Linux 4.13.16
[linux/fpc-iii.git] / arch / powerpc / kernel / process.c
blob1f0fd361e09b9415f81242d67d9b939f36fd63ba
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
77 extern unsigned long _get_SP(void);
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
83 * If we are saving the current thread's registers, and the
84 * thread is in a transactional state, set the TIF_RESTORE_TM
85 * bit so that we know to restore the registers before
86 * returning to userspace.
88 if (tsk == current && tsk->thread.regs &&
89 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 !test_thread_flag(TIF_RESTORE_TM)) {
91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 set_thread_flag(TIF_RESTORE_TM);
96 static inline bool msr_tm_active(unsigned long msr)
98 return MSR_TM_ACTIVE(msr);
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
108 static int __init enable_strict_msr_control(char *str)
110 strict_msr_control = true;
111 pr_info("Enabling strict facility control\n");
113 return 0;
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
117 unsigned long msr_check_and_set(unsigned long bits)
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
122 newmsr = oldmsr | bits;
124 #ifdef CONFIG_VSX
125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 newmsr |= MSR_VSX;
127 #endif
129 if (oldmsr != newmsr)
130 mtmsr_isync(newmsr);
132 return newmsr;
135 void __msr_check_and_clear(unsigned long bits)
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
140 newmsr = oldmsr & ~bits;
142 #ifdef CONFIG_VSX
143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 newmsr &= ~MSR_VSX;
145 #endif
147 if (oldmsr != newmsr)
148 mtmsr_isync(newmsr);
150 EXPORT_SYMBOL(__msr_check_and_clear);
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
155 unsigned long msr;
157 save_fpu(tsk);
158 msr = tsk->thread.regs->msr;
159 msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161 if (cpu_has_feature(CPU_FTR_VSX))
162 msr &= ~MSR_VSX;
163 #endif
164 tsk->thread.regs->msr = msr;
167 void giveup_fpu(struct task_struct *tsk)
169 check_if_tm_restore_required(tsk);
171 msr_check_and_set(MSR_FP);
172 __giveup_fpu(tsk);
173 msr_check_and_clear(MSR_FP);
175 EXPORT_SYMBOL(giveup_fpu);
178 * Make sure the floating-point register state in the
179 * the thread_struct is up to date for task tsk.
181 void flush_fp_to_thread(struct task_struct *tsk)
183 if (tsk->thread.regs) {
185 * We need to disable preemption here because if we didn't,
186 * another process could get scheduled after the regs->msr
187 * test but before we have finished saving the FP registers
188 * to the thread_struct. That process could take over the
189 * FPU, and then when we get scheduled again we would store
190 * bogus values for the remaining FP registers.
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_FP) {
195 * This should only ever be called for current or
196 * for a stopped child process. Since we save away
197 * the FP register state on context switch,
198 * there is something wrong if a stopped child appears
199 * to still have its FP state in the CPU registers.
201 BUG_ON(tsk != current);
202 giveup_fpu(tsk);
204 preempt_enable();
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
209 void enable_kernel_fp(void)
211 unsigned long cpumsr;
213 WARN_ON(preemptible());
215 cpumsr = msr_check_and_set(MSR_FP);
217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 check_if_tm_restore_required(current);
220 * If a thread has already been reclaimed then the
221 * checkpointed registers are on the CPU but have definitely
222 * been saved by the reclaim code. Don't need to and *cannot*
223 * giveup as this would save to the 'live' structure not the
224 * checkpointed structure.
226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 return;
228 __giveup_fpu(current);
231 EXPORT_SYMBOL(enable_kernel_fp);
233 static int restore_fp(struct task_struct *tsk) {
234 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 load_fp_state(&current->thread.fp_state);
236 current->thread.load_fp++;
237 return 1;
239 return 0;
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
248 static void __giveup_altivec(struct task_struct *tsk)
250 unsigned long msr;
252 save_altivec(tsk);
253 msr = tsk->thread.regs->msr;
254 msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256 if (cpu_has_feature(CPU_FTR_VSX))
257 msr &= ~MSR_VSX;
258 #endif
259 tsk->thread.regs->msr = msr;
262 void giveup_altivec(struct task_struct *tsk)
264 check_if_tm_restore_required(tsk);
266 msr_check_and_set(MSR_VEC);
267 __giveup_altivec(tsk);
268 msr_check_and_clear(MSR_VEC);
270 EXPORT_SYMBOL(giveup_altivec);
272 void enable_kernel_altivec(void)
274 unsigned long cpumsr;
276 WARN_ON(preemptible());
278 cpumsr = msr_check_and_set(MSR_VEC);
280 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281 check_if_tm_restore_required(current);
283 * If a thread has already been reclaimed then the
284 * checkpointed registers are on the CPU but have definitely
285 * been saved by the reclaim code. Don't need to and *cannot*
286 * giveup as this would save to the 'live' structure not the
287 * checkpointed structure.
289 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290 return;
291 __giveup_altivec(current);
294 EXPORT_SYMBOL(enable_kernel_altivec);
297 * Make sure the VMX/Altivec register state in the
298 * the thread_struct is up to date for task tsk.
300 void flush_altivec_to_thread(struct task_struct *tsk)
302 if (tsk->thread.regs) {
303 preempt_disable();
304 if (tsk->thread.regs->msr & MSR_VEC) {
305 BUG_ON(tsk != current);
306 giveup_altivec(tsk);
308 preempt_enable();
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
313 static int restore_altivec(struct task_struct *tsk)
315 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 load_vr_state(&tsk->thread.vr_state);
318 tsk->thread.used_vr = 1;
319 tsk->thread.load_vec++;
321 return 1;
323 return 0;
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
333 if (tsk->thread.regs->msr & MSR_FP)
334 __giveup_fpu(tsk);
335 if (tsk->thread.regs->msr & MSR_VEC)
336 __giveup_altivec(tsk);
337 tsk->thread.regs->msr &= ~MSR_VSX;
340 static void giveup_vsx(struct task_struct *tsk)
342 check_if_tm_restore_required(tsk);
344 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345 __giveup_vsx(tsk);
346 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
349 static void save_vsx(struct task_struct *tsk)
351 if (tsk->thread.regs->msr & MSR_FP)
352 save_fpu(tsk);
353 if (tsk->thread.regs->msr & MSR_VEC)
354 save_altivec(tsk);
357 void enable_kernel_vsx(void)
359 unsigned long cpumsr;
361 WARN_ON(preemptible());
363 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
365 if (current->thread.regs &&
366 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
367 check_if_tm_restore_required(current);
369 * If a thread has already been reclaimed then the
370 * checkpointed registers are on the CPU but have definitely
371 * been saved by the reclaim code. Don't need to and *cannot*
372 * giveup as this would save to the 'live' structure not the
373 * checkpointed structure.
