1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
50 #include <asm/tlbflush.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/migrate.h>
58 * migrate_prep() needs to be called before we start compiling a list of pages
59 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60 * undesirable, use migrate_prep_local()
62 int migrate_prep(void)
65 * Clear the LRU lists so pages can be isolated.
66 * Note that pages may be moved off the LRU after we have
67 * drained them. Those pages will fail to migrate like other
68 * pages that may be busy.
75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
76 int migrate_prep_local(void)
83 int isolate_movable_page(struct page
*page
, isolate_mode_t mode
)
85 struct address_space
*mapping
;
88 * Avoid burning cycles with pages that are yet under __free_pages(),
89 * or just got freed under us.
91 * In case we 'win' a race for a movable page being freed under us and
92 * raise its refcount preventing __free_pages() from doing its job
93 * the put_page() at the end of this block will take care of
94 * release this page, thus avoiding a nasty leakage.
96 if (unlikely(!get_page_unless_zero(page
)))
100 * Check PageMovable before holding a PG_lock because page's owner
101 * assumes anybody doesn't touch PG_lock of newly allocated page
102 * so unconditionally grapping the lock ruins page's owner side.
104 if (unlikely(!__PageMovable(page
)))
107 * As movable pages are not isolated from LRU lists, concurrent
108 * compaction threads can race against page migration functions
109 * as well as race against the releasing a page.
111 * In order to avoid having an already isolated movable page
112 * being (wrongly) re-isolated while it is under migration,
113 * or to avoid attempting to isolate pages being released,
114 * lets be sure we have the page lock
115 * before proceeding with the movable page isolation steps.
117 if (unlikely(!trylock_page(page
)))
120 if (!PageMovable(page
) || PageIsolated(page
))
121 goto out_no_isolated
;
123 mapping
= page_mapping(page
);
124 VM_BUG_ON_PAGE(!mapping
, page
);
126 if (!mapping
->a_ops
->isolate_page(page
, mode
))
127 goto out_no_isolated
;
129 /* Driver shouldn't use PG_isolated bit of page->flags */
130 WARN_ON_ONCE(PageIsolated(page
));
131 __SetPageIsolated(page
);
144 /* It should be called on page which is PG_movable */
145 void putback_movable_page(struct page
*page
)
147 struct address_space
*mapping
;
149 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
150 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
151 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
153 mapping
= page_mapping(page
);
154 mapping
->a_ops
->putback_page(page
);
155 __ClearPageIsolated(page
);
159 * Put previously isolated pages back onto the appropriate lists
160 * from where they were once taken off for compaction/migration.
162 * This function shall be used whenever the isolated pageset has been
163 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164 * and isolate_huge_page().
166 void putback_movable_pages(struct list_head
*l
)
171 list_for_each_entry_safe(page
, page2
, l
, lru
) {
172 if (unlikely(PageHuge(page
))) {
173 putback_active_hugepage(page
);
176 list_del(&page
->lru
);
178 * We isolated non-lru movable page so here we can use
179 * __PageMovable because LRU page's mapping cannot have
180 * PAGE_MAPPING_MOVABLE.
182 if (unlikely(__PageMovable(page
))) {
183 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
185 if (PageMovable(page
))
186 putback_movable_page(page
);
188 __ClearPageIsolated(page
);
192 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
193 page_is_file_cache(page
), -hpage_nr_pages(page
));
194 putback_lru_page(page
);
200 * Restore a potential migration pte to a working pte entry
202 static bool remove_migration_pte(struct page
*page
, struct vm_area_struct
*vma
,
203 unsigned long addr
, void *old
)
205 struct page_vma_mapped_walk pvmw
= {
209 .flags
= PVMW_SYNC
| PVMW_MIGRATION
,
215 VM_BUG_ON_PAGE(PageTail(page
), page
);
216 while (page_vma_mapped_walk(&pvmw
)) {
220 new = page
- pvmw
.page
->index
+
221 linear_page_index(vma
, pvmw
.address
);
223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224 /* PMD-mapped THP migration entry */
226 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
227 remove_migration_pmd(&pvmw
, new);
233 pte
= pte_mkold(mk_pte(new, READ_ONCE(vma
->vm_page_prot
)));
234 if (pte_swp_soft_dirty(*pvmw
.pte
))
235 pte
= pte_mksoft_dirty(pte
);
238 * Recheck VMA as permissions can change since migration started
240 entry
= pte_to_swp_entry(*pvmw
.pte
);
241 if (is_write_migration_entry(entry
))
242 pte
= maybe_mkwrite(pte
, vma
);
244 if (unlikely(is_zone_device_page(new))) {
245 if (is_device_private_page(new)) {
246 entry
= make_device_private_entry(new, pte_write(pte
));
247 pte
= swp_entry_to_pte(entry
);
248 } else if (is_device_public_page(new)) {
249 pte
= pte_mkdevmap(pte
);
250 flush_dcache_page(new);
253 flush_dcache_page(new);
255 #ifdef CONFIG_HUGETLB_PAGE
257 pte
= pte_mkhuge(pte
);
258 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
259 set_huge_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
261 hugepage_add_anon_rmap(new, vma
, pvmw
.address
);
263 page_dup_rmap(new, true);
267 set_pte_at(vma
->vm_mm
, pvmw
.address
, pvmw
.pte
, pte
);
270 page_add_anon_rmap(new, vma
, pvmw
.address
, false);
272 page_add_file_rmap(new, false);
274 if (vma
->vm_flags
& VM_LOCKED
&& !PageTransCompound(new))
277 /* No need to invalidate - it was non-present before */
278 update_mmu_cache(vma
, pvmw
.address
, pvmw
.pte
);
285 * Get rid of all migration entries and replace them by
286 * references to the indicated page.
288 void remove_migration_ptes(struct page
*old
, struct page
*new, bool locked
)
290 struct rmap_walk_control rwc
= {
291 .rmap_one
= remove_migration_pte
,
296 rmap_walk_locked(new, &rwc
);
298 rmap_walk(new, &rwc
);
302 * Something used the pte of a page under migration. We need to
303 * get to the page and wait until migration is finished.
304 * When we return from this function the fault will be retried.
306 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
315 if (!is_swap_pte(pte
))
318 entry
= pte_to_swp_entry(pte
);
319 if (!is_migration_entry(entry
))
322 page
= migration_entry_to_page(entry
);
325 * Once radix-tree replacement of page migration started, page_count
326 * *must* be zero. And, we don't want to call wait_on_page_locked()
327 * against a page without get_page().
328 * So, we use get_page_unless_zero(), here. Even failed, page fault
331 if (!get_page_unless_zero(page
))
333 pte_unmap_unlock(ptep
, ptl
);
334 wait_on_page_locked(page
);
338 pte_unmap_unlock(ptep
, ptl
);
341 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
342 unsigned long address
)
344 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
345 pte_t
*ptep
= pte_offset_map(pmd
, address
);
346 __migration_entry_wait(mm
, ptep
, ptl
);
349 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
350 struct mm_struct
*mm
, pte_t
*pte
)
352 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
353 __migration_entry_wait(mm
, pte
, ptl
);
356 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
357 void pmd_migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
)
362 ptl
= pmd_lock(mm
, pmd
);
363 if (!is_pmd_migration_entry(*pmd
))
365 page
= migration_entry_to_page(pmd_to_swp_entry(*pmd
));
366 if (!get_page_unless_zero(page
))
369 wait_on_page_locked(page
);
378 /* Returns true if all buffers are successfully locked */
379 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
380 enum migrate_mode mode
)
382 struct buffer_head
*bh
= head
;
384 /* Simple case, sync compaction */
385 if (mode
!= MIGRATE_ASYNC
) {
389 bh
= bh
->b_this_page
;
391 } while (bh
!= head
);
396 /* async case, we cannot block on lock_buffer so use trylock_buffer */
399 if (!trylock_buffer(bh
)) {
401 * We failed to lock the buffer and cannot stall in
402 * async migration. Release the taken locks
404 struct buffer_head
*failed_bh
= bh
;
407 while (bh
!= failed_bh
) {
410 bh
= bh
->b_this_page
;
415 bh
= bh
->b_this_page
;
416 } while (bh
!= head
);
420 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
421 enum migrate_mode mode
)
425 #endif /* CONFIG_BLOCK */
428 * Replace the page in the mapping.
