 * include remote zones now, before entering the slowpath and waking
3028 * kswapd: prefer spilling to a remote zone over swapping locally.
3033 fair_skipped
= false;
3034 reset_alloc_batches(ac
->preferred_zoneref
->zone
);
3035 z
= ac
->preferred_zoneref
;
3043 * Large machines with many possible nodes should not always dump per-node
3044 * meminfo in irq context.
3046 static inline bool should_suppress_show_mem(void)
3051 ret
= in_interrupt();
3056 static DEFINE_RATELIMIT_STATE(nopage_rs
,
3057 DEFAULT_RATELIMIT_INTERVAL
,
3058 DEFAULT_RATELIMIT_BURST
);
3060 void warn_alloc_failed(gfp_t gfp_mask
, unsigned int order
, const char *fmt
, ...)
3062 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3064 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
3065 debug_guardpage_minorder() > 0)
3069 * This documents exceptions given to allocations in certain
3070 * contexts that are allowed to allocate outside current's set
3073 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3074 if (test_thread_flag(TIF_MEMDIE
) ||
3075 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3076 filter
&= ~SHOW_MEM_FILTER_NODES
;
3077 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3078 filter
&= ~SHOW_MEM_FILTER_NODES
;
3081 struct va_format vaf
;
3084 va_start(args
, fmt
);
3089 pr_warn("%pV", &vaf
);
3094 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 current
->comm
, order
, gfp_mask
, &gfp_mask
);
3097 if (!should_suppress_show_mem())
3101 static inline struct page
*
3102 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3103 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3105 struct oom_control oc
= {
3106 .zonelist
= ac
->zonelist
,
3107 .nodemask
= ac
->nodemask
,
3108 .gfp_mask
= gfp_mask
,
3113 *did_some_progress
= 0;
3116 * Acquire the oom lock. If that fails, somebody else is
3117 * making progress for us.
3119 if (!mutex_trylock(&oom_lock
)) {
3120 *did_some_progress
= 1;
3121 schedule_timeout_uninterruptible(1);
3126 * Go through the zonelist yet one more time, keep very high watermark
3127 * here, this is only to catch a parallel oom killing, we must fail if
3128 * we're still under heavy pressure.
3130 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
3131 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3135 if (!(gfp_mask
& __GFP_NOFAIL
)) {
3136 /* Coredumps can quickly deplete all memory reserves */
3137 if (current
->flags
& PF_DUMPCORE
)
3139 /* The OOM killer will not help higher order allocs */
3140 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3142 /* The OOM killer does not needlessly kill tasks for lowmem */
3143 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3145 if (pm_suspended_storage())
3148 * XXX: GFP_NOFS allocations should rather fail than rely on
3149 * other request to make a forward progress.
3150 * We are in an unfortunate situation where out_of_memory cannot
3151 * do much for this context but let's try it to at least get
3152 * access to memory reserved if the current task is killed (see
3153 * out_of_memory). Once filesystems are ready to handle allocation
3154 * failures more gracefully we should just bail out here.
3157 /* The OOM killer may not free memory on a specific node */
3158 if (gfp_mask
& __GFP_THISNODE
)
3161 /* Exhausted what can be done so it's blamo time */
3162 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3163 *did_some_progress
= 1;
3165 if (gfp_mask
& __GFP_NOFAIL
) {
3166 page
= get_page_from_freelist(gfp_mask
, order
,
3167 ALLOC_NO_WATERMARKS
|ALLOC_CPUSET
, ac
);
3169 * fallback to ignore cpuset restriction if our nodes
3173 page
= get_page_from_freelist(gfp_mask
, order
,
3174 ALLOC_NO_WATERMARKS
, ac
);
3178 mutex_unlock(&oom_lock
);
3184 * Maximum number of compaction retries wit a progress before OOM
3185 * killer is consider as the only way to move forward.
3187 #define MAX_COMPACT_RETRIES 16
3189 #ifdef CONFIG_COMPACTION
3190 /* Try memory compaction for high-order allocations before reclaim */
3191 static struct page
*
3192 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3193 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3194 enum migrate_mode mode
, enum compact_result
*compact_result
)
3197 int contended_compaction
;
3202 current
->flags
|= PF_MEMALLOC
;
3203 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3204 mode
, &contended_compaction
);
3205 current
->flags
&= ~PF_MEMALLOC
;
3207 if (*compact_result
<= COMPACT_INACTIVE
)
3211 * At least in one zone compaction wasn't deferred or skipped, so let's
3212 * count a compaction stall
3214 count_vm_event(COMPACTSTALL
);
3216 page
= get_page_from_freelist(gfp_mask
, order
,
3217 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3220 struct zone
*zone
= page_zone(page
);
3222 zone
->compact_blockskip_flush
= false;
3223 compaction_defer_reset(zone
, order
, true);
3224 count_vm_event(COMPACTSUCCESS
);
3229 * It's bad if compaction run occurs and fails. The most likely reason
3230 * is that pages exist, but not enough to satisfy watermarks.
3232 count_vm_event(COMPACTFAIL
);
3235 * In all zones where compaction was attempted (and not
3236 * deferred or skipped), lock contention has been detected.
3237 * For THP allocation we do not want to disrupt the others
3238 * so we fallback to base pages instead.
3240 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3241 *compact_result
= COMPACT_CONTENDED
;
3244 * If compaction was aborted due to need_resched(), we do not
3245 * want to further increase allocation latency, unless it is
3246 * khugepaged trying to collapse.
3248 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3249 && !(current
->flags
& PF_KTHREAD
))
3250 *compact_result
= COMPACT_CONTENDED
;
3258 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3259 enum compact_result compact_result
, enum migrate_mode
*migrate_mode
,
3260 int compaction_retries
)
3262 int max_retries
= MAX_COMPACT_RETRIES
;
3268 * compaction considers all the zone as desperately out of memory
3269 * so it doesn't really make much sense to retry except when the
3270 * failure could be caused by weak migration mode.
3272 if (compaction_failed(compact_result
)) {
3273 if (*migrate_mode
== MIGRATE_ASYNC
) {
3274 *migrate_mode
= MIGRATE_SYNC_LIGHT
;
3281 * make sure the compaction wasn't deferred or didn't bail out early
3282 * due to locks contention before we declare that we should give up.
3283 * But do not retry if the given zonelist is not suitable for
3286 if (compaction_withdrawn(compact_result
))
3287 return compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3290 * !costly requests are much more important than __GFP_REPEAT
3291 * costly ones because they are de facto nofail and invoke OOM
3292 * killer to move on while costly can fail and users are ready
3293 * to cope with that. 1/4 retries is rather arbitrary but we
3294 * would need much more detailed feedback from compaction to
3295 * make a better decision.
3297 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3299 if (compaction_retries
<= max_retries
)
3305 static inline struct page
*
3306 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3307 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3308 enum migrate_mode mode
, enum compact_result
*compact_result
)
3310 *compact_result
= COMPACT_SKIPPED
;
3315 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3316 enum compact_result compact_result
,
3317 enum migrate_mode
*migrate_mode
,
3318 int compaction_retries
)
3323 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3327 * There are setups with compaction disabled which would prefer to loop
3328 * inside the allocator rather than hit the oom killer prematurely.
3329 * Let's give them a good hope and keep retrying while the order-0
3330 * watermarks are OK.
3332 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3334 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3335 ac_classzone_idx(ac
), alloc_flags
))
3340 #endif /* CONFIG_COMPACTION */
3342 /* Perform direct synchronous page reclaim */
3344 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3345 const struct alloc_context
*ac
)
3347 struct reclaim_state reclaim_state
;
3352 /* We now go into synchronous reclaim */
3353 cpuset_memory_pressure_bump();
3354 current
->flags
|= PF_MEMALLOC
;
3355 lockdep_set_current_reclaim_state(gfp_mask
);
3356 reclaim_state
.reclaimed_slab
= 0;
3357 current
->reclaim_state
= &reclaim_state
;
3359 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3362 current
->reclaim_state
= NULL
;
3363 lockdep_clear_current_reclaim_state();
3364 current
->flags
&= ~PF_MEMALLOC
;
3371 /* The really slow allocator path where we enter direct reclaim */
3372 static inline struct page
*
3373 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3374 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3375 unsigned long *did_some_progress
)
3377 struct page
*page
= NULL
;
3378 bool drained
= false;
3380 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3381 if (unlikely(!(*did_some_progress
)))
3385 page
= get_page_from_freelist(gfp_mask
, order
,
3386 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3389 * If an allocation failed after direct reclaim, it could be because
3390 * pages are pinned on the per-cpu lists or in high alloc reserves.
3391 * Shrink them them and try again
3393 if (!page
&& !drained
) {
3394 unreserve_highatomic_pageblock(ac
);
3395 drain_all_pages(NULL
);
3403 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3408 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3409 ac
->high_zoneidx
, ac
->nodemask
)
3410 wakeup_kswapd(zone
, order
, ac_classzone_idx(ac
));
3413 static inline unsigned int
3414 gfp_to_alloc_flags(gfp_t gfp_mask
)
3416 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3418 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3419 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3422 * The caller may dip into page reserves a bit more if the caller
3423 * cannot run direct reclaim, or if the caller has realtime scheduling
3424 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3425 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3427 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3429 if (gfp_mask
& __GFP_ATOMIC
) {
3431 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3432 * if it can't schedule.
3434 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3435 alloc_flags
|= ALLOC_HARDER
;
3437 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3438 * comment for __cpuset_node_allowed().
3440 alloc_flags
&= ~ALLOC_CPUSET
;
3441 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3442 alloc_flags
|= ALLOC_HARDER
;
3444 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
3445 if (gfp_mask
& __GFP_MEMALLOC
)
3446 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3447 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3448 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3449 else if (!in_interrupt() &&
3450 ((current
->flags
& PF_MEMALLOC
) ||
3451 unlikely(test_thread_flag(TIF_MEMDIE
))))
3452 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3455 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3456 alloc_flags
|= ALLOC_CMA
;
3461 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3463 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
3466 static inline bool is_thp_gfp_mask(gfp_t gfp_mask
)
3468 return (gfp_mask
& (GFP_TRANSHUGE
| __GFP_KSWAPD_RECLAIM
)) == GFP_TRANSHUGE
;
3472 * Maximum number of reclaim retries without any progress before OOM killer
3473 * is consider as the only way to move forward.
3475 #define MAX_RECLAIM_RETRIES 16
3478 * Checks whether it makes sense to retry the reclaim to make a forward progress
3479 * for the given allocation request.
3480 * The reclaim feedback represented by did_some_progress (any progress during
3481 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3482 * any progress in a row) is considered as well as the reclaimable pages on the
3483 * applicable zone list (with a backoff mechanism which is a function of
3484 * no_progress_loops).
3486 * Returns true if a retry is viable or false to enter the oom path.
3489 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3490 struct alloc_context
*ac
, int alloc_flags
,
3491 bool did_some_progress
, int no_progress_loops
)
3497 * Make sure we converge to OOM if we cannot make any progress
3498 * several times in the row.
3500 if (no_progress_loops
> MAX_RECLAIM_RETRIES
)
3504 * Keep reclaiming pages while there is a chance this will lead somewhere.
3505 * If none of the target zones can satisfy our allocation request even
3506 * if all reclaimable pages are considered then we are screwed and have
3509 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3511 unsigned long available
;
3512 unsigned long reclaimable
;
3514 available
= reclaimable
= zone_reclaimable_pages(zone
);
3515 available
-= DIV_ROUND_UP(no_progress_loops
* available
,
3516 MAX_RECLAIM_RETRIES
);
3517 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3520 * Would the allocation succeed if we reclaimed the whole
3523 if (__zone_watermark_ok(zone
, order
, min_wmark_pages(zone
),
3524 ac_classzone_idx(ac
), alloc_flags
, available
)) {
3526 * If we didn't make any progress and have a lot of
3527 * dirty + writeback pages then we should wait for
3528 * an IO to complete to slow down the reclaim and
3529 * prevent from pre mature OOM
3531 if (!did_some_progress
) {
3532 unsigned long writeback
;
3533 unsigned long dirty
;
3535 writeback
= zone_page_state_snapshot(zone
,
3537 dirty
= zone_page_state_snapshot(zone
, NR_FILE_DIRTY
);
3539 if (2*(writeback
+ dirty
) > reclaimable
) {
3540 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3546 * Memory allocation/reclaim might be called from a WQ
3547 * context and the current implementation of the WQ
3548 * concurrency control doesn't recognize that
3549 * a particular WQ is congested if the worker thread is
3550 * looping without ever sleeping. Therefore we have to
3551 * do a short sleep here rather than calling
3554 if (current
->flags
& PF_WQ_WORKER
)
3555 schedule_timeout_uninterruptible(1);
3566 static inline struct page
*
3567 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3568 struct alloc_context
*ac
)
3570 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3571 struct page
*page
= NULL
;
3572 unsigned int alloc_flags
;
3573 unsigned long did_some_progress
;
3574 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
3575 enum compact_result compact_result
;
3576 int compaction_retries
= 0;
3577 int no_progress_loops
= 0;
3580 * In the slowpath, we sanity check order to avoid ever trying to
3581 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3582 * be using allocators in order of preference for an area that is
3585 if (order
>= MAX_ORDER
) {
3586 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3591 * We also sanity check to catch abuse of atomic reserves being used by
3592 * callers that are not in atomic context.
3594 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3595 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3596 gfp_mask
&= ~__GFP_ATOMIC
;
3599 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3600 wake_all_kswapds(order
, ac
);
3603 * OK, we're below the kswapd watermark and have kicked background
3604 * reclaim. Now things get more complex, so set up alloc_flags according
3605 * to how we want to proceed.
