Linux 4.13.16
[linux/fpc-iii.git] / mm / page_alloc.c
blob3bd0999c266fe754674c9726a4fd1732c8309719
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
92 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94 int _node_numa_mem_[MAX_NUMNODES];
95 #endif
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex);
99 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy;
103 EXPORT_SYMBOL(latent_entropy);
104 #endif
107 * Array of node states.
109 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112 #ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #endif
117 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
121 EXPORT_SYMBOL(node_states);
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
141 static inline int get_pcppage_migratetype(struct page *page)
143 return page->index;
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 page->index = migratetype;
151 #ifdef CONFIG_PM_SLEEP
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
161 static gfp_t saved_gfp_mask;
163 void pm_restore_gfp_mask(void)
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
172 void pm_restrict_gfp_mask(void)
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 bool pm_suspended_storage(void)
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
186 #endif /* CONFIG_PM_SLEEP */
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
192 static void __free_pages_ok(struct page *page, unsigned int order);
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
214 #endif
218 EXPORT_SYMBOL(totalram_pages);
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
289 int page_group_by_mobility_disabled __read_mostly;
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294 * Determine how many pages need to be initialized durig early boot
295 * (non-deferred initialization).
296 * The value of first_deferred_pfn will be set later, once non-deferred pages
297 * are initialized, but for now set it ULONG_MAX.
299 static inline void reset_deferred_meminit(pg_data_t *pgdat)
301 phys_addr_t start_addr, end_addr;
302 unsigned long max_pgcnt;
303 unsigned long reserved;
306 * Initialise at least 2G of a node but also take into account that
307 * two large system hashes that can take up 1GB for 0.25TB/node.
309 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
310 (pgdat->node_spanned_pages >> 8));
313 * Compensate the all the memblock reservations (e.g. crash kernel)
314 * from the initial estimation to make sure we will initialize enough
315 * memory to boot.
317 start_addr = PFN_PHYS(pgdat->node_start_pfn);
318 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
319 reserved = memblock_reserved_memory_within(start_addr, end_addr);
320 max_pgcnt += PHYS_PFN(reserved);
322 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
323 pgdat->first_deferred_pfn = ULONG_MAX;
326 /* Returns true if the struct page for the pfn is uninitialised */
327 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
329 int nid = early_pfn_to_nid(pfn);
331 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
332 return true;
334 return false;
338 * Returns false when the remaining initialisation should be deferred until
339 * later in the boot cycle when it can be parallelised.
341 static inline bool update_defer_init(pg_data_t *pgdat,
342 unsigned long pfn, unsigned long zone_end,
343 unsigned long *nr_initialised)
345 /* Always populate low zones for address-contrained allocations */
346 if (zone_end < pgdat_end_pfn(pgdat))
347 return true;
348 (*nr_initialised)++;
349 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
350 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
351 pgdat->first_deferred_pfn = pfn;
352 return false;
355 return true;
357 #else
358 static inline void reset_deferred_meminit(pg_data_t *pgdat)
362 static inline bool early_page_uninitialised(unsigned long pfn)
364 return false;
367 static inline bool update_defer_init(pg_data_t *pgdat,
368 unsigned long pfn, unsigned long zone_end,
369 unsigned long *nr_initialised)
371 return true;
373 #endif
375 /* Return a pointer to the bitmap storing bits affecting a block of pages */
376 static inline unsigned long *get_pageblock_bitmap(struct page *page,
377 unsigned long pfn)
379 #ifdef CONFIG_SPARSEMEM
380 return __pfn_to_section(pfn)->pageblock_flags;
381 #else
382 return page_zone(page)->pageblock_flags;
383 #endif /* CONFIG_SPARSEMEM */
386 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
388 #ifdef CONFIG_SPARSEMEM
389 pfn &= (PAGES_PER_SECTION-1);
390 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
391 #else
392 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
393 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
394 #endif /* CONFIG_SPARSEMEM */
398 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @pfn: The target page frame number
401 * @end_bitidx: The last bit of interest to retrieve
402 * @mask: mask of bits that the caller is interested in
404 * Return: pageblock_bits flags
406 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
407 unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
411 unsigned long *bitmap;
412 unsigned long bitidx, word_bitidx;
413 unsigned long word;
415 bitmap = get_pageblock_bitmap(page, pfn);
416 bitidx = pfn_to_bitidx(page, pfn);
417 word_bitidx = bitidx / BITS_PER_LONG;
418 bitidx &= (BITS_PER_LONG-1);
420 word = bitmap[word_bitidx];
421 bitidx += end_bitidx;
422 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
426 unsigned long end_bitidx,
427 unsigned long mask)
429 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
434 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
438 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
439 * @page: The page within the block of interest
440 * @flags: The flags to set
441 * @pfn: The target page frame number
442 * @end_bitidx: The last bit of interest
443 * @mask: mask of bits that the caller is interested in
445 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
446 unsigned long pfn,
447 unsigned long end_bitidx,
448 unsigned long mask)
450 unsigned long *bitmap;
451 unsigned long bitidx, word_bitidx;
452 unsigned long old_word, word;
454 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
456 bitmap = get_pageblock_bitmap(page, pfn);
457 bitidx = pfn_to_bitidx(page, pfn);
458 word_bitidx = bitidx / BITS_PER_LONG;
459 bitidx &= (BITS_PER_LONG-1);
461 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
463 bitidx += end_bitidx;
464 mask <<= (BITS_PER_LONG - bitidx - 1);
465 flags <<= (BITS_PER_LONG - bitidx - 1);
467 word = READ_ONCE(bitmap[word_bitidx]);
468 for (;;) {
469 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
470 if (word == old_word)
471 break;
472 word = old_word;
476 void set_pageblock_migratetype(struct page *page, int migratetype)
478 if (unlikely(page_group_by_mobility_disabled &&
479 migratetype < MIGRATE_PCPTYPES))
480 migratetype = MIGRATE_UNMOVABLE;
482 set_pageblock_flags_group(page, (unsigned long)migratetype,
483 PB_migrate, PB_migrate_end);
486 #ifdef CONFIG_DEBUG_VM
487 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
489 int ret = 0;
490 unsigned seq;
491 unsigned long pfn = page_to_pfn(page);
492 unsigned long sp, start_pfn;
494 do {
495 seq = zone_span_seqbegin(zone);
496 start_pfn = zone->zone_start_pfn;
497 sp = zone->spanned_pages;
498 if (!zone_spans_pfn(zone, pfn))
499 ret = 1;
500 } while (zone_span_seqretry(zone, seq));
502 if (ret)
503 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
504 pfn, zone_to_nid(zone), zone->name,
505 start_pfn, start_pfn + sp);
507 return ret;
510 static int page_is_consistent(struct zone *zone, struct page *page)
512 if (!pfn_valid_within(page_to_pfn(page)))
513 return 0;
514 if (zone != page_zone(page))
515 return 0;
517 return 1;
520 * Temporary debugging check for pages not lying within a given zone.
522 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
524 if (page_outside_zone_boundaries(zone, page))
525 return 1;
526 if (!page_is_consistent(zone, page))
527 return 1;
529 return 0;
531 #else
532 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
534 return 0;
536 #endif
538 static void bad_page(struct page *page, const char *reason,
539 unsigned long bad_flags)
541 static unsigned long resume;
542 static unsigned long nr_shown;
543 static unsigned long nr_unshown;
546 * Allow a burst of 60 reports, then keep quiet for that minute;
547 * or allow a steady drip of one report per second.
549 if (nr_shown == 60) {
550 if (time_before(jiffies, resume)) {
551 nr_unshown++;
552 goto out;
554 if (nr_unshown) {
555 pr_alert(
556 "BUG: Bad page state: %lu messages suppressed\n",
557 nr_unshown);
558 nr_unshown = 0;
560 nr_shown = 0;
562 if (nr_shown++ == 0)
563 resume = jiffies + 60 * HZ;
565 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
566 current->comm, page_to_pfn(page));
567 __dump_page(page, reason);
568 bad_flags &= page->flags;
569 if (bad_flags)
570 pr_alert("bad because of flags: %#lx(%pGp)\n",
571 bad_flags, &bad_flags);
572 dump_page_owner(page);
574 print_modules();
575 dump_stack();
576 out:
577 /* Leave bad fields for debug, except PageBuddy could make trouble */
578 page_mapcount_reset(page); /* remove PageBuddy */
579 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
583 * Higher-order pages are called "compound pages". They are structured thusly:
585 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
587 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
588 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
590 * The first tail page's ->compound_dtor holds the offset in array of compound
591 * page destructors. See compound_page_dtors.
593 * The first tail page's ->compound_order holds the order of allocation.
594 * This usage means that zero-order pages may not be compound.
597 void free_compound_page(struct page *page)
599 __free_pages_ok(page, compound_order(page));
602 void prep_compound_page(struct page *page, unsigned int order)
604 int i;
605 int nr_pages = 1 << order;
607 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
608 set_compound_order(page, order);
609 __SetPageHead(page);
610 for (i = 1; i < nr_pages; i++) {
611 struct page *p = page + i;
612 set_page_count(p, 0);
613 p->mapping = TAIL_MAPPING;
614 set_compound_head(p, page);
616 atomic_set(compound_mapcount_ptr(page), -1);
619 #ifdef CONFIG_DEBUG_PAGEALLOC
620 unsigned int _debug_guardpage_minorder;
621 bool _debug_pagealloc_enabled __read_mostly
622 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
623 EXPORT_SYMBOL(_debug_pagealloc_enabled);
624 bool _debug_guardpage_enabled __read_mostly;
626 static int __init early_debug_pagealloc(char *buf)
628 if (!buf)
629 return -EINVAL;
630 return kstrtobool(buf, &_debug_pagealloc_enabled);
632 early_param("debug_pagealloc", early_debug_pagealloc);
634 static bool need_debug_guardpage(void)
636 /* If we don't use debug_pagealloc, we don't need guard page */
637 if (!debug_pagealloc_enabled())
638 return false;
640 if (!debug_guardpage_minorder())
641 return false;
643 return true;
646 static void init_debug_guardpage(void)
648 if (!debug_pagealloc_enabled())
649 return;
651 if (!debug_guardpage_minorder())
652 return;
654 _debug_guardpage_enabled = true;
657 struct page_ext_operations debug_guardpage_ops = {
658 .need = need_debug_guardpage,
659 .init = init_debug_guardpage,
662 static int __init debug_guardpage_minorder_setup(char *buf)
664 unsigned long res;
666 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
667 pr_err("Bad debug_guardpage_minorder value\n");
668 return 0;
670 _debug_guardpage_minorder = res;
671 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
672 return 0;
674 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
676 static inline bool set_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
679 struct page_ext *page_ext;
681 if (!debug_guardpage_enabled())
682 return false;
684 if (order >= debug_guardpage_minorder())
685 return false;
687 page_ext = lookup_page_ext(page);
688 if (unlikely(!page_ext))
689 return false;
691 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
693 INIT_LIST_HEAD(&page->lru);
694 set_page_private(page, order);
695 /* Guard pages are not available for any usage */
696 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
698 return true;
701 static inline void clear_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype)
704 struct page_ext *page_ext;
706 if (!debug_guardpage_enabled())
707 return;
709 page_ext = lookup_page_ext(page);
710 if (unlikely(!page_ext))
711 return;
713 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
715 set_page_private(page, 0);
716 if (!is_migrate_isolate(migratetype))
717 __mod_zone_freepage_state(zone, (1 << order), migratetype);
719 #else
720 struct page_ext_operations debug_guardpage_ops;
721 static inline bool set_page_guard(struct zone *zone, struct page *page,
722 unsigned int order, int migratetype) { return false; }
723 static inline void clear_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) {}
725 #endif
727 static inline void set_page_order(struct page *page, unsigned int order)
729 set_page_private(page, order);
730 __SetPageBuddy(page);
733 static inline void rmv_page_order(struct page *page)
735 __ClearPageBuddy(page);
736 set_page_private(page, 0);
740 * This function checks whether a page is free && is the buddy
741 * we can do coalesce a page and its buddy if
742 * (a) the buddy is not in a hole (check before calling!) &&
743 * (b) the buddy is in the buddy system &&
744 * (c) a page and its buddy have the same order &&
745 * (d) a page and its buddy are in the same zone.
747 * For recording whether a page is in the buddy system, we set ->_mapcount
748 * PAGE_BUDDY_MAPCOUNT_VALUE.
749 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
750 * serialized by zone->lock.
752 * For recording page's order, we use page_private(page).
754 static inline int page_is_buddy(struct page *page, struct page *buddy,
755 unsigned int order)
757 if (page_is_guard(buddy) && page_order(buddy) == order) {
758 if (page_zone_id(page) != page_zone_id(buddy))
759 return 0;
761 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
763 return 1;
766 if (PageBuddy(buddy) && page_order(buddy) == order) {
768 * zone check is done late to avoid uselessly
769 * calculating zone/node ids for pages that could
770 * never merge.
772 if (page_zone_id(page) != page_zone_id(buddy))
773 return 0;
775 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
777 return 1;
779 return 0;
783 * Freeing function for a buddy system allocator.
785 * The concept of a buddy system is to maintain direct-mapped table
786 * (containing bit values) for memory blocks of various "orders".
787 * The bottom level table contains the map for the smallest allocatable
788 * units of memory (here, pages), and each level above it describes
789 * pairs of units from the levels below, hence, "buddies".
790 * At a high level, all that happens here is marking the table entry
791 * at the bottom level available, and propagating the changes upward
792 * as necessary, plus some accounting needed to play nicely with other
793 * parts of the VM system.
794 * At each level, we keep a list of pages, which are heads of continuous
795 * free pages of length of (1 << order) and marked with _mapcount
796 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
797 * field.
798 * So when we are allocating or freeing one, we can derive the state of the
799 * other. That is, if we allocate a small block, and both were
800 * free, the remainder of the region must be split into blocks.
801 * If a block is freed, and its buddy is also free, then this
802 * triggers coalescing into a block of larger size.
804 * -- nyc
807 static inline void __free_one_page(struct page *page,
808 unsigned long pfn,
809 struct zone *zone, unsigned int order,
810 int migratetype)
812 unsigned long combined_pfn;
813 unsigned long uninitialized_var(buddy_pfn);
814 struct page *buddy;
815 unsigned int max_order;
817 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
819 VM_BUG_ON(!zone_is_initialized(zone));
820 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
822 VM_BUG_ON(migratetype == -1);
823 if (likely(!is_migrate_isolate(migratetype)))
824 __mod_zone_freepage_state(zone, 1 << order, migratetype);
826 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
827 VM_BUG_ON_PAGE(bad_range(zone, page), page);
829 continue_merging:
830 while (order < max_order - 1) {
831 buddy_pfn = __find_buddy_pfn(pfn, order);
832 buddy = page + (buddy_pfn - pfn);
834 if (!pfn_valid_within(buddy_pfn))
835 goto done_merging;
836 if (!page_is_buddy(page, buddy, order))
837 goto done_merging;
839 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
840 * merge with it and move up one order.
842 if (page_is_guard(buddy)) {
843 clear_page_guard(zone, buddy, order, migratetype);
844 } else {
845 list_del(&buddy->lru);
846 zone->free_area[order].nr_free--;
847 rmv_page_order(buddy);
849 combined_pfn = buddy_pfn & pfn;
850 page = page + (combined_pfn - pfn);
851 pfn = combined_pfn;
852 order++;
854 if (max_order < MAX_ORDER) {
855 /* If we are here, it means order is >= pageblock_order.
856 * We want to prevent merge between freepages on isolate
857 * pageblock and normal pageblock. Without this, pageblock
858 * isolation could cause incorrect freepage or CMA accounting.
860 * We don't want to hit this code for the more frequent
861 * low-order merging.
863 if (unlikely(has_isolate_pageblock(zone))) {
864 int buddy_mt;
866 buddy_pfn = __find_buddy_pfn(pfn, order);
867 buddy = page + (buddy_pfn - pfn);
868 buddy_mt = get_pageblock_migratetype(buddy);
870 if (migratetype != buddy_mt
871 && (is_migrate_isolate(migratetype) ||
872 is_migrate_isolate(buddy_mt)))
873 goto done_merging;
875 max_order++;
876 goto continue_merging;
879 done_merging:
880 set_page_order(page, order);
883 * If this is not the largest possible page, check if the buddy
884 * of the next-highest order is free. If it is, it's possible
885 * that pages are being freed that will coalesce soon. In case,
886 * that is happening, add the free page to the tail of the list
887 * so it's less likely to be used soon and more likely to be merged
888 * as a higher order page
890 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
891 struct page *higher_page, *higher_buddy;
892 combined_pfn = buddy_pfn & pfn;
893 higher_page = page + (combined_pfn - pfn);
894 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
895 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
896 if (pfn_valid_within(buddy_pfn) &&
897 page_is_buddy(higher_page, higher_buddy, order + 1)) {
898 list_add_tail(&page->lru,
899 &zone->free_area[order].free_list[migratetype]);
900 goto out;
904 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
905 out:
906 zone->free_area[order].nr_free++;
910 * A bad page could be due to a number of fields. Instead of multiple branches,
911 * try and check multiple fields with one check. The caller must do a detailed
912 * check if necessary.
914 static inline bool page_expected_state(struct page *page,
915 unsigned long check_flags)
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 return false;
920 if (unlikely((unsigned long)page->mapping |
921 page_ref_count(page) |
922 #ifdef CONFIG_MEMCG
923 (unsigned long)page->mem_cgroup |
924 #endif
925 (page->flags & check_flags)))
926 return false;
928 return true;
931 static void free_pages_check_bad(struct page *page)
933 const char *bad_reason;
934 unsigned long bad_flags;
936 bad_reason = NULL;
937 bad_flags = 0;
939 if (unlikely(atomic_read(&page->_mapcount) != -1))
940 bad_reason = "nonzero mapcount";
941 if (unlikely(page->mapping != NULL))
942 bad_reason = "non-NULL mapping";
943 if (unlikely(page_ref_count(page) != 0))
944 bad_reason = "nonzero _refcount";
945 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
946 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
947 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
949 #ifdef CONFIG_MEMCG
950 if (unlikely(page->mem_cgroup))
951 bad_reason = "page still charged to cgroup";
952 #endif
953 bad_page(page, bad_reason, bad_flags);
956 static inline int free_pages_check(struct page *page)
958 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 return 0;
961 /* Something has gone sideways, find it */
962 free_pages_check_bad(page);
963 return 1;
966 static int free_tail_pages_check(struct page *head_page, struct page *page)
968 int ret = 1;
971 * We rely page->lru.next never has bit 0 set, unless the page
972 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
974 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
976 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
977 ret = 0;
978 goto out;
980 switch (page - head_page) {
981 case 1:
982 /* the first tail page: ->mapping is compound_mapcount() */
983 if (unlikely(compound_mapcount(page))) {
984 bad_page(page, "nonzero compound_mapcount", 0);
985 goto out;
987 break;
988 case 2:
990 * the second tail page: ->mapping is
991 * page_deferred_list().next -- ignore value.
993 break;
994 default:
995 if (page->mapping != TAIL_MAPPING) {
996 bad_page(page, "corrupted mapping in tail page", 0);
997 goto out;
999 break;
1001 if (unlikely(!PageTail(page))) {
1002 bad_page(page, "PageTail not set", 0);
1003 goto out;
1005 if (unlikely(compound_head(page) != head_page)) {
1006 bad_page(page, "compound_head not consistent", 0);
1007 goto out;
1009 ret = 0;
1010 out:
1011 page->mapping = NULL;
1012 clear_compound_head(page);
1013 return ret;
1016 static __always_inline bool free_pages_prepare(struct page *page,
1017 unsigned int order, bool check_free)
1019 int bad = 0;
1021 VM_BUG_ON_PAGE(PageTail(page), page);
1023 trace_mm_page_free(page, order);
1024 kmemcheck_free_shadow(page, order);
1027 * Check tail pages before head page information is cleared to
1028 * avoid checking PageCompound for order-0 pages.
1030 if (unlikely(order)) {
1031 bool compound = PageCompound(page);
1032 int i;
1034 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1036 if (compound)
1037 ClearPageDoubleMap(page);
1038 for (i = 1; i < (1 << order); i++) {
1039 if (compound)
1040 bad += free_tail_pages_check(page, page + i);
1041 if (unlikely(free_pages_check(page + i))) {
1042 bad++;
1043 continue;
1045 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1048 if (PageMappingFlags(page))
1049 page->mapping = NULL;
1050 if (memcg_kmem_enabled() && PageKmemcg(page))
1051 memcg_kmem_uncharge(page, order);
1052 if (check_free)
1053 bad += free_pages_check(page);
1054 if (bad)
1055 return false;
1057 page_cpupid_reset_last(page);
1058 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1059 reset_page_owner(page, order);
1061 if (!PageHighMem(page)) {
1062 debug_check_no_locks_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 debug_check_no_obj_freed(page_address(page),
1065 PAGE_SIZE << order);
1067 arch_free_page(page, order);
1068 kernel_poison_pages(page, 1 << order, 0);
1069 kernel_map_pages(page, 1 << order, 0);
1070 kasan_free_pages(page, order);
1072 return true;
1075 #ifdef CONFIG_DEBUG_VM
1076 static inline bool free_pcp_prepare(struct page *page)
1078 return free_pages_prepare(page, 0, true);
1081 static inline bool bulkfree_pcp_prepare(struct page *page)
1083 return false;
1085 #else
1086 static bool free_pcp_prepare(struct page *page)
1088 return free_pages_prepare(page, 0, false);
1091 static bool bulkfree_pcp_prepare(struct page *page)
1093 return free_pages_check(page);
1095 #endif /* CONFIG_DEBUG_VM */
1098 * Frees a number of pages from the PCP lists
1099 * Assumes all pages on list are in same zone, and of same order.
1100 * count is the number of pages to free.
1102 * If the zone was previously in an "all pages pinned" state then look to
1103 * see if this freeing clears that state.
1105 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1106 * pinned" detection logic.
1108 static void free_pcppages_bulk(struct zone *zone, int count,
1109 struct per_cpu_pages *pcp)
1111 int migratetype = 0;
1112 int batch_free = 0;
1113 bool isolated_pageblocks;
1115 spin_lock(&zone->lock);
1116 isolated_pageblocks = has_isolate_pageblock(zone);
1118 while (count) {
1119 struct page *page;
1120 struct list_head *list;
1123 * Remove pages from lists in a round-robin fashion. A
1124 * batch_free count is maintained that is incremented when an
1125 * empty list is encountered. This is so more pages are freed
1126 * off fuller lists instead of spinning excessively around empty
1127 * lists
1129 do {
1130 batch_free++;
1131 if (++migratetype == MIGRATE_PCPTYPES)
1132 migratetype = 0;
1133 list = &pcp->lists[migratetype];
1134 } while (list_empty(list));
1136 /* This is the only non-empty list. Free them all. */
1137 if (batch_free == MIGRATE_PCPTYPES)
1138 batch_free = count;
1140 do {
1141 int mt; /* migratetype of the to-be-freed page */
1143 page = list_last_entry(list, struct page, lru);
1144 /* must delete as __free_one_page list manipulates */
1145 list_del(&page->lru);
1147 mt = get_pcppage_migratetype(page);
1148 /* MIGRATE_ISOLATE page should not go to pcplists */
1149 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150 /* Pageblock could have been isolated meanwhile */
1151 if (unlikely(isolated_pageblocks))
1152 mt = get_pageblock_migratetype(page);
1154 if (bulkfree_pcp_prepare(page))
1155 continue;
1157 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1158 trace_mm_page_pcpu_drain(page, 0, mt);
1159 } while (--count && --batch_free && !list_empty(list));
1161 spin_unlock(&zone->lock);
1164 static void free_one_page(struct zone *zone,
1165 struct page *page, unsigned long pfn,
1166 unsigned int order,
1167 int migratetype)
1169 spin_lock(&zone->lock);
1170 if (unlikely(has_isolate_pageblock(zone) ||
1171 is_migrate_isolate(migratetype))) {
1172 migratetype = get_pfnblock_migratetype(page, pfn);
1174 __free_one_page(page, pfn, zone, order, migratetype);
1175 spin_unlock(&zone->lock);
1178 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179 unsigned long zone, int nid)
1181 set_page_links(page, zone, nid, pfn);
1182 init_page_count(page);
1183 page_mapcount_reset(page);
1184 page_cpupid_reset_last(page);
1186 INIT_LIST_HEAD(&page->lru);
1187 #ifdef WANT_PAGE_VIRTUAL
1188 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1189 if (!is_highmem_idx(zone))
1190 set_page_address(page, __va(pfn << PAGE_SHIFT));
1191 #endif
1194 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1195 int nid)
1197 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1200 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1201 static void init_reserved_page(unsigned long pfn)
1203 pg_data_t *pgdat;
1204 int nid, zid;
1206 if (!early_page_uninitialised(pfn))
1207 return;
1209 nid = early_pfn_to_nid(pfn);
1210 pgdat = NODE_DATA(nid);
1212 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1213 struct zone *zone = &pgdat->node_zones[zid];
1215 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1216 break;
1218 __init_single_pfn(pfn, zid, nid);
1220 #else
1221 static inline void init_reserved_page(unsigned long pfn)
1224 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1227 * Initialised pages do not have PageReserved set. This function is
1228 * called for each range allocated by the bootmem allocator and
1229 * marks the pages PageReserved. The remaining valid pages are later
1230 * sent to the buddy page allocator.
