2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63 /* How long to wait for CISS doorbell communication */
64 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
65 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
66 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
67 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
68 #define MAX_IOCTL_CONFIG_WAIT 1000
70 /*define how many times we will try a command because of bus resets */
71 #define MAX_CMD_RETRIES 3
73 /* Embedded module documentation macros - see modules.h */
74 MODULE_AUTHOR("Hewlett-Packard Company");
75 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
77 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
78 MODULE_VERSION(HPSA_DRIVER_VERSION
);
79 MODULE_LICENSE("GPL");
81 static int hpsa_allow_any
;
82 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
83 MODULE_PARM_DESC(hpsa_allow_any
,
84 "Allow hpsa driver to access unknown HP Smart Array hardware");
85 static int hpsa_simple_mode
;
86 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
87 MODULE_PARM_DESC(hpsa_simple_mode
,
88 "Use 'simple mode' rather than 'performant mode'");
90 /* define the PCI info for the cards we can control */
91 static const struct pci_device_id hpsa_pci_device_id
[] = {
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
132 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
133 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
134 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
135 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
136 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
137 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
138 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
142 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
144 /* board_id = Subsystem Device ID & Vendor ID
145 * product = Marketing Name for the board
146 * access = Address of the struct of function pointers
148 static struct board_type products
[] = {
149 {0x3241103C, "Smart Array P212", &SA5_access
},
150 {0x3243103C, "Smart Array P410", &SA5_access
},
151 {0x3245103C, "Smart Array P410i", &SA5_access
},
152 {0x3247103C, "Smart Array P411", &SA5_access
},
153 {0x3249103C, "Smart Array P812", &SA5_access
},
154 {0x324A103C, "Smart Array P712m", &SA5_access
},
155 {0x324B103C, "Smart Array P711m", &SA5_access
},
156 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
157 {0x3350103C, "Smart Array P222", &SA5_access
},
158 {0x3351103C, "Smart Array P420", &SA5_access
},
159 {0x3352103C, "Smart Array P421", &SA5_access
},
160 {0x3353103C, "Smart Array P822", &SA5_access
},
161 {0x3354103C, "Smart Array P420i", &SA5_access
},
162 {0x3355103C, "Smart Array P220i", &SA5_access
},
163 {0x3356103C, "Smart Array P721m", &SA5_access
},
164 {0x1921103C, "Smart Array P830i", &SA5_access
},
165 {0x1922103C, "Smart Array P430", &SA5_access
},
166 {0x1923103C, "Smart Array P431", &SA5_access
},
167 {0x1924103C, "Smart Array P830", &SA5_access
},
168 {0x1926103C, "Smart Array P731m", &SA5_access
},
169 {0x1928103C, "Smart Array P230i", &SA5_access
},
170 {0x1929103C, "Smart Array P530", &SA5_access
},
171 {0x21BD103C, "Smart Array P244br", &SA5_access
},
172 {0x21BE103C, "Smart Array P741m", &SA5_access
},
173 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
174 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
175 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
176 {0x21C2103C, "Smart Array P440", &SA5_access
},
177 {0x21C3103C, "Smart Array P441", &SA5_access
},
178 {0x21C4103C, "Smart Array", &SA5_access
},
179 {0x21C5103C, "Smart Array P841", &SA5_access
},
180 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
181 {0x21C7103C, "Smart HBA H240", &SA5_access
},
182 {0x21C8103C, "Smart HBA H241", &SA5_access
},
183 {0x21C9103C, "Smart Array", &SA5_access
},
184 {0x21CA103C, "Smart Array P246br", &SA5_access
},
185 {0x21CB103C, "Smart Array P840", &SA5_access
},
186 {0x21CC103C, "Smart Array", &SA5_access
},
187 {0x21CD103C, "Smart Array", &SA5_access
},
188 {0x21CE103C, "Smart HBA", &SA5_access
},
189 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
190 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
191 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
192 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
193 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
194 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
197 static int number_of_controllers
;
199 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
200 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
201 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
204 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
208 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
209 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
210 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
211 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
213 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
214 #define VPD_PAGE (1 << 8)
216 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
217 static void hpsa_scan_start(struct Scsi_Host
*);
218 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
219 unsigned long elapsed_time
);
220 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
224 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
225 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
227 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
228 static int check_for_unit_attention(struct ctlr_info
*h
,
229 struct CommandList
*c
);
230 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
231 struct CommandList
*c
);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket
, int num_buckets
,
234 int nsgs
, int min_blocks
, u32
*bucket_map
);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
236 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
237 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
238 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
240 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
241 unsigned long *memory_bar
);
242 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
243 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
245 static inline void finish_cmd(struct CommandList
*c
);
246 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
250 static void hpsa_flush_cache(struct ctlr_info
*h
);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
252 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
253 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
254 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
256 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
258 unsigned long *priv
= shost_priv(sdev
->host
);
259 return (struct ctlr_info
*) *priv
;
262 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
264 unsigned long *priv
= shost_priv(sh
);
265 return (struct ctlr_info
*) *priv
;
268 static int check_for_unit_attention(struct ctlr_info
*h
,
269 struct CommandList
*c
)
271 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
274 switch (c
->err_info
->SenseInfo
[12]) {
276 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a state change "
277 "detected, command retried\n", h
->ctlr
);
280 dev_warn(&h
->pdev
->dev
,
281 HPSA
"%d: LUN failure detected\n", h
->ctlr
);
283 case REPORT_LUNS_CHANGED
:
284 dev_warn(&h
->pdev
->dev
,
285 HPSA
"%d: report LUN data changed\n", h
->ctlr
);
287 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
288 * target (array) devices.
292 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a power on "
293 "or device reset detected\n", h
->ctlr
);
295 case UNIT_ATTENTION_CLEARED
:
296 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unit attention "
297 "cleared by another initiator\n", h
->ctlr
);
300 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unknown "
301 "unit attention detected\n", h
->ctlr
);
307 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
309 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
310 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
311 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
313 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
317 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
318 struct device_attribute
*attr
,
319 const char *buf
, size_t count
)
323 struct Scsi_Host
*shost
= class_to_shost(dev
);
326 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
328 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
329 strncpy(tmpbuf
, buf
, len
);
331 if (sscanf(tmpbuf
, "%d", &status
) != 1)
333 h
= shost_to_hba(shost
);
334 h
->acciopath_status
= !!status
;
335 dev_warn(&h
->pdev
->dev
,
336 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
337 h
->acciopath_status
? "enabled" : "disabled");
341 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
342 struct device_attribute
*attr
,
343 const char *buf
, size_t count
)
345 int debug_level
, len
;
347 struct Scsi_Host
*shost
= class_to_shost(dev
);
350 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
352 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
353 strncpy(tmpbuf
, buf
, len
);
355 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
359 h
= shost_to_hba(shost
);
360 h
->raid_offload_debug
= debug_level
;
361 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
362 h
->raid_offload_debug
);
366 static ssize_t
host_store_rescan(struct device
*dev
,
367 struct device_attribute
*attr
,
368 const char *buf
, size_t count
)
371 struct Scsi_Host
*shost
= class_to_shost(dev
);
372 h
= shost_to_hba(shost
);
373 hpsa_scan_start(h
->scsi_host
);
377 static ssize_t
host_show_firmware_revision(struct device
*dev
,
378 struct device_attribute
*attr
, char *buf
)
381 struct Scsi_Host
*shost
= class_to_shost(dev
);
382 unsigned char *fwrev
;
384 h
= shost_to_hba(shost
);
385 if (!h
->hba_inquiry_data
)
387 fwrev
= &h
->hba_inquiry_data
[32];
388 return snprintf(buf
, 20, "%c%c%c%c\n",
389 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
392 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
393 struct device_attribute
*attr
, char *buf
)
395 struct Scsi_Host
*shost
= class_to_shost(dev
);
396 struct ctlr_info
*h
= shost_to_hba(shost
);
398 return snprintf(buf
, 20, "%d\n",
399 atomic_read(&h
->commands_outstanding
));
402 static ssize_t
host_show_transport_mode(struct device
*dev
,
403 struct device_attribute
*attr
, char *buf
)
406 struct Scsi_Host
*shost
= class_to_shost(dev
);
408 h
= shost_to_hba(shost
);
409 return snprintf(buf
, 20, "%s\n",
410 h
->transMethod
& CFGTBL_Trans_Performant
?
411 "performant" : "simple");
414 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
415 struct device_attribute
*attr
, char *buf
)
418 struct Scsi_Host
*shost
= class_to_shost(dev
);
420 h
= shost_to_hba(shost
);
421 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
422 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
425 /* List of controllers which cannot be hard reset on kexec with reset_devices */
426 static u32 unresettable_controller
[] = {
427 0x324a103C, /* Smart Array P712m */
428 0x324b103C, /* SmartArray P711m */
429 0x3223103C, /* Smart Array P800 */
430 0x3234103C, /* Smart Array P400 */
431 0x3235103C, /* Smart Array P400i */
432 0x3211103C, /* Smart Array E200i */
433 0x3212103C, /* Smart Array E200 */
434 0x3213103C, /* Smart Array E200i */
435 0x3214103C, /* Smart Array E200i */
436 0x3215103C, /* Smart Array E200i */
437 0x3237103C, /* Smart Array E500 */
438 0x323D103C, /* Smart Array P700m */
439 0x40800E11, /* Smart Array 5i */
440 0x409C0E11, /* Smart Array 6400 */
441 0x409D0E11, /* Smart Array 6400 EM */
442 0x40700E11, /* Smart Array 5300 */
443 0x40820E11, /* Smart Array 532 */
444 0x40830E11, /* Smart Array 5312 */
445 0x409A0E11, /* Smart Array 641 */
446 0x409B0E11, /* Smart Array 642 */
447 0x40910E11, /* Smart Array 6i */
450 /* List of controllers which cannot even be soft reset */
451 static u32 soft_unresettable_controller
[] = {
452 0x40800E11, /* Smart Array 5i */
453 0x40700E11, /* Smart Array 5300 */
454 0x40820E11, /* Smart Array 532 */
455 0x40830E11, /* Smart Array 5312 */
456 0x409A0E11, /* Smart Array 641 */
457 0x409B0E11, /* Smart Array 642 */
458 0x40910E11, /* Smart Array 6i */
459 /* Exclude 640x boards. These are two pci devices in one slot
460 * which share a battery backed cache module. One controls the
461 * cache, the other accesses the cache through the one that controls
462 * it. If we reset the one controlling the cache, the other will
463 * likely not be happy. Just forbid resetting this conjoined mess.
464 * The 640x isn't really supported by hpsa anyway.