3607 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3610 * Reset the zonelist iterators if memory policies can be ignored.
3611 * These allocations are high priority and system rather than user
3614 if ((alloc_flags
& ALLOC_NO_WATERMARKS
) || !(alloc_flags
& ALLOC_CPUSET
)) {
3615 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3616 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3617 ac
->high_zoneidx
, ac
->nodemask
);
3620 /* This is the last chance, in general, before the goto nopage. */
3621 page
= get_page_from_freelist(gfp_mask
, order
,
3622 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3626 /* Allocate without watermarks if the context allows */
3627 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3628 page
= get_page_from_freelist(gfp_mask
, order
,
3629 ALLOC_NO_WATERMARKS
, ac
);
3634 /* Caller is not willing to reclaim, we can't balance anything */
3635 if (!can_direct_reclaim
) {
3637 * All existing users of the __GFP_NOFAIL are blockable, so warn
3638 * of any new users that actually allow this type of allocation
3641 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3645 /* Avoid recursion of direct reclaim */
3646 if (current
->flags
& PF_MEMALLOC
) {
3648 * __GFP_NOFAIL request from this context is rather bizarre
3649 * because we cannot reclaim anything and only can loop waiting
3650 * for somebody to do a work for us.
3652 if (WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3659 /* Avoid allocations with no watermarks from looping endlessly */
3660 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3664 * Try direct compaction. The first pass is asynchronous. Subsequent
3665 * attempts after direct reclaim are synchronous
3667 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3673 /* Checks for THP-specific high-order allocations */
3674 if (is_thp_gfp_mask(gfp_mask
)) {
3676 * If compaction is deferred for high-order allocations, it is
3677 * because sync compaction recently failed. If this is the case
3678 * and the caller requested a THP allocation, we do not want
3679 * to heavily disrupt the system, so we fail the allocation
3680 * instead of entering direct reclaim.
3682 if (compact_result
== COMPACT_DEFERRED
)
3686 * Compaction is contended so rather back off than cause
3689 if(compact_result
== COMPACT_CONTENDED
)
3693 if (order
&& compaction_made_progress(compact_result
))
3694 compaction_retries
++;
3696 /* Try direct reclaim and then allocating */
3697 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3698 &did_some_progress
);
3702 /* Do not loop if specifically requested */
3703 if (gfp_mask
& __GFP_NORETRY
)
3707 * Do not retry costly high order allocations unless they are
3710 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_REPEAT
))
3714 * Costly allocations might have made a progress but this doesn't mean
3715 * their order will become available due to high fragmentation so
3716 * always increment the no progress counter for them
3718 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3719 no_progress_loops
= 0;
3721 no_progress_loops
++;
3723 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3724 did_some_progress
> 0, no_progress_loops
))
3728 * It doesn't make any sense to retry for the compaction if the order-0
3729 * reclaim is not able to make any progress because the current
3730 * implementation of the compaction depends on the sufficient amount
3731 * of free memory (see __compaction_suitable)
3733 if (did_some_progress
> 0 &&
3734 should_compact_retry(ac
, order
, alloc_flags
,
3735 compact_result
, &migration_mode
,
3736 compaction_retries
))
3739 /* Reclaim has failed us, start killing things */
3740 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3744 /* Retry as long as the OOM killer is making progress */
3745 if (did_some_progress
) {
3746 no_progress_loops
= 0;
3752 * High-order allocations do not necessarily loop after direct reclaim
3753 * and reclaim/compaction depends on compaction being called after
3754 * reclaim so call directly if necessary.
3755 * It can become very expensive to allocate transparent hugepages at
3756 * fault, so use asynchronous memory compaction for THP unless it is
3757 * khugepaged trying to collapse. All other requests should tolerate
3758 * at least light sync migration.
3760 if (is_thp_gfp_mask(gfp_mask
) && !(current
->flags
& PF_KTHREAD
))
3761 migration_mode
= MIGRATE_ASYNC
;
3763 migration_mode
= MIGRATE_SYNC_LIGHT
;
3764 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3770 warn_alloc_failed(gfp_mask
, order
, NULL
);
3776 * This is the 'heart' of the zoned buddy allocator.
3779 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3780 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3783 unsigned int cpuset_mems_cookie
;
3784 unsigned int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_FAIR
;
3785 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
3786 struct alloc_context ac
= {
3787 .high_zoneidx
= gfp_zone(gfp_mask
),
3788 .zonelist
= zonelist
,
3789 .nodemask
= nodemask
,
3790 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3793 if (cpusets_enabled()) {
3794 alloc_mask
|= __GFP_HARDWALL
;
3795 alloc_flags
|= ALLOC_CPUSET
;
3797 ac
.nodemask
= &cpuset_current_mems_allowed
;
3800 gfp_mask
&= gfp_allowed_mask
;
3802 lockdep_trace_alloc(gfp_mask
);
3804 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3806 if (should_fail_alloc_page(gfp_mask
, order
))
3810 * Check the zones suitable for the gfp_mask contain at least one
3811 * valid zone. It's possible to have an empty zonelist as a result
3812 * of __GFP_THISNODE and a memoryless node
3814 if (unlikely(!zonelist
->_zonerefs
->zone
))
3817 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3818 alloc_flags
|= ALLOC_CMA
;
3821 cpuset_mems_cookie
= read_mems_allowed_begin();
3823 /* Dirty zone balancing only done in the fast path */
3824 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3827 * The preferred zone is used for statistics but crucially it is
3828 * also used as the starting point for the zonelist iterator. It
3829 * may get reset for allocations that ignore memory policies.
3831 ac
.preferred_zoneref
= first_zones_zonelist(ac
.zonelist
,
3832 ac
.high_zoneidx
, ac
.nodemask
);
3833 if (!ac
.preferred_zoneref
) {
3838 /* First allocation attempt */
3839 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3844 * Runtime PM, block IO and its error handling path can deadlock
3845 * because I/O on the device might not complete.
3847 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3848 ac
.spread_dirty_pages
= false;
3851 * Restore the original nodemask if it was potentially replaced with
3852 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3854 if (cpusets_enabled())
3855 ac
.nodemask
= nodemask
;
3856 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3860 * When updating a task's mems_allowed, it is possible to race with
3861 * parallel threads in such a way that an allocation can fail while
3862 * the mask is being updated. If a page allocation is about to fail,
3863 * check if the cpuset changed during allocation and if so, retry.
3865 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
))) {
3866 alloc_mask
= gfp_mask
;
3871 if (kmemcheck_enabled
&& page
)
3872 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3874 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3878 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3881 * Common helper functions.
3883 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3888 * __get_free_pages() returns a 32-bit address, which cannot represent
3891 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3893 page
= alloc_pages(gfp_mask
, order
);
3896 return (unsigned long) page_address(page
);
3898 EXPORT_SYMBOL(__get_free_pages
);
3900 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3902 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3904 EXPORT_SYMBOL(get_zeroed_page
);
3906 void __free_pages(struct page
*page
, unsigned int order
)
3908 if (put_page_testzero(page
)) {
3910 free_hot_cold_page(page
, false);
3912 __free_pages_ok(page
, order
);
3916 EXPORT_SYMBOL(__free_pages
);
3918 void free_pages(unsigned long addr
, unsigned int order
)
3921 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3922 __free_pages(virt_to_page((void *)addr
), order
);
3926 EXPORT_SYMBOL(free_pages
);
3930 * An arbitrary-length arbitrary-offset area of memory which resides
3931 * within a 0 or higher order page. Multiple fragments within that page
3932 * are individually refcounted, in the page's reference counter.
3934 * The page_frag functions below provide a simple allocation framework for
3935 * page fragments. This is used by the network stack and network device
3936 * drivers to provide a backing region of memory for use as either an
3937 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3939 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3942 struct page
*page
= NULL
;
3943 gfp_t gfp
= gfp_mask
;
3945 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3946 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3948 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3949 PAGE_FRAG_CACHE_MAX_ORDER
);
3950 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3952 if (unlikely(!page
))
3953 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3955 nc
->va
= page
? page_address(page
) : NULL
;
3960 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3961 unsigned int fragsz
, gfp_t gfp_mask
)
3963 unsigned int size
= PAGE_SIZE
;
3967 if (unlikely(!nc
->va
)) {
3969 page
= __page_frag_refill(nc
, gfp_mask
);
3973 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3974 /* if size can vary use size else just use PAGE_SIZE */
3977 /* Even if we own the page, we do not use atomic_set().
3978 * This would break get_page_unless_zero() users.
3980 page_ref_add(page
, size
- 1);
3982 /* reset page count bias and offset to start of new frag */
3983 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3984 nc
->pagecnt_bias
= size
;
3988 offset
= nc
->offset
- fragsz
;
3989 if (unlikely(offset
< 0)) {
3990 page
= virt_to_page(nc
->va
);
3992 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
3995 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3996 /* if size can vary use size else just use PAGE_SIZE */
3999 /* OK, page count is 0, we can safely set it */
4000 set_page_count(page
, size
);
4002 /* reset page count bias and offset to start of new frag */
4003 nc
->pagecnt_bias
= size
;
4004 offset
= size
- fragsz
;
4008 nc
->offset
= offset
;
4010 return nc
->va
+ offset
;
4012 EXPORT_SYMBOL(__alloc_page_frag
);
4015 * Frees a page fragment allocated out of either a compound or order 0 page.
4017 void __free_page_frag(void *addr
)
4019 struct page
*page
= virt_to_head_page(addr
);
4021 if (unlikely(put_page_testzero(page
)))
4022 __free_pages_ok(page
, compound_order(page
));
4024 EXPORT_SYMBOL(__free_page_frag
);
4027 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4028 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4029 * equivalent to alloc_pages.
4031 * It should be used when the caller would like to use kmalloc, but since the
4032 * allocation is large, it has to fall back to the page allocator.
4034 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
4038 page
= alloc_pages(gfp_mask
, order
);
4039 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
4040 __free_pages(page
, order
);
4046 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
4050 page
= alloc_pages_node(nid
, gfp_mask
, order
);
4051 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
4052 __free_pages(page
, order
);
4059 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4062 void __free_kmem_pages(struct page
*page
, unsigned int order
)
4064 memcg_kmem_uncharge(page
, order
);
4065 __free_pages(page
, order
);
4068 void free_kmem_pages(unsigned long addr
, unsigned int order
)
4071 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4072 __free_kmem_pages(virt_to_page((void *)addr
), order
);
4076 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4080 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4081 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4083 split_page(virt_to_page((void *)addr
), order
);
4084 while (used
< alloc_end
) {
4089 return (void *)addr
;
4093 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4094 * @size: the number of bytes to allocate
4095 * @gfp_mask: GFP flags for the allocation
4097 * This function is similar to alloc_pages(), except that it allocates the
4098 * minimum number of pages to satisfy the request. alloc_pages() can only
4099 * allocate memory in power-of-two pages.
4101 * This function is also limited by MAX_ORDER.
4103 * Memory allocated by this function must be released by free_pages_exact().
4105 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4107 unsigned int order
= get_order(size
);
4110 addr
= __get_free_pages(gfp_mask
, order
);
4111 return make_alloc_exact(addr
, order
, size
);
4113 EXPORT_SYMBOL(alloc_pages_exact
);
4116 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4118 * @nid: the preferred node ID where memory should be allocated
4119 * @size: the number of bytes to allocate
4120 * @gfp_mask: GFP flags for the allocation
4122 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4125 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4127 unsigned int order
= get_order(size
);
4128 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4131 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4135 * free_pages_exact - release memory allocated via alloc_pages_exact()
4136 * @virt: the value returned by alloc_pages_exact.
4137 * @size: size of allocation, same value as passed to alloc_pages_exact().
4139 * Release the memory allocated by a previous call to alloc_pages_exact.
4141 void free_pages_exact(void *virt
, size_t size
)
4143 unsigned long addr
= (unsigned long)virt
;
4144 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4146 while (addr
< end
) {
4151 EXPORT_SYMBOL(free_pages_exact
);
4154 * nr_free_zone_pages - count number of pages beyond high watermark
4155 * @offset: The zone index of the highest zone
4157 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4158 * high watermark within all zones at or below a given zone index. For each
4159 * zone, the number of pages is calculated as:
4160 * managed_pages - high_pages
4162 static unsigned long nr_free_zone_pages(int offset
)
4167 /* Just pick one node, since fallback list is circular */
4168 unsigned long sum
= 0;
4170 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4172 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4173 unsigned long size
= zone
->managed_pages
;
4174 unsigned long high
= high_wmark_pages(zone
);
4183 * nr_free_buffer_pages - count number of pages beyond high watermark
4185 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4186 * watermark within ZONE_DMA and ZONE_NORMAL.
4188 unsigned long nr_free_buffer_pages(void)
4190 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4192 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4195 * nr_free_pagecache_pages - count number of pages beyond high watermark
4197 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4198 * high watermark within all zones.
4200 unsigned long nr_free_pagecache_pages(void)
4202 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4205 static inline void show_node(struct zone
*zone
)
4207 if (IS_ENABLED(CONFIG_NUMA
))
4208 printk("Node %d ", zone_to_nid(zone
));
4211 long si_mem_available(void)
4214 unsigned long pagecache
;
4215 unsigned long wmark_low
= 0;
4216 unsigned long pages
[NR_LRU_LISTS
];
4220 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4221 pages
[lru
] = global_page_state(NR_LRU_BASE
+ lru
);
4224 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4227 * Estimate the amount of memory available for userspace allocations,
4228 * without causing swapping.