1232 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1234 unsigned long start_pfn = PFN_DOWN(start);
1235 unsigned long end_pfn = PFN_UP(end);
1237 for (; start_pfn < end_pfn; start_pfn++) {
1238 if (pfn_valid(start_pfn)) {
1239 struct page *page = pfn_to_page(start_pfn);
1241 init_reserved_page(start_pfn);
1243 /* Avoid false-positive PageTail() */
1244 INIT_LIST_HEAD(&page->lru);
1246 SetPageReserved(page);
1251 static void __free_pages_ok(struct page *page, unsigned int order)
1253 unsigned long flags;
1254 int migratetype;
1255 unsigned long pfn = page_to_pfn(page);
1257 if (!free_pages_prepare(page, order, true))
1258 return;
1260 migratetype = get_pfnblock_migratetype(page, pfn);
1261 local_irq_save(flags);
1262 __count_vm_events(PGFREE, 1 << order);
1263 free_one_page(page_zone(page), page, pfn, order, migratetype);
1264 local_irq_restore(flags);
1267 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1269 unsigned int nr_pages = 1 << order;
1270 struct page *p = page;
1271 unsigned int loop;
1273 prefetchw(p);
1274 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1275 prefetchw(p + 1);
1276 __ClearPageReserved(p);
1277 set_page_count(p, 0);
1279 __ClearPageReserved(p);
1280 set_page_count(p, 0);
1282 page_zone(page)->managed_pages += nr_pages;
1283 set_page_refcounted(page);
1284 __free_pages(page, order);
1287 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1290 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1292 int __meminit early_pfn_to_nid(unsigned long pfn)
1294 static DEFINE_SPINLOCK(early_pfn_lock);
1295 int nid;
1297 spin_lock(&early_pfn_lock);
1298 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1299 if (nid < 0)
1300 nid = first_online_node;
1301 spin_unlock(&early_pfn_lock);
1303 return nid;
1305 #endif
1307 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308 static inline bool __meminit __maybe_unused
1309 meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1312 int nid;
1314 nid = __early_pfn_to_nid(pfn, state);
1315 if (nid >= 0 && nid != node)
1316 return false;
1317 return true;
1320 /* Only safe to use early in boot when initialisation is single-threaded */
1321 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1326 #else
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1330 return true;
1332 static inline bool __meminit __maybe_unused
1333 meminit_pfn_in_nid(unsigned long pfn, int node,
1334 struct mminit_pfnnid_cache *state)
1336 return true;
1338 #endif
1341 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1342 unsigned int order)
1344 if (early_page_uninitialised(pfn))
1345 return;
1346 return __free_pages_boot_core(page, order);
1350 * Check that the whole (or subset of) a pageblock given by the interval of
1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352 * with the migration of free compaction scanner. The scanners then need to
1353 * use only pfn_valid_within() check for arches that allow holes within
1354 * pageblocks.
1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1358 * It's possible on some configurations to have a setup like node0 node1 node0
1359 * i.e. it's possible that all pages within a zones range of pages do not
1360 * belong to a single zone. We assume that a border between node0 and node1
1361 * can occur within a single pageblock, but not a node0 node1 node0
1362 * interleaving within a single pageblock. It is therefore sufficient to check
1363 * the first and last page of a pageblock and avoid checking each individual
1364 * page in a pageblock.
1366 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 unsigned long end_pfn, struct zone *zone)
1369 struct page *start_page;
1370 struct page *end_page;
1372 /* end_pfn is one past the range we are checking */
1373 end_pfn--;
1375 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1376 return NULL;
1378 start_page = pfn_to_online_page(start_pfn);
1379 if (!start_page)
1380 return NULL;
1382 if (page_zone(start_page) != zone)
1383 return NULL;
1385 end_page = pfn_to_page(end_pfn);
1387 /* This gives a shorter code than deriving page_zone(end_page) */
1388 if (page_zone_id(start_page) != page_zone_id(end_page))
1389 return NULL;
1391 return start_page;
1394 void set_zone_contiguous(struct zone *zone)
1396 unsigned long block_start_pfn = zone->zone_start_pfn;
1397 unsigned long block_end_pfn;
1399 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1400 for (; block_start_pfn < zone_end_pfn(zone);
1401 block_start_pfn = block_end_pfn,
1402 block_end_pfn += pageblock_nr_pages) {
1404 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1406 if (!__pageblock_pfn_to_page(block_start_pfn,
1407 block_end_pfn, zone))
1408 return;
1411 /* We confirm that there is no hole */
1412 zone->contiguous = true;
1415 void clear_zone_contiguous(struct zone *zone)
1417 zone->contiguous = false;
1420 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421 static void __init deferred_free_range(struct page *page,
1422 unsigned long pfn, int nr_pages)
1424 int i;
1426 if (!page)
1427 return;
1429 /* Free a large naturally-aligned chunk if possible */
1430 if (nr_pages == pageblock_nr_pages &&
1431 (pfn & (pageblock_nr_pages - 1)) == 0) {
1432 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1433 __free_pages_boot_core(page, pageblock_order);
1434 return;
1437 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1438 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1439 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1440 __free_pages_boot_core(page, 0);
1444 /* Completion tracking for deferred_init_memmap() threads */
1445 static atomic_t pgdat_init_n_undone __initdata;
1446 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1448 static inline void __init pgdat_init_report_one_done(void)
1450 if (atomic_dec_and_test(&pgdat_init_n_undone))
1451 complete(&pgdat_init_all_done_comp);
1454 /* Initialise remaining memory on a node */
1455 static int __init deferred_init_memmap(void *data)
1457 pg_data_t *pgdat = data;
1458 int nid = pgdat->node_id;
1459 struct mminit_pfnnid_cache nid_init_state = { };
1460 unsigned long start = jiffies;
1461 unsigned long nr_pages = 0;
1462 unsigned long walk_start, walk_end;
1463 int i, zid;
1464 struct zone *zone;
1465 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1466 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1468 if (first_init_pfn == ULONG_MAX) {
1469 pgdat_init_report_one_done();
1470 return 0;
1473 /* Bind memory initialisation thread to a local node if possible */
1474 if (!cpumask_empty(cpumask))
1475 set_cpus_allowed_ptr(current, cpumask);
1477 /* Sanity check boundaries */
1478 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1479 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1480 pgdat->first_deferred_pfn = ULONG_MAX;
1482 /* Only the highest zone is deferred so find it */
1483 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1484 zone = pgdat->node_zones + zid;
1485 if (first_init_pfn < zone_end_pfn(zone))
1486 break;
1489 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1490 unsigned long pfn, end_pfn;
1491 struct page *page = NULL;
1492 struct page *free_base_page = NULL;
1493 unsigned long free_base_pfn = 0;
1494 int nr_to_free = 0;
1496 end_pfn = min(walk_end, zone_end_pfn(zone));
1497 pfn = first_init_pfn;
1498 if (pfn < walk_start)
1499 pfn = walk_start;
1500 if (pfn < zone->zone_start_pfn)
1501 pfn = zone->zone_start_pfn;
1503 for (; pfn < end_pfn; pfn++) {
1504 if (!pfn_valid_within(pfn))
1505 goto free_range;
1508 * Ensure pfn_valid is checked every
1509 * pageblock_nr_pages for memory holes
1511 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1512 if (!pfn_valid(pfn)) {
1513 page = NULL;
1514 goto free_range;
1518 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1519 page = NULL;
1520 goto free_range;
1523 /* Minimise pfn page lookups and scheduler checks */
1524 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1525 page++;
1526 } else {
1527 nr_pages += nr_to_free;
1528 deferred_free_range(free_base_page,
1529 free_base_pfn, nr_to_free);
1530 free_base_page = NULL;
1531 free_base_pfn = nr_to_free = 0;
1533 page = pfn_to_page(pfn);
1534 cond_resched();
1537 if (page->flags) {
1538 VM_BUG_ON(page_zone(page) != zone);
1539 goto free_range;
1542 __init_single_page(page, pfn, zid, nid);
1543 if (!free_base_page) {
1544 free_base_page = page;
1545 free_base_pfn = pfn;
1546 nr_to_free = 0;
1548 nr_to_free++;
1550 /* Where possible, batch up pages for a single free */
1551 continue;
1552 free_range:
1553 /* Free the current block of pages to allocator */
1554 nr_pages += nr_to_free;
1555 deferred_free_range(free_base_page, free_base_pfn,
1556 nr_to_free);
1557 free_base_page = NULL;
1558 free_base_pfn = nr_to_free = 0;
1560 /* Free the last block of pages to allocator */
1561 nr_pages += nr_to_free;
1562 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1564 first_init_pfn = max(end_pfn, first_init_pfn);
1567 /* Sanity check that the next zone really is unpopulated */
1568 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1570 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1571 jiffies_to_msecs(jiffies - start));
1573 pgdat_init_report_one_done();
1574 return 0;
1576 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1578 void __init page_alloc_init_late(void)
1580 struct zone *zone;
1582 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1583 int nid;
1585 /* There will be num_node_state(N_MEMORY) threads */
1586 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1587 for_each_node_state(nid, N_MEMORY) {
1588 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1591 /* Block until all are initialised */
1592 wait_for_completion(&pgdat_init_all_done_comp);
1594 /* Reinit limits that are based on free pages after the kernel is up */
1595 files_maxfiles_init();
1596 #endif
1597 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1598 /* Discard memblock private memory */
1599 memblock_discard();
1600 #endif
1602 for_each_populated_zone(zone)
1603 set_zone_contiguous(zone);
1606 #ifdef CONFIG_CMA
1607 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1608 void __init init_cma_reserved_pageblock(struct page *page)
1610 unsigned i = pageblock_nr_pages;
1611 struct page *p = page;
1613 do {
1614 __ClearPageReserved(p);
1615 set_page_count(p, 0);
1616 } while (++p, --i);
1618 set_pageblock_migratetype(page, MIGRATE_CMA);
1620 if (pageblock_order >= MAX_ORDER) {
1621 i = pageblock_nr_pages;
1622 p = page;
1623 do {
1624 set_page_refcounted(p);
1625 __free_pages(p, MAX_ORDER - 1);
1626 p += MAX_ORDER_NR_PAGES;
1627 } while (i -= MAX_ORDER_NR_PAGES);
1628 } else {
1629 set_page_refcounted(page);
1630 __free_pages(page, pageblock_order);
1633 adjust_managed_page_count(page, pageblock_nr_pages);
1635 #endif
1638 * The order of subdivision here is critical for the IO subsystem.
1639 * Please do not alter this order without good reasons and regression
1640 * testing. Specifically, as large blocks of memory are subdivided,
1641 * the order in which smaller blocks are delivered depends on the order
1642 * they're subdivided in this function. This is the primary factor
1643 * influencing the order in which pages are delivered to the IO
1644 * subsystem according to empirical testing, and this is also justified
1645 * by considering the behavior of a buddy system containing a single
1646 * large block of memory acted on by a series of small allocations.
1647 * This behavior is a critical factor in sglist merging's success.
1649 * -- nyc
1651 static inline void expand(struct zone *zone, struct page *page,
1652 int low, int high, struct free_area *area,
1653 int migratetype)
1655 unsigned long size = 1 << high;
1657 while (high > low) {
1658 area--;
1659 high--;
1660 size >>= 1;
1661 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1664 * Mark as guard pages (or page), that will allow to
1665 * merge back to allocator when buddy will be freed.
1666 * Corresponding page table entries will not be touched,
1667 * pages will stay not present in virtual address space
1669 if (set_page_guard(zone, &page[size], high, migratetype))
1670 continue;
1672 list_add(&page[size].lru, &area->free_list[migratetype]);
1673 area->nr_free++;
1674 set_page_order(&page[size], high);
1678 static void check_new_page_bad(struct page *page)
1680 const char *bad_reason = NULL;
1681 unsigned long bad_flags = 0;
1683 if (unlikely(atomic_read(&page->_mapcount) != -1))
1684 bad_reason = "nonzero mapcount";
1685 if (unlikely(page->mapping != NULL))
1686 bad_reason = "non-NULL mapping";
1687 if (unlikely(page_ref_count(page) != 0))
1688 bad_reason = "nonzero _count";
1689 if (unlikely(page->flags & __PG_HWPOISON)) {
1690 bad_reason = "HWPoisoned (hardware-corrupted)";
1691 bad_flags = __PG_HWPOISON;
1692 /* Don't complain about hwpoisoned pages */
1693 page_mapcount_reset(page); /* remove PageBuddy */
1694 return;
1696 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1697 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1698 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1700 #ifdef CONFIG_MEMCG
1701 if (unlikely(page->mem_cgroup))
1702 bad_reason = "page still charged to cgroup";
1703 #endif
1704 bad_page(page, bad_reason, bad_flags);
1708 * This page is about to be returned from the page allocator
1710 static inline int check_new_page(struct page *page)
1712 if (likely(page_expected_state(page,
1713 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1714 return 0;
1716 check_new_page_bad(page);
1717 return 1;
1720 static inline bool free_pages_prezeroed(void)
1722 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1723 page_poisoning_enabled();
1726 #ifdef CONFIG_DEBUG_VM
1727 static bool check_pcp_refill(struct page *page)
1729 return false;
1732 static bool check_new_pcp(struct page *page)
1734 return check_new_page(page);
1736 #else
1737 static bool check_pcp_refill(struct page *page)
1739 return check_new_page(page);
1741 static bool check_new_pcp(struct page *page)
1743 return false;
1745 #endif /* CONFIG_DEBUG_VM */
1747 static bool check_new_pages(struct page *page, unsigned int order)
1749 int i;
1750 for (i = 0; i < (1 << order); i++) {
1751 struct page *p = page + i;
1753 if (unlikely(check_new_page(p)))
1754 return true;
1757 return false;
1760 inline void post_alloc_hook(struct page *page, unsigned int order,
1761 gfp_t gfp_flags)
1763 set_page_private(page, 0);
1764 set_page_refcounted(page);
1766 arch_alloc_page(page, order);
1767 kernel_map_pages(page, 1 << order, 1);
1768 kernel_poison_pages(page, 1 << order, 1);
1769 kasan_alloc_pages(page, order);
1770 set_page_owner(page, order, gfp_flags);
1773 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1774 unsigned int alloc_flags)
1776 int i;
1778 post_alloc_hook(page, order, gfp_flags);
1780 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1781 for (i = 0; i < (1 << order); i++)
1782 clear_highpage(page + i);
1784 if (order && (gfp_flags & __GFP_COMP))
1785 prep_compound_page(page, order);
1788 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1789 * allocate the page. The expectation is that the caller is taking
1790 * steps that will free more memory. The caller should avoid the page
1791 * being used for !PFMEMALLOC purposes.
1793 if (alloc_flags & ALLOC_NO_WATERMARKS)
1794 set_page_pfmemalloc(page);
1795 else
1796 clear_page_pfmemalloc(page);
1800 * Go through the free lists for the given migratetype and remove
1801 * the smallest available page from the freelists
1803 static inline
1804 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1805 int migratetype)
1807 unsigned int current_order;
1808 struct free_area *area;
1809 struct page *page;
1811 /* Find a page of the appropriate size in the preferred list */
1812 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1813 area = &(zone->free_area[current_order]);
1814 page = list_first_entry_or_null(&area->free_list[migratetype],
1815 struct page, lru);
1816 if (!page)
1817 continue;
1818 list_del(&page->lru);
1819 rmv_page_order(page);
1820 area->nr_free--;
1821 expand(zone, page, order, current_order, area, migratetype);
1822 set_pcppage_migratetype(page, migratetype);
1823 return page;
1826 return NULL;
1831 * This array describes the order lists are fallen back to when
1832 * the free lists for the desirable migrate type are depleted
1834 static int fallbacks[MIGRATE_TYPES][4] = {
1835 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1836 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1837 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1838 #ifdef CONFIG_CMA
1839 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1840 #endif
1841 #ifdef CONFIG_MEMORY_ISOLATION
1842 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1843 #endif
1846 #ifdef CONFIG_CMA
1847 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1848 unsigned int order)
1850 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1852 #else
1853 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1854 unsigned int order) { return NULL; }
1855 #endif
1858 * Move the free pages in a range to the free lists of the requested type.
1859 * Note that start_page and end_pages are not aligned on a pageblock
1860 * boundary. If alignment is required, use move_freepages_block()
1862 static int move_freepages(struct zone *zone,
1863 struct page *start_page, struct page *end_page,
1864 int migratetype, int *num_movable)
1866 struct page *page;
1867 unsigned int order;
1868 int pages_moved = 0;
1870 #ifndef CONFIG_HOLES_IN_ZONE
1872 * page_zone is not safe to call in this context when
1873 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1874 * anyway as we check zone boundaries in move_freepages_block().
1875 * Remove at a later date when no bug reports exist related to
1876 * grouping pages by mobility
1878 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1879 #endif
1881 if (num_movable)
1882 *num_movable = 0;
1884 for (page = start_page; page <= end_page;) {
1885 if (!pfn_valid_within(page_to_pfn(page))) {
1886 page++;
1887 continue;
1890 /* Make sure we are not inadvertently changing nodes */
1891 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1893 if (!PageBuddy(page)) {
1895 * We assume that pages that could be isolated for
1896 * migration are movable. But we don't actually try
1897 * isolating, as that would be expensive.
1899 if (num_movable &&
1900 (PageLRU(page) || __PageMovable(page)))
1901 (*num_movable)++;
1903 page++;
1904 continue;
1907 order = page_order(page);
1908 list_move(&page->lru,
1909 &zone->free_area[order].free_list[migratetype]);
1910 page += 1 << order;
1911 pages_moved += 1 << order;
1914 return pages_moved;
1917 int move_freepages_block(struct zone *zone, struct page *page,
1918 int migratetype, int *num_movable)
1920 unsigned long start_pfn, end_pfn;
1921 struct page *start_page, *end_page;
1923 start_pfn = page_to_pfn(page);
1924 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1925 start_page = pfn_to_page(start_pfn);
1926 end_page = start_page + pageblock_nr_pages - 1;
1927 end_pfn = start_pfn + pageblock_nr_pages - 1;
1929 /* Do not cross zone boundaries */
1930 if (!zone_spans_pfn(zone, start_pfn))
1931 start_page = page;
1932 if (!zone_spans_pfn(zone, end_pfn))
1933 return 0;
1935 return move_freepages(zone, start_page, end_page, migratetype,
1936 num_movable);
1939 static void change_pageblock_range(struct page *pageblock_page,
1940 int start_order, int migratetype)
1942 int nr_pageblocks = 1 << (start_order - pageblock_order);
1944 while (nr_pageblocks--) {
1945 set_pageblock_migratetype(pageblock_page, migratetype);
1946 pageblock_page += pageblock_nr_pages;
1951 * When we are falling back to another migratetype during allocation, try to
1952 * steal extra free pages from the same pageblocks to satisfy further
1953 * allocations, instead of polluting multiple pageblocks.
1955 * If we are stealing a relatively large buddy page, it is likely there will
1956 * be more free pages in the pageblock, so try to steal them all. For
1957 * reclaimable and unmovable allocations, we steal regardless of page size,
1958 * as fragmentation caused by those allocations polluting movable pageblocks
1959 * is worse than movable allocations stealing from unmovable and reclaimable
1960 * pageblocks.
1962 static bool can_steal_fallback(unsigned int order, int start_mt)
1965 * Leaving this order check is intended, although there is
1966 * relaxed order check in next check. The reason is that
1967 * we can actually steal whole pageblock if this condition met,
1968 * but, below check doesn't guarantee it and that is just heuristic
1969 * so could be changed anytime.
1971 if (order >= pageblock_order)
1972 return true;
1974 if (order >= pageblock_order / 2 ||
1975 start_mt == MIGRATE_RECLAIMABLE ||
1976 start_mt == MIGRATE_UNMOVABLE ||
1977 page_group_by_mobility_disabled)
1978 return true;
1980 return false;
1984 * This function implements actual steal behaviour. If order is large enough,
1985 * we can steal whole pageblock. If not, we first move freepages in this
1986 * pageblock to our migratetype and determine how many already-allocated pages
1987 * are there in the pageblock with a compatible migratetype. If at least half
1988 * of pages are free or compatible, we can change migratetype of the pageblock
1989 * itself, so pages freed in the future will be put on the correct free list.
1991 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1992 int start_type, bool whole_block)
1994 unsigned int current_order = page_order(page);
1995 struct free_area *area;
1996 int free_pages, movable_pages, alike_pages;
1997 int old_block_type;
1999 old_block_type = get_pageblock_migratetype(page);
2002 * This can happen due to races and we want to prevent broken
2003 * highatomic accounting.
2005 if (is_migrate_highatomic(old_block_type))
2006 goto single_page;
2008 /* Take ownership for orders >= pageblock_order */
2009 if (current_order >= pageblock_order) {
2010 change_pageblock_range(page, current_order, start_type);
2011 goto single_page;
2014 /* We are not allowed to try stealing from the whole block */
2015 if (!whole_block)
2016 goto single_page;
2018 free_pages = move_freepages_block(zone, page, start_type,
2019 &movable_pages);
2021 * Determine how many pages are compatible with our allocation.
2022 * For movable allocation, it's the number of movable pages which
2023 * we just obtained. For other types it's a bit more tricky.
2025 if (start_type == MIGRATE_MOVABLE) {
2026 alike_pages = movable_pages;
2027 } else {
2029 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2030 * to MOVABLE pageblock, consider all non-movable pages as
2031 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2032 * vice versa, be conservative since we can't distinguish the
2033 * exact migratetype of non-movable pages.
2035 if (old_block_type == MIGRATE_MOVABLE)
2036 alike_pages = pageblock_nr_pages
2037 - (free_pages + movable_pages);
2038 else
2039 alike_pages = 0;
2042 /* moving whole block can fail due to zone boundary conditions */
2043 if (!free_pages)
2044 goto single_page;
2047 * If a sufficient number of pages in the block are either free or of
2048 * comparable migratability as our allocation, claim the whole block.
2050 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2051 page_group_by_mobility_disabled)
2052 set_pageblock_migratetype(page, start_type);
2054 return;
2056 single_page:
2057 area = &zone->free_area[current_order];
2058 list_move(&page->lru, &area->free_list[start_type]);
2062 * Check whether there is a suitable fallback freepage with requested order.
2063 * If only_stealable is true, this function returns fallback_mt only if
2064 * we can steal other freepages all together. This would help to reduce
2065 * fragmentation due to mixed migratetype pages in one pageblock.
2067 int find_suitable_fallback(struct free_area *area, unsigned int order,
2068 int migratetype, bool only_stealable, bool *can_steal)
2070 int i;
2071 int fallback_mt;
2073 if (area->nr_free == 0)
2074 return -1;
2076 *can_steal = false;
2077 for (i = 0;; i++) {
2078 fallback_mt = fallbacks[migratetype][i];
2079 if (fallback_mt == MIGRATE_TYPES)
2080 break;
2082 if (list_empty(&area->free_list[fallback_mt]))
2083 continue;
2085 if (can_steal_fallback(order, migratetype))
2086 *can_steal = true;
2088 if (!only_stealable)
2089 return fallback_mt;
2091 if (*can_steal)
2092 return fallback_mt;
2095 return -1;
2099 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2100 * there are no empty page blocks that contain a page with a suitable order
2102 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2103 unsigned int alloc_order)
2105 int mt;
2106 unsigned long max_managed, flags;
2109 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2110 * Check is race-prone but harmless.
2112 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2113 if (zone->nr_reserved_highatomic >= max_managed)
2114 return;
2116 spin_lock_irqsave(&zone->lock, flags);
2118 /* Recheck the nr_reserved_highatomic limit under the lock */
2119 if (zone->nr_reserved_highatomic >= max_managed)
2120 goto out_unlock;
2122 /* Yoink! */
2123 mt = get_pageblock_migratetype(page);
2124 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2125 && !is_migrate_cma(mt)) {
2126 zone->nr_reserved_highatomic += pageblock_nr_pages;
2127 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2128 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2131 out_unlock:
2132 spin_unlock_irqrestore(&zone->lock, flags);
2136 * Used when an allocation is about to fail under memory pressure. This
2137 * potentially hurts the reliability of high-order allocations when under
2138 * intense memory pressure but failed atomic allocations should be easier
2139 * to recover from than an OOM.
2141 * If @force is true, try to unreserve a pageblock even though highatomic
2142 * pageblock is exhausted.
2144 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2145 bool force)
2147 struct zonelist *zonelist = ac->zonelist;
2148 unsigned long flags;
2149 struct zoneref *z;
2150 struct zone *zone;
2151 struct page *page;
2152 int order;
2153 bool ret;
2155 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2156 ac->nodemask) {
2158 * Preserve at least one pageblock unless memory pressure
2159 * is really high.
2161 if (!force && zone->nr_reserved_highatomic <=
2162 pageblock_nr_pages)
2163 continue;
2165 spin_lock_irqsave(&zone->lock, flags);
2166 for (order = 0; order < MAX_ORDER; order++) {
2167 struct free_area *area = &(zone->free_area[order]);
2169 page = list_first_entry_or_null(
2170 &area->free_list[MIGRATE_HIGHATOMIC],
2171 struct page, lru);
2172 if (!page)
2173 continue;
2176 * In page freeing path, migratetype change is racy so
2177 * we can counter several free pages in a pageblock
2178 * in this loop althoug we changed the pageblock type
2179 * from highatomic to ac->migratetype. So we should
2180 * adjust the count once.
2182 if (is_migrate_highatomic_page(page)) {
2184 * It should never happen but changes to
2185 * locking could inadvertently allow a per-cpu
2186 * drain to add pages to MIGRATE_HIGHATOMIC
2187 * while unreserving so be safe and watch for
2188 * underflows.