466 0x409C0E11, /* Smart Array 6400 */
467 0x409D0E11, /* Smart Array 6400 EM */
470 static int ctlr_is_hard_resettable(u32 board_id
)
474 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
475 if (unresettable_controller
[i
] == board_id
)
480 static int ctlr_is_soft_resettable(u32 board_id
)
484 for (i
= 0; i
< ARRAY_SIZE(soft_unresettable_controller
); i
++)
485 if (soft_unresettable_controller
[i
] == board_id
)
490 static int ctlr_is_resettable(u32 board_id
)
492 return ctlr_is_hard_resettable(board_id
) ||
493 ctlr_is_soft_resettable(board_id
);
496 static ssize_t
host_show_resettable(struct device
*dev
,
497 struct device_attribute
*attr
, char *buf
)
500 struct Scsi_Host
*shost
= class_to_shost(dev
);
502 h
= shost_to_hba(shost
);
503 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
506 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
508 return (scsi3addr
[3] & 0xC0) == 0x40;
511 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
512 "1(+0)ADM", "UNKNOWN"
514 #define HPSA_RAID_0 0
515 #define HPSA_RAID_4 1
516 #define HPSA_RAID_1 2 /* also used for RAID 10 */
517 #define HPSA_RAID_5 3 /* also used for RAID 50 */
518 #define HPSA_RAID_51 4
519 #define HPSA_RAID_6 5 /* also used for RAID 60 */
520 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
521 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
523 static ssize_t
raid_level_show(struct device
*dev
,
524 struct device_attribute
*attr
, char *buf
)
527 unsigned char rlevel
;
529 struct scsi_device
*sdev
;
530 struct hpsa_scsi_dev_t
*hdev
;
533 sdev
= to_scsi_device(dev
);
534 h
= sdev_to_hba(sdev
);
535 spin_lock_irqsave(&h
->lock
, flags
);
536 hdev
= sdev
->hostdata
;
538 spin_unlock_irqrestore(&h
->lock
, flags
);
542 /* Is this even a logical drive? */
543 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
544 spin_unlock_irqrestore(&h
->lock
, flags
);
545 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
549 rlevel
= hdev
->raid_level
;
550 spin_unlock_irqrestore(&h
->lock
, flags
);
551 if (rlevel
> RAID_UNKNOWN
)
552 rlevel
= RAID_UNKNOWN
;
553 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
557 static ssize_t
lunid_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
561 struct scsi_device
*sdev
;
562 struct hpsa_scsi_dev_t
*hdev
;
564 unsigned char lunid
[8];
566 sdev
= to_scsi_device(dev
);
567 h
= sdev_to_hba(sdev
);
568 spin_lock_irqsave(&h
->lock
, flags
);
569 hdev
= sdev
->hostdata
;
571 spin_unlock_irqrestore(&h
->lock
, flags
);
574 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
575 spin_unlock_irqrestore(&h
->lock
, flags
);
576 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
577 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
578 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
581 static ssize_t
unique_id_show(struct device
*dev
,
582 struct device_attribute
*attr
, char *buf
)
585 struct scsi_device
*sdev
;
586 struct hpsa_scsi_dev_t
*hdev
;
588 unsigned char sn
[16];
590 sdev
= to_scsi_device(dev
);
591 h
= sdev_to_hba(sdev
);
592 spin_lock_irqsave(&h
->lock
, flags
);
593 hdev
= sdev
->hostdata
;
595 spin_unlock_irqrestore(&h
->lock
, flags
);
598 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
599 spin_unlock_irqrestore(&h
->lock
, flags
);
600 return snprintf(buf
, 16 * 2 + 2,
601 "%02X%02X%02X%02X%02X%02X%02X%02X"
602 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
603 sn
[0], sn
[1], sn
[2], sn
[3],
604 sn
[4], sn
[5], sn
[6], sn
[7],
605 sn
[8], sn
[9], sn
[10], sn
[11],
606 sn
[12], sn
[13], sn
[14], sn
[15]);
609 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
610 struct device_attribute
*attr
, char *buf
)
613 struct scsi_device
*sdev
;
614 struct hpsa_scsi_dev_t
*hdev
;
618 sdev
= to_scsi_device(dev
);
619 h
= sdev_to_hba(sdev
);
620 spin_lock_irqsave(&h
->lock
, flags
);
621 hdev
= sdev
->hostdata
;
623 spin_unlock_irqrestore(&h
->lock
, flags
);
626 offload_enabled
= hdev
->offload_enabled
;
627 spin_unlock_irqrestore(&h
->lock
, flags
);
628 return snprintf(buf
, 20, "%d\n", offload_enabled
);
631 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
632 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
633 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
634 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
635 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
636 host_show_hp_ssd_smart_path_enabled
, NULL
);
637 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
638 host_show_hp_ssd_smart_path_status
,
639 host_store_hp_ssd_smart_path_status
);
640 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
641 host_store_raid_offload_debug
);
642 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
643 host_show_firmware_revision
, NULL
);
644 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
645 host_show_commands_outstanding
, NULL
);
646 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
647 host_show_transport_mode
, NULL
);
648 static DEVICE_ATTR(resettable
, S_IRUGO
,
649 host_show_resettable
, NULL
);
651 static struct device_attribute
*hpsa_sdev_attrs
[] = {
652 &dev_attr_raid_level
,
655 &dev_attr_hp_ssd_smart_path_enabled
,
659 static struct device_attribute
*hpsa_shost_attrs
[] = {
661 &dev_attr_firmware_revision
,
662 &dev_attr_commands_outstanding
,
663 &dev_attr_transport_mode
,
664 &dev_attr_resettable
,
665 &dev_attr_hp_ssd_smart_path_status
,
666 &dev_attr_raid_offload_debug
,
670 static struct scsi_host_template hpsa_driver_template
= {
671 .module
= THIS_MODULE
,
674 .queuecommand
= hpsa_scsi_queue_command
,
675 .scan_start
= hpsa_scan_start
,
676 .scan_finished
= hpsa_scan_finished
,
677 .change_queue_depth
= hpsa_change_queue_depth
,
679 .use_clustering
= ENABLE_CLUSTERING
,
680 .eh_abort_handler
= hpsa_eh_abort_handler
,
681 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
683 .slave_alloc
= hpsa_slave_alloc
,
684 .slave_destroy
= hpsa_slave_destroy
,
686 .compat_ioctl
= hpsa_compat_ioctl
,
688 .sdev_attrs
= hpsa_sdev_attrs
,
689 .shost_attrs
= hpsa_shost_attrs
,
694 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
697 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
699 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
700 return h
->access
.command_completed(h
, q
);
702 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
703 return h
->access
.command_completed(h
, q
);
705 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
706 a
= rq
->head
[rq
->current_entry
];
708 atomic_dec(&h
->commands_outstanding
);
712 /* Check for wraparound */
713 if (rq
->current_entry
== h
->max_commands
) {
714 rq
->current_entry
= 0;
721 * There are some special bits in the bus address of the
722 * command that we have to set for the controller to know
723 * how to process the command:
725 * Normal performant mode:
726 * bit 0: 1 means performant mode, 0 means simple mode.
727 * bits 1-3 = block fetch table entry
728 * bits 4-6 = command type (== 0)
731 * bit 0 = "performant mode" bit.
732 * bits 1-3 = block fetch table entry
733 * bits 4-6 = command type (== 110)
734 * (command type is needed because ioaccel1 mode
735 * commands are submitted through the same register as normal
736 * mode commands, so this is how the controller knows whether
737 * the command is normal mode or ioaccel1 mode.)
740 * bit 0 = "performant mode" bit.
741 * bits 1-4 = block fetch table entry (note extra bit)
742 * bits 4-6 = not needed, because ioaccel2 mode has
743 * a separate special register for submitting commands.
746 /* set_performant_mode: Modify the tag for cciss performant
747 * set bit 0 for pull model, bits 3-1 for block fetch
750 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
)
752 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
753 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
754 if (likely(h
->msix_vector
> 0))
755 c
->Header
.ReplyQueue
=
756 raw_smp_processor_id() % h
->nreply_queues
;
760 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
761 struct CommandList
*c
)
763 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
765 /* Tell the controller to post the reply to the queue for this
766 * processor. This seems to give the best I/O throughput.
768 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
769 /* Set the bits in the address sent down to include:
770 * - performant mode bit (bit 0)
771 * - pull count (bits 1-3)
772 * - command type (bits 4-6)
774 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
775 IOACCEL1_BUSADDR_CMDTYPE
;
778 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
779 struct CommandList
*c
)
781 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
783 /* Tell the controller to post the reply to the queue for this
784 * processor. This seems to give the best I/O throughput.
786 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
787 /* Set the bits in the address sent down to include:
788 * - performant mode bit not used in ioaccel mode 2
789 * - pull count (bits 0-3)
790 * - command type isn't needed for ioaccel2
792 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
795 static int is_firmware_flash_cmd(u8
*cdb
)
797 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
801 * During firmware flash, the heartbeat register may not update as frequently
802 * as it should. So we dial down lockup detection during firmware flash. and
803 * dial it back up when firmware flash completes.
805 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
806 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
807 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
808 struct CommandList
*c
)
810 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
812 atomic_inc(&h
->firmware_flash_in_progress
);
813 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
816 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
817 struct CommandList
*c
)
819 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
820 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
821 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
824 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
,
825 struct CommandList
*c
)
827 dial_down_lockup_detection_during_fw_flash(h
, c
);
828 atomic_inc(&h
->commands_outstanding
);
829 switch (c
->cmd_type
) {
831 set_ioaccel1_performant_mode(h
, c
);
832 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
835 set_ioaccel2_performant_mode(h
, c
);
836 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
839 set_performant_mode(h
, c
);
840 h
->access
.submit_command(h
, c
);
844 static inline int is_hba_lunid(unsigned char scsi3addr
[])
846 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
849 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
851 if (!h
->hba_inquiry_data
)
853 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
858 static int hpsa_find_target_lun(struct ctlr_info
*h
,
859 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
861 /* finds an unused bus, target, lun for a new physical device
862 * assumes h->devlock is held
865 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
867 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
869 for (i
= 0; i
< h
->ndevices
; i
++) {
870 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
871 __set_bit(h
->dev
[i
]->target
, lun_taken
);
874 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
875 if (i
< HPSA_MAX_DEVICES
) {
884 /* Add an entry into h->dev[] array. */
885 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
886 struct hpsa_scsi_dev_t
*device
,
887 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
889 /* assumes h->devlock is held */
892 unsigned char addr1
[8], addr2
[8];
893 struct hpsa_scsi_dev_t
*sd
;
895 if (n
>= HPSA_MAX_DEVICES
) {
896 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
901 /* physical devices do not have lun or target assigned until now. */
902 if (device
->lun
!= -1)
903 /* Logical device, lun is already assigned. */
906 /* If this device a non-zero lun of a multi-lun device
907 * byte 4 of the 8-byte LUN addr will contain the logical
908 * unit no, zero otherwise.
910 if (device
->scsi3addr
[4] == 0) {
911 /* This is not a non-zero lun of a multi-lun device */
912 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
913 device
->bus
, &device
->target
, &device
->lun
) != 0)
918 /* This is a non-zero lun of a multi-lun device.
919 * Search through our list and find the device which
920 * has the same 8 byte LUN address, excepting byte 4.
921 * Assign the same bus and target for this new LUN.
922 * Use the logical unit number from the firmware.
924 memcpy(addr1
, device
->scsi3addr
, 8);
926 for (i
= 0; i
< n
; i
++) {
928 memcpy(addr2
, sd
->scsi3addr
, 8);
930 /* differ only in byte 4? */
931 if (memcmp(addr1
, addr2
, 8) == 0) {
932 device
->bus
= sd
->bus
;
933 device
->target
= sd
->target
;
934 device
->lun
= device
->scsi3addr
[4];
938 if (device
->lun
== -1) {
939 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
940 " suspect firmware bug or unsupported hardware "
949 added
[*nadded
] = device
;
952 /* initially, (before registering with scsi layer) we don't
953 * know our hostno and we don't want to print anything first
954 * time anyway (the scsi layer's inquiries will show that info)
956 /* if (hostno != -1) */
957 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d added.\n",
958 scsi_device_type(device
->devtype
), hostno
,
959 device
->bus
, device
->target
, device
->lun
);
963 /* Update an entry in h->dev[] array. */
964 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
965 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
967 /* assumes h->devlock is held */
968 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
970 /* Raid level changed. */
971 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
973 /* Raid offload parameters changed. Careful about the ordering. */
974 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
976 * if drive is newly offload_enabled, we want to copy the
977 * raid map data first. If previously offload_enabled and
978 * offload_config were set, raid map data had better be
979 * the same as it was before. if raid map data is changed
980 * then it had better be the case that
981 * h->dev[entry]->offload_enabled is currently 0.
983 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
984 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
985 wmb(); /* ensure raid map updated prior to ->offload_enabled */
987 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
988 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
989 h
->dev
[entry
]->offload_enabled
= new_entry
->offload_enabled
;
990 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
992 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d updated.\n",
993 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
994 new_entry
->target
, new_entry
->lun
);
997 /* Replace an entry from h->dev[] array. */
998 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
999 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1000 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1001 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1003 /* assumes h->devlock is held */
1004 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1005 removed
[*nremoved
] = h
->dev
[entry
];
1009 * New physical devices won't have target/lun assigned yet
1010 * so we need to preserve the values in the slot we are replacing.