4230 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4233 * Not all the page cache can be freed, otherwise the system will
4234 * start swapping. Assume at least half of the page cache, or the
4235 * low watermark worth of cache, needs to stay.
4237 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4238 pagecache
-= min(pagecache
/ 2, wmark_low
);
4239 available
+= pagecache
;
4242 * Part of the reclaimable slab consists of items that are in use,
4243 * and cannot be freed. Cap this estimate at the low watermark.
4245 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
4246 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
4252 EXPORT_SYMBOL_GPL(si_mem_available
);
4254 void si_meminfo(struct sysinfo
*val
)
4256 val
->totalram
= totalram_pages
;
4257 val
->sharedram
= global_page_state(NR_SHMEM
);
4258 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4259 val
->bufferram
= nr_blockdev_pages();
4260 val
->totalhigh
= totalhigh_pages
;
4261 val
->freehigh
= nr_free_highpages();
4262 val
->mem_unit
= PAGE_SIZE
;
4265 EXPORT_SYMBOL(si_meminfo
);
4268 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4270 int zone_type
; /* needs to be signed */
4271 unsigned long managed_pages
= 0;
4272 unsigned long managed_highpages
= 0;
4273 unsigned long free_highpages
= 0;
4274 pg_data_t
*pgdat
= NODE_DATA(nid
);
4276 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4277 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4278 val
->totalram
= managed_pages
;
4279 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
4280 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
4281 #ifdef CONFIG_HIGHMEM
4282 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4283 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4285 if (is_highmem(zone
)) {
4286 managed_highpages
+= zone
->managed_pages
;
4287 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4290 val
->totalhigh
= managed_highpages
;
4291 val
->freehigh
= free_highpages
;
4293 val
->totalhigh
= managed_highpages
;
4294 val
->freehigh
= free_highpages
;
4296 val
->mem_unit
= PAGE_SIZE
;
4301 * Determine whether the node should be displayed or not, depending on whether
4302 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4304 bool skip_free_areas_node(unsigned int flags
, int nid
)
4307 unsigned int cpuset_mems_cookie
;
4309 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4313 cpuset_mems_cookie
= read_mems_allowed_begin();
4314 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
4315 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
4320 #define K(x) ((x) << (PAGE_SHIFT-10))
4322 static void show_migration_types(unsigned char type
)
4324 static const char types
[MIGRATE_TYPES
] = {
4325 [MIGRATE_UNMOVABLE
] = 'U',
4326 [MIGRATE_MOVABLE
] = 'M',
4327 [MIGRATE_RECLAIMABLE
] = 'E',
4328 [MIGRATE_HIGHATOMIC
] = 'H',
4330 [MIGRATE_CMA
] = 'C',
4332 #ifdef CONFIG_MEMORY_ISOLATION
4333 [MIGRATE_ISOLATE
] = 'I',
4336 char tmp
[MIGRATE_TYPES
+ 1];
4340 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4341 if (type
& (1 << i
))
4346 printk("(%s) ", tmp
);
4350 * Show free area list (used inside shift_scroll-lock stuff)
4351 * We also calculate the percentage fragmentation. We do this by counting the
4352 * memory on each free list with the exception of the first item on the list.
4355 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4358 void show_free_areas(unsigned int filter
)
4360 unsigned long free_pcp
= 0;
4364 for_each_populated_zone(zone
) {
4365 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4368 for_each_online_cpu(cpu
)
4369 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4372 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4373 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4374 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4375 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4376 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4377 " free:%lu free_pcp:%lu free_cma:%lu\n",
4378 global_page_state(NR_ACTIVE_ANON
),
4379 global_page_state(NR_INACTIVE_ANON
),
4380 global_page_state(NR_ISOLATED_ANON
),
4381 global_page_state(NR_ACTIVE_FILE
),
4382 global_page_state(NR_INACTIVE_FILE
),
4383 global_page_state(NR_ISOLATED_FILE
),
4384 global_page_state(NR_UNEVICTABLE
),
4385 global_page_state(NR_FILE_DIRTY
),
4386 global_page_state(NR_WRITEBACK
),
4387 global_page_state(NR_UNSTABLE_NFS
),
4388 global_page_state(NR_SLAB_RECLAIMABLE
),
4389 global_page_state(NR_SLAB_UNRECLAIMABLE
),
4390 global_page_state(NR_FILE_MAPPED
),
4391 global_page_state(NR_SHMEM
),
4392 global_page_state(NR_PAGETABLE
),
4393 global_page_state(NR_BOUNCE
),
4394 global_page_state(NR_FREE_PAGES
),
4396 global_page_state(NR_FREE_CMA_PAGES
));
4398 for_each_populated_zone(zone
) {
4401 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4405 for_each_online_cpu(cpu
)
4406 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4414 " active_anon:%lukB"
4415 " inactive_anon:%lukB"
4416 " active_file:%lukB"
4417 " inactive_file:%lukB"
4418 " unevictable:%lukB"
4419 " isolated(anon):%lukB"
4420 " isolated(file):%lukB"
4428 " slab_reclaimable:%lukB"
4429 " slab_unreclaimable:%lukB"
4430 " kernel_stack:%lukB"
4437 " writeback_tmp:%lukB"
4438 " pages_scanned:%lu"
4439 " all_unreclaimable? %s"
4442 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4443 K(min_wmark_pages(zone
)),
4444 K(low_wmark_pages(zone
)),
4445 K(high_wmark_pages(zone
)),
4446 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
4447 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
4448 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
4449 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
4450 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
4451 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
4452 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
4453 K(zone
->present_pages
),
4454 K(zone
->managed_pages
),
4455 K(zone_page_state(zone
, NR_MLOCK
)),
4456 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
4457 K(zone_page_state(zone
, NR_WRITEBACK
)),
4458 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
4459 K(zone_page_state(zone
, NR_SHMEM
)),
4460 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
4461 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
4462 zone_page_state(zone
, NR_KERNEL_STACK
) *
4464 K(zone_page_state(zone
, NR_PAGETABLE
)),
4465 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
4466 K(zone_page_state(zone
, NR_BOUNCE
)),
4468 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4469 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
4470 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
4471 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
4472 (!zone_reclaimable(zone
) ? "yes" : "no")
4474 printk("lowmem_reserve[]:");
4475 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4476 printk(" %ld", zone
->lowmem_reserve
[i
]);
4480 for_each_populated_zone(zone
) {
4482 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4483 unsigned char types
[MAX_ORDER
];
4485 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4488 printk("%s: ", zone
->name
);
4490 spin_lock_irqsave(&zone
->lock
, flags
);
4491 for (order
= 0; order
< MAX_ORDER
; order
++) {
4492 struct free_area
*area
= &zone
->free_area
[order
];
4495 nr
[order
] = area
->nr_free
;
4496 total
+= nr
[order
] << order
;
4499 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4500 if (!list_empty(&area
->free_list
[type
]))
4501 types
[order
] |= 1 << type
;
4504 spin_unlock_irqrestore(&zone
->lock
, flags
);
4505 for (order
= 0; order
< MAX_ORDER
; order
++) {
4506 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
4508 show_migration_types(types
[order
]);
4510 printk("= %lukB\n", K(total
));
4513 hugetlb_show_meminfo();
4515 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
4517 show_swap_cache_info();
4520 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4522 zoneref
->zone
= zone
;
4523 zoneref
->zone_idx
= zone_idx(zone
);
4527 * Builds allocation fallback zone lists.
4529 * Add all populated zones of a node to the zonelist.
4531 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4535 enum zone_type zone_type
= MAX_NR_ZONES
;
4539 zone
= pgdat
->node_zones
+ zone_type
;
4540 if (populated_zone(zone
)) {
4541 zoneref_set_zone(zone
,
4542 &zonelist
->_zonerefs
[nr_zones
++]);
4543 check_highest_zone(zone_type
);
4545 } while (zone_type
);
4553 * 0 = automatic detection of better ordering.
4554 * 1 = order by ([node] distance, -zonetype)
4555 * 2 = order by (-zonetype, [node] distance)
4557 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4558 * the same zonelist. So only NUMA can configure this param.
4560 #define ZONELIST_ORDER_DEFAULT 0
4561 #define ZONELIST_ORDER_NODE 1
4562 #define ZONELIST_ORDER_ZONE 2
4564 /* zonelist order in the kernel.
4565 * set_zonelist_order() will set this to NODE or ZONE.
4567 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4568 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4572 /* The value user specified ....changed by config */
4573 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4574 /* string for sysctl */
4575 #define NUMA_ZONELIST_ORDER_LEN 16
4576 char numa_zonelist_order
[16] = "default";
4579 * interface for configure zonelist ordering.
4580 * command line option "numa_zonelist_order"
4581 * = "[dD]efault - default, automatic configuration.
4582 * = "[nN]ode - order by node locality, then by zone within node
4583 * = "[zZ]one - order by zone, then by locality within zone
4586 static int __parse_numa_zonelist_order(char *s
)
4588 if (*s
== 'd' || *s
== 'D') {
4589 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4590 } else if (*s
== 'n' || *s
== 'N') {
4591 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4592 } else if (*s
== 'z' || *s
== 'Z') {
4593 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4595 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4601 static __init
int setup_numa_zonelist_order(char *s
)
4608 ret
= __parse_numa_zonelist_order(s
);
4610 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4614 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4617 * sysctl handler for numa_zonelist_order
4619 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4620 void __user
*buffer
, size_t *length
,
4623 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4625 static DEFINE_MUTEX(zl_order_mutex
);
4627 mutex_lock(&zl_order_mutex
);
4629 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4633 strcpy(saved_string
, (char *)table
->data
);
4635 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4639 int oldval
= user_zonelist_order
;
4641 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4644 * bogus value. restore saved string
4646 strncpy((char *)table
->data
, saved_string
,
4647 NUMA_ZONELIST_ORDER_LEN
);
4648 user_zonelist_order
= oldval
;
4649 } else if (oldval
!= user_zonelist_order
) {
4650 mutex_lock(&zonelists_mutex
);
4651 build_all_zonelists(NULL
, NULL
);
4652 mutex_unlock(&zonelists_mutex
);
4656 mutex_unlock(&zl_order_mutex
);
4661 #define MAX_NODE_LOAD (nr_online_nodes)
4662 static int node_load
[MAX_NUMNODES
];
4665 * find_next_best_node - find the next node that should appear in a given node's fallback list
4666 * @node: node whose fallback list we're appending
4667 * @used_node_mask: nodemask_t of already used nodes
4669 * We use a number of factors to determine which is the next node that should
4670 * appear on a given node's fallback list. The node should not have appeared
4671 * already in @node's fallback list, and it should be the next closest node
4672 * according to the distance array (which contains arbitrary distance values
4673 * from each node to each node in the system), and should also prefer nodes
4674 * with no CPUs, since presumably they'll have very little allocation pressure
4675 * on them otherwise.
4676 * It returns -1 if no node is found.
4678 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4681 int min_val
= INT_MAX
;
4682 int best_node
= NUMA_NO_NODE
;
4683 const struct cpumask
*tmp
= cpumask_of_node(0);
4685 /* Use the local node if we haven't already */
4686 if (!node_isset(node
, *used_node_mask
)) {
4687 node_set(node
, *used_node_mask
);
4691 for_each_node_state(n
, N_MEMORY
) {
4693 /* Don't want a node to appear more than once */
4694 if (node_isset(n
, *used_node_mask
))
4697 /* Use the distance array to find the distance */
4698 val
= node_distance(node
, n
);
4700 /* Penalize nodes under us ("prefer the next node") */
4703 /* Give preference to headless and unused nodes */
4704 tmp
= cpumask_of_node(n
);
4705 if (!cpumask_empty(tmp
))
4706 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4708 /* Slight preference for less loaded node */
4709 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4710 val
+= node_load
[n
];
4712 if (val
< min_val
) {
4719 node_set(best_node
, *used_node_mask
);
4726 * Build zonelists ordered by node and zones within node.
4727 * This results in maximum locality--normal zone overflows into local
4728 * DMA zone, if any--but risks exhausting DMA zone.
4730 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4733 struct zonelist
*zonelist
;
4735 zonelist
= &pgdat
->node_zonelists
[0];
4736 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4738 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4739 zonelist
->_zonerefs
[j
].zone
= NULL
;
4740 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4744 * Build gfp_thisnode zonelists
4746 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4749 struct zonelist
*zonelist
;
4751 zonelist
= &pgdat
->node_zonelists
[1];
4752 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4753 zonelist
->_zonerefs
[j
].zone
= NULL
;
4754 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4758 * Build zonelists ordered by zone and nodes within zones.
4759 * This results in conserving DMA zone[s] until all Normal memory is
4760 * exhausted, but results in overflowing to remote node while memory
4761 * may still exist in local DMA zone.
4763 static int node_order
[MAX_NUMNODES
];
4765 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4768 int zone_type
; /* needs to be signed */
4770 struct zonelist
*zonelist
;
4772 zonelist
= &pgdat
->node_zonelists
[0];
4774 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4775 for (j
= 0; j
< nr_nodes
; j
++) {
4776 node
= node_order
[j
];
4777 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4778 if (populated_zone(z
)) {
4780 &zonelist
->_zonerefs
[pos
++]);
4781 check_highest_zone(zone_type
);
4785 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4786 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4789 #if defined(CONFIG_64BIT)
4791 * Devices that require DMA32/DMA are relatively rare and do not justify a
4792 * penalty to every machine in case the specialised case applies. Default
4793 * to Node-ordering on 64-bit NUMA machines
4795 static int default_zonelist_order(void)
4797 return ZONELIST_ORDER_NODE
;
4801 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4802 * by the kernel. If processes running on node 0 deplete the low memory zone
4803 * then reclaim will occur more frequency increasing stalls and potentially
4804 * be easier to OOM if a large percentage of the zone is under writeback or
4805 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4806 * Hence, default to zone ordering on 32-bit.