430 * The number of remaining references must be:
431 * 1 for anonymous pages without a mapping
432 * 2 for pages with a mapping
433 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435 int migrate_page_move_mapping(struct address_space
*mapping
,
436 struct page
*newpage
, struct page
*page
,
437 struct buffer_head
*head
, enum migrate_mode mode
,
440 struct zone
*oldzone
, *newzone
;
442 int expected_count
= 1 + extra_count
;
446 * Device public or private pages have an extra refcount as they are
449 expected_count
+= is_device_private_page(page
);
450 expected_count
+= is_device_public_page(page
);
453 /* Anonymous page without mapping */
454 if (page_count(page
) != expected_count
)
457 /* No turning back from here */
458 newpage
->index
= page
->index
;
459 newpage
->mapping
= page
->mapping
;
460 if (PageSwapBacked(page
))
461 __SetPageSwapBacked(newpage
);
463 return MIGRATEPAGE_SUCCESS
;
466 oldzone
= page_zone(page
);
467 newzone
= page_zone(newpage
);
469 spin_lock_irq(&mapping
->tree_lock
);
471 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
474 expected_count
+= 1 + page_has_private(page
);
475 if (page_count(page
) != expected_count
||
476 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
477 spin_unlock_irq(&mapping
->tree_lock
);
481 if (!page_ref_freeze(page
, expected_count
)) {
482 spin_unlock_irq(&mapping
->tree_lock
);
487 * In the async migration case of moving a page with buffers, lock the
488 * buffers using trylock before the mapping is moved. If the mapping
489 * was moved, we later failed to lock the buffers and could not move
490 * the mapping back due to an elevated page count, we would have to
491 * block waiting on other references to be dropped.
493 if (mode
== MIGRATE_ASYNC
&& head
&&
494 !buffer_migrate_lock_buffers(head
, mode
)) {
495 page_ref_unfreeze(page
, expected_count
);
496 spin_unlock_irq(&mapping
->tree_lock
);
501 * Now we know that no one else is looking at the page:
502 * no turning back from here.
504 newpage
->index
= page
->index
;
505 newpage
->mapping
= page
->mapping
;
506 get_page(newpage
); /* add cache reference */
507 if (PageSwapBacked(page
)) {
508 __SetPageSwapBacked(newpage
);
509 if (PageSwapCache(page
)) {
510 SetPageSwapCache(newpage
);
511 set_page_private(newpage
, page_private(page
));
514 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
517 /* Move dirty while page refs frozen and newpage not yet exposed */
518 dirty
= PageDirty(page
);
520 ClearPageDirty(page
);
521 SetPageDirty(newpage
);
524 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
527 * Drop cache reference from old page by unfreezing
528 * to one less reference.
529 * We know this isn't the last reference.
531 page_ref_unfreeze(page
, expected_count
- 1);
533 spin_unlock(&mapping
->tree_lock
);
534 /* Leave irq disabled to prevent preemption while updating stats */
537 * If moved to a different zone then also account
538 * the page for that zone. Other VM counters will be
539 * taken care of when we establish references to the
540 * new page and drop references to the old page.
542 * Note that anonymous pages are accounted for
543 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
544 * are mapped to swap space.
546 if (newzone
!= oldzone
) {
547 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_PAGES
);
548 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_PAGES
);
549 if (PageSwapBacked(page
) && !PageSwapCache(page
)) {
550 __dec_node_state(oldzone
->zone_pgdat
, NR_SHMEM
);
551 __inc_node_state(newzone
->zone_pgdat
, NR_SHMEM
);
553 if (dirty
&& mapping_cap_account_dirty(mapping
)) {
554 __dec_node_state(oldzone
->zone_pgdat
, NR_FILE_DIRTY
);
555 __dec_zone_state(oldzone
, NR_ZONE_WRITE_PENDING
);
556 __inc_node_state(newzone
->zone_pgdat
, NR_FILE_DIRTY
);
557 __inc_zone_state(newzone
, NR_ZONE_WRITE_PENDING
);
562 return MIGRATEPAGE_SUCCESS
;
564 EXPORT_SYMBOL(migrate_page_move_mapping
);
567 * The expected number of remaining references is the same as that
568 * of migrate_page_move_mapping().
570 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
571 struct page
*newpage
, struct page
*page
)
576 spin_lock_irq(&mapping
->tree_lock
);
578 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
581 expected_count
= 2 + page_has_private(page
);
582 if (page_count(page
) != expected_count
||
583 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
584 spin_unlock_irq(&mapping
->tree_lock
);
588 if (!page_ref_freeze(page
, expected_count
)) {
589 spin_unlock_irq(&mapping
->tree_lock
);
593 newpage
->index
= page
->index
;
594 newpage
->mapping
= page
->mapping
;
598 radix_tree_replace_slot(&mapping
->page_tree
, pslot
, newpage
);
600 page_ref_unfreeze(page
, expected_count
- 1);
602 spin_unlock_irq(&mapping
->tree_lock
);
604 return MIGRATEPAGE_SUCCESS
;
608 * Gigantic pages are so large that we do not guarantee that page++ pointer
609 * arithmetic will work across the entire page. We need something more
612 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
616 struct page
*dst_base
= dst
;
617 struct page
*src_base
= src
;
619 for (i
= 0; i
< nr_pages
; ) {
621 copy_highpage(dst
, src
);
624 dst
= mem_map_next(dst
, dst_base
, i
);
625 src
= mem_map_next(src
, src_base
, i
);
629 static void copy_huge_page(struct page
*dst
, struct page
*src
)
636 struct hstate
*h
= page_hstate(src
);
637 nr_pages
= pages_per_huge_page(h
);
639 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
640 __copy_gigantic_page(dst
, src
, nr_pages
);
645 BUG_ON(!PageTransHuge(src
));
646 nr_pages
= hpage_nr_pages(src
);
649 for (i
= 0; i
< nr_pages
; i
++) {
651 copy_highpage(dst
+ i
, src
+ i
);
656 * Copy the page to its new location
658 void migrate_page_states(struct page
*newpage
, struct page
*page
)
663 SetPageError(newpage
);
664 if (PageReferenced(page
))
665 SetPageReferenced(newpage
);
666 if (PageUptodate(page
))
667 SetPageUptodate(newpage
);
668 if (TestClearPageActive(page
)) {
669 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
670 SetPageActive(newpage
);
671 } else if (TestClearPageUnevictable(page
))
672 SetPageUnevictable(newpage
);
673 if (PageChecked(page
))
674 SetPageChecked(newpage
);
675 if (PageMappedToDisk(page
))
676 SetPageMappedToDisk(newpage
);
678 /* Move dirty on pages not done by migrate_page_move_mapping() */
680 SetPageDirty(newpage
);
682 if (page_is_young(page
))
683 set_page_young(newpage
);
684 if (page_is_idle(page
))
685 set_page_idle(newpage
);
688 * Copy NUMA information to the new page, to prevent over-eager
689 * future migrations of this same page.
691 cpupid
= page_cpupid_xchg_last(page
, -1);
692 page_cpupid_xchg_last(newpage
, cpupid
);
694 ksm_migrate_page(newpage
, page
);
696 * Please do not reorder this without considering how mm/ksm.c's
697 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699 if (PageSwapCache(page
))
700 ClearPageSwapCache(page
);
701 ClearPagePrivate(page
);
702 set_page_private(page
, 0);
705 * If any waiters have accumulated on the new page then
708 if (PageWriteback(newpage
))
709 end_page_writeback(newpage
);
711 copy_page_owner(page
, newpage
);
713 mem_cgroup_migrate(page
, newpage
);
715 EXPORT_SYMBOL(migrate_page_states
);
717 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
719 if (PageHuge(page
) || PageTransHuge(page
))
720 copy_huge_page(newpage
, page
);
722 copy_highpage(newpage
, page
);
724 migrate_page_states(newpage
, page
);
726 EXPORT_SYMBOL(migrate_page_copy
);
728 /************************************************************
729 * Migration functions
730 ***********************************************************/
733 * Common logic to directly migrate a single LRU page suitable for
734 * pages that do not use PagePrivate/PagePrivate2.
736 * Pages are locked upon entry and exit.
