2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock
);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node
);
82 EXPORT_PER_CPU_SYMBOL(numa_node
);
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
92 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
94 int _node_numa_mem_
[MAX_NUMNODES
];
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex
);
99 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy
;
103 EXPORT_SYMBOL(latent_entropy
);
107 * Array of node states.
109 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
110 [N_POSSIBLE
] = NODE_MASK_ALL
,
111 [N_ONLINE
] = { { [0] = 1UL } },
113 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
117 [N_MEMORY
] = { { [0] = 1UL } },
118 [N_CPU
] = { { [0] = 1UL } },
121 EXPORT_SYMBOL(node_states
);
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock
);
126 unsigned long totalram_pages __read_mostly
;
127 unsigned long totalreserve_pages __read_mostly
;
128 unsigned long totalcma_pages __read_mostly
;
130 int percpu_pagelist_fraction
;
131 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
141 static inline int get_pcppage_migratetype(struct page
*page
)
146 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
148 page
->index
= migratetype
;
151 #ifdef CONFIG_PM_SLEEP
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
161 static gfp_t saved_gfp_mask
;
163 void pm_restore_gfp_mask(void)
165 WARN_ON(!mutex_is_locked(&pm_mutex
));
166 if (saved_gfp_mask
) {
167 gfp_allowed_mask
= saved_gfp_mask
;
172 void pm_restrict_gfp_mask(void)
174 WARN_ON(!mutex_is_locked(&pm_mutex
));
175 WARN_ON(saved_gfp_mask
);
176 saved_gfp_mask
= gfp_allowed_mask
;
177 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
180 bool pm_suspended_storage(void)
182 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
186 #endif /* CONFIG_PM_SLEEP */
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly
;
192 static void __free_pages_ok(struct page
*page
, unsigned int order
);
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
205 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
206 #ifdef CONFIG_ZONE_DMA
209 #ifdef CONFIG_ZONE_DMA32
212 #ifdef CONFIG_HIGHMEM
218 EXPORT_SYMBOL(totalram_pages
);
220 static char * const zone_names
[MAX_NR_ZONES
] = {
221 #ifdef CONFIG_ZONE_DMA
224 #ifdef CONFIG_ZONE_DMA32
228 #ifdef CONFIG_HIGHMEM
232 #ifdef CONFIG_ZONE_DEVICE
237 char * const migratetype_names
[MIGRATE_TYPES
] = {
245 #ifdef CONFIG_MEMORY_ISOLATION
250 compound_page_dtor
* const compound_page_dtors
[] = {
253 #ifdef CONFIG_HUGETLB_PAGE
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 int min_free_kbytes
= 1024;
262 int user_min_free_kbytes
= -1;
263 int watermark_scale_factor
= 10;
265 static unsigned long __meminitdata nr_kernel_pages
;
266 static unsigned long __meminitdata nr_all_pages
;
267 static unsigned long __meminitdata dma_reserve
;
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
272 static unsigned long __initdata required_kernelcore
;
273 static unsigned long __initdata required_movablecore
;
274 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
275 static bool mirrored_kernelcore
;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 EXPORT_SYMBOL(movable_zone
);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
284 int nr_online_nodes __read_mostly
= 1;
285 EXPORT_SYMBOL(nr_node_ids
);
286 EXPORT_SYMBOL(nr_online_nodes
);
289 int page_group_by_mobility_disabled __read_mostly
;
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294 * Determine how many pages need to be initialized durig early boot
295 * (non-deferred initialization).
296 * The value of first_deferred_pfn will be set later, once non-deferred pages
297 * are initialized, but for now set it ULONG_MAX.
299 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
301 phys_addr_t start_addr
, end_addr
;
302 unsigned long max_pgcnt
;
303 unsigned long reserved
;
306 * Initialise at least 2G of a node but also take into account that
307 * two large system hashes that can take up 1GB for 0.25TB/node.
309 max_pgcnt
= max(2UL << (30 - PAGE_SHIFT
),
310 (pgdat
->node_spanned_pages
>> 8));
313 * Compensate the all the memblock reservations (e.g. crash kernel)
314 * from the initial estimation to make sure we will initialize enough
317 start_addr
= PFN_PHYS(pgdat
->node_start_pfn
);
318 end_addr
= PFN_PHYS(pgdat
->node_start_pfn
+ max_pgcnt
);
319 reserved
= memblock_reserved_memory_within(start_addr
, end_addr
);
320 max_pgcnt
+= PHYS_PFN(reserved
);
322 pgdat
->static_init_pgcnt
= min(max_pgcnt
, pgdat
->node_spanned_pages
);
323 pgdat
->first_deferred_pfn
= ULONG_MAX
;
326 /* Returns true if the struct page for the pfn is uninitialised */
327 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
329 int nid
= early_pfn_to_nid(pfn
);
331 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
338 * Returns false when the remaining initialisation should be deferred until
339 * later in the boot cycle when it can be parallelised.
341 static inline bool update_defer_init(pg_data_t
*pgdat
,
342 unsigned long pfn
, unsigned long zone_end
,
343 unsigned long *nr_initialised
)
345 /* Always populate low zones for address-contrained allocations */
346 if (zone_end
< pgdat_end_pfn(pgdat
))
349 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
350 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
351 pgdat
->first_deferred_pfn
= pfn
;
358 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
362 static inline bool early_page_uninitialised(unsigned long pfn
)
367 static inline bool update_defer_init(pg_data_t
*pgdat
,
368 unsigned long pfn
, unsigned long zone_end
,
369 unsigned long *nr_initialised
)
375 /* Return a pointer to the bitmap storing bits affecting a block of pages */
376 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
379 #ifdef CONFIG_SPARSEMEM
380 return __pfn_to_section(pfn
)->pageblock_flags
;
382 return page_zone(page
)->pageblock_flags
;
383 #endif /* CONFIG_SPARSEMEM */
386 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
388 #ifdef CONFIG_SPARSEMEM
389 pfn
&= (PAGES_PER_SECTION
-1);
390 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
392 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
393 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
394 #endif /* CONFIG_SPARSEMEM */
398 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @pfn: The target page frame number
401 * @end_bitidx: The last bit of interest to retrieve
402 * @mask: mask of bits that the caller is interested in
404 * Return: pageblock_bits flags
406 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
408 unsigned long end_bitidx
,
411 unsigned long *bitmap
;
412 unsigned long bitidx
, word_bitidx
;
415 bitmap
= get_pageblock_bitmap(page
, pfn
);
416 bitidx
= pfn_to_bitidx(page
, pfn
);
417 word_bitidx
= bitidx
/ BITS_PER_LONG
;
418 bitidx
&= (BITS_PER_LONG
-1);
420 word
= bitmap
[word_bitidx
];
421 bitidx
+= end_bitidx
;
422 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
425 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
426 unsigned long end_bitidx
,
429 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
432 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
434 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
438 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
439 * @page: The page within the block of interest
440 * @flags: The flags to set
441 * @pfn: The target page frame number
442 * @end_bitidx: The last bit of interest
443 * @mask: mask of bits that the caller is interested in
445 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
447 unsigned long end_bitidx
,
450 unsigned long *bitmap
;
451 unsigned long bitidx
, word_bitidx
;
452 unsigned long old_word
, word
;
454 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
456 bitmap
= get_pageblock_bitmap(page
, pfn
);
457 bitidx
= pfn_to_bitidx(page
, pfn
);
458 word_bitidx
= bitidx
/ BITS_PER_LONG
;
459 bitidx
&= (BITS_PER_LONG
-1);
461 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
463 bitidx
+= end_bitidx
;
464 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
465 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
467 word
= READ_ONCE(bitmap
[word_bitidx
]);
469 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
470 if (word
== old_word
)
476 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
478 if (unlikely(page_group_by_mobility_disabled
&&
479 migratetype
< MIGRATE_PCPTYPES
))
480 migratetype
= MIGRATE_UNMOVABLE
;
482 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
483 PB_migrate
, PB_migrate_end
);
486 #ifdef CONFIG_DEBUG_VM
487 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
491 unsigned long pfn
= page_to_pfn(page
);
492 unsigned long sp
, start_pfn
;
495 seq
= zone_span_seqbegin(zone
);
496 start_pfn
= zone
->zone_start_pfn
;
497 sp
= zone
->spanned_pages
;
498 if (!zone_spans_pfn(zone
, pfn
))
500 } while (zone_span_seqretry(zone
, seq
));
503 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
504 pfn
, zone_to_nid(zone
), zone
->name
,
505 start_pfn
, start_pfn
+ sp
);
510 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
512 if (!pfn_valid_within(page_to_pfn(page
)))
514 if (zone
!= page_zone(page
))
520 * Temporary debugging check for pages not lying within a given zone.
522 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
524 if (page_outside_zone_boundaries(zone
, page
))
526 if (!page_is_consistent(zone
, page
))
532 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
538 static void bad_page(struct page
*page
, const char *reason
,
539 unsigned long bad_flags
)
541 static unsigned long resume
;
542 static unsigned long nr_shown
;
543 static unsigned long nr_unshown
;
546 * Allow a burst of 60 reports, then keep quiet for that minute;
547 * or allow a steady drip of one report per second.
549 if (nr_shown
== 60) {
550 if (time_before(jiffies
, resume
)) {
556 "BUG: Bad page state: %lu messages suppressed\n",
563 resume
= jiffies
+ 60 * HZ
;
565 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
566 current
->comm
, page_to_pfn(page
));
567 __dump_page(page
, reason
);
568 bad_flags
&= page
->flags
;
570 pr_alert("bad because of flags: %#lx(%pGp)\n",
571 bad_flags
, &bad_flags
);
572 dump_page_owner(page
);
577 /* Leave bad fields for debug, except PageBuddy could make trouble */
578 page_mapcount_reset(page
); /* remove PageBuddy */
579 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
583 * Higher-order pages are called "compound pages". They are structured thusly:
585 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
587 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
588 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
590 * The first tail page's ->compound_dtor holds the offset in array of compound
591 * page destructors. See compound_page_dtors.
593 * The first tail page's ->compound_order holds the order of allocation.
594 * This usage means that zero-order pages may not be compound.
597 void free_compound_page(struct page
*page
)
599 __free_pages_ok(page
, compound_order(page
));
602 void prep_compound_page(struct page
*page
, unsigned int order
)
605 int nr_pages
= 1 << order
;
607 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
608 set_compound_order(page
, order
);
610 for (i
= 1; i
< nr_pages
; i
++) {
611 struct page
*p
= page
+ i
;
612 set_page_count(p
, 0);
613 p
->mapping
= TAIL_MAPPING
;
614 set_compound_head(p
, page
);
616 atomic_set(compound_mapcount_ptr(page
), -1);
619 #ifdef CONFIG_DEBUG_PAGEALLOC
620 unsigned int _debug_guardpage_minorder
;
621 bool _debug_pagealloc_enabled __read_mostly
622 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
623 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
624 bool _debug_guardpage_enabled __read_mostly
;
626 static int __init
early_debug_pagealloc(char *buf
)
630 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
632 early_param("debug_pagealloc", early_debug_pagealloc
);
634 static bool need_debug_guardpage(void)
636 /* If we don't use debug_pagealloc, we don't need guard page */
637 if (!debug_pagealloc_enabled())
640 if (!debug_guardpage_minorder())
646 static void init_debug_guardpage(void)
648 if (!debug_pagealloc_enabled())
651 if (!debug_guardpage_minorder())
654 _debug_guardpage_enabled
= true;
657 struct page_ext_operations debug_guardpage_ops
= {
658 .need
= need_debug_guardpage
,
659 .init
= init_debug_guardpage
,
662 static int __init
debug_guardpage_minorder_setup(char *buf
)
666 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
667 pr_err("Bad debug_guardpage_minorder value\n");
670 _debug_guardpage_minorder
= res
;
671 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
674 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
676 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
677 unsigned int order
, int migratetype
)
679 struct page_ext
*page_ext
;
681 if (!debug_guardpage_enabled())
684 if (order
>= debug_guardpage_minorder())
687 page_ext
= lookup_page_ext(page
);
688 if (unlikely(!page_ext
))
691 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
693 INIT_LIST_HEAD(&page
->lru
);
694 set_page_private(page
, order
);
695 /* Guard pages are not available for any usage */
696 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
701 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
702 unsigned int order
, int migratetype
)
704 struct page_ext
*page_ext
;
706 if (!debug_guardpage_enabled())
709 page_ext
= lookup_page_ext(page
);
710 if (unlikely(!page_ext
))
713 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
715 set_page_private(page
, 0);
716 if (!is_migrate_isolate(migratetype
))
717 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
720 struct page_ext_operations debug_guardpage_ops
;
721 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
722 unsigned int order
, int migratetype
) { return false; }
723 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
724 unsigned int order
, int migratetype
) {}
727 static inline void set_page_order(struct page
*page
, unsigned int order
)
729 set_page_private(page
, order
);
730 __SetPageBuddy(page
);
733 static inline void rmv_page_order(struct page
*page
)
735 __ClearPageBuddy(page
);
736 set_page_private(page
, 0);
740 * This function checks whether a page is free && is the buddy
741 * we can do coalesce a page and its buddy if
742 * (a) the buddy is not in a hole (check before calling!) &&
743 * (b) the buddy is in the buddy system &&
744 * (c) a page and its buddy have the same order &&
745 * (d) a page and its buddy are in the same zone.
747 * For recording whether a page is in the buddy system, we set ->_mapcount
748 * PAGE_BUDDY_MAPCOUNT_VALUE.
749 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
750 * serialized by zone->lock.
752 * For recording page's order, we use page_private(page).
754 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
757 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
758 if (page_zone_id(page
) != page_zone_id(buddy
))
761 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
766 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
768 * zone check is done late to avoid uselessly
769 * calculating zone/node ids for pages that could
772 if (page_zone_id(page
) != page_zone_id(buddy
))
775 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
783 * Freeing function for a buddy system allocator.
785 * The concept of a buddy system is to maintain direct-mapped table
786 * (containing bit values) for memory blocks of various "orders".
787 * The bottom level table contains the map for the smallest allocatable
788 * units of memory (here, pages), and each level above it describes
789 * pairs of units from the levels below, hence, "buddies".
790 * At a high level, all that happens here is marking the table entry
791 * at the bottom level available, and propagating the changes upward
792 * as necessary, plus some accounting needed to play nicely with other
793 * parts of the VM system.
794 * At each level, we keep a list of pages, which are heads of continuous
795 * free pages of length of (1 << order) and marked with _mapcount
796 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
798 * So when we are allocating or freeing one, we can derive the state of the
799 * other. That is, if we allocate a small block, and both were
800 * free, the remainder of the region must be split into blocks.
801 * If a block is freed, and its buddy is also free, then this
802 * triggers coalescing into a block of larger size.
807 static inline void __free_one_page(struct page
*page
,
809 struct zone
*zone
, unsigned int order
,
812 unsigned long combined_pfn
;
813 unsigned long uninitialized_var(buddy_pfn
);
815 unsigned int max_order
;
817 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
819 VM_BUG_ON(!zone_is_initialized(zone
));
820 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
822 VM_BUG_ON(migratetype
== -1);
823 if (likely(!is_migrate_isolate(migratetype
)))
824 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
826 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
827 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
830 while (order
< max_order
- 1) {
831 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
832 buddy
= page
+ (buddy_pfn
- pfn
);
834 if (!pfn_valid_within(buddy_pfn
))
836 if (!page_is_buddy(page
, buddy
, order
))
839 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
840 * merge with it and move up one order.
842 if (page_is_guard(buddy
)) {
843 clear_page_guard(zone
, buddy
, order
, migratetype
);
845 list_del(&buddy
->lru
);
846 zone
->free_area
[order
].nr_free
--;
847 rmv_page_order(buddy
);
849 combined_pfn
= buddy_pfn
& pfn
;
850 page
= page
+ (combined_pfn
- pfn
);
854 if (max_order
< MAX_ORDER
) {
855 /* If we are here, it means order is >= pageblock_order.
856 * We want to prevent merge between freepages on isolate
857 * pageblock and normal pageblock. Without this, pageblock
858 * isolation could cause incorrect freepage or CMA accounting.
860 * We don't want to hit this code for the more frequent
863 if (unlikely(has_isolate_pageblock(zone
))) {
866 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
867 buddy
= page
+ (buddy_pfn
- pfn
);
868 buddy_mt
= get_pageblock_migratetype(buddy
);
870 if (migratetype
!= buddy_mt
871 && (is_migrate_isolate(migratetype
) ||
872 is_migrate_isolate(buddy_mt
)))
876 goto continue_merging
;
880 set_page_order(page
, order
);
883 * If this is not the largest possible page, check if the buddy
884 * of the next-highest order is free. If it is, it's possible
885 * that pages are being freed that will coalesce soon. In case,
886 * that is happening, add the free page to the tail of the list
887 * so it's less likely to be used soon and more likely to be merged
888 * as a higher order page
890 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
891 struct page
*higher_page
, *higher_buddy
;
892 combined_pfn
= buddy_pfn
& pfn
;
893 higher_page
= page
+ (combined_pfn
- pfn
);
894 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
895 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
896 if (pfn_valid_within(buddy_pfn
) &&
897 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
898 list_add_tail(&page
->lru
,
899 &zone
->free_area
[order
].free_list
[migratetype
]);
904 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
906 zone
->free_area
[order
].nr_free
++;
910 * A bad page could be due to a number of fields. Instead of multiple branches,
911 * try and check multiple fields with one check. The caller must do a detailed
912 * check if necessary.
914 static inline bool page_expected_state(struct page
*page
,
915 unsigned long check_flags
)
917 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
920 if (unlikely((unsigned long)page
->mapping
|
921 page_ref_count(page
) |
923 (unsigned long)page
->mem_cgroup
|
925 (page
->flags
& check_flags
)))
931 static void free_pages_check_bad(struct page
*page
)
933 const char *bad_reason
;
934 unsigned long bad_flags
;
939 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
940 bad_reason
= "nonzero mapcount";
941 if (unlikely(page
->mapping
!= NULL
))
942 bad_reason
= "non-NULL mapping";
943 if (unlikely(page_ref_count(page
) != 0))
944 bad_reason
= "nonzero _refcount";
945 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
946 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
947 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
950 if (unlikely(page
->mem_cgroup
))
951 bad_reason
= "page still charged to cgroup";
953 bad_page(page
, bad_reason
, bad_flags
);
956 static inline int free_pages_check(struct page
*page
)
958 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
961 /* Something has gone sideways, find it */
962 free_pages_check_bad(page
);
966 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
971 * We rely page->lru.next never has bit 0 set, unless the page
972 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
974 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
976 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
980 switch (page
- head_page
) {
982 /* the first tail page: ->mapping is compound_mapcount() */
983 if (unlikely(compound_mapcount(page
))) {
984 bad_page(page
, "nonzero compound_mapcount", 0);
990 * the second tail page: ->mapping is
991 * page_deferred_list().next -- ignore value.
995 if (page
->mapping
!= TAIL_MAPPING
) {
996 bad_page(page
, "corrupted mapping in tail page", 0);
1001 if (unlikely(!PageTail(page
))) {
1002 bad_page(page
, "PageTail not set", 0);
1005 if (unlikely(compound_head(page
) != head_page
)) {
1006 bad_page(page
, "compound_head not consistent", 0);
1011 page
->mapping
= NULL
;
1012 clear_compound_head(page
);
1016 static __always_inline
bool free_pages_prepare(struct page
*page
,
1017 unsigned int order
, bool check_free
)
1021 VM_BUG_ON_PAGE(PageTail(page
), page
);
1023 trace_mm_page_free(page
, order
);
1024 kmemcheck_free_shadow(page
, order
);
1027 * Check tail pages before head page information is cleared to
1028 * avoid checking PageCompound for order-0 pages.
1030 if (unlikely(order
)) {
1031 bool compound
= PageCompound(page
);
1034 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1037 ClearPageDoubleMap(page
);
1038 for (i
= 1; i
< (1 << order
); i
++) {
1040 bad
+= free_tail_pages_check(page
, page
+ i
);
1041 if (unlikely(free_pages_check(page
+ i
))) {
1045 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1048 if (PageMappingFlags(page
))
1049 page
->mapping
= NULL
;
1050 if (memcg_kmem_enabled() && PageKmemcg(page
))
1051 memcg_kmem_uncharge(page
, order
);
1053 bad
+= free_pages_check(page
);
1057 page_cpupid_reset_last(page
);
1058 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1059 reset_page_owner(page
, order
);
1061 if (!PageHighMem(page
)) {
1062 debug_check_no_locks_freed(page_address(page
),
1063 PAGE_SIZE
<< order
);
1064 debug_check_no_obj_freed(page_address(page
),
1065 PAGE_SIZE
<< order
);
1067 arch_free_page(page
, order
);
1068 kernel_poison_pages(page
, 1 << order
, 0);
1069 kernel_map_pages(page
, 1 << order
, 0);
1070 kasan_free_pages(page
, order
);
1075 #ifdef CONFIG_DEBUG_VM
1076 static inline bool free_pcp_prepare(struct page
*page
)
1078 return free_pages_prepare(page
, 0, true);
1081 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1086 static bool free_pcp_prepare(struct page
*page
)
1088 return free_pages_prepare(page
, 0, false);
1091 static bool bulkfree_pcp_prepare(struct page
*page
)
1093 return free_pages_check(page
);
1095 #endif /* CONFIG_DEBUG_VM */
1098 * Frees a number of pages from the PCP lists
1099 * Assumes all pages on list are in same zone, and of same order.
1100 * count is the number of pages to free.
1102 * If the zone was previously in an "all pages pinned" state then look to
1103 * see if this freeing clears that state.
1105 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1106 * pinned" detection logic.