2190 zone->nr_reserved_highatomic -= min(
2191 pageblock_nr_pages,
2192 zone->nr_reserved_highatomic);
2196 * Convert to ac->migratetype and avoid the normal
2197 * pageblock stealing heuristics. Minimally, the caller
2198 * is doing the work and needs the pages. More
2199 * importantly, if the block was always converted to
2200 * MIGRATE_UNMOVABLE or another type then the number
2201 * of pageblocks that cannot be completely freed
2202 * may increase.
2204 set_pageblock_migratetype(page, ac->migratetype);
2205 ret = move_freepages_block(zone, page, ac->migratetype,
2206 NULL);
2207 if (ret) {
2208 spin_unlock_irqrestore(&zone->lock, flags);
2209 return ret;
2212 spin_unlock_irqrestore(&zone->lock, flags);
2215 return false;
2219 * Try finding a free buddy page on the fallback list and put it on the free
2220 * list of requested migratetype, possibly along with other pages from the same
2221 * block, depending on fragmentation avoidance heuristics. Returns true if
2222 * fallback was found so that __rmqueue_smallest() can grab it.
2224 * The use of signed ints for order and current_order is a deliberate
2225 * deviation from the rest of this file, to make the for loop
2226 * condition simpler.
2228 static inline bool
2229 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2231 struct free_area *area;
2232 int current_order;
2233 struct page *page;
2234 int fallback_mt;
2235 bool can_steal;
2238 * Find the largest available free page in the other list. This roughly
2239 * approximates finding the pageblock with the most free pages, which
2240 * would be too costly to do exactly.
2242 for (current_order = MAX_ORDER - 1; current_order >= order;
2243 --current_order) {
2244 area = &(zone->free_area[current_order]);
2245 fallback_mt = find_suitable_fallback(area, current_order,
2246 start_migratetype, false, &can_steal);
2247 if (fallback_mt == -1)
2248 continue;
2251 * We cannot steal all free pages from the pageblock and the
2252 * requested migratetype is movable. In that case it's better to
2253 * steal and split the smallest available page instead of the
2254 * largest available page, because even if the next movable
2255 * allocation falls back into a different pageblock than this
2256 * one, it won't cause permanent fragmentation.
2258 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2259 && current_order > order)
2260 goto find_smallest;
2262 goto do_steal;
2265 return false;
2267 find_smallest:
2268 for (current_order = order; current_order < MAX_ORDER;
2269 current_order++) {
2270 area = &(zone->free_area[current_order]);
2271 fallback_mt = find_suitable_fallback(area, current_order,
2272 start_migratetype, false, &can_steal);
2273 if (fallback_mt != -1)
2274 break;
2278 * This should not happen - we already found a suitable fallback
2279 * when looking for the largest page.
2281 VM_BUG_ON(current_order == MAX_ORDER);
2283 do_steal:
2284 page = list_first_entry(&area->free_list[fallback_mt],
2285 struct page, lru);
2287 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2289 trace_mm_page_alloc_extfrag(page, order, current_order,
2290 start_migratetype, fallback_mt);
2292 return true;
2297 * Do the hard work of removing an element from the buddy allocator.
2298 * Call me with the zone->lock already held.
2300 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2301 int migratetype)
2303 struct page *page;
2305 retry:
2306 page = __rmqueue_smallest(zone, order, migratetype);
2307 if (unlikely(!page)) {
2308 if (migratetype == MIGRATE_MOVABLE)
2309 page = __rmqueue_cma_fallback(zone, order);
2311 if (!page && __rmqueue_fallback(zone, order, migratetype))
2312 goto retry;
2315 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2316 return page;
2320 * Obtain a specified number of elements from the buddy allocator, all under
2321 * a single hold of the lock, for efficiency. Add them to the supplied list.
2322 * Returns the number of new pages which were placed at *list.
2324 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2325 unsigned long count, struct list_head *list,
2326 int migratetype, bool cold)
2328 int i, alloced = 0;
2330 spin_lock(&zone->lock);
2331 for (i = 0; i < count; ++i) {
2332 struct page *page = __rmqueue(zone, order, migratetype);
2333 if (unlikely(page == NULL))
2334 break;
2336 if (unlikely(check_pcp_refill(page)))
2337 continue;
2340 * Split buddy pages returned by expand() are received here
2341 * in physical page order. The page is added to the callers and
2342 * list and the list head then moves forward. From the callers
2343 * perspective, the linked list is ordered by page number in
2344 * some conditions. This is useful for IO devices that can
2345 * merge IO requests if the physical pages are ordered
2346 * properly.
2348 if (likely(!cold))
2349 list_add(&page->lru, list);
2350 else
2351 list_add_tail(&page->lru, list);
2352 list = &page->lru;
2353 alloced++;
2354 if (is_migrate_cma(get_pcppage_migratetype(page)))
2355 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2356 -(1 << order));
2360 * i pages were removed from the buddy list even if some leak due
2361 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2362 * on i. Do not confuse with 'alloced' which is the number of
2363 * pages added to the pcp list.
2365 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2366 spin_unlock(&zone->lock);
2367 return alloced;
2370 #ifdef CONFIG_NUMA
2372 * Called from the vmstat counter updater to drain pagesets of this
2373 * currently executing processor on remote nodes after they have
2374 * expired.
2376 * Note that this function must be called with the thread pinned to
2377 * a single processor.
2379 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2381 unsigned long flags;
2382 int to_drain, batch;
2384 local_irq_save(flags);
2385 batch = READ_ONCE(pcp->batch);
2386 to_drain = min(pcp->count, batch);
2387 if (to_drain > 0) {
2388 free_pcppages_bulk(zone, to_drain, pcp);
2389 pcp->count -= to_drain;
2391 local_irq_restore(flags);
2393 #endif
2396 * Drain pcplists of the indicated processor and zone.
2398 * The processor must either be the current processor and the
2399 * thread pinned to the current processor or a processor that
2400 * is not online.
2402 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2404 unsigned long flags;
2405 struct per_cpu_pageset *pset;
2406 struct per_cpu_pages *pcp;
2408 local_irq_save(flags);
2409 pset = per_cpu_ptr(zone->pageset, cpu);
2411 pcp = &pset->pcp;
2412 if (pcp->count) {
2413 free_pcppages_bulk(zone, pcp->count, pcp);
2414 pcp->count = 0;
2416 local_irq_restore(flags);
2420 * Drain pcplists of all zones on the indicated processor.
2422 * The processor must either be the current processor and the
2423 * thread pinned to the current processor or a processor that
2424 * is not online.
2426 static void drain_pages(unsigned int cpu)
2428 struct zone *zone;
2430 for_each_populated_zone(zone) {
2431 drain_pages_zone(cpu, zone);
2436 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2438 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2439 * the single zone's pages.
2441 void drain_local_pages(struct zone *zone)
2443 int cpu = smp_processor_id();
2445 if (zone)
2446 drain_pages_zone(cpu, zone);
2447 else
2448 drain_pages(cpu);
2451 static void drain_local_pages_wq(struct work_struct *work)
2454 * drain_all_pages doesn't use proper cpu hotplug protection so
2455 * we can race with cpu offline when the WQ can move this from
2456 * a cpu pinned worker to an unbound one. We can operate on a different
2457 * cpu which is allright but we also have to make sure to not move to
2458 * a different one.
2460 preempt_disable();
2461 drain_local_pages(NULL);
2462 preempt_enable();
2466 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2468 * When zone parameter is non-NULL, spill just the single zone's pages.
2470 * Note that this can be extremely slow as the draining happens in a workqueue.
2472 void drain_all_pages(struct zone *zone)
2474 int cpu;
2477 * Allocate in the BSS so we wont require allocation in
2478 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2480 static cpumask_t cpus_with_pcps;
2483 * Make sure nobody triggers this path before mm_percpu_wq is fully
2484 * initialized.
2486 if (WARN_ON_ONCE(!mm_percpu_wq))
2487 return;
2489 /* Workqueues cannot recurse */
2490 if (current->flags & PF_WQ_WORKER)
2491 return;
2494 * Do not drain if one is already in progress unless it's specific to
2495 * a zone. Such callers are primarily CMA and memory hotplug and need
2496 * the drain to be complete when the call returns.
2498 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2499 if (!zone)
2500 return;
2501 mutex_lock(&pcpu_drain_mutex);
2505 * We don't care about racing with CPU hotplug event
2506 * as offline notification will cause the notified
2507 * cpu to drain that CPU pcps and on_each_cpu_mask
2508 * disables preemption as part of its processing
2510 for_each_online_cpu(cpu) {
2511 struct per_cpu_pageset *pcp;
2512 struct zone *z;
2513 bool has_pcps = false;
2515 if (zone) {
2516 pcp = per_cpu_ptr(zone->pageset, cpu);
2517 if (pcp->pcp.count)
2518 has_pcps = true;
2519 } else {
2520 for_each_populated_zone(z) {
2521 pcp = per_cpu_ptr(z->pageset, cpu);
2522 if (pcp->pcp.count) {
2523 has_pcps = true;
2524 break;
2529 if (has_pcps)
2530 cpumask_set_cpu(cpu, &cpus_with_pcps);
2531 else
2532 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2535 for_each_cpu(cpu, &cpus_with_pcps) {
2536 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2537 INIT_WORK(work, drain_local_pages_wq);
2538 queue_work_on(cpu, mm_percpu_wq, work);
2540 for_each_cpu(cpu, &cpus_with_pcps)
2541 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2543 mutex_unlock(&pcpu_drain_mutex);
2546 #ifdef CONFIG_HIBERNATION
2549 * Touch the watchdog for every WD_PAGE_COUNT pages.
2551 #define WD_PAGE_COUNT (128*1024)
2553 void mark_free_pages(struct zone *zone)
2555 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2556 unsigned long flags;
2557 unsigned int order, t;
2558 struct page *page;
2560 if (zone_is_empty(zone))
2561 return;
2563 spin_lock_irqsave(&zone->lock, flags);
2565 max_zone_pfn = zone_end_pfn(zone);
2566 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2567 if (pfn_valid(pfn)) {
2568 page = pfn_to_page(pfn);
2570 if (!--page_count) {
2571 touch_nmi_watchdog();
2572 page_count = WD_PAGE_COUNT;
2575 if (page_zone(page) != zone)
2576 continue;
2578 if (!swsusp_page_is_forbidden(page))
2579 swsusp_unset_page_free(page);
2582 for_each_migratetype_order(order, t) {
2583 list_for_each_entry(page,
2584 &zone->free_area[order].free_list[t], lru) {
2585 unsigned long i;
2587 pfn = page_to_pfn(page);
2588 for (i = 0; i < (1UL << order); i++) {
2589 if (!--page_count) {
2590 touch_nmi_watchdog();
2591 page_count = WD_PAGE_COUNT;
2593 swsusp_set_page_free(pfn_to_page(pfn + i));
2597 spin_unlock_irqrestore(&zone->lock, flags);
2599 #endif /* CONFIG_PM */
2602 * Free a 0-order page
2603 * cold == true ? free a cold page : free a hot page
2605 void free_hot_cold_page(struct page *page, bool cold)
2607 struct zone *zone = page_zone(page);
2608 struct per_cpu_pages *pcp;
2609 unsigned long flags;
2610 unsigned long pfn = page_to_pfn(page);
2611 int migratetype;
2613 if (!free_pcp_prepare(page))
2614 return;
2616 migratetype = get_pfnblock_migratetype(page, pfn);
2617 set_pcppage_migratetype(page, migratetype);
2618 local_irq_save(flags);
2619 __count_vm_event(PGFREE);
2622 * We only track unmovable, reclaimable and movable on pcp lists.
2623 * Free ISOLATE pages back to the allocator because they are being
2624 * offlined but treat HIGHATOMIC as movable pages so we can get those
2625 * areas back if necessary. Otherwise, we may have to free
2626 * excessively into the page allocator
2628 if (migratetype >= MIGRATE_PCPTYPES) {
2629 if (unlikely(is_migrate_isolate(migratetype))) {
2630 free_one_page(zone, page, pfn, 0, migratetype);
2631 goto out;
2633 migratetype = MIGRATE_MOVABLE;
2636 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2637 if (!cold)
2638 list_add(&page->lru, &pcp->lists[migratetype]);
2639 else
2640 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2641 pcp->count++;
2642 if (pcp->count >= pcp->high) {
2643 unsigned long batch = READ_ONCE(pcp->batch);
2644 free_pcppages_bulk(zone, batch, pcp);
2645 pcp->count -= batch;
2648 out:
2649 local_irq_restore(flags);
2653 * Free a list of 0-order pages
2655 void free_hot_cold_page_list(struct list_head *list, bool cold)
2657 struct page *page, *next;
2659 list_for_each_entry_safe(page, next, list, lru) {
2660 trace_mm_page_free_batched(page, cold);
2661 free_hot_cold_page(page, cold);
2666 * split_page takes a non-compound higher-order page, and splits it into
2667 * n (1<<order) sub-pages: page[0..n]
2668 * Each sub-page must be freed individually.
2670 * Note: this is probably too low level an operation for use in drivers.
2671 * Please consult with lkml before using this in your driver.
2673 void split_page(struct page *page, unsigned int order)
2675 int i;
2677 VM_BUG_ON_PAGE(PageCompound(page), page);
2678 VM_BUG_ON_PAGE(!page_count(page), page);
2680 #ifdef CONFIG_KMEMCHECK
2682 * Split shadow pages too, because free(page[0]) would
2683 * otherwise free the whole shadow.
2685 if (kmemcheck_page_is_tracked(page))
2686 split_page(virt_to_page(page[0].shadow), order);
2687 #endif
2689 for (i = 1; i < (1 << order); i++)
2690 set_page_refcounted(page + i);
2691 split_page_owner(page, order);
2693 EXPORT_SYMBOL_GPL(split_page);
2695 int __isolate_free_page(struct page *page, unsigned int order)
2697 unsigned long watermark;
2698 struct zone *zone;
2699 int mt;
2701 BUG_ON(!PageBuddy(page));
2703 zone = page_zone(page);
2704 mt = get_pageblock_migratetype(page);
2706 if (!is_migrate_isolate(mt)) {
2708 * Obey watermarks as if the page was being allocated. We can
2709 * emulate a high-order watermark check with a raised order-0
2710 * watermark, because we already know our high-order page
2711 * exists.
2713 watermark = min_wmark_pages(zone) + (1UL << order);
2714 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2715 return 0;
2717 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2720 /* Remove page from free list */
2721 list_del(&page->lru);
2722 zone->free_area[order].nr_free--;
2723 rmv_page_order(page);
2726 * Set the pageblock if the isolated page is at least half of a
2727 * pageblock
2729 if (order >= pageblock_order - 1) {
2730 struct page *endpage = page + (1 << order) - 1;
2731 for (; page < endpage; page += pageblock_nr_pages) {
2732 int mt = get_pageblock_migratetype(page);
2733 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2734 && !is_migrate_highatomic(mt))
2735 set_pageblock_migratetype(page,
2736 MIGRATE_MOVABLE);
2741 return 1UL << order;
2745 * Update NUMA hit/miss statistics
2747 * Must be called with interrupts disabled.
2749 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2751 #ifdef CONFIG_NUMA
2752 enum zone_stat_item local_stat = NUMA_LOCAL;
2754 if (z->node != numa_node_id())
2755 local_stat = NUMA_OTHER;
2757 if (z->node == preferred_zone->node)
2758 __inc_zone_state(z, NUMA_HIT);
2759 else {
2760 __inc_zone_state(z, NUMA_MISS);
2761 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2763 __inc_zone_state(z, local_stat);
2764 #endif
2767 /* Remove page from the per-cpu list, caller must protect the list */
2768 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2769 bool cold, struct per_cpu_pages *pcp,
2770 struct list_head *list)
2772 struct page *page;
2774 do {
2775 if (list_empty(list)) {
2776 pcp->count += rmqueue_bulk(zone, 0,
2777 pcp->batch, list,
2778 migratetype, cold);
2779 if (unlikely(list_empty(list)))
2780 return NULL;
2783 if (cold)
2784 page = list_last_entry(list, struct page, lru);
2785 else
2786 page = list_first_entry(list, struct page, lru);
2788 list_del(&page->lru);
2789 pcp->count--;
2790 } while (check_new_pcp(page));
2792 return page;
2795 /* Lock and remove page from the per-cpu list */
2796 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2797 struct zone *zone, unsigned int order,
2798 gfp_t gfp_flags, int migratetype)
2800 struct per_cpu_pages *pcp;
2801 struct list_head *list;
2802 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2803 struct page *page;
2804 unsigned long flags;
2806 local_irq_save(flags);
2807 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2808 list = &pcp->lists[migratetype];
2809 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2810 if (page) {
2811 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2812 zone_statistics(preferred_zone, zone);
2814 local_irq_restore(flags);
2815 return page;
2819 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2821 static inline
2822 struct page *rmqueue(struct zone *preferred_zone,
2823 struct zone *zone, unsigned int order,
2824 gfp_t gfp_flags, unsigned int alloc_flags,
2825 int migratetype)
2827 unsigned long flags;
2828 struct page *page;
2830 if (likely(order == 0)) {
2831 page = rmqueue_pcplist(preferred_zone, zone, order,
2832 gfp_flags, migratetype);
2833 goto out;
2837 * We most definitely don't want callers attempting to
2838 * allocate greater than order-1 page units with __GFP_NOFAIL.
2840 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2841 spin_lock_irqsave(&zone->lock, flags);
2843 do {
2844 page = NULL;
2845 if (alloc_flags & ALLOC_HARDER) {
2846 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2847 if (page)
2848 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2850 if (!page)
2851 page = __rmqueue(zone, order, migratetype);
2852 } while (page && check_new_pages(page, order));
2853 spin_unlock(&zone->lock);
2854 if (!page)
2855 goto failed;
2856 __mod_zone_freepage_state(zone, -(1 << order),
2857 get_pcppage_migratetype(page));
2859 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2860 zone_statistics(preferred_zone, zone);
2861 local_irq_restore(flags);
2863 out:
2864 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2865 return page;
2867 failed:
2868 local_irq_restore(flags);
2869 return NULL;
2872 #ifdef CONFIG_FAIL_PAGE_ALLOC
2874 static struct {
2875 struct fault_attr attr;
2877 bool ignore_gfp_highmem;
2878 bool ignore_gfp_reclaim;
2879 u32 min_order;
2880 } fail_page_alloc = {
2881 .attr = FAULT_ATTR_INITIALIZER,
2882 .ignore_gfp_reclaim = true,
2883 .ignore_gfp_highmem = true,
2884 .min_order = 1,
2887 static int __init setup_fail_page_alloc(char *str)
2889 return setup_fault_attr(&fail_page_alloc.attr, str);
2891 __setup("fail_page_alloc=", setup_fail_page_alloc);
2893 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2895 if (order < fail_page_alloc.min_order)
2896 return false;
2897 if (gfp_mask & __GFP_NOFAIL)
2898 return false;
2899 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2900 return false;
2901 if (fail_page_alloc.ignore_gfp_reclaim &&
2902 (gfp_mask & __GFP_DIRECT_RECLAIM))
2903 return false;
2905 return should_fail(&fail_page_alloc.attr, 1 << order);
2908 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2910 static int __init fail_page_alloc_debugfs(void)
2912 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2913 struct dentry *dir;
2915 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2916 &fail_page_alloc.attr);
2917 if (IS_ERR(dir))
2918 return PTR_ERR(dir);
2920 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2921 &fail_page_alloc.ignore_gfp_reclaim))
2922 goto fail;
2923 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2924 &fail_page_alloc.ignore_gfp_highmem))
2925 goto fail;
2926 if (!debugfs_create_u32("min-order", mode, dir,
2927 &fail_page_alloc.min_order))
2928 goto fail;
2930 return 0;
2931 fail:
2932 debugfs_remove_recursive(dir);
2934 return -ENOMEM;
2937 late_initcall(fail_page_alloc_debugfs);
2939 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2941 #else /* CONFIG_FAIL_PAGE_ALLOC */
2943 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2945 return false;
2948 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2951 * Return true if free base pages are above 'mark'. For high-order checks it
2952 * will return true of the order-0 watermark is reached and there is at least
2953 * one free page of a suitable size. Checking now avoids taking the zone lock
2954 * to check in the allocation paths if no pages are free.
2956 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2957 int classzone_idx, unsigned int alloc_flags,
2958 long free_pages)
2960 long min = mark;
2961 int o;
2962 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2964 /* free_pages may go negative - that's OK */
2965 free_pages -= (1 << order) - 1;
2967 if (alloc_flags & ALLOC_HIGH)
2968 min -= min / 2;
2971 * If the caller does not have rights to ALLOC_HARDER then subtract
2972 * the high-atomic reserves. This will over-estimate the size of the
2973 * atomic reserve but it avoids a search.
2975 if (likely(!alloc_harder))
2976 free_pages -= z->nr_reserved_highatomic;
2977 else
2978 min -= min / 4;
2980 #ifdef CONFIG_CMA
2981 /* If allocation can't use CMA areas don't use free CMA pages */
2982 if (!(alloc_flags & ALLOC_CMA))
2983 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2984 #endif
2987 * Check watermarks for an order-0 allocation request. If these
2988 * are not met, then a high-order request also cannot go ahead
2989 * even if a suitable page happened to be free.
2991 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2992 return false;
2994 /* If this is an order-0 request then the watermark is fine */
2995 if (!order)
2996 return true;
2998 /* For a high-order request, check at least one suitable page is free */
2999 for (o = order; o < MAX_ORDER; o++) {
3000 struct free_area *area = &z->free_area[o];
3001 int mt;
3003 if (!area->nr_free)
3004 continue;
3006 if (alloc_harder)
3007 return true;
3009 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3010 if (!list_empty(&area->free_list[mt]))
3011 return true;
3014 #ifdef CONFIG_CMA
3015 if ((alloc_flags & ALLOC_CMA) &&
3016 !list_empty(&area->free_list[MIGRATE_CMA])) {
3017 return true;
3019 #endif
3021 return false;
3024 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3025 int classzone_idx, unsigned int alloc_flags)
3027 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3028 zone_page_state(z, NR_FREE_PAGES));
3031 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3032 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3034 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3035 long cma_pages = 0;
3037 #ifdef CONFIG_CMA
3038 /* If allocation can't use CMA areas don't use free CMA pages */
3039 if (!(alloc_flags & ALLOC_CMA))
3040 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3041 #endif
3044 * Fast check for order-0 only. If this fails then the reserves
3045 * need to be calculated. There is a corner case where the check
3046 * passes but only the high-order atomic reserve are free. If
3047 * the caller is !atomic then it'll uselessly search the free
3048 * list. That corner case is then slower but it is harmless.
3050 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3051 return true;
3053 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3054 free_pages);
3057 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3058 unsigned long mark, int classzone_idx)
3060 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3062 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3063 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3065 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3066 free_pages);
3069 #ifdef CONFIG_NUMA
3070 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3072 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3073 RECLAIM_DISTANCE;
3075 #else /* CONFIG_NUMA */
3076 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3078 return true;
3080 #endif /* CONFIG_NUMA */
3083 * get_page_from_freelist goes through the zonelist trying to allocate
3084 * a page.
3086 static struct page *
3087 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3088 const struct alloc_context *ac)
3090 struct zoneref *z = ac->preferred_zoneref;
3091 struct zone *zone;
3092 struct pglist_data *last_pgdat_dirty_limit = NULL;
3095 * Scan zonelist, looking for a zone with enough free.
3096 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3098 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3099 ac->nodemask) {
3100 struct page *page;
3101 unsigned long mark;
3103 if (cpusets_enabled() &&
3104 (alloc_flags & ALLOC_CPUSET) &&
3105 !__cpuset_zone_allowed(zone, gfp_mask))
3106 continue;
3108 * When allocating a page cache page for writing, we
3109 * want to get it from a node that is within its dirty
3110 * limit, such that no single node holds more than its
3111 * proportional share of globally allowed dirty pages.
3112 * The dirty limits take into account the node's
3113 * lowmem reserves and high watermark so that kswapd
3114 * should be able to balance it without having to
3115 * write pages from its LRU list.
3117 * XXX: For now, allow allocations to potentially
3118 * exceed the per-node dirty limit in the slowpath
3119 * (spread_dirty_pages unset) before going into reclaim,
3120 * which is important when on a NUMA setup the allowed
3121 * nodes are together not big enough to reach the
3122 * global limit. The proper fix for these situations
3123 * will require awareness of nodes in the
3124 * dirty-throttling and the flusher threads.
3126 if (ac->spread_dirty_pages) {
3127 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3128 continue;
3130 if (!node_dirty_ok(zone->zone_pgdat)) {
3131 last_pgdat_dirty_limit = zone->zone_pgdat;
3132 continue;
3136 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3137 if (!zone_watermark_fast(zone, order, mark,
3138 ac_classzone_idx(ac), alloc_flags)) {
3139 int ret;
3141 /* Checked here to keep the fast path fast */
3142 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3143 if (alloc_flags & ALLOC_NO_WATERMARKS)
3144 goto try_this_zone;
3146 if (node_reclaim_mode == 0 ||
3147 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3148 continue;
3150 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3151 switch (ret) {
3152 case NODE_RECLAIM_NOSCAN:
3153 /* did not scan */
3154 continue;
3155 case NODE_RECLAIM_FULL:
3156 /* scanned but unreclaimable */
3157 continue;
3158 default:
3159 /* did we reclaim enough */
3160 if (zone_watermark_ok(zone, order, mark,
3161 ac_classzone_idx(ac), alloc_flags))
3162 goto try_this_zone;
3164 continue;
3168 try_this_zone:
3169 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3170 gfp_mask, alloc_flags, ac->migratetype);
3171 if (page) {
3172 prep_new_page(page, order, gfp_mask, alloc_flags);
3175 * If this is a high-order atomic allocation then check
3176 * if the pageblock should be reserved for the future
3178 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3179 reserve_highatomic_pageblock(page, zone, order);
3181 return page;
3185 return NULL;
3189 * Large machines with many possible nodes should not always dump per-node
3190 * meminfo in irq context.