738 int migrate_page(struct address_space
*mapping
,
739 struct page
*newpage
, struct page
*page
,
740 enum migrate_mode mode
)
744 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
746 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
748 if (rc
!= MIGRATEPAGE_SUCCESS
)
751 if (mode
!= MIGRATE_SYNC_NO_COPY
)
752 migrate_page_copy(newpage
, page
);
754 migrate_page_states(newpage
, page
);
755 return MIGRATEPAGE_SUCCESS
;
757 EXPORT_SYMBOL(migrate_page
);
761 * Migration function for pages with buffers. This function can only be used
762 * if the underlying filesystem guarantees that no other references to "page"
765 int buffer_migrate_page(struct address_space
*mapping
,
766 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
768 struct buffer_head
*bh
, *head
;
771 if (!page_has_buffers(page
))
772 return migrate_page(mapping
, newpage
, page
, mode
);
774 head
= page_buffers(page
);
776 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
778 if (rc
!= MIGRATEPAGE_SUCCESS
)
782 * In the async case, migrate_page_move_mapping locked the buffers
783 * with an IRQ-safe spinlock held. In the sync case, the buffers
784 * need to be locked now
786 if (mode
!= MIGRATE_ASYNC
)
787 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
789 ClearPagePrivate(page
);
790 set_page_private(newpage
, page_private(page
));
791 set_page_private(page
, 0);
797 set_bh_page(bh
, newpage
, bh_offset(bh
));
798 bh
= bh
->b_this_page
;
800 } while (bh
!= head
);
802 SetPagePrivate(newpage
);
804 if (mode
!= MIGRATE_SYNC_NO_COPY
)
805 migrate_page_copy(newpage
, page
);
807 migrate_page_states(newpage
, page
);
813 bh
= bh
->b_this_page
;
815 } while (bh
!= head
);
817 return MIGRATEPAGE_SUCCESS
;
819 EXPORT_SYMBOL(buffer_migrate_page
);
823 * Writeback a page to clean the dirty state
825 static int writeout(struct address_space
*mapping
, struct page
*page
)
827 struct writeback_control wbc
= {
828 .sync_mode
= WB_SYNC_NONE
,
831 .range_end
= LLONG_MAX
,
836 if (!mapping
->a_ops
->writepage
)
837 /* No write method for the address space */
840 if (!clear_page_dirty_for_io(page
))
841 /* Someone else already triggered a write */
845 * A dirty page may imply that the underlying filesystem has
846 * the page on some queue. So the page must be clean for
847 * migration. Writeout may mean we loose the lock and the
848 * page state is no longer what we checked for earlier.
849 * At this point we know that the migration attempt cannot
852 remove_migration_ptes(page
, page
, false);
854 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
856 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
857 /* unlocked. Relock */
860 return (rc
< 0) ? -EIO
: -EAGAIN
;
864 * Default handling if a filesystem does not provide a migration function.
866 static int fallback_migrate_page(struct address_space
*mapping
,
867 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
869 if (PageDirty(page
)) {
870 /* Only writeback pages in full synchronous migration */
873 case MIGRATE_SYNC_NO_COPY
:
878 return writeout(mapping
, page
);
882 * Buffers may be managed in a filesystem specific way.
883 * We must have no buffers or drop them.
885 if (page_has_private(page
) &&
886 !try_to_release_page(page
, GFP_KERNEL
))
889 return migrate_page(mapping
, newpage
, page
, mode
);
893 * Move a page to a newly allocated page
894 * The page is locked and all ptes have been successfully removed.
896 * The new page will have replaced the old page if this function
901 * MIGRATEPAGE_SUCCESS - success
903 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
904 enum migrate_mode mode
)
906 struct address_space
*mapping
;
908 bool is_lru
= !__PageMovable(page
);
910 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
911 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
913 mapping
= page_mapping(page
);
915 if (likely(is_lru
)) {
917 rc
= migrate_page(mapping
, newpage
, page
, mode
);
918 else if (mapping
->a_ops
->migratepage
)
920 * Most pages have a mapping and most filesystems
921 * provide a migratepage callback. Anonymous pages
922 * are part of swap space which also has its own
923 * migratepage callback. This is the most common path
924 * for page migration.
926 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
929 rc
= fallback_migrate_page(mapping
, newpage
,
933 * In case of non-lru page, it could be released after
934 * isolation step. In that case, we shouldn't try migration.
936 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
937 if (!PageMovable(page
)) {
938 rc
= MIGRATEPAGE_SUCCESS
;
939 __ClearPageIsolated(page
);
943 rc
= mapping
->a_ops
->migratepage(mapping
, newpage
,
945 WARN_ON_ONCE(rc
== MIGRATEPAGE_SUCCESS
&&
946 !PageIsolated(page
));
950 * When successful, old pagecache page->mapping must be cleared before
951 * page is freed; but stats require that PageAnon be left as PageAnon.
953 if (rc
== MIGRATEPAGE_SUCCESS
) {
954 if (__PageMovable(page
)) {
955 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
958 * We clear PG_movable under page_lock so any compactor
959 * cannot try to migrate this page.
961 __ClearPageIsolated(page
);
965 * Anonymous and movable page->mapping will be cleard by
966 * free_pages_prepare so don't reset it here for keeping
967 * the type to work PageAnon, for example.
969 if (!PageMappingFlags(page
))
970 page
->mapping
= NULL
;
976 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
977 int force
, enum migrate_mode mode
)
980 int page_was_mapped
= 0;
981 struct anon_vma
*anon_vma
= NULL
;
982 bool is_lru
= !__PageMovable(page
);
984 if (!trylock_page(page
)) {
985 if (!force
|| mode
== MIGRATE_ASYNC
)
989 * It's not safe for direct compaction to call lock_page.
990 * For example, during page readahead pages are added locked
991 * to the LRU. Later, when the IO completes the pages are
992 * marked uptodate and unlocked. However, the queueing
993 * could be merging multiple pages for one bio (e.g.
994 * mpage_readpages). If an allocation happens for the
995 * second or third page, the process can end up locking
996 * the same page twice and deadlocking. Rather than
997 * trying to be clever about what pages can be locked,
998 * avoid the use of lock_page for direct compaction
1001 if (current
->flags
& PF_MEMALLOC
)
1007 if (PageWriteback(page
)) {
1009 * Only in the case of a full synchronous migration is it
1010 * necessary to wait for PageWriteback. In the async case,
1011 * the retry loop is too short and in the sync-light case,
1012 * the overhead of stalling is too much
1016 case MIGRATE_SYNC_NO_COPY
:
1024 wait_on_page_writeback(page
);
1028 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1029 * we cannot notice that anon_vma is freed while we migrates a page.
1030 * This get_anon_vma() delays freeing anon_vma pointer until the end
1031 * of migration. File cache pages are no problem because of page_lock()
1032 * File Caches may use write_page() or lock_page() in migration, then,
1033 * just care Anon page here.
1035 * Only page_get_anon_vma() understands the subtleties of
1036 * getting a hold on an anon_vma from outside one of its mms.
1037 * But if we cannot get anon_vma, then we won't need it anyway,
1038 * because that implies that the anon page is no longer mapped
1039 * (and cannot be remapped so long as we hold the page lock).
1041 if (PageAnon(page
) && !PageKsm(page
))
1042 anon_vma
= page_get_anon_vma(page
);
1045 * Block others from accessing the new page when we get around to
1046 * establishing additional references. We are usually the only one
1047 * holding a reference to newpage at this point. We used to have a BUG
1048 * here if trylock_page(newpage) fails, but would like to allow for
1049 * cases where there might be a race with the previous use of newpage.
1050 * This is much like races on refcount of oldpage: just don't BUG().
1052 if (unlikely(!trylock_page(newpage
)))
1055 if (unlikely(!is_lru
)) {
1056 rc
= move_to_new_page(newpage
, page
, mode
);
1057 goto out_unlock_both
;
1061 * Corner case handling:
1062 * 1. When a new swap-cache page is read into, it is added to the LRU
1063 * and treated as swapcache but it has no rmap yet.
1064 * Calling try_to_unmap() against a page->mapping==NULL page will
1065 * trigger a BUG. So handle it here.
1066 * 2. An orphaned page (see truncate_complete_page) might have
1067 * fs-private metadata. The page can be picked up due to memory
1068 * offlining. Everywhere else except page reclaim, the page is
1069 * invisible to the vm, so the page can not be migrated. So try to
1070 * free the metadata, so the page can be freed.
1072 if (!page
->mapping
) {
1073 VM_BUG_ON_PAGE(PageAnon(page
), page
);
1074 if (page_has_private(page
)) {
1075 try_to_free_buffers(page
);
1076 goto out_unlock_both
;
1078 } else if (page_mapped(page
)) {
1079 /* Establish migration ptes */
1080 VM_BUG_ON_PAGE(PageAnon(page
) && !PageKsm(page
) && !anon_vma
,
1083 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1084 page_was_mapped
= 1;
1087 if (!page_mapped(page
))
1088 rc
= move_to_new_page(newpage
, page
, mode
);
1090 if (page_was_mapped
)
1091 remove_migration_ptes(page
,
1092 rc
== MIGRATEPAGE_SUCCESS
? newpage
: page
, false);
1095 unlock_page(newpage
);
1097 /* Drop an anon_vma reference if we took one */
1099 put_anon_vma(anon_vma
);
1103 * If migration is successful, decrease refcount of the newpage
1104 * which will not free the page because new page owner increased
1105 * refcounter. As well, if it is LRU page, add the page to LRU
1108 if (rc
== MIGRATEPAGE_SUCCESS
) {
1109 if (unlikely(__PageMovable(newpage
)))
1112 putback_lru_page(newpage
);
1119 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1122 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1123 #define ICE_noinline noinline
1125 #define ICE_noinline
1129 * Obtain the lock on page, remove all ptes and migrate the page
1130 * to the newly allocated page in newpage.