1108 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1109 struct per_cpu_pages
*pcp
)
1111 int migratetype
= 0;
1113 bool isolated_pageblocks
;
1115 spin_lock(&zone
->lock
);
1116 isolated_pageblocks
= has_isolate_pageblock(zone
);
1120 struct list_head
*list
;
1123 * Remove pages from lists in a round-robin fashion. A
1124 * batch_free count is maintained that is incremented when an
1125 * empty list is encountered. This is so more pages are freed
1126 * off fuller lists instead of spinning excessively around empty
1131 if (++migratetype
== MIGRATE_PCPTYPES
)
1133 list
= &pcp
->lists
[migratetype
];
1134 } while (list_empty(list
));
1136 /* This is the only non-empty list. Free them all. */
1137 if (batch_free
== MIGRATE_PCPTYPES
)
1141 int mt
; /* migratetype of the to-be-freed page */
1143 page
= list_last_entry(list
, struct page
, lru
);
1144 /* must delete as __free_one_page list manipulates */
1145 list_del(&page
->lru
);
1147 mt
= get_pcppage_migratetype(page
);
1148 /* MIGRATE_ISOLATE page should not go to pcplists */
1149 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1150 /* Pageblock could have been isolated meanwhile */
1151 if (unlikely(isolated_pageblocks
))
1152 mt
= get_pageblock_migratetype(page
);
1154 if (bulkfree_pcp_prepare(page
))
1157 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1158 trace_mm_page_pcpu_drain(page
, 0, mt
);
1159 } while (--count
&& --batch_free
&& !list_empty(list
));
1161 spin_unlock(&zone
->lock
);
1164 static void free_one_page(struct zone
*zone
,
1165 struct page
*page
, unsigned long pfn
,
1169 spin_lock(&zone
->lock
);
1170 if (unlikely(has_isolate_pageblock(zone
) ||
1171 is_migrate_isolate(migratetype
))) {
1172 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1174 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1175 spin_unlock(&zone
->lock
);
1178 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1179 unsigned long zone
, int nid
)
1181 set_page_links(page
, zone
, nid
, pfn
);
1182 init_page_count(page
);
1183 page_mapcount_reset(page
);
1184 page_cpupid_reset_last(page
);
1186 INIT_LIST_HEAD(&page
->lru
);
1187 #ifdef WANT_PAGE_VIRTUAL
1188 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1189 if (!is_highmem_idx(zone
))
1190 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1194 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1197 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1200 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1201 static void init_reserved_page(unsigned long pfn
)
1206 if (!early_page_uninitialised(pfn
))
1209 nid
= early_pfn_to_nid(pfn
);
1210 pgdat
= NODE_DATA(nid
);
1212 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1213 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1215 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1218 __init_single_pfn(pfn
, zid
, nid
);
1221 static inline void init_reserved_page(unsigned long pfn
)
1224 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1227 * Initialised pages do not have PageReserved set. This function is
1228 * called for each range allocated by the bootmem allocator and
1229 * marks the pages PageReserved. The remaining valid pages are later
1230 * sent to the buddy page allocator.
1232 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1234 unsigned long start_pfn
= PFN_DOWN(start
);
1235 unsigned long end_pfn
= PFN_UP(end
);
1237 for (; start_pfn
< end_pfn
; start_pfn
++) {
1238 if (pfn_valid(start_pfn
)) {
1239 struct page
*page
= pfn_to_page(start_pfn
);
1241 init_reserved_page(start_pfn
);
1243 /* Avoid false-positive PageTail() */
1244 INIT_LIST_HEAD(&page
->lru
);
1246 SetPageReserved(page
);
1251 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1253 unsigned long flags
;
1255 unsigned long pfn
= page_to_pfn(page
);
1257 if (!free_pages_prepare(page
, order
, true))
1260 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1261 local_irq_save(flags
);
1262 __count_vm_events(PGFREE
, 1 << order
);
1263 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1264 local_irq_restore(flags
);
1267 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1269 unsigned int nr_pages
= 1 << order
;
1270 struct page
*p
= page
;
1274 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1276 __ClearPageReserved(p
);
1277 set_page_count(p
, 0);
1279 __ClearPageReserved(p
);
1280 set_page_count(p
, 0);
1282 page_zone(page
)->managed_pages
+= nr_pages
;
1283 set_page_refcounted(page
);
1284 __free_pages(page
, order
);
1287 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1290 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1292 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1294 static DEFINE_SPINLOCK(early_pfn_lock
);
1297 spin_lock(&early_pfn_lock
);
1298 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1300 nid
= first_online_node
;
1301 spin_unlock(&early_pfn_lock
);
1307 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308 static inline bool __meminit __maybe_unused
1309 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1310 struct mminit_pfnnid_cache
*state
)
1314 nid
= __early_pfn_to_nid(pfn
, state
);
1315 if (nid
>= 0 && nid
!= node
)
1320 /* Only safe to use early in boot when initialisation is single-threaded */
1321 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1323 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1328 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1332 static inline bool __meminit __maybe_unused
1333 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1334 struct mminit_pfnnid_cache
*state
)
1341 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1344 if (early_page_uninitialised(pfn
))
1346 return __free_pages_boot_core(page
, order
);
1350 * Check that the whole (or subset of) a pageblock given by the interval of
1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352 * with the migration of free compaction scanner. The scanners then need to
1353 * use only pfn_valid_within() check for arches that allow holes within
1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1358 * It's possible on some configurations to have a setup like node0 node1 node0
1359 * i.e. it's possible that all pages within a zones range of pages do not
1360 * belong to a single zone. We assume that a border between node0 and node1
1361 * can occur within a single pageblock, but not a node0 node1 node0
1362 * interleaving within a single pageblock. It is therefore sufficient to check
1363 * the first and last page of a pageblock and avoid checking each individual
1364 * page in a pageblock.
1366 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1367 unsigned long end_pfn
, struct zone
*zone
)
1369 struct page
*start_page
;
1370 struct page
*end_page
;
1372 /* end_pfn is one past the range we are checking */
1375 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1378 start_page
= pfn_to_online_page(start_pfn
);
1382 if (page_zone(start_page
) != zone
)
1385 end_page
= pfn_to_page(end_pfn
);
1387 /* This gives a shorter code than deriving page_zone(end_page) */
1388 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1394 void set_zone_contiguous(struct zone
*zone
)
1396 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1397 unsigned long block_end_pfn
;
1399 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1400 for (; block_start_pfn
< zone_end_pfn(zone
);
1401 block_start_pfn
= block_end_pfn
,
1402 block_end_pfn
+= pageblock_nr_pages
) {
1404 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1406 if (!__pageblock_pfn_to_page(block_start_pfn
,
1407 block_end_pfn
, zone
))
1411 /* We confirm that there is no hole */
1412 zone
->contiguous
= true;
1415 void clear_zone_contiguous(struct zone
*zone
)
1417 zone
->contiguous
= false;
1420 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421 static void __init
deferred_free_range(struct page
*page
,
1422 unsigned long pfn
, int nr_pages
)
1429 /* Free a large naturally-aligned chunk if possible */
1430 if (nr_pages
== pageblock_nr_pages
&&
1431 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1432 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1433 __free_pages_boot_core(page
, pageblock_order
);
1437 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1438 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1439 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1440 __free_pages_boot_core(page
, 0);
1444 /* Completion tracking for deferred_init_memmap() threads */
1445 static atomic_t pgdat_init_n_undone __initdata
;
1446 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1448 static inline void __init
pgdat_init_report_one_done(void)
1450 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1451 complete(&pgdat_init_all_done_comp
);
1454 /* Initialise remaining memory on a node */
1455 static int __init
deferred_init_memmap(void *data
)
1457 pg_data_t
*pgdat
= data
;
1458 int nid
= pgdat
->node_id
;
1459 struct mminit_pfnnid_cache nid_init_state
= { };
1460 unsigned long start
= jiffies
;
1461 unsigned long nr_pages
= 0;
1462 unsigned long walk_start
, walk_end
;
1465 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1466 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1468 if (first_init_pfn
== ULONG_MAX
) {
1469 pgdat_init_report_one_done();
1473 /* Bind memory initialisation thread to a local node if possible */
1474 if (!cpumask_empty(cpumask
))
1475 set_cpus_allowed_ptr(current
, cpumask
);
1477 /* Sanity check boundaries */
1478 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1479 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1480 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1482 /* Only the highest zone is deferred so find it */
1483 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1484 zone
= pgdat
->node_zones
+ zid
;
1485 if (first_init_pfn
< zone_end_pfn(zone
))
1489 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1490 unsigned long pfn
, end_pfn
;
1491 struct page
*page
= NULL
;
1492 struct page
*free_base_page
= NULL
;
1493 unsigned long free_base_pfn
= 0;
1496 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1497 pfn
= first_init_pfn
;
1498 if (pfn
< walk_start
)
1500 if (pfn
< zone
->zone_start_pfn
)
1501 pfn
= zone
->zone_start_pfn
;
1503 for (; pfn
< end_pfn
; pfn
++) {
1504 if (!pfn_valid_within(pfn
))
1508 * Ensure pfn_valid is checked every
1509 * pageblock_nr_pages for memory holes
1511 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1512 if (!pfn_valid(pfn
)) {
1518 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1523 /* Minimise pfn page lookups and scheduler checks */
1524 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1527 nr_pages
+= nr_to_free
;
1528 deferred_free_range(free_base_page
,
1529 free_base_pfn
, nr_to_free
);
1530 free_base_page
= NULL
;
1531 free_base_pfn
= nr_to_free
= 0;
1533 page
= pfn_to_page(pfn
);
1538 VM_BUG_ON(page_zone(page
) != zone
);
1542 __init_single_page(page
, pfn
, zid
, nid
);
1543 if (!free_base_page
) {
1544 free_base_page
= page
;
1545 free_base_pfn
= pfn
;
1550 /* Where possible, batch up pages for a single free */
1553 /* Free the current block of pages to allocator */
1554 nr_pages
+= nr_to_free
;
1555 deferred_free_range(free_base_page
, free_base_pfn
,
1557 free_base_page
= NULL
;
1558 free_base_pfn
= nr_to_free
= 0;
1560 /* Free the last block of pages to allocator */
1561 nr_pages
+= nr_to_free
;
1562 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1564 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1567 /* Sanity check that the next zone really is unpopulated */
1568 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1570 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1571 jiffies_to_msecs(jiffies
- start
));
1573 pgdat_init_report_one_done();
1576 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1578 void __init
page_alloc_init_late(void)
1582 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1585 /* There will be num_node_state(N_MEMORY) threads */
1586 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1587 for_each_node_state(nid
, N_MEMORY
) {
1588 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1591 /* Block until all are initialised */
1592 wait_for_completion(&pgdat_init_all_done_comp
);
1594 /* Reinit limits that are based on free pages after the kernel is up */
1595 files_maxfiles_init();
1597 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1598 /* Discard memblock private memory */
1602 for_each_populated_zone(zone
)
1603 set_zone_contiguous(zone
);
1607 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1608 void __init
init_cma_reserved_pageblock(struct page
*page
)
1610 unsigned i
= pageblock_nr_pages
;
1611 struct page
*p
= page
;
1614 __ClearPageReserved(p
);
1615 set_page_count(p
, 0);
1618 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1620 if (pageblock_order
>= MAX_ORDER
) {
1621 i
= pageblock_nr_pages
;
1624 set_page_refcounted(p
);
1625 __free_pages(p
, MAX_ORDER
- 1);
1626 p
+= MAX_ORDER_NR_PAGES
;
1627 } while (i
-= MAX_ORDER_NR_PAGES
);
1629 set_page_refcounted(page
);
1630 __free_pages(page
, pageblock_order
);
1633 adjust_managed_page_count(page
, pageblock_nr_pages
);
1638 * The order of subdivision here is critical for the IO subsystem.
1639 * Please do not alter this order without good reasons and regression
1640 * testing. Specifically, as large blocks of memory are subdivided,
1641 * the order in which smaller blocks are delivered depends on the order
1642 * they're subdivided in this function. This is the primary factor
1643 * influencing the order in which pages are delivered to the IO
1644 * subsystem according to empirical testing, and this is also justified
1645 * by considering the behavior of a buddy system containing a single
1646 * large block of memory acted on by a series of small allocations.
1647 * This behavior is a critical factor in sglist merging's success.
1651 static inline void expand(struct zone
*zone
, struct page
*page
,
1652 int low
, int high
, struct free_area
*area
,
1655 unsigned long size
= 1 << high
;
1657 while (high
> low
) {
1661 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1664 * Mark as guard pages (or page), that will allow to
1665 * merge back to allocator when buddy will be freed.
1666 * Corresponding page table entries will not be touched,
1667 * pages will stay not present in virtual address space
1669 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1672 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1674 set_page_order(&page
[size
], high
);
1678 static void check_new_page_bad(struct page
*page
)
1680 const char *bad_reason
= NULL
;
1681 unsigned long bad_flags
= 0;
1683 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1684 bad_reason
= "nonzero mapcount";
1685 if (unlikely(page
->mapping
!= NULL
))
1686 bad_reason
= "non-NULL mapping";
1687 if (unlikely(page_ref_count(page
) != 0))
1688 bad_reason
= "nonzero _count";
1689 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1690 bad_reason
= "HWPoisoned (hardware-corrupted)";
1691 bad_flags
= __PG_HWPOISON
;
1692 /* Don't complain about hwpoisoned pages */
1693 page_mapcount_reset(page
); /* remove PageBuddy */
1696 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1697 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1698 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1701 if (unlikely(page
->mem_cgroup
))
1702 bad_reason
= "page still charged to cgroup";
1704 bad_page(page
, bad_reason
, bad_flags
);
1708 * This page is about to be returned from the page allocator
1710 static inline int check_new_page(struct page
*page
)
1712 if (likely(page_expected_state(page
,
1713 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1716 check_new_page_bad(page
);
1720 static inline bool free_pages_prezeroed(void)
1722 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1723 page_poisoning_enabled();
1726 #ifdef CONFIG_DEBUG_VM
1727 static bool check_pcp_refill(struct page
*page
)
1732 static bool check_new_pcp(struct page
*page
)
1734 return check_new_page(page
);
1737 static bool check_pcp_refill(struct page
*page
)
1739 return check_new_page(page
);
1741 static bool check_new_pcp(struct page
*page
)
1745 #endif /* CONFIG_DEBUG_VM */
1747 static bool check_new_pages(struct page
*page
, unsigned int order
)
1750 for (i
= 0; i
< (1 << order
); i
++) {
1751 struct page
*p
= page
+ i
;
1753 if (unlikely(check_new_page(p
)))
1760 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1763 set_page_private(page
, 0);
1764 set_page_refcounted(page
);
1766 arch_alloc_page(page
, order
);
1767 kernel_map_pages(page
, 1 << order
, 1);
1768 kernel_poison_pages(page
, 1 << order
, 1);
1769 kasan_alloc_pages(page
, order
);
1770 set_page_owner(page
, order
, gfp_flags
);
1773 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1774 unsigned int alloc_flags
)
1778 post_alloc_hook(page
, order
, gfp_flags
);
1780 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1781 for (i
= 0; i
< (1 << order
); i
++)
1782 clear_highpage(page
+ i
);
1784 if (order
&& (gfp_flags
& __GFP_COMP
))
1785 prep_compound_page(page
, order
);
1788 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1789 * allocate the page. The expectation is that the caller is taking
1790 * steps that will free more memory. The caller should avoid the page
1791 * being used for !PFMEMALLOC purposes.
1793 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1794 set_page_pfmemalloc(page
);
1796 clear_page_pfmemalloc(page
);
1800 * Go through the free lists for the given migratetype and remove
1801 * the smallest available page from the freelists
1804 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1807 unsigned int current_order
;
1808 struct free_area
*area
;
1811 /* Find a page of the appropriate size in the preferred list */
1812 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1813 area
= &(zone
->free_area
[current_order
]);
1814 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1818 list_del(&page
->lru
);
1819 rmv_page_order(page
);
1821 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1822 set_pcppage_migratetype(page
, migratetype
);
1831 * This array describes the order lists are fallen back to when
1832 * the free lists for the desirable migrate type are depleted
1834 static int fallbacks
[MIGRATE_TYPES
][4] = {
1835 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1836 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1837 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1839 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1841 #ifdef CONFIG_MEMORY_ISOLATION
1842 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1847 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1850 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1853 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1854 unsigned int order
) { return NULL
; }
1858 * Move the free pages in a range to the free lists of the requested type.
1859 * Note that start_page and end_pages are not aligned on a pageblock
1860 * boundary. If alignment is required, use move_freepages_block()
1862 static int move_freepages(struct zone
*zone
,
1863 struct page
*start_page
, struct page
*end_page
,
1864 int migratetype
, int *num_movable
)
1868 int pages_moved
= 0;
1870 #ifndef CONFIG_HOLES_IN_ZONE
1872 * page_zone is not safe to call in this context when
1873 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1874 * anyway as we check zone boundaries in move_freepages_block().
1875 * Remove at a later date when no bug reports exist related to
1876 * grouping pages by mobility
1878 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1884 for (page
= start_page
; page
<= end_page
;) {
1885 if (!pfn_valid_within(page_to_pfn(page
))) {
1890 /* Make sure we are not inadvertently changing nodes */
1891 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1893 if (!PageBuddy(page
)) {
1895 * We assume that pages that could be isolated for
1896 * migration are movable. But we don't actually try
1897 * isolating, as that would be expensive.
1900 (PageLRU(page
) || __PageMovable(page
)))
1907 order
= page_order(page
);
1908 list_move(&page
->lru
,
1909 &zone
->free_area
[order
].free_list
[migratetype
]);
1911 pages_moved
+= 1 << order
;
1917 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1918 int migratetype
, int *num_movable
)
1920 unsigned long start_pfn
, end_pfn
;
1921 struct page
*start_page
, *end_page
;
1923 start_pfn
= page_to_pfn(page
);
1924 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1925 start_page
= pfn_to_page(start_pfn
);
1926 end_page
= start_page
+ pageblock_nr_pages
- 1;
1927 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1929 /* Do not cross zone boundaries */
1930 if (!zone_spans_pfn(zone
, start_pfn
))
1932 if (!zone_spans_pfn(zone
, end_pfn
))
1935 return move_freepages(zone
, start_page
, end_page
, migratetype
,
1939 static void change_pageblock_range(struct page
*pageblock_page
,
1940 int start_order
, int migratetype
)
1942 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1944 while (nr_pageblocks
--) {
1945 set_pageblock_migratetype(pageblock_page
, migratetype
);
1946 pageblock_page
+= pageblock_nr_pages
;
1951 * When we are falling back to another migratetype during allocation, try to
1952 * steal extra free pages from the same pageblocks to satisfy further
1953 * allocations, instead of polluting multiple pageblocks.
1955 * If we are stealing a relatively large buddy page, it is likely there will
1956 * be more free pages in the pageblock, so try to steal them all. For
1957 * reclaimable and unmovable allocations, we steal regardless of page size,
1958 * as fragmentation caused by those allocations polluting movable pageblocks
1959 * is worse than movable allocations stealing from unmovable and reclaimable
1962 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1965 * Leaving this order check is intended, although there is
1966 * relaxed order check in next check. The reason is that
1967 * we can actually steal whole pageblock if this condition met,
1968 * but, below check doesn't guarantee it and that is just heuristic
1969 * so could be changed anytime.
1971 if (order
>= pageblock_order
)
1974 if (order
>= pageblock_order
/ 2 ||
1975 start_mt
== MIGRATE_RECLAIMABLE
||
1976 start_mt
== MIGRATE_UNMOVABLE
||
1977 page_group_by_mobility_disabled
)
1984 * This function implements actual steal behaviour. If order is large enough,
1985 * we can steal whole pageblock. If not, we first move freepages in this
1986 * pageblock to our migratetype and determine how many already-allocated pages
1987 * are there in the pageblock with a compatible migratetype. If at least half
1988 * of pages are free or compatible, we can change migratetype of the pageblock
1989 * itself, so pages freed in the future will be put on the correct free list.
1991 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1992 int start_type
, bool whole_block
)
1994 unsigned int current_order
= page_order(page
);
1995 struct free_area
*area
;
1996 int free_pages
, movable_pages
, alike_pages
;
1999 old_block_type
= get_pageblock_migratetype(page
);
2002 * This can happen due to races and we want to prevent broken
2003 * highatomic accounting.
2005 if (is_migrate_highatomic(old_block_type
))
2008 /* Take ownership for orders >= pageblock_order */
2009 if (current_order
>= pageblock_order
) {
2010 change_pageblock_range(page
, current_order
, start_type
);
2014 /* We are not allowed to try stealing from the whole block */
2018 free_pages
= move_freepages_block(zone
, page
, start_type
,
2021 * Determine how many pages are compatible with our allocation.
2022 * For movable allocation, it's the number of movable pages which
2023 * we just obtained. For other types it's a bit more tricky.
2025 if (start_type
== MIGRATE_MOVABLE
) {
2026 alike_pages
= movable_pages
;
2029 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2030 * to MOVABLE pageblock, consider all non-movable pages as
2031 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2032 * vice versa, be conservative since we can't distinguish the
2033 * exact migratetype of non-movable pages.
2035 if (old_block_type
== MIGRATE_MOVABLE
)
2036 alike_pages
= pageblock_nr_pages
2037 - (free_pages
+ movable_pages
);
2042 /* moving whole block can fail due to zone boundary conditions */
2047 * If a sufficient number of pages in the block are either free or of
2048 * comparable migratability as our allocation, claim the whole block.
2050 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2051 page_group_by_mobility_disabled
)
2052 set_pageblock_migratetype(page
, start_type
);
2057 area
= &zone
->free_area
[current_order
];
2058 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2062 * Check whether there is a suitable fallback freepage with requested order.
2063 * If only_stealable is true, this function returns fallback_mt only if
2064 * we can steal other freepages all together. This would help to reduce
2065 * fragmentation due to mixed migratetype pages in one pageblock.