3192 static inline bool should_suppress_show_mem(void)
3194 bool ret = false;
3196 #if NODES_SHIFT > 8
3197 ret = in_interrupt();
3198 #endif
3199 return ret;
3202 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3204 unsigned int filter = SHOW_MEM_FILTER_NODES;
3205 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3207 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3208 return;
3211 * This documents exceptions given to allocations in certain
3212 * contexts that are allowed to allocate outside current's set
3213 * of allowed nodes.
3215 if (!(gfp_mask & __GFP_NOMEMALLOC))
3216 if (test_thread_flag(TIF_MEMDIE) ||
3217 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3218 filter &= ~SHOW_MEM_FILTER_NODES;
3219 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3220 filter &= ~SHOW_MEM_FILTER_NODES;
3222 show_mem(filter, nodemask);
3225 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3227 struct va_format vaf;
3228 va_list args;
3229 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3230 DEFAULT_RATELIMIT_BURST);
3232 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3233 return;
3235 pr_warn("%s: ", current->comm);
3237 va_start(args, fmt);
3238 vaf.fmt = fmt;
3239 vaf.va = &args;
3240 pr_cont("%pV", &vaf);
3241 va_end(args);
3243 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3244 if (nodemask)
3245 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3246 else
3247 pr_cont("(null)\n");
3249 cpuset_print_current_mems_allowed();
3251 dump_stack();
3252 warn_alloc_show_mem(gfp_mask, nodemask);
3255 static inline struct page *
3256 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3257 unsigned int alloc_flags,
3258 const struct alloc_context *ac)
3260 struct page *page;
3262 page = get_page_from_freelist(gfp_mask, order,
3263 alloc_flags|ALLOC_CPUSET, ac);
3265 * fallback to ignore cpuset restriction if our nodes
3266 * are depleted
3268 if (!page)
3269 page = get_page_from_freelist(gfp_mask, order,
3270 alloc_flags, ac);
3272 return page;
3275 static inline struct page *
3276 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3277 const struct alloc_context *ac, unsigned long *did_some_progress)
3279 struct oom_control oc = {
3280 .zonelist = ac->zonelist,
3281 .nodemask = ac->nodemask,
3282 .memcg = NULL,
3283 .gfp_mask = gfp_mask,
3284 .order = order,
3286 struct page *page;
3288 *did_some_progress = 0;
3291 * Acquire the oom lock. If that fails, somebody else is
3292 * making progress for us.
3294 if (!mutex_trylock(&oom_lock)) {
3295 *did_some_progress = 1;
3296 schedule_timeout_uninterruptible(1);
3297 return NULL;
3301 * Go through the zonelist yet one more time, keep very high watermark
3302 * here, this is only to catch a parallel oom killing, we must fail if
3303 * we're still under heavy pressure. But make sure that this reclaim
3304 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3305 * allocation which will never fail due to oom_lock already held.
3307 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3308 ~__GFP_DIRECT_RECLAIM, order,
3309 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3310 if (page)
3311 goto out;
3313 /* Coredumps can quickly deplete all memory reserves */
3314 if (current->flags & PF_DUMPCORE)
3315 goto out;
3316 /* The OOM killer will not help higher order allocs */
3317 if (order > PAGE_ALLOC_COSTLY_ORDER)
3318 goto out;
3320 * We have already exhausted all our reclaim opportunities without any
3321 * success so it is time to admit defeat. We will skip the OOM killer
3322 * because it is very likely that the caller has a more reasonable
3323 * fallback than shooting a random task.
3325 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3326 goto out;
3327 /* The OOM killer does not needlessly kill tasks for lowmem */
3328 if (ac->high_zoneidx < ZONE_NORMAL)
3329 goto out;
3330 if (pm_suspended_storage())
3331 goto out;
3333 * XXX: GFP_NOFS allocations should rather fail than rely on
3334 * other request to make a forward progress.
3335 * We are in an unfortunate situation where out_of_memory cannot
3336 * do much for this context but let's try it to at least get
3337 * access to memory reserved if the current task is killed (see
3338 * out_of_memory). Once filesystems are ready to handle allocation
3339 * failures more gracefully we should just bail out here.
3342 /* The OOM killer may not free memory on a specific node */
3343 if (gfp_mask & __GFP_THISNODE)
3344 goto out;
3346 /* Exhausted what can be done so it's blamo time */
3347 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3348 *did_some_progress = 1;
3351 * Help non-failing allocations by giving them access to memory
3352 * reserves
3354 if (gfp_mask & __GFP_NOFAIL)
3355 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3356 ALLOC_NO_WATERMARKS, ac);
3358 out:
3359 mutex_unlock(&oom_lock);
3360 return page;
3364 * Maximum number of compaction retries wit a progress before OOM
3365 * killer is consider as the only way to move forward.
3367 #define MAX_COMPACT_RETRIES 16
3369 #ifdef CONFIG_COMPACTION
3370 /* Try memory compaction for high-order allocations before reclaim */
3371 static struct page *
3372 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3373 unsigned int alloc_flags, const struct alloc_context *ac,
3374 enum compact_priority prio, enum compact_result *compact_result)
3376 struct page *page;
3377 unsigned int noreclaim_flag;
3379 if (!order)
3380 return NULL;
3382 noreclaim_flag = memalloc_noreclaim_save();
3383 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3384 prio);
3385 memalloc_noreclaim_restore(noreclaim_flag);
3387 if (*compact_result <= COMPACT_INACTIVE)
3388 return NULL;
3391 * At least in one zone compaction wasn't deferred or skipped, so let's
3392 * count a compaction stall
3394 count_vm_event(COMPACTSTALL);
3396 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3398 if (page) {
3399 struct zone *zone = page_zone(page);
3401 zone->compact_blockskip_flush = false;
3402 compaction_defer_reset(zone, order, true);
3403 count_vm_event(COMPACTSUCCESS);
3404 return page;
3408 * It's bad if compaction run occurs and fails. The most likely reason
3409 * is that pages exist, but not enough to satisfy watermarks.
3411 count_vm_event(COMPACTFAIL);
3413 cond_resched();
3415 return NULL;
3418 static inline bool
3419 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3420 enum compact_result compact_result,
3421 enum compact_priority *compact_priority,
3422 int *compaction_retries)
3424 int max_retries = MAX_COMPACT_RETRIES;
3425 int min_priority;
3426 bool ret = false;
3427 int retries = *compaction_retries;
3428 enum compact_priority priority = *compact_priority;
3430 if (!order)
3431 return false;
3433 if (compaction_made_progress(compact_result))
3434 (*compaction_retries)++;
3437 * compaction considers all the zone as desperately out of memory
3438 * so it doesn't really make much sense to retry except when the
3439 * failure could be caused by insufficient priority
3441 if (compaction_failed(compact_result))
3442 goto check_priority;
3445 * make sure the compaction wasn't deferred or didn't bail out early
3446 * due to locks contention before we declare that we should give up.
3447 * But do not retry if the given zonelist is not suitable for
3448 * compaction.
3450 if (compaction_withdrawn(compact_result)) {
3451 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3452 goto out;
3456 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3457 * costly ones because they are de facto nofail and invoke OOM
3458 * killer to move on while costly can fail and users are ready
3459 * to cope with that. 1/4 retries is rather arbitrary but we
3460 * would need much more detailed feedback from compaction to
3461 * make a better decision.
3463 if (order > PAGE_ALLOC_COSTLY_ORDER)
3464 max_retries /= 4;
3465 if (*compaction_retries <= max_retries) {
3466 ret = true;
3467 goto out;
3471 * Make sure there are attempts at the highest priority if we exhausted
3472 * all retries or failed at the lower priorities.
3474 check_priority:
3475 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3476 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3478 if (*compact_priority > min_priority) {
3479 (*compact_priority)--;
3480 *compaction_retries = 0;
3481 ret = true;
3483 out:
3484 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3485 return ret;
3487 #else
3488 static inline struct page *
3489 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3490 unsigned int alloc_flags, const struct alloc_context *ac,
3491 enum compact_priority prio, enum compact_result *compact_result)
3493 *compact_result = COMPACT_SKIPPED;
3494 return NULL;
3497 static inline bool
3498 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3499 enum compact_result compact_result,
3500 enum compact_priority *compact_priority,
3501 int *compaction_retries)
3503 struct zone *zone;
3504 struct zoneref *z;
3506 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3507 return false;
3510 * There are setups with compaction disabled which would prefer to loop
3511 * inside the allocator rather than hit the oom killer prematurely.
3512 * Let's give them a good hope and keep retrying while the order-0
3513 * watermarks are OK.
3515 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3516 ac->nodemask) {
3517 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3518 ac_classzone_idx(ac), alloc_flags))
3519 return true;
3521 return false;
3523 #endif /* CONFIG_COMPACTION */
3525 /* Perform direct synchronous page reclaim */
3526 static int
3527 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3528 const struct alloc_context *ac)
3530 struct reclaim_state reclaim_state;
3531 int progress;
3532 unsigned int noreclaim_flag;
3534 cond_resched();
3536 /* We now go into synchronous reclaim */
3537 cpuset_memory_pressure_bump();
3538 noreclaim_flag = memalloc_noreclaim_save();
3539 lockdep_set_current_reclaim_state(gfp_mask);
3540 reclaim_state.reclaimed_slab = 0;
3541 current->reclaim_state = &reclaim_state;
3543 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3544 ac->nodemask);
3546 current->reclaim_state = NULL;
3547 lockdep_clear_current_reclaim_state();
3548 memalloc_noreclaim_restore(noreclaim_flag);
3550 cond_resched();
3552 return progress;
3555 /* The really slow allocator path where we enter direct reclaim */
3556 static inline struct page *
3557 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3558 unsigned int alloc_flags, const struct alloc_context *ac,
3559 unsigned long *did_some_progress)
3561 struct page *page = NULL;
3562 bool drained = false;
3564 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3565 if (unlikely(!(*did_some_progress)))
3566 return NULL;
3568 retry:
3569 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3572 * If an allocation failed after direct reclaim, it could be because
3573 * pages are pinned on the per-cpu lists or in high alloc reserves.
3574 * Shrink them them and try again
3576 if (!page && !drained) {
3577 unreserve_highatomic_pageblock(ac, false);
3578 drain_all_pages(NULL);
3579 drained = true;
3580 goto retry;
3583 return page;
3586 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3588 struct zoneref *z;
3589 struct zone *zone;
3590 pg_data_t *last_pgdat = NULL;
3592 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3593 ac->high_zoneidx, ac->nodemask) {
3594 if (last_pgdat != zone->zone_pgdat)
3595 wakeup_kswapd(zone, order, ac->high_zoneidx);
3596 last_pgdat = zone->zone_pgdat;
3600 static inline unsigned int
3601 gfp_to_alloc_flags(gfp_t gfp_mask)
3603 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3605 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3606 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3609 * The caller may dip into page reserves a bit more if the caller
3610 * cannot run direct reclaim, or if the caller has realtime scheduling
3611 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3612 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3614 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3616 if (gfp_mask & __GFP_ATOMIC) {
3618 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3619 * if it can't schedule.
3621 if (!(gfp_mask & __GFP_NOMEMALLOC))
3622 alloc_flags |= ALLOC_HARDER;
3624 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3625 * comment for __cpuset_node_allowed().
3627 alloc_flags &= ~ALLOC_CPUSET;
3628 } else if (unlikely(rt_task(current)) && !in_interrupt())
3629 alloc_flags |= ALLOC_HARDER;
3631 #ifdef CONFIG_CMA
3632 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3633 alloc_flags |= ALLOC_CMA;
3634 #endif
3635 return alloc_flags;
3638 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3640 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3641 return false;
3643 if (gfp_mask & __GFP_MEMALLOC)
3644 return true;
3645 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3646 return true;
3647 if (!in_interrupt() &&
3648 ((current->flags & PF_MEMALLOC) ||
3649 unlikely(test_thread_flag(TIF_MEMDIE))))
3650 return true;
3652 return false;
3656 * Checks whether it makes sense to retry the reclaim to make a forward progress
3657 * for the given allocation request.
3659 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3660 * without success, or when we couldn't even meet the watermark if we
3661 * reclaimed all remaining pages on the LRU lists.
3663 * Returns true if a retry is viable or false to enter the oom path.
3665 static inline bool
3666 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3667 struct alloc_context *ac, int alloc_flags,
3668 bool did_some_progress, int *no_progress_loops)
3670 struct zone *zone;
3671 struct zoneref *z;
3674 * Costly allocations might have made a progress but this doesn't mean
3675 * their order will become available due to high fragmentation so
3676 * always increment the no progress counter for them
3678 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3679 *no_progress_loops = 0;
3680 else
3681 (*no_progress_loops)++;
3684 * Make sure we converge to OOM if we cannot make any progress
3685 * several times in the row.
3687 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3688 /* Before OOM, exhaust highatomic_reserve */
3689 return unreserve_highatomic_pageblock(ac, true);
3693 * Keep reclaiming pages while there is a chance this will lead
3694 * somewhere. If none of the target zones can satisfy our allocation
3695 * request even if all reclaimable pages are considered then we are
3696 * screwed and have to go OOM.
3698 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3699 ac->nodemask) {
3700 unsigned long available;
3701 unsigned long reclaimable;
3702 unsigned long min_wmark = min_wmark_pages(zone);
3703 bool wmark;
3705 available = reclaimable = zone_reclaimable_pages(zone);
3706 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3709 * Would the allocation succeed if we reclaimed all
3710 * reclaimable pages?
3712 wmark = __zone_watermark_ok(zone, order, min_wmark,
3713 ac_classzone_idx(ac), alloc_flags, available);
3714 trace_reclaim_retry_zone(z, order, reclaimable,
3715 available, min_wmark, *no_progress_loops, wmark);
3716 if (wmark) {
3718 * If we didn't make any progress and have a lot of
3719 * dirty + writeback pages then we should wait for
3720 * an IO to complete to slow down the reclaim and
3721 * prevent from pre mature OOM
3723 if (!did_some_progress) {
3724 unsigned long write_pending;
3726 write_pending = zone_page_state_snapshot(zone,
3727 NR_ZONE_WRITE_PENDING);
3729 if (2 * write_pending > reclaimable) {
3730 congestion_wait(BLK_RW_ASYNC, HZ/10);
3731 return true;
3736 * Memory allocation/reclaim might be called from a WQ
3737 * context and the current implementation of the WQ
3738 * concurrency control doesn't recognize that
3739 * a particular WQ is congested if the worker thread is
3740 * looping without ever sleeping. Therefore we have to
3741 * do a short sleep here rather than calling
3742 * cond_resched().
3744 if (current->flags & PF_WQ_WORKER)
3745 schedule_timeout_uninterruptible(1);
3746 else
3747 cond_resched();
3749 return true;
3753 return false;
3756 static inline bool
3757 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3760 * It's possible that cpuset's mems_allowed and the nodemask from
3761 * mempolicy don't intersect. This should be normally dealt with by
3762 * policy_nodemask(), but it's possible to race with cpuset update in
3763 * such a way the check therein was true, and then it became false
3764 * before we got our cpuset_mems_cookie here.
3765 * This assumes that for all allocations, ac->nodemask can come only
3766 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3767 * when it does not intersect with the cpuset restrictions) or the
3768 * caller can deal with a violated nodemask.
3770 if (cpusets_enabled() && ac->nodemask &&
3771 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3772 ac->nodemask = NULL;
3773 return true;
3777 * When updating a task's mems_allowed or mempolicy nodemask, it is
3778 * possible to race with parallel threads in such a way that our
3779 * allocation can fail while the mask is being updated. If we are about
3780 * to fail, check if the cpuset changed during allocation and if so,
3781 * retry.
3783 if (read_mems_allowed_retry(cpuset_mems_cookie))
3784 return true;
3786 return false;
3789 static inline struct page *
3790 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3791 struct alloc_context *ac)
3793 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3794 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3795 struct page *page = NULL;
3796 unsigned int alloc_flags;
3797 unsigned long did_some_progress;
3798 enum compact_priority compact_priority;
3799 enum compact_result compact_result;
3800 int compaction_retries;
3801 int no_progress_loops;
3802 unsigned long alloc_start = jiffies;
3803 unsigned int stall_timeout = 10 * HZ;
3804 unsigned int cpuset_mems_cookie;
3807 * In the slowpath, we sanity check order to avoid ever trying to
3808 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3809 * be using allocators in order of preference for an area that is
3810 * too large.
3812 if (order >= MAX_ORDER) {
3813 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3814 return NULL;
3818 * We also sanity check to catch abuse of atomic reserves being used by
3819 * callers that are not in atomic context.
3821 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3822 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3823 gfp_mask &= ~__GFP_ATOMIC;
3825 retry_cpuset:
3826 compaction_retries = 0;
3827 no_progress_loops = 0;
3828 compact_priority = DEF_COMPACT_PRIORITY;
3829 cpuset_mems_cookie = read_mems_allowed_begin();
3832 * The fast path uses conservative alloc_flags to succeed only until
3833 * kswapd needs to be woken up, and to avoid the cost of setting up
3834 * alloc_flags precisely. So we do that now.
3836 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3839 * We need to recalculate the starting point for the zonelist iterator
3840 * because we might have used different nodemask in the fast path, or
3841 * there was a cpuset modification and we are retrying - otherwise we
3842 * could end up iterating over non-eligible zones endlessly.
3844 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3845 ac->high_zoneidx, ac->nodemask);
3846 if (!ac->preferred_zoneref->zone)
3847 goto nopage;
3849 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3850 wake_all_kswapds(order, ac);
3853 * The adjusted alloc_flags might result in immediate success, so try
3854 * that first
3856 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3857 if (page)
3858 goto got_pg;
3861 * For costly allocations, try direct compaction first, as it's likely
3862 * that we have enough base pages and don't need to reclaim. For non-
3863 * movable high-order allocations, do that as well, as compaction will
3864 * try prevent permanent fragmentation by migrating from blocks of the
3865 * same migratetype.
3866 * Don't try this for allocations that are allowed to ignore
3867 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3869 if (can_direct_reclaim &&
3870 (costly_order ||
3871 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3872 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3873 page = __alloc_pages_direct_compact(gfp_mask, order,
3874 alloc_flags, ac,
3875 INIT_COMPACT_PRIORITY,
3876 &compact_result);
3877 if (page)
3878 goto got_pg;
3881 * Checks for costly allocations with __GFP_NORETRY, which
3882 * includes THP page fault allocations
3884 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3886 * If compaction is deferred for high-order allocations,
3887 * it is because sync compaction recently failed. If
3888 * this is the case and the caller requested a THP
3889 * allocation, we do not want to heavily disrupt the
3890 * system, so we fail the allocation instead of entering
3891 * direct reclaim.
3893 if (compact_result == COMPACT_DEFERRED)
3894 goto nopage;
3897 * Looks like reclaim/compaction is worth trying, but
3898 * sync compaction could be very expensive, so keep
3899 * using async compaction.
3901 compact_priority = INIT_COMPACT_PRIORITY;
3905 retry:
3906 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3907 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3908 wake_all_kswapds(order, ac);
3910 if (gfp_pfmemalloc_allowed(gfp_mask))
3911 alloc_flags = ALLOC_NO_WATERMARKS;
3914 * Reset the zonelist iterators if memory policies can be ignored.
3915 * These allocations are high priority and system rather than user
3916 * orientated.
3918 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3919 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3920 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3921 ac->high_zoneidx, ac->nodemask);
3924 /* Attempt with potentially adjusted zonelist and alloc_flags */
3925 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3926 if (page)
3927 goto got_pg;
3929 /* Caller is not willing to reclaim, we can't balance anything */
3930 if (!can_direct_reclaim)
3931 goto nopage;
3933 /* Make sure we know about allocations which stall for too long */
3934 if (time_after(jiffies, alloc_start + stall_timeout)) {
3935 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3936 "page allocation stalls for %ums, order:%u",
3937 jiffies_to_msecs(jiffies-alloc_start), order);
3938 stall_timeout += 10 * HZ;
3941 /* Avoid recursion of direct reclaim */
3942 if (current->flags & PF_MEMALLOC)
3943 goto nopage;
3945 /* Try direct reclaim and then allocating */
3946 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3947 &did_some_progress);
3948 if (page)
3949 goto got_pg;
3951 /* Try direct compaction and then allocating */
3952 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3953 compact_priority, &compact_result);
3954 if (page)
3955 goto got_pg;
3957 /* Do not loop if specifically requested */
3958 if (gfp_mask & __GFP_NORETRY)
3959 goto nopage;
3962 * Do not retry costly high order allocations unless they are
3963 * __GFP_RETRY_MAYFAIL
3965 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3966 goto nopage;
3968 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3969 did_some_progress > 0, &no_progress_loops))
3970 goto retry;
3973 * It doesn't make any sense to retry for the compaction if the order-0
3974 * reclaim is not able to make any progress because the current
3975 * implementation of the compaction depends on the sufficient amount
3976 * of free memory (see __compaction_suitable)
3978 if (did_some_progress > 0 &&
3979 should_compact_retry(ac, order, alloc_flags,
3980 compact_result, &compact_priority,
3981 &compaction_retries))
3982 goto retry;
3985 /* Deal with possible cpuset update races before we start OOM killing */
3986 if (check_retry_cpuset(cpuset_mems_cookie, ac))
3987 goto retry_cpuset;
3989 /* Reclaim has failed us, start killing things */
3990 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3991 if (page)
3992 goto got_pg;
3994 /* Avoid allocations with no watermarks from looping endlessly */
3995 if (test_thread_flag(TIF_MEMDIE) &&
3996 (alloc_flags == ALLOC_NO_WATERMARKS ||
3997 (gfp_mask & __GFP_NOMEMALLOC)))
3998 goto nopage;
4000 /* Retry as long as the OOM killer is making progress */
4001 if (did_some_progress) {
4002 no_progress_loops = 0;
4003 goto retry;
4006 nopage:
4007 /* Deal with possible cpuset update races before we fail */
4008 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4009 goto retry_cpuset;
4012 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4013 * we always retry
4015 if (gfp_mask & __GFP_NOFAIL) {
4017 * All existing users of the __GFP_NOFAIL are blockable, so warn
4018 * of any new users that actually require GFP_NOWAIT
4020 if (WARN_ON_ONCE(!can_direct_reclaim))
4021 goto fail;
4024 * PF_MEMALLOC request from this context is rather bizarre
4025 * because we cannot reclaim anything and only can loop waiting
4026 * for somebody to do a work for us
4028 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4031 * non failing costly orders are a hard requirement which we
4032 * are not prepared for much so let's warn about these users
4033 * so that we can identify them and convert them to something
4034 * else.
4036 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4039 * Help non-failing allocations by giving them access to memory
4040 * reserves but do not use ALLOC_NO_WATERMARKS because this
4041 * could deplete whole memory reserves which would just make
4042 * the situation worse
4044 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4045 if (page)
4046 goto got_pg;
4048 cond_resched();
4049 goto retry;
4051 fail:
4052 warn_alloc(gfp_mask, ac->nodemask,
4053 "page allocation failure: order:%u", order);
4054 got_pg:
4055 return page;
4058 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4059 int preferred_nid, nodemask_t *nodemask,
4060 struct alloc_context *ac, gfp_t *alloc_mask,
4061 unsigned int *alloc_flags)
4063 ac->high_zoneidx = gfp_zone(gfp_mask);
4064 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4065 ac->nodemask = nodemask;
4066 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4068 if (cpusets_enabled()) {
4069 *alloc_mask |= __GFP_HARDWALL;
4070 if (!ac->nodemask)
4071 ac->nodemask = &cpuset_current_mems_allowed;
4072 else
4073 *alloc_flags |= ALLOC_CPUSET;
4076 lockdep_trace_alloc(gfp_mask);
4078 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4080 if (should_fail_alloc_page(gfp_mask, order))
4081 return false;
4083 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4084 *alloc_flags |= ALLOC_CMA;
4086 return true;
4089 /* Determine whether to spread dirty pages and what the first usable zone */
4090 static inline void finalise_ac(gfp_t gfp_mask,
4091 unsigned int order, struct alloc_context *ac)
4093 /* Dirty zone balancing only done in the fast path */
4094 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4097 * The preferred zone is used for statistics but crucially it is
4098 * also used as the starting point for the zonelist iterator. It
4099 * may get reset for allocations that ignore memory policies.
4101 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4102 ac->high_zoneidx, ac->nodemask);
4106 * This is the 'heart' of the zoned buddy allocator.
4108 struct page *
4109 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4110 nodemask_t *nodemask)
4112 struct page *page;
4113 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4114 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4115 struct alloc_context ac = { };
4117 gfp_mask &= gfp_allowed_mask;
4118 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4119 return NULL;
4121 finalise_ac(gfp_mask, order, &ac);
4123 /* First allocation attempt */
4124 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4125 if (likely(page))
4126 goto out;
4129 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4130 * resp. GFP_NOIO which has to be inherited for all allocation requests
4131 * from a particular context which has been marked by
4132 * memalloc_no{fs,io}_{save,restore}.
4134 alloc_mask = current_gfp_context(gfp_mask);
4135 ac.spread_dirty_pages = false;
4138 * Restore the original nodemask if it was potentially replaced with
4139 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4141 if (unlikely(ac.nodemask != nodemask))
4142 ac.nodemask = nodemask;
4144 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4146 out:
4147 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4148 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4149 __free_pages(page, order);
4150 page = NULL;
4153 if (kmemcheck_enabled && page)
4154 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4156 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4158 return page;
4160 EXPORT_SYMBOL(__alloc_pages_nodemask);
4163 * Common helper functions.