1012 if (new_entry
->target
== -1) {
1013 new_entry
->target
= h
->dev
[entry
]->target
;
1014 new_entry
->lun
= h
->dev
[entry
]->lun
;
1017 h
->dev
[entry
] = new_entry
;
1018 added
[*nadded
] = new_entry
;
1020 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d changed.\n",
1021 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
1022 new_entry
->target
, new_entry
->lun
);
1025 /* Remove an entry from h->dev[] array. */
1026 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
1027 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1029 /* assumes h->devlock is held */
1031 struct hpsa_scsi_dev_t
*sd
;
1033 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1036 removed
[*nremoved
] = h
->dev
[entry
];
1039 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1040 h
->dev
[i
] = h
->dev
[i
+1];
1042 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d removed.\n",
1043 scsi_device_type(sd
->devtype
), hostno
, sd
->bus
, sd
->target
,
1047 #define SCSI3ADDR_EQ(a, b) ( \
1048 (a)[7] == (b)[7] && \
1049 (a)[6] == (b)[6] && \
1050 (a)[5] == (b)[5] && \
1051 (a)[4] == (b)[4] && \
1052 (a)[3] == (b)[3] && \
1053 (a)[2] == (b)[2] && \
1054 (a)[1] == (b)[1] && \
1057 static void fixup_botched_add(struct ctlr_info
*h
,
1058 struct hpsa_scsi_dev_t
*added
)
1060 /* called when scsi_add_device fails in order to re-adjust
1061 * h->dev[] to match the mid layer's view.
1063 unsigned long flags
;
1066 spin_lock_irqsave(&h
->lock
, flags
);
1067 for (i
= 0; i
< h
->ndevices
; i
++) {
1068 if (h
->dev
[i
] == added
) {
1069 for (j
= i
; j
< h
->ndevices
-1; j
++)
1070 h
->dev
[j
] = h
->dev
[j
+1];
1075 spin_unlock_irqrestore(&h
->lock
, flags
);
1079 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1080 struct hpsa_scsi_dev_t
*dev2
)
1082 /* we compare everything except lun and target as these
1083 * are not yet assigned. Compare parts likely
1086 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1087 sizeof(dev1
->scsi3addr
)) != 0)
1089 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1090 sizeof(dev1
->device_id
)) != 0)
1092 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1094 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1096 if (dev1
->devtype
!= dev2
->devtype
)
1098 if (dev1
->bus
!= dev2
->bus
)
1103 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1104 struct hpsa_scsi_dev_t
*dev2
)
1106 /* Device attributes that can change, but don't mean
1107 * that the device is a different device, nor that the OS
1108 * needs to be told anything about the change.
1110 if (dev1
->raid_level
!= dev2
->raid_level
)
1112 if (dev1
->offload_config
!= dev2
->offload_config
)
1114 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1116 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1121 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1122 * and return needle location in *index. If scsi3addr matches, but not
1123 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124 * location in *index.
1125 * In the case of a minor device attribute change, such as RAID level, just
1126 * return DEVICE_UPDATED, along with the updated device's location in index.
1127 * If needle not found, return DEVICE_NOT_FOUND.
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1130 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138 for (i
= 0; i
< haystack_size
; i
++) {
1139 if (haystack
[i
] == NULL
) /* previously removed. */
1141 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1143 if (device_is_the_same(needle
, haystack
[i
])) {
1144 if (device_updated(needle
, haystack
[i
]))
1145 return DEVICE_UPDATED
;
1148 /* Keep offline devices offline */
1149 if (needle
->volume_offline
)
1150 return DEVICE_NOT_FOUND
;
1151 return DEVICE_CHANGED
;
1156 return DEVICE_NOT_FOUND
;
1159 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1160 unsigned char scsi3addr
[])
1162 struct offline_device_entry
*device
;
1163 unsigned long flags
;
1165 /* Check to see if device is already on the list */
1166 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1167 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1168 if (memcmp(device
->scsi3addr
, scsi3addr
,
1169 sizeof(device
->scsi3addr
)) == 0) {
1170 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1174 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1176 /* Device is not on the list, add it. */
1177 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1179 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1182 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1183 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1184 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1185 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1190 struct hpsa_scsi_dev_t
*sd
)
1192 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1193 dev_info(&h
->pdev
->dev
,
1194 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195 h
->scsi_host
->host_no
,
1196 sd
->bus
, sd
->target
, sd
->lun
);
1197 switch (sd
->volume_offline
) {
1200 case HPSA_LV_UNDERGOING_ERASE
:
1201 dev_info(&h
->pdev
->dev
,
1202 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203 h
->scsi_host
->host_no
,
1204 sd
->bus
, sd
->target
, sd
->lun
);
1206 case HPSA_LV_UNDERGOING_RPI
:
1207 dev_info(&h
->pdev
->dev
,
1208 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209 h
->scsi_host
->host_no
,
1210 sd
->bus
, sd
->target
, sd
->lun
);
1212 case HPSA_LV_PENDING_RPI
:
1213 dev_info(&h
->pdev
->dev
,
1214 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215 h
->scsi_host
->host_no
,
1216 sd
->bus
, sd
->target
, sd
->lun
);
1218 case HPSA_LV_ENCRYPTED_NO_KEY
:
1219 dev_info(&h
->pdev
->dev
,
1220 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221 h
->scsi_host
->host_no
,
1222 sd
->bus
, sd
->target
, sd
->lun
);
1224 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1225 dev_info(&h
->pdev
->dev
,
1226 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227 h
->scsi_host
->host_no
,
1228 sd
->bus
, sd
->target
, sd
->lun
);
1230 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1231 dev_info(&h
->pdev
->dev
,
1232 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233 h
->scsi_host
->host_no
,
1234 sd
->bus
, sd
->target
, sd
->lun
);
1236 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1237 dev_info(&h
->pdev
->dev
,
1238 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239 h
->scsi_host
->host_no
,
1240 sd
->bus
, sd
->target
, sd
->lun
);
1242 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1243 dev_info(&h
->pdev
->dev
,
1244 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245 h
->scsi_host
->host_no
,
1246 sd
->bus
, sd
->target
, sd
->lun
);
1248 case HPSA_LV_PENDING_ENCRYPTION
:
1249 dev_info(&h
->pdev
->dev
,
1250 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251 h
->scsi_host
->host_no
,
1252 sd
->bus
, sd
->target
, sd
->lun
);
1254 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1255 dev_info(&h
->pdev
->dev
,
1256 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257 h
->scsi_host
->host_no
,
1258 sd
->bus
, sd
->target
, sd
->lun
);
1264 * Figure the list of physical drive pointers for a logical drive with
1265 * raid offload configured.
1267 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1268 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1269 struct hpsa_scsi_dev_t
*logical_drive
)
1271 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1272 struct raid_map_disk_data
*dd
= &map
->data
[0];
1274 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1275 le16_to_cpu(map
->metadata_disks_per_row
);
1276 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1277 le16_to_cpu(map
->layout_map_count
) *
1278 total_disks_per_row
;
1279 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1280 total_disks_per_row
;
1283 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1284 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1287 for (i
= 0; i
< nraid_map_entries
; i
++) {
1288 logical_drive
->phys_disk
[i
] = NULL
;
1289 if (!logical_drive
->offload_config
)
1291 for (j
= 0; j
< ndevices
; j
++) {
1292 if (dev
[j
]->devtype
!= TYPE_DISK
)
1294 if (is_logical_dev_addr_mode(dev
[j
]->scsi3addr
))
1296 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1299 logical_drive
->phys_disk
[i
] = dev
[j
];
1301 qdepth
= min(h
->nr_cmds
, qdepth
+
1302 logical_drive
->phys_disk
[i
]->queue_depth
);
1307 * This can happen if a physical drive is removed and
1308 * the logical drive is degraded. In that case, the RAID
1309 * map data will refer to a physical disk which isn't actually
1310 * present. And in that case offload_enabled should already
1311 * be 0, but we'll turn it off here just in case
1313 if (!logical_drive
->phys_disk
[i
]) {
1314 logical_drive
->offload_enabled
= 0;
1315 logical_drive
->queue_depth
= h
->nr_cmds
;
1318 if (nraid_map_entries
)
1320 * This is correct for reads, too high for full stripe writes,
1321 * way too high for partial stripe writes
1323 logical_drive
->queue_depth
= qdepth
;
1325 logical_drive
->queue_depth
= h
->nr_cmds
;
1328 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1329 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1333 for (i
= 0; i
< ndevices
; i
++) {
1334 if (dev
[i
]->devtype
!= TYPE_DISK
)
1336 if (!is_logical_dev_addr_mode(dev
[i
]->scsi3addr
))
1338 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1342 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
1343 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1345 /* sd contains scsi3 addresses and devtypes, and inquiry
1346 * data. This function takes what's in sd to be the current
1347 * reality and updates h->dev[] to reflect that reality.
1349 int i
, entry
, device_change
, changes
= 0;
1350 struct hpsa_scsi_dev_t
*csd
;
1351 unsigned long flags
;
1352 struct hpsa_scsi_dev_t
**added
, **removed
;
1353 int nadded
, nremoved
;
1354 struct Scsi_Host
*sh
= NULL
;
1356 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1357 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1359 if (!added
|| !removed
) {
1360 dev_warn(&h
->pdev
->dev
, "out of memory in "
1361 "adjust_hpsa_scsi_table\n");
1365 spin_lock_irqsave(&h
->devlock
, flags
);
1367 /* find any devices in h->dev[] that are not in
1368 * sd[] and remove them from h->dev[], and for any
1369 * devices which have changed, remove the old device
1370 * info and add the new device info.
1371 * If minor device attributes change, just update
1372 * the existing device structure.
1377 while (i
< h
->ndevices
) {
1379 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1380 if (device_change
== DEVICE_NOT_FOUND
) {
1382 hpsa_scsi_remove_entry(h
, hostno
, i
,
1383 removed
, &nremoved
);
1384 continue; /* remove ^^^, hence i not incremented */
1385 } else if (device_change
== DEVICE_CHANGED
) {
1387 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
1388 added
, &nadded
, removed
, &nremoved
);
1389 /* Set it to NULL to prevent it from being freed
1390 * at the bottom of hpsa_update_scsi_devices()
1393 } else if (device_change
== DEVICE_UPDATED
) {
1394 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
1399 /* Now, make sure every device listed in sd[] is also
1400 * listed in h->dev[], adding them if they aren't found
1403 for (i
= 0; i
< nsds
; i
++) {
1404 if (!sd
[i
]) /* if already added above. */
1407 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1408 * as the SCSI mid-layer does not handle such devices well.
1409 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1410 * at 160Hz, and prevents the system from coming up.
1412 if (sd
[i
]->volume_offline
) {
1413 hpsa_show_volume_status(h
, sd
[i
]);
1414 dev_info(&h
->pdev
->dev
, "c%db%dt%dl%d: temporarily offline\n",
1415 h
->scsi_host
->host_no
,
1416 sd
[i
]->bus
, sd
[i
]->target
, sd
[i
]->lun
);
1420 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1421 h
->ndevices
, &entry
);
1422 if (device_change
== DEVICE_NOT_FOUND
) {
1424 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
1425 added
, &nadded
) != 0)
1427 sd
[i
] = NULL
; /* prevent from being freed later. */
1428 } else if (device_change
== DEVICE_CHANGED
) {
1429 /* should never happen... */
1431 dev_warn(&h
->pdev
->dev
,
1432 "device unexpectedly changed.\n");
1433 /* but if it does happen, we just ignore that device */
1436 spin_unlock_irqrestore(&h
->devlock
, flags
);
1438 /* Monitor devices which are in one of several NOT READY states to be
1439 * brought online later. This must be done without holding h->devlock,
1440 * so don't touch h->dev[]
1442 for (i
= 0; i
< nsds
; i
++) {
1443 if (!sd
[i
]) /* if already added above. */
1445 if (sd
[i
]->volume_offline
)
1446 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1449 /* Don't notify scsi mid layer of any changes the first time through
1450 * (or if there are no changes) scsi_scan_host will do it later the
1451 * first time through.