375 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
376 return;
377 if (current->thread.regs->msr & MSR_FP)
378 __giveup_fpu(current);
379 if (current->thread.regs->msr & MSR_VEC)
380 __giveup_altivec(current);
381 __giveup_vsx(current);
384 EXPORT_SYMBOL(enable_kernel_vsx);
386 void flush_vsx_to_thread(struct task_struct *tsk)
388 if (tsk->thread.regs) {
389 preempt_disable();
390 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
391 BUG_ON(tsk != current);
392 giveup_vsx(tsk);
394 preempt_enable();
397 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
399 static int restore_vsx(struct task_struct *tsk)
401 if (cpu_has_feature(CPU_FTR_VSX)) {
402 tsk->thread.used_vsr = 1;
403 return 1;
406 return 0;
408 #else
409 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
410 static inline void save_vsx(struct task_struct *tsk) { }
411 #endif /* CONFIG_VSX */
413 #ifdef CONFIG_SPE
414 void giveup_spe(struct task_struct *tsk)
416 check_if_tm_restore_required(tsk);
418 msr_check_and_set(MSR_SPE);
419 __giveup_spe(tsk);
420 msr_check_and_clear(MSR_SPE);
422 EXPORT_SYMBOL(giveup_spe);
424 void enable_kernel_spe(void)
426 WARN_ON(preemptible());
428 msr_check_and_set(MSR_SPE);
430 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
431 check_if_tm_restore_required(current);
432 __giveup_spe(current);
435 EXPORT_SYMBOL(enable_kernel_spe);
437 void flush_spe_to_thread(struct task_struct *tsk)
439 if (tsk->thread.regs) {
440 preempt_disable();
441 if (tsk->thread.regs->msr & MSR_SPE) {
442 BUG_ON(tsk != current);
443 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
444 giveup_spe(tsk);
446 preempt_enable();
449 #endif /* CONFIG_SPE */
451 static unsigned long msr_all_available;
453 static int __init init_msr_all_available(void)
455 #ifdef CONFIG_PPC_FPU
456 msr_all_available |= MSR_FP;
457 #endif
458 #ifdef CONFIG_ALTIVEC
459 if (cpu_has_feature(CPU_FTR_ALTIVEC))
460 msr_all_available |= MSR_VEC;
461 #endif
462 #ifdef CONFIG_VSX
463 if (cpu_has_feature(CPU_FTR_VSX))
464 msr_all_available |= MSR_VSX;
465 #endif
466 #ifdef CONFIG_SPE
467 if (cpu_has_feature(CPU_FTR_SPE))
468 msr_all_available |= MSR_SPE;
469 #endif
471 return 0;
473 early_initcall(init_msr_all_available);
475 void giveup_all(struct task_struct *tsk)
477 unsigned long usermsr;
479 if (!tsk->thread.regs)
480 return;
482 usermsr = tsk->thread.regs->msr;
484 if ((usermsr & msr_all_available) == 0)
485 return;
487 msr_check_and_set(msr_all_available);
488 check_if_tm_restore_required(tsk);
490 #ifdef CONFIG_PPC_FPU
491 if (usermsr & MSR_FP)
492 __giveup_fpu(tsk);
493 #endif
494 #ifdef CONFIG_ALTIVEC
495 if (usermsr & MSR_VEC)
496 __giveup_altivec(tsk);
497 #endif
498 #ifdef CONFIG_VSX
499 if (usermsr & MSR_VSX)
500 __giveup_vsx(tsk);
501 #endif
502 #ifdef CONFIG_SPE
503 if (usermsr & MSR_SPE)
504 __giveup_spe(tsk);
505 #endif
507 msr_check_and_clear(msr_all_available);
509 EXPORT_SYMBOL(giveup_all);
511 void restore_math(struct pt_regs *regs)
513 unsigned long msr;
515 if (!msr_tm_active(regs->msr) &&
516 !current->thread.load_fp && !loadvec(current->thread))
517 return;
519 msr = regs->msr;
520 msr_check_and_set(msr_all_available);
523 * Only reload if the bit is not set in the user MSR, the bit BEING set
524 * indicates that the registers are hot
526 if ((!(msr & MSR_FP)) && restore_fp(current))
527 msr |= MSR_FP | current->thread.fpexc_mode;
529 if ((!(msr & MSR_VEC)) && restore_altivec(current))
530 msr |= MSR_VEC;
532 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
533 restore_vsx(current)) {
534 msr |= MSR_VSX;
537 msr_check_and_clear(msr_all_available);
539 regs->msr = msr;
542 void save_all(struct task_struct *tsk)
544 unsigned long usermsr;
546 if (!tsk->thread.regs)
547 return;
549 usermsr = tsk->thread.regs->msr;
551 if ((usermsr & msr_all_available) == 0)
552 return;
554 msr_check_and_set(msr_all_available);
557 * Saving the way the register space is in hardware, save_vsx boils
558 * down to a save_fpu() and save_altivec()
560 if (usermsr & MSR_VSX) {
561 save_vsx(tsk);
562 } else {
563 if (usermsr & MSR_FP)
564 save_fpu(tsk);
566 if (usermsr & MSR_VEC)
567 save_altivec(tsk);
570 if (usermsr & MSR_SPE)
571 __giveup_spe(tsk);
573 msr_check_and_clear(msr_all_available);
576 void flush_all_to_thread(struct task_struct *tsk)
578 if (tsk->thread.regs) {
579 preempt_disable();
580 BUG_ON(tsk != current);
581 save_all(tsk);
583 #ifdef CONFIG_SPE
584 if (tsk->thread.regs->msr & MSR_SPE)
585 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
586 #endif
588 preempt_enable();
591 EXPORT_SYMBOL(flush_all_to_thread);
593 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
594 void do_send_trap(struct pt_regs *regs, unsigned long address,
595 unsigned long error_code, int signal_code, int breakpt)
597 siginfo_t info;
599 current->thread.trap_nr = signal_code;
600 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
601 11, SIGSEGV) == NOTIFY_STOP)
602 return;
604 /* Deliver the signal to userspace */
605 info.si_signo = SIGTRAP;
606 info.si_errno = breakpt; /* breakpoint or watchpoint id */
607 info.si_code = signal_code;
608 info.si_addr = (void __user *)address;
609 force_sig_info(SIGTRAP, &info, current);
611 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
612 void do_break (struct pt_regs *regs, unsigned long address,
613 unsigned long error_code)
615 siginfo_t info;
617 current->thread.trap_nr = TRAP_HWBKPT;
618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 11, SIGSEGV) == NOTIFY_STOP)
620 return;
622 if (debugger_break_match(regs))
623 return;
625 /* Clear the breakpoint */
626 hw_breakpoint_disable();
628 /* Deliver the signal to userspace */
629 info.si_signo = SIGTRAP;
630 info.si_errno = 0;
631 info.si_code = TRAP_HWBKPT;
632 info.si_addr = (void __user *)address;
633 force_sig_info(SIGTRAP, &info, current);
635 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
637 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
639 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
641 * Set the debug registers back to their default "safe" values.
