Linux 4.13.16
[linux/fpc-iii.git] / kernel / kexec_file.c
blob9f48f441229720b0e02434b2375b61d9c62b7706
1 /*
2 * kexec: kexec_file_load system call
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
29 static int kexec_calculate_store_digests(struct kimage *image);
31 /* Architectures can provide this probe function */
32 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
33 unsigned long buf_len)
35 return -ENOEXEC;
38 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
40 return ERR_PTR(-ENOEXEC);
43 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
45 return -EINVAL;
48 #ifdef CONFIG_KEXEC_VERIFY_SIG
49 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
50 unsigned long buf_len)
52 return -EKEYREJECTED;
54 #endif
56 /* Apply relocations of type RELA */
57 int __weak
58 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
59 unsigned int relsec)
61 pr_err("RELA relocation unsupported.\n");
62 return -ENOEXEC;
65 /* Apply relocations of type REL */
66 int __weak
67 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
68 unsigned int relsec)
70 pr_err("REL relocation unsupported.\n");
71 return -ENOEXEC;
75 * Free up memory used by kernel, initrd, and command line. This is temporary
76 * memory allocation which is not needed any more after these buffers have
77 * been loaded into separate segments and have been copied elsewhere.
79 void kimage_file_post_load_cleanup(struct kimage *image)
81 struct purgatory_info *pi = &image->purgatory_info;
83 vfree(image->kernel_buf);
84 image->kernel_buf = NULL;
86 vfree(image->initrd_buf);
87 image->initrd_buf = NULL;
89 kfree(image->cmdline_buf);
90 image->cmdline_buf = NULL;
92 vfree(pi->purgatory_buf);
93 pi->purgatory_buf = NULL;
95 vfree(pi->sechdrs);
96 pi->sechdrs = NULL;
98 /* See if architecture has anything to cleanup post load */
99 arch_kimage_file_post_load_cleanup(image);
102 * Above call should have called into bootloader to free up
103 * any data stored in kimage->image_loader_data. It should
104 * be ok now to free it up.
106 kfree(image->image_loader_data);
107 image->image_loader_data = NULL;
111 * In file mode list of segments is prepared by kernel. Copy relevant
112 * data from user space, do error checking, prepare segment list
114 static int
115 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
116 const char __user *cmdline_ptr,
117 unsigned long cmdline_len, unsigned flags)
119 int ret = 0;
120 void *ldata;
121 loff_t size;
123 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
124 &size, INT_MAX, READING_KEXEC_IMAGE);
125 if (ret)
126 return ret;
127 image->kernel_buf_len = size;
129 /* IMA needs to pass the measurement list to the next kernel. */
130 ima_add_kexec_buffer(image);
132 /* Call arch image probe handlers */
133 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
134 image->kernel_buf_len);
135 if (ret)
136 goto out;
138 #ifdef CONFIG_KEXEC_VERIFY_SIG
139 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
140 image->kernel_buf_len);
141 if (ret) {
142 pr_debug("kernel signature verification failed.\n");
143 goto out;
145 pr_debug("kernel signature verification successful.\n");
146 #endif
147 /* It is possible that there no initramfs is being loaded */
148 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
149 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
150 &size, INT_MAX,
151 READING_KEXEC_INITRAMFS);
152 if (ret)
153 goto out;
154 image->initrd_buf_len = size;
157 if (cmdline_len) {
158 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
159 if (IS_ERR(image->cmdline_buf)) {
160 ret = PTR_ERR(image->cmdline_buf);
161 image->cmdline_buf = NULL;
162 goto out;
165 image->cmdline_buf_len = cmdline_len;
167 /* command line should be a string with last byte null */
168 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
169 ret = -EINVAL;
170 goto out;
174 /* Call arch image load handlers */
175 ldata = arch_kexec_kernel_image_load(image);
177 if (IS_ERR(ldata)) {
178 ret = PTR_ERR(ldata);
179 goto out;
182 image->image_loader_data = ldata;
183 out:
184 /* In case of error, free up all allocated memory in this function */
185 if (ret)
186 kimage_file_post_load_cleanup(image);
187 return ret;
190 static int
191 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
192 int initrd_fd, const char __user *cmdline_ptr,
193 unsigned long cmdline_len, unsigned long flags)
195 int ret;
196 struct kimage *image;
197 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
199 image = do_kimage_alloc_init();
200 if (!image)
201 return -ENOMEM;
203 image->file_mode = 1;
205 if (kexec_on_panic) {
206 /* Enable special crash kernel control page alloc policy. */
207 image->control_page = crashk_res.start;
208 image->type = KEXEC_TYPE_CRASH;
211 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
212 cmdline_ptr, cmdline_len, flags);
213 if (ret)
214 goto out_free_image;
216 ret = sanity_check_segment_list(image);
217 if (ret)
218 goto out_free_post_load_bufs;
220 ret = -ENOMEM;