1132 static ICE_noinline
int unmap_and_move(new_page_t get_new_page
,
1133 free_page_t put_new_page
,
1134 unsigned long private, struct page
*page
,
1135 int force
, enum migrate_mode mode
,
1136 enum migrate_reason reason
)
1138 int rc
= MIGRATEPAGE_SUCCESS
;
1140 struct page
*newpage
;
1142 newpage
= get_new_page(page
, private, &result
);
1146 if (page_count(page
) == 1) {
1147 /* page was freed from under us. So we are done. */
1148 ClearPageActive(page
);
1149 ClearPageUnevictable(page
);
1150 if (unlikely(__PageMovable(page
))) {
1152 if (!PageMovable(page
))
1153 __ClearPageIsolated(page
);
1157 put_new_page(newpage
, private);
1163 if (unlikely(PageTransHuge(page
) && !PageTransHuge(newpage
))) {
1165 rc
= split_huge_page(page
);
1171 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
1172 if (rc
== MIGRATEPAGE_SUCCESS
)
1173 set_page_owner_migrate_reason(newpage
, reason
);
1176 if (rc
!= -EAGAIN
) {
1178 * A page that has been migrated has all references
1179 * removed and will be freed. A page that has not been
1180 * migrated will have kepts its references and be
1183 list_del(&page
->lru
);
1186 * Compaction can migrate also non-LRU pages which are
1187 * not accounted to NR_ISOLATED_*. They can be recognized
1190 if (likely(!__PageMovable(page
)))
1191 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+
1192 page_is_file_cache(page
), -hpage_nr_pages(page
));
1196 * If migration is successful, releases reference grabbed during
1197 * isolation. Otherwise, restore the page to right list unless
1200 if (rc
== MIGRATEPAGE_SUCCESS
) {
1202 if (reason
== MR_MEMORY_FAILURE
) {
1204 * Set PG_HWPoison on just freed page
1205 * intentionally. Although it's rather weird,
1206 * it's how HWPoison flag works at the moment.
1208 if (!test_set_page_hwpoison(page
))
1209 num_poisoned_pages_inc();
1212 if (rc
!= -EAGAIN
) {
1213 if (likely(!__PageMovable(page
))) {
1214 putback_lru_page(page
);
1219 if (PageMovable(page
))
1220 putback_movable_page(page
);
1222 __ClearPageIsolated(page
);
1228 put_new_page(newpage
, private);
1237 *result
= page_to_nid(newpage
);
1243 * Counterpart of unmap_and_move_page() for hugepage migration.
1245 * This function doesn't wait the completion of hugepage I/O
1246 * because there is no race between I/O and migration for hugepage.
1247 * Note that currently hugepage I/O occurs only in direct I/O
1248 * where no lock is held and PG_writeback is irrelevant,
1249 * and writeback status of all subpages are counted in the reference
1250 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1251 * under direct I/O, the reference of the head page is 512 and a bit more.)
1252 * This means that when we try to migrate hugepage whose subpages are
1253 * doing direct I/O, some references remain after try_to_unmap() and
1254 * hugepage migration fails without data corruption.
1256 * There is also no race when direct I/O is issued on the page under migration,
1257 * because then pte is replaced with migration swap entry and direct I/O code
1258 * will wait in the page fault for migration to complete.
1260 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1261 free_page_t put_new_page
, unsigned long private,
1262 struct page
*hpage
, int force
,
1263 enum migrate_mode mode
, int reason
)
1267 int page_was_mapped
= 0;
1268 struct page
*new_hpage
;
1269 struct anon_vma
*anon_vma
= NULL
;
1272 * Movability of hugepages depends on architectures and hugepage size.
1273 * This check is necessary because some callers of hugepage migration
1274 * like soft offline and memory hotremove don't walk through page
1275 * tables or check whether the hugepage is pmd-based or not before
1276 * kicking migration.
1278 if (!hugepage_migration_supported(page_hstate(hpage
))) {
1279 putback_active_hugepage(hpage
);
1283 new_hpage
= get_new_page(hpage
, private, &result
);
1287 if (!trylock_page(hpage
)) {
1292 case MIGRATE_SYNC_NO_COPY
:
1300 if (PageAnon(hpage
))
1301 anon_vma
= page_get_anon_vma(hpage
);
1303 if (unlikely(!trylock_page(new_hpage
)))
1306 if (page_mapped(hpage
)) {
1308 TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1309 page_was_mapped
= 1;
1312 if (!page_mapped(hpage
))
1313 rc
= move_to_new_page(new_hpage
, hpage
, mode
);
1315 if (page_was_mapped
)
1316 remove_migration_ptes(hpage
,
1317 rc
== MIGRATEPAGE_SUCCESS
? new_hpage
: hpage
, false);
1319 unlock_page(new_hpage
);
1323 put_anon_vma(anon_vma
);
1325 if (rc
== MIGRATEPAGE_SUCCESS
) {
1326 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1327 put_new_page
= NULL
;
1328 set_page_owner_migrate_reason(new_hpage
, reason
);
1334 putback_active_hugepage(hpage
);
1335 if (reason
== MR_MEMORY_FAILURE
&& !test_set_page_hwpoison(hpage
))
1336 num_poisoned_pages_inc();
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1344 put_new_page(new_hpage
, private);
1346 putback_active_hugepage(new_hpage
);
1352 *result
= page_to_nid(new_hpage
);
1358 * migrate_pages - migrate the pages specified in a list, to the free pages
1359 * supplied as the target for the page migration
1361 * @from: The list of pages to be migrated.
1362 * @get_new_page: The function used to allocate free pages to be used
1363 * as the target of the page migration.
1364 * @put_new_page: The function used to free target pages if migration
1365 * fails, or NULL if no special handling is necessary.
1366 * @private: Private data to be passed on to get_new_page()
1367 * @mode: The migration mode that specifies the constraints for
1368 * page migration, if any.
1369 * @reason: The reason for page migration.
1371 * The function returns after 10 attempts or if no pages are movable any more
1372 * because the list has become empty or no retryable pages exist any more.
1373 * The caller should call putback_movable_pages() to return pages to the LRU
1374 * or free list only if ret != 0.
1376 * Returns the number of pages that were not migrated, or an error code.
1378 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1379 free_page_t put_new_page
, unsigned long private,
1380 enum migrate_mode mode
, int reason
)
1384 int nr_succeeded
= 0;
1388 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1392 current
->flags
|= PF_SWAPWRITE
;
1394 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1397 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1401 rc
= unmap_and_move_huge_page(get_new_page
,
1402 put_new_page
, private, page
,
1403 pass
> 2, mode
, reason
);
1405 rc
= unmap_and_move(get_new_page
, put_new_page
,
1406 private, page
, pass
> 2, mode
,
1416 case MIGRATEPAGE_SUCCESS
:
1421 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422 * unlike -EAGAIN case, the failed page is
1423 * removed from migration page list and not
1424 * retried in the next outer loop.
1435 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1437 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1438 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1441 current
->flags
&= ~PF_SWAPWRITE
;
1448 * Move a list of individual pages
1450 struct page_to_node
{
1457 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1460 struct page_to_node
*pm
= (struct page_to_node
*)private;
1462 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1465 if (pm
->node
== MAX_NUMNODES
)
1468 *result
= &pm
->status
;
1471 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1473 else if (thp_migration_supported() && PageTransHuge(p
)) {
1476 thp
= alloc_pages_node(pm
->node
,
1477 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_RECLAIM
,
1481 prep_transhuge_page(thp
);
1484 return __alloc_pages_node(pm
->node
,
1485 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1489 * Move a set of pages as indicated in the pm array. The addr
1490 * field must be set to the virtual address of the page to be moved
1491 * and the node number must contain a valid target node.
1492 * The pm array ends with node = MAX_NUMNODES.