1453 if (hostno
== -1 || !changes
)
1457 /* Notify scsi mid layer of any removed devices */
1458 for (i
= 0; i
< nremoved
; i
++) {
1459 struct scsi_device
*sdev
=
1460 scsi_device_lookup(sh
, removed
[i
]->bus
,
1461 removed
[i
]->target
, removed
[i
]->lun
);
1463 scsi_remove_device(sdev
);
1464 scsi_device_put(sdev
);
1466 /* We don't expect to get here.
1467 * future cmds to this device will get selection
1468 * timeout as if the device was gone.
1470 dev_warn(&h
->pdev
->dev
, "didn't find c%db%dt%dl%d "
1471 " for removal.", hostno
, removed
[i
]->bus
,
1472 removed
[i
]->target
, removed
[i
]->lun
);
1478 /* Notify scsi mid layer of any added devices */
1479 for (i
= 0; i
< nadded
; i
++) {
1480 if (scsi_add_device(sh
, added
[i
]->bus
,
1481 added
[i
]->target
, added
[i
]->lun
) == 0)
1483 dev_warn(&h
->pdev
->dev
, "scsi_add_device c%db%dt%dl%d failed, "
1484 "device not added.\n", hostno
, added
[i
]->bus
,
1485 added
[i
]->target
, added
[i
]->lun
);
1486 /* now we have to remove it from h->dev,
1487 * since it didn't get added to scsi mid layer
1489 fixup_botched_add(h
, added
[i
]);
1498 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1499 * Assume's h->devlock is held.
1501 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1502 int bus
, int target
, int lun
)
1505 struct hpsa_scsi_dev_t
*sd
;
1507 for (i
= 0; i
< h
->ndevices
; i
++) {
1509 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1515 /* link sdev->hostdata to our per-device structure. */
1516 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1518 struct hpsa_scsi_dev_t
*sd
;
1519 unsigned long flags
;
1520 struct ctlr_info
*h
;
1522 h
= sdev_to_hba(sdev
);
1523 spin_lock_irqsave(&h
->devlock
, flags
);
1524 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1525 sdev_id(sdev
), sdev
->lun
);
1527 sdev
->hostdata
= sd
;
1528 if (sd
->queue_depth
)
1529 scsi_change_queue_depth(sdev
, sd
->queue_depth
);
1530 atomic_set(&sd
->ioaccel_cmds_out
, 0);
1532 spin_unlock_irqrestore(&h
->devlock
, flags
);
1536 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1538 /* nothing to do. */
1541 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1545 if (!h
->cmd_sg_list
)
1547 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1548 kfree(h
->cmd_sg_list
[i
]);
1549 h
->cmd_sg_list
[i
] = NULL
;
1551 kfree(h
->cmd_sg_list
);
1552 h
->cmd_sg_list
= NULL
;
1555 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info
*h
)
1559 if (h
->chainsize
<= 0)
1562 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1564 if (!h
->cmd_sg_list
) {
1565 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
1568 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1569 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1570 h
->chainsize
, GFP_KERNEL
);
1571 if (!h
->cmd_sg_list
[i
]) {
1572 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
1579 hpsa_free_sg_chain_blocks(h
);
1583 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1584 struct CommandList
*c
)
1586 struct SGDescriptor
*chain_sg
, *chain_block
;
1590 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1591 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1592 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
1593 chain_len
= sizeof(*chain_sg
) *
1594 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
1595 chain_sg
->Len
= cpu_to_le32(chain_len
);
1596 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
1598 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1599 /* prevent subsequent unmapping */
1600 chain_sg
->Addr
= cpu_to_le64(0);
1603 chain_sg
->Addr
= cpu_to_le64(temp64
);
1607 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
1608 struct CommandList
*c
)
1610 struct SGDescriptor
*chain_sg
;
1612 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
1615 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1616 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
1617 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
1621 /* Decode the various types of errors on ioaccel2 path.
1622 * Return 1 for any error that should generate a RAID path retry.
1623 * Return 0 for errors that don't require a RAID path retry.
1625 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
1626 struct CommandList
*c
,
1627 struct scsi_cmnd
*cmd
,
1628 struct io_accel2_cmd
*c2
)
1633 switch (c2
->error_data
.serv_response
) {
1634 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
1635 switch (c2
->error_data
.status
) {
1636 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
1638 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
1639 dev_warn(&h
->pdev
->dev
,
1640 "%s: task complete with check condition.\n",
1641 "HP SSD Smart Path");
1642 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
1643 if (c2
->error_data
.data_present
!=
1644 IOACCEL2_SENSE_DATA_PRESENT
) {
1645 memset(cmd
->sense_buffer
, 0,
1646 SCSI_SENSE_BUFFERSIZE
);
1649 /* copy the sense data */
1650 data_len
= c2
->error_data
.sense_data_len
;
1651 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
1652 data_len
= SCSI_SENSE_BUFFERSIZE
;
1653 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
1655 sizeof(c2
->error_data
.sense_data_buff
);
1656 memcpy(cmd
->sense_buffer
,
1657 c2
->error_data
.sense_data_buff
, data_len
);
1660 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
1661 dev_warn(&h
->pdev
->dev
,
1662 "%s: task complete with BUSY status.\n",
1663 "HP SSD Smart Path");
1666 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
1667 dev_warn(&h
->pdev
->dev
,
1668 "%s: task complete with reservation conflict.\n",
1669 "HP SSD Smart Path");
1672 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
1673 /* Make scsi midlayer do unlimited retries */
1674 cmd
->result
= DID_IMM_RETRY
<< 16;
1676 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
1677 dev_warn(&h
->pdev
->dev
,
1678 "%s: task complete with aborted status.\n",
1679 "HP SSD Smart Path");
1683 dev_warn(&h
->pdev
->dev
,
1684 "%s: task complete with unrecognized status: 0x%02x\n",
1685 "HP SSD Smart Path", c2
->error_data
.status
);
1690 case IOACCEL2_SERV_RESPONSE_FAILURE
:
1691 /* don't expect to get here. */
1692 dev_warn(&h
->pdev
->dev
,
1693 "unexpected delivery or target failure, status = 0x%02x\n",
1694 c2
->error_data
.status
);
1697 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
1699 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
1701 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
1702 dev_warn(&h
->pdev
->dev
, "task management function rejected.\n");
1705 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
1706 dev_warn(&h
->pdev
->dev
, "task management function invalid LUN\n");
1709 dev_warn(&h
->pdev
->dev
,
1710 "%s: Unrecognized server response: 0x%02x\n",
1711 "HP SSD Smart Path",
1712 c2
->error_data
.serv_response
);
1717 return retry
; /* retry on raid path? */
1720 static void process_ioaccel2_completion(struct ctlr_info
*h
,
1721 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
1722 struct hpsa_scsi_dev_t
*dev
)
1724 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1726 /* check for good status */
1727 if (likely(c2
->error_data
.serv_response
== 0 &&
1728 c2
->error_data
.status
== 0)) {
1730 cmd
->scsi_done(cmd
);
1734 /* Any RAID offload error results in retry which will use
1735 * the normal I/O path so the controller can handle whatever's
1738 if (is_logical_dev_addr_mode(dev
->scsi3addr
) &&
1739 c2
->error_data
.serv_response
==
1740 IOACCEL2_SERV_RESPONSE_FAILURE
) {
1741 if (c2
->error_data
.status
==
1742 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
)
1743 dev
->offload_enabled
= 0;
1747 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
))
1751 cmd
->scsi_done(cmd
);
1755 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
1756 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
1759 static void complete_scsi_command(struct CommandList
*cp
)
1761 struct scsi_cmnd
*cmd
;
1762 struct ctlr_info
*h
;
1763 struct ErrorInfo
*ei
;
1764 struct hpsa_scsi_dev_t
*dev
;
1766 unsigned char sense_key
;
1767 unsigned char asc
; /* additional sense code */
1768 unsigned char ascq
; /* additional sense code qualifier */
1769 unsigned long sense_data_size
;
1774 dev
= cmd
->device
->hostdata
;
1776 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
1777 if ((cp
->cmd_type
== CMD_SCSI
) &&
1778 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
1779 hpsa_unmap_sg_chain_block(h
, cp
);
1781 cmd
->result
= (DID_OK
<< 16); /* host byte */
1782 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
1784 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
1785 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
1787 if (cp
->cmd_type
== CMD_IOACCEL2
)
1788 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
1790 cmd
->result
|= ei
->ScsiStatus
;
1792 scsi_set_resid(cmd
, ei
->ResidualCnt
);
1793 if (ei
->CommandStatus
== 0) {
1794 if (cp
->cmd_type
== CMD_IOACCEL1
)
1795 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
1797 cmd
->scsi_done(cmd
);
1801 /* copy the sense data */
1802 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
1803 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
1805 sense_data_size
= sizeof(ei
->SenseInfo
);
1806 if (ei
->SenseLen
< sense_data_size
)
1807 sense_data_size
= ei
->SenseLen
;
1809 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
1811 /* For I/O accelerator commands, copy over some fields to the normal
1812 * CISS header used below for error handling.
1814 if (cp
->cmd_type
== CMD_IOACCEL1
) {
1815 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
1816 cp
->Header
.SGList
= scsi_sg_count(cmd
);
1817 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
1818 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
1819 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
1820 cp
->Header
.tag
= c
->tag
;
1821 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
1822 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
1824 /* Any RAID offload error results in retry which will use
1825 * the normal I/O path so the controller can handle whatever's
1828 if (is_logical_dev_addr_mode(dev
->scsi3addr
)) {
1829 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
1830 dev
->offload_enabled
= 0;
1831 INIT_WORK(&cp
->work
, hpsa_command_resubmit_worker
);
1832 queue_work_on(raw_smp_processor_id(),
1833 h
->resubmit_wq
, &cp
->work
);
1838 /* an error has occurred */
1839 switch (ei
->CommandStatus
) {
1841 case CMD_TARGET_STATUS
:
1842 if (ei
->ScsiStatus
) {
1844 sense_key
= 0xf & ei
->SenseInfo
[2];
1845 /* Get additional sense code */
1846 asc
= ei
->SenseInfo
[12];
1847 /* Get addition sense code qualifier */
1848 ascq
= ei
->SenseInfo
[13];
1850 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
1851 if (sense_key
== ABORTED_COMMAND
) {
1852 cmd
->result
|= DID_SOFT_ERROR
<< 16;
1857 /* Problem was not a check condition
1858 * Pass it up to the upper layers...
1860 if (ei
->ScsiStatus
) {
1861 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
1862 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1863 "Returning result: 0x%x\n",
1865 sense_key
, asc
, ascq
,
1867 } else { /* scsi status is zero??? How??? */
1868 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
1869 "Returning no connection.\n", cp
),
1871 /* Ordinarily, this case should never happen,
1872 * but there is a bug in some released firmware
1873 * revisions that allows it to happen if, for
1874 * example, a 4100 backplane loses power and
1875 * the tape drive is in it. We assume that
1876 * it's a fatal error of some kind because we
1877 * can't show that it wasn't. We will make it
1878 * look like selection timeout since that is
1879 * the most common reason for this to occur,
1880 * and it's severe enough.
1883 cmd
->result
= DID_NO_CONNECT
<< 16;
1887 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1889 case CMD_DATA_OVERRUN
:
1890 dev_warn(&h
->pdev
->dev
,
1891 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
1894 /* print_bytes(cp, sizeof(*cp), 1, 0);
1896 /* We get CMD_INVALID if you address a non-existent device
1897 * instead of a selection timeout (no response). You will
1898 * see this if you yank out a drive, then try to access it.