221 image->control_code_page = kimage_alloc_control_pages(image,
222 get_order(KEXEC_CONTROL_PAGE_SIZE));
223 if (!image->control_code_page) {
224 pr_err("Could not allocate control_code_buffer\n");
225 goto out_free_post_load_bufs;
228 if (!kexec_on_panic) {
229 image->swap_page = kimage_alloc_control_pages(image, 0);
230 if (!image->swap_page) {
231 pr_err("Could not allocate swap buffer\n");
232 goto out_free_control_pages;
236 *rimage = image;
237 return 0;
238 out_free_control_pages:
239 kimage_free_page_list(&image->control_pages);
240 out_free_post_load_bufs:
241 kimage_file_post_load_cleanup(image);
242 out_free_image:
243 kfree(image);
244 return ret;
247 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
248 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
249 unsigned long, flags)
251 int ret = 0, i;
252 struct kimage **dest_image, *image;
254 /* We only trust the superuser with rebooting the system. */
255 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
256 return -EPERM;
258 /* Make sure we have a legal set of flags */
259 if (flags != (flags & KEXEC_FILE_FLAGS))
260 return -EINVAL;
262 image = NULL;
264 if (!mutex_trylock(&kexec_mutex))
265 return -EBUSY;
267 dest_image = &kexec_image;
268 if (flags & KEXEC_FILE_ON_CRASH) {
269 dest_image = &kexec_crash_image;
270 if (kexec_crash_image)
271 arch_kexec_unprotect_crashkres();
274 if (flags & KEXEC_FILE_UNLOAD)
275 goto exchange;
278 * In case of crash, new kernel gets loaded in reserved region. It is
279 * same memory where old crash kernel might be loaded. Free any
280 * current crash dump kernel before we corrupt it.
282 if (flags & KEXEC_FILE_ON_CRASH)
283 kimage_free(xchg(&kexec_crash_image, NULL));
285 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
286 cmdline_len, flags);
287 if (ret)
288 goto out;
290 ret = machine_kexec_prepare(image);
291 if (ret)
292 goto out;
295 * Some architecture(like S390) may touch the crash memory before
296 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
298 ret = kimage_crash_copy_vmcoreinfo(image);
299 if (ret)
300 goto out;
302 ret = kexec_calculate_store_digests(image);
303 if (ret)
304 goto out;
306 for (i = 0; i < image->nr_segments; i++) {
307 struct kexec_segment *ksegment;
309 ksegment = &image->segment[i];
310 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
311 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
312 ksegment->memsz);
314 ret = kimage_load_segment(image, &image->segment[i]);
315 if (ret)
316 goto out;
319 kimage_terminate(image);
322 * Free up any temporary buffers allocated which are not needed
323 * after image has been loaded
325 kimage_file_post_load_cleanup(image);
326 exchange:
327 image = xchg(dest_image, image);
328 out:
329 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
330 arch_kexec_protect_crashkres();
332 mutex_unlock(&kexec_mutex);
333 kimage_free(image);
334 return ret;
337 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
338 struct kexec_buf *kbuf)
340 struct kimage *image = kbuf->image;
341 unsigned long temp_start, temp_end;
343 temp_end = min(end, kbuf->buf_max);
344 temp_start = temp_end - kbuf->memsz;
346 do {
347 /* align down start */
348 temp_start = temp_start & (~(kbuf->buf_align - 1));
350 if (temp_start < start || temp_start < kbuf->buf_min)
351 return 0;
353 temp_end = temp_start + kbuf->memsz - 1;
356 * Make sure this does not conflict with any of existing
357 * segments
359 if (kimage_is_destination_range(image, temp_start, temp_end)) {
360 temp_start = temp_start - PAGE_SIZE;
361 continue;
364 /* We found a suitable memory range */
365 break;
366 } while (1);
368 /* If we are here, we found a suitable memory range */
369 kbuf->mem = temp_start;
371 /* Success, stop navigating through remaining System RAM ranges */
372 return 1;
375 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
376 struct kexec_buf *kbuf)
378 struct kimage *image = kbuf->image;
379 unsigned long temp_start, temp_end;
381 temp_start = max(start, kbuf->buf_min);
383 do {
384 temp_start = ALIGN(temp_start, kbuf->buf_align);
385 temp_end = temp_start + kbuf->memsz - 1;
387 if (temp_end > end || temp_end > kbuf->buf_max)
388 return 0;
390 * Make sure this does not conflict with any of existing
391 * segments
393 if (kimage_is_destination_range(image, temp_start, temp_end)) {
394 temp_start = temp_start + PAGE_SIZE;
395 continue;
398 /* We found a suitable memory range */
399 break;
400 } while (1);
402 /* If we are here, we found a suitable memory range */
403 kbuf->mem = temp_start;
405 /* Success, stop navigating through remaining System RAM ranges */
406 return 1;
409 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
411 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
412 unsigned long sz = end - start + 1;
414 /* Returning 0 will take to next memory range */
415 if (sz < kbuf->memsz)
416 return 0;
418 if (end < kbuf->buf_min || start > kbuf->buf_max)
419 return 0;
422 * Allocate memory top down with-in ram range. Otherwise bottom up
423 * allocation.