1494 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1495 struct page_to_node
*pm
,
1499 struct page_to_node
*pp
;
1500 LIST_HEAD(pagelist
);
1502 down_read(&mm
->mmap_sem
);
1505 * Build a list of pages to migrate
1507 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1508 struct vm_area_struct
*vma
;
1511 unsigned int follflags
;
1514 vma
= find_vma(mm
, pp
->addr
);
1515 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1518 /* FOLL_DUMP to ignore special (like zero) pages */
1519 follflags
= FOLL_GET
| FOLL_DUMP
;
1520 if (!thp_migration_supported())
1521 follflags
|= FOLL_SPLIT
;
1522 page
= follow_page(vma
, pp
->addr
, follflags
);
1524 err
= PTR_ERR(page
);
1532 err
= page_to_nid(page
);
1534 if (err
== pp
->node
)
1536 * Node already in the right place
1541 if (page_mapcount(page
) > 1 &&
1545 if (PageHuge(page
)) {
1546 if (PageHead(page
)) {
1547 isolate_huge_page(page
, &pagelist
);
1554 pp
->page
= compound_head(page
);
1555 head
= compound_head(page
);
1556 err
= isolate_lru_page(head
);
1558 list_add_tail(&head
->lru
, &pagelist
);
1559 mod_node_page_state(page_pgdat(head
),
1560 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
1561 hpage_nr_pages(head
));
1565 * Either remove the duplicate refcount from
1566 * isolate_lru_page() or drop the page ref if it was
1575 if (!list_empty(&pagelist
)) {
1576 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1577 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1579 putback_movable_pages(&pagelist
);
1582 up_read(&mm
->mmap_sem
);
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1590 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1591 unsigned long nr_pages
,
1592 const void __user
* __user
*pages
,
1593 const int __user
*nodes
,
1594 int __user
*status
, int flags
)
1596 struct page_to_node
*pm
;
1597 unsigned long chunk_nr_pages
;
1598 unsigned long chunk_start
;
1602 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1609 * Store a chunk of page_to_node array in a page,
1610 * but keep the last one as a marker
1612 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1614 for (chunk_start
= 0;
1615 chunk_start
< nr_pages
;
1616 chunk_start
+= chunk_nr_pages
) {
1619 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1620 chunk_nr_pages
= nr_pages
- chunk_start
;
1622 /* fill the chunk pm with addrs and nodes from user-space */
1623 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1624 const void __user
*p
;
1628 if (get_user(p
, pages
+ j
+ chunk_start
))
1630 pm
[j
].addr
= (unsigned long) p
;
1632 if (get_user(node
, nodes
+ j
+ chunk_start
))
1636 if (node
< 0 || node
>= MAX_NUMNODES
)
1639 if (!node_state(node
, N_MEMORY
))
1643 if (!node_isset(node
, task_nodes
))
1649 /* End marker for this chunk */
1650 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1652 /* Migrate this chunk */
1653 err
= do_move_page_to_node_array(mm
, pm
,
1654 flags
& MPOL_MF_MOVE_ALL
);
1658 /* Return status information */
1659 for (j
= 0; j
< chunk_nr_pages
; j
++)
1660 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1668 free_page((unsigned long)pm
);
1674 * Determine the nodes of an array of pages and store it in an array of status.
1676 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1677 const void __user
**pages
, int *status
)
1681 down_read(&mm
->mmap_sem
);
1683 for (i
= 0; i
< nr_pages
; i
++) {
1684 unsigned long addr
= (unsigned long)(*pages
);
1685 struct vm_area_struct
*vma
;
1689 vma
= find_vma(mm
, addr
);
1690 if (!vma
|| addr
< vma
->vm_start
)
1693 /* FOLL_DUMP to ignore special (like zero) pages */
1694 page
= follow_page(vma
, addr
, FOLL_DUMP
);
1696 err
= PTR_ERR(page
);
1700 err
= page
? page_to_nid(page
) : -ENOENT
;
1708 up_read(&mm
->mmap_sem
);
1712 * Determine the nodes of a user array of pages and store it in
1713 * a user array of status.
1715 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1716 const void __user
* __user
*pages
,
1719 #define DO_PAGES_STAT_CHUNK_NR 16
1720 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1721 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1724 unsigned long chunk_nr
;
1726 chunk_nr
= nr_pages
;
1727 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1728 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1730 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1733 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1735 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1740 nr_pages
-= chunk_nr
;
1742 return nr_pages
? -EFAULT
: 0;
1746 * Move a list of pages in the address space of the currently executing
1749 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1750 const void __user
* __user
*, pages
,
1751 const int __user
*, nodes
,
1752 int __user
*, status
, int, flags
)
1754 struct task_struct
*task
;
1755 struct mm_struct
*mm
;
1757 nodemask_t task_nodes
;
1760 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1763 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1766 /* Find the mm_struct */
1768 task
= pid
? find_task_by_vpid(pid
) : current
;
1773 get_task_struct(task
);
1776 * Check if this process has the right to modify the specified
1777 * process. Use the regular "ptrace_may_access()" checks.
1779 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1786 err
= security_task_movememory(task
);
1790 task_nodes
= cpuset_mems_allowed(task
);
1791 mm
= get_task_mm(task
);
1792 put_task_struct(task
);
1798 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1799 nodes
, status
, flags
);
1801 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1807 put_task_struct(task
);
1811 #ifdef CONFIG_NUMA_BALANCING
1813 * Returns true if this is a safe migration target node for misplaced NUMA
1814 * pages. Currently it only checks the watermarks which crude
1816 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1817 unsigned long nr_migrate_pages
)
1821 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1822 struct zone
*zone
= pgdat
->node_zones
+ z
;
1824 if (!populated_zone(zone
))
1827 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1828 if (!zone_watermark_ok(zone
, 0,
1829 high_wmark_pages(zone
) +
1838 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1842 int nid
= (int) data
;
1843 struct page
*newpage
;
1845 newpage
= __alloc_pages_node(nid
,
1846 (GFP_HIGHUSER_MOVABLE
|
1847 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1848 __GFP_NORETRY
| __GFP_NOWARN
) &
1855 * page migration rate limiting control.
1856 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1857 * window of time. Default here says do not migrate more than 1280M per second.
1859 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1860 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1862 /* Returns true if the node is migrate rate-limited after the update */
1863 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1864 unsigned long nr_pages
)
1867 * Rate-limit the amount of data that is being migrated to a node.
1868 * Optimal placement is no good if the memory bus is saturated and
1869 * all the time is being spent migrating!
1871 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1872 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1873 pgdat
->numabalancing_migrate_nr_pages
= 0;
1874 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1875 msecs_to_jiffies(migrate_interval_millisecs
);
1876 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1878 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1879 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1885 * This is an unlocked non-atomic update so errors are possible.
1886 * The consequences are failing to migrate when we potentiall should
1887 * have which is not severe enough to warrant locking. If it is ever
1888 * a problem, it can be converted to a per-cpu counter.
1890 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1894 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1898 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1900 /* Avoid migrating to a node that is nearly full */
1901 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1904 if (isolate_lru_page(page
))
1908 * migrate_misplaced_transhuge_page() skips page migration's usual
1909 * check on page_count(), so we must do it here, now that the page
1910 * has been isolated: a GUP pin, or any other pin, prevents migration.
1911 * The expected page count is 3: 1 for page's mapcount and 1 for the
1912 * caller's pin and 1 for the reference taken by isolate_lru_page().
1914 if (PageTransHuge(page
) && page_count(page
) != 3) {
1915 putback_lru_page(page
);
1919 page_lru
= page_is_file_cache(page
);
1920 mod_node_page_state(page_pgdat(page
), NR_ISOLATED_ANON
+ page_lru
,
1921 hpage_nr_pages(page
));
1924 * Isolating the page has taken another reference, so the
1925 * caller's reference can be safely dropped without the page
1926 * disappearing underneath us during migration.
1932 bool pmd_trans_migrating(pmd_t pmd
)
1934 struct page
*page
= pmd_page(pmd
);
1935 return PageLocked(page
);
1939 * Attempt to migrate a misplaced page to the specified destination
1940 * node. Caller is expected to have an elevated reference count on
1941 * the page that will be dropped by this function before returning.
1943 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1946 pg_data_t
*pgdat
= NODE_DATA(node
);
1949 LIST_HEAD(migratepages
);
1952 * Don't migrate file pages that are mapped in multiple processes
1953 * with execute permissions as they are probably shared libraries.
1955 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1956 (vma
->vm_flags
& VM_EXEC
))
1960 * Rate-limit the amount of data that is being migrated to a node.
1961 * Optimal placement is no good if the memory bus is saturated and
1962 * all the time is being spent migrating!
1964 if (numamigrate_update_ratelimit(pgdat
, 1))
1967 isolated
= numamigrate_isolate_page(pgdat
, page
);
1971 list_add(&page
->lru
, &migratepages
);
1972 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1973 NULL
, node
, MIGRATE_ASYNC
,
1976 if (!list_empty(&migratepages
)) {
1977 list_del(&page
->lru
);
1978 dec_node_page_state(page
, NR_ISOLATED_ANON
+
1979 page_is_file_cache(page
));
1980 putback_lru_page(page
);
1984 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1985 BUG_ON(!list_empty(&migratepages
));
1992 #endif /* CONFIG_NUMA_BALANCING */
1994 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1996 * Migrates a THP to a given target node. page must be locked and is unlocked
1999 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
2000 struct vm_area_struct
*vma
,
2001 pmd_t
*pmd
, pmd_t entry
,
2002 unsigned long address
,
2003 struct page
*page
, int node
)
2006 pg_data_t
*pgdat
= NODE_DATA(node
);
2008 struct page
*new_page
= NULL
;
2009 int page_lru
= page_is_file_cache(page
);
2010 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2011 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
2014 * Rate-limit the amount of data that is being migrated to a node.