4808 static int default_zonelist_order(void)
4810 return ZONELIST_ORDER_ZONE
;
4812 #endif /* CONFIG_64BIT */
4814 static void set_zonelist_order(void)
4816 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4817 current_zonelist_order
= default_zonelist_order();
4819 current_zonelist_order
= user_zonelist_order
;
4822 static void build_zonelists(pg_data_t
*pgdat
)
4825 nodemask_t used_mask
;
4826 int local_node
, prev_node
;
4827 struct zonelist
*zonelist
;
4828 unsigned int order
= current_zonelist_order
;
4830 /* initialize zonelists */
4831 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4832 zonelist
= pgdat
->node_zonelists
+ i
;
4833 zonelist
->_zonerefs
[0].zone
= NULL
;
4834 zonelist
->_zonerefs
[0].zone_idx
= 0;
4837 /* NUMA-aware ordering of nodes */
4838 local_node
= pgdat
->node_id
;
4839 load
= nr_online_nodes
;
4840 prev_node
= local_node
;
4841 nodes_clear(used_mask
);
4843 memset(node_order
, 0, sizeof(node_order
));
4846 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4848 * We don't want to pressure a particular node.
4849 * So adding penalty to the first node in same
4850 * distance group to make it round-robin.
4852 if (node_distance(local_node
, node
) !=
4853 node_distance(local_node
, prev_node
))
4854 node_load
[node
] = load
;
4858 if (order
== ZONELIST_ORDER_NODE
)
4859 build_zonelists_in_node_order(pgdat
, node
);
4861 node_order
[i
++] = node
; /* remember order */
4864 if (order
== ZONELIST_ORDER_ZONE
) {
4865 /* calculate node order -- i.e., DMA last! */
4866 build_zonelists_in_zone_order(pgdat
, i
);
4869 build_thisnode_zonelists(pgdat
);
4872 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4874 * Return node id of node used for "local" allocations.
4875 * I.e., first node id of first zone in arg node's generic zonelist.
4876 * Used for initializing percpu 'numa_mem', which is used primarily
4877 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4879 int local_memory_node(int node
)
4883 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4884 gfp_zone(GFP_KERNEL
),
4886 return z
->zone
->node
;
4890 #else /* CONFIG_NUMA */
4892 static void set_zonelist_order(void)
4894 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4897 static void build_zonelists(pg_data_t
*pgdat
)
4899 int node
, local_node
;
4901 struct zonelist
*zonelist
;
4903 local_node
= pgdat
->node_id
;
4905 zonelist
= &pgdat
->node_zonelists
[0];
4906 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4909 * Now we build the zonelist so that it contains the zones
4910 * of all the other nodes.
4911 * We don't want to pressure a particular node, so when
4912 * building the zones for node N, we make sure that the
4913 * zones coming right after the local ones are those from
4914 * node N+1 (modulo N)
4916 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4917 if (!node_online(node
))
4919 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4921 for (node
= 0; node
< local_node
; node
++) {
4922 if (!node_online(node
))
4924 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4927 zonelist
->_zonerefs
[j
].zone
= NULL
;
4928 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4931 #endif /* CONFIG_NUMA */
4934 * Boot pageset table. One per cpu which is going to be used for all
4935 * zones and all nodes. The parameters will be set in such a way
4936 * that an item put on a list will immediately be handed over to
4937 * the buddy list. This is safe since pageset manipulation is done
4938 * with interrupts disabled.
4940 * The boot_pagesets must be kept even after bootup is complete for
4941 * unused processors and/or zones. They do play a role for bootstrapping
4942 * hotplugged processors.
4944 * zoneinfo_show() and maybe other functions do
4945 * not check if the processor is online before following the pageset pointer.
4946 * Other parts of the kernel may not check if the zone is available.
4948 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4949 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4950 static void setup_zone_pageset(struct zone
*zone
);
4953 * Global mutex to protect against size modification of zonelists
4954 * as well as to serialize pageset setup for the new populated zone.
4956 DEFINE_MUTEX(zonelists_mutex
);
4958 /* return values int ....just for stop_machine() */
4959 static int __build_all_zonelists(void *data
)
4963 pg_data_t
*self
= data
;
4966 memset(node_load
, 0, sizeof(node_load
));
4969 if (self
&& !node_online(self
->node_id
)) {
4970 build_zonelists(self
);
4973 for_each_online_node(nid
) {
4974 pg_data_t
*pgdat
= NODE_DATA(nid
);
4976 build_zonelists(pgdat
);
4980 * Initialize the boot_pagesets that are going to be used
4981 * for bootstrapping processors. The real pagesets for
4982 * each zone will be allocated later when the per cpu
4983 * allocator is available.
4985 * boot_pagesets are used also for bootstrapping offline
4986 * cpus if the system is already booted because the pagesets
4987 * are needed to initialize allocators on a specific cpu too.
4988 * F.e. the percpu allocator needs the page allocator which
4989 * needs the percpu allocator in order to allocate its pagesets
4990 * (a chicken-egg dilemma).
4992 for_each_possible_cpu(cpu
) {
4993 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4995 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4997 * We now know the "local memory node" for each node--
4998 * i.e., the node of the first zone in the generic zonelist.
4999 * Set up numa_mem percpu variable for on-line cpus. During
5000 * boot, only the boot cpu should be on-line; we'll init the
5001 * secondary cpus' numa_mem as they come on-line. During
5002 * node/memory hotplug, we'll fixup all on-line cpus.
5004 if (cpu_online(cpu
))
5005 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5012 static noinline
void __init
5013 build_all_zonelists_init(void)
5015 __build_all_zonelists(NULL
);
5016 mminit_verify_zonelist();
5017 cpuset_init_current_mems_allowed();
5021 * Called with zonelists_mutex held always
5022 * unless system_state == SYSTEM_BOOTING.
5024 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5025 * [we're only called with non-NULL zone through __meminit paths] and
5026 * (2) call of __init annotated helper build_all_zonelists_init
5027 * [protected by SYSTEM_BOOTING].
5029 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
5031 set_zonelist_order();
5033 if (system_state
== SYSTEM_BOOTING
) {
5034 build_all_zonelists_init();
5036 #ifdef CONFIG_MEMORY_HOTPLUG
5038 setup_zone_pageset(zone
);
5040 /* we have to stop all cpus to guarantee there is no user
5042 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
5043 /* cpuset refresh routine should be here */
5045 vm_total_pages
= nr_free_pagecache_pages();
5047 * Disable grouping by mobility if the number of pages in the
5048 * system is too low to allow the mechanism to work. It would be
5049 * more accurate, but expensive to check per-zone. This check is
5050 * made on memory-hotadd so a system can start with mobility
5051 * disabled and enable it later
5053 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5054 page_group_by_mobility_disabled
= 1;
5056 page_group_by_mobility_disabled
= 0;
5058 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5060 zonelist_order_name
[current_zonelist_order
],
5061 page_group_by_mobility_disabled
? "off" : "on",
5064 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5069 * Helper functions to size the waitqueue hash table.
5070 * Essentially these want to choose hash table sizes sufficiently
5071 * large so that collisions trying to wait on pages are rare.
5072 * But in fact, the number of active page waitqueues on typical
5073 * systems is ridiculously low, less than 200. So this is even
5074 * conservative, even though it seems large.
5076 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5077 * waitqueues, i.e. the size of the waitq table given the number of pages.
5079 #define PAGES_PER_WAITQUEUE 256
5081 #ifndef CONFIG_MEMORY_HOTPLUG
5082 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
5084 unsigned long size
= 1;
5086 pages
/= PAGES_PER_WAITQUEUE
;
5088 while (size
< pages
)
5092 * Once we have dozens or even hundreds of threads sleeping
5093 * on IO we've got bigger problems than wait queue collision.
5094 * Limit the size of the wait table to a reasonable size.
5096 size
= min(size
, 4096UL);
5098 return max(size
, 4UL);
5102 * A zone's size might be changed by hot-add, so it is not possible to determine
5103 * a suitable size for its wait_table. So we use the maximum size now.
5105 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5107 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5108 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5109 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5111 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5112 * or more by the traditional way. (See above). It equals:
5114 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5115 * ia64(16K page size) : = ( 8G + 4M)byte.
5116 * powerpc (64K page size) : = (32G +16M)byte.
5118 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
5125 * This is an integer logarithm so that shifts can be used later
5126 * to extract the more random high bits from the multiplicative
5127 * hash function before the remainder is taken.
5129 static inline unsigned long wait_table_bits(unsigned long size
)
5135 * Initially all pages are reserved - free ones are freed
5136 * up by free_all_bootmem() once the early boot process is
5137 * done. Non-atomic initialization, single-pass.
5139 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5140 unsigned long start_pfn
, enum memmap_context context
)
5142 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5143 unsigned long end_pfn
= start_pfn
+ size
;
5144 pg_data_t
*pgdat
= NODE_DATA(nid
);
5146 unsigned long nr_initialised
= 0;
5147 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5148 struct memblock_region
*r
= NULL
, *tmp
;
5151 if (highest_memmap_pfn
< end_pfn
- 1)
5152 highest_memmap_pfn
= end_pfn
- 1;
5155 * Honor reservation requested by the driver for this ZONE_DEVICE
5158 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5159 start_pfn
+= altmap
->reserve
;
5161 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5163 * There can be holes in boot-time mem_map[]s handed to this
5164 * function. They do not exist on hotplugged memory.
5166 if (context
!= MEMMAP_EARLY
)
5169 if (!early_pfn_valid(pfn
))
5171 if (!early_pfn_in_nid(pfn
, nid
))
5173 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5176 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5178 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5179 * from zone_movable_pfn[nid] to end of each node should be
5180 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5182 if (!mirrored_kernelcore
&& zone_movable_pfn
[nid
])
5183 if (zone
== ZONE_NORMAL
&& pfn
>= zone_movable_pfn
[nid
])
5187 * Check given memblock attribute by firmware which can affect
5188 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5189 * mirrored, it's an overlapped memmap init. skip it.
5191 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5192 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5193 for_each_memblock(memory
, tmp
)
5194 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5198 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5199 memblock_is_mirror(r
)) {
5200 /* already initialized as NORMAL */
5201 pfn
= memblock_region_memory_end_pfn(r
);
5209 * Mark the block movable so that blocks are reserved for
5210 * movable at startup. This will force kernel allocations
5211 * to reserve their blocks rather than leaking throughout
5212 * the address space during boot when many long-lived
5213 * kernel allocations are made.
5215 * bitmap is created for zone's valid pfn range. but memmap
5216 * can be created for invalid pages (for alignment)
5217 * check here not to call set_pageblock_migratetype() against
5220 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5221 struct page
*page
= pfn_to_page(pfn
);
5223 __init_single_page(page
, pfn
, zone
, nid
);
5224 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5226 __init_single_pfn(pfn
, zone
, nid
);
5231 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5233 unsigned int order
, t
;
5234 for_each_migratetype_order(order
, t
) {
5235 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5236 zone
->free_area
[order
].nr_free
= 0;
5240 #ifndef __HAVE_ARCH_MEMMAP_INIT
5241 #define memmap_init(size, nid, zone, start_pfn) \
5242 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5245 static int zone_batchsize(struct zone
*zone
)
5251 * The per-cpu-pages pools are set to around 1000th of the
5252 * size of the zone. But no more than 1/2 of a meg.
5254 * OK, so we don't know how big the cache is. So guess.
5256 batch
= zone
->managed_pages
/ 1024;
5257 if (batch
* PAGE_SIZE
> 512 * 1024)
5258 batch
= (512 * 1024) / PAGE_SIZE
;
5259 batch
/= 4; /* We effectively *= 4 below */
5264 * Clamp the batch to a 2^n - 1 value. Having a power
5265 * of 2 value was found to be more likely to have
5266 * suboptimal cache aliasing properties in some cases.
5268 * For example if 2 tasks are alternately allocating
5269 * batches of pages, one task can end up with a lot
5270 * of pages of one half of the possible page colors
5271 * and the other with pages of the other colors.
5273 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5278 /* The deferral and batching of frees should be suppressed under NOMMU
5281 * The problem is that NOMMU needs to be able to allocate large chunks
5282 * of contiguous memory as there's no hardware page translation to
5283 * assemble apparent contiguous memory from discontiguous pages.
5285 * Queueing large contiguous runs of pages for batching, however,
5286 * causes the pages to actually be freed in smaller chunks. As there
5287 * can be a significant delay between the individual batches being
5288 * recycled, this leads to the once large chunks of space being
5289 * fragmented and becoming unavailable for high-order allocations.
5296 * pcp->high and pcp->batch values are related and dependent on one another:
5297 * ->batch must never be higher then ->high.
5298 * The following function updates them in a safe manner without read side
5301 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5302 * those fields changing asynchronously (acording the the above rule).
5304 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5305 * outside of boot time (or some other assurance that no concurrent updaters
5308 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5309 unsigned long batch
)
5311 /* start with a fail safe value for batch */
5315 /* Update high, then batch, in order */
5322 /* a companion to pageset_set_high() */
5323 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5325 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5328 static void pageset_init(struct per_cpu_pageset
*p
)
5330 struct per_cpu_pages
*pcp
;
5333 memset(p
, 0, sizeof(*p
));
5337 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5338 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5341 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5344 pageset_set_batch(p
, batch
);
5348 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5349 * to the value high for the pageset p.