1899 * This is kind of a shame because it means that any other
1900 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1901 * missing target. */
1902 cmd
->result
= DID_NO_CONNECT
<< 16;
1905 case CMD_PROTOCOL_ERR
:
1906 cmd
->result
= DID_ERROR
<< 16;
1907 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
1910 case CMD_HARDWARE_ERR
:
1911 cmd
->result
= DID_ERROR
<< 16;
1912 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
1915 case CMD_CONNECTION_LOST
:
1916 cmd
->result
= DID_ERROR
<< 16;
1917 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
1921 cmd
->result
= DID_ABORT
<< 16;
1922 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
1923 cp
->Request
.CDB
, ei
->ScsiStatus
);
1925 case CMD_ABORT_FAILED
:
1926 cmd
->result
= DID_ERROR
<< 16;
1927 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
1930 case CMD_UNSOLICITED_ABORT
:
1931 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
1932 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
1936 cmd
->result
= DID_TIME_OUT
<< 16;
1937 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
1940 case CMD_UNABORTABLE
:
1941 cmd
->result
= DID_ERROR
<< 16;
1942 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
1944 case CMD_IOACCEL_DISABLED
:
1945 /* This only handles the direct pass-through case since RAID
1946 * offload is handled above. Just attempt a retry.
1948 cmd
->result
= DID_SOFT_ERROR
<< 16;
1949 dev_warn(&h
->pdev
->dev
,
1950 "cp %p had HP SSD Smart Path error\n", cp
);
1953 cmd
->result
= DID_ERROR
<< 16;
1954 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
1955 cp
, ei
->CommandStatus
);
1958 cmd
->scsi_done(cmd
);
1961 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
1962 struct CommandList
*c
, int sg_used
, int data_direction
)
1966 for (i
= 0; i
< sg_used
; i
++)
1967 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
1968 le32_to_cpu(c
->SG
[i
].Len
),
1972 static int hpsa_map_one(struct pci_dev
*pdev
,
1973 struct CommandList
*cp
,
1980 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
1981 cp
->Header
.SGList
= 0;
1982 cp
->Header
.SGTotal
= cpu_to_le16(0);
1986 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
1987 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
1988 /* Prevent subsequent unmap of something never mapped */
1989 cp
->Header
.SGList
= 0;
1990 cp
->Header
.SGTotal
= cpu_to_le16(0);
1993 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
1994 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
1995 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
1996 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
1997 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2001 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2002 struct CommandList
*c
)
2004 DECLARE_COMPLETION_ONSTACK(wait
);
2007 enqueue_cmd_and_start_io(h
, c
);
2008 wait_for_completion(&wait
);
2011 static u32
lockup_detected(struct ctlr_info
*h
)
2014 u32 rc
, *lockup_detected
;
2017 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2018 rc
= *lockup_detected
;
2023 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info
*h
,
2024 struct CommandList
*c
)
2026 /* If controller lockup detected, fake a hardware error. */
2027 if (unlikely(lockup_detected(h
)))
2028 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
2030 hpsa_scsi_do_simple_cmd_core(h
, c
);
2033 #define MAX_DRIVER_CMD_RETRIES 25
2034 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2035 struct CommandList
*c
, int data_direction
)
2037 int backoff_time
= 10, retry_count
= 0;
2040 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2041 hpsa_scsi_do_simple_cmd_core(h
, c
);
2043 if (retry_count
> 3) {
2044 msleep(backoff_time
);
2045 if (backoff_time
< 1000)
2048 } while ((check_for_unit_attention(h
, c
) ||
2049 check_for_busy(h
, c
)) &&
2050 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2051 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2054 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2055 struct CommandList
*c
)
2057 const u8
*cdb
= c
->Request
.CDB
;
2058 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2060 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2061 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2062 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2063 lun
[4], lun
[5], lun
[6], lun
[7],
2064 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2065 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2066 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2067 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2070 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2071 struct CommandList
*cp
)
2073 const struct ErrorInfo
*ei
= cp
->err_info
;
2074 struct device
*d
= &cp
->h
->pdev
->dev
;
2075 const u8
*sd
= ei
->SenseInfo
;
2077 switch (ei
->CommandStatus
) {
2078 case CMD_TARGET_STATUS
:
2079 hpsa_print_cmd(h
, "SCSI status", cp
);
2080 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2081 dev_warn(d
, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2082 sd
[2] & 0x0f, sd
[12], sd
[13]);
2084 dev_warn(d
, "SCSI Status = %02x\n", ei
->ScsiStatus
);
2085 if (ei
->ScsiStatus
== 0)
2086 dev_warn(d
, "SCSI status is abnormally zero. "
2087 "(probably indicates selection timeout "
2088 "reported incorrectly due to a known "
2089 "firmware bug, circa July, 2001.)\n");
2091 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2093 case CMD_DATA_OVERRUN
:
2094 hpsa_print_cmd(h
, "overrun condition", cp
);
2097 /* controller unfortunately reports SCSI passthru's
2098 * to non-existent targets as invalid commands.
2100 hpsa_print_cmd(h
, "invalid command", cp
);
2101 dev_warn(d
, "probably means device no longer present\n");
2104 case CMD_PROTOCOL_ERR
:
2105 hpsa_print_cmd(h
, "protocol error", cp
);
2107 case CMD_HARDWARE_ERR
:
2108 hpsa_print_cmd(h
, "hardware error", cp
);
2110 case CMD_CONNECTION_LOST
:
2111 hpsa_print_cmd(h
, "connection lost", cp
);
2114 hpsa_print_cmd(h
, "aborted", cp
);
2116 case CMD_ABORT_FAILED
:
2117 hpsa_print_cmd(h
, "abort failed", cp
);
2119 case CMD_UNSOLICITED_ABORT
:
2120 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2123 hpsa_print_cmd(h
, "timed out", cp
);
2125 case CMD_UNABORTABLE
:
2126 hpsa_print_cmd(h
, "unabortable", cp
);
2129 hpsa_print_cmd(h
, "unknown status", cp
);
2130 dev_warn(d
, "Unknown command status %x\n",
2135 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2136 u16 page
, unsigned char *buf
,
2137 unsigned char bufsize
)
2140 struct CommandList
*c
;
2141 struct ErrorInfo
*ei
;
2146 dev_warn(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2150 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2151 page
, scsi3addr
, TYPE_CMD
)) {
2155 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2157 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2158 hpsa_scsi_interpret_error(h
, c
);
2166 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info
*h
,
2167 unsigned char *scsi3addr
, unsigned char page
,
2168 struct bmic_controller_parameters
*buf
, size_t bufsize
)
2171 struct CommandList
*c
;
2172 struct ErrorInfo
*ei
;
2175 if (c
== NULL
) { /* trouble... */
2176 dev_warn(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2180 if (fill_cmd(c
, BMIC_SENSE_CONTROLLER_PARAMETERS
, h
, buf
, bufsize
,
2181 page
, scsi3addr
, TYPE_CMD
)) {
2185 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2187 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2188 hpsa_scsi_interpret_error(h
, c
);
2196 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2200 struct CommandList
*c
;
2201 struct ErrorInfo
*ei
;
2205 if (c
== NULL
) { /* trouble... */
2206 dev_warn(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2210 /* fill_cmd can't fail here, no data buffer to map. */
2211 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
2212 scsi3addr
, TYPE_MSG
);
2213 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to LUN reset */
2214 hpsa_scsi_do_simple_cmd_core(h
, c
);
2215 /* no unmap needed here because no data xfer. */
2218 if (ei
->CommandStatus
!= 0) {
2219 hpsa_scsi_interpret_error(h
, c
);
2226 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2227 unsigned char *scsi3addr
, unsigned char *raid_level
)
2232 *raid_level
= RAID_UNKNOWN
;
2233 buf
= kzalloc(64, GFP_KERNEL
);
2236 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2238 *raid_level
= buf
[8];
2239 if (*raid_level
> RAID_UNKNOWN
)
2240 *raid_level
= RAID_UNKNOWN
;
2245 #define HPSA_MAP_DEBUG
2246 #ifdef HPSA_MAP_DEBUG
2247 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2248 struct raid_map_data
*map_buff
)
2250 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2252 u16 map_cnt
, row_cnt
, disks_per_row
;
2257 /* Show details only if debugging has been activated. */
2258 if (h
->raid_offload_debug
< 2)
2261 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
2262 le32_to_cpu(map_buff
->structure_size
));
2263 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
2264 le32_to_cpu(map_buff
->volume_blk_size
));
2265 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
2266 le64_to_cpu(map_buff
->volume_blk_cnt
));
2267 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
2268 map_buff
->phys_blk_shift
);
2269 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
2270 map_buff
->parity_rotation_shift
);
2271 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
2272 le16_to_cpu(map_buff
->strip_size
));
2273 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
2274 le64_to_cpu(map_buff
->disk_starting_blk
));
2275 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
2276 le64_to_cpu(map_buff
->disk_blk_cnt
));
2277 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
2278 le16_to_cpu(map_buff
->data_disks_per_row
));
2279 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
2280 le16_to_cpu(map_buff
->metadata_disks_per_row
));
2281 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
2282 le16_to_cpu(map_buff
->row_cnt
));
2283 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
2284 le16_to_cpu(map_buff
->layout_map_count
));
2285 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
2286 le16_to_cpu(map_buff
->flags
));
2287 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
2288 le16_to_cpu(map_buff
->flags
) &
2289 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
2290 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
2291 le16_to_cpu(map_buff
->dekindex
));
2292 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
2293 for (map
= 0; map
< map_cnt
; map
++) {
2294 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
2295 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
2296 for (row
= 0; row
< row_cnt
; row
++) {
2297 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
2299 le16_to_cpu(map_buff
->data_disks_per_row
);
2300 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2301 dev_info(&h
->pdev
->dev
,
2302 " D%02u: h=0x%04x xor=%u,%u\n",
2303 col
, dd
->ioaccel_handle
,
2304 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2306 le16_to_cpu(map_buff
->metadata_disks_per_row
);
2307 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2308 dev_info(&h
->pdev
->dev
,
2309 " M%02u: h=0x%04x xor=%u,%u\n",
2310 col
, dd
->ioaccel_handle
,
2311 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2316 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
2317 __attribute__((unused
)) int rc
,
2318 __attribute__((unused
)) struct raid_map_data
*map_buff
)
2323 static int hpsa_get_raid_map(struct ctlr_info
*h
,
2324 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2327 struct CommandList
*c
;
2328 struct ErrorInfo
*ei
;
2332 dev_warn(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2335 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
2336 sizeof(this_device
->raid_map
), 0,
2337 scsi3addr
, TYPE_CMD
)) {
2338 dev_warn(&h
->pdev
->dev
, "Out of memory in hpsa_get_raid_map()\n");
2342 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2344 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2345 hpsa_scsi_interpret_error(h
, c
);
2351 /* @todo in the future, dynamically allocate RAID map memory */
2352 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
2353 sizeof(this_device
->raid_map
)) {
2354 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
2357 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
2361 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
2362 unsigned char scsi3addr
[], u16 bmic_device_index
,
2363 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
2366 struct CommandList
*c
;
2367 struct ErrorInfo
*ei
;
2370 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
2371 0, RAID_CTLR_LUNID
, TYPE_CMD
);
2375 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
2376 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
2378 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2380 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2381 hpsa_scsi_interpret_error(h
, c
);
2389 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
2390 unsigned char scsi3addr
[], u8 page
)
2395 unsigned char *buf
, bufsize
;
2397 buf
= kzalloc(256, GFP_KERNEL
);
2401 /* Get the size of the page list first */
2402 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2403 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
2404 buf
, HPSA_VPD_HEADER_SZ
);
2406 goto exit_unsupported
;
2408 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
2409 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
2413 /* Get the whole VPD page list */
2414 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2415 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
2418 goto exit_unsupported
;
2421 for (i
= 1; i
<= pages
; i
++)
2422 if (buf
[3 + i
] == page
)
2423 goto exit_supported
;
2432 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
2433 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2439 this_device
->offload_config
= 0;
2440 this_device
->offload_enabled
= 0;
2442 buf
= kzalloc(64, GFP_KERNEL
);
2445 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
2447 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
2448 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
2452 #define IOACCEL_STATUS_BYTE 4
2453 #define OFFLOAD_CONFIGURED_BIT 0x01
2454 #define OFFLOAD_ENABLED_BIT 0x02
2455 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
2456 this_device
->offload_config
=
2457 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
2458 if (this_device
->offload_config
) {
2459 this_device
->offload_enabled
=
2460 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
2461 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
2462 this_device
->offload_enabled
= 0;
2469 /* Get the device id from inquiry page 0x83 */
2470 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2471 unsigned char *device_id
, int buflen
)
2478 buf
= kzalloc(64, GFP_KERNEL
);
2481 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
2483 memcpy(device_id
, &buf
[8], buflen
);
2488 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
2489 void *buf
, int bufsize
,
2490 int extended_response
)
2493 struct CommandList
*c
;
2494 unsigned char scsi3addr
[8];
2495 struct ErrorInfo
*ei
;
2498 if (c
== NULL
) { /* trouble... */
2499 dev_err(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2502 /* address the controller */
2503 memset(scsi3addr
, 0, sizeof(scsi3addr
));
2504 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
2505 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
2509 if (extended_response
)
2510 c
->Request
.CDB
[1] = extended_response
;
2511 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
2513 if (ei
->CommandStatus
!= 0 &&
2514 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2515 hpsa_scsi_interpret_error(h
, c
);
2518 struct ReportLUNdata
*rld
= buf
;
2520 if (rld
->extended_response_flag
!= extended_response
) {
2521 dev_err(&h
->pdev
->dev
,
2522 "report luns requested format %u, got %u\n",
2524 rld
->extended_response_flag
);
2533 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
2534 struct ReportExtendedLUNdata
*buf
, int bufsize
)
2536 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
2537 HPSA_REPORT_PHYS_EXTENDED
);
2540 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
2541 struct ReportLUNdata
*buf
, int bufsize
)
2543 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
2546 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
2547 int bus
, int target
, int lun
)
2550 device
->target
= target
;
2554 /* Use VPD inquiry to get details of volume status */
2555 static int hpsa_get_volume_status(struct ctlr_info
*h
,
2556 unsigned char scsi3addr
[])
2563 buf
= kzalloc(64, GFP_KERNEL
);
2565 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
2567 /* Does controller have VPD for logical volume status? */
2568 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
2571 /* Get the size of the VPD return buffer */
2572 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
2573 buf
, HPSA_VPD_HEADER_SZ
);
2578 /* Now get the whole VPD buffer */
2579 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
2580 buf
, size
+ HPSA_VPD_HEADER_SZ
);
2583 status
= buf
[4]; /* status byte */
2589 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
2592 /* Determine offline status of a volume.