425 if (kbuf->top_down)
426 return locate_mem_hole_top_down(start, end, kbuf);
427 return locate_mem_hole_bottom_up(start, end, kbuf);
431 * arch_kexec_walk_mem - call func(data) on free memory regions
432 * @kbuf: Context info for the search. Also passed to @func.
433 * @func: Function to call for each memory region.
435 * Return: The memory walk will stop when func returns a non-zero value
436 * and that value will be returned. If all free regions are visited without
437 * func returning non-zero, then zero will be returned.
439 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
440 int (*func)(u64, u64, void *))
442 if (kbuf->image->type == KEXEC_TYPE_CRASH)
443 return walk_iomem_res_desc(crashk_res.desc,
444 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
445 crashk_res.start, crashk_res.end,
446 kbuf, func);
447 else
448 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
452 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
453 * @kbuf: Parameters for the memory search.
455 * On success, kbuf->mem will have the start address of the memory region found.
457 * Return: 0 on success, negative errno on error.
459 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
461 int ret;
463 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
465 return ret == 1 ? 0 : -EADDRNOTAVAIL;
469 * kexec_add_buffer - place a buffer in a kexec segment
470 * @kbuf: Buffer contents and memory parameters.
472 * This function assumes that kexec_mutex is held.
473 * On successful return, @kbuf->mem will have the physical address of
474 * the buffer in memory.
476 * Return: 0 on success, negative errno on error.
478 int kexec_add_buffer(struct kexec_buf *kbuf)
481 struct kexec_segment *ksegment;
482 int ret;
484 /* Currently adding segment this way is allowed only in file mode */
485 if (!kbuf->image->file_mode)
486 return -EINVAL;
488 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
489 return -EINVAL;
492 * Make sure we are not trying to add buffer after allocating
493 * control pages. All segments need to be placed first before
494 * any control pages are allocated. As control page allocation
495 * logic goes through list of segments to make sure there are
496 * no destination overlaps.
498 if (!list_empty(&kbuf->image->control_pages)) {
499 WARN_ON(1);
500 return -EINVAL;
503 /* Ensure minimum alignment needed for segments. */
504 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
505 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
507 /* Walk the RAM ranges and allocate a suitable range for the buffer */
508 ret = kexec_locate_mem_hole(kbuf);
509 if (ret)
510 return ret;
512 /* Found a suitable memory range */
513 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
514 ksegment->kbuf = kbuf->buffer;
515 ksegment->bufsz = kbuf->bufsz;
516 ksegment->mem = kbuf->mem;
517 ksegment->memsz = kbuf->memsz;
518 kbuf->image->nr_segments++;
519 return 0;
522 /* Calculate and store the digest of segments */
523 static int kexec_calculate_store_digests(struct kimage *image)
525 struct crypto_shash *tfm;
526 struct shash_desc *desc;
527 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
528 size_t desc_size, nullsz;
529 char *digest;
530 void *zero_buf;
531 struct kexec_sha_region *sha_regions;
532 struct purgatory_info *pi = &image->purgatory_info;
534 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
535 zero_buf_sz = PAGE_SIZE;
537 tfm = crypto_alloc_shash("sha256", 0, 0);
538 if (IS_ERR(tfm)) {
539 ret = PTR_ERR(tfm);
540 goto out;
543 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
544 desc = kzalloc(desc_size, GFP_KERNEL);
545 if (!desc) {
546 ret = -ENOMEM;
547 goto out_free_tfm;
550 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
551 sha_regions = vzalloc(sha_region_sz);
552 if (!sha_regions)
553 goto out_free_desc;
555 desc->tfm = tfm;
556 desc->flags = 0;
558 ret = crypto_shash_init(desc);
559 if (ret < 0)
560 goto out_free_sha_regions;
562 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
563 if (!digest) {
564 ret = -ENOMEM;
565 goto out_free_sha_regions;
568 for (j = i = 0; i < image->nr_segments; i++) {
569 struct kexec_segment *ksegment;
571 ksegment = &image->segment[i];
573 * Skip purgatory as it will be modified once we put digest
574 * info in purgatory.