643 static void set_debug_reg_defaults(struct thread_struct *thread)
645 thread->debug.iac1 = thread->debug.iac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
647 thread->debug.iac3 = thread->debug.iac4 = 0;
648 #endif
649 thread->debug.dac1 = thread->debug.dac2 = 0;
650 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
651 thread->debug.dvc1 = thread->debug.dvc2 = 0;
652 #endif
653 thread->debug.dbcr0 = 0;
654 #ifdef CONFIG_BOOKE
656 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
658 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
659 DBCR1_IAC3US | DBCR1_IAC4US;
661 * Force Data Address Compare User/Supervisor bits to be User-only
662 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
664 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
665 #else
666 thread->debug.dbcr1 = 0;
667 #endif
670 static void prime_debug_regs(struct debug_reg *debug)
673 * We could have inherited MSR_DE from userspace, since
674 * it doesn't get cleared on exception entry. Make sure
675 * MSR_DE is clear before we enable any debug events.
677 mtmsr(mfmsr() & ~MSR_DE);
679 mtspr(SPRN_IAC1, debug->iac1);
680 mtspr(SPRN_IAC2, debug->iac2);
681 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
682 mtspr(SPRN_IAC3, debug->iac3);
683 mtspr(SPRN_IAC4, debug->iac4);
684 #endif
685 mtspr(SPRN_DAC1, debug->dac1);
686 mtspr(SPRN_DAC2, debug->dac2);
687 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
688 mtspr(SPRN_DVC1, debug->dvc1);
689 mtspr(SPRN_DVC2, debug->dvc2);
690 #endif
691 mtspr(SPRN_DBCR0, debug->dbcr0);
692 mtspr(SPRN_DBCR1, debug->dbcr1);
693 #ifdef CONFIG_BOOKE
694 mtspr(SPRN_DBCR2, debug->dbcr2);
695 #endif
698 * Unless neither the old or new thread are making use of the
699 * debug registers, set the debug registers from the values
700 * stored in the new thread.
702 void switch_booke_debug_regs(struct debug_reg *new_debug)
704 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
705 || (new_debug->dbcr0 & DBCR0_IDM))
706 prime_debug_regs(new_debug);
708 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
709 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
710 #ifndef CONFIG_HAVE_HW_BREAKPOINT
711 static void set_debug_reg_defaults(struct thread_struct *thread)
713 thread->hw_brk.address = 0;
714 thread->hw_brk.type = 0;
715 set_breakpoint(&thread->hw_brk);
717 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
718 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
720 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
721 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
723 mtspr(SPRN_DAC1, dabr);
724 #ifdef CONFIG_PPC_47x
725 isync();
726 #endif
727 return 0;
729 #elif defined(CONFIG_PPC_BOOK3S)
730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
732 mtspr(SPRN_DABR, dabr);
733 if (cpu_has_feature(CPU_FTR_DABRX))
734 mtspr(SPRN_DABRX, dabrx);
735 return 0;
737 #elif defined(CONFIG_PPC_8xx)
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
740 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
741 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
742 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
744 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
745 lctrl1 |= 0xa0000;
746 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
747 lctrl1 |= 0xf0000;
748 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
749 lctrl2 = 0;
751 mtspr(SPRN_LCTRL2, 0);
752 mtspr(SPRN_CMPE, addr);
753 mtspr(SPRN_CMPF, addr + 4);
754 mtspr(SPRN_LCTRL1, lctrl1);
755 mtspr(SPRN_LCTRL2, lctrl2);
757 return 0;
759 #else
760 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
762 return -EINVAL;
764 #endif
766 static inline int set_dabr(struct arch_hw_breakpoint *brk)
768 unsigned long dabr, dabrx;
770 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
771 dabrx = ((brk->type >> 3) & 0x7);
773 if (ppc_md.set_dabr)
774 return ppc_md.set_dabr(dabr, dabrx);
776 return __set_dabr(dabr, dabrx);
779 static inline int set_dawr(struct arch_hw_breakpoint *brk)
781 unsigned long dawr, dawrx, mrd;
783 dawr = brk->address;
785 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
786 << (63 - 58); //* read/write bits */
787 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
788 << (63 - 59); //* translate */
789 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
790 >> 3; //* PRIM bits */
791 /* dawr length is stored in field MDR bits 48:53. Matches range in
792 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
793 0b111111=64DW.
794 brk->len is in bytes.
795 This aligns up to double word size, shifts and does the bias.
797 mrd = ((brk->len + 7) >> 3) - 1;
798 dawrx |= (mrd & 0x3f) << (63 - 53);
800 if (ppc_md.set_dawr)
801 return ppc_md.set_dawr(dawr, dawrx);
802 mtspr(SPRN_DAWR, dawr);
803 mtspr(SPRN_DAWRX, dawrx);
804 return 0;
807 void __set_breakpoint(struct arch_hw_breakpoint *brk)
809 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
811 if (cpu_has_feature(CPU_FTR_DAWR))
812 set_dawr(brk);
813 else
814 set_dabr(brk);
817 void set_breakpoint(struct arch_hw_breakpoint *brk)
819 preempt_disable();
820 __set_breakpoint(brk);
821 preempt_enable();
824 #ifdef CONFIG_PPC64
825 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
826 #endif
828 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
829 struct arch_hw_breakpoint *b)
831 if (a->address != b->address)
832 return false;
833 if (a->type != b->type)
834 return false;
835 if (a->len != b->len)
836 return false;
837 return true;
840 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
842 static inline bool tm_enabled(struct task_struct *tsk)
844 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
847 static void tm_reclaim_thread(struct thread_struct *thr,
848 struct thread_info *ti, uint8_t cause)
851 * Use the current MSR TM suspended bit to track if we have
852 * checkpointed state outstanding.
853 * On signal delivery, we'd normally reclaim the checkpointed
854 * state to obtain stack pointer (see:get_tm_stackpointer()).
855 * This will then directly return to userspace without going
856 * through __switch_to(). However, if the stack frame is bad,
857 * we need to exit this thread which calls __switch_to() which
858 * will again attempt to reclaim the already saved tm state.
859 * Hence we need to check that we've not already reclaimed
860 * this state.
861 * We do this using the current MSR, rather tracking it in
862 * some specific thread_struct bit, as it has the additional
863 * benefit of checking for a potential TM bad thing exception.
865 if (!MSR_TM_SUSPENDED(mfmsr()))
866 return;
869 * If we are in a transaction and FP is off then we can't have
870 * used FP inside that transaction. Hence the checkpointed
871 * state is the same as the live state. We need to copy the
872 * live state to the checkpointed state so that when the
873 * transaction is restored, the checkpointed state is correct
874 * and the aborted transaction sees the correct state. We use
875 * ckpt_regs.msr here as that's what tm_reclaim will use to
876 * determine if it's going to write the checkpointed state or
877 * not. So either this will write the checkpointed registers,
878 * or reclaim will. Similarly for VMX.