2595 * 0xff (offline for unknown reasons)
2596 * # (integer code indicating one of several NOT READY states
2597 * describing why a volume is to be kept offline)
2599 static int hpsa_volume_offline(struct ctlr_info
*h
,
2600 unsigned char scsi3addr
[])
2602 struct CommandList
*c
;
2603 unsigned char *sense
, sense_key
, asc
, ascq
;
2607 #define ASC_LUN_NOT_READY 0x04
2608 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2609 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2614 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
2615 hpsa_scsi_do_simple_cmd_core(h
, c
);
2616 sense
= c
->err_info
->SenseInfo
;
2617 sense_key
= sense
[2];
2620 cmd_status
= c
->err_info
->CommandStatus
;
2621 scsi_status
= c
->err_info
->ScsiStatus
;
2623 /* Is the volume 'not ready'? */
2624 if (cmd_status
!= CMD_TARGET_STATUS
||
2625 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
2626 sense_key
!= NOT_READY
||
2627 asc
!= ASC_LUN_NOT_READY
) {
2631 /* Determine the reason for not ready state */
2632 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
2634 /* Keep volume offline in certain cases: */
2636 case HPSA_LV_UNDERGOING_ERASE
:
2637 case HPSA_LV_UNDERGOING_RPI
:
2638 case HPSA_LV_PENDING_RPI
:
2639 case HPSA_LV_ENCRYPTED_NO_KEY
:
2640 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
2641 case HPSA_LV_UNDERGOING_ENCRYPTION
:
2642 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
2643 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
2645 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
2646 /* If VPD status page isn't available,
2647 * use ASC/ASCQ to determine state
2649 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
2650 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
2659 static int hpsa_update_device_info(struct ctlr_info
*h
,
2660 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
2661 unsigned char *is_OBDR_device
)
2664 #define OBDR_SIG_OFFSET 43
2665 #define OBDR_TAPE_SIG "$DR-10"
2666 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2667 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2669 unsigned char *inq_buff
;
2670 unsigned char *obdr_sig
;
2672 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
2676 /* Do an inquiry to the device to see what it is. */
2677 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
2678 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
2679 /* Inquiry failed (msg printed already) */
2680 dev_err(&h
->pdev
->dev
,
2681 "hpsa_update_device_info: inquiry failed\n");
2685 this_device
->devtype
= (inq_buff
[0] & 0x1f);
2686 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
2687 memcpy(this_device
->vendor
, &inq_buff
[8],
2688 sizeof(this_device
->vendor
));
2689 memcpy(this_device
->model
, &inq_buff
[16],
2690 sizeof(this_device
->model
));
2691 memset(this_device
->device_id
, 0,
2692 sizeof(this_device
->device_id
));
2693 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
2694 sizeof(this_device
->device_id
));
2696 if (this_device
->devtype
== TYPE_DISK
&&
2697 is_logical_dev_addr_mode(scsi3addr
)) {
2700 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
2701 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
2702 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
2703 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
2704 if (volume_offline
< 0 || volume_offline
> 0xff)
2705 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
2706 this_device
->volume_offline
= volume_offline
& 0xff;
2708 this_device
->raid_level
= RAID_UNKNOWN
;
2709 this_device
->offload_config
= 0;
2710 this_device
->offload_enabled
= 0;
2711 this_device
->volume_offline
= 0;
2712 this_device
->queue_depth
= h
->nr_cmds
;
2715 if (is_OBDR_device
) {
2716 /* See if this is a One-Button-Disaster-Recovery device
2717 * by looking for "$DR-10" at offset 43 in inquiry data.
2719 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
2720 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
2721 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
2722 OBDR_SIG_LEN
) == 0);
2733 static unsigned char *ext_target_model
[] = {
2743 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
2747 for (i
= 0; ext_target_model
[i
]; i
++)
2748 if (strncmp(device
->model
, ext_target_model
[i
],
2749 strlen(ext_target_model
[i
])) == 0)
2754 /* Helper function to assign bus, target, lun mapping of devices.
2755 * Puts non-external target logical volumes on bus 0, external target logical
2756 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2757 * Logical drive target and lun are assigned at this time, but
2758 * physical device lun and target assignment are deferred (assigned
2759 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2761 static void figure_bus_target_lun(struct ctlr_info
*h
,
2762 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
2764 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
2766 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
2767 /* physical device, target and lun filled in later */
2768 if (is_hba_lunid(lunaddrbytes
))
2769 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
2771 /* defer target, lun assignment for physical devices */
2772 hpsa_set_bus_target_lun(device
, 2, -1, -1);
2775 /* It's a logical device */
2776 if (is_ext_target(h
, device
)) {
2777 /* external target way, put logicals on bus 1
2778 * and match target/lun numbers box
2779 * reports, other smart array, bus 0, target 0, match lunid
2781 hpsa_set_bus_target_lun(device
,
2782 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
2785 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
2789 * If there is no lun 0 on a target, linux won't find any devices.
2790 * For the external targets (arrays), we have to manually detect the enclosure
2791 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2792 * it for some reason. *tmpdevice is the target we're adding,
2793 * this_device is a pointer into the current element of currentsd[]
2794 * that we're building up in update_scsi_devices(), below.
2795 * lunzerobits is a bitmap that tracks which targets already have a
2797 * Returns 1 if an enclosure was added, 0 if not.
2799 static int add_ext_target_dev(struct ctlr_info
*h
,
2800 struct hpsa_scsi_dev_t
*tmpdevice
,
2801 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
2802 unsigned long lunzerobits
[], int *n_ext_target_devs
)
2804 unsigned char scsi3addr
[8];
2806 if (test_bit(tmpdevice
->target
, lunzerobits
))
2807 return 0; /* There is already a lun 0 on this target. */
2809 if (!is_logical_dev_addr_mode(lunaddrbytes
))
2810 return 0; /* It's the logical targets that may lack lun 0. */
2812 if (!is_ext_target(h
, tmpdevice
))
2813 return 0; /* Only external target devices have this problem. */
2815 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
2818 memset(scsi3addr
, 0, 8);
2819 scsi3addr
[3] = tmpdevice
->target
;
2820 if (is_hba_lunid(scsi3addr
))
2821 return 0; /* Don't add the RAID controller here. */
2823 if (is_scsi_rev_5(h
))
2824 return 0; /* p1210m doesn't need to do this. */
2826 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
2827 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
2828 "target devices exceeded. Check your hardware "
2833 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
2835 (*n_ext_target_devs
)++;
2836 hpsa_set_bus_target_lun(this_device
,
2837 tmpdevice
->bus
, tmpdevice
->target
, 0);
2838 set_bit(tmpdevice
->target
, lunzerobits
);
2843 * Get address of physical disk used for an ioaccel2 mode command:
2844 * 1. Extract ioaccel2 handle from the command.
2845 * 2. Find a matching ioaccel2 handle from list of physical disks.
2847 * 1 and set scsi3addr to address of matching physical
2848 * 0 if no matching physical disk was found.
2850 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
2851 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
2853 struct ReportExtendedLUNdata
*physicals
= NULL
;
2854 int responsesize
= 24; /* size of physical extended response */
2855 int reportsize
= sizeof(*physicals
) + HPSA_MAX_PHYS_LUN
* responsesize
;
2856 u32 nphysicals
= 0; /* number of reported physical devs */
2857 int found
= 0; /* found match (1) or not (0) */
2858 u32 find
; /* handle we need to match */
2860 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
2861 struct hpsa_scsi_dev_t
*d
; /* device of request being aborted */
2862 struct io_accel2_cmd
*c2a
; /* ioaccel2 command to abort */
2863 __le32 it_nexus
; /* 4 byte device handle for the ioaccel2 cmd */
2864 __le32 scsi_nexus
; /* 4 byte device handle for the ioaccel2 cmd */
2866 if (ioaccel2_cmd_to_abort
->cmd_type
!= CMD_IOACCEL2
)
2867 return 0; /* no match */
2869 /* point to the ioaccel2 device handle */
2870 c2a
= &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
2872 return 0; /* no match */
2874 scmd
= (struct scsi_cmnd
*) ioaccel2_cmd_to_abort
->scsi_cmd
;
2876 return 0; /* no match */
2878 d
= scmd
->device
->hostdata
;
2880 return 0; /* no match */
2882 it_nexus
= cpu_to_le32(d
->ioaccel_handle
);
2883 scsi_nexus
= c2a
->scsi_nexus
;
2884 find
= le32_to_cpu(c2a
->scsi_nexus
);
2886 if (h
->raid_offload_debug
> 0)
2887 dev_info(&h
->pdev
->dev
,
2888 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2889 __func__
, scsi_nexus
,
2890 d
->device_id
[0], d
->device_id
[1], d
->device_id
[2],
2891 d
->device_id
[3], d
->device_id
[4], d
->device_id
[5],
2892 d
->device_id
[6], d
->device_id
[7], d
->device_id
[8],
2893 d
->device_id
[9], d
->device_id
[10], d
->device_id
[11],
2894 d
->device_id
[12], d
->device_id
[13], d
->device_id
[14],
2897 /* Get the list of physical devices */
2898 physicals
= kzalloc(reportsize
, GFP_KERNEL
);
2899 if (physicals
== NULL
)
2901 if (hpsa_scsi_do_report_phys_luns(h
, physicals
, reportsize
)) {
2902 dev_err(&h
->pdev
->dev
,
2903 "Can't lookup %s device handle: report physical LUNs failed.\n",
2904 "HP SSD Smart Path");
2908 nphysicals
= be32_to_cpu(*((__be32
*)physicals
->LUNListLength
)) /
2911 /* find ioaccel2 handle in list of physicals: */
2912 for (i
= 0; i
< nphysicals
; i
++) {
2913 struct ext_report_lun_entry
*entry
= &physicals
->LUN
[i
];
2915 /* handle is in bytes 28-31 of each lun */
2916 if (entry
->ioaccel_handle
!= find
)
2917 continue; /* didn't match */
2919 memcpy(scsi3addr
, entry
->lunid
, 8);
2920 if (h
->raid_offload_debug
> 0)
2921 dev_info(&h
->pdev
->dev
,
2922 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2924 entry
->ioaccel_handle
, scsi3addr
);
2925 break; /* found it */
2936 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2937 * logdev. The number of luns in physdev and logdev are returned in
2938 * *nphysicals and *nlogicals, respectively.