2067 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2068 int migratetype
, bool only_stealable
, bool *can_steal
)
2073 if (area
->nr_free
== 0)
2078 fallback_mt
= fallbacks
[migratetype
][i
];
2079 if (fallback_mt
== MIGRATE_TYPES
)
2082 if (list_empty(&area
->free_list
[fallback_mt
]))
2085 if (can_steal_fallback(order
, migratetype
))
2088 if (!only_stealable
)
2099 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2100 * there are no empty page blocks that contain a page with a suitable order
2102 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2103 unsigned int alloc_order
)
2106 unsigned long max_managed
, flags
;
2109 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2110 * Check is race-prone but harmless.
2112 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2113 if (zone
->nr_reserved_highatomic
>= max_managed
)
2116 spin_lock_irqsave(&zone
->lock
, flags
);
2118 /* Recheck the nr_reserved_highatomic limit under the lock */
2119 if (zone
->nr_reserved_highatomic
>= max_managed
)
2123 mt
= get_pageblock_migratetype(page
);
2124 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2125 && !is_migrate_cma(mt
)) {
2126 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2127 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2128 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2132 spin_unlock_irqrestore(&zone
->lock
, flags
);
2136 * Used when an allocation is about to fail under memory pressure. This
2137 * potentially hurts the reliability of high-order allocations when under
2138 * intense memory pressure but failed atomic allocations should be easier
2139 * to recover from than an OOM.
2141 * If @force is true, try to unreserve a pageblock even though highatomic
2142 * pageblock is exhausted.
2144 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2147 struct zonelist
*zonelist
= ac
->zonelist
;
2148 unsigned long flags
;
2155 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2158 * Preserve at least one pageblock unless memory pressure
2161 if (!force
&& zone
->nr_reserved_highatomic
<=
2165 spin_lock_irqsave(&zone
->lock
, flags
);
2166 for (order
= 0; order
< MAX_ORDER
; order
++) {
2167 struct free_area
*area
= &(zone
->free_area
[order
]);
2169 page
= list_first_entry_or_null(
2170 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2176 * In page freeing path, migratetype change is racy so
2177 * we can counter several free pages in a pageblock
2178 * in this loop althoug we changed the pageblock type
2179 * from highatomic to ac->migratetype. So we should
2180 * adjust the count once.
2182 if (is_migrate_highatomic_page(page
)) {
2184 * It should never happen but changes to
2185 * locking could inadvertently allow a per-cpu
2186 * drain to add pages to MIGRATE_HIGHATOMIC
2187 * while unreserving so be safe and watch for
2190 zone
->nr_reserved_highatomic
-= min(
2192 zone
->nr_reserved_highatomic
);
2196 * Convert to ac->migratetype and avoid the normal
2197 * pageblock stealing heuristics. Minimally, the caller
2198 * is doing the work and needs the pages. More
2199 * importantly, if the block was always converted to
2200 * MIGRATE_UNMOVABLE or another type then the number
2201 * of pageblocks that cannot be completely freed
2204 set_pageblock_migratetype(page
, ac
->migratetype
);
2205 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2208 spin_unlock_irqrestore(&zone
->lock
, flags
);
2212 spin_unlock_irqrestore(&zone
->lock
, flags
);
2219 * Try finding a free buddy page on the fallback list and put it on the free
2220 * list of requested migratetype, possibly along with other pages from the same
2221 * block, depending on fragmentation avoidance heuristics. Returns true if
2222 * fallback was found so that __rmqueue_smallest() can grab it.
2224 * The use of signed ints for order and current_order is a deliberate
2225 * deviation from the rest of this file, to make the for loop
2226 * condition simpler.
2229 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2231 struct free_area
*area
;
2238 * Find the largest available free page in the other list. This roughly
2239 * approximates finding the pageblock with the most free pages, which
2240 * would be too costly to do exactly.
2242 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2244 area
= &(zone
->free_area
[current_order
]);
2245 fallback_mt
= find_suitable_fallback(area
, current_order
,
2246 start_migratetype
, false, &can_steal
);
2247 if (fallback_mt
== -1)
2251 * We cannot steal all free pages from the pageblock and the
2252 * requested migratetype is movable. In that case it's better to
2253 * steal and split the smallest available page instead of the
2254 * largest available page, because even if the next movable
2255 * allocation falls back into a different pageblock than this
2256 * one, it won't cause permanent fragmentation.
2258 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2259 && current_order
> order
)
2268 for (current_order
= order
; current_order
< MAX_ORDER
;
2270 area
= &(zone
->free_area
[current_order
]);
2271 fallback_mt
= find_suitable_fallback(area
, current_order
,
2272 start_migratetype
, false, &can_steal
);
2273 if (fallback_mt
!= -1)
2278 * This should not happen - we already found a suitable fallback
2279 * when looking for the largest page.
2281 VM_BUG_ON(current_order
== MAX_ORDER
);
2284 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2287 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2289 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2290 start_migratetype
, fallback_mt
);
2297 * Do the hard work of removing an element from the buddy allocator.
2298 * Call me with the zone->lock already held.
2300 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2306 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2307 if (unlikely(!page
)) {
2308 if (migratetype
== MIGRATE_MOVABLE
)
2309 page
= __rmqueue_cma_fallback(zone
, order
);
2311 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2315 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2320 * Obtain a specified number of elements from the buddy allocator, all under
2321 * a single hold of the lock, for efficiency. Add them to the supplied list.
2322 * Returns the number of new pages which were placed at *list.
2324 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2325 unsigned long count
, struct list_head
*list
,
2326 int migratetype
, bool cold
)
2330 spin_lock(&zone
->lock
);
2331 for (i
= 0; i
< count
; ++i
) {
2332 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2333 if (unlikely(page
== NULL
))
2336 if (unlikely(check_pcp_refill(page
)))
2340 * Split buddy pages returned by expand() are received here
2341 * in physical page order. The page is added to the callers and
2342 * list and the list head then moves forward. From the callers
2343 * perspective, the linked list is ordered by page number in
2344 * some conditions. This is useful for IO devices that can
2345 * merge IO requests if the physical pages are ordered
2349 list_add(&page
->lru
, list
);
2351 list_add_tail(&page
->lru
, list
);
2354 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2355 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2360 * i pages were removed from the buddy list even if some leak due
2361 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2362 * on i. Do not confuse with 'alloced' which is the number of
2363 * pages added to the pcp list.
2365 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2366 spin_unlock(&zone
->lock
);
2372 * Called from the vmstat counter updater to drain pagesets of this
2373 * currently executing processor on remote nodes after they have
2376 * Note that this function must be called with the thread pinned to
2377 * a single processor.
2379 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2381 unsigned long flags
;
2382 int to_drain
, batch
;
2384 local_irq_save(flags
);
2385 batch
= READ_ONCE(pcp
->batch
);
2386 to_drain
= min(pcp
->count
, batch
);
2388 free_pcppages_bulk(zone
, to_drain
, pcp
);
2389 pcp
->count
-= to_drain
;
2391 local_irq_restore(flags
);
2396 * Drain pcplists of the indicated processor and zone.
2398 * The processor must either be the current processor and the
2399 * thread pinned to the current processor or a processor that
2402 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2404 unsigned long flags
;
2405 struct per_cpu_pageset
*pset
;
2406 struct per_cpu_pages
*pcp
;
2408 local_irq_save(flags
);
2409 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2413 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2416 local_irq_restore(flags
);
2420 * Drain pcplists of all zones on the indicated processor.
2422 * The processor must either be the current processor and the
2423 * thread pinned to the current processor or a processor that
2426 static void drain_pages(unsigned int cpu
)
2430 for_each_populated_zone(zone
) {
2431 drain_pages_zone(cpu
, zone
);
2436 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2438 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2439 * the single zone's pages.
2441 void drain_local_pages(struct zone
*zone
)
2443 int cpu
= smp_processor_id();
2446 drain_pages_zone(cpu
, zone
);
2451 static void drain_local_pages_wq(struct work_struct
*work
)
2454 * drain_all_pages doesn't use proper cpu hotplug protection so
2455 * we can race with cpu offline when the WQ can move this from
2456 * a cpu pinned worker to an unbound one. We can operate on a different
2457 * cpu which is allright but we also have to make sure to not move to
2461 drain_local_pages(NULL
);
2466 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2468 * When zone parameter is non-NULL, spill just the single zone's pages.
2470 * Note that this can be extremely slow as the draining happens in a workqueue.
2472 void drain_all_pages(struct zone
*zone
)
2477 * Allocate in the BSS so we wont require allocation in
2478 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2480 static cpumask_t cpus_with_pcps
;
2483 * Make sure nobody triggers this path before mm_percpu_wq is fully
2486 if (WARN_ON_ONCE(!mm_percpu_wq
))
2489 /* Workqueues cannot recurse */
2490 if (current
->flags
& PF_WQ_WORKER
)
2494 * Do not drain if one is already in progress unless it's specific to
2495 * a zone. Such callers are primarily CMA and memory hotplug and need
2496 * the drain to be complete when the call returns.
2498 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2501 mutex_lock(&pcpu_drain_mutex
);
2505 * We don't care about racing with CPU hotplug event
2506 * as offline notification will cause the notified
2507 * cpu to drain that CPU pcps and on_each_cpu_mask
2508 * disables preemption as part of its processing
2510 for_each_online_cpu(cpu
) {
2511 struct per_cpu_pageset
*pcp
;
2513 bool has_pcps
= false;
2516 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2520 for_each_populated_zone(z
) {
2521 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2522 if (pcp
->pcp
.count
) {
2530 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2532 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2535 for_each_cpu(cpu
, &cpus_with_pcps
) {
2536 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2537 INIT_WORK(work
, drain_local_pages_wq
);
2538 queue_work_on(cpu
, mm_percpu_wq
, work
);
2540 for_each_cpu(cpu
, &cpus_with_pcps
)
2541 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2543 mutex_unlock(&pcpu_drain_mutex
);
2546 #ifdef CONFIG_HIBERNATION
2549 * Touch the watchdog for every WD_PAGE_COUNT pages.
2551 #define WD_PAGE_COUNT (128*1024)
2553 void mark_free_pages(struct zone
*zone
)
2555 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2556 unsigned long flags
;
2557 unsigned int order
, t
;
2560 if (zone_is_empty(zone
))
2563 spin_lock_irqsave(&zone
->lock
, flags
);
2565 max_zone_pfn
= zone_end_pfn(zone
);
2566 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2567 if (pfn_valid(pfn
)) {
2568 page
= pfn_to_page(pfn
);
2570 if (!--page_count
) {
2571 touch_nmi_watchdog();
2572 page_count
= WD_PAGE_COUNT
;
2575 if (page_zone(page
) != zone
)
2578 if (!swsusp_page_is_forbidden(page
))
2579 swsusp_unset_page_free(page
);
2582 for_each_migratetype_order(order
, t
) {
2583 list_for_each_entry(page
,
2584 &zone
->free_area
[order
].free_list
[t
], lru
) {
2587 pfn
= page_to_pfn(page
);
2588 for (i
= 0; i
< (1UL << order
); i
++) {
2589 if (!--page_count
) {
2590 touch_nmi_watchdog();
2591 page_count
= WD_PAGE_COUNT
;
2593 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2597 spin_unlock_irqrestore(&zone
->lock
, flags
);
2599 #endif /* CONFIG_PM */
2602 * Free a 0-order page
2603 * cold == true ? free a cold page : free a hot page
2605 void free_hot_cold_page(struct page
*page
, bool cold
)
2607 struct zone
*zone
= page_zone(page
);
2608 struct per_cpu_pages
*pcp
;
2609 unsigned long flags
;
2610 unsigned long pfn
= page_to_pfn(page
);
2613 if (!free_pcp_prepare(page
))
2616 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2617 set_pcppage_migratetype(page
, migratetype
);
2618 local_irq_save(flags
);
2619 __count_vm_event(PGFREE
);
2622 * We only track unmovable, reclaimable and movable on pcp lists.
2623 * Free ISOLATE pages back to the allocator because they are being
2624 * offlined but treat HIGHATOMIC as movable pages so we can get those
2625 * areas back if necessary. Otherwise, we may have to free
2626 * excessively into the page allocator
2628 if (migratetype
>= MIGRATE_PCPTYPES
) {
2629 if (unlikely(is_migrate_isolate(migratetype
))) {
2630 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2633 migratetype
= MIGRATE_MOVABLE
;
2636 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2638 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2640 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2642 if (pcp
->count
>= pcp
->high
) {
2643 unsigned long batch
= READ_ONCE(pcp
->batch
);
2644 free_pcppages_bulk(zone
, batch
, pcp
);
2645 pcp
->count
-= batch
;
2649 local_irq_restore(flags
);
2653 * Free a list of 0-order pages
2655 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2657 struct page
*page
, *next
;
2659 list_for_each_entry_safe(page
, next
, list
, lru
) {
2660 trace_mm_page_free_batched(page
, cold
);
2661 free_hot_cold_page(page
, cold
);
2666 * split_page takes a non-compound higher-order page, and splits it into
2667 * n (1<<order) sub-pages: page[0..n]
2668 * Each sub-page must be freed individually.
2670 * Note: this is probably too low level an operation for use in drivers.
2671 * Please consult with lkml before using this in your driver.
2673 void split_page(struct page
*page
, unsigned int order
)
2677 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2678 VM_BUG_ON_PAGE(!page_count(page
), page
);
2680 #ifdef CONFIG_KMEMCHECK
2682 * Split shadow pages too, because free(page[0]) would
2683 * otherwise free the whole shadow.
2685 if (kmemcheck_page_is_tracked(page
))
2686 split_page(virt_to_page(page
[0].shadow
), order
);
2689 for (i
= 1; i
< (1 << order
); i
++)
2690 set_page_refcounted(page
+ i
);
2691 split_page_owner(page
, order
);
2693 EXPORT_SYMBOL_GPL(split_page
);
2695 int __isolate_free_page(struct page
*page
, unsigned int order
)
2697 unsigned long watermark
;
2701 BUG_ON(!PageBuddy(page
));
2703 zone
= page_zone(page
);
2704 mt
= get_pageblock_migratetype(page
);
2706 if (!is_migrate_isolate(mt
)) {
2708 * Obey watermarks as if the page was being allocated. We can
2709 * emulate a high-order watermark check with a raised order-0
2710 * watermark, because we already know our high-order page
2713 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2714 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2717 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2720 /* Remove page from free list */
2721 list_del(&page
->lru
);
2722 zone
->free_area
[order
].nr_free
--;
2723 rmv_page_order(page
);
2726 * Set the pageblock if the isolated page is at least half of a
2729 if (order
>= pageblock_order
- 1) {
2730 struct page
*endpage
= page
+ (1 << order
) - 1;
2731 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2732 int mt
= get_pageblock_migratetype(page
);
2733 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2734 && !is_migrate_highatomic(mt
))
2735 set_pageblock_migratetype(page
,
2741 return 1UL << order
;
2745 * Update NUMA hit/miss statistics
2747 * Must be called with interrupts disabled.
2749 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2752 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2754 if (z
->node
!= numa_node_id())
2755 local_stat
= NUMA_OTHER
;
2757 if (z
->node
== preferred_zone
->node
)
2758 __inc_zone_state(z
, NUMA_HIT
);
2760 __inc_zone_state(z
, NUMA_MISS
);
2761 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2763 __inc_zone_state(z
, local_stat
);
2767 /* Remove page from the per-cpu list, caller must protect the list */
2768 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2769 bool cold
, struct per_cpu_pages
*pcp
,
2770 struct list_head
*list
)
2775 if (list_empty(list
)) {
2776 pcp
->count
+= rmqueue_bulk(zone
, 0,
2779 if (unlikely(list_empty(list
)))
2784 page
= list_last_entry(list
, struct page
, lru
);
2786 page
= list_first_entry(list
, struct page
, lru
);
2788 list_del(&page
->lru
);
2790 } while (check_new_pcp(page
));
2795 /* Lock and remove page from the per-cpu list */
2796 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2797 struct zone
*zone
, unsigned int order
,
2798 gfp_t gfp_flags
, int migratetype
)
2800 struct per_cpu_pages
*pcp
;
2801 struct list_head
*list
;
2802 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2804 unsigned long flags
;
2806 local_irq_save(flags
);
2807 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2808 list
= &pcp
->lists
[migratetype
];
2809 page
= __rmqueue_pcplist(zone
, migratetype
, cold
, pcp
, list
);
2811 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2812 zone_statistics(preferred_zone
, zone
);
2814 local_irq_restore(flags
);
2819 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2822 struct page
*rmqueue(struct zone
*preferred_zone
,
2823 struct zone
*zone
, unsigned int order
,
2824 gfp_t gfp_flags
, unsigned int alloc_flags
,
2827 unsigned long flags
;
2830 if (likely(order
== 0)) {
2831 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2832 gfp_flags
, migratetype
);
2837 * We most definitely don't want callers attempting to
2838 * allocate greater than order-1 page units with __GFP_NOFAIL.
2840 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2841 spin_lock_irqsave(&zone
->lock
, flags
);
2845 if (alloc_flags
& ALLOC_HARDER
) {
2846 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2848 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2851 page
= __rmqueue(zone
, order
, migratetype
);
2852 } while (page
&& check_new_pages(page
, order
));
2853 spin_unlock(&zone
->lock
);
2856 __mod_zone_freepage_state(zone
, -(1 << order
),
2857 get_pcppage_migratetype(page
));
2859 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2860 zone_statistics(preferred_zone
, zone
);
2861 local_irq_restore(flags
);
2864 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
2868 local_irq_restore(flags
);
2872 #ifdef CONFIG_FAIL_PAGE_ALLOC
2875 struct fault_attr attr
;
2877 bool ignore_gfp_highmem
;
2878 bool ignore_gfp_reclaim
;
2880 } fail_page_alloc
= {
2881 .attr
= FAULT_ATTR_INITIALIZER
,
2882 .ignore_gfp_reclaim
= true,
2883 .ignore_gfp_highmem
= true,
2887 static int __init
setup_fail_page_alloc(char *str
)
2889 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2891 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2893 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2895 if (order
< fail_page_alloc
.min_order
)
2897 if (gfp_mask
& __GFP_NOFAIL
)
2899 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2901 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2902 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2905 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2908 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2910 static int __init
fail_page_alloc_debugfs(void)
2912 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2915 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2916 &fail_page_alloc
.attr
);
2918 return PTR_ERR(dir
);
2920 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2921 &fail_page_alloc
.ignore_gfp_reclaim
))
2923 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2924 &fail_page_alloc
.ignore_gfp_highmem
))
2926 if (!debugfs_create_u32("min-order", mode
, dir
,
2927 &fail_page_alloc
.min_order
))
2932 debugfs_remove_recursive(dir
);
2937 late_initcall(fail_page_alloc_debugfs
);
2939 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2941 #else /* CONFIG_FAIL_PAGE_ALLOC */
2943 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2948 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2951 * Return true if free base pages are above 'mark'. For high-order checks it
2952 * will return true of the order-0 watermark is reached and there is at least
2953 * one free page of a suitable size. Checking now avoids taking the zone lock
2954 * to check in the allocation paths if no pages are free.
2956 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2957 int classzone_idx
, unsigned int alloc_flags
,
2962 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2964 /* free_pages may go negative - that's OK */
2965 free_pages
-= (1 << order
) - 1;
2967 if (alloc_flags
& ALLOC_HIGH
)
2971 * If the caller does not have rights to ALLOC_HARDER then subtract
2972 * the high-atomic reserves. This will over-estimate the size of the
2973 * atomic reserve but it avoids a search.
2975 if (likely(!alloc_harder
))
2976 free_pages
-= z
->nr_reserved_highatomic
;
2981 /* If allocation can't use CMA areas don't use free CMA pages */
2982 if (!(alloc_flags
& ALLOC_CMA
))
2983 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2987 * Check watermarks for an order-0 allocation request. If these
2988 * are not met, then a high-order request also cannot go ahead
2989 * even if a suitable page happened to be free.
2991 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2994 /* If this is an order-0 request then the watermark is fine */
2998 /* For a high-order request, check at least one suitable page is free */
2999 for (o
= order
; o
< MAX_ORDER
; o
++) {
3000 struct free_area
*area
= &z
->free_area
[o
];
3009 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3010 if (!list_empty(&area
->free_list
[mt
]))
3015 if ((alloc_flags
& ALLOC_CMA
) &&
3016 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3024 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3025 int classzone_idx
, unsigned int alloc_flags
)
3027 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3028 zone_page_state(z
, NR_FREE_PAGES
));
3031 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3032 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3034 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3038 /* If allocation can't use CMA areas don't use free CMA pages */
3039 if (!(alloc_flags
& ALLOC_CMA
))
3040 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3044 * Fast check for order-0 only. If this fails then the reserves
3045 * need to be calculated. There is a corner case where the check
3046 * passes but only the high-order atomic reserve are free. If
3047 * the caller is !atomic then it'll uselessly search the free
3048 * list. That corner case is then slower but it is harmless.
3050 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3053 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3057 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3058 unsigned long mark
, int classzone_idx
)
3060 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3062 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3063 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3065 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3070 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3072 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3075 #else /* CONFIG_NUMA */
3076 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3080 #endif /* CONFIG_NUMA */
3083 * get_page_from_freelist goes through the zonelist trying to allocate
3086 static struct page
*
3087 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3088 const struct alloc_context
*ac
)
3090 struct zoneref
*z
= ac
->preferred_zoneref
;
3092 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3095 * Scan zonelist, looking for a zone with enough free.
3096 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3098 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3103 if (cpusets_enabled() &&
3104 (alloc_flags
& ALLOC_CPUSET
) &&
3105 !__cpuset_zone_allowed(zone
, gfp_mask
))
3108 * When allocating a page cache page for writing, we
3109 * want to get it from a node that is within its dirty
3110 * limit, such that no single node holds more than its
3111 * proportional share of globally allowed dirty pages.
3112 * The dirty limits take into account the node's
3113 * lowmem reserves and high watermark so that kswapd
3114 * should be able to balance it without having to
3115 * write pages from its LRU list.
3117 * XXX: For now, allow allocations to potentially
3118 * exceed the per-node dirty limit in the slowpath
3119 * (spread_dirty_pages unset) before going into reclaim,
3120 * which is important when on a NUMA setup the allowed
3121 * nodes are together not big enough to reach the
3122 * global limit. The proper fix for these situations
3123 * will require awareness of nodes in the
3124 * dirty-throttling and the flusher threads.