5351 static void pageset_set_high(struct per_cpu_pageset
*p
,
5354 unsigned long batch
= max(1UL, high
/ 4);
5355 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5356 batch
= PAGE_SHIFT
* 8;
5358 pageset_update(&p
->pcp
, high
, batch
);
5361 static void pageset_set_high_and_batch(struct zone
*zone
,
5362 struct per_cpu_pageset
*pcp
)
5364 if (percpu_pagelist_fraction
)
5365 pageset_set_high(pcp
,
5366 (zone
->managed_pages
/
5367 percpu_pagelist_fraction
));
5369 pageset_set_batch(pcp
, zone_batchsize(zone
));
5372 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5374 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5377 pageset_set_high_and_batch(zone
, pcp
);
5380 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5383 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5384 for_each_possible_cpu(cpu
)
5385 zone_pageset_init(zone
, cpu
);
5389 * Allocate per cpu pagesets and initialize them.
5390 * Before this call only boot pagesets were available.
5392 void __init
setup_per_cpu_pageset(void)
5396 for_each_populated_zone(zone
)
5397 setup_zone_pageset(zone
);
5400 static noinline __init_refok
5401 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
5407 * The per-page waitqueue mechanism uses hashed waitqueues
5410 zone
->wait_table_hash_nr_entries
=
5411 wait_table_hash_nr_entries(zone_size_pages
);
5412 zone
->wait_table_bits
=
5413 wait_table_bits(zone
->wait_table_hash_nr_entries
);
5414 alloc_size
= zone
->wait_table_hash_nr_entries
5415 * sizeof(wait_queue_head_t
);
5417 if (!slab_is_available()) {
5418 zone
->wait_table
= (wait_queue_head_t
*)
5419 memblock_virt_alloc_node_nopanic(
5420 alloc_size
, zone
->zone_pgdat
->node_id
);
5423 * This case means that a zone whose size was 0 gets new memory
5424 * via memory hot-add.
5425 * But it may be the case that a new node was hot-added. In
5426 * this case vmalloc() will not be able to use this new node's
5427 * memory - this wait_table must be initialized to use this new
5428 * node itself as well.
5429 * To use this new node's memory, further consideration will be
5432 zone
->wait_table
= vmalloc(alloc_size
);
5434 if (!zone
->wait_table
)
5437 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
5438 init_waitqueue_head(zone
->wait_table
+ i
);
5443 static __meminit
void zone_pcp_init(struct zone
*zone
)
5446 * per cpu subsystem is not up at this point. The following code
5447 * relies on the ability of the linker to provide the
5448 * offset of a (static) per cpu variable into the per cpu area.
5450 zone
->pageset
= &boot_pageset
;
5452 if (populated_zone(zone
))
5453 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5454 zone
->name
, zone
->present_pages
,
5455 zone_batchsize(zone
));
5458 int __meminit
init_currently_empty_zone(struct zone
*zone
,
5459 unsigned long zone_start_pfn
,
5462 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5464 ret
= zone_wait_table_init(zone
, size
);
5467 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5469 zone
->zone_start_pfn
= zone_start_pfn
;
5471 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5472 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5474 (unsigned long)zone_idx(zone
),
5475 zone_start_pfn
, (zone_start_pfn
+ size
));
5477 zone_init_free_lists(zone
);
5482 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5483 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5486 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5488 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5489 struct mminit_pfnnid_cache
*state
)
5491 unsigned long start_pfn
, end_pfn
;
5494 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5495 return state
->last_nid
;
5497 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5499 state
->last_start
= start_pfn
;
5500 state
->last_end
= end_pfn
;
5501 state
->last_nid
= nid
;
5506 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5509 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5510 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5511 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5513 * If an architecture guarantees that all ranges registered contain no holes
5514 * and may be freed, this this function may be used instead of calling
5515 * memblock_free_early_nid() manually.
5517 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5519 unsigned long start_pfn
, end_pfn
;
5522 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5523 start_pfn
= min(start_pfn
, max_low_pfn
);
5524 end_pfn
= min(end_pfn
, max_low_pfn
);
5526 if (start_pfn
< end_pfn
)
5527 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5528 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5534 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5535 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5537 * If an architecture guarantees that all ranges registered contain no holes and may
5538 * be freed, this function may be used instead of calling memory_present() manually.
5540 void __init
sparse_memory_present_with_active_regions(int nid
)
5542 unsigned long start_pfn
, end_pfn
;
5545 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5546 memory_present(this_nid
, start_pfn
, end_pfn
);
5550 * get_pfn_range_for_nid - Return the start and end page frames for a node
5551 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5552 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5553 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5555 * It returns the start and end page frame of a node based on information
5556 * provided by memblock_set_node(). If called for a node
5557 * with no available memory, a warning is printed and the start and end
5560 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5561 unsigned long *start_pfn
, unsigned long *end_pfn
)
5563 unsigned long this_start_pfn
, this_end_pfn
;
5569 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5570 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5571 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5574 if (*start_pfn
== -1UL)
5579 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5580 * assumption is made that zones within a node are ordered in monotonic
5581 * increasing memory addresses so that the "highest" populated zone is used
5583 static void __init
find_usable_zone_for_movable(void)
5586 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5587 if (zone_index
== ZONE_MOVABLE
)
5590 if (arch_zone_highest_possible_pfn
[zone_index
] >
5591 arch_zone_lowest_possible_pfn
[zone_index
])
5595 VM_BUG_ON(zone_index
== -1);
5596 movable_zone
= zone_index
;
5600 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5601 * because it is sized independent of architecture. Unlike the other zones,
5602 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5603 * in each node depending on the size of each node and how evenly kernelcore
5604 * is distributed. This helper function adjusts the zone ranges
5605 * provided by the architecture for a given node by using the end of the
5606 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5607 * zones within a node are in order of monotonic increases memory addresses
5609 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5610 unsigned long zone_type
,
5611 unsigned long node_start_pfn
,
5612 unsigned long node_end_pfn
,
5613 unsigned long *zone_start_pfn
,
5614 unsigned long *zone_end_pfn
)
5616 /* Only adjust if ZONE_MOVABLE is on this node */
5617 if (zone_movable_pfn
[nid
]) {
5618 /* Size ZONE_MOVABLE */
5619 if (zone_type
== ZONE_MOVABLE
) {
5620 *zone_start_pfn
= zone_movable_pfn
[nid
];
5621 *zone_end_pfn
= min(node_end_pfn
,
5622 arch_zone_highest_possible_pfn
[movable_zone
]);
5624 /* Check if this whole range is within ZONE_MOVABLE */
5625 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5626 *zone_start_pfn
= *zone_end_pfn
;
5631 * Return the number of pages a zone spans in a node, including holes
5632 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5634 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5635 unsigned long zone_type
,
5636 unsigned long node_start_pfn
,
5637 unsigned long node_end_pfn
,
5638 unsigned long *zone_start_pfn
,
5639 unsigned long *zone_end_pfn
,
5640 unsigned long *ignored
)
5642 /* When hotadd a new node from cpu_up(), the node should be empty */
5643 if (!node_start_pfn
&& !node_end_pfn
)
5646 /* Get the start and end of the zone */
5647 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5648 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5649 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5650 node_start_pfn
, node_end_pfn
,
5651 zone_start_pfn
, zone_end_pfn
);
5653 /* Check that this node has pages within the zone's required range */
5654 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5657 /* Move the zone boundaries inside the node if necessary */
5658 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5659 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5661 /* Return the spanned pages */
5662 return *zone_end_pfn
- *zone_start_pfn
;
5666 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5667 * then all holes in the requested range will be accounted for.
5669 unsigned long __meminit
__absent_pages_in_range(int nid
,
5670 unsigned long range_start_pfn
,
5671 unsigned long range_end_pfn
)
5673 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5674 unsigned long start_pfn
, end_pfn
;
5677 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5678 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5679 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5680 nr_absent
-= end_pfn
- start_pfn
;
5686 * absent_pages_in_range - Return number of page frames in holes within a range
5687 * @start_pfn: The start PFN to start searching for holes
5688 * @end_pfn: The end PFN to stop searching for holes
5690 * It returns the number of pages frames in memory holes within a range.
5692 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5693 unsigned long end_pfn
)
5695 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5698 /* Return the number of page frames in holes in a zone on a node */
5699 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5700 unsigned long zone_type
,
5701 unsigned long node_start_pfn
,
5702 unsigned long node_end_pfn
,
5703 unsigned long *ignored
)
5705 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5706 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5707 unsigned long zone_start_pfn
, zone_end_pfn
;
5708 unsigned long nr_absent
;
5710 /* When hotadd a new node from cpu_up(), the node should be empty */
5711 if (!node_start_pfn
&& !node_end_pfn
)
5714 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5715 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5717 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5718 node_start_pfn
, node_end_pfn
,
5719 &zone_start_pfn
, &zone_end_pfn
);
5720 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5723 * ZONE_MOVABLE handling.
5724 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5727 if (zone_movable_pfn
[nid
]) {
5728 if (mirrored_kernelcore
) {
5729 unsigned long start_pfn
, end_pfn
;
5730 struct memblock_region
*r
;
5732 for_each_memblock(memory
, r
) {
5733 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5734 zone_start_pfn
, zone_end_pfn
);
5735 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5736 zone_start_pfn
, zone_end_pfn
);
5738 if (zone_type
== ZONE_MOVABLE
&&
5739 memblock_is_mirror(r
))
5740 nr_absent
+= end_pfn
- start_pfn
;
5742 if (zone_type
== ZONE_NORMAL
&&
5743 !memblock_is_mirror(r
))
5744 nr_absent
+= end_pfn
- start_pfn
;
5747 if (zone_type
== ZONE_NORMAL
)
5748 nr_absent
+= node_end_pfn
- zone_movable_pfn
[nid
];
5755 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5756 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5757 unsigned long zone_type
,
5758 unsigned long node_start_pfn
,
5759 unsigned long node_end_pfn
,
5760 unsigned long *zone_start_pfn
,
5761 unsigned long *zone_end_pfn
,
5762 unsigned long *zones_size
)
5766 *zone_start_pfn
= node_start_pfn
;
5767 for (zone
= 0; zone
< zone_type
; zone
++)
5768 *zone_start_pfn
+= zones_size
[zone
];
5770 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5772 return zones_size
[zone_type
];
5775 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5776 unsigned long zone_type
,
5777 unsigned long node_start_pfn
,
5778 unsigned long node_end_pfn
,
5779 unsigned long *zholes_size
)
5784 return zholes_size
[zone_type
];
5787 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5789 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5790 unsigned long node_start_pfn
,
5791 unsigned long node_end_pfn
,
5792 unsigned long *zones_size
,
5793 unsigned long *zholes_size
)
5795 unsigned long realtotalpages
= 0, totalpages
= 0;
5798 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5799 struct zone
*zone
= pgdat
->node_zones
+ i
;
5800 unsigned long zone_start_pfn
, zone_end_pfn
;
5801 unsigned long size
, real_size
;
5803 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5809 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5810 node_start_pfn
, node_end_pfn
,
5813 zone
->zone_start_pfn
= zone_start_pfn
;
5815 zone
->zone_start_pfn
= 0;
5816 zone
->spanned_pages
= size
;
5817 zone
->present_pages
= real_size
;
5820 realtotalpages
+= real_size
;
5823 pgdat
->node_spanned_pages
= totalpages
;
5824 pgdat
->node_present_pages
= realtotalpages
;
5825 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5829 #ifndef CONFIG_SPARSEMEM
5831 * Calculate the size of the zone->blockflags rounded to an unsigned long
5832 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5833 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5834 * round what is now in bits to nearest long in bits, then return it in
5837 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5839 unsigned long usemapsize
;
5841 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5842 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5843 usemapsize
= usemapsize
>> pageblock_order
;
5844 usemapsize
*= NR_PAGEBLOCK_BITS
;
5845 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5847 return usemapsize
/ 8;
5850 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5852 unsigned long zone_start_pfn
,
5853 unsigned long zonesize
)
5855 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5856 zone
->pageblock_flags
= NULL
;
5858 zone
->pageblock_flags
=
5859 memblock_virt_alloc_node_nopanic(usemapsize
,
5863 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5864 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5865 #endif /* CONFIG_SPARSEMEM */
5867 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5869 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5870 void __paginginit
set_pageblock_order(void)
5874 /* Check that pageblock_nr_pages has not already been setup */
5875 if (pageblock_order
)
5878 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5879 order
= HUGETLB_PAGE_ORDER
;
5881 order
= MAX_ORDER
- 1;
5884 * Assume the largest contiguous order of interest is a huge page.
5885 * This value may be variable depending on boot parameters on IA64 and
5888 pageblock_order
= order
;
5890 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5893 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5894 * is unused as pageblock_order is set at compile-time. See
5895 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5898 void __paginginit
set_pageblock_order(void)
5902 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5904 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5905 unsigned long present_pages
)
5907 unsigned long pages
= spanned_pages
;
5910 * Provide a more accurate estimation if there are holes within
5911 * the zone and SPARSEMEM is in use. If there are holes within the
5912 * zone, each populated memory region may cost us one or two extra
5913 * memmap pages due to alignment because memmap pages for each
5914 * populated regions may not naturally algined on page boundary.
5915 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5917 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5918 IS_ENABLED(CONFIG_SPARSEMEM
))
5919 pages
= present_pages
;
5921 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5925 * Set up the zone data structures:
5926 * - mark all pages reserved
5927 * - mark all memory queues empty
5928 * - clear the memory bitmaps
5930 * NOTE: pgdat should get zeroed by caller.