576 if (ksegment->kbuf == pi->purgatory_buf)
577 continue;
579 ret = crypto_shash_update(desc, ksegment->kbuf,
580 ksegment->bufsz);
581 if (ret)
582 break;
585 * Assume rest of the buffer is filled with zero and
586 * update digest accordingly.
588 nullsz = ksegment->memsz - ksegment->bufsz;
589 while (nullsz) {
590 unsigned long bytes = nullsz;
592 if (bytes > zero_buf_sz)
593 bytes = zero_buf_sz;
594 ret = crypto_shash_update(desc, zero_buf, bytes);
595 if (ret)
596 break;
597 nullsz -= bytes;
600 if (ret)
601 break;
603 sha_regions[j].start = ksegment->mem;
604 sha_regions[j].len = ksegment->memsz;
605 j++;
608 if (!ret) {
609 ret = crypto_shash_final(desc, digest);
610 if (ret)
611 goto out_free_digest;
612 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
613 sha_regions, sha_region_sz, 0);
614 if (ret)
615 goto out_free_digest;
617 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
618 digest, SHA256_DIGEST_SIZE, 0);
619 if (ret)
620 goto out_free_digest;
623 out_free_digest:
624 kfree(digest);
625 out_free_sha_regions:
626 vfree(sha_regions);
627 out_free_desc:
628 kfree(desc);
629 out_free_tfm:
630 kfree(tfm);
631 out:
632 return ret;
635 /* Actually load purgatory. Lot of code taken from kexec-tools */
636 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
637 unsigned long max, int top_down)
639 struct purgatory_info *pi = &image->purgatory_info;
640 unsigned long align, bss_align, bss_sz, bss_pad;
641 unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
642 unsigned char *buf_addr, *src;
643 int i, ret = 0, entry_sidx = -1;
644 const Elf_Shdr *sechdrs_c;
645 Elf_Shdr *sechdrs = NULL;
646 struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
647 .buf_min = min, .buf_max = max,
648 .top_down = top_down };
651 * sechdrs_c points to section headers in purgatory and are read
652 * only. No modifications allowed.
654 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
657 * We can not modify sechdrs_c[] and its fields. It is read only.
658 * Copy it over to a local copy where one can store some temporary
659 * data and free it at the end. We need to modify ->sh_addr and
660 * ->sh_offset fields to keep track of permanent and temporary
661 * locations of sections.
663 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
664 if (!sechdrs)
665 return -ENOMEM;
667 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
670 * We seem to have multiple copies of sections. First copy is which
671 * is embedded in kernel in read only section. Some of these sections
672 * will be copied to a temporary buffer and relocated. And these
673 * sections will finally be copied to their final destination at
674 * segment load time.
676 * Use ->sh_offset to reflect section address in memory. It will
677 * point to original read only copy if section is not allocatable.
678 * Otherwise it will point to temporary copy which will be relocated.
680 * Use ->sh_addr to contain final address of the section where it
681 * will go during execution time.
683 for (i = 0; i < pi->ehdr->e_shnum; i++) {
684 if (sechdrs[i].sh_type == SHT_NOBITS)
685 continue;
687 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
688 sechdrs[i].sh_offset;
692 * Identify entry point section and make entry relative to section
693 * start.