3126 if (ac
->spread_dirty_pages
) {
3127 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3130 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3131 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3136 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3137 if (!zone_watermark_fast(zone
, order
, mark
,
3138 ac_classzone_idx(ac
), alloc_flags
)) {
3141 /* Checked here to keep the fast path fast */
3142 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3143 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3146 if (node_reclaim_mode
== 0 ||
3147 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3150 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3152 case NODE_RECLAIM_NOSCAN
:
3155 case NODE_RECLAIM_FULL
:
3156 /* scanned but unreclaimable */
3159 /* did we reclaim enough */
3160 if (zone_watermark_ok(zone
, order
, mark
,
3161 ac_classzone_idx(ac
), alloc_flags
))
3169 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3170 gfp_mask
, alloc_flags
, ac
->migratetype
);
3172 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3175 * If this is a high-order atomic allocation then check
3176 * if the pageblock should be reserved for the future
3178 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3179 reserve_highatomic_pageblock(page
, zone
, order
);
3189 * Large machines with many possible nodes should not always dump per-node
3190 * meminfo in irq context.
3192 static inline bool should_suppress_show_mem(void)
3197 ret
= in_interrupt();
3202 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3204 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3205 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3207 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3211 * This documents exceptions given to allocations in certain
3212 * contexts that are allowed to allocate outside current's set
3215 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3216 if (test_thread_flag(TIF_MEMDIE
) ||
3217 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3218 filter
&= ~SHOW_MEM_FILTER_NODES
;
3219 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3220 filter
&= ~SHOW_MEM_FILTER_NODES
;
3222 show_mem(filter
, nodemask
);
3225 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3227 struct va_format vaf
;
3229 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3230 DEFAULT_RATELIMIT_BURST
);
3232 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3235 pr_warn("%s: ", current
->comm
);
3237 va_start(args
, fmt
);
3240 pr_cont("%pV", &vaf
);
3243 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask
, &gfp_mask
);
3245 pr_cont("%*pbl\n", nodemask_pr_args(nodemask
));
3247 pr_cont("(null)\n");
3249 cpuset_print_current_mems_allowed();
3252 warn_alloc_show_mem(gfp_mask
, nodemask
);
3255 static inline struct page
*
3256 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3257 unsigned int alloc_flags
,
3258 const struct alloc_context
*ac
)
3262 page
= get_page_from_freelist(gfp_mask
, order
,
3263 alloc_flags
|ALLOC_CPUSET
, ac
);
3265 * fallback to ignore cpuset restriction if our nodes
3269 page
= get_page_from_freelist(gfp_mask
, order
,
3275 static inline struct page
*
3276 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3277 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3279 struct oom_control oc
= {
3280 .zonelist
= ac
->zonelist
,
3281 .nodemask
= ac
->nodemask
,
3283 .gfp_mask
= gfp_mask
,
3288 *did_some_progress
= 0;
3291 * Acquire the oom lock. If that fails, somebody else is
3292 * making progress for us.
3294 if (!mutex_trylock(&oom_lock
)) {
3295 *did_some_progress
= 1;
3296 schedule_timeout_uninterruptible(1);
3301 * Go through the zonelist yet one more time, keep very high watermark
3302 * here, this is only to catch a parallel oom killing, we must fail if
3303 * we're still under heavy pressure. But make sure that this reclaim
3304 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3305 * allocation which will never fail due to oom_lock already held.
3307 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3308 ~__GFP_DIRECT_RECLAIM
, order
,
3309 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3313 /* Coredumps can quickly deplete all memory reserves */
3314 if (current
->flags
& PF_DUMPCORE
)
3316 /* The OOM killer will not help higher order allocs */
3317 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3320 * We have already exhausted all our reclaim opportunities without any
3321 * success so it is time to admit defeat. We will skip the OOM killer
3322 * because it is very likely that the caller has a more reasonable
3323 * fallback than shooting a random task.
3325 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3327 /* The OOM killer does not needlessly kill tasks for lowmem */
3328 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3330 if (pm_suspended_storage())
3333 * XXX: GFP_NOFS allocations should rather fail than rely on
3334 * other request to make a forward progress.
3335 * We are in an unfortunate situation where out_of_memory cannot
3336 * do much for this context but let's try it to at least get
3337 * access to memory reserved if the current task is killed (see
3338 * out_of_memory). Once filesystems are ready to handle allocation
3339 * failures more gracefully we should just bail out here.
3342 /* The OOM killer may not free memory on a specific node */
3343 if (gfp_mask
& __GFP_THISNODE
)
3346 /* Exhausted what can be done so it's blamo time */
3347 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3348 *did_some_progress
= 1;
3351 * Help non-failing allocations by giving them access to memory
3354 if (gfp_mask
& __GFP_NOFAIL
)
3355 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3356 ALLOC_NO_WATERMARKS
, ac
);
3359 mutex_unlock(&oom_lock
);
3364 * Maximum number of compaction retries wit a progress before OOM
3365 * killer is consider as the only way to move forward.
3367 #define MAX_COMPACT_RETRIES 16
3369 #ifdef CONFIG_COMPACTION
3370 /* Try memory compaction for high-order allocations before reclaim */
3371 static struct page
*
3372 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3373 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3374 enum compact_priority prio
, enum compact_result
*compact_result
)
3377 unsigned int noreclaim_flag
;
3382 noreclaim_flag
= memalloc_noreclaim_save();
3383 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3385 memalloc_noreclaim_restore(noreclaim_flag
);
3387 if (*compact_result
<= COMPACT_INACTIVE
)
3391 * At least in one zone compaction wasn't deferred or skipped, so let's
3392 * count a compaction stall
3394 count_vm_event(COMPACTSTALL
);
3396 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3399 struct zone
*zone
= page_zone(page
);
3401 zone
->compact_blockskip_flush
= false;
3402 compaction_defer_reset(zone
, order
, true);
3403 count_vm_event(COMPACTSUCCESS
);
3408 * It's bad if compaction run occurs and fails. The most likely reason
3409 * is that pages exist, but not enough to satisfy watermarks.
3411 count_vm_event(COMPACTFAIL
);
3419 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3420 enum compact_result compact_result
,
3421 enum compact_priority
*compact_priority
,
3422 int *compaction_retries
)
3424 int max_retries
= MAX_COMPACT_RETRIES
;
3427 int retries
= *compaction_retries
;
3428 enum compact_priority priority
= *compact_priority
;
3433 if (compaction_made_progress(compact_result
))
3434 (*compaction_retries
)++;
3437 * compaction considers all the zone as desperately out of memory
3438 * so it doesn't really make much sense to retry except when the
3439 * failure could be caused by insufficient priority
3441 if (compaction_failed(compact_result
))
3442 goto check_priority
;
3445 * make sure the compaction wasn't deferred or didn't bail out early
3446 * due to locks contention before we declare that we should give up.
3447 * But do not retry if the given zonelist is not suitable for
3450 if (compaction_withdrawn(compact_result
)) {
3451 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3456 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3457 * costly ones because they are de facto nofail and invoke OOM
3458 * killer to move on while costly can fail and users are ready
3459 * to cope with that. 1/4 retries is rather arbitrary but we
3460 * would need much more detailed feedback from compaction to
3461 * make a better decision.
3463 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3465 if (*compaction_retries
<= max_retries
) {
3471 * Make sure there are attempts at the highest priority if we exhausted
3472 * all retries or failed at the lower priorities.
3475 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3476 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3478 if (*compact_priority
> min_priority
) {
3479 (*compact_priority
)--;
3480 *compaction_retries
= 0;
3484 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3488 static inline struct page
*
3489 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3490 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3491 enum compact_priority prio
, enum compact_result
*compact_result
)
3493 *compact_result
= COMPACT_SKIPPED
;
3498 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3499 enum compact_result compact_result
,
3500 enum compact_priority
*compact_priority
,
3501 int *compaction_retries
)
3506 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3510 * There are setups with compaction disabled which would prefer to loop
3511 * inside the allocator rather than hit the oom killer prematurely.
3512 * Let's give them a good hope and keep retrying while the order-0
3513 * watermarks are OK.
3515 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3517 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3518 ac_classzone_idx(ac
), alloc_flags
))
3523 #endif /* CONFIG_COMPACTION */
3525 /* Perform direct synchronous page reclaim */
3527 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3528 const struct alloc_context
*ac
)
3530 struct reclaim_state reclaim_state
;
3532 unsigned int noreclaim_flag
;
3536 /* We now go into synchronous reclaim */
3537 cpuset_memory_pressure_bump();
3538 noreclaim_flag
= memalloc_noreclaim_save();
3539 lockdep_set_current_reclaim_state(gfp_mask
);
3540 reclaim_state
.reclaimed_slab
= 0;
3541 current
->reclaim_state
= &reclaim_state
;
3543 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3546 current
->reclaim_state
= NULL
;
3547 lockdep_clear_current_reclaim_state();
3548 memalloc_noreclaim_restore(noreclaim_flag
);
3555 /* The really slow allocator path where we enter direct reclaim */
3556 static inline struct page
*
3557 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3558 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3559 unsigned long *did_some_progress
)
3561 struct page
*page
= NULL
;
3562 bool drained
= false;
3564 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3565 if (unlikely(!(*did_some_progress
)))
3569 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3572 * If an allocation failed after direct reclaim, it could be because
3573 * pages are pinned on the per-cpu lists or in high alloc reserves.
3574 * Shrink them them and try again
3576 if (!page
&& !drained
) {
3577 unreserve_highatomic_pageblock(ac
, false);
3578 drain_all_pages(NULL
);
3586 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3590 pg_data_t
*last_pgdat
= NULL
;
3592 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3593 ac
->high_zoneidx
, ac
->nodemask
) {
3594 if (last_pgdat
!= zone
->zone_pgdat
)
3595 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3596 last_pgdat
= zone
->zone_pgdat
;
3600 static inline unsigned int
3601 gfp_to_alloc_flags(gfp_t gfp_mask
)
3603 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3605 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3606 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3609 * The caller may dip into page reserves a bit more if the caller
3610 * cannot run direct reclaim, or if the caller has realtime scheduling
3611 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3612 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3614 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3616 if (gfp_mask
& __GFP_ATOMIC
) {
3618 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3619 * if it can't schedule.
3621 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3622 alloc_flags
|= ALLOC_HARDER
;
3624 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3625 * comment for __cpuset_node_allowed().
3627 alloc_flags
&= ~ALLOC_CPUSET
;
3628 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3629 alloc_flags
|= ALLOC_HARDER
;
3632 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3633 alloc_flags
|= ALLOC_CMA
;
3638 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3640 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3643 if (gfp_mask
& __GFP_MEMALLOC
)
3645 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3647 if (!in_interrupt() &&
3648 ((current
->flags
& PF_MEMALLOC
) ||
3649 unlikely(test_thread_flag(TIF_MEMDIE
))))
3656 * Checks whether it makes sense to retry the reclaim to make a forward progress
3657 * for the given allocation request.
3659 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3660 * without success, or when we couldn't even meet the watermark if we
3661 * reclaimed all remaining pages on the LRU lists.
3663 * Returns true if a retry is viable or false to enter the oom path.
3666 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3667 struct alloc_context
*ac
, int alloc_flags
,
3668 bool did_some_progress
, int *no_progress_loops
)
3674 * Costly allocations might have made a progress but this doesn't mean
3675 * their order will become available due to high fragmentation so
3676 * always increment the no progress counter for them
3678 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3679 *no_progress_loops
= 0;
3681 (*no_progress_loops
)++;
3684 * Make sure we converge to OOM if we cannot make any progress
3685 * several times in the row.
3687 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3688 /* Before OOM, exhaust highatomic_reserve */
3689 return unreserve_highatomic_pageblock(ac
, true);
3693 * Keep reclaiming pages while there is a chance this will lead
3694 * somewhere. If none of the target zones can satisfy our allocation
3695 * request even if all reclaimable pages are considered then we are
3696 * screwed and have to go OOM.
3698 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3700 unsigned long available
;
3701 unsigned long reclaimable
;
3702 unsigned long min_wmark
= min_wmark_pages(zone
);
3705 available
= reclaimable
= zone_reclaimable_pages(zone
);
3706 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3709 * Would the allocation succeed if we reclaimed all
3710 * reclaimable pages?
3712 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3713 ac_classzone_idx(ac
), alloc_flags
, available
);
3714 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3715 available
, min_wmark
, *no_progress_loops
, wmark
);
3718 * If we didn't make any progress and have a lot of
3719 * dirty + writeback pages then we should wait for
3720 * an IO to complete to slow down the reclaim and
3721 * prevent from pre mature OOM
3723 if (!did_some_progress
) {
3724 unsigned long write_pending
;
3726 write_pending
= zone_page_state_snapshot(zone
,
3727 NR_ZONE_WRITE_PENDING
);
3729 if (2 * write_pending
> reclaimable
) {
3730 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3736 * Memory allocation/reclaim might be called from a WQ
3737 * context and the current implementation of the WQ
3738 * concurrency control doesn't recognize that
3739 * a particular WQ is congested if the worker thread is
3740 * looping without ever sleeping. Therefore we have to
3741 * do a short sleep here rather than calling
3744 if (current
->flags
& PF_WQ_WORKER
)
3745 schedule_timeout_uninterruptible(1);
3757 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
3760 * It's possible that cpuset's mems_allowed and the nodemask from
3761 * mempolicy don't intersect. This should be normally dealt with by
3762 * policy_nodemask(), but it's possible to race with cpuset update in
3763 * such a way the check therein was true, and then it became false
3764 * before we got our cpuset_mems_cookie here.
3765 * This assumes that for all allocations, ac->nodemask can come only
3766 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3767 * when it does not intersect with the cpuset restrictions) or the
3768 * caller can deal with a violated nodemask.
3770 if (cpusets_enabled() && ac
->nodemask
&&
3771 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
3772 ac
->nodemask
= NULL
;
3777 * When updating a task's mems_allowed or mempolicy nodemask, it is
3778 * possible to race with parallel threads in such a way that our
3779 * allocation can fail while the mask is being updated. If we are about
3780 * to fail, check if the cpuset changed during allocation and if so,
3783 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3789 static inline struct page
*
3790 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3791 struct alloc_context
*ac
)
3793 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3794 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
3795 struct page
*page
= NULL
;
3796 unsigned int alloc_flags
;
3797 unsigned long did_some_progress
;
3798 enum compact_priority compact_priority
;
3799 enum compact_result compact_result
;
3800 int compaction_retries
;
3801 int no_progress_loops
;
3802 unsigned long alloc_start
= jiffies
;
3803 unsigned int stall_timeout
= 10 * HZ
;
3804 unsigned int cpuset_mems_cookie
;
3807 * In the slowpath, we sanity check order to avoid ever trying to
3808 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3809 * be using allocators in order of preference for an area that is
3812 if (order
>= MAX_ORDER
) {
3813 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3818 * We also sanity check to catch abuse of atomic reserves being used by
3819 * callers that are not in atomic context.
3821 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3822 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3823 gfp_mask
&= ~__GFP_ATOMIC
;
3826 compaction_retries
= 0;
3827 no_progress_loops
= 0;
3828 compact_priority
= DEF_COMPACT_PRIORITY
;
3829 cpuset_mems_cookie
= read_mems_allowed_begin();
3832 * The fast path uses conservative alloc_flags to succeed only until
3833 * kswapd needs to be woken up, and to avoid the cost of setting up
3834 * alloc_flags precisely. So we do that now.
3836 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3839 * We need to recalculate the starting point for the zonelist iterator
3840 * because we might have used different nodemask in the fast path, or
3841 * there was a cpuset modification and we are retrying - otherwise we
3842 * could end up iterating over non-eligible zones endlessly.
3844 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3845 ac
->high_zoneidx
, ac
->nodemask
);
3846 if (!ac
->preferred_zoneref
->zone
)
3849 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3850 wake_all_kswapds(order
, ac
);
3853 * The adjusted alloc_flags might result in immediate success, so try
3856 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3861 * For costly allocations, try direct compaction first, as it's likely
3862 * that we have enough base pages and don't need to reclaim. For non-
3863 * movable high-order allocations, do that as well, as compaction will
3864 * try prevent permanent fragmentation by migrating from blocks of the
3866 * Don't try this for allocations that are allowed to ignore
3867 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3869 if (can_direct_reclaim
&&
3871 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
3872 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
3873 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3875 INIT_COMPACT_PRIORITY
,
3881 * Checks for costly allocations with __GFP_NORETRY, which
3882 * includes THP page fault allocations
3884 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
3886 * If compaction is deferred for high-order allocations,
3887 * it is because sync compaction recently failed. If
3888 * this is the case and the caller requested a THP
3889 * allocation, we do not want to heavily disrupt the
3890 * system, so we fail the allocation instead of entering
3893 if (compact_result
== COMPACT_DEFERRED
)
3897 * Looks like reclaim/compaction is worth trying, but
3898 * sync compaction could be very expensive, so keep
3899 * using async compaction.
3901 compact_priority
= INIT_COMPACT_PRIORITY
;
3906 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3907 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3908 wake_all_kswapds(order
, ac
);
3910 if (gfp_pfmemalloc_allowed(gfp_mask
))
3911 alloc_flags
= ALLOC_NO_WATERMARKS
;
3914 * Reset the zonelist iterators if memory policies can be ignored.
3915 * These allocations are high priority and system rather than user
3918 if (!(alloc_flags
& ALLOC_CPUSET
) || (alloc_flags
& ALLOC_NO_WATERMARKS
)) {
3919 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3920 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3921 ac
->high_zoneidx
, ac
->nodemask
);
3924 /* Attempt with potentially adjusted zonelist and alloc_flags */
3925 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3929 /* Caller is not willing to reclaim, we can't balance anything */
3930 if (!can_direct_reclaim
)
3933 /* Make sure we know about allocations which stall for too long */
3934 if (time_after(jiffies
, alloc_start
+ stall_timeout
)) {
3935 warn_alloc(gfp_mask
& ~__GFP_NOWARN
, ac
->nodemask
,
3936 "page allocation stalls for %ums, order:%u",
3937 jiffies_to_msecs(jiffies
-alloc_start
), order
);
3938 stall_timeout
+= 10 * HZ
;
3941 /* Avoid recursion of direct reclaim */
3942 if (current
->flags
& PF_MEMALLOC
)
3945 /* Try direct reclaim and then allocating */
3946 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3947 &did_some_progress
);
3951 /* Try direct compaction and then allocating */
3952 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3953 compact_priority
, &compact_result
);
3957 /* Do not loop if specifically requested */
3958 if (gfp_mask
& __GFP_NORETRY
)
3962 * Do not retry costly high order allocations unless they are
3963 * __GFP_RETRY_MAYFAIL
3965 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
3968 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3969 did_some_progress
> 0, &no_progress_loops
))
3973 * It doesn't make any sense to retry for the compaction if the order-0
3974 * reclaim is not able to make any progress because the current
3975 * implementation of the compaction depends on the sufficient amount
3976 * of free memory (see __compaction_suitable)
3978 if (did_some_progress
> 0 &&
3979 should_compact_retry(ac
, order
, alloc_flags
,
3980 compact_result
, &compact_priority
,
3981 &compaction_retries
))
3985 /* Deal with possible cpuset update races before we start OOM killing */
3986 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
3989 /* Reclaim has failed us, start killing things */
3990 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3994 /* Avoid allocations with no watermarks from looping endlessly */
3995 if (test_thread_flag(TIF_MEMDIE
) &&
3996 (alloc_flags
== ALLOC_NO_WATERMARKS
||
3997 (gfp_mask
& __GFP_NOMEMALLOC
)))
4000 /* Retry as long as the OOM killer is making progress */
4001 if (did_some_progress
) {
4002 no_progress_loops
= 0;
4007 /* Deal with possible cpuset update races before we fail */
4008 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4012 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4015 if (gfp_mask
& __GFP_NOFAIL
) {
4017 * All existing users of the __GFP_NOFAIL are blockable, so warn
4018 * of any new users that actually require GFP_NOWAIT
4020 if (WARN_ON_ONCE(!can_direct_reclaim
))
4024 * PF_MEMALLOC request from this context is rather bizarre
4025 * because we cannot reclaim anything and only can loop waiting
4026 * for somebody to do a work for us
4028 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4031 * non failing costly orders are a hard requirement which we
4032 * are not prepared for much so let's warn about these users
4033 * so that we can identify them and convert them to something
4036 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4039 * Help non-failing allocations by giving them access to memory
4040 * reserves but do not use ALLOC_NO_WATERMARKS because this
4041 * could deplete whole memory reserves which would just make
4042 * the situation worse
4044 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4052 warn_alloc(gfp_mask
, ac
->nodemask
,
4053 "page allocation failure: order:%u", order
);
4058 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4059 int preferred_nid
, nodemask_t
*nodemask
,
4060 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4061 unsigned int *alloc_flags
)
4063 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4064 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4065 ac
->nodemask
= nodemask
;
4066 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4068 if (cpusets_enabled()) {
4069 *alloc_mask
|= __GFP_HARDWALL
;
4071 ac
->nodemask
= &cpuset_current_mems_allowed
;
4073 *alloc_flags
|= ALLOC_CPUSET
;
4076 lockdep_trace_alloc(gfp_mask
);
4078 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4080 if (should_fail_alloc_page(gfp_mask
, order
))
4083 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4084 *alloc_flags
|= ALLOC_CMA
;
4089 /* Determine whether to spread dirty pages and what the first usable zone */
4090 static inline void finalise_ac(gfp_t gfp_mask
,
4091 unsigned int order
, struct alloc_context
*ac
)
4093 /* Dirty zone balancing only done in the fast path */
4094 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4097 * The preferred zone is used for statistics but crucially it is
4098 * also used as the starting point for the zonelist iterator. It
4099 * may get reset for allocations that ignore memory policies.