2939 * Returns 0 on success, -1 otherwise.
2941 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
2942 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
2943 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
2945 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
2946 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
2949 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
2950 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
2951 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
2952 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
2953 *nphysicals
= HPSA_MAX_PHYS_LUN
;
2955 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
2956 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
2959 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
2960 /* Reject Logicals in excess of our max capability. */
2961 if (*nlogicals
> HPSA_MAX_LUN
) {
2962 dev_warn(&h
->pdev
->dev
,
2963 "maximum logical LUNs (%d) exceeded. "
2964 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
2965 *nlogicals
- HPSA_MAX_LUN
);
2966 *nlogicals
= HPSA_MAX_LUN
;
2968 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
2969 dev_warn(&h
->pdev
->dev
,
2970 "maximum logical + physical LUNs (%d) exceeded. "
2971 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
2972 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
2973 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
2978 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
2979 int i
, int nphysicals
, int nlogicals
,
2980 struct ReportExtendedLUNdata
*physdev_list
,
2981 struct ReportLUNdata
*logdev_list
)
2983 /* Helper function, figure out where the LUN ID info is coming from
2984 * given index i, lists of physical and logical devices, where in
2985 * the list the raid controller is supposed to appear (first or last)
2988 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
2989 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
2991 if (i
== raid_ctlr_position
)
2992 return RAID_CTLR_LUNID
;
2994 if (i
< logicals_start
)
2995 return &physdev_list
->LUN
[i
-
2996 (raid_ctlr_position
== 0)].lunid
[0];
2998 if (i
< last_device
)
2999 return &logdev_list
->LUN
[i
- nphysicals
-
3000 (raid_ctlr_position
== 0)][0];
3005 static int hpsa_hba_mode_enabled(struct ctlr_info
*h
)
3008 int hba_mode_enabled
;
3009 struct bmic_controller_parameters
*ctlr_params
;
3010 ctlr_params
= kzalloc(sizeof(struct bmic_controller_parameters
),
3015 rc
= hpsa_bmic_ctrl_mode_sense(h
, RAID_CTLR_LUNID
, 0, ctlr_params
,
3016 sizeof(struct bmic_controller_parameters
));
3023 ((ctlr_params
->nvram_flags
& HBA_MODE_ENABLED_FLAG
) != 0);
3025 return hba_mode_enabled
;
3028 /* get physical drive ioaccel handle and queue depth */
3029 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3030 struct hpsa_scsi_dev_t
*dev
,
3032 struct bmic_identify_physical_device
*id_phys
)
3035 struct ext_report_lun_entry
*rle
=
3036 (struct ext_report_lun_entry
*) lunaddrbytes
;
3038 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3039 memset(id_phys
, 0, sizeof(*id_phys
));
3040 rc
= hpsa_bmic_id_physical_device(h
, lunaddrbytes
,
3041 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
), id_phys
,
3044 /* Reserve space for FW operations */
3045 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3046 #define DRIVE_QUEUE_DEPTH 7
3048 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
3049 DRIVE_CMDS_RESERVED_FOR_FW
;
3051 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
3052 atomic_set(&dev
->ioaccel_cmds_out
, 0);
3055 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
3057 /* the idea here is we could get notified
3058 * that some devices have changed, so we do a report
3059 * physical luns and report logical luns cmd, and adjust
3060 * our list of devices accordingly.
3062 * The scsi3addr's of devices won't change so long as the
3063 * adapter is not reset. That means we can rescan and
3064 * tell which devices we already know about, vs. new
3065 * devices, vs. disappearing devices.
3067 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
3068 struct ReportLUNdata
*logdev_list
= NULL
;
3069 struct bmic_identify_physical_device
*id_phys
= NULL
;
3072 u32 ndev_allocated
= 0;
3073 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
3075 int i
, n_ext_target_devs
, ndevs_to_allocate
;
3076 int raid_ctlr_position
;
3077 int rescan_hba_mode
;
3078 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
3080 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
3081 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
3082 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
3083 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
3084 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3086 if (!currentsd
|| !physdev_list
|| !logdev_list
||
3087 !tmpdevice
|| !id_phys
) {
3088 dev_err(&h
->pdev
->dev
, "out of memory\n");
3091 memset(lunzerobits
, 0, sizeof(lunzerobits
));
3093 rescan_hba_mode
= hpsa_hba_mode_enabled(h
);
3094 if (rescan_hba_mode
< 0)
3097 if (!h
->hba_mode_enabled
&& rescan_hba_mode
)
3098 dev_warn(&h
->pdev
->dev
, "HBA mode enabled\n");
3099 else if (h
->hba_mode_enabled
&& !rescan_hba_mode
)
3100 dev_warn(&h
->pdev
->dev
, "HBA mode disabled\n");
3102 h
->hba_mode_enabled
= rescan_hba_mode
;
3104 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
3105 logdev_list
, &nlogicals
))
3108 /* We might see up to the maximum number of logical and physical disks
3109 * plus external target devices, and a device for the local RAID
3112 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
3114 /* Allocate the per device structures */
3115 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
3116 if (i
>= HPSA_MAX_DEVICES
) {
3117 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
3118 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
3119 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
3123 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
3124 if (!currentsd
[i
]) {
3125 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
3126 __FILE__
, __LINE__
);
3132 if (is_scsi_rev_5(h
))
3133 raid_ctlr_position
= 0;
3135 raid_ctlr_position
= nphysicals
+ nlogicals
;
3137 /* adjust our table of devices */
3138 n_ext_target_devs
= 0;
3139 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
3140 u8
*lunaddrbytes
, is_OBDR
= 0;
3142 /* Figure out where the LUN ID info is coming from */
3143 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
3144 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
3145 /* skip masked physical devices. */
3146 if (lunaddrbytes
[3] & 0xC0 &&
3147 i
< nphysicals
+ (raid_ctlr_position
== 0))
3150 /* Get device type, vendor, model, device id */
3151 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
3153 continue; /* skip it if we can't talk to it. */
3154 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
3155 this_device
= currentsd
[ncurrent
];
3158 * For external target devices, we have to insert a LUN 0 which
3159 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3160 * is nonetheless an enclosure device there. We have to
3161 * present that otherwise linux won't find anything if
3162 * there is no lun 0.
3164 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
3165 lunaddrbytes
, lunzerobits
,
3166 &n_ext_target_devs
)) {
3168 this_device
= currentsd
[ncurrent
];
3171 *this_device
= *tmpdevice
;
3173 switch (this_device
->devtype
) {
3175 /* We don't *really* support actual CD-ROM devices,
3176 * just "One Button Disaster Recovery" tape drive
3177 * which temporarily pretends to be a CD-ROM drive.
3178 * So we check that the device is really an OBDR tape
3179 * device by checking for "$DR-10" in bytes 43-48 of
3186 if (h
->hba_mode_enabled
) {
3187 /* never use raid mapper in HBA mode */
3188 this_device
->offload_enabled
= 0;
3191 } else if (h
->acciopath_status
) {
3192 if (i
>= nphysicals
) {
3202 if (h
->transMethod
& CFGTBL_Trans_io_accel1
||
3203 h
->transMethod
& CFGTBL_Trans_io_accel2
) {
3204 hpsa_get_ioaccel_drive_info(h
, this_device
,
3205 lunaddrbytes
, id_phys
);
3206 atomic_set(&this_device
->ioaccel_cmds_out
, 0);
3211 case TYPE_MEDIUM_CHANGER
:
3215 /* Only present the Smartarray HBA as a RAID controller.
3216 * If it's a RAID controller other than the HBA itself
3217 * (an external RAID controller, MSA500 or similar)
3220 if (!is_hba_lunid(lunaddrbytes
))
3227 if (ncurrent
>= HPSA_MAX_DEVICES
)
3230 hpsa_update_log_drive_phys_drive_ptrs(h
, currentsd
, ncurrent
);
3231 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
3234 for (i
= 0; i
< ndev_allocated
; i
++)
3235 kfree(currentsd
[i
]);
3237 kfree(physdev_list
);
3242 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
3243 struct scatterlist
*sg
)
3245 u64 addr64
= (u64
) sg_dma_address(sg
);
3246 unsigned int len
= sg_dma_len(sg
);
3248 desc
->Addr
= cpu_to_le64(addr64
);
3249 desc
->Len
= cpu_to_le32(len
);
3254 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3255 * dma mapping and fills in the scatter gather entries of the
3258 static int hpsa_scatter_gather(struct ctlr_info
*h
,
3259 struct CommandList
*cp
,
3260 struct scsi_cmnd
*cmd
)
3262 struct scatterlist
*sg
;
3263 int use_sg
, i
, sg_index
, chained
;
3264 struct SGDescriptor
*curr_sg
;
3266 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
3268 use_sg
= scsi_dma_map(cmd
);
3273 goto sglist_finished
;
3278 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
3279 if (i
== h
->max_cmd_sg_entries
- 1 &&
3280 use_sg
> h
->max_cmd_sg_entries
) {
3282 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
3285 hpsa_set_sg_descriptor(curr_sg
, sg
);
3289 /* Back the pointer up to the last entry and mark it as "last". */
3290 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
3292 if (use_sg
+ chained
> h
->maxSG
)
3293 h
->maxSG
= use_sg
+ chained
;
3296 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
3297 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
3298 if (hpsa_map_sg_chain_block(h
, cp
)) {
3299 scsi_dma_unmap(cmd
);
3307 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
3308 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
3312 #define IO_ACCEL_INELIGIBLE (1)
3313 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
3319 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3326 if (*cdb_len
== 6) {
3327 block
= (((u32
) cdb
[2]) << 8) | cdb
[3];
3330 BUG_ON(*cdb_len
!= 12);
3331 block
= (((u32
) cdb
[2]) << 24) |
3332 (((u32
) cdb
[3]) << 16) |
3333 (((u32
) cdb
[4]) << 8) |
3336 (((u32
) cdb
[6]) << 24) |
3337 (((u32
) cdb
[7]) << 16) |
3338 (((u32
) cdb
[8]) << 8) |
3341 if (block_cnt
> 0xffff)
3342 return IO_ACCEL_INELIGIBLE
;
3344 cdb
[0] = is_write
? WRITE_10
: READ_10
;
3346 cdb
[2] = (u8
) (block
>> 24);
3347 cdb
[3] = (u8
) (block
>> 16);
3348 cdb
[4] = (u8
) (block
>> 8);
3349 cdb
[5] = (u8
) (block
);
3351 cdb
[7] = (u8
) (block_cnt
>> 8);
3352 cdb
[8] = (u8
) (block_cnt
);
3360 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
3361 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
3362 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
3364 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3365 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
3367 unsigned int total_len
= 0;
3368 struct scatterlist
*sg
;
3371 struct SGDescriptor
*curr_sg
;
3372 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
3374 /* TODO: implement chaining support */
3375 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
3376 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3377 return IO_ACCEL_INELIGIBLE
;
3380 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
3382 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
3383 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3384 return IO_ACCEL_INELIGIBLE
;
3387 c
->cmd_type
= CMD_IOACCEL1
;
3389 /* Adjust the DMA address to point to the accelerated command buffer */
3390 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
3391 (c
->cmdindex
* sizeof(*cp
));
3392 BUG_ON(c
->busaddr
& 0x0000007F);
3394 use_sg
= scsi_dma_map(cmd
);
3396 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3402 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
3403 addr64
= (u64
) sg_dma_address(sg
);
3404 len
= sg_dma_len(sg
);
3406 curr_sg
->Addr
= cpu_to_le64(addr64
);
3407 curr_sg
->Len
= cpu_to_le32(len
);
3408 curr_sg
->Ext
= cpu_to_le32(0);
3411 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
3413 switch (cmd
->sc_data_direction
) {
3415 control
|= IOACCEL1_CONTROL_DATA_OUT
;
3417 case DMA_FROM_DEVICE
:
3418 control
|= IOACCEL1_CONTROL_DATA_IN
;
3421 control
|= IOACCEL1_CONTROL_NODATAXFER
;
3424 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
3425 cmd
->sc_data_direction
);
3430 control
|= IOACCEL1_CONTROL_NODATAXFER
;
3433 c
->Header
.SGList
= use_sg
;
3434 /* Fill out the command structure to submit */
3435 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
3436 cp
->transfer_len
= cpu_to_le32(total_len
);
3437 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
3438 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
3439 cp
->control
= cpu_to_le32(control
);
3440 memcpy(cp
->CDB
, cdb
, cdb_len
);
3441 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
3442 /* Tag was already set at init time. */
3443 enqueue_cmd_and_start_io(h
, c
);
3448 * Queue a command directly to a device behind the controller using the
3449 * I/O accelerator path.