880 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
881 memcpy(&thr->ckfp_state, &thr->fp_state,
882 sizeof(struct thread_fp_state));
883 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
884 memcpy(&thr->ckvr_state, &thr->vr_state,
885 sizeof(struct thread_vr_state));
887 giveup_all(container_of(thr, struct task_struct, thread));
889 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
892 void tm_reclaim_current(uint8_t cause)
894 tm_enable();
895 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
898 static inline void tm_reclaim_task(struct task_struct *tsk)
900 /* We have to work out if we're switching from/to a task that's in the
901 * middle of a transaction.
903 * In switching we need to maintain a 2nd register state as
904 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
905 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
906 * ckvr_state
908 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
910 struct thread_struct *thr = &tsk->thread;
912 if (!thr->regs)
913 return;
915 if (!MSR_TM_ACTIVE(thr->regs->msr))
916 goto out_and_saveregs;
918 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
919 "ccr=%lx, msr=%lx, trap=%lx)\n",
920 tsk->pid, thr->regs->nip,
921 thr->regs->ccr, thr->regs->msr,
922 thr->regs->trap);
924 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
926 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
927 tsk->pid);
929 out_and_saveregs:
930 /* Always save the regs here, even if a transaction's not active.
931 * This context-switches a thread's TM info SPRs. We do it here to
932 * be consistent with the restore path (in recheckpoint) which
933 * cannot happen later in _switch().
935 tm_save_sprs(thr);
938 extern void __tm_recheckpoint(struct thread_struct *thread,
939 unsigned long orig_msr);
941 void tm_recheckpoint(struct thread_struct *thread,
942 unsigned long orig_msr)
944 unsigned long flags;
946 if (!(thread->regs->msr & MSR_TM))
947 return;
949 /* We really can't be interrupted here as the TEXASR registers can't
950 * change and later in the trecheckpoint code, we have a userspace R1.
951 * So let's hard disable over this region.
953 local_irq_save(flags);
954 hard_irq_disable();
956 /* The TM SPRs are restored here, so that TEXASR.FS can be set
957 * before the trecheckpoint and no explosion occurs.
959 tm_restore_sprs(thread);
961 __tm_recheckpoint(thread, orig_msr);
963 local_irq_restore(flags);
966 static inline void tm_recheckpoint_new_task(struct task_struct *new)
968 unsigned long msr;
970 if (!cpu_has_feature(CPU_FTR_TM))
971 return;
973 /* Recheckpoint the registers of the thread we're about to switch to.
975 * If the task was using FP, we non-lazily reload both the original and
976 * the speculative FP register states. This is because the kernel
977 * doesn't see if/when a TM rollback occurs, so if we take an FP
978 * unavailable later, we are unable to determine which set of FP regs
979 * need to be restored.
981 if (!tm_enabled(new))
982 return;
984 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
985 tm_restore_sprs(&new->thread);
986 return;
988 msr = new->thread.ckpt_regs.msr;
989 /* Recheckpoint to restore original checkpointed register state. */
990 TM_DEBUG("*** tm_recheckpoint of pid %d "
991 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
992 new->pid, new->thread.regs->msr, msr);
994 tm_recheckpoint(&new->thread, msr);
997 * The checkpointed state has been restored but the live state has
998 * not, ensure all the math functionality is turned off to trigger
999 * restore_math() to reload.
1001 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1003 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1004 "(kernel msr 0x%lx)\n",
1005 new->pid, mfmsr());
1008 static inline void __switch_to_tm(struct task_struct *prev,
1009 struct task_struct *new)
1011 if (cpu_has_feature(CPU_FTR_TM)) {
1012 if (tm_enabled(prev) || tm_enabled(new))
1013 tm_enable();
1015 if (tm_enabled(prev)) {
1016 prev->thread.load_tm++;
1017 tm_reclaim_task(prev);
1018 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1019 prev->thread.regs->msr &= ~MSR_TM;
1022 tm_recheckpoint_new_task(new);
1027 * This is called if we are on the way out to userspace and the
1028 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1029 * FP and/or vector state and does so if necessary.
1030 * If userspace is inside a transaction (whether active or
1031 * suspended) and FP/VMX/VSX instructions have ever been enabled
1032 * inside that transaction, then we have to keep them enabled
1033 * and keep the FP/VMX/VSX state loaded while ever the transaction
1034 * continues. The reason is that if we didn't, and subsequently
1035 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1036 * we don't know whether it's the same transaction, and thus we
1037 * don't know which of the checkpointed state and the transactional
1038 * state to use.
1040 void restore_tm_state(struct pt_regs *regs)
1042 unsigned long msr_diff;
1045 * This is the only moment we should clear TIF_RESTORE_TM as
1046 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1047 * again, anything else could lead to an incorrect ckpt_msr being
1048 * saved and therefore incorrect signal contexts.
1050 clear_thread_flag(TIF_RESTORE_TM);
1051 if (!MSR_TM_ACTIVE(regs->msr))
1052 return;
1054 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1055 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1057 /* Ensure that restore_math() will restore */
1058 if (msr_diff & MSR_FP)
1059 current->thread.load_fp = 1;
1060 #ifdef CONFIG_ALTIVEC
1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1062 current->thread.load_vec = 1;
1063 #endif
1064 restore_math(regs);
1066 regs->msr |= msr_diff;
1069 #else
1070 #define tm_recheckpoint_new_task(new)
1071 #define __switch_to_tm(prev, new)
1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1074 static inline void save_sprs(struct thread_struct *t)
1076 #ifdef CONFIG_ALTIVEC
1077 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1078 t->vrsave = mfspr(SPRN_VRSAVE);
1079 #endif
1080 #ifdef CONFIG_PPC_BOOK3S_64
1081 if (cpu_has_feature(CPU_FTR_DSCR))
1082 t->dscr = mfspr(SPRN_DSCR);
1084 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1085 t->bescr = mfspr(SPRN_BESCR);
1086 t->ebbhr = mfspr(SPRN_EBBHR);
1087 t->ebbrr = mfspr(SPRN_EBBRR);
1089 t->fscr = mfspr(SPRN_FSCR);
1092 * Note that the TAR is not available for use in the kernel.
1093 * (To provide this, the TAR should be backed up/restored on
1094 * exception entry/exit instead, and be in pt_regs. FIXME,
1095 * this should be in pt_regs anyway (for debug).)