4101 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4102 ac
->high_zoneidx
, ac
->nodemask
);
4106 * This is the 'heart' of the zoned buddy allocator.
4109 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4110 nodemask_t
*nodemask
)
4113 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4114 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
4115 struct alloc_context ac
= { };
4117 gfp_mask
&= gfp_allowed_mask
;
4118 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4121 finalise_ac(gfp_mask
, order
, &ac
);
4123 /* First allocation attempt */
4124 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4129 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4130 * resp. GFP_NOIO which has to be inherited for all allocation requests
4131 * from a particular context which has been marked by
4132 * memalloc_no{fs,io}_{save,restore}.
4134 alloc_mask
= current_gfp_context(gfp_mask
);
4135 ac
.spread_dirty_pages
= false;
4138 * Restore the original nodemask if it was potentially replaced with
4139 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4141 if (unlikely(ac
.nodemask
!= nodemask
))
4142 ac
.nodemask
= nodemask
;
4144 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4147 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4148 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4149 __free_pages(page
, order
);
4153 if (kmemcheck_enabled
&& page
)
4154 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
4156 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4160 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4163 * Common helper functions.
4165 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4170 * __get_free_pages() returns a 32-bit address, which cannot represent
4173 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4175 page
= alloc_pages(gfp_mask
, order
);
4178 return (unsigned long) page_address(page
);
4180 EXPORT_SYMBOL(__get_free_pages
);
4182 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4184 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4186 EXPORT_SYMBOL(get_zeroed_page
);
4188 void __free_pages(struct page
*page
, unsigned int order
)
4190 if (put_page_testzero(page
)) {
4192 free_hot_cold_page(page
, false);
4194 __free_pages_ok(page
, order
);
4198 EXPORT_SYMBOL(__free_pages
);
4200 void free_pages(unsigned long addr
, unsigned int order
)
4203 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4204 __free_pages(virt_to_page((void *)addr
), order
);
4208 EXPORT_SYMBOL(free_pages
);
4212 * An arbitrary-length arbitrary-offset area of memory which resides
4213 * within a 0 or higher order page. Multiple fragments within that page
4214 * are individually refcounted, in the page's reference counter.
4216 * The page_frag functions below provide a simple allocation framework for
4217 * page fragments. This is used by the network stack and network device
4218 * drivers to provide a backing region of memory for use as either an
4219 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4221 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4224 struct page
*page
= NULL
;
4225 gfp_t gfp
= gfp_mask
;
4227 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4228 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4230 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4231 PAGE_FRAG_CACHE_MAX_ORDER
);
4232 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4234 if (unlikely(!page
))
4235 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4237 nc
->va
= page
? page_address(page
) : NULL
;
4242 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4244 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4246 if (page_ref_sub_and_test(page
, count
)) {
4247 unsigned int order
= compound_order(page
);
4250 free_hot_cold_page(page
, false);
4252 __free_pages_ok(page
, order
);
4255 EXPORT_SYMBOL(__page_frag_cache_drain
);
4257 void *page_frag_alloc(struct page_frag_cache
*nc
,
4258 unsigned int fragsz
, gfp_t gfp_mask
)
4260 unsigned int size
= PAGE_SIZE
;
4264 if (unlikely(!nc
->va
)) {
4266 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4270 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4271 /* if size can vary use size else just use PAGE_SIZE */
4274 /* Even if we own the page, we do not use atomic_set().
4275 * This would break get_page_unless_zero() users.
4277 page_ref_add(page
, size
- 1);
4279 /* reset page count bias and offset to start of new frag */
4280 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4281 nc
->pagecnt_bias
= size
;
4285 offset
= nc
->offset
- fragsz
;
4286 if (unlikely(offset
< 0)) {
4287 page
= virt_to_page(nc
->va
);
4289 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4292 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4293 /* if size can vary use size else just use PAGE_SIZE */
4296 /* OK, page count is 0, we can safely set it */
4297 set_page_count(page
, size
);
4299 /* reset page count bias and offset to start of new frag */
4300 nc
->pagecnt_bias
= size
;
4301 offset
= size
- fragsz
;
4305 nc
->offset
= offset
;
4307 return nc
->va
+ offset
;
4309 EXPORT_SYMBOL(page_frag_alloc
);
4312 * Frees a page fragment allocated out of either a compound or order 0 page.
4314 void page_frag_free(void *addr
)
4316 struct page
*page
= virt_to_head_page(addr
);
4318 if (unlikely(put_page_testzero(page
)))
4319 __free_pages_ok(page
, compound_order(page
));
4321 EXPORT_SYMBOL(page_frag_free
);
4323 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4327 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4328 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4330 split_page(virt_to_page((void *)addr
), order
);
4331 while (used
< alloc_end
) {
4336 return (void *)addr
;
4340 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4341 * @size: the number of bytes to allocate
4342 * @gfp_mask: GFP flags for the allocation
4344 * This function is similar to alloc_pages(), except that it allocates the
4345 * minimum number of pages to satisfy the request. alloc_pages() can only
4346 * allocate memory in power-of-two pages.
4348 * This function is also limited by MAX_ORDER.
4350 * Memory allocated by this function must be released by free_pages_exact().
4352 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4354 unsigned int order
= get_order(size
);
4357 addr
= __get_free_pages(gfp_mask
, order
);
4358 return make_alloc_exact(addr
, order
, size
);
4360 EXPORT_SYMBOL(alloc_pages_exact
);
4363 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4365 * @nid: the preferred node ID where memory should be allocated
4366 * @size: the number of bytes to allocate
4367 * @gfp_mask: GFP flags for the allocation
4369 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4372 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4374 unsigned int order
= get_order(size
);
4375 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4378 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4382 * free_pages_exact - release memory allocated via alloc_pages_exact()
4383 * @virt: the value returned by alloc_pages_exact.
4384 * @size: size of allocation, same value as passed to alloc_pages_exact().
4386 * Release the memory allocated by a previous call to alloc_pages_exact.
4388 void free_pages_exact(void *virt
, size_t size
)
4390 unsigned long addr
= (unsigned long)virt
;
4391 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4393 while (addr
< end
) {
4398 EXPORT_SYMBOL(free_pages_exact
);
4401 * nr_free_zone_pages - count number of pages beyond high watermark
4402 * @offset: The zone index of the highest zone
4404 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4405 * high watermark within all zones at or below a given zone index. For each
4406 * zone, the number of pages is calculated as:
4408 * nr_free_zone_pages = managed_pages - high_pages
4410 static unsigned long nr_free_zone_pages(int offset
)
4415 /* Just pick one node, since fallback list is circular */
4416 unsigned long sum
= 0;
4418 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4420 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4421 unsigned long size
= zone
->managed_pages
;
4422 unsigned long high
= high_wmark_pages(zone
);
4431 * nr_free_buffer_pages - count number of pages beyond high watermark
4433 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4434 * watermark within ZONE_DMA and ZONE_NORMAL.
4436 unsigned long nr_free_buffer_pages(void)
4438 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4440 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4443 * nr_free_pagecache_pages - count number of pages beyond high watermark
4445 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4446 * high watermark within all zones.
4448 unsigned long nr_free_pagecache_pages(void)
4450 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4453 static inline void show_node(struct zone
*zone
)
4455 if (IS_ENABLED(CONFIG_NUMA
))
4456 printk("Node %d ", zone_to_nid(zone
));
4459 long si_mem_available(void)
4462 unsigned long pagecache
;
4463 unsigned long wmark_low
= 0;
4464 unsigned long pages
[NR_LRU_LISTS
];
4468 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4469 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4472 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4475 * Estimate the amount of memory available for userspace allocations,
4476 * without causing swapping.
4478 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4481 * Not all the page cache can be freed, otherwise the system will
4482 * start swapping. Assume at least half of the page cache, or the
4483 * low watermark worth of cache, needs to stay.
4485 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4486 pagecache
-= min(pagecache
/ 2, wmark_low
);
4487 available
+= pagecache
;
4490 * Part of the reclaimable slab consists of items that are in use,
4491 * and cannot be freed. Cap this estimate at the low watermark.
4493 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4494 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4501 EXPORT_SYMBOL_GPL(si_mem_available
);
4503 void si_meminfo(struct sysinfo
*val
)
4505 val
->totalram
= totalram_pages
;
4506 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4507 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4508 val
->bufferram
= nr_blockdev_pages();
4509 val
->totalhigh
= totalhigh_pages
;
4510 val
->freehigh
= nr_free_highpages();
4511 val
->mem_unit
= PAGE_SIZE
;
4514 EXPORT_SYMBOL(si_meminfo
);
4517 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4519 int zone_type
; /* needs to be signed */
4520 unsigned long managed_pages
= 0;
4521 unsigned long managed_highpages
= 0;
4522 unsigned long free_highpages
= 0;
4523 pg_data_t
*pgdat
= NODE_DATA(nid
);
4525 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4526 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4527 val
->totalram
= managed_pages
;
4528 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4529 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4530 #ifdef CONFIG_HIGHMEM
4531 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4532 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4534 if (is_highmem(zone
)) {
4535 managed_highpages
+= zone
->managed_pages
;
4536 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4539 val
->totalhigh
= managed_highpages
;
4540 val
->freehigh
= free_highpages
;
4542 val
->totalhigh
= managed_highpages
;
4543 val
->freehigh
= free_highpages
;
4545 val
->mem_unit
= PAGE_SIZE
;
4550 * Determine whether the node should be displayed or not, depending on whether
4551 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4553 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4555 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4559 * no node mask - aka implicit memory numa policy. Do not bother with
4560 * the synchronization - read_mems_allowed_begin - because we do not
4561 * have to be precise here.
4564 nodemask
= &cpuset_current_mems_allowed
;
4566 return !node_isset(nid
, *nodemask
);
4569 #define K(x) ((x) << (PAGE_SHIFT-10))
4571 static void show_migration_types(unsigned char type
)
4573 static const char types
[MIGRATE_TYPES
] = {
4574 [MIGRATE_UNMOVABLE
] = 'U',
4575 [MIGRATE_MOVABLE
] = 'M',
4576 [MIGRATE_RECLAIMABLE
] = 'E',
4577 [MIGRATE_HIGHATOMIC
] = 'H',
4579 [MIGRATE_CMA
] = 'C',
4581 #ifdef CONFIG_MEMORY_ISOLATION
4582 [MIGRATE_ISOLATE
] = 'I',
4585 char tmp
[MIGRATE_TYPES
+ 1];
4589 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4590 if (type
& (1 << i
))
4595 printk(KERN_CONT
"(%s) ", tmp
);
4599 * Show free area list (used inside shift_scroll-lock stuff)
4600 * We also calculate the percentage fragmentation. We do this by counting the
4601 * memory on each free list with the exception of the first item on the list.
4604 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4607 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4609 unsigned long free_pcp
= 0;
4614 for_each_populated_zone(zone
) {
4615 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4618 for_each_online_cpu(cpu
)
4619 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4622 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4623 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4624 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4625 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4626 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4627 " free:%lu free_pcp:%lu free_cma:%lu\n",
4628 global_node_page_state(NR_ACTIVE_ANON
),
4629 global_node_page_state(NR_INACTIVE_ANON
),
4630 global_node_page_state(NR_ISOLATED_ANON
),
4631 global_node_page_state(NR_ACTIVE_FILE
),
4632 global_node_page_state(NR_INACTIVE_FILE
),
4633 global_node_page_state(NR_ISOLATED_FILE
),
4634 global_node_page_state(NR_UNEVICTABLE
),
4635 global_node_page_state(NR_FILE_DIRTY
),
4636 global_node_page_state(NR_WRITEBACK
),
4637 global_node_page_state(NR_UNSTABLE_NFS
),
4638 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4639 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4640 global_node_page_state(NR_FILE_MAPPED
),
4641 global_node_page_state(NR_SHMEM
),
4642 global_page_state(NR_PAGETABLE
),
4643 global_page_state(NR_BOUNCE
),
4644 global_page_state(NR_FREE_PAGES
),
4646 global_page_state(NR_FREE_CMA_PAGES
));
4648 for_each_online_pgdat(pgdat
) {
4649 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4653 " active_anon:%lukB"
4654 " inactive_anon:%lukB"
4655 " active_file:%lukB"
4656 " inactive_file:%lukB"
4657 " unevictable:%lukB"
4658 " isolated(anon):%lukB"
4659 " isolated(file):%lukB"
4664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4666 " shmem_pmdmapped: %lukB"
4669 " writeback_tmp:%lukB"
4671 " all_unreclaimable? %s"
4674 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4675 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4676 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4677 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4678 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4679 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4680 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4681 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4682 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4683 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4684 K(node_page_state(pgdat
, NR_SHMEM
)),
4685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4686 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4687 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4689 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4691 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4692 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4693 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4697 for_each_populated_zone(zone
) {
4700 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4704 for_each_online_cpu(cpu
)
4705 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4714 " active_anon:%lukB"
4715 " inactive_anon:%lukB"
4716 " active_file:%lukB"
4717 " inactive_file:%lukB"
4718 " unevictable:%lukB"
4719 " writepending:%lukB"
4723 " kernel_stack:%lukB"
4731 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4732 K(min_wmark_pages(zone
)),
4733 K(low_wmark_pages(zone
)),
4734 K(high_wmark_pages(zone
)),
4735 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4736 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4737 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4738 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4739 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4740 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4741 K(zone
->present_pages
),
4742 K(zone
->managed_pages
),
4743 K(zone_page_state(zone
, NR_MLOCK
)),
4744 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4745 K(zone_page_state(zone
, NR_PAGETABLE
)),
4746 K(zone_page_state(zone
, NR_BOUNCE
)),
4748 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4749 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4750 printk("lowmem_reserve[]:");
4751 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4752 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4753 printk(KERN_CONT
"\n");
4756 for_each_populated_zone(zone
) {
4758 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4759 unsigned char types
[MAX_ORDER
];
4761 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4764 printk(KERN_CONT
"%s: ", zone
->name
);
4766 spin_lock_irqsave(&zone
->lock
, flags
);
4767 for (order
= 0; order
< MAX_ORDER
; order
++) {
4768 struct free_area
*area
= &zone
->free_area
[order
];
4771 nr
[order
] = area
->nr_free
;
4772 total
+= nr
[order
] << order
;
4775 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4776 if (!list_empty(&area
->free_list
[type
]))
4777 types
[order
] |= 1 << type
;
4780 spin_unlock_irqrestore(&zone
->lock
, flags
);
4781 for (order
= 0; order
< MAX_ORDER
; order
++) {
4782 printk(KERN_CONT
"%lu*%lukB ",
4783 nr
[order
], K(1UL) << order
);
4785 show_migration_types(types
[order
]);
4787 printk(KERN_CONT
"= %lukB\n", K(total
));
4790 hugetlb_show_meminfo();
4792 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4794 show_swap_cache_info();
4797 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4799 zoneref
->zone
= zone
;
4800 zoneref
->zone_idx
= zone_idx(zone
);
4804 * Builds allocation fallback zone lists.
4806 * Add all populated zones of a node to the zonelist.
4808 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4812 enum zone_type zone_type
= MAX_NR_ZONES
;
4816 zone
= pgdat
->node_zones
+ zone_type
;
4817 if (managed_zone(zone
)) {
4818 zoneref_set_zone(zone
,
4819 &zonelist
->_zonerefs
[nr_zones
++]);
4820 check_highest_zone(zone_type
);
4822 } while (zone_type
);
4830 * 0 = automatic detection of better ordering.
4831 * 1 = order by ([node] distance, -zonetype)
4832 * 2 = order by (-zonetype, [node] distance)
4834 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4835 * the same zonelist. So only NUMA can configure this param.
4837 #define ZONELIST_ORDER_DEFAULT 0
4838 #define ZONELIST_ORDER_NODE 1
4839 #define ZONELIST_ORDER_ZONE 2
4841 /* zonelist order in the kernel.
4842 * set_zonelist_order() will set this to NODE or ZONE.
4844 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4845 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4849 /* The value user specified ....changed by config */
4850 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4851 /* string for sysctl */
4852 #define NUMA_ZONELIST_ORDER_LEN 16
4853 char numa_zonelist_order
[16] = "default";
4856 * interface for configure zonelist ordering.
4857 * command line option "numa_zonelist_order"
4858 * = "[dD]efault - default, automatic configuration.
4859 * = "[nN]ode - order by node locality, then by zone within node
4860 * = "[zZ]one - order by zone, then by locality within zone
4863 static int __parse_numa_zonelist_order(char *s
)
4865 if (*s
== 'd' || *s
== 'D') {
4866 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4867 } else if (*s
== 'n' || *s
== 'N') {
4868 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4869 } else if (*s
== 'z' || *s
== 'Z') {
4870 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4872 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4878 static __init
int setup_numa_zonelist_order(char *s
)
4885 ret
= __parse_numa_zonelist_order(s
);
4887 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4891 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4894 * sysctl handler for numa_zonelist_order
4896 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4897 void __user
*buffer
, size_t *length
,
4900 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4902 static DEFINE_MUTEX(zl_order_mutex
);
4904 mutex_lock(&zl_order_mutex
);
4906 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4910 strcpy(saved_string
, (char *)table
->data
);
4912 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4916 int oldval
= user_zonelist_order
;
4918 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4921 * bogus value. restore saved string
4923 strncpy((char *)table
->data
, saved_string
,
4924 NUMA_ZONELIST_ORDER_LEN
);
4925 user_zonelist_order
= oldval
;
4926 } else if (oldval
!= user_zonelist_order
) {
4927 mem_hotplug_begin();
4928 mutex_lock(&zonelists_mutex
);
4929 build_all_zonelists(NULL
, NULL
);
4930 mutex_unlock(&zonelists_mutex
);
4935 mutex_unlock(&zl_order_mutex
);
4940 #define MAX_NODE_LOAD (nr_online_nodes)
4941 static int node_load
[MAX_NUMNODES
];
4944 * find_next_best_node - find the next node that should appear in a given node's fallback list
4945 * @node: node whose fallback list we're appending
4946 * @used_node_mask: nodemask_t of already used nodes
4948 * We use a number of factors to determine which is the next node that should
4949 * appear on a given node's fallback list. The node should not have appeared
4950 * already in @node's fallback list, and it should be the next closest node
4951 * according to the distance array (which contains arbitrary distance values
4952 * from each node to each node in the system), and should also prefer nodes
4953 * with no CPUs, since presumably they'll have very little allocation pressure
4954 * on them otherwise.
4955 * It returns -1 if no node is found.
4957 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4960 int min_val
= INT_MAX
;
4961 int best_node
= NUMA_NO_NODE
;
4962 const struct cpumask
*tmp
= cpumask_of_node(0);
4964 /* Use the local node if we haven't already */
4965 if (!node_isset(node
, *used_node_mask
)) {
4966 node_set(node
, *used_node_mask
);
4970 for_each_node_state(n
, N_MEMORY
) {
4972 /* Don't want a node to appear more than once */
4973 if (node_isset(n
, *used_node_mask
))
4976 /* Use the distance array to find the distance */
4977 val
= node_distance(node
, n
);
4979 /* Penalize nodes under us ("prefer the next node") */
4982 /* Give preference to headless and unused nodes */
4983 tmp
= cpumask_of_node(n
);
4984 if (!cpumask_empty(tmp
))
4985 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4987 /* Slight preference for less loaded node */
4988 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4989 val
+= node_load
[n
];
4991 if (val
< min_val
) {
4998 node_set(best_node
, *used_node_mask
);
5005 * Build zonelists ordered by node and zones within node.
5006 * This results in maximum locality--normal zone overflows into local
5007 * DMA zone, if any--but risks exhausting DMA zone.
5009 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
5012 struct zonelist
*zonelist
;
5014 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
5015 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
5017 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
5018 zonelist
->_zonerefs
[j
].zone
= NULL
;
5019 zonelist
->_zonerefs
[j
].zone_idx
= 0;
5023 * Build gfp_thisnode zonelists
5025 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5028 struct zonelist
*zonelist
;
5030 zonelist
= &pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
];
5031 j
= build_zonelists_node(pgdat
, zonelist
, 0);
5032 zonelist
->_zonerefs
[j
].zone
= NULL
;
5033 zonelist
->_zonerefs
[j
].zone_idx
= 0;
5037 * Build zonelists ordered by zone and nodes within zones.
5038 * This results in conserving DMA zone[s] until all Normal memory is
5039 * exhausted, but results in overflowing to remote node while memory
5040 * may still exist in local DMA zone.
5042 static int node_order
[MAX_NUMNODES
];
5044 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
5047 int zone_type
; /* needs to be signed */
5049 struct zonelist
*zonelist
;
5051 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
5053 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
5054 for (j
= 0; j
< nr_nodes
; j
++) {
5055 node
= node_order
[j
];
5056 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
5057 if (managed_zone(z
)) {
5059 &zonelist
->_zonerefs
[pos
++]);
5060 check_highest_zone(zone_type
);
5064 zonelist
->_zonerefs
[pos
].zone
= NULL
;
5065 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
5068 #if defined(CONFIG_64BIT)
5070 * Devices that require DMA32/DMA are relatively rare and do not justify a
5071 * penalty to every machine in case the specialised case applies. Default
5072 * to Node-ordering on 64-bit NUMA machines
5074 static int default_zonelist_order(void)
5076 return ZONELIST_ORDER_NODE
;
5080 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5081 * by the kernel. If processes running on node 0 deplete the low memory zone
5082 * then reclaim will occur more frequency increasing stalls and potentially
5083 * be easier to OOM if a large percentage of the zone is under writeback or
5084 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5085 * Hence, default to zone ordering on 32-bit.