2015 * Optimal placement is no good if the memory bus is saturated and
2016 * all the time is being spent migrating!
2018 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
2021 new_page
= alloc_pages_node(node
,
2022 (GFP_TRANSHUGE_LIGHT
| __GFP_THISNODE
),
2026 prep_transhuge_page(new_page
);
2028 isolated
= numamigrate_isolate_page(pgdat
, page
);
2034 /* Prepare a page as a migration target */
2035 __SetPageLocked(new_page
);
2036 if (PageSwapBacked(page
))
2037 __SetPageSwapBacked(new_page
);
2039 /* anon mapping, we can simply copy page->mapping to the new page: */
2040 new_page
->mapping
= page
->mapping
;
2041 new_page
->index
= page
->index
;
2042 migrate_page_copy(new_page
, page
);
2043 WARN_ON(PageLRU(new_page
));
2045 /* Recheck the target PMD */
2046 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2047 ptl
= pmd_lock(mm
, pmd
);
2048 if (unlikely(!pmd_same(*pmd
, entry
) || !page_ref_freeze(page
, 2))) {
2050 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2052 /* Reverse changes made by migrate_page_copy() */
2053 if (TestClearPageActive(new_page
))
2054 SetPageActive(page
);
2055 if (TestClearPageUnevictable(new_page
))
2056 SetPageUnevictable(page
);
2058 unlock_page(new_page
);
2059 put_page(new_page
); /* Free it */
2061 /* Retake the callers reference and putback on LRU */
2063 putback_lru_page(page
);
2064 mod_node_page_state(page_pgdat(page
),
2065 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
2070 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2071 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2074 * Clear the old entry under pagetable lock and establish the new PTE.
2075 * Any parallel GUP will either observe the old page blocking on the
2076 * page lock, block on the page table lock or observe the new page.
2077 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2078 * guarantee the copy is visible before the pagetable update.
2080 flush_cache_range(vma
, mmun_start
, mmun_end
);
2081 page_add_anon_rmap(new_page
, vma
, mmun_start
, true);
2082 pmdp_huge_clear_flush_notify(vma
, mmun_start
, pmd
);
2083 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2084 update_mmu_cache_pmd(vma
, address
, &entry
);
2086 page_ref_unfreeze(page
, 2);
2087 mlock_migrate_page(new_page
, page
);
2088 page_remove_rmap(page
, true);
2089 set_page_owner_migrate_reason(new_page
, MR_NUMA_MISPLACED
);
2093 * No need to double call mmu_notifier->invalidate_range() callback as
2094 * the above pmdp_huge_clear_flush_notify() did already call it.
2096 mmu_notifier_invalidate_range_only_end(mm
, mmun_start
, mmun_end
);
2098 /* Take an "isolate" reference and put new page on the LRU. */
2100 putback_lru_page(new_page
);
2102 unlock_page(new_page
);
2104 put_page(page
); /* Drop the rmap reference */
2105 put_page(page
); /* Drop the LRU isolation reference */
2107 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
2108 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
2110 mod_node_page_state(page_pgdat(page
),
2111 NR_ISOLATED_ANON
+ page_lru
,
2116 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
2118 ptl
= pmd_lock(mm
, pmd
);
2119 if (pmd_same(*pmd
, entry
)) {
2120 entry
= pmd_modify(entry
, vma
->vm_page_prot
);
2121 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
2122 update_mmu_cache_pmd(vma
, address
, &entry
);
2131 #endif /* CONFIG_NUMA_BALANCING */
2133 #endif /* CONFIG_NUMA */
2135 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2136 struct migrate_vma
{
2137 struct vm_area_struct
*vma
;
2140 unsigned long cpages
;
2141 unsigned long npages
;
2142 unsigned long start
;
2146 static int migrate_vma_collect_hole(unsigned long start
,
2148 struct mm_walk
*walk
)
2150 struct migrate_vma
*migrate
= walk
->private;
2153 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2154 migrate
->src
[migrate
->npages
] = MIGRATE_PFN_MIGRATE
;
2155 migrate
->dst
[migrate
->npages
] = 0;
2163 static int migrate_vma_collect_skip(unsigned long start
,
2165 struct mm_walk
*walk
)
2167 struct migrate_vma
*migrate
= walk
->private;
2170 for (addr
= start
& PAGE_MASK
; addr
< end
; addr
+= PAGE_SIZE
) {
2171 migrate
->dst
[migrate
->npages
] = 0;
2172 migrate
->src
[migrate
->npages
++] = 0;
2178 static int migrate_vma_collect_pmd(pmd_t
*pmdp
,
2179 unsigned long start
,
2181 struct mm_walk
*walk
)
2183 struct migrate_vma
*migrate
= walk
->private;
2184 struct vm_area_struct
*vma
= walk
->vma
;
2185 struct mm_struct
*mm
= vma
->vm_mm
;
2186 unsigned long addr
= start
, unmapped
= 0;
2191 if (pmd_none(*pmdp
))
2192 return migrate_vma_collect_hole(start
, end
, walk
);
2194 if (pmd_trans_huge(*pmdp
)) {
2197 ptl
= pmd_lock(mm
, pmdp
);
2198 if (unlikely(!pmd_trans_huge(*pmdp
))) {
2203 page
= pmd_page(*pmdp
);
2204 if (is_huge_zero_page(page
)) {
2206 split_huge_pmd(vma
, pmdp
, addr
);
2207 if (pmd_trans_unstable(pmdp
))
2208 return migrate_vma_collect_skip(start
, end
,
2215 if (unlikely(!trylock_page(page
)))
2216 return migrate_vma_collect_skip(start
, end
,
2218 ret
= split_huge_page(page
);
2222 return migrate_vma_collect_skip(start
, end
,
2224 if (pmd_none(*pmdp
))
2225 return migrate_vma_collect_hole(start
, end
,
2230 if (unlikely(pmd_bad(*pmdp
)))
2231 return migrate_vma_collect_skip(start
, end
, walk
);
2233 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2234 arch_enter_lazy_mmu_mode();
2236 for (; addr
< end
; addr
+= PAGE_SIZE
, ptep
++) {
2237 unsigned long mpfn
, pfn
;
2245 if (pte_none(pte
)) {
2246 mpfn
= MIGRATE_PFN_MIGRATE
;
2252 if (!pte_present(pte
)) {
2256 * Only care about unaddressable device page special
2257 * page table entry. Other special swap entries are not
2258 * migratable, and we ignore regular swapped page.
2260 entry
= pte_to_swp_entry(pte
);
2261 if (!is_device_private_entry(entry
))
2264 page
= device_private_entry_to_page(entry
);
2265 mpfn
= migrate_pfn(page_to_pfn(page
))|
2266 MIGRATE_PFN_DEVICE
| MIGRATE_PFN_MIGRATE
;
2267 if (is_write_device_private_entry(entry
))
2268 mpfn
|= MIGRATE_PFN_WRITE
;
2270 if (is_zero_pfn(pfn
)) {
2271 mpfn
= MIGRATE_PFN_MIGRATE
;
2276 page
= _vm_normal_page(migrate
->vma
, addr
, pte
, true);
2277 mpfn
= migrate_pfn(pfn
) | MIGRATE_PFN_MIGRATE
;
2278 mpfn
|= pte_write(pte
) ? MIGRATE_PFN_WRITE
: 0;
2281 /* FIXME support THP */
2282 if (!page
|| !page
->mapping
|| PageTransCompound(page
)) {
2286 pfn
= page_to_pfn(page
);
2289 * By getting a reference on the page we pin it and that blocks
2290 * any kind of migration. Side effect is that it "freezes" the
2293 * We drop this reference after isolating the page from the lru
2294 * for non device page (device page are not on the lru and thus
2295 * can't be dropped from it).
2301 * Optimize for the common case where page is only mapped once
2302 * in one process. If we can lock the page, then we can safely
2303 * set up a special migration page table entry now.
2305 if (trylock_page(page
)) {
2308 mpfn
|= MIGRATE_PFN_LOCKED
;
2309 ptep_get_and_clear(mm
, addr
, ptep
);
2311 /* Setup special migration page table entry */
2312 entry
= make_migration_entry(page
, pte_write(pte
));
2313 swp_pte
= swp_entry_to_pte(entry
);
2314 if (pte_soft_dirty(pte
))
2315 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
2316 set_pte_at(mm
, addr
, ptep
, swp_pte
);
2319 * This is like regular unmap: we remove the rmap and
2320 * drop page refcount. Page won't be freed, as we took
2321 * a reference just above.