1097 t->tar = mfspr(SPRN_TAR);
1099 #endif
1102 static inline void restore_sprs(struct thread_struct *old_thread,
1103 struct thread_struct *new_thread)
1105 #ifdef CONFIG_ALTIVEC
1106 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1107 old_thread->vrsave != new_thread->vrsave)
1108 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1109 #endif
1110 #ifdef CONFIG_PPC_BOOK3S_64
1111 if (cpu_has_feature(CPU_FTR_DSCR)) {
1112 u64 dscr = get_paca()->dscr_default;
1113 if (new_thread->dscr_inherit)
1114 dscr = new_thread->dscr;
1116 if (old_thread->dscr != dscr)
1117 mtspr(SPRN_DSCR, dscr);
1120 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121 if (old_thread->bescr != new_thread->bescr)
1122 mtspr(SPRN_BESCR, new_thread->bescr);
1123 if (old_thread->ebbhr != new_thread->ebbhr)
1124 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1125 if (old_thread->ebbrr != new_thread->ebbrr)
1126 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1128 if (old_thread->fscr != new_thread->fscr)
1129 mtspr(SPRN_FSCR, new_thread->fscr);
1131 if (old_thread->tar != new_thread->tar)
1132 mtspr(SPRN_TAR, new_thread->tar);
1134 #endif
1137 #ifdef CONFIG_PPC_BOOK3S_64
1138 #define CP_SIZE 128
1139 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1140 #endif
1142 struct task_struct *__switch_to(struct task_struct *prev,
1143 struct task_struct *new)
1145 struct thread_struct *new_thread, *old_thread;
1146 struct task_struct *last;
1147 #ifdef CONFIG_PPC_BOOK3S_64
1148 struct ppc64_tlb_batch *batch;
1149 #endif
1151 new_thread = &new->thread;
1152 old_thread = &current->thread;
1154 WARN_ON(!irqs_disabled());
1156 #ifdef CONFIG_PPC64
1158 * Collect processor utilization data per process
1160 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1161 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1162 long unsigned start_tb, current_tb;
1163 start_tb = old_thread->start_tb;
1164 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1165 old_thread->accum_tb += (current_tb - start_tb);
1166 new_thread->start_tb = current_tb;
1168 #endif /* CONFIG_PPC64 */
1170 #ifdef CONFIG_PPC_STD_MMU_64
1171 batch = this_cpu_ptr(&ppc64_tlb_batch);
1172 if (batch->active) {
1173 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1174 if (batch->index)
1175 __flush_tlb_pending(batch);
1176 batch->active = 0;
1178 #endif /* CONFIG_PPC_STD_MMU_64 */
1180 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1181 switch_booke_debug_regs(&new->thread.debug);
1182 #else
1184 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1185 * schedule DABR
1187 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1188 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1189 __set_breakpoint(&new->thread.hw_brk);
1190 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1191 #endif
1194 * We need to save SPRs before treclaim/trecheckpoint as these will
1195 * change a number of them.
1197 save_sprs(&prev->thread);
1199 /* Save FPU, Altivec, VSX and SPE state */
1200 giveup_all(prev);
1202 __switch_to_tm(prev, new);
1204 if (!radix_enabled()) {
1206 * We can't take a PMU exception inside _switch() since there
1207 * is a window where the kernel stack SLB and the kernel stack
1208 * are out of sync. Hard disable here.
1210 hard_irq_disable();
1214 * Call restore_sprs() before calling _switch(). If we move it after
1215 * _switch() then we miss out on calling it for new tasks. The reason
1216 * for this is we manually create a stack frame for new tasks that
1217 * directly returns through ret_from_fork() or
1218 * ret_from_kernel_thread(). See copy_thread() for details.
1220 restore_sprs(old_thread, new_thread);
1222 last = _switch(old_thread, new_thread);
1224 #ifdef CONFIG_PPC_STD_MMU_64
1225 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1226 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1227 batch = this_cpu_ptr(&ppc64_tlb_batch);
1228 batch->active = 1;
1231 if (current_thread_info()->task->thread.regs) {
1232 restore_math(current_thread_info()->task->thread.regs);
1235 * The copy-paste buffer can only store into foreign real
1236 * addresses, so unprivileged processes can not see the
1237 * data or use it in any way unless they have foreign real
1238 * mappings. We don't have a VAS driver that allocates those
1239 * yet, so no cpabort is required.
1241 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1243 * DD1 allows paste into normal system memory, so we
1244 * do an unpaired copy here to clear the buffer and
1245 * prevent a covert channel being set up.
1247 * cpabort is not used because it is quite expensive.
1249 asm volatile(PPC_COPY(%0, %1)
1250 : : "r"(dummy_copy_buffer), "r"(0));
1253 #endif /* CONFIG_PPC_STD_MMU_64 */
1255 return last;
1258 static int instructions_to_print = 16;
1260 static void show_instructions(struct pt_regs *regs)
1262 int i;
1263 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1264 sizeof(int));
1266 printk("Instruction dump:");
1268 for (i = 0; i < instructions_to_print; i++) {
1269 int instr;
1271 if (!(i % 8))
1272 pr_cont("\n");
1274 #if !defined(CONFIG_BOOKE)
1275 /* If executing with the IMMU off, adjust pc rather
1276 * than print XXXXXXXX.
1278 if (!(regs->msr & MSR_IR))
1279 pc = (unsigned long)phys_to_virt(pc);
1280 #endif
1282 if (!__kernel_text_address(pc) ||
1283 probe_kernel_address((unsigned int __user *)pc, instr)) {
1284 pr_cont("XXXXXXXX ");
1285 } else {
1286 if (regs->nip == pc)
1287 pr_cont("<%08x> ", instr);
1288 else
1289 pr_cont("%08x ", instr);
1292 pc += sizeof(int);
1295 pr_cont("\n");
1298 struct regbit {
1299 unsigned long bit;
1300 const char *name;
1303 static struct regbit msr_bits[] = {
1304 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1305 {MSR_SF, "SF"},
1306 {MSR_HV, "HV"},
1307 #endif
1308 {MSR_VEC, "VEC"},
1309 {MSR_VSX, "VSX"},
1310 #ifdef CONFIG_BOOKE
1311 {MSR_CE, "CE"},
1312 #endif
1313 {MSR_EE, "EE"},
1314 {MSR_PR, "PR"},
1315 {MSR_FP, "FP"},
1316 {MSR_ME, "ME"},
1317 #ifdef CONFIG_BOOKE
1318 {MSR_DE, "DE"},
1319 #else
1320 {MSR_SE, "SE"},
1321 {MSR_BE, "BE"},
1322 #endif
1323 {MSR_IR, "IR"},
1324 {MSR_DR, "DR"},
1325 {MSR_PMM, "PMM"},
1326 #ifndef CONFIG_BOOKE
1327 {MSR_RI, "RI"},
1328 {MSR_LE, "LE"},
1329 #endif
1330 {0, NULL}
1333 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1335 const char *s = "";
1337 for (; bits->bit; ++bits)
1338 if (val & bits->bit) {
1339 pr_cont("%s%s", s, bits->name);
1340 s = sep;
1344 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1345 static struct regbit msr_tm_bits[] = {
1346 {MSR_TS_T, "T"},
1347 {MSR_TS_S, "S"},
1348 {MSR_TM, "E"},
1349 {0, NULL}
1352 static void print_tm_bits(unsigned long val)
1355 * This only prints something if at least one of the TM bit is set.