5087 static int default_zonelist_order(void)
5089 return ZONELIST_ORDER_ZONE
;
5091 #endif /* CONFIG_64BIT */
5093 static void set_zonelist_order(void)
5095 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
5096 current_zonelist_order
= default_zonelist_order();
5098 current_zonelist_order
= user_zonelist_order
;
5101 static void build_zonelists(pg_data_t
*pgdat
)
5104 nodemask_t used_mask
;
5105 int local_node
, prev_node
;
5106 struct zonelist
*zonelist
;
5107 unsigned int order
= current_zonelist_order
;
5109 /* initialize zonelists */
5110 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
5111 zonelist
= pgdat
->node_zonelists
+ i
;
5112 zonelist
->_zonerefs
[0].zone
= NULL
;
5113 zonelist
->_zonerefs
[0].zone_idx
= 0;
5116 /* NUMA-aware ordering of nodes */
5117 local_node
= pgdat
->node_id
;
5118 load
= nr_online_nodes
;
5119 prev_node
= local_node
;
5120 nodes_clear(used_mask
);
5122 memset(node_order
, 0, sizeof(node_order
));
5125 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5127 * We don't want to pressure a particular node.
5128 * So adding penalty to the first node in same
5129 * distance group to make it round-robin.
5131 if (node_distance(local_node
, node
) !=
5132 node_distance(local_node
, prev_node
))
5133 node_load
[node
] = load
;
5137 if (order
== ZONELIST_ORDER_NODE
)
5138 build_zonelists_in_node_order(pgdat
, node
);
5140 node_order
[i
++] = node
; /* remember order */
5143 if (order
== ZONELIST_ORDER_ZONE
) {
5144 /* calculate node order -- i.e., DMA last! */
5145 build_zonelists_in_zone_order(pgdat
, i
);
5148 build_thisnode_zonelists(pgdat
);
5151 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5153 * Return node id of node used for "local" allocations.
5154 * I.e., first node id of first zone in arg node's generic zonelist.
5155 * Used for initializing percpu 'numa_mem', which is used primarily
5156 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5158 int local_memory_node(int node
)
5162 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5163 gfp_zone(GFP_KERNEL
),
5165 return z
->zone
->node
;
5169 static void setup_min_unmapped_ratio(void);
5170 static void setup_min_slab_ratio(void);
5171 #else /* CONFIG_NUMA */
5173 static void set_zonelist_order(void)
5175 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
5178 static void build_zonelists(pg_data_t
*pgdat
)
5180 int node
, local_node
;
5182 struct zonelist
*zonelist
;
5184 local_node
= pgdat
->node_id
;
5186 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
5187 j
= build_zonelists_node(pgdat
, zonelist
, 0);
5190 * Now we build the zonelist so that it contains the zones
5191 * of all the other nodes.
5192 * We don't want to pressure a particular node, so when
5193 * building the zones for node N, we make sure that the
5194 * zones coming right after the local ones are those from
5195 * node N+1 (modulo N)
5197 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5198 if (!node_online(node
))
5200 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
5202 for (node
= 0; node
< local_node
; node
++) {
5203 if (!node_online(node
))
5205 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
5208 zonelist
->_zonerefs
[j
].zone
= NULL
;
5209 zonelist
->_zonerefs
[j
].zone_idx
= 0;
5212 #endif /* CONFIG_NUMA */
5215 * Boot pageset table. One per cpu which is going to be used for all
5216 * zones and all nodes. The parameters will be set in such a way
5217 * that an item put on a list will immediately be handed over to
5218 * the buddy list. This is safe since pageset manipulation is done
5219 * with interrupts disabled.
5221 * The boot_pagesets must be kept even after bootup is complete for
5222 * unused processors and/or zones. They do play a role for bootstrapping
5223 * hotplugged processors.
5225 * zoneinfo_show() and maybe other functions do
5226 * not check if the processor is online before following the pageset pointer.
5227 * Other parts of the kernel may not check if the zone is available.
5229 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5230 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5231 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5232 static void setup_zone_pageset(struct zone
*zone
);
5235 * Global mutex to protect against size modification of zonelists
5236 * as well as to serialize pageset setup for the new populated zone.
5238 DEFINE_MUTEX(zonelists_mutex
);
5240 /* return values int ....just for stop_machine() */
5241 static int __build_all_zonelists(void *data
)
5245 pg_data_t
*self
= data
;
5248 memset(node_load
, 0, sizeof(node_load
));
5251 if (self
&& !node_online(self
->node_id
)) {
5252 build_zonelists(self
);
5255 for_each_online_node(nid
) {
5256 pg_data_t
*pgdat
= NODE_DATA(nid
);
5258 build_zonelists(pgdat
);
5262 * Initialize the boot_pagesets that are going to be used
5263 * for bootstrapping processors. The real pagesets for
5264 * each zone will be allocated later when the per cpu
5265 * allocator is available.
5267 * boot_pagesets are used also for bootstrapping offline
5268 * cpus if the system is already booted because the pagesets
5269 * are needed to initialize allocators on a specific cpu too.
5270 * F.e. the percpu allocator needs the page allocator which
5271 * needs the percpu allocator in order to allocate its pagesets
5272 * (a chicken-egg dilemma).
5274 for_each_possible_cpu(cpu
) {
5275 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5277 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5279 * We now know the "local memory node" for each node--
5280 * i.e., the node of the first zone in the generic zonelist.
5281 * Set up numa_mem percpu variable for on-line cpus. During
5282 * boot, only the boot cpu should be on-line; we'll init the
5283 * secondary cpus' numa_mem as they come on-line. During
5284 * node/memory hotplug, we'll fixup all on-line cpus.
5286 if (cpu_online(cpu
))
5287 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5294 static noinline
void __init
5295 build_all_zonelists_init(void)
5297 __build_all_zonelists(NULL
);
5298 mminit_verify_zonelist();
5299 cpuset_init_current_mems_allowed();
5303 * Called with zonelists_mutex held always
5304 * unless system_state == SYSTEM_BOOTING.
5306 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5307 * [we're only called with non-NULL zone through __meminit paths] and
5308 * (2) call of __init annotated helper build_all_zonelists_init
5309 * [protected by SYSTEM_BOOTING].
5311 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
5313 set_zonelist_order();
5315 if (system_state
== SYSTEM_BOOTING
) {
5316 build_all_zonelists_init();
5318 #ifdef CONFIG_MEMORY_HOTPLUG
5320 setup_zone_pageset(zone
);
5322 /* we have to stop all cpus to guarantee there is no user
5324 stop_machine_cpuslocked(__build_all_zonelists
, pgdat
, NULL
);
5325 /* cpuset refresh routine should be here */
5327 vm_total_pages
= nr_free_pagecache_pages();
5329 * Disable grouping by mobility if the number of pages in the
5330 * system is too low to allow the mechanism to work. It would be
5331 * more accurate, but expensive to check per-zone. This check is
5332 * made on memory-hotadd so a system can start with mobility
5333 * disabled and enable it later
5335 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5336 page_group_by_mobility_disabled
= 1;
5338 page_group_by_mobility_disabled
= 0;
5340 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5342 zonelist_order_name
[current_zonelist_order
],
5343 page_group_by_mobility_disabled
? "off" : "on",
5346 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5351 * Initially all pages are reserved - free ones are freed
5352 * up by free_all_bootmem() once the early boot process is
5353 * done. Non-atomic initialization, single-pass.
5355 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5356 unsigned long start_pfn
, enum memmap_context context
)
5358 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5359 unsigned long end_pfn
= start_pfn
+ size
;
5360 pg_data_t
*pgdat
= NODE_DATA(nid
);
5362 unsigned long nr_initialised
= 0;
5363 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5364 struct memblock_region
*r
= NULL
, *tmp
;
5367 if (highest_memmap_pfn
< end_pfn
- 1)
5368 highest_memmap_pfn
= end_pfn
- 1;
5371 * Honor reservation requested by the driver for this ZONE_DEVICE
5374 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5375 start_pfn
+= altmap
->reserve
;
5377 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5379 * There can be holes in boot-time mem_map[]s handed to this
5380 * function. They do not exist on hotplugged memory.
5382 if (context
!= MEMMAP_EARLY
)
5385 if (!early_pfn_valid(pfn
)) {
5386 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5388 * Skip to the pfn preceding the next valid one (or
5389 * end_pfn), such that we hit a valid pfn (or end_pfn)
5390 * on our next iteration of the loop.
5392 pfn
= memblock_next_valid_pfn(pfn
, end_pfn
) - 1;
5396 if (!early_pfn_in_nid(pfn
, nid
))
5398 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5401 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5403 * Check given memblock attribute by firmware which can affect
5404 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5405 * mirrored, it's an overlapped memmap init. skip it.
5407 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5408 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5409 for_each_memblock(memory
, tmp
)
5410 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5414 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5415 memblock_is_mirror(r
)) {
5416 /* already initialized as NORMAL */
5417 pfn
= memblock_region_memory_end_pfn(r
);
5425 * Mark the block movable so that blocks are reserved for
5426 * movable at startup. This will force kernel allocations
5427 * to reserve their blocks rather than leaking throughout
5428 * the address space during boot when many long-lived
5429 * kernel allocations are made.
5431 * bitmap is created for zone's valid pfn range. but memmap
5432 * can be created for invalid pages (for alignment)
5433 * check here not to call set_pageblock_migratetype() against
5436 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5437 struct page
*page
= pfn_to_page(pfn
);
5439 __init_single_page(page
, pfn
, zone
, nid
);
5440 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5442 __init_single_pfn(pfn
, zone
, nid
);
5447 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5449 unsigned int order
, t
;
5450 for_each_migratetype_order(order
, t
) {
5451 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5452 zone
->free_area
[order
].nr_free
= 0;
5456 #ifndef __HAVE_ARCH_MEMMAP_INIT
5457 #define memmap_init(size, nid, zone, start_pfn) \
5458 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5461 static int zone_batchsize(struct zone
*zone
)
5467 * The per-cpu-pages pools are set to around 1000th of the
5468 * size of the zone. But no more than 1/2 of a meg.
5470 * OK, so we don't know how big the cache is. So guess.
5472 batch
= zone
->managed_pages
/ 1024;
5473 if (batch
* PAGE_SIZE
> 512 * 1024)
5474 batch
= (512 * 1024) / PAGE_SIZE
;
5475 batch
/= 4; /* We effectively *= 4 below */
5480 * Clamp the batch to a 2^n - 1 value. Having a power
5481 * of 2 value was found to be more likely to have
5482 * suboptimal cache aliasing properties in some cases.
5484 * For example if 2 tasks are alternately allocating
5485 * batches of pages, one task can end up with a lot
5486 * of pages of one half of the possible page colors
5487 * and the other with pages of the other colors.
5489 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5494 /* The deferral and batching of frees should be suppressed under NOMMU
5497 * The problem is that NOMMU needs to be able to allocate large chunks
5498 * of contiguous memory as there's no hardware page translation to
5499 * assemble apparent contiguous memory from discontiguous pages.
5501 * Queueing large contiguous runs of pages for batching, however,
5502 * causes the pages to actually be freed in smaller chunks. As there
5503 * can be a significant delay between the individual batches being
5504 * recycled, this leads to the once large chunks of space being
5505 * fragmented and becoming unavailable for high-order allocations.
5512 * pcp->high and pcp->batch values are related and dependent on one another:
5513 * ->batch must never be higher then ->high.
5514 * The following function updates them in a safe manner without read side
5517 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5518 * those fields changing asynchronously (acording the the above rule).
5520 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5521 * outside of boot time (or some other assurance that no concurrent updaters
5524 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5525 unsigned long batch
)
5527 /* start with a fail safe value for batch */
5531 /* Update high, then batch, in order */
5538 /* a companion to pageset_set_high() */
5539 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5541 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5544 static void pageset_init(struct per_cpu_pageset
*p
)
5546 struct per_cpu_pages
*pcp
;
5549 memset(p
, 0, sizeof(*p
));
5553 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5554 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5557 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5560 pageset_set_batch(p
, batch
);
5564 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5565 * to the value high for the pageset p.
5567 static void pageset_set_high(struct per_cpu_pageset
*p
,
5570 unsigned long batch
= max(1UL, high
/ 4);
5571 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5572 batch
= PAGE_SHIFT
* 8;
5574 pageset_update(&p
->pcp
, high
, batch
);
5577 static void pageset_set_high_and_batch(struct zone
*zone
,
5578 struct per_cpu_pageset
*pcp
)
5580 if (percpu_pagelist_fraction
)
5581 pageset_set_high(pcp
,
5582 (zone
->managed_pages
/
5583 percpu_pagelist_fraction
));
5585 pageset_set_batch(pcp
, zone_batchsize(zone
));
5588 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5590 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5593 pageset_set_high_and_batch(zone
, pcp
);
5596 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5599 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5600 for_each_possible_cpu(cpu
)
5601 zone_pageset_init(zone
, cpu
);
5605 * Allocate per cpu pagesets and initialize them.
5606 * Before this call only boot pagesets were available.
5608 void __init
setup_per_cpu_pageset(void)
5610 struct pglist_data
*pgdat
;
5613 for_each_populated_zone(zone
)
5614 setup_zone_pageset(zone
);
5616 for_each_online_pgdat(pgdat
)
5617 pgdat
->per_cpu_nodestats
=
5618 alloc_percpu(struct per_cpu_nodestat
);
5621 static __meminit
void zone_pcp_init(struct zone
*zone
)
5624 * per cpu subsystem is not up at this point. The following code
5625 * relies on the ability of the linker to provide the
5626 * offset of a (static) per cpu variable into the per cpu area.
5628 zone
->pageset
= &boot_pageset
;
5630 if (populated_zone(zone
))
5631 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5632 zone
->name
, zone
->present_pages
,
5633 zone_batchsize(zone
));
5636 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5637 unsigned long zone_start_pfn
,
5640 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5642 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5644 zone
->zone_start_pfn
= zone_start_pfn
;
5646 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5647 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5649 (unsigned long)zone_idx(zone
),
5650 zone_start_pfn
, (zone_start_pfn
+ size
));
5652 zone_init_free_lists(zone
);
5653 zone
->initialized
= 1;
5656 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5657 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5660 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5662 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5663 struct mminit_pfnnid_cache
*state
)
5665 unsigned long start_pfn
, end_pfn
;
5668 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5669 return state
->last_nid
;
5671 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5673 state
->last_start
= start_pfn
;
5674 state
->last_end
= end_pfn
;
5675 state
->last_nid
= nid
;
5680 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5683 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5684 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5685 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5687 * If an architecture guarantees that all ranges registered contain no holes
5688 * and may be freed, this this function may be used instead of calling
5689 * memblock_free_early_nid() manually.
5691 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5693 unsigned long start_pfn
, end_pfn
;
5696 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5697 start_pfn
= min(start_pfn
, max_low_pfn
);
5698 end_pfn
= min(end_pfn
, max_low_pfn
);
5700 if (start_pfn
< end_pfn
)
5701 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5702 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5708 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5709 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5711 * If an architecture guarantees that all ranges registered contain no holes and may
5712 * be freed, this function may be used instead of calling memory_present() manually.
5714 void __init
sparse_memory_present_with_active_regions(int nid
)
5716 unsigned long start_pfn
, end_pfn
;
5719 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5720 memory_present(this_nid
, start_pfn
, end_pfn
);
5724 * get_pfn_range_for_nid - Return the start and end page frames for a node
5725 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5726 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5727 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5729 * It returns the start and end page frame of a node based on information
5730 * provided by memblock_set_node(). If called for a node
5731 * with no available memory, a warning is printed and the start and end
5734 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5735 unsigned long *start_pfn
, unsigned long *end_pfn
)
5737 unsigned long this_start_pfn
, this_end_pfn
;
5743 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5744 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5745 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5748 if (*start_pfn
== -1UL)
5753 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5754 * assumption is made that zones within a node are ordered in monotonic
5755 * increasing memory addresses so that the "highest" populated zone is used
5757 static void __init
find_usable_zone_for_movable(void)
5760 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5761 if (zone_index
== ZONE_MOVABLE
)
5764 if (arch_zone_highest_possible_pfn
[zone_index
] >
5765 arch_zone_lowest_possible_pfn
[zone_index
])
5769 VM_BUG_ON(zone_index
== -1);
5770 movable_zone
= zone_index
;
5774 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5775 * because it is sized independent of architecture. Unlike the other zones,
5776 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5777 * in each node depending on the size of each node and how evenly kernelcore
5778 * is distributed. This helper function adjusts the zone ranges
5779 * provided by the architecture for a given node by using the end of the
5780 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5781 * zones within a node are in order of monotonic increases memory addresses
5783 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5784 unsigned long zone_type
,
5785 unsigned long node_start_pfn
,
5786 unsigned long node_end_pfn
,
5787 unsigned long *zone_start_pfn
,
5788 unsigned long *zone_end_pfn
)
5790 /* Only adjust if ZONE_MOVABLE is on this node */
5791 if (zone_movable_pfn
[nid
]) {
5792 /* Size ZONE_MOVABLE */
5793 if (zone_type
== ZONE_MOVABLE
) {
5794 *zone_start_pfn
= zone_movable_pfn
[nid
];
5795 *zone_end_pfn
= min(node_end_pfn
,
5796 arch_zone_highest_possible_pfn
[movable_zone
]);
5798 /* Adjust for ZONE_MOVABLE starting within this range */
5799 } else if (!mirrored_kernelcore
&&
5800 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5801 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5802 *zone_end_pfn
= zone_movable_pfn
[nid
];
5804 /* Check if this whole range is within ZONE_MOVABLE */
5805 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5806 *zone_start_pfn
= *zone_end_pfn
;
5811 * Return the number of pages a zone spans in a node, including holes
5812 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5814 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5815 unsigned long zone_type
,
5816 unsigned long node_start_pfn
,
5817 unsigned long node_end_pfn
,
5818 unsigned long *zone_start_pfn
,
5819 unsigned long *zone_end_pfn
,
5820 unsigned long *ignored
)
5822 /* When hotadd a new node from cpu_up(), the node should be empty */
5823 if (!node_start_pfn
&& !node_end_pfn
)
5826 /* Get the start and end of the zone */
5827 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5828 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5829 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5830 node_start_pfn
, node_end_pfn
,
5831 zone_start_pfn
, zone_end_pfn
);
5833 /* Check that this node has pages within the zone's required range */
5834 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5837 /* Move the zone boundaries inside the node if necessary */
5838 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5839 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5841 /* Return the spanned pages */
5842 return *zone_end_pfn
- *zone_start_pfn
;
5846 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5847 * then all holes in the requested range will be accounted for.
5849 unsigned long __meminit
__absent_pages_in_range(int nid
,
5850 unsigned long range_start_pfn
,
5851 unsigned long range_end_pfn
)
5853 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5854 unsigned long start_pfn
, end_pfn
;
5857 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5858 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5859 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5860 nr_absent
-= end_pfn
- start_pfn
;
5866 * absent_pages_in_range - Return number of page frames in holes within a range
5867 * @start_pfn: The start PFN to start searching for holes
5868 * @end_pfn: The end PFN to stop searching for holes
5870 * It returns the number of pages frames in memory holes within a range.
5872 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5873 unsigned long end_pfn
)
5875 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5878 /* Return the number of page frames in holes in a zone on a node */
5879 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5880 unsigned long zone_type
,
5881 unsigned long node_start_pfn
,
5882 unsigned long node_end_pfn
,
5883 unsigned long *ignored
)
5885 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5886 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5887 unsigned long zone_start_pfn
, zone_end_pfn
;
5888 unsigned long nr_absent
;
5890 /* When hotadd a new node from cpu_up(), the node should be empty */
5891 if (!node_start_pfn
&& !node_end_pfn
)
5894 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5895 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5897 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5898 node_start_pfn
, node_end_pfn
,
5899 &zone_start_pfn
, &zone_end_pfn
);
5900 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5903 * ZONE_MOVABLE handling.
5904 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5907 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5908 unsigned long start_pfn
, end_pfn
;
5909 struct memblock_region
*r
;
5911 for_each_memblock(memory
, r
) {
5912 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5913 zone_start_pfn
, zone_end_pfn
);
5914 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5915 zone_start_pfn
, zone_end_pfn
);
5917 if (zone_type
== ZONE_MOVABLE
&&
5918 memblock_is_mirror(r
))
5919 nr_absent
+= end_pfn
- start_pfn
;
5921 if (zone_type
== ZONE_NORMAL
&&
5922 !memblock_is_mirror(r
))
5923 nr_absent
+= end_pfn
- start_pfn
;
5930 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5931 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5932 unsigned long zone_type
,
5933 unsigned long node_start_pfn
,
5934 unsigned long node_end_pfn
,
5935 unsigned long *zone_start_pfn
,
5936 unsigned long *zone_end_pfn
,
5937 unsigned long *zones_size
)
5941 *zone_start_pfn
= node_start_pfn
;
5942 for (zone
= 0; zone
< zone_type
; zone
++)
5943 *zone_start_pfn
+= zones_size
[zone
];
5945 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5947 return zones_size
[zone_type
];
5950 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5951 unsigned long zone_type
,
5952 unsigned long node_start_pfn
,
5953 unsigned long node_end_pfn
,
5954 unsigned long *zholes_size
)
5959 return zholes_size
[zone_type
];
5962 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5964 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5965 unsigned long node_start_pfn
,
5966 unsigned long node_end_pfn
,
5967 unsigned long *zones_size
,
5968 unsigned long *zholes_size
)
5970 unsigned long realtotalpages
= 0, totalpages
= 0;
5973 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5974 struct zone
*zone
= pgdat
->node_zones
+ i
;
5975 unsigned long zone_start_pfn
, zone_end_pfn
;
5976 unsigned long size
, real_size
;
5978 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5984 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5985 node_start_pfn
, node_end_pfn
,
5988 zone
->zone_start_pfn
= zone_start_pfn
;
5990 zone
->zone_start_pfn
= 0;
5991 zone
->spanned_pages
= size
;
5992 zone
->present_pages
= real_size
;
5995 realtotalpages
+= real_size
;
5998 pgdat
->node_spanned_pages
= totalpages
;
5999 pgdat
->node_present_pages
= realtotalpages
;
6000 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6004 #ifndef CONFIG_SPARSEMEM
6006 * Calculate the size of the zone->blockflags rounded to an unsigned long
6007 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6008 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6009 * round what is now in bits to nearest long in bits, then return it in
6012 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6014 unsigned long usemapsize
;
6016 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6017 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6018 usemapsize
= usemapsize
>> pageblock_order
;
6019 usemapsize
*= NR_PAGEBLOCK_BITS
;
6020 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6022 return usemapsize
/ 8;
6025 static void __init
setup_usemap(struct pglist_data
*pgdat
,
6027 unsigned long zone_start_pfn
,
6028 unsigned long zonesize
)
6030 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6031 zone
->pageblock_flags
= NULL
;
6033 zone
->pageblock_flags
=
6034 memblock_virt_alloc_node_nopanic(usemapsize
,
6038 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6039 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6040 #endif /* CONFIG_SPARSEMEM */
6042 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6044 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6045 void __paginginit
set_pageblock_order(void)
6049 /* Check that pageblock_nr_pages has not already been setup */
6050 if (pageblock_order
)
6053 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6054 order
= HUGETLB_PAGE_ORDER
;
6056 order
= MAX_ORDER
- 1;
6059 * Assume the largest contiguous order of interest is a huge page.