4165 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4167 struct page *page;
4170 * __get_free_pages() returns a 32-bit address, which cannot represent
4171 * a highmem page
4173 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4175 page = alloc_pages(gfp_mask, order);
4176 if (!page)
4177 return 0;
4178 return (unsigned long) page_address(page);
4180 EXPORT_SYMBOL(__get_free_pages);
4182 unsigned long get_zeroed_page(gfp_t gfp_mask)
4184 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4186 EXPORT_SYMBOL(get_zeroed_page);
4188 void __free_pages(struct page *page, unsigned int order)
4190 if (put_page_testzero(page)) {
4191 if (order == 0)
4192 free_hot_cold_page(page, false);
4193 else
4194 __free_pages_ok(page, order);
4198 EXPORT_SYMBOL(__free_pages);
4200 void free_pages(unsigned long addr, unsigned int order)
4202 if (addr != 0) {
4203 VM_BUG_ON(!virt_addr_valid((void *)addr));
4204 __free_pages(virt_to_page((void *)addr), order);
4208 EXPORT_SYMBOL(free_pages);
4211 * Page Fragment:
4212 * An arbitrary-length arbitrary-offset area of memory which resides
4213 * within a 0 or higher order page. Multiple fragments within that page
4214 * are individually refcounted, in the page's reference counter.
4216 * The page_frag functions below provide a simple allocation framework for
4217 * page fragments. This is used by the network stack and network device
4218 * drivers to provide a backing region of memory for use as either an
4219 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4221 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4222 gfp_t gfp_mask)
4224 struct page *page = NULL;
4225 gfp_t gfp = gfp_mask;
4227 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4228 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4229 __GFP_NOMEMALLOC;
4230 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4231 PAGE_FRAG_CACHE_MAX_ORDER);
4232 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4233 #endif
4234 if (unlikely(!page))
4235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4237 nc->va = page ? page_address(page) : NULL;
4239 return page;
4242 void __page_frag_cache_drain(struct page *page, unsigned int count)
4244 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4246 if (page_ref_sub_and_test(page, count)) {
4247 unsigned int order = compound_order(page);
4249 if (order == 0)
4250 free_hot_cold_page(page, false);
4251 else
4252 __free_pages_ok(page, order);
4255 EXPORT_SYMBOL(__page_frag_cache_drain);
4257 void *page_frag_alloc(struct page_frag_cache *nc,
4258 unsigned int fragsz, gfp_t gfp_mask)
4260 unsigned int size = PAGE_SIZE;
4261 struct page *page;
4262 int offset;
4264 if (unlikely(!nc->va)) {
4265 refill:
4266 page = __page_frag_cache_refill(nc, gfp_mask);
4267 if (!page)
4268 return NULL;
4270 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4271 /* if size can vary use size else just use PAGE_SIZE */
4272 size = nc->size;
4273 #endif
4274 /* Even if we own the page, we do not use atomic_set().
4275 * This would break get_page_unless_zero() users.
4277 page_ref_add(page, size - 1);
4279 /* reset page count bias and offset to start of new frag */
4280 nc->pfmemalloc = page_is_pfmemalloc(page);
4281 nc->pagecnt_bias = size;
4282 nc->offset = size;
4285 offset = nc->offset - fragsz;
4286 if (unlikely(offset < 0)) {
4287 page = virt_to_page(nc->va);
4289 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4290 goto refill;
4292 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4293 /* if size can vary use size else just use PAGE_SIZE */
4294 size = nc->size;
4295 #endif
4296 /* OK, page count is 0, we can safely set it */
4297 set_page_count(page, size);
4299 /* reset page count bias and offset to start of new frag */
4300 nc->pagecnt_bias = size;
4301 offset = size - fragsz;
4304 nc->pagecnt_bias--;
4305 nc->offset = offset;
4307 return nc->va + offset;
4309 EXPORT_SYMBOL(page_frag_alloc);
4312 * Frees a page fragment allocated out of either a compound or order 0 page.
4314 void page_frag_free(void *addr)
4316 struct page *page = virt_to_head_page(addr);
4318 if (unlikely(put_page_testzero(page)))
4319 __free_pages_ok(page, compound_order(page));
4321 EXPORT_SYMBOL(page_frag_free);
4323 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4324 size_t size)
4326 if (addr) {
4327 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4328 unsigned long used = addr + PAGE_ALIGN(size);
4330 split_page(virt_to_page((void *)addr), order);
4331 while (used < alloc_end) {
4332 free_page(used);
4333 used += PAGE_SIZE;
4336 return (void *)addr;
4340 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4341 * @size: the number of bytes to allocate
4342 * @gfp_mask: GFP flags for the allocation
4344 * This function is similar to alloc_pages(), except that it allocates the
4345 * minimum number of pages to satisfy the request. alloc_pages() can only
4346 * allocate memory in power-of-two pages.
4348 * This function is also limited by MAX_ORDER.
4350 * Memory allocated by this function must be released by free_pages_exact().
4352 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4354 unsigned int order = get_order(size);
4355 unsigned long addr;
4357 addr = __get_free_pages(gfp_mask, order);
4358 return make_alloc_exact(addr, order, size);
4360 EXPORT_SYMBOL(alloc_pages_exact);
4363 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4364 * pages on a node.
4365 * @nid: the preferred node ID where memory should be allocated
4366 * @size: the number of bytes to allocate
4367 * @gfp_mask: GFP flags for the allocation
4369 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4370 * back.
4372 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4374 unsigned int order = get_order(size);
4375 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4376 if (!p)
4377 return NULL;
4378 return make_alloc_exact((unsigned long)page_address(p), order, size);
4382 * free_pages_exact - release memory allocated via alloc_pages_exact()
4383 * @virt: the value returned by alloc_pages_exact.
4384 * @size: size of allocation, same value as passed to alloc_pages_exact().
4386 * Release the memory allocated by a previous call to alloc_pages_exact.
4388 void free_pages_exact(void *virt, size_t size)
4390 unsigned long addr = (unsigned long)virt;
4391 unsigned long end = addr + PAGE_ALIGN(size);
4393 while (addr < end) {
4394 free_page(addr);
4395 addr += PAGE_SIZE;
4398 EXPORT_SYMBOL(free_pages_exact);
4401 * nr_free_zone_pages - count number of pages beyond high watermark
4402 * @offset: The zone index of the highest zone
4404 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4405 * high watermark within all zones at or below a given zone index. For each
4406 * zone, the number of pages is calculated as:
4408 * nr_free_zone_pages = managed_pages - high_pages
4410 static unsigned long nr_free_zone_pages(int offset)
4412 struct zoneref *z;
4413 struct zone *zone;
4415 /* Just pick one node, since fallback list is circular */
4416 unsigned long sum = 0;
4418 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4420 for_each_zone_zonelist(zone, z, zonelist, offset) {
4421 unsigned long size = zone->managed_pages;
4422 unsigned long high = high_wmark_pages(zone);
4423 if (size > high)
4424 sum += size - high;
4427 return sum;
4431 * nr_free_buffer_pages - count number of pages beyond high watermark
4433 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4434 * watermark within ZONE_DMA and ZONE_NORMAL.
4436 unsigned long nr_free_buffer_pages(void)
4438 return nr_free_zone_pages(gfp_zone(GFP_USER));
4440 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4443 * nr_free_pagecache_pages - count number of pages beyond high watermark
4445 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4446 * high watermark within all zones.
4448 unsigned long nr_free_pagecache_pages(void)
4450 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4453 static inline void show_node(struct zone *zone)
4455 if (IS_ENABLED(CONFIG_NUMA))
4456 printk("Node %d ", zone_to_nid(zone));
4459 long si_mem_available(void)
4461 long available;
4462 unsigned long pagecache;
4463 unsigned long wmark_low = 0;
4464 unsigned long pages[NR_LRU_LISTS];
4465 struct zone *zone;
4466 int lru;
4468 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4469 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4471 for_each_zone(zone)
4472 wmark_low += zone->watermark[WMARK_LOW];
4475 * Estimate the amount of memory available for userspace allocations,
4476 * without causing swapping.
4478 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4481 * Not all the page cache can be freed, otherwise the system will
4482 * start swapping. Assume at least half of the page cache, or the
4483 * low watermark worth of cache, needs to stay.
4485 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4486 pagecache -= min(pagecache / 2, wmark_low);
4487 available += pagecache;
4490 * Part of the reclaimable slab consists of items that are in use,
4491 * and cannot be freed. Cap this estimate at the low watermark.
4493 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4494 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4495 wmark_low);
4497 if (available < 0)
4498 available = 0;
4499 return available;
4501 EXPORT_SYMBOL_GPL(si_mem_available);
4503 void si_meminfo(struct sysinfo *val)
4505 val->totalram = totalram_pages;
4506 val->sharedram = global_node_page_state(NR_SHMEM);
4507 val->freeram = global_page_state(NR_FREE_PAGES);
4508 val->bufferram = nr_blockdev_pages();
4509 val->totalhigh = totalhigh_pages;
4510 val->freehigh = nr_free_highpages();
4511 val->mem_unit = PAGE_SIZE;
4514 EXPORT_SYMBOL(si_meminfo);
4516 #ifdef CONFIG_NUMA
4517 void si_meminfo_node(struct sysinfo *val, int nid)
4519 int zone_type; /* needs to be signed */
4520 unsigned long managed_pages = 0;
4521 unsigned long managed_highpages = 0;
4522 unsigned long free_highpages = 0;
4523 pg_data_t *pgdat = NODE_DATA(nid);
4525 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4526 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4527 val->totalram = managed_pages;
4528 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4529 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4530 #ifdef CONFIG_HIGHMEM
4531 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4532 struct zone *zone = &pgdat->node_zones[zone_type];
4534 if (is_highmem(zone)) {
4535 managed_highpages += zone->managed_pages;
4536 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4539 val->totalhigh = managed_highpages;
4540 val->freehigh = free_highpages;
4541 #else
4542 val->totalhigh = managed_highpages;
4543 val->freehigh = free_highpages;
4544 #endif
4545 val->mem_unit = PAGE_SIZE;
4547 #endif
4550 * Determine whether the node should be displayed or not, depending on whether
4551 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4553 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4555 if (!(flags & SHOW_MEM_FILTER_NODES))
4556 return false;
4559 * no node mask - aka implicit memory numa policy. Do not bother with
4560 * the synchronization - read_mems_allowed_begin - because we do not
4561 * have to be precise here.
4563 if (!nodemask)
4564 nodemask = &cpuset_current_mems_allowed;
4566 return !node_isset(nid, *nodemask);
4569 #define K(x) ((x) << (PAGE_SHIFT-10))
4571 static void show_migration_types(unsigned char type)
4573 static const char types[MIGRATE_TYPES] = {
4574 [MIGRATE_UNMOVABLE] = 'U',
4575 [MIGRATE_MOVABLE] = 'M',
4576 [MIGRATE_RECLAIMABLE] = 'E',
4577 [MIGRATE_HIGHATOMIC] = 'H',
4578 #ifdef CONFIG_CMA
4579 [MIGRATE_CMA] = 'C',
4580 #endif
4581 #ifdef CONFIG_MEMORY_ISOLATION
4582 [MIGRATE_ISOLATE] = 'I',
4583 #endif
4585 char tmp[MIGRATE_TYPES + 1];
4586 char *p = tmp;
4587 int i;
4589 for (i = 0; i < MIGRATE_TYPES; i++) {
4590 if (type & (1 << i))
4591 *p++ = types[i];
4594 *p = '\0';
4595 printk(KERN_CONT "(%s) ", tmp);
4599 * Show free area list (used inside shift_scroll-lock stuff)
4600 * We also calculate the percentage fragmentation. We do this by counting the
4601 * memory on each free list with the exception of the first item on the list.
4603 * Bits in @filter:
4604 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4605 * cpuset.
4607 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4609 unsigned long free_pcp = 0;
4610 int cpu;
4611 struct zone *zone;
4612 pg_data_t *pgdat;
4614 for_each_populated_zone(zone) {
4615 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4616 continue;
4618 for_each_online_cpu(cpu)
4619 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4622 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4623 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4624 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4625 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4626 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4627 " free:%lu free_pcp:%lu free_cma:%lu\n",
4628 global_node_page_state(NR_ACTIVE_ANON),
4629 global_node_page_state(NR_INACTIVE_ANON),
4630 global_node_page_state(NR_ISOLATED_ANON),
4631 global_node_page_state(NR_ACTIVE_FILE),
4632 global_node_page_state(NR_INACTIVE_FILE),
4633 global_node_page_state(NR_ISOLATED_FILE),
4634 global_node_page_state(NR_UNEVICTABLE),
4635 global_node_page_state(NR_FILE_DIRTY),
4636 global_node_page_state(NR_WRITEBACK),
4637 global_node_page_state(NR_UNSTABLE_NFS),
4638 global_node_page_state(NR_SLAB_RECLAIMABLE),
4639 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4640 global_node_page_state(NR_FILE_MAPPED),
4641 global_node_page_state(NR_SHMEM),
4642 global_page_state(NR_PAGETABLE),
4643 global_page_state(NR_BOUNCE),
4644 global_page_state(NR_FREE_PAGES),
4645 free_pcp,
4646 global_page_state(NR_FREE_CMA_PAGES));
4648 for_each_online_pgdat(pgdat) {
4649 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4650 continue;
4652 printk("Node %d"
4653 " active_anon:%lukB"
4654 " inactive_anon:%lukB"
4655 " active_file:%lukB"
4656 " inactive_file:%lukB"
4657 " unevictable:%lukB"
4658 " isolated(anon):%lukB"
4659 " isolated(file):%lukB"
4660 " mapped:%lukB"
4661 " dirty:%lukB"
4662 " writeback:%lukB"
4663 " shmem:%lukB"
4664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4665 " shmem_thp: %lukB"
4666 " shmem_pmdmapped: %lukB"
4667 " anon_thp: %lukB"
4668 #endif
4669 " writeback_tmp:%lukB"
4670 " unstable:%lukB"
4671 " all_unreclaimable? %s"
4672 "\n",
4673 pgdat->node_id,
4674 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4675 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4676 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4677 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4678 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4679 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4680 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4681 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4682 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4683 K(node_page_state(pgdat, NR_WRITEBACK)),
4684 K(node_page_state(pgdat, NR_SHMEM)),
4685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4686 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4687 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4688 * HPAGE_PMD_NR),
4689 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4690 #endif
4691 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4692 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4693 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4694 "yes" : "no");
4697 for_each_populated_zone(zone) {
4698 int i;
4700 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4701 continue;
4703 free_pcp = 0;
4704 for_each_online_cpu(cpu)
4705 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4707 show_node(zone);
4708 printk(KERN_CONT
4709 "%s"
4710 " free:%lukB"
4711 " min:%lukB"
4712 " low:%lukB"
4713 " high:%lukB"
4714 " active_anon:%lukB"
4715 " inactive_anon:%lukB"
4716 " active_file:%lukB"
4717 " inactive_file:%lukB"
4718 " unevictable:%lukB"
4719 " writepending:%lukB"
4720 " present:%lukB"
4721 " managed:%lukB"
4722 " mlocked:%lukB"
4723 " kernel_stack:%lukB"
4724 " pagetables:%lukB"
4725 " bounce:%lukB"
4726 " free_pcp:%lukB"
4727 " local_pcp:%ukB"
4728 " free_cma:%lukB"
4729 "\n",
4730 zone->name,
4731 K(zone_page_state(zone, NR_FREE_PAGES)),
4732 K(min_wmark_pages(zone)),
4733 K(low_wmark_pages(zone)),
4734 K(high_wmark_pages(zone)),
4735 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4736 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4737 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4738 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4739 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4740 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4741 K(zone->present_pages),
4742 K(zone->managed_pages),
4743 K(zone_page_state(zone, NR_MLOCK)),
4744 zone_page_state(zone, NR_KERNEL_STACK_KB),
4745 K(zone_page_state(zone, NR_PAGETABLE)),
4746 K(zone_page_state(zone, NR_BOUNCE)),
4747 K(free_pcp),
4748 K(this_cpu_read(zone->pageset->pcp.count)),
4749 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4750 printk("lowmem_reserve[]:");
4751 for (i = 0; i < MAX_NR_ZONES; i++)
4752 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4753 printk(KERN_CONT "\n");
4756 for_each_populated_zone(zone) {
4757 unsigned int order;
4758 unsigned long nr[MAX_ORDER], flags, total = 0;
4759 unsigned char types[MAX_ORDER];
4761 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4762 continue;
4763 show_node(zone);
4764 printk(KERN_CONT "%s: ", zone->name);
4766 spin_lock_irqsave(&zone->lock, flags);
4767 for (order = 0; order < MAX_ORDER; order++) {
4768 struct free_area *area = &zone->free_area[order];
4769 int type;
4771 nr[order] = area->nr_free;
4772 total += nr[order] << order;
4774 types[order] = 0;
4775 for (type = 0; type < MIGRATE_TYPES; type++) {
4776 if (!list_empty(&area->free_list[type]))
4777 types[order] |= 1 << type;
4780 spin_unlock_irqrestore(&zone->lock, flags);
4781 for (order = 0; order < MAX_ORDER; order++) {
4782 printk(KERN_CONT "%lu*%lukB ",
4783 nr[order], K(1UL) << order);
4784 if (nr[order])
4785 show_migration_types(types[order]);
4787 printk(KERN_CONT "= %lukB\n", K(total));
4790 hugetlb_show_meminfo();
4792 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4794 show_swap_cache_info();
4797 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4799 zoneref->zone = zone;
4800 zoneref->zone_idx = zone_idx(zone);
4804 * Builds allocation fallback zone lists.
4806 * Add all populated zones of a node to the zonelist.
4808 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4809 int nr_zones)
4811 struct zone *zone;
4812 enum zone_type zone_type = MAX_NR_ZONES;
4814 do {
4815 zone_type--;
4816 zone = pgdat->node_zones + zone_type;
4817 if (managed_zone(zone)) {
4818 zoneref_set_zone(zone,
4819 &zonelist->_zonerefs[nr_zones++]);
4820 check_highest_zone(zone_type);
4822 } while (zone_type);
4824 return nr_zones;
4829 * zonelist_order:
4830 * 0 = automatic detection of better ordering.
4831 * 1 = order by ([node] distance, -zonetype)
4832 * 2 = order by (-zonetype, [node] distance)
4834 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4835 * the same zonelist. So only NUMA can configure this param.
4837 #define ZONELIST_ORDER_DEFAULT 0
4838 #define ZONELIST_ORDER_NODE 1
4839 #define ZONELIST_ORDER_ZONE 2
4841 /* zonelist order in the kernel.
4842 * set_zonelist_order() will set this to NODE or ZONE.
4844 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4845 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4848 #ifdef CONFIG_NUMA
4849 /* The value user specified ....changed by config */
4850 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4851 /* string for sysctl */
4852 #define NUMA_ZONELIST_ORDER_LEN 16
4853 char numa_zonelist_order[16] = "default";
4856 * interface for configure zonelist ordering.
4857 * command line option "numa_zonelist_order"
4858 * = "[dD]efault - default, automatic configuration.
4859 * = "[nN]ode - order by node locality, then by zone within node
4860 * = "[zZ]one - order by zone, then by locality within zone
4863 static int __parse_numa_zonelist_order(char *s)
4865 if (*s == 'd' || *s == 'D') {
4866 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4867 } else if (*s == 'n' || *s == 'N') {
4868 user_zonelist_order = ZONELIST_ORDER_NODE;
4869 } else if (*s == 'z' || *s == 'Z') {
4870 user_zonelist_order = ZONELIST_ORDER_ZONE;
4871 } else {
4872 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4873 return -EINVAL;
4875 return 0;
4878 static __init int setup_numa_zonelist_order(char *s)
4880 int ret;
4882 if (!s)
4883 return 0;
4885 ret = __parse_numa_zonelist_order(s);
4886 if (ret == 0)
4887 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4889 return ret;
4891 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4894 * sysctl handler for numa_zonelist_order
4896 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4897 void __user *buffer, size_t *length,
4898 loff_t *ppos)
4900 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4901 int ret;
4902 static DEFINE_MUTEX(zl_order_mutex);
4904 mutex_lock(&zl_order_mutex);
4905 if (write) {
4906 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4907 ret = -EINVAL;
4908 goto out;
4910 strcpy(saved_string, (char *)table->data);
4912 ret = proc_dostring(table, write, buffer, length, ppos);
4913 if (ret)
4914 goto out;
4915 if (write) {
4916 int oldval = user_zonelist_order;
4918 ret = __parse_numa_zonelist_order((char *)table->data);
4919 if (ret) {
4921 * bogus value. restore saved string
4923 strncpy((char *)table->data, saved_string,
4924 NUMA_ZONELIST_ORDER_LEN);
4925 user_zonelist_order = oldval;
4926 } else if (oldval != user_zonelist_order) {
4927 mem_hotplug_begin();
4928 mutex_lock(&zonelists_mutex);
4929 build_all_zonelists(NULL, NULL);
4930 mutex_unlock(&zonelists_mutex);
4931 mem_hotplug_done();
4934 out:
4935 mutex_unlock(&zl_order_mutex);
4936 return ret;
4940 #define MAX_NODE_LOAD (nr_online_nodes)
4941 static int node_load[MAX_NUMNODES];
4944 * find_next_best_node - find the next node that should appear in a given node's fallback list
4945 * @node: node whose fallback list we're appending
4946 * @used_node_mask: nodemask_t of already used nodes
4948 * We use a number of factors to determine which is the next node that should
4949 * appear on a given node's fallback list. The node should not have appeared
4950 * already in @node's fallback list, and it should be the next closest node
4951 * according to the distance array (which contains arbitrary distance values
4952 * from each node to each node in the system), and should also prefer nodes
4953 * with no CPUs, since presumably they'll have very little allocation pressure
4954 * on them otherwise.
4955 * It returns -1 if no node is found.
4957 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4959 int n, val;
4960 int min_val = INT_MAX;
4961 int best_node = NUMA_NO_NODE;
4962 const struct cpumask *tmp = cpumask_of_node(0);
4964 /* Use the local node if we haven't already */
4965 if (!node_isset(node, *used_node_mask)) {
4966 node_set(node, *used_node_mask);
4967 return node;
4970 for_each_node_state(n, N_MEMORY) {
4972 /* Don't want a node to appear more than once */
4973 if (node_isset(n, *used_node_mask))
4974 continue;
4976 /* Use the distance array to find the distance */
4977 val = node_distance(node, n);
4979 /* Penalize nodes under us ("prefer the next node") */
4980 val += (n < node);
4982 /* Give preference to headless and unused nodes */
4983 tmp = cpumask_of_node(n);
4984 if (!cpumask_empty(tmp))
4985 val += PENALTY_FOR_NODE_WITH_CPUS;
4987 /* Slight preference for less loaded node */
4988 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4989 val += node_load[n];
4991 if (val < min_val) {
4992 min_val = val;
4993 best_node = n;
4997 if (best_node >= 0)
4998 node_set(best_node, *used_node_mask);
5000 return best_node;
5005 * Build zonelists ordered by node and zones within node.
5006 * This results in maximum locality--normal zone overflows into local
5007 * DMA zone, if any--but risks exhausting DMA zone.
5009 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
5011 int j;
5012 struct zonelist *zonelist;
5014 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5015 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
5017 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5018 zonelist->_zonerefs[j].zone = NULL;
5019 zonelist->_zonerefs[j].zone_idx = 0;
5023 * Build gfp_thisnode zonelists
5025 static void build_thisnode_zonelists(pg_data_t *pgdat)
5027 int j;
5028 struct zonelist *zonelist;
5030 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
5031 j = build_zonelists_node(pgdat, zonelist, 0);
5032 zonelist->_zonerefs[j].zone = NULL;
5033 zonelist->_zonerefs[j].zone_idx = 0;
5037 * Build zonelists ordered by zone and nodes within zones.
5038 * This results in conserving DMA zone[s] until all Normal memory is
5039 * exhausted, but results in overflowing to remote node while memory
5040 * may still exist in local DMA zone.
5042 static int node_order[MAX_NUMNODES];
5044 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
5046 int pos, j, node;
5047 int zone_type; /* needs to be signed */
5048 struct zone *z;
5049 struct zonelist *zonelist;
5051 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5052 pos = 0;
5053 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5054 for (j = 0; j < nr_nodes; j++) {
5055 node = node_order[j];
5056 z = &NODE_DATA(node)->node_zones[zone_type];
5057 if (managed_zone(z)) {
5058 zoneref_set_zone(z,
5059 &zonelist->_zonerefs[pos++]);
5060 check_highest_zone(zone_type);
5064 zonelist->_zonerefs[pos].zone = NULL;
5065 zonelist->_zonerefs[pos].zone_idx = 0;
5068 #if defined(CONFIG_64BIT)
5070 * Devices that require DMA32/DMA are relatively rare and do not justify a
5071 * penalty to every machine in case the specialised case applies. Default
5072 * to Node-ordering on 64-bit NUMA machines
5074 static int default_zonelist_order(void)
5076 return ZONELIST_ORDER_NODE;
5078 #else
5080 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5081 * by the kernel. If processes running on node 0 deplete the low memory zone
5082 * then reclaim will occur more frequency increasing stalls and potentially
5083 * be easier to OOM if a large percentage of the zone is under writeback or
5084 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5085 * Hence, default to zone ordering on 32-bit.