5932 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5935 int nid
= pgdat
->node_id
;
5938 pgdat_resize_init(pgdat
);
5939 #ifdef CONFIG_NUMA_BALANCING
5940 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5941 pgdat
->numabalancing_migrate_nr_pages
= 0;
5942 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945 spin_lock_init(&pgdat
->split_queue_lock
);
5946 INIT_LIST_HEAD(&pgdat
->split_queue
);
5947 pgdat
->split_queue_len
= 0;
5949 init_waitqueue_head(&pgdat
->kswapd_wait
);
5950 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5951 #ifdef CONFIG_COMPACTION
5952 init_waitqueue_head(&pgdat
->kcompactd_wait
);
5954 pgdat_page_ext_init(pgdat
);
5956 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5957 struct zone
*zone
= pgdat
->node_zones
+ j
;
5958 unsigned long size
, realsize
, freesize
, memmap_pages
;
5959 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
5961 size
= zone
->spanned_pages
;
5962 realsize
= freesize
= zone
->present_pages
;
5965 * Adjust freesize so that it accounts for how much memory
5966 * is used by this zone for memmap. This affects the watermark
5967 * and per-cpu initialisations
5969 memmap_pages
= calc_memmap_size(size
, realsize
);
5970 if (!is_highmem_idx(j
)) {
5971 if (freesize
>= memmap_pages
) {
5972 freesize
-= memmap_pages
;
5975 " %s zone: %lu pages used for memmap\n",
5976 zone_names
[j
], memmap_pages
);
5978 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5979 zone_names
[j
], memmap_pages
, freesize
);
5982 /* Account for reserved pages */
5983 if (j
== 0 && freesize
> dma_reserve
) {
5984 freesize
-= dma_reserve
;
5985 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5986 zone_names
[0], dma_reserve
);
5989 if (!is_highmem_idx(j
))
5990 nr_kernel_pages
+= freesize
;
5991 /* Charge for highmem memmap if there are enough kernel pages */
5992 else if (nr_kernel_pages
> memmap_pages
* 2)
5993 nr_kernel_pages
-= memmap_pages
;
5994 nr_all_pages
+= freesize
;
5997 * Set an approximate value for lowmem here, it will be adjusted
5998 * when the bootmem allocator frees pages into the buddy system.
5999 * And all highmem pages will be managed by the buddy system.
6001 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6004 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
6006 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
6008 zone
->name
= zone_names
[j
];
6009 spin_lock_init(&zone
->lock
);
6010 spin_lock_init(&zone
->lru_lock
);
6011 zone_seqlock_init(zone
);
6012 zone
->zone_pgdat
= pgdat
;
6013 zone_pcp_init(zone
);
6015 /* For bootup, initialized properly in watermark setup */
6016 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
6018 lruvec_init(&zone
->lruvec
);
6022 set_pageblock_order();
6023 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6024 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6026 memmap_init(size
, nid
, j
, zone_start_pfn
);
6030 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
6032 unsigned long __maybe_unused start
= 0;
6033 unsigned long __maybe_unused offset
= 0;
6035 /* Skip empty nodes */
6036 if (!pgdat
->node_spanned_pages
)
6039 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6040 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6041 offset
= pgdat
->node_start_pfn
- start
;
6042 /* ia64 gets its own node_mem_map, before this, without bootmem */
6043 if (!pgdat
->node_mem_map
) {
6044 unsigned long size
, end
;
6048 * The zone's endpoints aren't required to be MAX_ORDER
6049 * aligned but the node_mem_map endpoints must be in order
6050 * for the buddy allocator to function correctly.
6052 end
= pgdat_end_pfn(pgdat
);
6053 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6054 size
= (end
- start
) * sizeof(struct page
);
6055 map
= alloc_remap(pgdat
->node_id
, size
);
6057 map
= memblock_virt_alloc_node_nopanic(size
,
6059 pgdat
->node_mem_map
= map
+ offset
;
6061 #ifndef CONFIG_NEED_MULTIPLE_NODES
6063 * With no DISCONTIG, the global mem_map is just set as node 0's
6065 if (pgdat
== NODE_DATA(0)) {
6066 mem_map
= NODE_DATA(0)->node_mem_map
;
6067 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6068 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6070 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6073 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6076 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6077 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6079 pg_data_t
*pgdat
= NODE_DATA(nid
);
6080 unsigned long start_pfn
= 0;
6081 unsigned long end_pfn
= 0;
6083 /* pg_data_t should be reset to zero when it's allocated */
6084 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
6086 reset_deferred_meminit(pgdat
);
6087 pgdat
->node_id
= nid
;
6088 pgdat
->node_start_pfn
= node_start_pfn
;
6089 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6090 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6091 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6092 (u64
)start_pfn
<< PAGE_SHIFT
,
6093 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6095 start_pfn
= node_start_pfn
;
6097 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6098 zones_size
, zholes_size
);
6100 alloc_node_mem_map(pgdat
);
6101 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6102 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6103 nid
, (unsigned long)pgdat
,
6104 (unsigned long)pgdat
->node_mem_map
);
6107 free_area_init_core(pgdat
);
6110 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6112 #if MAX_NUMNODES > 1
6114 * Figure out the number of possible node ids.
6116 void __init
setup_nr_node_ids(void)
6118 unsigned int highest
;
6120 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6121 nr_node_ids
= highest
+ 1;
6126 * node_map_pfn_alignment - determine the maximum internode alignment
6128 * This function should be called after node map is populated and sorted.
6129 * It calculates the maximum power of two alignment which can distinguish
6132 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6133 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6134 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6135 * shifted, 1GiB is enough and this function will indicate so.
6137 * This is used to test whether pfn -> nid mapping of the chosen memory
6138 * model has fine enough granularity to avoid incorrect mapping for the
6139 * populated node map.
6141 * Returns the determined alignment in pfn's. 0 if there is no alignment
6142 * requirement (single node).
6144 unsigned long __init
node_map_pfn_alignment(void)
6146 unsigned long accl_mask
= 0, last_end
= 0;
6147 unsigned long start
, end
, mask
;
6151 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6152 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6159 * Start with a mask granular enough to pin-point to the
6160 * start pfn and tick off bits one-by-one until it becomes
6161 * too coarse to separate the current node from the last.
6163 mask
= ~((1 << __ffs(start
)) - 1);
6164 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6167 /* accumulate all internode masks */
6171 /* convert mask to number of pages */
6172 return ~accl_mask
+ 1;
6175 /* Find the lowest pfn for a node */
6176 static unsigned long __init
find_min_pfn_for_node(int nid
)
6178 unsigned long min_pfn
= ULONG_MAX
;
6179 unsigned long start_pfn
;
6182 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6183 min_pfn
= min(min_pfn
, start_pfn
);
6185 if (min_pfn
== ULONG_MAX
) {
6186 pr_warn("Could not find start_pfn for node %d\n", nid
);
6194 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6196 * It returns the minimum PFN based on information provided via
6197 * memblock_set_node().
6199 unsigned long __init
find_min_pfn_with_active_regions(void)
6201 return find_min_pfn_for_node(MAX_NUMNODES
);
6205 * early_calculate_totalpages()
6206 * Sum pages in active regions for movable zone.
6207 * Populate N_MEMORY for calculating usable_nodes.
6209 static unsigned long __init
early_calculate_totalpages(void)
6211 unsigned long totalpages
= 0;
6212 unsigned long start_pfn
, end_pfn
;
6215 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6216 unsigned long pages
= end_pfn
- start_pfn
;
6218 totalpages
+= pages
;
6220 node_set_state(nid
, N_MEMORY
);
6226 * Find the PFN the Movable zone begins in each node. Kernel memory
6227 * is spread evenly between nodes as long as the nodes have enough
6228 * memory. When they don't, some nodes will have more kernelcore than
6231 static void __init
find_zone_movable_pfns_for_nodes(void)
6234 unsigned long usable_startpfn
;
6235 unsigned long kernelcore_node
, kernelcore_remaining
;
6236 /* save the state before borrow the nodemask */
6237 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6238 unsigned long totalpages
= early_calculate_totalpages();
6239 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6240 struct memblock_region
*r
;
6242 /* Need to find movable_zone earlier when movable_node is specified. */
6243 find_usable_zone_for_movable();
6246 * If movable_node is specified, ignore kernelcore and movablecore
6249 if (movable_node_is_enabled()) {
6250 for_each_memblock(memory
, r
) {
6251 if (!memblock_is_hotpluggable(r
))
6256 usable_startpfn
= PFN_DOWN(r
->base
);
6257 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6258 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6266 * If kernelcore=mirror is specified, ignore movablecore option
6268 if (mirrored_kernelcore
) {
6269 bool mem_below_4gb_not_mirrored
= false;
6271 for_each_memblock(memory
, r
) {
6272 if (memblock_is_mirror(r
))
6277 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6279 if (usable_startpfn
< 0x100000) {
6280 mem_below_4gb_not_mirrored
= true;
6284 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6285 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6289 if (mem_below_4gb_not_mirrored
)
6290 pr_warn("This configuration results in unmirrored kernel memory.");
6296 * If movablecore=nn[KMG] was specified, calculate what size of
6297 * kernelcore that corresponds so that memory usable for
6298 * any allocation type is evenly spread. If both kernelcore
6299 * and movablecore are specified, then the value of kernelcore
6300 * will be used for required_kernelcore if it's greater than
6301 * what movablecore would have allowed.
6303 if (required_movablecore
) {
6304 unsigned long corepages
;
6307 * Round-up so that ZONE_MOVABLE is at least as large as what
6308 * was requested by the user
6310 required_movablecore
=
6311 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6312 required_movablecore
= min(totalpages
, required_movablecore
);
6313 corepages
= totalpages
- required_movablecore
;
6315 required_kernelcore
= max(required_kernelcore
, corepages
);
6319 * If kernelcore was not specified or kernelcore size is larger
6320 * than totalpages, there is no ZONE_MOVABLE.
6322 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6325 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6326 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6329 /* Spread kernelcore memory as evenly as possible throughout nodes */
6330 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6331 for_each_node_state(nid
, N_MEMORY
) {
6332 unsigned long start_pfn
, end_pfn
;
6335 * Recalculate kernelcore_node if the division per node
6336 * now exceeds what is necessary to satisfy the requested
6337 * amount of memory for the kernel
6339 if (required_kernelcore
< kernelcore_node
)
6340 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6343 * As the map is walked, we track how much memory is usable
6344 * by the kernel using kernelcore_remaining. When it is
6345 * 0, the rest of the node is usable by ZONE_MOVABLE
6347 kernelcore_remaining
= kernelcore_node
;
6349 /* Go through each range of PFNs within this node */
6350 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6351 unsigned long size_pages
;
6353 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6354 if (start_pfn
>= end_pfn
)
6357 /* Account for what is only usable for kernelcore */
6358 if (start_pfn
< usable_startpfn
) {
6359 unsigned long kernel_pages
;
6360 kernel_pages
= min(end_pfn
, usable_startpfn
)
6363 kernelcore_remaining
-= min(kernel_pages
,
6364 kernelcore_remaining
);
6365 required_kernelcore
-= min(kernel_pages
,
6366 required_kernelcore
);
6368 /* Continue if range is now fully accounted */
6369 if (end_pfn
<= usable_startpfn
) {
6372 * Push zone_movable_pfn to the end so
6373 * that if we have to rebalance
6374 * kernelcore across nodes, we will
6375 * not double account here
6377 zone_movable_pfn
[nid
] = end_pfn
;
6380 start_pfn
= usable_startpfn
;
6384 * The usable PFN range for ZONE_MOVABLE is from
6385 * start_pfn->end_pfn. Calculate size_pages as the
6386 * number of pages used as kernelcore
6388 size_pages
= end_pfn
- start_pfn
;
6389 if (size_pages
> kernelcore_remaining
)
6390 size_pages
= kernelcore_remaining
;
6391 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6394 * Some kernelcore has been met, update counts and
6395 * break if the kernelcore for this node has been
6398 required_kernelcore
-= min(required_kernelcore
,
6400 kernelcore_remaining
-= size_pages
;
6401 if (!kernelcore_remaining
)
6407 * If there is still required_kernelcore, we do another pass with one
6408 * less node in the count. This will push zone_movable_pfn[nid] further
6409 * along on the nodes that still have memory until kernelcore is
6413 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6417 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6418 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6419 zone_movable_pfn
[nid
] =
6420 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6423 /* restore the node_state */
6424 node_states
[N_MEMORY
] = saved_node_state
;
6427 /* Any regular or high memory on that node ? */
6428 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6430 enum zone_type zone_type
;
6432 if (N_MEMORY
== N_NORMAL_MEMORY
)
6435 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6436 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6437 if (populated_zone(zone
)) {
6438 node_set_state(nid
, N_HIGH_MEMORY
);
6439 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6440 zone_type
<= ZONE_NORMAL
)
6441 node_set_state(nid
, N_NORMAL_MEMORY
);
6448 * free_area_init_nodes - Initialise all pg_data_t and zone data
6449 * @max_zone_pfn: an array of max PFNs for each zone
6451 * This will call free_area_init_node() for each active node in the system.
6452 * Using the page ranges provided by memblock_set_node(), the size of each
6453 * zone in each node and their holes is calculated. If the maximum PFN
6454 * between two adjacent zones match, it is assumed that the zone is empty.
6455 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6456 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6457 * starts where the previous one ended. For example, ZONE_DMA32 starts
6458 * at arch_max_dma_pfn.