1356 * Inside the TM[], the output means:
1357 * E: Enabled (bit 32)
1358 * S: Suspended (bit 33)
1359 * T: Transactional (bit 34)
1361 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1362 pr_cont(",TM[");
1363 print_bits(val, msr_tm_bits, "");
1364 pr_cont("]");
1367 #else
1368 static void print_tm_bits(unsigned long val) {}
1369 #endif
1371 static void print_msr_bits(unsigned long val)
1373 pr_cont("<");
1374 print_bits(val, msr_bits, ",");
1375 print_tm_bits(val);
1376 pr_cont(">");
1379 #ifdef CONFIG_PPC64
1380 #define REG "%016lx"
1381 #define REGS_PER_LINE 4
1382 #define LAST_VOLATILE 13
1383 #else
1384 #define REG "%08lx"
1385 #define REGS_PER_LINE 8
1386 #define LAST_VOLATILE 12
1387 #endif
1389 void show_regs(struct pt_regs * regs)
1391 int i, trap;
1393 show_regs_print_info(KERN_DEFAULT);
1395 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1396 regs->nip, regs->link, regs->ctr);
1397 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1398 regs, regs->trap, print_tainted(), init_utsname()->release);
1399 printk("MSR: "REG" ", regs->msr);
1400 print_msr_bits(regs->msr);
1401 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1402 trap = TRAP(regs);
1403 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1404 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1405 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1406 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1407 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1408 #else
1409 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1410 #endif
1411 #ifdef CONFIG_PPC64
1412 pr_cont("SOFTE: %ld ", regs->softe);
1413 #endif
1414 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1415 if (MSR_TM_ACTIVE(regs->msr))
1416 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1417 #endif
1419 for (i = 0; i < 32; i++) {
1420 if ((i % REGS_PER_LINE) == 0)
1421 pr_cont("\nGPR%02d: ", i);
1422 pr_cont(REG " ", regs->gpr[i]);
1423 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1424 break;
1426 pr_cont("\n");
1427 #ifdef CONFIG_KALLSYMS
1429 * Lookup NIP late so we have the best change of getting the
1430 * above info out without failing
1432 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1433 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1434 #endif
1435 show_stack(current, (unsigned long *) regs->gpr[1]);
1436 if (!user_mode(regs))
1437 show_instructions(regs);
1440 void flush_thread(void)
1442 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1443 flush_ptrace_hw_breakpoint(current);
1444 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1445 set_debug_reg_defaults(&current->thread);
1446 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1449 void
1450 release_thread(struct task_struct *t)
1455 * this gets called so that we can store coprocessor state into memory and
1456 * copy the current task into the new thread.
1458 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1460 flush_all_to_thread(src);
1462 * Flush TM state out so we can copy it. __switch_to_tm() does this
1463 * flush but it removes the checkpointed state from the current CPU and
1464 * transitions the CPU out of TM mode. Hence we need to call
1465 * tm_recheckpoint_new_task() (on the same task) to restore the
1466 * checkpointed state back and the TM mode.
1468 * Can't pass dst because it isn't ready. Doesn't matter, passing
1469 * dst is only important for __switch_to()
1471 __switch_to_tm(src, src);
1473 *dst = *src;
1475 clear_task_ebb(dst);
1477 return 0;
1480 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1482 #ifdef CONFIG_PPC_STD_MMU_64
1483 unsigned long sp_vsid;
1484 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1486 if (radix_enabled())
1487 return;
1489 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1490 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1491 << SLB_VSID_SHIFT_1T;
1492 else
1493 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1494 << SLB_VSID_SHIFT;
1495 sp_vsid |= SLB_VSID_KERNEL | llp;
1496 p->thread.ksp_vsid = sp_vsid;
1497 #endif
1501 * Copy a thread..
1505 * Copy architecture-specific thread state
1507 int copy_thread(unsigned long clone_flags, unsigned long usp,
1508 unsigned long kthread_arg, struct task_struct *p)
1510 struct pt_regs *childregs, *kregs;
1511 extern void ret_from_fork(void);
1512 extern void ret_from_kernel_thread(void);
1513 void (*f)(void);
1514 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1515 struct thread_info *ti = task_thread_info(p);
1517 klp_init_thread_info(ti);
1519 /* Copy registers */
1520 sp -= sizeof(struct pt_regs);
1521 childregs = (struct pt_regs *) sp;
1522 if (unlikely(p->flags & PF_KTHREAD)) {
1523 /* kernel thread */
1524 memset(childregs, 0, sizeof(struct pt_regs));
1525 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1526 /* function */
1527 if (usp)
1528 childregs->gpr[14] = ppc_function_entry((void *)usp);
1529 #ifdef CONFIG_PPC64
1530 clear_tsk_thread_flag(p, TIF_32BIT);
1531 childregs->softe = 1;
1532 #endif
1533 childregs->gpr[15] = kthread_arg;
1534 p->thread.regs = NULL; /* no user register state */
1535 ti->flags |= _TIF_RESTOREALL;
1536 f = ret_from_kernel_thread;
1537 } else {
1538 /* user thread */
1539 struct pt_regs *regs = current_pt_regs();
1540 CHECK_FULL_REGS(regs);
1541 *childregs = *regs;
1542 if (usp)
1543 childregs->gpr[1] = usp;
1544 p->thread.regs = childregs;
1545 childregs->gpr[3] = 0; /* Result from fork() */
1546 if (clone_flags & CLONE_SETTLS) {
1547 #ifdef CONFIG_PPC64
1548 if (!is_32bit_task())
1549 childregs->gpr[13] = childregs->gpr[6];
1550 else
1551 #endif
1552 childregs->gpr[2] = childregs->gpr[6];
1555 f = ret_from_fork;
1557 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1558 sp -= STACK_FRAME_OVERHEAD;
1561 * The way this works is that at some point in the future
1562 * some task will call _switch to switch to the new task.
1563 * That will pop off the stack frame created below and start
1564 * the new task running at ret_from_fork. The new task will
1565 * do some house keeping and then return from the fork or clone
1566 * system call, using the stack frame created above.