2323 page_remove_rmap(page
, false);
2326 if (pte_present(pte
))
2331 migrate
->dst
[migrate
->npages
] = 0;
2332 migrate
->src
[migrate
->npages
++] = mpfn
;
2334 arch_leave_lazy_mmu_mode();
2335 pte_unmap_unlock(ptep
- 1, ptl
);
2337 /* Only flush the TLB if we actually modified any entries */
2339 flush_tlb_range(walk
->vma
, start
, end
);
2345 * migrate_vma_collect() - collect pages over a range of virtual addresses
2346 * @migrate: migrate struct containing all migration information
2348 * This will walk the CPU page table. For each virtual address backed by a
2349 * valid page, it updates the src array and takes a reference on the page, in
2350 * order to pin the page until we lock it and unmap it.
2352 static void migrate_vma_collect(struct migrate_vma
*migrate
)
2354 struct mm_walk mm_walk
;
2356 mm_walk
.pmd_entry
= migrate_vma_collect_pmd
;
2357 mm_walk
.pte_entry
= NULL
;
2358 mm_walk
.pte_hole
= migrate_vma_collect_hole
;
2359 mm_walk
.hugetlb_entry
= NULL
;
2360 mm_walk
.test_walk
= NULL
;
2361 mm_walk
.vma
= migrate
->vma
;
2362 mm_walk
.mm
= migrate
->vma
->vm_mm
;
2363 mm_walk
.private = migrate
;
2365 mmu_notifier_invalidate_range_start(mm_walk
.mm
,
2368 walk_page_range(migrate
->start
, migrate
->end
, &mm_walk
);
2369 mmu_notifier_invalidate_range_end(mm_walk
.mm
,
2373 migrate
->end
= migrate
->start
+ (migrate
->npages
<< PAGE_SHIFT
);
2377 * migrate_vma_check_page() - check if page is pinned or not
2378 * @page: struct page to check
2380 * Pinned pages cannot be migrated. This is the same test as in
2381 * migrate_page_move_mapping(), except that here we allow migration of a
2384 static bool migrate_vma_check_page(struct page
*page
)
2387 * One extra ref because caller holds an extra reference, either from
2388 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2394 * FIXME support THP (transparent huge page), it is bit more complex to
2395 * check them than regular pages, because they can be mapped with a pmd
2396 * or with a pte (split pte mapping).
2398 if (PageCompound(page
))
2401 /* Page from ZONE_DEVICE have one extra reference */
2402 if (is_zone_device_page(page
)) {
2404 * Private page can never be pin as they have no valid pte and
2405 * GUP will fail for those. Yet if there is a pending migration
2406 * a thread might try to wait on the pte migration entry and
2407 * will bump the page reference count. Sadly there is no way to
2408 * differentiate a regular pin from migration wait. Hence to
2409 * avoid 2 racing thread trying to migrate back to CPU to enter
2410 * infinite loop (one stoping migration because the other is
2411 * waiting on pte migration entry). We always return true here.
2413 * FIXME proper solution is to rework migration_entry_wait() so
2414 * it does not need to take a reference on page.
2416 if (is_device_private_page(page
))
2420 * Only allow device public page to be migrated and account for
2421 * the extra reference count imply by ZONE_DEVICE pages.
2423 if (!is_device_public_page(page
))
2428 /* For file back page */
2429 if (page_mapping(page
))
2430 extra
+= 1 + page_has_private(page
);
2432 if ((page_count(page
) - extra
) > page_mapcount(page
))
2439 * migrate_vma_prepare() - lock pages and isolate them from the lru
2440 * @migrate: migrate struct containing all migration information
2442 * This locks pages that have been collected by migrate_vma_collect(). Once each
2443 * page is locked it is isolated from the lru (for non-device pages). Finally,
2444 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2445 * migrated by concurrent kernel threads.
2447 static void migrate_vma_prepare(struct migrate_vma
*migrate
)
2449 const unsigned long npages
= migrate
->npages
;
2450 const unsigned long start
= migrate
->start
;
2451 unsigned long addr
, i
, restore
= 0;
2452 bool allow_drain
= true;
2456 for (i
= 0; (i
< npages
) && migrate
->cpages
; i
++) {
2457 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2463 if (!(migrate
->src
[i
] & MIGRATE_PFN_LOCKED
)) {
2465 * Because we are migrating several pages there can be
2466 * a deadlock between 2 concurrent migration where each
2467 * are waiting on each other page lock.
2469 * Make migrate_vma() a best effort thing and backoff
2470 * for any page we can not lock right away.
2472 if (!trylock_page(page
)) {
2473 migrate
->src
[i
] = 0;
2479 migrate
->src
[i
] |= MIGRATE_PFN_LOCKED
;
2482 /* ZONE_DEVICE pages are not on LRU */
2483 if (!is_zone_device_page(page
)) {
2484 if (!PageLRU(page
) && allow_drain
) {
2485 /* Drain CPU's pagevec */
2486 lru_add_drain_all();
2487 allow_drain
= false;
2490 if (isolate_lru_page(page
)) {
2492 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2496 migrate
->src
[i
] = 0;
2504 /* Drop the reference we took in collect */
2508 if (!migrate_vma_check_page(page
)) {
2510 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2514 if (!is_zone_device_page(page
)) {
2516 putback_lru_page(page
);
2519 migrate
->src
[i
] = 0;
2523 if (!is_zone_device_page(page
))
2524 putback_lru_page(page
);
2531 for (i
= 0, addr
= start
; i
< npages
&& restore
; i
++, addr
+= PAGE_SIZE
) {
2532 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2534 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2537 remove_migration_pte(page
, migrate
->vma
, addr
, page
);
2539 migrate
->src
[i
] = 0;
2547 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2548 * @migrate: migrate struct containing all migration information
2550 * Replace page mapping (CPU page table pte) with a special migration pte entry
2551 * and check again if it has been pinned. Pinned pages are restored because we
2552 * cannot migrate them.
2554 * This is the last step before we call the device driver callback to allocate
2555 * destination memory and copy contents of original page over to new page.
2557 static void migrate_vma_unmap(struct migrate_vma
*migrate
)
2559 int flags
= TTU_MIGRATION
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
2560 const unsigned long npages
= migrate
->npages
;
2561 const unsigned long start
= migrate
->start
;
2562 unsigned long addr
, i
, restore
= 0;
2564 for (i
= 0; i
< npages
; i
++) {
2565 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2567 if (!page
|| !(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2570 if (page_mapped(page
)) {
2571 try_to_unmap(page
, flags
);
2572 if (page_mapped(page
))
2576 if (migrate_vma_check_page(page
))
2580 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2585 for (addr
= start
, i
= 0; i
< npages
&& restore
; addr
+= PAGE_SIZE
, i
++) {
2586 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2588 if (!page
|| (migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
))
2591 remove_migration_ptes(page
, page
, false);
2593 migrate
->src
[i
] = 0;
2597 if (is_zone_device_page(page
))
2600 putback_lru_page(page
);
2604 static void migrate_vma_insert_page(struct migrate_vma
*migrate
,
2610 struct vm_area_struct
*vma
= migrate
->vma
;
2611 struct mm_struct
*mm
= vma
->vm_mm
;
2612 struct mem_cgroup
*memcg
;
2622 /* Only allow populating anonymous memory */
2623 if (!vma_is_anonymous(vma
))
2626 pgdp
= pgd_offset(mm
, addr
);
2627 p4dp
= p4d_alloc(mm
, pgdp
, addr
);
2630 pudp
= pud_alloc(mm
, p4dp
, addr
);
2633 pmdp
= pmd_alloc(mm
, pudp
, addr
);
2637 if (pmd_trans_huge(*pmdp
) || pmd_devmap(*pmdp
))
2641 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2642 * pte_offset_map() on pmds where a huge pmd might be created
2643 * from a different thread.
2645 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2646 * parallel threads are excluded by other means.
2648 * Here we only have down_read(mmap_sem).
2650 if (pte_alloc(mm
, pmdp
, addr
))
2653 /* See the comment in pte_alloc_one_map() */
2654 if (unlikely(pmd_trans_unstable(pmdp
)))
2657 if (unlikely(anon_vma_prepare(vma
)))
2659 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2663 * The memory barrier inside __SetPageUptodate makes sure that
2664 * preceding stores to the page contents become visible before
2665 * the set_pte_at() write.