6060 * This value may be variable depending on boot parameters on IA64 and
6063 pageblock_order
= order
;
6065 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6068 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6069 * is unused as pageblock_order is set at compile-time. See
6070 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6073 void __paginginit
set_pageblock_order(void)
6077 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6079 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
6080 unsigned long present_pages
)
6082 unsigned long pages
= spanned_pages
;
6085 * Provide a more accurate estimation if there are holes within
6086 * the zone and SPARSEMEM is in use. If there are holes within the
6087 * zone, each populated memory region may cost us one or two extra
6088 * memmap pages due to alignment because memmap pages for each
6089 * populated regions may not be naturally aligned on page boundary.
6090 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6092 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6093 IS_ENABLED(CONFIG_SPARSEMEM
))
6094 pages
= present_pages
;
6096 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6100 * Set up the zone data structures:
6101 * - mark all pages reserved
6102 * - mark all memory queues empty
6103 * - clear the memory bitmaps
6105 * NOTE: pgdat should get zeroed by caller.
6107 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6110 int nid
= pgdat
->node_id
;
6112 pgdat_resize_init(pgdat
);
6113 #ifdef CONFIG_NUMA_BALANCING
6114 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6115 pgdat
->numabalancing_migrate_nr_pages
= 0;
6116 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6119 spin_lock_init(&pgdat
->split_queue_lock
);
6120 INIT_LIST_HEAD(&pgdat
->split_queue
);
6121 pgdat
->split_queue_len
= 0;
6123 init_waitqueue_head(&pgdat
->kswapd_wait
);
6124 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6125 #ifdef CONFIG_COMPACTION
6126 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6128 pgdat_page_ext_init(pgdat
);
6129 spin_lock_init(&pgdat
->lru_lock
);
6130 lruvec_init(node_lruvec(pgdat
));
6132 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6134 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6135 struct zone
*zone
= pgdat
->node_zones
+ j
;
6136 unsigned long size
, realsize
, freesize
, memmap_pages
;
6137 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6139 size
= zone
->spanned_pages
;
6140 realsize
= freesize
= zone
->present_pages
;
6143 * Adjust freesize so that it accounts for how much memory
6144 * is used by this zone for memmap. This affects the watermark
6145 * and per-cpu initialisations
6147 memmap_pages
= calc_memmap_size(size
, realsize
);
6148 if (!is_highmem_idx(j
)) {
6149 if (freesize
>= memmap_pages
) {
6150 freesize
-= memmap_pages
;
6153 " %s zone: %lu pages used for memmap\n",
6154 zone_names
[j
], memmap_pages
);
6156 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6157 zone_names
[j
], memmap_pages
, freesize
);
6160 /* Account for reserved pages */
6161 if (j
== 0 && freesize
> dma_reserve
) {
6162 freesize
-= dma_reserve
;
6163 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6164 zone_names
[0], dma_reserve
);
6167 if (!is_highmem_idx(j
))
6168 nr_kernel_pages
+= freesize
;
6169 /* Charge for highmem memmap if there are enough kernel pages */
6170 else if (nr_kernel_pages
> memmap_pages
* 2)
6171 nr_kernel_pages
-= memmap_pages
;
6172 nr_all_pages
+= freesize
;
6175 * Set an approximate value for lowmem here, it will be adjusted
6176 * when the bootmem allocator frees pages into the buddy system.
6177 * And all highmem pages will be managed by the buddy system.
6179 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6183 zone
->name
= zone_names
[j
];
6184 zone
->zone_pgdat
= pgdat
;
6185 spin_lock_init(&zone
->lock
);
6186 zone_seqlock_init(zone
);
6187 zone_pcp_init(zone
);
6192 set_pageblock_order();
6193 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6194 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6195 memmap_init(size
, nid
, j
, zone_start_pfn
);
6199 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6201 unsigned long __maybe_unused start
= 0;
6202 unsigned long __maybe_unused offset
= 0;
6204 /* Skip empty nodes */
6205 if (!pgdat
->node_spanned_pages
)
6208 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6209 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6210 offset
= pgdat
->node_start_pfn
- start
;
6211 /* ia64 gets its own node_mem_map, before this, without bootmem */
6212 if (!pgdat
->node_mem_map
) {
6213 unsigned long size
, end
;
6217 * The zone's endpoints aren't required to be MAX_ORDER
6218 * aligned but the node_mem_map endpoints must be in order
6219 * for the buddy allocator to function correctly.
6221 end
= pgdat_end_pfn(pgdat
);
6222 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6223 size
= (end
- start
) * sizeof(struct page
);
6224 map
= alloc_remap(pgdat
->node_id
, size
);
6226 map
= memblock_virt_alloc_node_nopanic(size
,
6228 pgdat
->node_mem_map
= map
+ offset
;
6230 #ifndef CONFIG_NEED_MULTIPLE_NODES
6232 * With no DISCONTIG, the global mem_map is just set as node 0's
6234 if (pgdat
== NODE_DATA(0)) {
6235 mem_map
= NODE_DATA(0)->node_mem_map
;
6236 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6237 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6239 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6242 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6245 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6246 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6248 pg_data_t
*pgdat
= NODE_DATA(nid
);
6249 unsigned long start_pfn
= 0;
6250 unsigned long end_pfn
= 0;
6252 /* pg_data_t should be reset to zero when it's allocated */
6253 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6255 pgdat
->node_id
= nid
;
6256 pgdat
->node_start_pfn
= node_start_pfn
;
6257 pgdat
->per_cpu_nodestats
= NULL
;
6258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6259 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6260 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6261 (u64
)start_pfn
<< PAGE_SHIFT
,
6262 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6264 start_pfn
= node_start_pfn
;
6266 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6267 zones_size
, zholes_size
);
6269 alloc_node_mem_map(pgdat
);
6270 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6271 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6272 nid
, (unsigned long)pgdat
,
6273 (unsigned long)pgdat
->node_mem_map
);
6276 reset_deferred_meminit(pgdat
);
6277 free_area_init_core(pgdat
);
6280 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6282 #if MAX_NUMNODES > 1
6284 * Figure out the number of possible node ids.
6286 void __init
setup_nr_node_ids(void)
6288 unsigned int highest
;
6290 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6291 nr_node_ids
= highest
+ 1;
6296 * node_map_pfn_alignment - determine the maximum internode alignment
6298 * This function should be called after node map is populated and sorted.
6299 * It calculates the maximum power of two alignment which can distinguish
6302 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6303 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6304 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6305 * shifted, 1GiB is enough and this function will indicate so.
6307 * This is used to test whether pfn -> nid mapping of the chosen memory
6308 * model has fine enough granularity to avoid incorrect mapping for the
6309 * populated node map.
6311 * Returns the determined alignment in pfn's. 0 if there is no alignment
6312 * requirement (single node).
6314 unsigned long __init
node_map_pfn_alignment(void)
6316 unsigned long accl_mask
= 0, last_end
= 0;
6317 unsigned long start
, end
, mask
;
6321 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6322 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6329 * Start with a mask granular enough to pin-point to the
6330 * start pfn and tick off bits one-by-one until it becomes
6331 * too coarse to separate the current node from the last.
6333 mask
= ~((1 << __ffs(start
)) - 1);
6334 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6337 /* accumulate all internode masks */
6341 /* convert mask to number of pages */
6342 return ~accl_mask
+ 1;
6345 /* Find the lowest pfn for a node */
6346 static unsigned long __init
find_min_pfn_for_node(int nid
)
6348 unsigned long min_pfn
= ULONG_MAX
;
6349 unsigned long start_pfn
;
6352 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6353 min_pfn
= min(min_pfn
, start_pfn
);
6355 if (min_pfn
== ULONG_MAX
) {
6356 pr_warn("Could not find start_pfn for node %d\n", nid
);
6364 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6366 * It returns the minimum PFN based on information provided via
6367 * memblock_set_node().
6369 unsigned long __init
find_min_pfn_with_active_regions(void)
6371 return find_min_pfn_for_node(MAX_NUMNODES
);
6375 * early_calculate_totalpages()
6376 * Sum pages in active regions for movable zone.
6377 * Populate N_MEMORY for calculating usable_nodes.
6379 static unsigned long __init
early_calculate_totalpages(void)
6381 unsigned long totalpages
= 0;
6382 unsigned long start_pfn
, end_pfn
;
6385 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6386 unsigned long pages
= end_pfn
- start_pfn
;
6388 totalpages
+= pages
;
6390 node_set_state(nid
, N_MEMORY
);
6396 * Find the PFN the Movable zone begins in each node. Kernel memory
6397 * is spread evenly between nodes as long as the nodes have enough
6398 * memory. When they don't, some nodes will have more kernelcore than
6401 static void __init
find_zone_movable_pfns_for_nodes(void)
6404 unsigned long usable_startpfn
;
6405 unsigned long kernelcore_node
, kernelcore_remaining
;
6406 /* save the state before borrow the nodemask */
6407 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6408 unsigned long totalpages
= early_calculate_totalpages();
6409 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6410 struct memblock_region
*r
;
6412 /* Need to find movable_zone earlier when movable_node is specified. */
6413 find_usable_zone_for_movable();
6416 * If movable_node is specified, ignore kernelcore and movablecore
6419 if (movable_node_is_enabled()) {
6420 for_each_memblock(memory
, r
) {
6421 if (!memblock_is_hotpluggable(r
))
6426 usable_startpfn
= PFN_DOWN(r
->base
);
6427 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6428 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6436 * If kernelcore=mirror is specified, ignore movablecore option
6438 if (mirrored_kernelcore
) {
6439 bool mem_below_4gb_not_mirrored
= false;
6441 for_each_memblock(memory
, r
) {
6442 if (memblock_is_mirror(r
))
6447 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6449 if (usable_startpfn
< 0x100000) {
6450 mem_below_4gb_not_mirrored
= true;
6454 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6455 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6459 if (mem_below_4gb_not_mirrored
)
6460 pr_warn("This configuration results in unmirrored kernel memory.");
6466 * If movablecore=nn[KMG] was specified, calculate what size of
6467 * kernelcore that corresponds so that memory usable for
6468 * any allocation type is evenly spread. If both kernelcore
6469 * and movablecore are specified, then the value of kernelcore
6470 * will be used for required_kernelcore if it's greater than
6471 * what movablecore would have allowed.
6473 if (required_movablecore
) {
6474 unsigned long corepages
;
6477 * Round-up so that ZONE_MOVABLE is at least as large as what
6478 * was requested by the user
6480 required_movablecore
=
6481 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6482 required_movablecore
= min(totalpages
, required_movablecore
);
6483 corepages
= totalpages
- required_movablecore
;
6485 required_kernelcore
= max(required_kernelcore
, corepages
);
6489 * If kernelcore was not specified or kernelcore size is larger
6490 * than totalpages, there is no ZONE_MOVABLE.
6492 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6495 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6496 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6499 /* Spread kernelcore memory as evenly as possible throughout nodes */
6500 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6501 for_each_node_state(nid
, N_MEMORY
) {
6502 unsigned long start_pfn
, end_pfn
;
6505 * Recalculate kernelcore_node if the division per node
6506 * now exceeds what is necessary to satisfy the requested
6507 * amount of memory for the kernel
6509 if (required_kernelcore
< kernelcore_node
)
6510 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6513 * As the map is walked, we track how much memory is usable
6514 * by the kernel using kernelcore_remaining. When it is
6515 * 0, the rest of the node is usable by ZONE_MOVABLE
6517 kernelcore_remaining
= kernelcore_node
;
6519 /* Go through each range of PFNs within this node */
6520 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6521 unsigned long size_pages
;
6523 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6524 if (start_pfn
>= end_pfn
)
6527 /* Account for what is only usable for kernelcore */
6528 if (start_pfn
< usable_startpfn
) {
6529 unsigned long kernel_pages
;
6530 kernel_pages
= min(end_pfn
, usable_startpfn
)
6533 kernelcore_remaining
-= min(kernel_pages
,
6534 kernelcore_remaining
);
6535 required_kernelcore
-= min(kernel_pages
,
6536 required_kernelcore
);
6538 /* Continue if range is now fully accounted */
6539 if (end_pfn
<= usable_startpfn
) {
6542 * Push zone_movable_pfn to the end so
6543 * that if we have to rebalance
6544 * kernelcore across nodes, we will
6545 * not double account here
6547 zone_movable_pfn
[nid
] = end_pfn
;
6550 start_pfn
= usable_startpfn
;
6554 * The usable PFN range for ZONE_MOVABLE is from
6555 * start_pfn->end_pfn. Calculate size_pages as the
6556 * number of pages used as kernelcore
6558 size_pages
= end_pfn
- start_pfn
;
6559 if (size_pages
> kernelcore_remaining
)
6560 size_pages
= kernelcore_remaining
;
6561 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6564 * Some kernelcore has been met, update counts and
6565 * break if the kernelcore for this node has been
6568 required_kernelcore
-= min(required_kernelcore
,
6570 kernelcore_remaining
-= size_pages
;
6571 if (!kernelcore_remaining
)
6577 * If there is still required_kernelcore, we do another pass with one
6578 * less node in the count. This will push zone_movable_pfn[nid] further
6579 * along on the nodes that still have memory until kernelcore is
6583 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6587 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6588 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6589 zone_movable_pfn
[nid
] =
6590 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6593 /* restore the node_state */
6594 node_states
[N_MEMORY
] = saved_node_state
;
6597 /* Any regular or high memory on that node ? */
6598 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6600 enum zone_type zone_type
;
6602 if (N_MEMORY
== N_NORMAL_MEMORY
)
6605 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6606 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6607 if (populated_zone(zone
)) {
6608 node_set_state(nid
, N_HIGH_MEMORY
);
6609 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6610 zone_type
<= ZONE_NORMAL
)
6611 node_set_state(nid
, N_NORMAL_MEMORY
);
6618 * free_area_init_nodes - Initialise all pg_data_t and zone data
6619 * @max_zone_pfn: an array of max PFNs for each zone
6621 * This will call free_area_init_node() for each active node in the system.
6622 * Using the page ranges provided by memblock_set_node(), the size of each
6623 * zone in each node and their holes is calculated. If the maximum PFN
6624 * between two adjacent zones match, it is assumed that the zone is empty.
6625 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6626 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6627 * starts where the previous one ended. For example, ZONE_DMA32 starts
6628 * at arch_max_dma_pfn.
6630 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6632 unsigned long start_pfn
, end_pfn
;
6635 /* Record where the zone boundaries are */
6636 memset(arch_zone_lowest_possible_pfn
, 0,
6637 sizeof(arch_zone_lowest_possible_pfn
));
6638 memset(arch_zone_highest_possible_pfn
, 0,
6639 sizeof(arch_zone_highest_possible_pfn
));
6641 start_pfn
= find_min_pfn_with_active_regions();
6643 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6644 if (i
== ZONE_MOVABLE
)
6647 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6648 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6649 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6651 start_pfn
= end_pfn
;
6654 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6655 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6656 find_zone_movable_pfns_for_nodes();
6658 /* Print out the zone ranges */
6659 pr_info("Zone ranges:\n");
6660 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6661 if (i
== ZONE_MOVABLE
)
6663 pr_info(" %-8s ", zone_names
[i
]);
6664 if (arch_zone_lowest_possible_pfn
[i
] ==
6665 arch_zone_highest_possible_pfn
[i
])
6668 pr_cont("[mem %#018Lx-%#018Lx]\n",
6669 (u64
)arch_zone_lowest_possible_pfn
[i
]
6671 ((u64
)arch_zone_highest_possible_pfn
[i
]
6672 << PAGE_SHIFT
) - 1);
6675 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6676 pr_info("Movable zone start for each node\n");
6677 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6678 if (zone_movable_pfn
[i
])
6679 pr_info(" Node %d: %#018Lx\n", i
,
6680 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6683 /* Print out the early node map */
6684 pr_info("Early memory node ranges\n");
6685 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6686 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6687 (u64
)start_pfn
<< PAGE_SHIFT
,
6688 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6690 /* Initialise every node */
6691 mminit_verify_pageflags_layout();
6692 setup_nr_node_ids();
6693 for_each_online_node(nid
) {
6694 pg_data_t
*pgdat
= NODE_DATA(nid
);
6695 free_area_init_node(nid
, NULL
,
6696 find_min_pfn_for_node(nid
), NULL
);
6698 /* Any memory on that node */
6699 if (pgdat
->node_present_pages
)
6700 node_set_state(nid
, N_MEMORY
);
6701 check_for_memory(pgdat
, nid
);
6705 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6707 unsigned long long coremem
;
6711 coremem
= memparse(p
, &p
);
6712 *core
= coremem
>> PAGE_SHIFT
;
6714 /* Paranoid check that UL is enough for the coremem value */
6715 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6721 * kernelcore=size sets the amount of memory for use for allocations that
6722 * cannot be reclaimed or migrated.
6724 static int __init
cmdline_parse_kernelcore(char *p
)
6726 /* parse kernelcore=mirror */
6727 if (parse_option_str(p
, "mirror")) {
6728 mirrored_kernelcore
= true;
6732 return cmdline_parse_core(p
, &required_kernelcore
);
6736 * movablecore=size sets the amount of memory for use for allocations that
6737 * can be reclaimed or migrated.
6739 static int __init
cmdline_parse_movablecore(char *p
)
6741 return cmdline_parse_core(p
, &required_movablecore
);
6744 early_param("kernelcore", cmdline_parse_kernelcore
);
6745 early_param("movablecore", cmdline_parse_movablecore
);
6747 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6749 void adjust_managed_page_count(struct page
*page
, long count
)
6751 spin_lock(&managed_page_count_lock
);
6752 page_zone(page
)->managed_pages
+= count
;
6753 totalram_pages
+= count
;
6754 #ifdef CONFIG_HIGHMEM
6755 if (PageHighMem(page
))
6756 totalhigh_pages
+= count
;
6758 spin_unlock(&managed_page_count_lock
);
6760 EXPORT_SYMBOL(adjust_managed_page_count
);
6762 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6765 unsigned long pages
= 0;
6767 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6768 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6769 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6770 if ((unsigned int)poison
<= 0xFF)
6771 memset(pos
, poison
, PAGE_SIZE
);
6772 free_reserved_page(virt_to_page(pos
));
6776 pr_info("Freeing %s memory: %ldK\n",
6777 s
, pages
<< (PAGE_SHIFT
- 10));
6781 EXPORT_SYMBOL(free_reserved_area
);
6783 #ifdef CONFIG_HIGHMEM
6784 void free_highmem_page(struct page
*page
)
6786 __free_reserved_page(page
);
6788 page_zone(page
)->managed_pages
++;
6794 void __init
mem_init_print_info(const char *str
)
6796 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6797 unsigned long init_code_size
, init_data_size
;
6799 physpages
= get_num_physpages();
6800 codesize
= _etext
- _stext
;
6801 datasize
= _edata
- _sdata
;
6802 rosize
= __end_rodata
- __start_rodata
;
6803 bss_size
= __bss_stop
- __bss_start
;
6804 init_data_size
= __init_end
- __init_begin
;
6805 init_code_size
= _einittext
- _sinittext
;
6808 * Detect special cases and adjust section sizes accordingly:
6809 * 1) .init.* may be embedded into .data sections
6810 * 2) .init.text.* may be out of [__init_begin, __init_end],
6811 * please refer to arch/tile/kernel/vmlinux.lds.S.
6812 * 3) .rodata.* may be embedded into .text or .data sections.
6814 #define adj_init_size(start, end, size, pos, adj) \
6816 if (start <= pos && pos < end && size > adj) \
6820 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6821 _sinittext
, init_code_size
);
6822 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6823 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6824 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6825 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6827 #undef adj_init_size
6829 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6830 #ifdef CONFIG_HIGHMEM
6834 nr_free_pages() << (PAGE_SHIFT
- 10),
6835 physpages
<< (PAGE_SHIFT
- 10),
6836 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6837 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6838 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6839 totalcma_pages
<< (PAGE_SHIFT
- 10),
6840 #ifdef CONFIG_HIGHMEM
6841 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6843 str
? ", " : "", str
? str
: "");
6847 * set_dma_reserve - set the specified number of pages reserved in the first zone
6848 * @new_dma_reserve: The number of pages to mark reserved
6850 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6851 * In the DMA zone, a significant percentage may be consumed by kernel image
6852 * and other unfreeable allocations which can skew the watermarks badly. This
6853 * function may optionally be used to account for unfreeable pages in the
6854 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6855 * smaller per-cpu batchsize.
6857 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6859 dma_reserve
= new_dma_reserve
;
6862 void __init
free_area_init(unsigned long *zones_size
)
6864 free_area_init_node(0, zones_size
,
6865 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6868 static int page_alloc_cpu_dead(unsigned int cpu
)
6871 lru_add_drain_cpu(cpu
);
6875 * Spill the event counters of the dead processor
6876 * into the current processors event counters.
6877 * This artificially elevates the count of the current
6880 vm_events_fold_cpu(cpu
);
6883 * Zero the differential counters of the dead processor
6884 * so that the vm statistics are consistent.