1568 ((unsigned long *)sp)[0] = 0;
1569 sp -= sizeof(struct pt_regs);
1570 kregs = (struct pt_regs *) sp;
1571 sp -= STACK_FRAME_OVERHEAD;
1572 p->thread.ksp = sp;
1573 #ifdef CONFIG_PPC32
1574 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1575 _ALIGN_UP(sizeof(struct thread_info), 16);
1576 #endif
1577 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1578 p->thread.ptrace_bps[0] = NULL;
1579 #endif
1581 p->thread.fp_save_area = NULL;
1582 #ifdef CONFIG_ALTIVEC
1583 p->thread.vr_save_area = NULL;
1584 #endif
1586 setup_ksp_vsid(p, sp);
1588 #ifdef CONFIG_PPC64
1589 if (cpu_has_feature(CPU_FTR_DSCR)) {
1590 p->thread.dscr_inherit = current->thread.dscr_inherit;
1591 p->thread.dscr = mfspr(SPRN_DSCR);
1593 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1594 p->thread.ppr = INIT_PPR;
1595 #endif
1596 kregs->nip = ppc_function_entry(f);
1597 return 0;
1601 * Set up a thread for executing a new program
1603 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1605 #ifdef CONFIG_PPC64
1606 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1607 #endif
1610 * If we exec out of a kernel thread then thread.regs will not be
1611 * set. Do it now.
1613 if (!current->thread.regs) {
1614 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1615 current->thread.regs = regs - 1;
1618 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1620 * Clear any transactional state, we're exec()ing. The cause is
1621 * not important as there will never be a recheckpoint so it's not
1622 * user visible.
1624 if (MSR_TM_SUSPENDED(mfmsr()))
1625 tm_reclaim_current(0);
1626 #endif
1628 memset(regs->gpr, 0, sizeof(regs->gpr));
1629 regs->ctr = 0;
1630 regs->link = 0;
1631 regs->xer = 0;
1632 regs->ccr = 0;
1633 regs->gpr[1] = sp;
1636 * We have just cleared all the nonvolatile GPRs, so make
1637 * FULL_REGS(regs) return true. This is necessary to allow
1638 * ptrace to examine the thread immediately after exec.
1640 regs->trap &= ~1UL;
1642 #ifdef CONFIG_PPC32
1643 regs->mq = 0;
1644 regs->nip = start;
1645 regs->msr = MSR_USER;
1646 #else
1647 if (!is_32bit_task()) {
1648 unsigned long entry;
1650 if (is_elf2_task()) {
1651 /* Look ma, no function descriptors! */
1652 entry = start;
1655 * Ulrich says:
1656 * The latest iteration of the ABI requires that when
1657 * calling a function (at its global entry point),
1658 * the caller must ensure r12 holds the entry point
1659 * address (so that the function can quickly
1660 * establish addressability).
1662 regs->gpr[12] = start;
1663 /* Make sure that's restored on entry to userspace. */
1664 set_thread_flag(TIF_RESTOREALL);
1665 } else {
1666 unsigned long toc;
1668 /* start is a relocated pointer to the function
1669 * descriptor for the elf _start routine. The first
1670 * entry in the function descriptor is the entry
1671 * address of _start and the second entry is the TOC
1672 * value we need to use.
1674 __get_user(entry, (unsigned long __user *)start);
1675 __get_user(toc, (unsigned long __user *)start+1);
1677 /* Check whether the e_entry function descriptor entries
1678 * need to be relocated before we can use them.
1680 if (load_addr != 0) {
1681 entry += load_addr;
1682 toc += load_addr;
1684 regs->gpr[2] = toc;
1686 regs->nip = entry;
1687 regs->msr = MSR_USER64;
1688 } else {
1689 regs->nip = start;
1690 regs->gpr[2] = 0;
1691 regs->msr = MSR_USER32;
1693 #endif
1694 #ifdef CONFIG_VSX
1695 current->thread.used_vsr = 0;
1696 #endif
1697 current->thread.load_fp = 0;
1698 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1699 current->thread.fp_save_area = NULL;
1700 #ifdef CONFIG_ALTIVEC
1701 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1702 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1703 current->thread.vr_save_area = NULL;
1704 current->thread.vrsave = 0;
1705 current->thread.used_vr = 0;
1706 current->thread.load_vec = 0;
1707 #endif /* CONFIG_ALTIVEC */
1708 #ifdef CONFIG_SPE
1709 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1710 current->thread.acc = 0;
1711 current->thread.spefscr = 0;
1712 current->thread.used_spe = 0;
1713 #endif /* CONFIG_SPE */
1714 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1715 current->thread.tm_tfhar = 0;
1716 current->thread.tm_texasr = 0;
1717 current->thread.tm_tfiar = 0;
1718 current->thread.load_tm = 0;
1719 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1721 EXPORT_SYMBOL(start_thread);
1723 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1724 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1726 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1728 struct pt_regs *regs = tsk->thread.regs;
1730 /* This is a bit hairy. If we are an SPE enabled processor
1731 * (have embedded fp) we store the IEEE exception enable flags in
1732 * fpexc_mode. fpexc_mode is also used for setting FP exception
1733 * mode (asyn, precise, disabled) for 'Classic' FP. */
1734 if (val & PR_FP_EXC_SW_ENABLE) {
1735 #ifdef CONFIG_SPE
1736 if (cpu_has_feature(CPU_FTR_SPE)) {
1738 * When the sticky exception bits are set
1739 * directly by userspace, it must call prctl
1740 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1741 * in the existing prctl settings) or
1742 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1743 * the bits being set). <fenv.h> functions
1744 * saving and restoring the whole
1745 * floating-point environment need to do so
1746 * anyway to restore the prctl settings from
1747 * the saved environment.
1749 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1750 tsk->thread.fpexc_mode = val &
1751 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1752 return 0;
1753 } else {
1754 return -EINVAL;
1756 #else
1757 return -EINVAL;
1758 #endif
1761 /* on a CONFIG_SPE this does not hurt us. The bits that
1762 * __pack_fe01 use do not overlap with bits used for
1763 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1764 * on CONFIG_SPE implementations are reserved so writing to
1765 * them does not change anything */
1766 if (val > PR_FP_EXC_PRECISE)
1767 return -EINVAL;
1768 tsk->thread.fpexc_mode = __pack_fe01(val);
1769 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1770 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1771 | tsk->thread.fpexc_mode;
1772 return 0;
1775 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1777 unsigned int val;
1779 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1780 #ifdef CONFIG_SPE
1781 if (cpu_has_feature(CPU_FTR_SPE)) {
1783 * When the sticky exception bits are set
1784 * directly by userspace, it must call prctl
1785 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1786 * in the existing prctl settings) or
1787 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1788 * the bits being set). <fenv.h> functions
1789 * saving and restoring the whole
1790 * floating-point environment need to do so
1791 * anyway to restore the prctl settings from
1792 * the saved environment.