695 entry = pi->ehdr->e_entry;
696 for (i = 0; i < pi->ehdr->e_shnum; i++) {
697 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
698 continue;
700 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
701 continue;
703 /* Make entry section relative */
704 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
705 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
706 pi->ehdr->e_entry)) {
707 entry_sidx = i;
708 entry -= sechdrs[i].sh_addr;
709 break;
713 /* Determine how much memory is needed to load relocatable object. */
714 bss_align = 1;
715 bss_sz = 0;
717 for (i = 0; i < pi->ehdr->e_shnum; i++) {
718 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
719 continue;
721 align = sechdrs[i].sh_addralign;
722 if (sechdrs[i].sh_type != SHT_NOBITS) {
723 if (kbuf.buf_align < align)
724 kbuf.buf_align = align;
725 kbuf.bufsz = ALIGN(kbuf.bufsz, align);
726 kbuf.bufsz += sechdrs[i].sh_size;
727 } else {
728 /* bss section */
729 if (bss_align < align)
730 bss_align = align;
731 bss_sz = ALIGN(bss_sz, align);
732 bss_sz += sechdrs[i].sh_size;
736 /* Determine the bss padding required to align bss properly */
737 bss_pad = 0;
738 if (kbuf.bufsz & (bss_align - 1))
739 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
741 kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
743 /* Allocate buffer for purgatory */
744 kbuf.buffer = vzalloc(kbuf.bufsz);
745 if (!kbuf.buffer) {
746 ret = -ENOMEM;
747 goto out;
750 if (kbuf.buf_align < bss_align)
751 kbuf.buf_align = bss_align;
753 /* Add buffer to segment list */
754 ret = kexec_add_buffer(&kbuf);
755 if (ret)
756 goto out;
757 pi->purgatory_load_addr = kbuf.mem;
759 /* Load SHF_ALLOC sections */
760 buf_addr = kbuf.buffer;
761 load_addr = curr_load_addr = pi->purgatory_load_addr;
762 bss_addr = load_addr + kbuf.bufsz + bss_pad;
764 for (i = 0; i < pi->ehdr->e_shnum; i++) {
765 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
766 continue;
768 align = sechdrs[i].sh_addralign;
769 if (sechdrs[i].sh_type != SHT_NOBITS) {
770 curr_load_addr = ALIGN(curr_load_addr, align);
771 offset = curr_load_addr - load_addr;
772 /* We already modifed ->sh_offset to keep src addr */
773 src = (char *) sechdrs[i].sh_offset;
774 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
776 /* Store load address and source address of section */
777 sechdrs[i].sh_addr = curr_load_addr;
780 * This section got copied to temporary buffer. Update
781 * ->sh_offset accordingly.
783 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
785 /* Advance to the next address */
786 curr_load_addr += sechdrs[i].sh_size;
787 } else {
788 bss_addr = ALIGN(bss_addr, align);
789 sechdrs[i].sh_addr = bss_addr;
790 bss_addr += sechdrs[i].sh_size;
794 /* Update entry point based on load address of text section */
795 if (entry_sidx >= 0)
796 entry += sechdrs[entry_sidx].sh_addr;
798 /* Make kernel jump to purgatory after shutdown */
799 image->start = entry;
801 /* Used later to get/set symbol values */
802 pi->sechdrs = sechdrs;
805 * Used later to identify which section is purgatory and skip it
806 * from checksumming.
808 pi->purgatory_buf = kbuf.buffer;
809 return ret;
810 out:
811 vfree(sechdrs);
812 vfree(kbuf.buffer);
813 return ret;
816 static int kexec_apply_relocations(struct kimage *image)
818 int i, ret;
819 struct purgatory_info *pi = &image->purgatory_info;
820 Elf_Shdr *sechdrs = pi->sechdrs;
822 /* Apply relocations */
823 for (i = 0; i < pi->ehdr->e_shnum; i++) {
824 Elf_Shdr *section, *symtab;
826 if (sechdrs[i].sh_type != SHT_RELA &&
827 sechdrs[i].sh_type != SHT_REL)
828 continue;
831 * For section of type SHT_RELA/SHT_REL,
832 * ->sh_link contains section header index of associated
833 * symbol table. And ->sh_info contains section header
834 * index of section to which relocations apply.
836 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
837 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
838 return -ENOEXEC;
840 section = &sechdrs[sechdrs[i].sh_info];
841 symtab = &sechdrs[sechdrs[i].sh_link];
843 if (!(section->sh_flags & SHF_ALLOC))
844 continue;
847 * symtab->sh_link contain section header index of associated
848 * string table.
850 if (symtab->sh_link >= pi->ehdr->e_shnum)
851 /* Invalid section number? */
852 continue;
855 * Respective architecture needs to provide support for applying
856 * relocations of type SHT_RELA/SHT_REL.