6460 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6462 unsigned long start_pfn
, end_pfn
;
6465 /* Record where the zone boundaries are */
6466 memset(arch_zone_lowest_possible_pfn
, 0,
6467 sizeof(arch_zone_lowest_possible_pfn
));
6468 memset(arch_zone_highest_possible_pfn
, 0,
6469 sizeof(arch_zone_highest_possible_pfn
));
6470 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
6471 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
6472 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
6473 if (i
== ZONE_MOVABLE
)
6475 arch_zone_lowest_possible_pfn
[i
] =
6476 arch_zone_highest_possible_pfn
[i
-1];
6477 arch_zone_highest_possible_pfn
[i
] =
6478 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
6480 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
6481 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
6483 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6484 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6485 find_zone_movable_pfns_for_nodes();
6487 /* Print out the zone ranges */
6488 pr_info("Zone ranges:\n");
6489 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6490 if (i
== ZONE_MOVABLE
)
6492 pr_info(" %-8s ", zone_names
[i
]);
6493 if (arch_zone_lowest_possible_pfn
[i
] ==
6494 arch_zone_highest_possible_pfn
[i
])
6497 pr_cont("[mem %#018Lx-%#018Lx]\n",
6498 (u64
)arch_zone_lowest_possible_pfn
[i
]
6500 ((u64
)arch_zone_highest_possible_pfn
[i
]
6501 << PAGE_SHIFT
) - 1);
6504 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6505 pr_info("Movable zone start for each node\n");
6506 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6507 if (zone_movable_pfn
[i
])
6508 pr_info(" Node %d: %#018Lx\n", i
,
6509 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6512 /* Print out the early node map */
6513 pr_info("Early memory node ranges\n");
6514 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6515 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6516 (u64
)start_pfn
<< PAGE_SHIFT
,
6517 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6519 /* Initialise every node */
6520 mminit_verify_pageflags_layout();
6521 setup_nr_node_ids();
6522 for_each_online_node(nid
) {
6523 pg_data_t
*pgdat
= NODE_DATA(nid
);
6524 free_area_init_node(nid
, NULL
,
6525 find_min_pfn_for_node(nid
), NULL
);
6527 /* Any memory on that node */
6528 if (pgdat
->node_present_pages
)
6529 node_set_state(nid
, N_MEMORY
);
6530 check_for_memory(pgdat
, nid
);
6534 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6536 unsigned long long coremem
;
6540 coremem
= memparse(p
, &p
);
6541 *core
= coremem
>> PAGE_SHIFT
;
6543 /* Paranoid check that UL is enough for the coremem value */
6544 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6550 * kernelcore=size sets the amount of memory for use for allocations that
6551 * cannot be reclaimed or migrated.
6553 static int __init
cmdline_parse_kernelcore(char *p
)
6555 /* parse kernelcore=mirror */
6556 if (parse_option_str(p
, "mirror")) {
6557 mirrored_kernelcore
= true;
6561 return cmdline_parse_core(p
, &required_kernelcore
);
6565 * movablecore=size sets the amount of memory for use for allocations that
6566 * can be reclaimed or migrated.
6568 static int __init
cmdline_parse_movablecore(char *p
)
6570 return cmdline_parse_core(p
, &required_movablecore
);
6573 early_param("kernelcore", cmdline_parse_kernelcore
);
6574 early_param("movablecore", cmdline_parse_movablecore
);
6576 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6578 void adjust_managed_page_count(struct page
*page
, long count
)
6580 spin_lock(&managed_page_count_lock
);
6581 page_zone(page
)->managed_pages
+= count
;
6582 totalram_pages
+= count
;
6583 #ifdef CONFIG_HIGHMEM
6584 if (PageHighMem(page
))
6585 totalhigh_pages
+= count
;
6587 spin_unlock(&managed_page_count_lock
);
6589 EXPORT_SYMBOL(adjust_managed_page_count
);
6591 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6594 unsigned long pages
= 0;
6596 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6597 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6598 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6599 if ((unsigned int)poison
<= 0xFF)
6600 memset(pos
, poison
, PAGE_SIZE
);
6601 free_reserved_page(virt_to_page(pos
));
6605 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6606 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
6610 EXPORT_SYMBOL(free_reserved_area
);
6612 #ifdef CONFIG_HIGHMEM
6613 void free_highmem_page(struct page
*page
)
6615 __free_reserved_page(page
);
6617 page_zone(page
)->managed_pages
++;
6623 void __init
mem_init_print_info(const char *str
)
6625 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6626 unsigned long init_code_size
, init_data_size
;
6628 physpages
= get_num_physpages();
6629 codesize
= _etext
- _stext
;
6630 datasize
= _edata
- _sdata
;
6631 rosize
= __end_rodata
- __start_rodata
;
6632 bss_size
= __bss_stop
- __bss_start
;
6633 init_data_size
= __init_end
- __init_begin
;
6634 init_code_size
= _einittext
- _sinittext
;
6637 * Detect special cases and adjust section sizes accordingly:
6638 * 1) .init.* may be embedded into .data sections
6639 * 2) .init.text.* may be out of [__init_begin, __init_end],
6640 * please refer to arch/tile/kernel/vmlinux.lds.S.
6641 * 3) .rodata.* may be embedded into .text or .data sections.
6643 #define adj_init_size(start, end, size, pos, adj) \
6645 if (start <= pos && pos < end && size > adj) \
6649 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6650 _sinittext
, init_code_size
);
6651 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6652 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6653 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6654 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6656 #undef adj_init_size
6658 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6659 #ifdef CONFIG_HIGHMEM
6663 nr_free_pages() << (PAGE_SHIFT
- 10),
6664 physpages
<< (PAGE_SHIFT
- 10),
6665 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6666 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6667 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6668 totalcma_pages
<< (PAGE_SHIFT
- 10),
6669 #ifdef CONFIG_HIGHMEM
6670 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6672 str
? ", " : "", str
? str
: "");
6676 * set_dma_reserve - set the specified number of pages reserved in the first zone
6677 * @new_dma_reserve: The number of pages to mark reserved
6679 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6680 * In the DMA zone, a significant percentage may be consumed by kernel image
6681 * and other unfreeable allocations which can skew the watermarks badly. This
6682 * function may optionally be used to account for unfreeable pages in the
6683 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6684 * smaller per-cpu batchsize.
6686 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6688 dma_reserve
= new_dma_reserve
;
6691 void __init
free_area_init(unsigned long *zones_size
)
6693 free_area_init_node(0, zones_size
,
6694 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6697 static int page_alloc_cpu_notify(struct notifier_block
*self
,
6698 unsigned long action
, void *hcpu
)
6700 int cpu
= (unsigned long)hcpu
;
6702 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
6703 lru_add_drain_cpu(cpu
);
6707 * Spill the event counters of the dead processor
6708 * into the current processors event counters.
6709 * This artificially elevates the count of the current
6712 vm_events_fold_cpu(cpu
);
6715 * Zero the differential counters of the dead processor
6716 * so that the vm statistics are consistent.
6718 * This is only okay since the processor is dead and cannot
6719 * race with what we are doing.
6721 cpu_vm_stats_fold(cpu
);
6726 void __init
page_alloc_init(void)
6728 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6732 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6733 * or min_free_kbytes changes.
6735 static void calculate_totalreserve_pages(void)
6737 struct pglist_data
*pgdat
;
6738 unsigned long reserve_pages
= 0;
6739 enum zone_type i
, j
;
6741 for_each_online_pgdat(pgdat
) {
6742 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6743 struct zone
*zone
= pgdat
->node_zones
+ i
;
6746 /* Find valid and maximum lowmem_reserve in the zone */
6747 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6748 if (zone
->lowmem_reserve
[j
] > max
)
6749 max
= zone
->lowmem_reserve
[j
];
6752 /* we treat the high watermark as reserved pages. */
6753 max
+= high_wmark_pages(zone
);
6755 if (max
> zone
->managed_pages
)
6756 max
= zone
->managed_pages
;
6758 zone
->totalreserve_pages
= max
;
6760 reserve_pages
+= max
;
6763 totalreserve_pages
= reserve_pages
;
6767 * setup_per_zone_lowmem_reserve - called whenever
6768 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6769 * has a correct pages reserved value, so an adequate number of
6770 * pages are left in the zone after a successful __alloc_pages().
6772 static void setup_per_zone_lowmem_reserve(void)
6774 struct pglist_data
*pgdat
;
6775 enum zone_type j
, idx
;
6777 for_each_online_pgdat(pgdat
) {
6778 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6779 struct zone
*zone
= pgdat
->node_zones
+ j
;
6780 unsigned long managed_pages
= zone
->managed_pages
;
6782 zone
->lowmem_reserve
[j
] = 0;
6786 struct zone
*lower_zone
;
6790 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6791 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6793 lower_zone
= pgdat
->node_zones
+ idx
;
6794 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6795 sysctl_lowmem_reserve_ratio
[idx
];
6796 managed_pages
+= lower_zone
->managed_pages
;
6801 /* update totalreserve_pages */
6802 calculate_totalreserve_pages();
6805 static void __setup_per_zone_wmarks(void)
6807 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6808 unsigned long lowmem_pages
= 0;
6810 unsigned long flags
;
6812 /* Calculate total number of !ZONE_HIGHMEM pages */
6813 for_each_zone(zone
) {
6814 if (!is_highmem(zone
))
6815 lowmem_pages
+= zone
->managed_pages
;
6818 for_each_zone(zone
) {
6821 spin_lock_irqsave(&zone
->lock
, flags
);
6822 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6823 do_div(tmp
, lowmem_pages
);
6824 if (is_highmem(zone
)) {
6826 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6827 * need highmem pages, so cap pages_min to a small
6830 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6831 * deltas control asynch page reclaim, and so should
6832 * not be capped for highmem.
6834 unsigned long min_pages
;
6836 min_pages
= zone
->managed_pages
/ 1024;
6837 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6838 zone
->watermark
[WMARK_MIN
] = min_pages
;
6841 * If it's a lowmem zone, reserve a number of pages
6842 * proportionate to the zone's size.
6844 zone
->watermark
[WMARK_MIN
] = tmp
;
6848 * Set the kswapd watermarks distance according to the
6849 * scale factor in proportion to available memory, but
6850 * ensure a minimum size on small systems.
6852 tmp
= max_t(u64
, tmp
>> 2,
6853 mult_frac(zone
->managed_pages
,
6854 watermark_scale_factor
, 10000));
6856 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6857 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6859 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6860 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6861 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6863 spin_unlock_irqrestore(&zone
->lock
, flags
);
6866 /* update totalreserve_pages */
6867 calculate_totalreserve_pages();
6871 * setup_per_zone_wmarks - called when min_free_kbytes changes
6872 * or when memory is hot-{added|removed}
6874 * Ensures that the watermark[min,low,high] values for each zone are set
6875 * correctly with respect to min_free_kbytes.
6877 void setup_per_zone_wmarks(void)
6879 mutex_lock(&zonelists_mutex
);
6880 __setup_per_zone_wmarks();
6881 mutex_unlock(&zonelists_mutex
);
6885 * Initialise min_free_kbytes.
6887 * For small machines we want it small (128k min). For large machines
6888 * we want it large (64MB max). But it is not linear, because network
6889 * bandwidth does not increase linearly with machine size. We use
6891 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6892 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6908 int __meminit
init_per_zone_wmark_min(void)
6910 unsigned long lowmem_kbytes
;
6911 int new_min_free_kbytes
;
6913 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6914 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6916 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6917 min_free_kbytes
= new_min_free_kbytes
;
6918 if (min_free_kbytes
< 128)
6919 min_free_kbytes
= 128;
6920 if (min_free_kbytes
> 65536)
6921 min_free_kbytes
= 65536;
6923 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6924 new_min_free_kbytes
, user_min_free_kbytes
);
6926 setup_per_zone_wmarks();
6927 refresh_zone_stat_thresholds();
6928 setup_per_zone_lowmem_reserve();
6931 core_initcall(init_per_zone_wmark_min
)
6934 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6935 * that we can call two helper functions whenever min_free_kbytes
6938 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6939 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6943 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6948 user_min_free_kbytes
= min_free_kbytes
;
6949 setup_per_zone_wmarks();
6954 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
6955 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6959 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6964 setup_per_zone_wmarks();
6970 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6971 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6976 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6981 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6982 sysctl_min_unmapped_ratio
) / 100;
6986 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6987 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6992 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6997 zone
->min_slab_pages
= (zone
->managed_pages
*
6998 sysctl_min_slab_ratio
) / 100;
7004 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7005 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7006 * whenever sysctl_lowmem_reserve_ratio changes.
7008 * The reserve ratio obviously has absolutely no relation with the
7009 * minimum watermarks. The lowmem reserve ratio can only make sense
7010 * if in function of the boot time zone sizes.
7012 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7013 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7015 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7016 setup_per_zone_lowmem_reserve();
7021 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7022 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7023 * pagelist can have before it gets flushed back to buddy allocator.