6886 * This is only okay since the processor is dead and cannot
6887 * race with what we are doing.
6889 cpu_vm_stats_fold(cpu
);
6893 void __init
page_alloc_init(void)
6897 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6898 "mm/page_alloc:dead", NULL
,
6899 page_alloc_cpu_dead
);
6904 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6905 * or min_free_kbytes changes.
6907 static void calculate_totalreserve_pages(void)
6909 struct pglist_data
*pgdat
;
6910 unsigned long reserve_pages
= 0;
6911 enum zone_type i
, j
;
6913 for_each_online_pgdat(pgdat
) {
6915 pgdat
->totalreserve_pages
= 0;
6917 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6918 struct zone
*zone
= pgdat
->node_zones
+ i
;
6921 /* Find valid and maximum lowmem_reserve in the zone */
6922 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6923 if (zone
->lowmem_reserve
[j
] > max
)
6924 max
= zone
->lowmem_reserve
[j
];
6927 /* we treat the high watermark as reserved pages. */
6928 max
+= high_wmark_pages(zone
);
6930 if (max
> zone
->managed_pages
)
6931 max
= zone
->managed_pages
;
6933 pgdat
->totalreserve_pages
+= max
;
6935 reserve_pages
+= max
;
6938 totalreserve_pages
= reserve_pages
;
6942 * setup_per_zone_lowmem_reserve - called whenever
6943 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6944 * has a correct pages reserved value, so an adequate number of
6945 * pages are left in the zone after a successful __alloc_pages().
6947 static void setup_per_zone_lowmem_reserve(void)
6949 struct pglist_data
*pgdat
;
6950 enum zone_type j
, idx
;
6952 for_each_online_pgdat(pgdat
) {
6953 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6954 struct zone
*zone
= pgdat
->node_zones
+ j
;
6955 unsigned long managed_pages
= zone
->managed_pages
;
6957 zone
->lowmem_reserve
[j
] = 0;
6961 struct zone
*lower_zone
;
6965 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6966 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6968 lower_zone
= pgdat
->node_zones
+ idx
;
6969 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6970 sysctl_lowmem_reserve_ratio
[idx
];
6971 managed_pages
+= lower_zone
->managed_pages
;
6976 /* update totalreserve_pages */
6977 calculate_totalreserve_pages();
6980 static void __setup_per_zone_wmarks(void)
6982 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6983 unsigned long lowmem_pages
= 0;
6985 unsigned long flags
;
6987 /* Calculate total number of !ZONE_HIGHMEM pages */
6988 for_each_zone(zone
) {
6989 if (!is_highmem(zone
))
6990 lowmem_pages
+= zone
->managed_pages
;
6993 for_each_zone(zone
) {
6996 spin_lock_irqsave(&zone
->lock
, flags
);
6997 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6998 do_div(tmp
, lowmem_pages
);
6999 if (is_highmem(zone
)) {
7001 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7002 * need highmem pages, so cap pages_min to a small
7005 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7006 * deltas control asynch page reclaim, and so should
7007 * not be capped for highmem.
7009 unsigned long min_pages
;
7011 min_pages
= zone
->managed_pages
/ 1024;
7012 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7013 zone
->watermark
[WMARK_MIN
] = min_pages
;
7016 * If it's a lowmem zone, reserve a number of pages
7017 * proportionate to the zone's size.
7019 zone
->watermark
[WMARK_MIN
] = tmp
;
7023 * Set the kswapd watermarks distance according to the
7024 * scale factor in proportion to available memory, but
7025 * ensure a minimum size on small systems.
7027 tmp
= max_t(u64
, tmp
>> 2,
7028 mult_frac(zone
->managed_pages
,
7029 watermark_scale_factor
, 10000));
7031 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7032 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7034 spin_unlock_irqrestore(&zone
->lock
, flags
);
7037 /* update totalreserve_pages */
7038 calculate_totalreserve_pages();
7042 * setup_per_zone_wmarks - called when min_free_kbytes changes
7043 * or when memory is hot-{added|removed}
7045 * Ensures that the watermark[min,low,high] values for each zone are set
7046 * correctly with respect to min_free_kbytes.
7048 void setup_per_zone_wmarks(void)
7050 mutex_lock(&zonelists_mutex
);
7051 __setup_per_zone_wmarks();
7052 mutex_unlock(&zonelists_mutex
);
7056 * Initialise min_free_kbytes.
7058 * For small machines we want it small (128k min). For large machines
7059 * we want it large (64MB max). But it is not linear, because network
7060 * bandwidth does not increase linearly with machine size. We use
7062 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7063 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7079 int __meminit
init_per_zone_wmark_min(void)
7081 unsigned long lowmem_kbytes
;
7082 int new_min_free_kbytes
;
7084 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7085 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7087 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7088 min_free_kbytes
= new_min_free_kbytes
;
7089 if (min_free_kbytes
< 128)
7090 min_free_kbytes
= 128;
7091 if (min_free_kbytes
> 65536)
7092 min_free_kbytes
= 65536;
7094 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7095 new_min_free_kbytes
, user_min_free_kbytes
);
7097 setup_per_zone_wmarks();
7098 refresh_zone_stat_thresholds();
7099 setup_per_zone_lowmem_reserve();
7102 setup_min_unmapped_ratio();
7103 setup_min_slab_ratio();
7108 core_initcall(init_per_zone_wmark_min
)
7111 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7112 * that we can call two helper functions whenever min_free_kbytes
7115 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7116 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7120 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7125 user_min_free_kbytes
= min_free_kbytes
;
7126 setup_per_zone_wmarks();
7131 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7132 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7136 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7141 setup_per_zone_wmarks();
7147 static void setup_min_unmapped_ratio(void)
7152 for_each_online_pgdat(pgdat
)
7153 pgdat
->min_unmapped_pages
= 0;
7156 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7157 sysctl_min_unmapped_ratio
) / 100;
7161 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7162 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7166 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7170 setup_min_unmapped_ratio();
7175 static void setup_min_slab_ratio(void)
7180 for_each_online_pgdat(pgdat
)
7181 pgdat
->min_slab_pages
= 0;
7184 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7185 sysctl_min_slab_ratio
) / 100;
7188 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7189 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7193 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7197 setup_min_slab_ratio();
7204 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7205 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7206 * whenever sysctl_lowmem_reserve_ratio changes.
7208 * The reserve ratio obviously has absolutely no relation with the
7209 * minimum watermarks. The lowmem reserve ratio can only make sense
7210 * if in function of the boot time zone sizes.
7212 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7213 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7215 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7216 setup_per_zone_lowmem_reserve();
7221 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7222 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7223 * pagelist can have before it gets flushed back to buddy allocator.
7225 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7226 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7229 int old_percpu_pagelist_fraction
;
7232 mutex_lock(&pcp_batch_high_lock
);
7233 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7235 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7236 if (!write
|| ret
< 0)
7239 /* Sanity checking to avoid pcp imbalance */
7240 if (percpu_pagelist_fraction
&&
7241 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7242 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7248 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7251 for_each_populated_zone(zone
) {
7254 for_each_possible_cpu(cpu
)
7255 pageset_set_high_and_batch(zone
,
7256 per_cpu_ptr(zone
->pageset
, cpu
));
7259 mutex_unlock(&pcp_batch_high_lock
);
7264 int hashdist
= HASHDIST_DEFAULT
;
7266 static int __init
set_hashdist(char *str
)
7270 hashdist
= simple_strtoul(str
, &str
, 0);
7273 __setup("hashdist=", set_hashdist
);
7276 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7278 * Returns the number of pages that arch has reserved but
7279 * is not known to alloc_large_system_hash().
7281 static unsigned long __init
arch_reserved_kernel_pages(void)
7288 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7289 * machines. As memory size is increased the scale is also increased but at
7290 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7291 * quadruples the scale is increased by one, which means the size of hash table
7292 * only doubles, instead of quadrupling as well.
7293 * Because 32-bit systems cannot have large physical memory, where this scaling
7294 * makes sense, it is disabled on such platforms.
7296 #if __BITS_PER_LONG > 32
7297 #define ADAPT_SCALE_BASE (64ul << 30)
7298 #define ADAPT_SCALE_SHIFT 2
7299 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7303 * allocate a large system hash table from bootmem
7304 * - it is assumed that the hash table must contain an exact power-of-2
7305 * quantity of entries
7306 * - limit is the number of hash buckets, not the total allocation size
7308 void *__init
alloc_large_system_hash(const char *tablename
,
7309 unsigned long bucketsize
,
7310 unsigned long numentries
,
7313 unsigned int *_hash_shift
,
7314 unsigned int *_hash_mask
,
7315 unsigned long low_limit
,
7316 unsigned long high_limit
)
7318 unsigned long long max
= high_limit
;
7319 unsigned long log2qty
, size
;
7323 /* allow the kernel cmdline to have a say */
7325 /* round applicable memory size up to nearest megabyte */
7326 numentries
= nr_kernel_pages
;
7327 numentries
-= arch_reserved_kernel_pages();
7329 /* It isn't necessary when PAGE_SIZE >= 1MB */
7330 if (PAGE_SHIFT
< 20)
7331 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7333 #if __BITS_PER_LONG > 32
7335 unsigned long adapt
;
7337 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7338 adapt
<<= ADAPT_SCALE_SHIFT
)
7343 /* limit to 1 bucket per 2^scale bytes of low memory */
7344 if (scale
> PAGE_SHIFT
)
7345 numentries
>>= (scale
- PAGE_SHIFT
);
7347 numentries
<<= (PAGE_SHIFT
- scale
);
7349 /* Make sure we've got at least a 0-order allocation.. */
7350 if (unlikely(flags
& HASH_SMALL
)) {
7351 /* Makes no sense without HASH_EARLY */
7352 WARN_ON(!(flags
& HASH_EARLY
));
7353 if (!(numentries
>> *_hash_shift
)) {
7354 numentries
= 1UL << *_hash_shift
;
7355 BUG_ON(!numentries
);
7357 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7358 numentries
= PAGE_SIZE
/ bucketsize
;
7360 numentries
= roundup_pow_of_two(numentries
);
7362 /* limit allocation size to 1/16 total memory by default */
7364 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7365 do_div(max
, bucketsize
);
7367 max
= min(max
, 0x80000000ULL
);
7369 if (numentries
< low_limit
)
7370 numentries
= low_limit
;
7371 if (numentries
> max
)
7374 log2qty
= ilog2(numentries
);
7377 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7378 * currently not used when HASH_EARLY is specified.
7380 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7382 size
= bucketsize
<< log2qty
;
7383 if (flags
& HASH_EARLY
)
7384 table
= memblock_virt_alloc_nopanic(size
, 0);
7386 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7389 * If bucketsize is not a power-of-two, we may free
7390 * some pages at the end of hash table which
7391 * alloc_pages_exact() automatically does
7393 if (get_order(size
) < MAX_ORDER
) {
7394 table
= alloc_pages_exact(size
, gfp_flags
);
7395 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7398 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7401 panic("Failed to allocate %s hash table\n", tablename
);
7403 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7404 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7407 *_hash_shift
= log2qty
;
7409 *_hash_mask
= (1 << log2qty
) - 1;
7415 * This function checks whether pageblock includes unmovable pages or not.
7416 * If @count is not zero, it is okay to include less @count unmovable pages
7418 * PageLRU check without isolation or lru_lock could race so that
7419 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7420 * check without lock_page also may miss some movable non-lru pages at
7421 * race condition. So you can't expect this function should be exact.
7423 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7424 bool skip_hwpoisoned_pages
)
7426 unsigned long pfn
, iter
, found
;
7430 * For avoiding noise data, lru_add_drain_all() should be called
7431 * If ZONE_MOVABLE, the zone never contains unmovable pages
7433 if (zone_idx(zone
) == ZONE_MOVABLE
)
7435 mt
= get_pageblock_migratetype(page
);
7436 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7439 pfn
= page_to_pfn(page
);
7440 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7441 unsigned long check
= pfn
+ iter
;
7443 if (!pfn_valid_within(check
))
7446 page
= pfn_to_page(check
);
7449 * Hugepages are not in LRU lists, but they're movable.
7450 * We need not scan over tail pages bacause we don't
7451 * handle each tail page individually in migration.
7453 if (PageHuge(page
)) {
7454 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7459 * We can't use page_count without pin a page
7460 * because another CPU can free compound page.
7461 * This check already skips compound tails of THP
7462 * because their page->_refcount is zero at all time.
7464 if (!page_ref_count(page
)) {
7465 if (PageBuddy(page
))
7466 iter
+= (1 << page_order(page
)) - 1;
7471 * The HWPoisoned page may be not in buddy system, and
7472 * page_count() is not 0.
7474 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7477 if (__PageMovable(page
))
7483 * If there are RECLAIMABLE pages, we need to check
7484 * it. But now, memory offline itself doesn't call
7485 * shrink_node_slabs() and it still to be fixed.
7488 * If the page is not RAM, page_count()should be 0.
7489 * we don't need more check. This is an _used_ not-movable page.
7491 * The problematic thing here is PG_reserved pages. PG_reserved
7492 * is set to both of a memory hole page and a _used_ kernel
7501 bool is_pageblock_removable_nolock(struct page
*page
)
7507 * We have to be careful here because we are iterating over memory
7508 * sections which are not zone aware so we might end up outside of
7509 * the zone but still within the section.
7510 * We have to take care about the node as well. If the node is offline
7511 * its NODE_DATA will be NULL - see page_zone.
7513 if (!node_online(page_to_nid(page
)))
7516 zone
= page_zone(page
);
7517 pfn
= page_to_pfn(page
);
7518 if (!zone_spans_pfn(zone
, pfn
))
7521 return !has_unmovable_pages(zone
, page
, 0, true);
7524 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7526 static unsigned long pfn_max_align_down(unsigned long pfn
)
7528 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7529 pageblock_nr_pages
) - 1);
7532 static unsigned long pfn_max_align_up(unsigned long pfn
)
7534 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7535 pageblock_nr_pages
));
7538 /* [start, end) must belong to a single zone. */
7539 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7540 unsigned long start
, unsigned long end
)
7542 /* This function is based on compact_zone() from compaction.c. */
7543 unsigned long nr_reclaimed
;
7544 unsigned long pfn
= start
;
7545 unsigned int tries
= 0;
7550 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7551 if (fatal_signal_pending(current
)) {
7556 if (list_empty(&cc
->migratepages
)) {
7557 cc
->nr_migratepages
= 0;
7558 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7564 } else if (++tries
== 5) {
7565 ret
= ret
< 0 ? ret
: -EBUSY
;
7569 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7571 cc
->nr_migratepages
-= nr_reclaimed
;
7573 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7574 NULL
, 0, cc
->mode
, MR_CMA
);
7577 putback_movable_pages(&cc
->migratepages
);
7584 * alloc_contig_range() -- tries to allocate given range of pages
7585 * @start: start PFN to allocate
7586 * @end: one-past-the-last PFN to allocate
7587 * @migratetype: migratetype of the underlaying pageblocks (either
7588 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7589 * in range must have the same migratetype and it must
7590 * be either of the two.
7591 * @gfp_mask: GFP mask to use during compaction
7593 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7594 * aligned, however it's the caller's responsibility to guarantee that
7595 * we are the only thread that changes migrate type of pageblocks the
7598 * The PFN range must belong to a single zone.
7600 * Returns zero on success or negative error code. On success all
7601 * pages which PFN is in [start, end) are allocated for the caller and
7602 * need to be freed with free_contig_range().
7604 int alloc_contig_range(unsigned long start
, unsigned long end
,
7605 unsigned migratetype
, gfp_t gfp_mask
)
7607 unsigned long outer_start
, outer_end
;
7611 struct compact_control cc
= {
7612 .nr_migratepages
= 0,
7614 .zone
= page_zone(pfn_to_page(start
)),
7615 .mode
= MIGRATE_SYNC
,
7616 .ignore_skip_hint
= true,
7617 .gfp_mask
= current_gfp_context(gfp_mask
),
7619 INIT_LIST_HEAD(&cc
.migratepages
);
7622 * What we do here is we mark all pageblocks in range as
7623 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7624 * have different sizes, and due to the way page allocator
7625 * work, we align the range to biggest of the two pages so
7626 * that page allocator won't try to merge buddies from
7627 * different pageblocks and change MIGRATE_ISOLATE to some
7628 * other migration type.
7630 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7631 * migrate the pages from an unaligned range (ie. pages that
7632 * we are interested in). This will put all the pages in
7633 * range back to page allocator as MIGRATE_ISOLATE.
7635 * When this is done, we take the pages in range from page
7636 * allocator removing them from the buddy system. This way
7637 * page allocator will never consider using them.
7639 * This lets us mark the pageblocks back as
7640 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7641 * aligned range but not in the unaligned, original range are
7642 * put back to page allocator so that buddy can use them.
7645 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7646 pfn_max_align_up(end
), migratetype
,
7652 * In case of -EBUSY, we'd like to know which page causes problem.
7653 * So, just fall through. We will check it in test_pages_isolated().
7655 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7656 if (ret
&& ret
!= -EBUSY
)
7660 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7661 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7662 * more, all pages in [start, end) are free in page allocator.
7663 * What we are going to do is to allocate all pages from
7664 * [start, end) (that is remove them from page allocator).
7666 * The only problem is that pages at the beginning and at the
7667 * end of interesting range may be not aligned with pages that
7668 * page allocator holds, ie. they can be part of higher order
7669 * pages. Because of this, we reserve the bigger range and
7670 * once this is done free the pages we are not interested in.
7672 * We don't have to hold zone->lock here because the pages are
7673 * isolated thus they won't get removed from buddy.
7676 lru_add_drain_all();
7677 drain_all_pages(cc
.zone
);
7680 outer_start
= start
;
7681 while (!PageBuddy(pfn_to_page(outer_start
))) {
7682 if (++order
>= MAX_ORDER
) {
7683 outer_start
= start
;
7686 outer_start
&= ~0UL << order
;
7689 if (outer_start
!= start
) {
7690 order
= page_order(pfn_to_page(outer_start
));
7693 * outer_start page could be small order buddy page and
7694 * it doesn't include start page. Adjust outer_start
7695 * in this case to report failed page properly
7696 * on tracepoint in test_pages_isolated()
7698 if (outer_start
+ (1UL << order
) <= start
)
7699 outer_start
= start
;
7702 /* Make sure the range is really isolated. */
7703 if (test_pages_isolated(outer_start
, end
, false)) {
7704 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7705 __func__
, outer_start
, end
);
7710 /* Grab isolated pages from freelists. */
7711 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7717 /* Free head and tail (if any) */
7718 if (start
!= outer_start
)
7719 free_contig_range(outer_start
, start
- outer_start
);
7720 if (end
!= outer_end
)
7721 free_contig_range(end
, outer_end
- end
);
7724 undo_isolate_page_range(pfn_max_align_down(start
),
7725 pfn_max_align_up(end
), migratetype
);
7729 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7731 unsigned int count
= 0;
7733 for (; nr_pages
--; pfn
++) {
7734 struct page
*page
= pfn_to_page(pfn
);
7736 count
+= page_count(page
) != 1;
7739 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7743 #ifdef CONFIG_MEMORY_HOTPLUG
7745 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7746 * page high values need to be recalulated.
7748 void __meminit
zone_pcp_update(struct zone
*zone
)
7751 mutex_lock(&pcp_batch_high_lock
);
7752 for_each_possible_cpu(cpu
)
7753 pageset_set_high_and_batch(zone
,
7754 per_cpu_ptr(zone
->pageset
, cpu
));
7755 mutex_unlock(&pcp_batch_high_lock
);
7759 void zone_pcp_reset(struct zone
*zone
)
7761 unsigned long flags
;
7763 struct per_cpu_pageset
*pset
;
7765 /* avoid races with drain_pages() */
7766 local_irq_save(flags
);
7767 if (zone
->pageset
!= &boot_pageset
) {
7768 for_each_online_cpu(cpu
) {
7769 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7770 drain_zonestat(zone
, pset
);
7772 free_percpu(zone
->pageset
);
7773 zone
->pageset
= &boot_pageset
;
7775 local_irq_restore(flags
);
7778 #ifdef CONFIG_MEMORY_HOTREMOVE
7780 * All pages in the range must be in a single zone and isolated
7781 * before calling this.
7784 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7788 unsigned int order
, i
;
7790 unsigned long flags
;
7791 /* find the first valid pfn */
7792 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7797 offline_mem_sections(pfn
, end_pfn
);
7798 zone
= page_zone(pfn_to_page(pfn
));
7799 spin_lock_irqsave(&zone
->lock
, flags
);
7801 while (pfn
< end_pfn
) {
7802 if (!pfn_valid(pfn
)) {
7806 page
= pfn_to_page(pfn
);
7808 * The HWPoisoned page may be not in buddy system, and
7809 * page_count() is not 0.
7811 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7813 SetPageReserved(page
);
7817 BUG_ON(page_count(page
));
7818 BUG_ON(!PageBuddy(page
));
7819 order
= page_order(page
);
7820 #ifdef CONFIG_DEBUG_VM
7821 pr_info("remove from free list %lx %d %lx\n",
7822 pfn
, 1 << order
, end_pfn
);
7824 list_del(&page
->lru
);
7825 rmv_page_order(page
);
7826 zone
->free_area
[order
].nr_free
--;
7827 for (i
= 0; i
< (1 << order
); i
++)
7828 SetPageReserved((page
+i
));
7829 pfn
+= (1 << order
);
7831 spin_unlock_irqrestore(&zone
->lock
, flags
);
7835 bool is_free_buddy_page(struct page
*page
)
7837 struct zone
*zone
= page_zone(page
);
7838 unsigned long pfn
= page_to_pfn(page
);
7839 unsigned long flags
;
7842 spin_lock_irqsave(&zone
->lock
, flags
);
7843 for (order
= 0; order
< MAX_ORDER
; order
++) {
7844 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7846 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7849 spin_unlock_irqrestore(&zone
->lock
, flags
);
7851 return order
< MAX_ORDER
;