1794 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1795 val = tsk->thread.fpexc_mode;
1796 } else
1797 return -EINVAL;
1798 #else
1799 return -EINVAL;
1800 #endif
1801 else
1802 val = __unpack_fe01(tsk->thread.fpexc_mode);
1803 return put_user(val, (unsigned int __user *) adr);
1806 int set_endian(struct task_struct *tsk, unsigned int val)
1808 struct pt_regs *regs = tsk->thread.regs;
1810 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1811 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1812 return -EINVAL;
1814 if (regs == NULL)
1815 return -EINVAL;
1817 if (val == PR_ENDIAN_BIG)
1818 regs->msr &= ~MSR_LE;
1819 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1820 regs->msr |= MSR_LE;
1821 else
1822 return -EINVAL;
1824 return 0;
1827 int get_endian(struct task_struct *tsk, unsigned long adr)
1829 struct pt_regs *regs = tsk->thread.regs;
1830 unsigned int val;
1832 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1833 !cpu_has_feature(CPU_FTR_REAL_LE))
1834 return -EINVAL;
1836 if (regs == NULL)
1837 return -EINVAL;
1839 if (regs->msr & MSR_LE) {
1840 if (cpu_has_feature(CPU_FTR_REAL_LE))
1841 val = PR_ENDIAN_LITTLE;
1842 else
1843 val = PR_ENDIAN_PPC_LITTLE;
1844 } else
1845 val = PR_ENDIAN_BIG;
1847 return put_user(val, (unsigned int __user *)adr);
1850 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1852 tsk->thread.align_ctl = val;
1853 return 0;
1856 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1858 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1861 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1862 unsigned long nbytes)
1864 unsigned long stack_page;
1865 unsigned long cpu = task_cpu(p);
1868 * Avoid crashing if the stack has overflowed and corrupted
1869 * task_cpu(p), which is in the thread_info struct.
1871 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1872 stack_page = (unsigned long) hardirq_ctx[cpu];
1873 if (sp >= stack_page + sizeof(struct thread_struct)
1874 && sp <= stack_page + THREAD_SIZE - nbytes)
1875 return 1;
1877 stack_page = (unsigned long) softirq_ctx[cpu];
1878 if (sp >= stack_page + sizeof(struct thread_struct)
1879 && sp <= stack_page + THREAD_SIZE - nbytes)
1880 return 1;
1882 return 0;
1885 int validate_sp(unsigned long sp, struct task_struct *p,
1886 unsigned long nbytes)
1888 unsigned long stack_page = (unsigned long)task_stack_page(p);
1890 if (sp >= stack_page + sizeof(struct thread_struct)
1891 && sp <= stack_page + THREAD_SIZE - nbytes)
1892 return 1;
1894 return valid_irq_stack(sp, p, nbytes);
1897 EXPORT_SYMBOL(validate_sp);
1899 unsigned long get_wchan(struct task_struct *p)
1901 unsigned long ip, sp;
1902 int count = 0;
1904 if (!p || p == current || p->state == TASK_RUNNING)
1905 return 0;
1907 sp = p->thread.ksp;
1908 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1909 return 0;
1911 do {
1912 sp = *(unsigned long *)sp;
1913 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1914 return 0;
1915 if (count > 0) {
1916 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1917 if (!in_sched_functions(ip))
1918 return ip;
1920 } while (count++ < 16);
1921 return 0;
1924 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1926 void show_stack(struct task_struct *tsk, unsigned long *stack)
1928 unsigned long sp, ip, lr, newsp;
1929 int count = 0;
1930 int firstframe = 1;
1931 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1932 int curr_frame = current->curr_ret_stack;
1933 extern void return_to_handler(void);
1934 unsigned long rth = (unsigned long)return_to_handler;
1935 #endif
1937 sp = (unsigned long) stack;
1938 if (tsk == NULL)
1939 tsk = current;
1940 if (sp == 0) {
1941 if (tsk == current)
1942 sp = current_stack_pointer();
1943 else
1944 sp = tsk->thread.ksp;
1947 lr = 0;
1948 printk("Call Trace:\n");
1949 do {
1950 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1951 return;
1953 stack = (unsigned long *) sp;
1954 newsp = stack[0];
1955 ip = stack[STACK_FRAME_LR_SAVE];
1956 if (!firstframe || ip != lr) {
1957 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1958 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1959 if ((ip == rth) && curr_frame >= 0) {
1960 pr_cont(" (%pS)",
1961 (void *)current->ret_stack[curr_frame].ret);
1962 curr_frame--;
1964 #endif
1965 if (firstframe)
1966 pr_cont(" (unreliable)");
1967 pr_cont("\n");
1969 firstframe = 0;
1972 * See if this is an exception frame.
1973 * We look for the "regshere" marker in the current frame.
1975 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1976 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1977 struct pt_regs *regs = (struct pt_regs *)
1978 (sp + STACK_FRAME_OVERHEAD);
1979 lr = regs->link;
1980 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1981 regs->trap, (void *)regs->nip, (void *)lr);
1982 firstframe = 1;
1985 sp = newsp;
1986 } while (count++ < kstack_depth_to_print);
1989 #ifdef CONFIG_PPC64
1990 /* Called with hard IRQs off */
1991 void notrace __ppc64_runlatch_on(void)
1993 struct thread_info *ti = current_thread_info();
1994 unsigned long ctrl;
1996 ctrl = mfspr(SPRN_CTRLF);
1997 ctrl |= CTRL_RUNLATCH;
1998 mtspr(SPRN_CTRLT, ctrl);
2000 ti->local_flags |= _TLF_RUNLATCH;
2003 /* Called with hard IRQs off */
2004 void notrace __ppc64_runlatch_off(void)
2006 struct thread_info *ti = current_thread_info();
2007 unsigned long ctrl;
2009 ti->local_flags &= ~_TLF_RUNLATCH;
2011 ctrl = mfspr(SPRN_CTRLF);
2012 ctrl &= ~CTRL_RUNLATCH;
2013 mtspr(SPRN_CTRLT, ctrl);
2015 #endif /* CONFIG_PPC64 */
2017 unsigned long arch_align_stack(unsigned long sp)
2019 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2020 sp -= get_random_int() & ~PAGE_MASK;
2021 return sp & ~0xf;
2024 static inline unsigned long brk_rnd(void)
2026 unsigned long rnd = 0;
2028 /* 8MB for 32bit, 1GB for 64bit */
2029 if (is_32bit_task())
2030 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2031 else
2032 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2034 return rnd << PAGE_SHIFT;
2037 unsigned long arch_randomize_brk(struct mm_struct *mm)
2039 unsigned long base = mm->brk;
2040 unsigned long ret;
2042 #ifdef CONFIG_PPC_STD_MMU_64
2044 * If we are using 1TB segments and we are allowed to randomise
2045 * the heap, we can put it above 1TB so it is backed by a 1TB
2046 * segment. Otherwise the heap will be in the bottom 1TB
2047 * which always uses 256MB segments and this may result in a
2048 * performance penalty. We don't need to worry about radix. For
2049 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2051 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2052 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2053 #endif
2055 ret = PAGE_ALIGN(base + brk_rnd());
2057 if (ret < mm->brk)
2058 return mm->brk;
2060 return ret;