2667 __SetPageUptodate(page
);
2669 if (is_zone_device_page(page
)) {
2670 if (is_device_private_page(page
)) {
2671 swp_entry_t swp_entry
;
2673 swp_entry
= make_device_private_entry(page
, vma
->vm_flags
& VM_WRITE
);
2674 entry
= swp_entry_to_pte(swp_entry
);
2675 } else if (is_device_public_page(page
)) {
2676 entry
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
2677 if (vma
->vm_flags
& VM_WRITE
)
2678 entry
= pte_mkwrite(pte_mkdirty(entry
));
2679 entry
= pte_mkdevmap(entry
);
2682 entry
= mk_pte(page
, vma
->vm_page_prot
);
2683 if (vma
->vm_flags
& VM_WRITE
)
2684 entry
= pte_mkwrite(pte_mkdirty(entry
));
2687 ptep
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
2689 if (pte_present(*ptep
)) {
2690 unsigned long pfn
= pte_pfn(*ptep
);
2692 if (!is_zero_pfn(pfn
)) {
2693 pte_unmap_unlock(ptep
, ptl
);
2694 mem_cgroup_cancel_charge(page
, memcg
, false);
2698 } else if (!pte_none(*ptep
)) {
2699 pte_unmap_unlock(ptep
, ptl
);
2700 mem_cgroup_cancel_charge(page
, memcg
, false);
2705 * Check for usefaultfd but do not deliver the fault. Instead,
2708 if (userfaultfd_missing(vma
)) {
2709 pte_unmap_unlock(ptep
, ptl
);
2710 mem_cgroup_cancel_charge(page
, memcg
, false);
2714 inc_mm_counter(mm
, MM_ANONPAGES
);
2715 page_add_new_anon_rmap(page
, vma
, addr
, false);
2716 mem_cgroup_commit_charge(page
, memcg
, false, false);
2717 if (!is_zone_device_page(page
))
2718 lru_cache_add_active_or_unevictable(page
, vma
);
2722 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
2723 ptep_clear_flush_notify(vma
, addr
, ptep
);
2724 set_pte_at_notify(mm
, addr
, ptep
, entry
);
2725 update_mmu_cache(vma
, addr
, ptep
);
2727 /* No need to invalidate - it was non-present before */
2728 set_pte_at(mm
, addr
, ptep
, entry
);
2729 update_mmu_cache(vma
, addr
, ptep
);
2732 pte_unmap_unlock(ptep
, ptl
);
2733 *src
= MIGRATE_PFN_MIGRATE
;
2737 *src
&= ~MIGRATE_PFN_MIGRATE
;
2741 * migrate_vma_pages() - migrate meta-data from src page to dst page
2742 * @migrate: migrate struct containing all migration information
2744 * This migrates struct page meta-data from source struct page to destination
2745 * struct page. This effectively finishes the migration from source page to the
2748 static void migrate_vma_pages(struct migrate_vma
*migrate
)
2750 const unsigned long npages
= migrate
->npages
;
2751 const unsigned long start
= migrate
->start
;
2752 struct vm_area_struct
*vma
= migrate
->vma
;
2753 struct mm_struct
*mm
= vma
->vm_mm
;
2754 unsigned long addr
, i
, mmu_start
;
2755 bool notified
= false;
2757 for (i
= 0, addr
= start
; i
< npages
; addr
+= PAGE_SIZE
, i
++) {
2758 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2759 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2760 struct address_space
*mapping
;
2764 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2769 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
)) {
2775 mmu_notifier_invalidate_range_start(mm
,
2779 migrate_vma_insert_page(migrate
, addr
, newpage
,
2785 mapping
= page_mapping(page
);
2787 if (is_zone_device_page(newpage
)) {
2788 if (is_device_private_page(newpage
)) {
2790 * For now only support private anonymous when
2791 * migrating to un-addressable device memory.
2794 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2797 } else if (!is_device_public_page(newpage
)) {
2799 * Other types of ZONE_DEVICE page are not
2802 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2807 r
= migrate_page(mapping
, newpage
, page
, MIGRATE_SYNC_NO_COPY
);
2808 if (r
!= MIGRATEPAGE_SUCCESS
)
2809 migrate
->src
[i
] &= ~MIGRATE_PFN_MIGRATE
;
2813 * No need to double call mmu_notifier->invalidate_range() callback as
2814 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2815 * did already call it.
2818 mmu_notifier_invalidate_range_only_end(mm
, mmu_start
,
2823 * migrate_vma_finalize() - restore CPU page table entry
2824 * @migrate: migrate struct containing all migration information
2826 * This replaces the special migration pte entry with either a mapping to the
2827 * new page if migration was successful for that page, or to the original page
2830 * This also unlocks the pages and puts them back on the lru, or drops the extra
2831 * refcount, for device pages.
2833 static void migrate_vma_finalize(struct migrate_vma
*migrate
)
2835 const unsigned long npages
= migrate
->npages
;
2838 for (i
= 0; i
< npages
; i
++) {
2839 struct page
*newpage
= migrate_pfn_to_page(migrate
->dst
[i
]);
2840 struct page
*page
= migrate_pfn_to_page(migrate
->src
[i
]);
2844 unlock_page(newpage
);
2850 if (!(migrate
->src
[i
] & MIGRATE_PFN_MIGRATE
) || !newpage
) {
2852 unlock_page(newpage
);
2858 remove_migration_ptes(page
, newpage
, false);
2862 if (is_zone_device_page(page
))
2865 putback_lru_page(page
);
2867 if (newpage
!= page
) {
2868 unlock_page(newpage
);
2869 if (is_zone_device_page(newpage
))
2872 putback_lru_page(newpage
);
2878 * migrate_vma() - migrate a range of memory inside vma
2880 * @ops: migration callback for allocating destination memory and copying
2881 * @vma: virtual memory area containing the range to be migrated
2882 * @start: start address of the range to migrate (inclusive)
2883 * @end: end address of the range to migrate (exclusive)
2884 * @src: array of hmm_pfn_t containing source pfns
2885 * @dst: array of hmm_pfn_t containing destination pfns
2886 * @private: pointer passed back to each of the callback
2887 * Returns: 0 on success, error code otherwise
2889 * This function tries to migrate a range of memory virtual address range, using
2890 * callbacks to allocate and copy memory from source to destination. First it
2891 * collects all the pages backing each virtual address in the range, saving this
2892 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2893 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2894 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2895 * in the corresponding src array entry. It then restores any pages that are
2896 * pinned, by remapping and unlocking those pages.
2898 * At this point it calls the alloc_and_copy() callback. For documentation on
2899 * what is expected from that callback, see struct migrate_vma_ops comments in
2900 * include/linux/migrate.h
2902 * After the alloc_and_copy() callback, this function goes over each entry in
2903 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2904 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2905 * then the function tries to migrate struct page information from the source
2906 * struct page to the destination struct page. If it fails to migrate the struct
2907 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2910 * At this point all successfully migrated pages have an entry in the src
2911 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2912 * array entry with MIGRATE_PFN_VALID flag set.
2914 * It then calls the finalize_and_map() callback. See comments for "struct
2915 * migrate_vma_ops", in include/linux/migrate.h for details about
2916 * finalize_and_map() behavior.
2918 * After the finalize_and_map() callback, for successfully migrated pages, this
2919 * function updates the CPU page table to point to new pages, otherwise it
2920 * restores the CPU page table to point to the original source pages.
2922 * Function returns 0 after the above steps, even if no pages were migrated
2923 * (The function only returns an error if any of the arguments are invalid.)
2925 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2926 * unsigned long entries.
2928 int migrate_vma(const struct migrate_vma_ops
*ops
,
2929 struct vm_area_struct
*vma
,
2930 unsigned long start
,
2936 struct migrate_vma migrate
;
2938 /* Sanity check the arguments */
2941 if (!vma
|| is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_SPECIAL
))
2943 if (start
< vma
->vm_start
|| start
>= vma
->vm_end
)
2945 if (end
<= vma
->vm_start
|| end
> vma
->vm_end
)
2947 if (!ops
|| !src
|| !dst
|| start
>= end
)
2950 memset(src
, 0, sizeof(*src
) * ((end
- start
) >> PAGE_SHIFT
));
2953 migrate
.start
= start
;
2959 /* Collect, and try to unmap source pages */
2960 migrate_vma_collect(&migrate
);
2961 if (!migrate
.cpages
)
2964 /* Lock and isolate page */
2965 migrate_vma_prepare(&migrate
);
2966 if (!migrate
.cpages
)
2970 migrate_vma_unmap(&migrate
);
2971 if (!migrate
.cpages
)
2975 * At this point pages are locked and unmapped, and thus they have
2976 * stable content and can safely be copied to destination memory that
2977 * is allocated by the callback.
2979 * Note that migration can fail in migrate_vma_struct_page() for each
2982 ops
->alloc_and_copy(vma
, src
, dst
, start
, end
, private);
2984 /* This does the real migration of struct page */
2985 migrate_vma_pages(&migrate
);
2987 ops
->finalize_and_map(vma
, src
, dst
, start
, end
, private);
2989 /* Unlock and remap pages */
2990 migrate_vma_finalize(&migrate
);
2994 EXPORT_SYMBOL(migrate_vma
);
2995 #endif /* defined(MIGRATE_VMA_HELPER) */