7025 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7026 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7029 int old_percpu_pagelist_fraction
;
7032 mutex_lock(&pcp_batch_high_lock
);
7033 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7035 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7036 if (!write
|| ret
< 0)
7039 /* Sanity checking to avoid pcp imbalance */
7040 if (percpu_pagelist_fraction
&&
7041 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7042 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7048 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7051 for_each_populated_zone(zone
) {
7054 for_each_possible_cpu(cpu
)
7055 pageset_set_high_and_batch(zone
,
7056 per_cpu_ptr(zone
->pageset
, cpu
));
7059 mutex_unlock(&pcp_batch_high_lock
);
7064 int hashdist
= HASHDIST_DEFAULT
;
7066 static int __init
set_hashdist(char *str
)
7070 hashdist
= simple_strtoul(str
, &str
, 0);
7073 __setup("hashdist=", set_hashdist
);
7077 * allocate a large system hash table from bootmem
7078 * - it is assumed that the hash table must contain an exact power-of-2
7079 * quantity of entries
7080 * - limit is the number of hash buckets, not the total allocation size
7082 void *__init
alloc_large_system_hash(const char *tablename
,
7083 unsigned long bucketsize
,
7084 unsigned long numentries
,
7087 unsigned int *_hash_shift
,
7088 unsigned int *_hash_mask
,
7089 unsigned long low_limit
,
7090 unsigned long high_limit
)
7092 unsigned long long max
= high_limit
;
7093 unsigned long log2qty
, size
;
7096 /* allow the kernel cmdline to have a say */
7098 /* round applicable memory size up to nearest megabyte */
7099 numentries
= nr_kernel_pages
;
7101 /* It isn't necessary when PAGE_SIZE >= 1MB */
7102 if (PAGE_SHIFT
< 20)
7103 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7105 /* limit to 1 bucket per 2^scale bytes of low memory */
7106 if (scale
> PAGE_SHIFT
)
7107 numentries
>>= (scale
- PAGE_SHIFT
);
7109 numentries
<<= (PAGE_SHIFT
- scale
);
7111 /* Make sure we've got at least a 0-order allocation.. */
7112 if (unlikely(flags
& HASH_SMALL
)) {
7113 /* Makes no sense without HASH_EARLY */
7114 WARN_ON(!(flags
& HASH_EARLY
));
7115 if (!(numentries
>> *_hash_shift
)) {
7116 numentries
= 1UL << *_hash_shift
;
7117 BUG_ON(!numentries
);
7119 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7120 numentries
= PAGE_SIZE
/ bucketsize
;
7122 numentries
= roundup_pow_of_two(numentries
);
7124 /* limit allocation size to 1/16 total memory by default */
7126 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7127 do_div(max
, bucketsize
);
7129 max
= min(max
, 0x80000000ULL
);
7131 if (numentries
< low_limit
)
7132 numentries
= low_limit
;
7133 if (numentries
> max
)
7136 log2qty
= ilog2(numentries
);
7139 size
= bucketsize
<< log2qty
;
7140 if (flags
& HASH_EARLY
)
7141 table
= memblock_virt_alloc_nopanic(size
, 0);
7143 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
7146 * If bucketsize is not a power-of-two, we may free
7147 * some pages at the end of hash table which
7148 * alloc_pages_exact() automatically does
7150 if (get_order(size
) < MAX_ORDER
) {
7151 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
7152 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
7155 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7158 panic("Failed to allocate %s hash table\n", tablename
);
7160 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7161 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7164 *_hash_shift
= log2qty
;
7166 *_hash_mask
= (1 << log2qty
) - 1;
7172 * This function checks whether pageblock includes unmovable pages or not.
7173 * If @count is not zero, it is okay to include less @count unmovable pages
7175 * PageLRU check without isolation or lru_lock could race so that
7176 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7177 * expect this function should be exact.
7179 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7180 bool skip_hwpoisoned_pages
)
7182 unsigned long pfn
, iter
, found
;
7186 * For avoiding noise data, lru_add_drain_all() should be called
7187 * If ZONE_MOVABLE, the zone never contains unmovable pages
7189 if (zone_idx(zone
) == ZONE_MOVABLE
)
7191 mt
= get_pageblock_migratetype(page
);
7192 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7195 pfn
= page_to_pfn(page
);
7196 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7197 unsigned long check
= pfn
+ iter
;
7199 if (!pfn_valid_within(check
))
7202 page
= pfn_to_page(check
);
7205 * Hugepages are not in LRU lists, but they're movable.
7206 * We need not scan over tail pages bacause we don't
7207 * handle each tail page individually in migration.
7209 if (PageHuge(page
)) {
7210 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7215 * We can't use page_count without pin a page
7216 * because another CPU can free compound page.
7217 * This check already skips compound tails of THP
7218 * because their page->_refcount is zero at all time.
7220 if (!page_ref_count(page
)) {
7221 if (PageBuddy(page
))
7222 iter
+= (1 << page_order(page
)) - 1;
7227 * The HWPoisoned page may be not in buddy system, and
7228 * page_count() is not 0.
7230 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7236 * If there are RECLAIMABLE pages, we need to check
7237 * it. But now, memory offline itself doesn't call
7238 * shrink_node_slabs() and it still to be fixed.
7241 * If the page is not RAM, page_count()should be 0.
7242 * we don't need more check. This is an _used_ not-movable page.
7244 * The problematic thing here is PG_reserved pages. PG_reserved
7245 * is set to both of a memory hole page and a _used_ kernel
7254 bool is_pageblock_removable_nolock(struct page
*page
)
7260 * We have to be careful here because we are iterating over memory
7261 * sections which are not zone aware so we might end up outside of
7262 * the zone but still within the section.
7263 * We have to take care about the node as well. If the node is offline
7264 * its NODE_DATA will be NULL - see page_zone.
7266 if (!node_online(page_to_nid(page
)))
7269 zone
= page_zone(page
);
7270 pfn
= page_to_pfn(page
);
7271 if (!zone_spans_pfn(zone
, pfn
))
7274 return !has_unmovable_pages(zone
, page
, 0, true);
7277 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7279 static unsigned long pfn_max_align_down(unsigned long pfn
)
7281 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7282 pageblock_nr_pages
) - 1);
7285 static unsigned long pfn_max_align_up(unsigned long pfn
)
7287 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7288 pageblock_nr_pages
));
7291 /* [start, end) must belong to a single zone. */
7292 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7293 unsigned long start
, unsigned long end
)
7295 /* This function is based on compact_zone() from compaction.c. */
7296 unsigned long nr_reclaimed
;
7297 unsigned long pfn
= start
;
7298 unsigned int tries
= 0;
7303 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7304 if (fatal_signal_pending(current
)) {
7309 if (list_empty(&cc
->migratepages
)) {
7310 cc
->nr_migratepages
= 0;
7311 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7317 } else if (++tries
== 5) {
7318 ret
= ret
< 0 ? ret
: -EBUSY
;
7322 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7324 cc
->nr_migratepages
-= nr_reclaimed
;
7326 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7327 NULL
, 0, cc
->mode
, MR_CMA
);
7330 putback_movable_pages(&cc
->migratepages
);
7337 * alloc_contig_range() -- tries to allocate given range of pages
7338 * @start: start PFN to allocate
7339 * @end: one-past-the-last PFN to allocate
7340 * @migratetype: migratetype of the underlaying pageblocks (either
7341 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7342 * in range must have the same migratetype and it must
7343 * be either of the two.
7345 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7346 * aligned, however it's the caller's responsibility to guarantee that
7347 * we are the only thread that changes migrate type of pageblocks the
7350 * The PFN range must belong to a single zone.
7352 * Returns zero on success or negative error code. On success all
7353 * pages which PFN is in [start, end) are allocated for the caller and
7354 * need to be freed with free_contig_range().
7356 int alloc_contig_range(unsigned long start
, unsigned long end
,
7357 unsigned migratetype
)
7359 unsigned long outer_start
, outer_end
;
7363 struct compact_control cc
= {
7364 .nr_migratepages
= 0,
7366 .zone
= page_zone(pfn_to_page(start
)),
7367 .mode
= MIGRATE_SYNC
,
7368 .ignore_skip_hint
= true,
7370 INIT_LIST_HEAD(&cc
.migratepages
);
7373 * What we do here is we mark all pageblocks in range as
7374 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7375 * have different sizes, and due to the way page allocator
7376 * work, we align the range to biggest of the two pages so
7377 * that page allocator won't try to merge buddies from
7378 * different pageblocks and change MIGRATE_ISOLATE to some
7379 * other migration type.
7381 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7382 * migrate the pages from an unaligned range (ie. pages that
7383 * we are interested in). This will put all the pages in
7384 * range back to page allocator as MIGRATE_ISOLATE.
7386 * When this is done, we take the pages in range from page
7387 * allocator removing them from the buddy system. This way
7388 * page allocator will never consider using them.
7390 * This lets us mark the pageblocks back as
7391 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7392 * aligned range but not in the unaligned, original range are
7393 * put back to page allocator so that buddy can use them.
7396 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7397 pfn_max_align_up(end
), migratetype
,
7403 * In case of -EBUSY, we'd like to know which page causes problem.
7404 * So, just fall through. We will check it in test_pages_isolated().
7406 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7407 if (ret
&& ret
!= -EBUSY
)
7411 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7412 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7413 * more, all pages in [start, end) are free in page allocator.
7414 * What we are going to do is to allocate all pages from
7415 * [start, end) (that is remove them from page allocator).
7417 * The only problem is that pages at the beginning and at the
7418 * end of interesting range may be not aligned with pages that
7419 * page allocator holds, ie. they can be part of higher order
7420 * pages. Because of this, we reserve the bigger range and
7421 * once this is done free the pages we are not interested in.
7423 * We don't have to hold zone->lock here because the pages are
7424 * isolated thus they won't get removed from buddy.
7427 lru_add_drain_all();
7428 drain_all_pages(cc
.zone
);
7431 outer_start
= start
;
7432 while (!PageBuddy(pfn_to_page(outer_start
))) {
7433 if (++order
>= MAX_ORDER
) {
7434 outer_start
= start
;
7437 outer_start
&= ~0UL << order
;
7440 if (outer_start
!= start
) {
7441 order
= page_order(pfn_to_page(outer_start
));
7444 * outer_start page could be small order buddy page and
7445 * it doesn't include start page. Adjust outer_start
7446 * in this case to report failed page properly
7447 * on tracepoint in test_pages_isolated()
7449 if (outer_start
+ (1UL << order
) <= start
)
7450 outer_start
= start
;
7453 /* Make sure the range is really isolated. */
7454 if (test_pages_isolated(outer_start
, end
, false)) {
7455 pr_info("%s: [%lx, %lx) PFNs busy\n",
7456 __func__
, outer_start
, end
);
7461 /* Grab isolated pages from freelists. */
7462 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7468 /* Free head and tail (if any) */
7469 if (start
!= outer_start
)
7470 free_contig_range(outer_start
, start
- outer_start
);
7471 if (end
!= outer_end
)
7472 free_contig_range(end
, outer_end
- end
);
7475 undo_isolate_page_range(pfn_max_align_down(start
),
7476 pfn_max_align_up(end
), migratetype
);
7480 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7482 unsigned int count
= 0;
7484 for (; nr_pages
--; pfn
++) {
7485 struct page
*page
= pfn_to_page(pfn
);
7487 count
+= page_count(page
) != 1;
7490 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7494 #ifdef CONFIG_MEMORY_HOTPLUG
7496 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7497 * page high values need to be recalulated.
7499 void __meminit
zone_pcp_update(struct zone
*zone
)
7502 mutex_lock(&pcp_batch_high_lock
);
7503 for_each_possible_cpu(cpu
)
7504 pageset_set_high_and_batch(zone
,
7505 per_cpu_ptr(zone
->pageset
, cpu
));
7506 mutex_unlock(&pcp_batch_high_lock
);
7510 void zone_pcp_reset(struct zone
*zone
)
7512 unsigned long flags
;
7514 struct per_cpu_pageset
*pset
;
7516 /* avoid races with drain_pages() */
7517 local_irq_save(flags
);
7518 if (zone
->pageset
!= &boot_pageset
) {
7519 for_each_online_cpu(cpu
) {
7520 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7521 drain_zonestat(zone
, pset
);
7523 free_percpu(zone
->pageset
);
7524 zone
->pageset
= &boot_pageset
;
7526 local_irq_restore(flags
);
7529 #ifdef CONFIG_MEMORY_HOTREMOVE
7531 * All pages in the range must be in a single zone and isolated
7532 * before calling this.
7535 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7539 unsigned int order
, i
;
7541 unsigned long flags
;
7542 /* find the first valid pfn */
7543 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7548 zone
= page_zone(pfn_to_page(pfn
));
7549 spin_lock_irqsave(&zone
->lock
, flags
);
7551 while (pfn
< end_pfn
) {
7552 if (!pfn_valid(pfn
)) {
7556 page
= pfn_to_page(pfn
);
7558 * The HWPoisoned page may be not in buddy system, and
7559 * page_count() is not 0.
7561 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7563 SetPageReserved(page
);
7567 BUG_ON(page_count(page
));
7568 BUG_ON(!PageBuddy(page
));
7569 order
= page_order(page
);
7570 #ifdef CONFIG_DEBUG_VM
7571 pr_info("remove from free list %lx %d %lx\n",
7572 pfn
, 1 << order
, end_pfn
);
7574 list_del(&page
->lru
);
7575 rmv_page_order(page
);
7576 zone
->free_area
[order
].nr_free
--;
7577 for (i
= 0; i
< (1 << order
); i
++)
7578 SetPageReserved((page
+i
));
7579 pfn
+= (1 << order
);
7581 spin_unlock_irqrestore(&zone
->lock
, flags
);
7585 bool is_free_buddy_page(struct page
*page
)
7587 struct zone
*zone
= page_zone(page
);
7588 unsigned long pfn
= page_to_pfn(page
);
7589 unsigned long flags
;
7592 spin_lock_irqsave(&zone
->lock
, flags
);
7593 for (order
= 0; order
< MAX_ORDER
; order
++) {
7594 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7596 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7599 spin_unlock_irqrestore(&zone
->lock
, flags
);
7601 return order
< MAX_ORDER
;