5087 static int default_zonelist_order(void)
5089 return ZONELIST_ORDER_ZONE;
5091 #endif /* CONFIG_64BIT */
5093 static void set_zonelist_order(void)
5095 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5096 current_zonelist_order = default_zonelist_order();
5097 else
5098 current_zonelist_order = user_zonelist_order;
5101 static void build_zonelists(pg_data_t *pgdat)
5103 int i, node, load;
5104 nodemask_t used_mask;
5105 int local_node, prev_node;
5106 struct zonelist *zonelist;
5107 unsigned int order = current_zonelist_order;
5109 /* initialize zonelists */
5110 for (i = 0; i < MAX_ZONELISTS; i++) {
5111 zonelist = pgdat->node_zonelists + i;
5112 zonelist->_zonerefs[0].zone = NULL;
5113 zonelist->_zonerefs[0].zone_idx = 0;
5116 /* NUMA-aware ordering of nodes */
5117 local_node = pgdat->node_id;
5118 load = nr_online_nodes;
5119 prev_node = local_node;
5120 nodes_clear(used_mask);
5122 memset(node_order, 0, sizeof(node_order));
5123 i = 0;
5125 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5127 * We don't want to pressure a particular node.
5128 * So adding penalty to the first node in same
5129 * distance group to make it round-robin.
5131 if (node_distance(local_node, node) !=
5132 node_distance(local_node, prev_node))
5133 node_load[node] = load;
5135 prev_node = node;
5136 load--;
5137 if (order == ZONELIST_ORDER_NODE)
5138 build_zonelists_in_node_order(pgdat, node);
5139 else
5140 node_order[i++] = node; /* remember order */
5143 if (order == ZONELIST_ORDER_ZONE) {
5144 /* calculate node order -- i.e., DMA last! */
5145 build_zonelists_in_zone_order(pgdat, i);
5148 build_thisnode_zonelists(pgdat);
5151 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5153 * Return node id of node used for "local" allocations.
5154 * I.e., first node id of first zone in arg node's generic zonelist.
5155 * Used for initializing percpu 'numa_mem', which is used primarily
5156 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5158 int local_memory_node(int node)
5160 struct zoneref *z;
5162 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5163 gfp_zone(GFP_KERNEL),
5164 NULL);
5165 return z->zone->node;
5167 #endif
5169 static void setup_min_unmapped_ratio(void);
5170 static void setup_min_slab_ratio(void);
5171 #else /* CONFIG_NUMA */
5173 static void set_zonelist_order(void)
5175 current_zonelist_order = ZONELIST_ORDER_ZONE;
5178 static void build_zonelists(pg_data_t *pgdat)
5180 int node, local_node;
5181 enum zone_type j;
5182 struct zonelist *zonelist;
5184 local_node = pgdat->node_id;
5186 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5187 j = build_zonelists_node(pgdat, zonelist, 0);
5190 * Now we build the zonelist so that it contains the zones
5191 * of all the other nodes.
5192 * We don't want to pressure a particular node, so when
5193 * building the zones for node N, we make sure that the
5194 * zones coming right after the local ones are those from
5195 * node N+1 (modulo N)
5197 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5198 if (!node_online(node))
5199 continue;
5200 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5202 for (node = 0; node < local_node; node++) {
5203 if (!node_online(node))
5204 continue;
5205 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5208 zonelist->_zonerefs[j].zone = NULL;
5209 zonelist->_zonerefs[j].zone_idx = 0;
5212 #endif /* CONFIG_NUMA */
5215 * Boot pageset table. One per cpu which is going to be used for all
5216 * zones and all nodes. The parameters will be set in such a way
5217 * that an item put on a list will immediately be handed over to
5218 * the buddy list. This is safe since pageset manipulation is done
5219 * with interrupts disabled.
5221 * The boot_pagesets must be kept even after bootup is complete for
5222 * unused processors and/or zones. They do play a role for bootstrapping
5223 * hotplugged processors.
5225 * zoneinfo_show() and maybe other functions do
5226 * not check if the processor is online before following the pageset pointer.
5227 * Other parts of the kernel may not check if the zone is available.
5229 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5230 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5231 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5232 static void setup_zone_pageset(struct zone *zone);
5235 * Global mutex to protect against size modification of zonelists
5236 * as well as to serialize pageset setup for the new populated zone.
5238 DEFINE_MUTEX(zonelists_mutex);
5240 /* return values int ....just for stop_machine() */
5241 static int __build_all_zonelists(void *data)
5243 int nid;
5244 int cpu;
5245 pg_data_t *self = data;
5247 #ifdef CONFIG_NUMA
5248 memset(node_load, 0, sizeof(node_load));
5249 #endif
5251 if (self && !node_online(self->node_id)) {
5252 build_zonelists(self);
5255 for_each_online_node(nid) {
5256 pg_data_t *pgdat = NODE_DATA(nid);
5258 build_zonelists(pgdat);
5262 * Initialize the boot_pagesets that are going to be used
5263 * for bootstrapping processors. The real pagesets for
5264 * each zone will be allocated later when the per cpu
5265 * allocator is available.
5267 * boot_pagesets are used also for bootstrapping offline
5268 * cpus if the system is already booted because the pagesets
5269 * are needed to initialize allocators on a specific cpu too.
5270 * F.e. the percpu allocator needs the page allocator which
5271 * needs the percpu allocator in order to allocate its pagesets
5272 * (a chicken-egg dilemma).
5274 for_each_possible_cpu(cpu) {
5275 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5277 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5279 * We now know the "local memory node" for each node--
5280 * i.e., the node of the first zone in the generic zonelist.
5281 * Set up numa_mem percpu variable for on-line cpus. During
5282 * boot, only the boot cpu should be on-line; we'll init the
5283 * secondary cpus' numa_mem as they come on-line. During
5284 * node/memory hotplug, we'll fixup all on-line cpus.
5286 if (cpu_online(cpu))
5287 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5288 #endif
5291 return 0;
5294 static noinline void __init
5295 build_all_zonelists_init(void)
5297 __build_all_zonelists(NULL);
5298 mminit_verify_zonelist();
5299 cpuset_init_current_mems_allowed();
5303 * Called with zonelists_mutex held always
5304 * unless system_state == SYSTEM_BOOTING.
5306 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5307 * [we're only called with non-NULL zone through __meminit paths] and
5308 * (2) call of __init annotated helper build_all_zonelists_init
5309 * [protected by SYSTEM_BOOTING].
5311 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5313 set_zonelist_order();
5315 if (system_state == SYSTEM_BOOTING) {
5316 build_all_zonelists_init();
5317 } else {
5318 #ifdef CONFIG_MEMORY_HOTPLUG
5319 if (zone)
5320 setup_zone_pageset(zone);
5321 #endif
5322 /* we have to stop all cpus to guarantee there is no user
5323 of zonelist */
5324 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5325 /* cpuset refresh routine should be here */
5327 vm_total_pages = nr_free_pagecache_pages();
5329 * Disable grouping by mobility if the number of pages in the
5330 * system is too low to allow the mechanism to work. It would be
5331 * more accurate, but expensive to check per-zone. This check is
5332 * made on memory-hotadd so a system can start with mobility
5333 * disabled and enable it later
5335 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5336 page_group_by_mobility_disabled = 1;
5337 else
5338 page_group_by_mobility_disabled = 0;
5340 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5341 nr_online_nodes,
5342 zonelist_order_name[current_zonelist_order],
5343 page_group_by_mobility_disabled ? "off" : "on",
5344 vm_total_pages);
5345 #ifdef CONFIG_NUMA
5346 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5347 #endif
5351 * Initially all pages are reserved - free ones are freed
5352 * up by free_all_bootmem() once the early boot process is
5353 * done. Non-atomic initialization, single-pass.
5355 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5356 unsigned long start_pfn, enum memmap_context context)
5358 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5359 unsigned long end_pfn = start_pfn + size;
5360 pg_data_t *pgdat = NODE_DATA(nid);
5361 unsigned long pfn;
5362 unsigned long nr_initialised = 0;
5363 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5364 struct memblock_region *r = NULL, *tmp;
5365 #endif
5367 if (highest_memmap_pfn < end_pfn - 1)
5368 highest_memmap_pfn = end_pfn - 1;
5371 * Honor reservation requested by the driver for this ZONE_DEVICE
5372 * memory
5374 if (altmap && start_pfn == altmap->base_pfn)
5375 start_pfn += altmap->reserve;
5377 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5379 * There can be holes in boot-time mem_map[]s handed to this
5380 * function. They do not exist on hotplugged memory.
5382 if (context != MEMMAP_EARLY)
5383 goto not_early;
5385 if (!early_pfn_valid(pfn)) {
5386 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5388 * Skip to the pfn preceding the next valid one (or
5389 * end_pfn), such that we hit a valid pfn (or end_pfn)
5390 * on our next iteration of the loop.
5392 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5393 #endif
5394 continue;
5396 if (!early_pfn_in_nid(pfn, nid))
5397 continue;
5398 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5399 break;
5401 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5403 * Check given memblock attribute by firmware which can affect
5404 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5405 * mirrored, it's an overlapped memmap init. skip it.
5407 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5408 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5409 for_each_memblock(memory, tmp)
5410 if (pfn < memblock_region_memory_end_pfn(tmp))
5411 break;
5412 r = tmp;
5414 if (pfn >= memblock_region_memory_base_pfn(r) &&
5415 memblock_is_mirror(r)) {
5416 /* already initialized as NORMAL */
5417 pfn = memblock_region_memory_end_pfn(r);
5418 continue;
5421 #endif
5423 not_early:
5425 * Mark the block movable so that blocks are reserved for
5426 * movable at startup. This will force kernel allocations
5427 * to reserve their blocks rather than leaking throughout
5428 * the address space during boot when many long-lived
5429 * kernel allocations are made.
5431 * bitmap is created for zone's valid pfn range. but memmap
5432 * can be created for invalid pages (for alignment)
5433 * check here not to call set_pageblock_migratetype() against
5434 * pfn out of zone.
5436 if (!(pfn & (pageblock_nr_pages - 1))) {
5437 struct page *page = pfn_to_page(pfn);
5439 __init_single_page(page, pfn, zone, nid);
5440 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5441 } else {
5442 __init_single_pfn(pfn, zone, nid);
5447 static void __meminit zone_init_free_lists(struct zone *zone)
5449 unsigned int order, t;
5450 for_each_migratetype_order(order, t) {
5451 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5452 zone->free_area[order].nr_free = 0;
5456 #ifndef __HAVE_ARCH_MEMMAP_INIT
5457 #define memmap_init(size, nid, zone, start_pfn) \
5458 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5459 #endif
5461 static int zone_batchsize(struct zone *zone)
5463 #ifdef CONFIG_MMU
5464 int batch;
5467 * The per-cpu-pages pools are set to around 1000th of the
5468 * size of the zone. But no more than 1/2 of a meg.
5470 * OK, so we don't know how big the cache is. So guess.
5472 batch = zone->managed_pages / 1024;
5473 if (batch * PAGE_SIZE > 512 * 1024)
5474 batch = (512 * 1024) / PAGE_SIZE;
5475 batch /= 4; /* We effectively *= 4 below */
5476 if (batch < 1)
5477 batch = 1;
5480 * Clamp the batch to a 2^n - 1 value. Having a power
5481 * of 2 value was found to be more likely to have
5482 * suboptimal cache aliasing properties in some cases.
5484 * For example if 2 tasks are alternately allocating
5485 * batches of pages, one task can end up with a lot
5486 * of pages of one half of the possible page colors
5487 * and the other with pages of the other colors.
5489 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5491 return batch;
5493 #else
5494 /* The deferral and batching of frees should be suppressed under NOMMU
5495 * conditions.
5497 * The problem is that NOMMU needs to be able to allocate large chunks
5498 * of contiguous memory as there's no hardware page translation to
5499 * assemble apparent contiguous memory from discontiguous pages.
5501 * Queueing large contiguous runs of pages for batching, however,
5502 * causes the pages to actually be freed in smaller chunks. As there
5503 * can be a significant delay between the individual batches being
5504 * recycled, this leads to the once large chunks of space being
5505 * fragmented and becoming unavailable for high-order allocations.
5507 return 0;
5508 #endif
5512 * pcp->high and pcp->batch values are related and dependent on one another:
5513 * ->batch must never be higher then ->high.
5514 * The following function updates them in a safe manner without read side
5515 * locking.
5517 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5518 * those fields changing asynchronously (acording the the above rule).
5520 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5521 * outside of boot time (or some other assurance that no concurrent updaters
5522 * exist).
5524 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5525 unsigned long batch)
5527 /* start with a fail safe value for batch */
5528 pcp->batch = 1;
5529 smp_wmb();
5531 /* Update high, then batch, in order */
5532 pcp->high = high;
5533 smp_wmb();
5535 pcp->batch = batch;
5538 /* a companion to pageset_set_high() */
5539 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5541 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5544 static void pageset_init(struct per_cpu_pageset *p)
5546 struct per_cpu_pages *pcp;
5547 int migratetype;
5549 memset(p, 0, sizeof(*p));
5551 pcp = &p->pcp;
5552 pcp->count = 0;
5553 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5554 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5557 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5559 pageset_init(p);
5560 pageset_set_batch(p, batch);
5564 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5565 * to the value high for the pageset p.
5567 static void pageset_set_high(struct per_cpu_pageset *p,
5568 unsigned long high)
5570 unsigned long batch = max(1UL, high / 4);
5571 if ((high / 4) > (PAGE_SHIFT * 8))
5572 batch = PAGE_SHIFT * 8;
5574 pageset_update(&p->pcp, high, batch);
5577 static void pageset_set_high_and_batch(struct zone *zone,
5578 struct per_cpu_pageset *pcp)
5580 if (percpu_pagelist_fraction)
5581 pageset_set_high(pcp,
5582 (zone->managed_pages /
5583 percpu_pagelist_fraction));
5584 else
5585 pageset_set_batch(pcp, zone_batchsize(zone));
5588 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5590 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5592 pageset_init(pcp);
5593 pageset_set_high_and_batch(zone, pcp);
5596 static void __meminit setup_zone_pageset(struct zone *zone)
5598 int cpu;
5599 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5600 for_each_possible_cpu(cpu)
5601 zone_pageset_init(zone, cpu);
5605 * Allocate per cpu pagesets and initialize them.
5606 * Before this call only boot pagesets were available.
5608 void __init setup_per_cpu_pageset(void)
5610 struct pglist_data *pgdat;
5611 struct zone *zone;
5613 for_each_populated_zone(zone)
5614 setup_zone_pageset(zone);
5616 for_each_online_pgdat(pgdat)
5617 pgdat->per_cpu_nodestats =
5618 alloc_percpu(struct per_cpu_nodestat);
5621 static __meminit void zone_pcp_init(struct zone *zone)
5624 * per cpu subsystem is not up at this point. The following code
5625 * relies on the ability of the linker to provide the
5626 * offset of a (static) per cpu variable into the per cpu area.
5628 zone->pageset = &boot_pageset;
5630 if (populated_zone(zone))
5631 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5632 zone->name, zone->present_pages,
5633 zone_batchsize(zone));
5636 void __meminit init_currently_empty_zone(struct zone *zone,
5637 unsigned long zone_start_pfn,
5638 unsigned long size)
5640 struct pglist_data *pgdat = zone->zone_pgdat;
5642 pgdat->nr_zones = zone_idx(zone) + 1;
5644 zone->zone_start_pfn = zone_start_pfn;
5646 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5647 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5648 pgdat->node_id,
5649 (unsigned long)zone_idx(zone),
5650 zone_start_pfn, (zone_start_pfn + size));
5652 zone_init_free_lists(zone);
5653 zone->initialized = 1;
5656 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5657 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5660 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5662 int __meminit __early_pfn_to_nid(unsigned long pfn,
5663 struct mminit_pfnnid_cache *state)
5665 unsigned long start_pfn, end_pfn;
5666 int nid;
5668 if (state->last_start <= pfn && pfn < state->last_end)
5669 return state->last_nid;
5671 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5672 if (nid != -1) {
5673 state->last_start = start_pfn;
5674 state->last_end = end_pfn;
5675 state->last_nid = nid;
5678 return nid;
5680 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5683 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5684 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5685 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5687 * If an architecture guarantees that all ranges registered contain no holes
5688 * and may be freed, this this function may be used instead of calling
5689 * memblock_free_early_nid() manually.
5691 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5693 unsigned long start_pfn, end_pfn;
5694 int i, this_nid;
5696 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5697 start_pfn = min(start_pfn, max_low_pfn);
5698 end_pfn = min(end_pfn, max_low_pfn);
5700 if (start_pfn < end_pfn)
5701 memblock_free_early_nid(PFN_PHYS(start_pfn),
5702 (end_pfn - start_pfn) << PAGE_SHIFT,
5703 this_nid);
5708 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5709 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5711 * If an architecture guarantees that all ranges registered contain no holes and may
5712 * be freed, this function may be used instead of calling memory_present() manually.
5714 void __init sparse_memory_present_with_active_regions(int nid)
5716 unsigned long start_pfn, end_pfn;
5717 int i, this_nid;
5719 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5720 memory_present(this_nid, start_pfn, end_pfn);
5724 * get_pfn_range_for_nid - Return the start and end page frames for a node
5725 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5726 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5727 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5729 * It returns the start and end page frame of a node based on information
5730 * provided by memblock_set_node(). If called for a node
5731 * with no available memory, a warning is printed and the start and end
5732 * PFNs will be 0.
5734 void __meminit get_pfn_range_for_nid(unsigned int nid,
5735 unsigned long *start_pfn, unsigned long *end_pfn)
5737 unsigned long this_start_pfn, this_end_pfn;
5738 int i;
5740 *start_pfn = -1UL;
5741 *end_pfn = 0;
5743 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5744 *start_pfn = min(*start_pfn, this_start_pfn);
5745 *end_pfn = max(*end_pfn, this_end_pfn);
5748 if (*start_pfn == -1UL)
5749 *start_pfn = 0;
5753 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5754 * assumption is made that zones within a node are ordered in monotonic
5755 * increasing memory addresses so that the "highest" populated zone is used
5757 static void __init find_usable_zone_for_movable(void)
5759 int zone_index;
5760 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5761 if (zone_index == ZONE_MOVABLE)
5762 continue;
5764 if (arch_zone_highest_possible_pfn[zone_index] >
5765 arch_zone_lowest_possible_pfn[zone_index])
5766 break;
5769 VM_BUG_ON(zone_index == -1);
5770 movable_zone = zone_index;
5774 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5775 * because it is sized independent of architecture. Unlike the other zones,
5776 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5777 * in each node depending on the size of each node and how evenly kernelcore
5778 * is distributed. This helper function adjusts the zone ranges
5779 * provided by the architecture for a given node by using the end of the
5780 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5781 * zones within a node are in order of monotonic increases memory addresses
5783 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5784 unsigned long zone_type,
5785 unsigned long node_start_pfn,
5786 unsigned long node_end_pfn,
5787 unsigned long *zone_start_pfn,
5788 unsigned long *zone_end_pfn)
5790 /* Only adjust if ZONE_MOVABLE is on this node */
5791 if (zone_movable_pfn[nid]) {
5792 /* Size ZONE_MOVABLE */
5793 if (zone_type == ZONE_MOVABLE) {
5794 *zone_start_pfn = zone_movable_pfn[nid];
5795 *zone_end_pfn = min(node_end_pfn,
5796 arch_zone_highest_possible_pfn[movable_zone]);
5798 /* Adjust for ZONE_MOVABLE starting within this range */
5799 } else if (!mirrored_kernelcore &&
5800 *zone_start_pfn < zone_movable_pfn[nid] &&
5801 *zone_end_pfn > zone_movable_pfn[nid]) {
5802 *zone_end_pfn = zone_movable_pfn[nid];
5804 /* Check if this whole range is within ZONE_MOVABLE */
5805 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5806 *zone_start_pfn = *zone_end_pfn;
5811 * Return the number of pages a zone spans in a node, including holes
5812 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5814 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5815 unsigned long zone_type,
5816 unsigned long node_start_pfn,
5817 unsigned long node_end_pfn,
5818 unsigned long *zone_start_pfn,
5819 unsigned long *zone_end_pfn,
5820 unsigned long *ignored)
5822 /* When hotadd a new node from cpu_up(), the node should be empty */
5823 if (!node_start_pfn && !node_end_pfn)
5824 return 0;
5826 /* Get the start and end of the zone */
5827 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5828 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5829 adjust_zone_range_for_zone_movable(nid, zone_type,
5830 node_start_pfn, node_end_pfn,
5831 zone_start_pfn, zone_end_pfn);
5833 /* Check that this node has pages within the zone's required range */
5834 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5835 return 0;
5837 /* Move the zone boundaries inside the node if necessary */
5838 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5839 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5841 /* Return the spanned pages */
5842 return *zone_end_pfn - *zone_start_pfn;
5846 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5847 * then all holes in the requested range will be accounted for.
5849 unsigned long __meminit __absent_pages_in_range(int nid,
5850 unsigned long range_start_pfn,
5851 unsigned long range_end_pfn)
5853 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5854 unsigned long start_pfn, end_pfn;
5855 int i;
5857 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5858 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5859 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5860 nr_absent -= end_pfn - start_pfn;
5862 return nr_absent;
5866 * absent_pages_in_range - Return number of page frames in holes within a range
5867 * @start_pfn: The start PFN to start searching for holes
5868 * @end_pfn: The end PFN to stop searching for holes
5870 * It returns the number of pages frames in memory holes within a range.
5872 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5873 unsigned long end_pfn)
5875 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5878 /* Return the number of page frames in holes in a zone on a node */
5879 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5880 unsigned long zone_type,
5881 unsigned long node_start_pfn,
5882 unsigned long node_end_pfn,
5883 unsigned long *ignored)
5885 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5886 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5887 unsigned long zone_start_pfn, zone_end_pfn;
5888 unsigned long nr_absent;
5890 /* When hotadd a new node from cpu_up(), the node should be empty */
5891 if (!node_start_pfn && !node_end_pfn)
5892 return 0;
5894 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5895 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5897 adjust_zone_range_for_zone_movable(nid, zone_type,
5898 node_start_pfn, node_end_pfn,
5899 &zone_start_pfn, &zone_end_pfn);
5900 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5903 * ZONE_MOVABLE handling.
5904 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5905 * and vice versa.
5907 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5908 unsigned long start_pfn, end_pfn;
5909 struct memblock_region *r;
5911 for_each_memblock(memory, r) {
5912 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5913 zone_start_pfn, zone_end_pfn);
5914 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5915 zone_start_pfn, zone_end_pfn);
5917 if (zone_type == ZONE_MOVABLE &&
5918 memblock_is_mirror(r))
5919 nr_absent += end_pfn - start_pfn;
5921 if (zone_type == ZONE_NORMAL &&
5922 !memblock_is_mirror(r))
5923 nr_absent += end_pfn - start_pfn;
5927 return nr_absent;
5930 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5931 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5932 unsigned long zone_type,
5933 unsigned long node_start_pfn,
5934 unsigned long node_end_pfn,
5935 unsigned long *zone_start_pfn,
5936 unsigned long *zone_end_pfn,
5937 unsigned long *zones_size)
5939 unsigned int zone;
5941 *zone_start_pfn = node_start_pfn;
5942 for (zone = 0; zone < zone_type; zone++)
5943 *zone_start_pfn += zones_size[zone];
5945 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5947 return zones_size[zone_type];
5950 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5951 unsigned long zone_type,
5952 unsigned long node_start_pfn,
5953 unsigned long node_end_pfn,
5954 unsigned long *zholes_size)
5956 if (!zholes_size)
5957 return 0;
5959 return zholes_size[zone_type];
5962 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5964 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5965 unsigned long node_start_pfn,
5966 unsigned long node_end_pfn,
5967 unsigned long *zones_size,
5968 unsigned long *zholes_size)
5970 unsigned long realtotalpages = 0, totalpages = 0;
5971 enum zone_type i;
5973 for (i = 0; i < MAX_NR_ZONES; i++) {
5974 struct zone *zone = pgdat->node_zones + i;
5975 unsigned long zone_start_pfn, zone_end_pfn;
5976 unsigned long size, real_size;
5978 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5979 node_start_pfn,
5980 node_end_pfn,
5981 &zone_start_pfn,
5982 &zone_end_pfn,
5983 zones_size);
5984 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5985 node_start_pfn, node_end_pfn,
5986 zholes_size);
5987 if (size)
5988 zone->zone_start_pfn = zone_start_pfn;
5989 else
5990 zone->zone_start_pfn = 0;
5991 zone->spanned_pages = size;
5992 zone->present_pages = real_size;
5994 totalpages += size;
5995 realtotalpages += real_size;
5998 pgdat->node_spanned_pages = totalpages;
5999 pgdat->node_present_pages = realtotalpages;
6000 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6001 realtotalpages);
6004 #ifndef CONFIG_SPARSEMEM
6006 * Calculate the size of the zone->blockflags rounded to an unsigned long
6007 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6008 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6009 * round what is now in bits to nearest long in bits, then return it in
6010 * bytes.