858 if (sechdrs[i].sh_type == SHT_RELA)
859 ret = arch_kexec_apply_relocations_add(pi->ehdr,
860 sechdrs, i);
861 else if (sechdrs[i].sh_type == SHT_REL)
862 ret = arch_kexec_apply_relocations(pi->ehdr,
863 sechdrs, i);
864 if (ret)
865 return ret;
868 return 0;
871 /* Load relocatable purgatory object and relocate it appropriately */
872 int kexec_load_purgatory(struct kimage *image, unsigned long min,
873 unsigned long max, int top_down,
874 unsigned long *load_addr)
876 struct purgatory_info *pi = &image->purgatory_info;
877 int ret;
879 if (kexec_purgatory_size <= 0)
880 return -EINVAL;
882 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
883 return -ENOEXEC;
885 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
887 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
888 || pi->ehdr->e_type != ET_REL
889 || !elf_check_arch(pi->ehdr)
890 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
891 return -ENOEXEC;
893 if (pi->ehdr->e_shoff >= kexec_purgatory_size
894 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
895 kexec_purgatory_size - pi->ehdr->e_shoff))
896 return -ENOEXEC;
898 ret = __kexec_load_purgatory(image, min, max, top_down);
899 if (ret)
900 return ret;
902 ret = kexec_apply_relocations(image);
903 if (ret)
904 goto out;
906 *load_addr = pi->purgatory_load_addr;
907 return 0;
908 out:
909 vfree(pi->sechdrs);
910 pi->sechdrs = NULL;
912 vfree(pi->purgatory_buf);
913 pi->purgatory_buf = NULL;
914 return ret;
917 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
918 const char *name)
920 Elf_Sym *syms;
921 Elf_Shdr *sechdrs;
922 Elf_Ehdr *ehdr;
923 int i, k;
924 const char *strtab;
926 if (!pi->sechdrs || !pi->ehdr)
927 return NULL;
929 sechdrs = pi->sechdrs;
930 ehdr = pi->ehdr;
932 for (i = 0; i < ehdr->e_shnum; i++) {
933 if (sechdrs[i].sh_type != SHT_SYMTAB)
934 continue;
936 if (sechdrs[i].sh_link >= ehdr->e_shnum)
937 /* Invalid strtab section number */
938 continue;
939 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
940 syms = (Elf_Sym *)sechdrs[i].sh_offset;
942 /* Go through symbols for a match */
943 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
944 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
945 continue;
947 if (strcmp(strtab + syms[k].st_name, name) != 0)
948 continue;
950 if (syms[k].st_shndx == SHN_UNDEF ||
951 syms[k].st_shndx >= ehdr->e_shnum) {
952 pr_debug("Symbol: %s has bad section index %d.\n",
953 name, syms[k].st_shndx);
954 return NULL;
957 /* Found the symbol we are looking for */
958 return &syms[k];
962 return NULL;
965 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
967 struct purgatory_info *pi = &image->purgatory_info;
968 Elf_Sym *sym;
969 Elf_Shdr *sechdr;
971 sym = kexec_purgatory_find_symbol(pi, name);
972 if (!sym)
973 return ERR_PTR(-EINVAL);
975 sechdr = &pi->sechdrs[sym->st_shndx];
978 * Returns the address where symbol will finally be loaded after
979 * kexec_load_segment()
981 return (void *)(sechdr->sh_addr + sym->st_value);
985 * Get or set value of a symbol. If "get_value" is true, symbol value is
986 * returned in buf otherwise symbol value is set based on value in buf.
988 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
989 void *buf, unsigned int size, bool get_value)
991 Elf_Sym *sym;
992 Elf_Shdr *sechdrs;
993 struct purgatory_info *pi = &image->purgatory_info;
994 char *sym_buf;
996 sym = kexec_purgatory_find_symbol(pi, name);
997 if (!sym)
998 return -EINVAL;
1000 if (sym->st_size != size) {
1001 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1002 name, (unsigned long)sym->st_size, size);
1003 return -EINVAL;
1006 sechdrs = pi->sechdrs;
1008 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1009 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1010 get_value ? "get" : "set");
1011 return -EINVAL;
1014 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1015 sym->st_value;
1017 if (get_value)
1018 memcpy((void *)buf, sym_buf, size);
1019 else
1020 memcpy((void *)sym_buf, buf, size);
1022 return 0;