6012 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6014 unsigned long usemapsize;
6016 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6017 usemapsize = roundup(zonesize, pageblock_nr_pages);
6018 usemapsize = usemapsize >> pageblock_order;
6019 usemapsize *= NR_PAGEBLOCK_BITS;
6020 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6022 return usemapsize / 8;
6025 static void __init setup_usemap(struct pglist_data *pgdat,
6026 struct zone *zone,
6027 unsigned long zone_start_pfn,
6028 unsigned long zonesize)
6030 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6031 zone->pageblock_flags = NULL;
6032 if (usemapsize)
6033 zone->pageblock_flags =
6034 memblock_virt_alloc_node_nopanic(usemapsize,
6035 pgdat->node_id);
6037 #else
6038 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6039 unsigned long zone_start_pfn, unsigned long zonesize) {}
6040 #endif /* CONFIG_SPARSEMEM */
6042 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6044 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6045 void __paginginit set_pageblock_order(void)
6047 unsigned int order;
6049 /* Check that pageblock_nr_pages has not already been setup */
6050 if (pageblock_order)
6051 return;
6053 if (HPAGE_SHIFT > PAGE_SHIFT)
6054 order = HUGETLB_PAGE_ORDER;
6055 else
6056 order = MAX_ORDER - 1;
6059 * Assume the largest contiguous order of interest is a huge page.
6060 * This value may be variable depending on boot parameters on IA64 and
6061 * powerpc.
6063 pageblock_order = order;
6065 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6068 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6069 * is unused as pageblock_order is set at compile-time. See
6070 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6071 * the kernel config
6073 void __paginginit set_pageblock_order(void)
6077 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6079 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6080 unsigned long present_pages)
6082 unsigned long pages = spanned_pages;
6085 * Provide a more accurate estimation if there are holes within
6086 * the zone and SPARSEMEM is in use. If there are holes within the
6087 * zone, each populated memory region may cost us one or two extra
6088 * memmap pages due to alignment because memmap pages for each
6089 * populated regions may not be naturally aligned on page boundary.
6090 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6092 if (spanned_pages > present_pages + (present_pages >> 4) &&
6093 IS_ENABLED(CONFIG_SPARSEMEM))
6094 pages = present_pages;
6096 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6100 * Set up the zone data structures:
6101 * - mark all pages reserved
6102 * - mark all memory queues empty
6103 * - clear the memory bitmaps
6105 * NOTE: pgdat should get zeroed by caller.
6107 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6109 enum zone_type j;
6110 int nid = pgdat->node_id;
6112 pgdat_resize_init(pgdat);
6113 #ifdef CONFIG_NUMA_BALANCING
6114 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6115 pgdat->numabalancing_migrate_nr_pages = 0;
6116 pgdat->numabalancing_migrate_next_window = jiffies;
6117 #endif
6118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6119 spin_lock_init(&pgdat->split_queue_lock);
6120 INIT_LIST_HEAD(&pgdat->split_queue);
6121 pgdat->split_queue_len = 0;
6122 #endif
6123 init_waitqueue_head(&pgdat->kswapd_wait);
6124 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6125 #ifdef CONFIG_COMPACTION
6126 init_waitqueue_head(&pgdat->kcompactd_wait);
6127 #endif
6128 pgdat_page_ext_init(pgdat);
6129 spin_lock_init(&pgdat->lru_lock);
6130 lruvec_init(node_lruvec(pgdat));
6132 pgdat->per_cpu_nodestats = &boot_nodestats;
6134 for (j = 0; j < MAX_NR_ZONES; j++) {
6135 struct zone *zone = pgdat->node_zones + j;
6136 unsigned long size, realsize, freesize, memmap_pages;
6137 unsigned long zone_start_pfn = zone->zone_start_pfn;
6139 size = zone->spanned_pages;
6140 realsize = freesize = zone->present_pages;
6143 * Adjust freesize so that it accounts for how much memory
6144 * is used by this zone for memmap. This affects the watermark
6145 * and per-cpu initialisations
6147 memmap_pages = calc_memmap_size(size, realsize);
6148 if (!is_highmem_idx(j)) {
6149 if (freesize >= memmap_pages) {
6150 freesize -= memmap_pages;
6151 if (memmap_pages)
6152 printk(KERN_DEBUG
6153 " %s zone: %lu pages used for memmap\n",
6154 zone_names[j], memmap_pages);
6155 } else
6156 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6157 zone_names[j], memmap_pages, freesize);
6160 /* Account for reserved pages */
6161 if (j == 0 && freesize > dma_reserve) {
6162 freesize -= dma_reserve;
6163 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6164 zone_names[0], dma_reserve);
6167 if (!is_highmem_idx(j))
6168 nr_kernel_pages += freesize;
6169 /* Charge for highmem memmap if there are enough kernel pages */
6170 else if (nr_kernel_pages > memmap_pages * 2)
6171 nr_kernel_pages -= memmap_pages;
6172 nr_all_pages += freesize;
6175 * Set an approximate value for lowmem here, it will be adjusted
6176 * when the bootmem allocator frees pages into the buddy system.
6177 * And all highmem pages will be managed by the buddy system.
6179 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6180 #ifdef CONFIG_NUMA
6181 zone->node = nid;
6182 #endif
6183 zone->name = zone_names[j];
6184 zone->zone_pgdat = pgdat;
6185 spin_lock_init(&zone->lock);
6186 zone_seqlock_init(zone);
6187 zone_pcp_init(zone);
6189 if (!size)
6190 continue;
6192 set_pageblock_order();
6193 setup_usemap(pgdat, zone, zone_start_pfn, size);
6194 init_currently_empty_zone(zone, zone_start_pfn, size);
6195 memmap_init(size, nid, j, zone_start_pfn);
6199 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6201 unsigned long __maybe_unused start = 0;
6202 unsigned long __maybe_unused offset = 0;
6204 /* Skip empty nodes */
6205 if (!pgdat->node_spanned_pages)
6206 return;
6208 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6209 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6210 offset = pgdat->node_start_pfn - start;
6211 /* ia64 gets its own node_mem_map, before this, without bootmem */
6212 if (!pgdat->node_mem_map) {
6213 unsigned long size, end;
6214 struct page *map;
6217 * The zone's endpoints aren't required to be MAX_ORDER
6218 * aligned but the node_mem_map endpoints must be in order
6219 * for the buddy allocator to function correctly.
6221 end = pgdat_end_pfn(pgdat);
6222 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6223 size = (end - start) * sizeof(struct page);
6224 map = alloc_remap(pgdat->node_id, size);
6225 if (!map)
6226 map = memblock_virt_alloc_node_nopanic(size,
6227 pgdat->node_id);
6228 pgdat->node_mem_map = map + offset;
6230 #ifndef CONFIG_NEED_MULTIPLE_NODES
6232 * With no DISCONTIG, the global mem_map is just set as node 0's
6234 if (pgdat == NODE_DATA(0)) {
6235 mem_map = NODE_DATA(0)->node_mem_map;
6236 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6237 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6238 mem_map -= offset;
6239 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6241 #endif
6242 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6245 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6246 unsigned long node_start_pfn, unsigned long *zholes_size)
6248 pg_data_t *pgdat = NODE_DATA(nid);
6249 unsigned long start_pfn = 0;
6250 unsigned long end_pfn = 0;
6252 /* pg_data_t should be reset to zero when it's allocated */
6253 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6255 pgdat->node_id = nid;
6256 pgdat->node_start_pfn = node_start_pfn;
6257 pgdat->per_cpu_nodestats = NULL;
6258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6259 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6260 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6261 (u64)start_pfn << PAGE_SHIFT,
6262 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6263 #else
6264 start_pfn = node_start_pfn;
6265 #endif
6266 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6267 zones_size, zholes_size);
6269 alloc_node_mem_map(pgdat);
6270 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6271 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6272 nid, (unsigned long)pgdat,
6273 (unsigned long)pgdat->node_mem_map);
6274 #endif
6276 reset_deferred_meminit(pgdat);
6277 free_area_init_core(pgdat);
6280 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6282 #if MAX_NUMNODES > 1
6284 * Figure out the number of possible node ids.
6286 void __init setup_nr_node_ids(void)
6288 unsigned int highest;
6290 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6291 nr_node_ids = highest + 1;
6293 #endif
6296 * node_map_pfn_alignment - determine the maximum internode alignment
6298 * This function should be called after node map is populated and sorted.
6299 * It calculates the maximum power of two alignment which can distinguish
6300 * all the nodes.
6302 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6303 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6304 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6305 * shifted, 1GiB is enough and this function will indicate so.
6307 * This is used to test whether pfn -> nid mapping of the chosen memory
6308 * model has fine enough granularity to avoid incorrect mapping for the
6309 * populated node map.
6311 * Returns the determined alignment in pfn's. 0 if there is no alignment
6312 * requirement (single node).
6314 unsigned long __init node_map_pfn_alignment(void)
6316 unsigned long accl_mask = 0, last_end = 0;
6317 unsigned long start, end, mask;
6318 int last_nid = -1;
6319 int i, nid;
6321 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6322 if (!start || last_nid < 0 || last_nid == nid) {
6323 last_nid = nid;
6324 last_end = end;
6325 continue;
6329 * Start with a mask granular enough to pin-point to the
6330 * start pfn and tick off bits one-by-one until it becomes
6331 * too coarse to separate the current node from the last.
6333 mask = ~((1 << __ffs(start)) - 1);
6334 while (mask && last_end <= (start & (mask << 1)))
6335 mask <<= 1;
6337 /* accumulate all internode masks */
6338 accl_mask |= mask;
6341 /* convert mask to number of pages */
6342 return ~accl_mask + 1;
6345 /* Find the lowest pfn for a node */
6346 static unsigned long __init find_min_pfn_for_node(int nid)
6348 unsigned long min_pfn = ULONG_MAX;
6349 unsigned long start_pfn;
6350 int i;
6352 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6353 min_pfn = min(min_pfn, start_pfn);
6355 if (min_pfn == ULONG_MAX) {
6356 pr_warn("Could not find start_pfn for node %d\n", nid);
6357 return 0;
6360 return min_pfn;
6364 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6366 * It returns the minimum PFN based on information provided via
6367 * memblock_set_node().
6369 unsigned long __init find_min_pfn_with_active_regions(void)
6371 return find_min_pfn_for_node(MAX_NUMNODES);
6375 * early_calculate_totalpages()
6376 * Sum pages in active regions for movable zone.
6377 * Populate N_MEMORY for calculating usable_nodes.
6379 static unsigned long __init early_calculate_totalpages(void)
6381 unsigned long totalpages = 0;
6382 unsigned long start_pfn, end_pfn;
6383 int i, nid;
6385 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6386 unsigned long pages = end_pfn - start_pfn;
6388 totalpages += pages;
6389 if (pages)
6390 node_set_state(nid, N_MEMORY);
6392 return totalpages;
6396 * Find the PFN the Movable zone begins in each node. Kernel memory
6397 * is spread evenly between nodes as long as the nodes have enough
6398 * memory. When they don't, some nodes will have more kernelcore than
6399 * others
6401 static void __init find_zone_movable_pfns_for_nodes(void)
6403 int i, nid;
6404 unsigned long usable_startpfn;
6405 unsigned long kernelcore_node, kernelcore_remaining;
6406 /* save the state before borrow the nodemask */
6407 nodemask_t saved_node_state = node_states[N_MEMORY];
6408 unsigned long totalpages = early_calculate_totalpages();
6409 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6410 struct memblock_region *r;
6412 /* Need to find movable_zone earlier when movable_node is specified. */
6413 find_usable_zone_for_movable();
6416 * If movable_node is specified, ignore kernelcore and movablecore
6417 * options.
6419 if (movable_node_is_enabled()) {
6420 for_each_memblock(memory, r) {
6421 if (!memblock_is_hotpluggable(r))
6422 continue;
6424 nid = r->nid;
6426 usable_startpfn = PFN_DOWN(r->base);
6427 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6428 min(usable_startpfn, zone_movable_pfn[nid]) :
6429 usable_startpfn;
6432 goto out2;
6436 * If kernelcore=mirror is specified, ignore movablecore option
6438 if (mirrored_kernelcore) {
6439 bool mem_below_4gb_not_mirrored = false;
6441 for_each_memblock(memory, r) {
6442 if (memblock_is_mirror(r))
6443 continue;
6445 nid = r->nid;
6447 usable_startpfn = memblock_region_memory_base_pfn(r);
6449 if (usable_startpfn < 0x100000) {
6450 mem_below_4gb_not_mirrored = true;
6451 continue;
6454 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6455 min(usable_startpfn, zone_movable_pfn[nid]) :
6456 usable_startpfn;
6459 if (mem_below_4gb_not_mirrored)
6460 pr_warn("This configuration results in unmirrored kernel memory.");
6462 goto out2;
6466 * If movablecore=nn[KMG] was specified, calculate what size of
6467 * kernelcore that corresponds so that memory usable for
6468 * any allocation type is evenly spread. If both kernelcore
6469 * and movablecore are specified, then the value of kernelcore
6470 * will be used for required_kernelcore if it's greater than
6471 * what movablecore would have allowed.
6473 if (required_movablecore) {
6474 unsigned long corepages;
6477 * Round-up so that ZONE_MOVABLE is at least as large as what
6478 * was requested by the user
6480 required_movablecore =
6481 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6482 required_movablecore = min(totalpages, required_movablecore);
6483 corepages = totalpages - required_movablecore;
6485 required_kernelcore = max(required_kernelcore, corepages);
6489 * If kernelcore was not specified or kernelcore size is larger
6490 * than totalpages, there is no ZONE_MOVABLE.
6492 if (!required_kernelcore || required_kernelcore >= totalpages)
6493 goto out;
6495 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6496 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6498 restart:
6499 /* Spread kernelcore memory as evenly as possible throughout nodes */
6500 kernelcore_node = required_kernelcore / usable_nodes;
6501 for_each_node_state(nid, N_MEMORY) {
6502 unsigned long start_pfn, end_pfn;
6505 * Recalculate kernelcore_node if the division per node
6506 * now exceeds what is necessary to satisfy the requested
6507 * amount of memory for the kernel
6509 if (required_kernelcore < kernelcore_node)
6510 kernelcore_node = required_kernelcore / usable_nodes;
6513 * As the map is walked, we track how much memory is usable
6514 * by the kernel using kernelcore_remaining. When it is
6515 * 0, the rest of the node is usable by ZONE_MOVABLE
6517 kernelcore_remaining = kernelcore_node;
6519 /* Go through each range of PFNs within this node */
6520 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6521 unsigned long size_pages;
6523 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6524 if (start_pfn >= end_pfn)
6525 continue;
6527 /* Account for what is only usable for kernelcore */
6528 if (start_pfn < usable_startpfn) {
6529 unsigned long kernel_pages;
6530 kernel_pages = min(end_pfn, usable_startpfn)
6531 - start_pfn;
6533 kernelcore_remaining -= min(kernel_pages,
6534 kernelcore_remaining);
6535 required_kernelcore -= min(kernel_pages,
6536 required_kernelcore);
6538 /* Continue if range is now fully accounted */
6539 if (end_pfn <= usable_startpfn) {
6542 * Push zone_movable_pfn to the end so
6543 * that if we have to rebalance
6544 * kernelcore across nodes, we will
6545 * not double account here
6547 zone_movable_pfn[nid] = end_pfn;
6548 continue;
6550 start_pfn = usable_startpfn;
6554 * The usable PFN range for ZONE_MOVABLE is from
6555 * start_pfn->end_pfn. Calculate size_pages as the
6556 * number of pages used as kernelcore
6558 size_pages = end_pfn - start_pfn;
6559 if (size_pages > kernelcore_remaining)
6560 size_pages = kernelcore_remaining;
6561 zone_movable_pfn[nid] = start_pfn + size_pages;
6564 * Some kernelcore has been met, update counts and
6565 * break if the kernelcore for this node has been
6566 * satisfied
6568 required_kernelcore -= min(required_kernelcore,
6569 size_pages);
6570 kernelcore_remaining -= size_pages;
6571 if (!kernelcore_remaining)
6572 break;
6577 * If there is still required_kernelcore, we do another pass with one
6578 * less node in the count. This will push zone_movable_pfn[nid] further
6579 * along on the nodes that still have memory until kernelcore is
6580 * satisfied
6582 usable_nodes--;
6583 if (usable_nodes && required_kernelcore > usable_nodes)
6584 goto restart;
6586 out2:
6587 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6588 for (nid = 0; nid < MAX_NUMNODES; nid++)
6589 zone_movable_pfn[nid] =
6590 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6592 out:
6593 /* restore the node_state */
6594 node_states[N_MEMORY] = saved_node_state;
6597 /* Any regular or high memory on that node ? */
6598 static void check_for_memory(pg_data_t *pgdat, int nid)
6600 enum zone_type zone_type;
6602 if (N_MEMORY == N_NORMAL_MEMORY)
6603 return;
6605 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6606 struct zone *zone = &pgdat->node_zones[zone_type];
6607 if (populated_zone(zone)) {
6608 node_set_state(nid, N_HIGH_MEMORY);
6609 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6610 zone_type <= ZONE_NORMAL)
6611 node_set_state(nid, N_NORMAL_MEMORY);
6612 break;
6618 * free_area_init_nodes - Initialise all pg_data_t and zone data
6619 * @max_zone_pfn: an array of max PFNs for each zone
6621 * This will call free_area_init_node() for each active node in the system.
6622 * Using the page ranges provided by memblock_set_node(), the size of each
6623 * zone in each node and their holes is calculated. If the maximum PFN
6624 * between two adjacent zones match, it is assumed that the zone is empty.
6625 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6626 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6627 * starts where the previous one ended. For example, ZONE_DMA32 starts
6628 * at arch_max_dma_pfn.
6630 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6632 unsigned long start_pfn, end_pfn;
6633 int i, nid;
6635 /* Record where the zone boundaries are */
6636 memset(arch_zone_lowest_possible_pfn, 0,
6637 sizeof(arch_zone_lowest_possible_pfn));
6638 memset(arch_zone_highest_possible_pfn, 0,
6639 sizeof(arch_zone_highest_possible_pfn));
6641 start_pfn = find_min_pfn_with_active_regions();
6643 for (i = 0; i < MAX_NR_ZONES; i++) {
6644 if (i == ZONE_MOVABLE)
6645 continue;
6647 end_pfn = max(max_zone_pfn[i], start_pfn);
6648 arch_zone_lowest_possible_pfn[i] = start_pfn;
6649 arch_zone_highest_possible_pfn[i] = end_pfn;
6651 start_pfn = end_pfn;
6654 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6655 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6656 find_zone_movable_pfns_for_nodes();
6658 /* Print out the zone ranges */
6659 pr_info("Zone ranges:\n");
6660 for (i = 0; i < MAX_NR_ZONES; i++) {
6661 if (i == ZONE_MOVABLE)
6662 continue;
6663 pr_info(" %-8s ", zone_names[i]);
6664 if (arch_zone_lowest_possible_pfn[i] ==
6665 arch_zone_highest_possible_pfn[i])
6666 pr_cont("empty\n");
6667 else
6668 pr_cont("[mem %#018Lx-%#018Lx]\n",
6669 (u64)arch_zone_lowest_possible_pfn[i]
6670 << PAGE_SHIFT,
6671 ((u64)arch_zone_highest_possible_pfn[i]
6672 << PAGE_SHIFT) - 1);
6675 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6676 pr_info("Movable zone start for each node\n");
6677 for (i = 0; i < MAX_NUMNODES; i++) {
6678 if (zone_movable_pfn[i])
6679 pr_info(" Node %d: %#018Lx\n", i,
6680 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6683 /* Print out the early node map */
6684 pr_info("Early memory node ranges\n");
6685 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6686 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6687 (u64)start_pfn << PAGE_SHIFT,
6688 ((u64)end_pfn << PAGE_SHIFT) - 1);
6690 /* Initialise every node */
6691 mminit_verify_pageflags_layout();
6692 setup_nr_node_ids();
6693 for_each_online_node(nid) {
6694 pg_data_t *pgdat = NODE_DATA(nid);
6695 free_area_init_node(nid, NULL,
6696 find_min_pfn_for_node(nid), NULL);
6698 /* Any memory on that node */
6699 if (pgdat->node_present_pages)
6700 node_set_state(nid, N_MEMORY);
6701 check_for_memory(pgdat, nid);
6705 static int __init cmdline_parse_core(char *p, unsigned long *core)
6707 unsigned long long coremem;
6708 if (!p)
6709 return -EINVAL;
6711 coremem = memparse(p, &p);
6712 *core = coremem >> PAGE_SHIFT;
6714 /* Paranoid check that UL is enough for the coremem value */
6715 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6717 return 0;
6721 * kernelcore=size sets the amount of memory for use for allocations that
6722 * cannot be reclaimed or migrated.
6724 static int __init cmdline_parse_kernelcore(char *p)
6726 /* parse kernelcore=mirror */
6727 if (parse_option_str(p, "mirror")) {
6728 mirrored_kernelcore = true;
6729 return 0;
6732 return cmdline_parse_core(p, &required_kernelcore);
6736 * movablecore=size sets the amount of memory for use for allocations that
6737 * can be reclaimed or migrated.
6739 static int __init cmdline_parse_movablecore(char *p)
6741 return cmdline_parse_core(p, &required_movablecore);
6744 early_param("kernelcore", cmdline_parse_kernelcore);
6745 early_param("movablecore", cmdline_parse_movablecore);
6747 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6749 void adjust_managed_page_count(struct page *page, long count)
6751 spin_lock(&managed_page_count_lock);
6752 page_zone(page)->managed_pages += count;
6753 totalram_pages += count;
6754 #ifdef CONFIG_HIGHMEM
6755 if (PageHighMem(page))
6756 totalhigh_pages += count;
6757 #endif
6758 spin_unlock(&managed_page_count_lock);
6760 EXPORT_SYMBOL(adjust_managed_page_count);
6762 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6764 void *pos;
6765 unsigned long pages = 0;
6767 start = (void *)PAGE_ALIGN((unsigned long)start);
6768 end = (void *)((unsigned long)end & PAGE_MASK);
6769 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6770 if ((unsigned int)poison <= 0xFF)
6771 memset(pos, poison, PAGE_SIZE);
6772 free_reserved_page(virt_to_page(pos));
6775 if (pages && s)
6776 pr_info("Freeing %s memory: %ldK\n",
6777 s, pages << (PAGE_SHIFT - 10));
6779 return pages;
6781 EXPORT_SYMBOL(free_reserved_area);
6783 #ifdef CONFIG_HIGHMEM
6784 void free_highmem_page(struct page *page)
6786 __free_reserved_page(page);
6787 totalram_pages++;
6788 page_zone(page)->managed_pages++;
6789 totalhigh_pages++;
6791 #endif
6794 void __init mem_init_print_info(const char *str)
6796 unsigned long physpages, codesize, datasize, rosize, bss_size;
6797 unsigned long init_code_size, init_data_size;
6799 physpages = get_num_physpages();
6800 codesize = _etext - _stext;
6801 datasize = _edata - _sdata;
6802 rosize = __end_rodata - __start_rodata;
6803 bss_size = __bss_stop - __bss_start;
6804 init_data_size = __init_end - __init_begin;
6805 init_code_size = _einittext - _sinittext;
6808 * Detect special cases and adjust section sizes accordingly:
6809 * 1) .init.* may be embedded into .data sections
6810 * 2) .init.text.* may be out of [__init_begin, __init_end],
6811 * please refer to arch/tile/kernel/vmlinux.lds.S.
6812 * 3) .rodata.* may be embedded into .text or .data sections.
6814 #define adj_init_size(start, end, size, pos, adj) \
6815 do { \
6816 if (start <= pos && pos < end && size > adj) \
6817 size -= adj; \
6818 } while (0)
6820 adj_init_size(__init_begin, __init_end, init_data_size,
6821 _sinittext, init_code_size);
6822 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6823 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6824 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6825 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6827 #undef adj_init_size
6829 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6830 #ifdef CONFIG_HIGHMEM
6831 ", %luK highmem"
6832 #endif
6833 "%s%s)\n",
6834 nr_free_pages() << (PAGE_SHIFT - 10),
6835 physpages << (PAGE_SHIFT - 10),
6836 codesize >> 10, datasize >> 10, rosize >> 10,
6837 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6838 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6839 totalcma_pages << (PAGE_SHIFT - 10),
6840 #ifdef CONFIG_HIGHMEM
6841 totalhigh_pages << (PAGE_SHIFT - 10),
6842 #endif
6843 str ? ", " : "", str ? str : "");
6847 * set_dma_reserve - set the specified number of pages reserved in the first zone
6848 * @new_dma_reserve: The number of pages to mark reserved
6850 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6851 * In the DMA zone, a significant percentage may be consumed by kernel image
6852 * and other unfreeable allocations which can skew the watermarks badly. This
6853 * function may optionally be used to account for unfreeable pages in the
6854 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6855 * smaller per-cpu batchsize.
6857 void __init set_dma_reserve(unsigned long new_dma_reserve)
6859 dma_reserve = new_dma_reserve;
6862 void __init free_area_init(unsigned long *zones_size)
6864 free_area_init_node(0, zones_size,
6865 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6868 static int page_alloc_cpu_dead(unsigned int cpu)
6871 lru_add_drain_cpu(cpu);
6872 drain_pages(cpu);
6875 * Spill the event counters of the dead processor
6876 * into the current processors event counters.
6877 * This artificially elevates the count of the current
6878 * processor.
6880 vm_events_fold_cpu(cpu);
6883 * Zero the differential counters of the dead processor
6884 * so that the vm statistics are consistent.
6886 * This is only okay since the processor is dead and cannot
6887 * race with what we are doing.
6889 cpu_vm_stats_fold(cpu);
6890 return 0;
6893 void __init page_alloc_init(void)
6895 int ret;
6897 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6898 "mm/page_alloc:dead", NULL,
6899 page_alloc_cpu_dead);
6900 WARN_ON(ret < 0);
6904 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6905 * or min_free_kbytes changes.
6907 static void calculate_totalreserve_pages(void)
6909 struct pglist_data *pgdat;
6910 unsigned long reserve_pages = 0;
6911 enum zone_type i, j;
6913 for_each_online_pgdat(pgdat) {
6915 pgdat->totalreserve_pages = 0;
6917 for (i = 0; i < MAX_NR_ZONES; i++) {
6918 struct zone *zone = pgdat->node_zones + i;
6919 long max = 0;
6921 /* Find valid and maximum lowmem_reserve in the zone */
6922 for (j = i; j < MAX_NR_ZONES; j++) {
6923 if (zone->lowmem_reserve[j] > max)
6924 max = zone->lowmem_reserve[j];
6927 /* we treat the high watermark as reserved pages. */
6928 max += high_wmark_pages(zone);
6930 if (max > zone->managed_pages)
6931 max = zone->managed_pages;
6933 pgdat->totalreserve_pages += max;
6935 reserve_pages += max;
6938 totalreserve_pages = reserve_pages;
6942 * setup_per_zone_lowmem_reserve - called whenever
6943 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6944 * has a correct pages reserved value, so an adequate number of
6945 * pages are left in the zone after a successful __alloc_pages().
6947 static void setup_per_zone_lowmem_reserve(void)
6949 struct pglist_data *pgdat;
6950 enum zone_type j, idx;
6952 for_each_online_pgdat(pgdat) {
6953 for (j = 0; j < MAX_NR_ZONES; j++) {
6954 struct zone *zone = pgdat->node_zones + j;
6955 unsigned long managed_pages = zone->managed_pages;
6957 zone->lowmem_reserve[j] = 0;
6959 idx = j;
6960 while (idx) {
6961 struct zone *lower_zone;
6963 idx--;
6965 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6966 sysctl_lowmem_reserve_ratio[idx] = 1;
6968 lower_zone = pgdat->node_zones + idx;
6969 lower_zone->lowmem_reserve[j] = managed_pages /
6970 sysctl_lowmem_reserve_ratio[idx];
6971 managed_pages += lower_zone->managed_pages;
6976 /* update totalreserve_pages */
6977 calculate_totalreserve_pages();
6980 static void __setup_per_zone_wmarks(void)
6982 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6983 unsigned long lowmem_pages = 0;
6984 struct zone *zone;
6985 unsigned long flags;
6987 /* Calculate total number of !ZONE_HIGHMEM pages */
6988 for_each_zone(zone) {
6989 if (!is_highmem(zone))
6990 lowmem_pages += zone->managed_pages;
6993 for_each_zone(zone) {
6994 u64 tmp;
6996 spin_lock_irqsave(&zone->lock, flags);
6997 tmp = (u64)pages_min * zone->managed_pages;
6998 do_div(tmp, lowmem_pages);
6999 if (is_highmem(zone)) {
7001 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7002 * need highmem pages, so cap pages_min to a small
7003 * value here.
7005 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7006 * deltas control asynch page reclaim, and so should
7007 * not be capped for highmem.
7009 unsigned long min_pages;
7011 min_pages = zone->managed_pages / 1024;
7012 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7013 zone->watermark[WMARK_MIN] = min_pages;
7014 } else {
7016 * If it's a lowmem zone, reserve a number of pages
7017 * proportionate to the zone's size.
7019 zone->watermark[WMARK_MIN] = tmp;
7023 * Set the kswapd watermarks distance according to the
7024 * scale factor in proportion to available memory, but
7025 * ensure a minimum size on small systems.
7027 tmp = max_t(u64, tmp >> 2,
7028 mult_frac(zone->managed_pages,
7029 watermark_scale_factor, 10000));
7031 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7032 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7034 spin_unlock_irqrestore(&zone->lock, flags);
7037 /* update totalreserve_pages */
7038 calculate_totalreserve_pages();
7042 * setup_per_zone_wmarks - called when min_free_kbytes changes
7043 * or when memory is hot-{added|removed}
7045 * Ensures that the watermark[min,low,high] values for each zone are set
7046 * correctly with respect to min_free_kbytes.
7048 void setup_per_zone_wmarks(void)
7050 mutex_lock(&zonelists_mutex);
7051 __setup_per_zone_wmarks();
7052 mutex_unlock(&zonelists_mutex);
7056 * Initialise min_free_kbytes.
7058 * For small machines we want it small (128k min). For large machines
7059 * we want it large (64MB max). But it is not linear, because network
7060 * bandwidth does not increase linearly with machine size. We use
7062 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7063 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7065 * which yields
7067 * 16MB: 512k
7068 * 32MB: 724k
7069 * 64MB: 1024k
7070 * 128MB: 1448k
7071 * 256MB: 2048k
7072 * 512MB: 2896k
7073 * 1024MB: 4096k
7074 * 2048MB: 5792k
7075 * 4096MB: 8192k
7076 * 8192MB: 11584k
7077 * 16384MB: 16384k
7079 int __meminit init_per_zone_wmark_min(void)
7081 unsigned long lowmem_kbytes;
7082 int new_min_free_kbytes;
7084 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7085 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7087 if (new_min_free_kbytes > user_min_free_kbytes) {
7088 min_free_kbytes = new_min_free_kbytes;
7089 if (min_free_kbytes < 128)
7090 min_free_kbytes = 128;
7091 if (min_free_kbytes > 65536)
7092 min_free_kbytes = 65536;
7093 } else {
7094 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7095 new_min_free_kbytes, user_min_free_kbytes);
7097 setup_per_zone_wmarks();
7098 refresh_zone_stat_thresholds();
7099 setup_per_zone_lowmem_reserve();
7101 #ifdef CONFIG_NUMA
7102 setup_min_unmapped_ratio();
7103 setup_min_slab_ratio();
7104 #endif
7106 return 0;
7108 core_initcall(init_per_zone_wmark_min)
7111 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7112 * that we can call two helper functions whenever min_free_kbytes
7113 * changes.
7115 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7116 void __user *buffer, size_t *length, loff_t *ppos)
7118 int rc;
7120 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7121 if (rc)
7122 return rc;
7124 if (write) {
7125 user_min_free_kbytes = min_free_kbytes;
7126 setup_per_zone_wmarks();
7128 return 0;
7131 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7132 void __user *buffer, size_t *length, loff_t *ppos)
7134 int rc;
7136 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7137 if (rc)
7138 return rc;
7140 if (write)
7141 setup_per_zone_wmarks();
7143 return 0;
7146 #ifdef CONFIG_NUMA
7147 static void setup_min_unmapped_ratio(void)
7149 pg_data_t *pgdat;
7150 struct zone *zone;
7152 for_each_online_pgdat(pgdat)
7153 pgdat->min_unmapped_pages = 0;
7155 for_each_zone(zone)
7156 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7157 sysctl_min_unmapped_ratio) / 100;
7161 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7162 void __user *buffer, size_t *length, loff_t *ppos)
7164 int rc;
7166 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7167 if (rc)
7168 return rc;
7170 setup_min_unmapped_ratio();
7172 return 0;
7175 static void setup_min_slab_ratio(void)
7177 pg_data_t *pgdat;
7178 struct zone *zone;
7180 for_each_online_pgdat(pgdat)
7181 pgdat->min_slab_pages = 0;
7183 for_each_zone(zone)
7184 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7185 sysctl_min_slab_ratio) / 100;
7188 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7189 void __user *buffer, size_t *length, loff_t *ppos)
7191 int rc;
7193 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7194 if (rc)
7195 return rc;
7197 setup_min_slab_ratio();
7199 return 0;
7201 #endif
7204 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7205 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7206 * whenever sysctl_lowmem_reserve_ratio changes.
7208 * The reserve ratio obviously has absolutely no relation with the
7209 * minimum watermarks. The lowmem reserve ratio can only make sense
7210 * if in function of the boot time zone sizes.
7212 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7213 void __user *buffer, size_t *length, loff_t *ppos)
7215 proc_dointvec_minmax(table, write, buffer, length, ppos);
7216 setup_per_zone_lowmem_reserve();
7217 return 0;
7221 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7222 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7223 * pagelist can have before it gets flushed back to buddy allocator.
7225 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7226 void __user *buffer, size_t *length, loff_t *ppos)
7228 struct zone *zone;
7229 int old_percpu_pagelist_fraction;
7230 int ret;
7232 mutex_lock(&pcp_batch_high_lock);
7233 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7235 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7236 if (!write || ret < 0)
7237 goto out;
7239 /* Sanity checking to avoid pcp imbalance */
7240 if (percpu_pagelist_fraction &&
7241 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7242 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7243 ret = -EINVAL;
7244 goto out;
7247 /* No change? */
7248 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7249 goto out;
7251 for_each_populated_zone(zone) {
7252 unsigned int cpu;
7254 for_each_possible_cpu(cpu)
7255 pageset_set_high_and_batch(zone,
7256 per_cpu_ptr(zone->pageset, cpu));
7258 out:
7259 mutex_unlock(&pcp_batch_high_lock);
7260 return ret;
7263 #ifdef CONFIG_NUMA
7264 int hashdist = HASHDIST_DEFAULT;
7266 static int __init set_hashdist(char *str)
7268 if (!str)
7269 return 0;
7270 hashdist = simple_strtoul(str, &str, 0);
7271 return 1;
7273 __setup("hashdist=", set_hashdist);
7274 #endif
7276 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7278 * Returns the number of pages that arch has reserved but
7279 * is not known to alloc_large_system_hash().
7281 static unsigned long __init arch_reserved_kernel_pages(void)
7283 return 0;
7285 #endif
7288 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7289 * machines. As memory size is increased the scale is also increased but at
7290 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7291 * quadruples the scale is increased by one, which means the size of hash table
7292 * only doubles, instead of quadrupling as well.
7293 * Because 32-bit systems cannot have large physical memory, where this scaling
7294 * makes sense, it is disabled on such platforms.
7296 #if __BITS_PER_LONG > 32
7297 #define ADAPT_SCALE_BASE (64ul << 30)
7298 #define ADAPT_SCALE_SHIFT 2
7299 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7300 #endif
7303 * allocate a large system hash table from bootmem
7304 * - it is assumed that the hash table must contain an exact power-of-2
7305 * quantity of entries
7306 * - limit is the number of hash buckets, not the total allocation size
7308 void *__init alloc_large_system_hash(const char *tablename,
7309 unsigned long bucketsize,
7310 unsigned long numentries,
7311 int scale,
7312 int flags,
7313 unsigned int *_hash_shift,
7314 unsigned int *_hash_mask,
7315 unsigned long low_limit,
7316 unsigned long high_limit)
7318 unsigned long long max = high_limit;
7319 unsigned long log2qty, size;
7320 void *table = NULL;
7321 gfp_t gfp_flags;
7323 /* allow the kernel cmdline to have a say */
7324 if (!numentries) {
7325 /* round applicable memory size up to nearest megabyte */
7326 numentries = nr_kernel_pages;
7327 numentries -= arch_reserved_kernel_pages();
7329 /* It isn't necessary when PAGE_SIZE >= 1MB */
7330 if (PAGE_SHIFT < 20)
7331 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7333 #if __BITS_PER_LONG > 32
7334 if (!high_limit) {
7335 unsigned long adapt;
7337 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7338 adapt <<= ADAPT_SCALE_SHIFT)
7339 scale++;
7341 #endif
7343 /* limit to 1 bucket per 2^scale bytes of low memory */
7344 if (scale > PAGE_SHIFT)
7345 numentries >>= (scale - PAGE_SHIFT);
7346 else
7347 numentries <<= (PAGE_SHIFT - scale);
7349 /* Make sure we've got at least a 0-order allocation.. */
7350 if (unlikely(flags & HASH_SMALL)) {
7351 /* Makes no sense without HASH_EARLY */
7352 WARN_ON(!(flags & HASH_EARLY));
7353 if (!(numentries >> *_hash_shift)) {
7354 numentries = 1UL << *_hash_shift;
7355 BUG_ON(!numentries);
7357 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7358 numentries = PAGE_SIZE / bucketsize;
7360 numentries = roundup_pow_of_two(numentries);
7362 /* limit allocation size to 1/16 total memory by default */
7363 if (max == 0) {
7364 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7365 do_div(max, bucketsize);
7367 max = min(max, 0x80000000ULL);
7369 if (numentries < low_limit)
7370 numentries = low_limit;
7371 if (numentries > max)
7372 numentries = max;
7374 log2qty = ilog2(numentries);
7377 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7378 * currently not used when HASH_EARLY is specified.
7380 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7381 do {
7382 size = bucketsize << log2qty;
7383 if (flags & HASH_EARLY)
7384 table = memblock_virt_alloc_nopanic(size, 0);
7385 else if (hashdist)
7386 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7387 else {
7389 * If bucketsize is not a power-of-two, we may free
7390 * some pages at the end of hash table which
7391 * alloc_pages_exact() automatically does
7393 if (get_order(size) < MAX_ORDER) {
7394 table = alloc_pages_exact(size, gfp_flags);
7395 kmemleak_alloc(table, size, 1, gfp_flags);
7398 } while (!table && size > PAGE_SIZE && --log2qty);
7400 if (!table)
7401 panic("Failed to allocate %s hash table\n", tablename);
7403 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7404 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7406 if (_hash_shift)
7407 *_hash_shift = log2qty;
7408 if (_hash_mask)
7409 *_hash_mask = (1 << log2qty) - 1;
7411 return table;
7415 * This function checks whether pageblock includes unmovable pages or not.
7416 * If @count is not zero, it is okay to include less @count unmovable pages
7418 * PageLRU check without isolation or lru_lock could race so that
7419 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7420 * check without lock_page also may miss some movable non-lru pages at
7421 * race condition. So you can't expect this function should be exact.
7423 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7424 bool skip_hwpoisoned_pages)
7426 unsigned long pfn, iter, found;
7427 int mt;
7430 * For avoiding noise data, lru_add_drain_all() should be called
7431 * If ZONE_MOVABLE, the zone never contains unmovable pages
7433 if (zone_idx(zone) == ZONE_MOVABLE)
7434 return false;
7435 mt = get_pageblock_migratetype(page);
7436 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7437 return false;
7439 pfn = page_to_pfn(page);
7440 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7441 unsigned long check = pfn + iter;
7443 if (!pfn_valid_within(check))
7444 continue;
7446 page = pfn_to_page(check);
7449 * Hugepages are not in LRU lists, but they're movable.
7450 * We need not scan over tail pages bacause we don't
7451 * handle each tail page individually in migration.
7453 if (PageHuge(page)) {
7454 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7455 continue;
7459 * We can't use page_count without pin a page
7460 * because another CPU can free compound page.
7461 * This check already skips compound tails of THP
7462 * because their page->_refcount is zero at all time.
7464 if (!page_ref_count(page)) {
7465 if (PageBuddy(page))
7466 iter += (1 << page_order(page)) - 1;
7467 continue;
7471 * The HWPoisoned page may be not in buddy system, and
7472 * page_count() is not 0.
7474 if (skip_hwpoisoned_pages && PageHWPoison(page))
7475 continue;
7477 if (__PageMovable(page))
7478 continue;
7480 if (!PageLRU(page))
7481 found++;
7483 * If there are RECLAIMABLE pages, we need to check
7484 * it. But now, memory offline itself doesn't call
7485 * shrink_node_slabs() and it still to be fixed.
7488 * If the page is not RAM, page_count()should be 0.
7489 * we don't need more check. This is an _used_ not-movable page.
7491 * The problematic thing here is PG_reserved pages. PG_reserved
7492 * is set to both of a memory hole page and a _used_ kernel
7493 * page at boot.
7495 if (found > count)
7496 return true;
7498 return false;
7501 bool is_pageblock_removable_nolock(struct page *page)
7503 struct zone *zone;
7504 unsigned long pfn;
7507 * We have to be careful here because we are iterating over memory
7508 * sections which are not zone aware so we might end up outside of
7509 * the zone but still within the section.
7510 * We have to take care about the node as well. If the node is offline
7511 * its NODE_DATA will be NULL - see page_zone.
7513 if (!node_online(page_to_nid(page)))
7514 return false;
7516 zone = page_zone(page);
7517 pfn = page_to_pfn(page);
7518 if (!zone_spans_pfn(zone, pfn))
7519 return false;
7521 return !has_unmovable_pages(zone, page, 0, true);
7524 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7526 static unsigned long pfn_max_align_down(unsigned long pfn)
7528 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7529 pageblock_nr_pages) - 1);
7532 static unsigned long pfn_max_align_up(unsigned long pfn)
7534 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7535 pageblock_nr_pages));
7538 /* [start, end) must belong to a single zone. */
7539 static int __alloc_contig_migrate_range(struct compact_control *cc,
7540 unsigned long start, unsigned long end)
7542 /* This function is based on compact_zone() from compaction.c. */
7543 unsigned long nr_reclaimed;
7544 unsigned long pfn = start;
7545 unsigned int tries = 0;
7546 int ret = 0;
7548 migrate_prep();
7550 while (pfn < end || !list_empty(&cc->migratepages)) {
7551 if (fatal_signal_pending(current)) {
7552 ret = -EINTR;
7553 break;
7556 if (list_empty(&cc->migratepages)) {
7557 cc->nr_migratepages = 0;
7558 pfn = isolate_migratepages_range(cc, pfn, end);
7559 if (!pfn) {
7560 ret = -EINTR;
7561 break;
7563 tries = 0;
7564 } else if (++tries == 5) {
7565 ret = ret < 0 ? ret : -EBUSY;
7566 break;
7569 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7570 &cc->migratepages);
7571 cc->nr_migratepages -= nr_reclaimed;
7573 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7574 NULL, 0, cc->mode, MR_CMA);
7576 if (ret < 0) {
7577 putback_movable_pages(&cc->migratepages);
7578 return ret;
7580 return 0;
7584 * alloc_contig_range() -- tries to allocate given range of pages
7585 * @start: start PFN to allocate
7586 * @end: one-past-the-last PFN to allocate
7587 * @migratetype: migratetype of the underlaying pageblocks (either
7588 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7589 * in range must have the same migratetype and it must
7590 * be either of the two.
7591 * @gfp_mask: GFP mask to use during compaction
7593 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7594 * aligned, however it's the caller's responsibility to guarantee that
7595 * we are the only thread that changes migrate type of pageblocks the
7596 * pages fall in.
7598 * The PFN range must belong to a single zone.
7600 * Returns zero on success or negative error code. On success all
7601 * pages which PFN is in [start, end) are allocated for the caller and
7602 * need to be freed with free_contig_range().
7604 int alloc_contig_range(unsigned long start, unsigned long end,
7605 unsigned migratetype, gfp_t gfp_mask)
7607 unsigned long outer_start, outer_end;
7608 unsigned int order;
7609 int ret = 0;
7611 struct compact_control cc = {
7612 .nr_migratepages = 0,
7613 .order = -1,
7614 .zone = page_zone(pfn_to_page(start)),
7615 .mode = MIGRATE_SYNC,
7616 .ignore_skip_hint = true,
7617 .gfp_mask = current_gfp_context(gfp_mask),
7619 INIT_LIST_HEAD(&cc.migratepages);
7622 * What we do here is we mark all pageblocks in range as
7623 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7624 * have different sizes, and due to the way page allocator
7625 * work, we align the range to biggest of the two pages so
7626 * that page allocator won't try to merge buddies from
7627 * different pageblocks and change MIGRATE_ISOLATE to some
7628 * other migration type.
7630 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7631 * migrate the pages from an unaligned range (ie. pages that
7632 * we are interested in). This will put all the pages in
7633 * range back to page allocator as MIGRATE_ISOLATE.
7635 * When this is done, we take the pages in range from page
7636 * allocator removing them from the buddy system. This way
7637 * page allocator will never consider using them.
7639 * This lets us mark the pageblocks back as
7640 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7641 * aligned range but not in the unaligned, original range are
7642 * put back to page allocator so that buddy can use them.
7645 ret = start_isolate_page_range(pfn_max_align_down(start),
7646 pfn_max_align_up(end), migratetype,
7647 false);
7648 if (ret)
7649 return ret;
7652 * In case of -EBUSY, we'd like to know which page causes problem.
7653 * So, just fall through. We will check it in test_pages_isolated().
7655 ret = __alloc_contig_migrate_range(&cc, start, end);
7656 if (ret && ret != -EBUSY)
7657 goto done;
7660 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7661 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7662 * more, all pages in [start, end) are free in page allocator.
7663 * What we are going to do is to allocate all pages from
7664 * [start, end) (that is remove them from page allocator).
7666 * The only problem is that pages at the beginning and at the
7667 * end of interesting range may be not aligned with pages that
7668 * page allocator holds, ie. they can be part of higher order
7669 * pages. Because of this, we reserve the bigger range and
7670 * once this is done free the pages we are not interested in.
7672 * We don't have to hold zone->lock here because the pages are
7673 * isolated thus they won't get removed from buddy.
7676 lru_add_drain_all();
7677 drain_all_pages(cc.zone);
7679 order = 0;
7680 outer_start = start;
7681 while (!PageBuddy(pfn_to_page(outer_start))) {
7682 if (++order >= MAX_ORDER) {
7683 outer_start = start;
7684 break;
7686 outer_start &= ~0UL << order;
7689 if (outer_start != start) {
7690 order = page_order(pfn_to_page(outer_start));
7693 * outer_start page could be small order buddy page and
7694 * it doesn't include start page. Adjust outer_start
7695 * in this case to report failed page properly
7696 * on tracepoint in test_pages_isolated()
7698 if (outer_start + (1UL << order) <= start)
7699 outer_start = start;
7702 /* Make sure the range is really isolated. */
7703 if (test_pages_isolated(outer_start, end, false)) {
7704 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7705 __func__, outer_start, end);
7706 ret = -EBUSY;
7707 goto done;
7710 /* Grab isolated pages from freelists. */
7711 outer_end = isolate_freepages_range(&cc, outer_start, end);
7712 if (!outer_end) {
7713 ret = -EBUSY;
7714 goto done;
7717 /* Free head and tail (if any) */
7718 if (start != outer_start)
7719 free_contig_range(outer_start, start - outer_start);
7720 if (end != outer_end)
7721 free_contig_range(end, outer_end - end);
7723 done:
7724 undo_isolate_page_range(pfn_max_align_down(start),
7725 pfn_max_align_up(end), migratetype);
7726 return ret;
7729 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7731 unsigned int count = 0;
7733 for (; nr_pages--; pfn++) {
7734 struct page *page = pfn_to_page(pfn);
7736 count += page_count(page) != 1;
7737 __free_page(page);
7739 WARN(count != 0, "%d pages are still in use!\n", count);
7741 #endif
7743 #ifdef CONFIG_MEMORY_HOTPLUG
7745 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7746 * page high values need to be recalulated.
7748 void __meminit zone_pcp_update(struct zone *zone)
7750 unsigned cpu;
7751 mutex_lock(&pcp_batch_high_lock);
7752 for_each_possible_cpu(cpu)
7753 pageset_set_high_and_batch(zone,
7754 per_cpu_ptr(zone->pageset, cpu));
7755 mutex_unlock(&pcp_batch_high_lock);
7757 #endif
7759 void zone_pcp_reset(struct zone *zone)
7761 unsigned long flags;
7762 int cpu;
7763 struct per_cpu_pageset *pset;
7765 /* avoid races with drain_pages() */
7766 local_irq_save(flags);
7767 if (zone->pageset != &boot_pageset) {
7768 for_each_online_cpu(cpu) {
7769 pset = per_cpu_ptr(zone->pageset, cpu);
7770 drain_zonestat(zone, pset);
7772 free_percpu(zone->pageset);
7773 zone->pageset = &boot_pageset;
7775 local_irq_restore(flags);
7778 #ifdef CONFIG_MEMORY_HOTREMOVE
7780 * All pages in the range must be in a single zone and isolated
7781 * before calling this.
7783 void
7784 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7786 struct page *page;
7787 struct zone *zone;
7788 unsigned int order, i;
7789 unsigned long pfn;
7790 unsigned long flags;
7791 /* find the first valid pfn */
7792 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7793 if (pfn_valid(pfn))
7794 break;
7795 if (pfn == end_pfn)
7796 return;
7797 offline_mem_sections(pfn, end_pfn);
7798 zone = page_zone(pfn_to_page(pfn));
7799 spin_lock_irqsave(&zone->lock, flags);
7800 pfn = start_pfn;
7801 while (pfn < end_pfn) {
7802 if (!pfn_valid(pfn)) {
7803 pfn++;
7804 continue;
7806 page = pfn_to_page(pfn);
7808 * The HWPoisoned page may be not in buddy system, and
7809 * page_count() is not 0.
7811 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7812 pfn++;
7813 SetPageReserved(page);
7814 continue;
7817 BUG_ON(page_count(page));
7818 BUG_ON(!PageBuddy(page));
7819 order = page_order(page);
7820 #ifdef CONFIG_DEBUG_VM
7821 pr_info("remove from free list %lx %d %lx\n",
7822 pfn, 1 << order, end_pfn);
7823 #endif
7824 list_del(&page->lru);
7825 rmv_page_order(page);
7826 zone->free_area[order].nr_free--;
7827 for (i = 0; i < (1 << order); i++)
7828 SetPageReserved((page+i));
7829 pfn += (1 << order);
7831 spin_unlock_irqrestore(&zone->lock, flags);
7833 #endif
7835 bool is_free_buddy_page(struct page *page)
7837 struct zone *zone = page_zone(page);
7838 unsigned long pfn = page_to_pfn(page);
7839 unsigned long flags;
7840 unsigned int order;
7842 spin_lock_irqsave(&zone->lock, flags);
7843 for (order = 0; order < MAX_ORDER; order++) {
7844 struct page *page_head = page - (pfn & ((1 << order) - 1));
7846 if (PageBuddy(page_head) && page_order(page_head) >= order)
7847 break;
7849 spin_unlock_irqrestore(&zone->lock, flags);
7851 return order < MAX_ORDER;