3451 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
3452 struct CommandList
*c
)
3454 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3455 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
3459 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
3460 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
3464 * Set encryption parameters for the ioaccel2 request
3466 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
3467 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
3469 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3470 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
3471 struct raid_map_data
*map
= &dev
->raid_map
;
3474 /* Are we doing encryption on this device */
3475 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
3477 /* Set the data encryption key index. */
3478 cp
->dekindex
= map
->dekindex
;
3480 /* Set the encryption enable flag, encoded into direction field. */
3481 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
3483 /* Set encryption tweak values based on logical block address
3484 * If block size is 512, tweak value is LBA.
3485 * For other block sizes, tweak is (LBA * block size)/ 512)
3487 switch (cmd
->cmnd
[0]) {
3488 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3491 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
3495 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3498 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
3502 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
3505 dev_err(&h
->pdev
->dev
,
3506 "ERROR: %s: size (0x%x) not supported for encryption\n",
3507 __func__
, cmd
->cmnd
[0]);
3512 if (le32_to_cpu(map
->volume_blk_size
) != 512)
3513 first_block
= first_block
*
3514 le32_to_cpu(map
->volume_blk_size
)/512;
3516 cp
->tweak_lower
= cpu_to_le32(first_block
);
3517 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
3520 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
3521 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
3522 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
3524 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3525 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3526 struct ioaccel2_sg_element
*curr_sg
;
3528 struct scatterlist
*sg
;
3533 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
3534 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3535 return IO_ACCEL_INELIGIBLE
;
3538 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
3539 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3540 return IO_ACCEL_INELIGIBLE
;
3543 c
->cmd_type
= CMD_IOACCEL2
;
3544 /* Adjust the DMA address to point to the accelerated command buffer */
3545 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
3546 (c
->cmdindex
* sizeof(*cp
));
3547 BUG_ON(c
->busaddr
& 0x0000007F);
3549 memset(cp
, 0, sizeof(*cp
));
3550 cp
->IU_type
= IOACCEL2_IU_TYPE
;
3552 use_sg
= scsi_dma_map(cmd
);
3554 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3559 BUG_ON(use_sg
> IOACCEL2_MAXSGENTRIES
);
3561 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
3562 addr64
= (u64
) sg_dma_address(sg
);
3563 len
= sg_dma_len(sg
);
3565 curr_sg
->address
= cpu_to_le64(addr64
);
3566 curr_sg
->length
= cpu_to_le32(len
);
3567 curr_sg
->reserved
[0] = 0;
3568 curr_sg
->reserved
[1] = 0;
3569 curr_sg
->reserved
[2] = 0;
3570 curr_sg
->chain_indicator
= 0;
3574 switch (cmd
->sc_data_direction
) {
3576 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3577 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
3579 case DMA_FROM_DEVICE
:
3580 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3581 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
3584 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3585 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
3588 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
3589 cmd
->sc_data_direction
);
3594 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
3595 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
3598 /* Set encryption parameters, if necessary */
3599 set_encrypt_ioaccel2(h
, c
, cp
);
3601 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
3602 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
3603 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
3605 /* fill in sg elements */
3606 cp
->sg_count
= (u8
) use_sg
;
3608 cp
->data_len
= cpu_to_le32(total_len
);
3609 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
3610 offsetof(struct io_accel2_cmd
, error_data
));
3611 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
3613 enqueue_cmd_and_start_io(h
, c
);
3618 * Queue a command to the correct I/O accelerator path.
3620 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
3621 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
3622 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
3624 /* Try to honor the device's queue depth */
3625 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
3626 phys_disk
->queue_depth
) {
3627 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
3628 return IO_ACCEL_INELIGIBLE
;
3630 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
3631 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
3632 cdb
, cdb_len
, scsi3addr
,
3635 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
3636 cdb
, cdb_len
, scsi3addr
,
3640 static void raid_map_helper(struct raid_map_data
*map
,
3641 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
3643 if (offload_to_mirror
== 0) {
3644 /* use physical disk in the first mirrored group. */
3645 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
3649 /* determine mirror group that *map_index indicates */
3650 *current_group
= *map_index
/
3651 le16_to_cpu(map
->data_disks_per_row
);
3652 if (offload_to_mirror
== *current_group
)
3654 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
3655 /* select map index from next group */
3656 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
3659 /* select map index from first group */
3660 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
3663 } while (offload_to_mirror
!= *current_group
);
3667 * Attempt to perform offload RAID mapping for a logical volume I/O.
3669 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
3670 struct CommandList
*c
)
3672 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
3673 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
3674 struct raid_map_data
*map
= &dev
->raid_map
;
3675 struct raid_map_disk_data
*dd
= &map
->data
[0];
3678 u64 first_block
, last_block
;
3681 u64 first_row
, last_row
;
3682 u32 first_row_offset
, last_row_offset
;
3683 u32 first_column
, last_column
;
3684 u64 r0_first_row
, r0_last_row
;
3685 u32 r5or6_blocks_per_row
;
3686 u64 r5or6_first_row
, r5or6_last_row
;
3687 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
3688 u32 r5or6_first_column
, r5or6_last_column
;
3689 u32 total_disks_per_row
;
3691 u32 first_group
, last_group
, current_group
;
3699 #if BITS_PER_LONG == 32
3702 int offload_to_mirror
;
3704 /* check for valid opcode, get LBA and block count */
3705 switch (cmd
->cmnd
[0]) {
3710 (((u64
) cmd
->cmnd
[2]) << 8) |
3712 block_cnt
= cmd
->cmnd
[4];
3720 (((u64
) cmd
->cmnd
[2]) << 24) |
3721 (((u64
) cmd
->cmnd
[3]) << 16) |
3722 (((u64
) cmd
->cmnd
[4]) << 8) |
3725 (((u32
) cmd
->cmnd
[7]) << 8) |
3732 (((u64
) cmd
->cmnd
[2]) << 24) |
3733 (((u64
) cmd
->cmnd
[3]) << 16) |
3734 (((u64
) cmd
->cmnd
[4]) << 8) |
3737 (((u32
) cmd
->cmnd
[6]) << 24) |
3738 (((u32
) cmd
->cmnd
[7]) << 16) |
3739 (((u32
) cmd
->cmnd
[8]) << 8) |
3746 (((u64
) cmd
->cmnd
[2]) << 56) |
3747 (((u64
) cmd
->cmnd
[3]) << 48) |
3748 (((u64
) cmd
->cmnd
[4]) << 40) |
3749 (((u64
) cmd
->cmnd
[5]) << 32) |
3750 (((u64
) cmd
->cmnd
[6]) << 24) |
3751 (((u64
) cmd
->cmnd
[7]) << 16) |
3752 (((u64
) cmd
->cmnd
[8]) << 8) |
3755 (((u32
) cmd
->cmnd
[10]) << 24) |
3756 (((u32
) cmd
->cmnd
[11]) << 16) |
3757 (((u32
) cmd
->cmnd
[12]) << 8) |
3761 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
3763 last_block
= first_block
+ block_cnt
- 1;
3765 /* check for write to non-RAID-0 */
3766 if (is_write
&& dev
->raid_level
!= 0)
3767 return IO_ACCEL_INELIGIBLE
;
3769 /* check for invalid block or wraparound */
3770 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
3771 last_block
< first_block
)
3772 return IO_ACCEL_INELIGIBLE
;
3774 /* calculate stripe information for the request */
3775 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
3776 le16_to_cpu(map
->strip_size
);
3777 strip_size
= le16_to_cpu(map
->strip_size
);
3778 #if BITS_PER_LONG == 32
3779 tmpdiv
= first_block
;
3780 (void) do_div(tmpdiv
, blocks_per_row
);
3782 tmpdiv
= last_block
;
3783 (void) do_div(tmpdiv
, blocks_per_row
);
3785 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
3786 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
3787 tmpdiv
= first_row_offset
;
3788 (void) do_div(tmpdiv
, strip_size
);
3789 first_column
= tmpdiv
;
3790 tmpdiv
= last_row_offset
;
3791 (void) do_div(tmpdiv
, strip_size
);
3792 last_column
= tmpdiv
;
3794 first_row
= first_block
/ blocks_per_row
;
3795 last_row
= last_block
/ blocks_per_row
;
3796 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
3797 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
3798 first_column
= first_row_offset
/ strip_size
;
3799 last_column
= last_row_offset
/ strip_size
;
3802 /* if this isn't a single row/column then give to the controller */
3803 if ((first_row
!= last_row
) || (first_column
!= last_column
))
3804 return IO_ACCEL_INELIGIBLE
;
3806 /* proceeding with driver mapping */
3807 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
3808 le16_to_cpu(map
->metadata_disks_per_row
);
3809 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
3810 le16_to_cpu(map
->row_cnt
);
3811 map_index
= (map_row
* total_disks_per_row
) + first_column
;
3813 switch (dev
->raid_level
) {
3815 break; /* nothing special to do */
3817 /* Handles load balance across RAID 1 members.
3818 * (2-drive R1 and R10 with even # of drives.)
3819 * Appropriate for SSDs, not optimal for HDDs
3821 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
3822 if (dev
->offload_to_mirror
)
3823 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
3824 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
3827 /* Handles N-way mirrors (R1-ADM)
3828 * and R10 with # of drives divisible by 3.)
3830 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
3832 offload_to_mirror
= dev
->offload_to_mirror
;
3833 raid_map_helper(map
, offload_to_mirror
,
3834 &map_index
, ¤t_group
);
3835 /* set mirror group to use next time */
3837 (offload_to_mirror
>=
3838 le16_to_cpu(map
->layout_map_count
) - 1)
3839 ? 0 : offload_to_mirror
+ 1;
3840 dev
->offload_to_mirror
= offload_to_mirror
;
3841 /* Avoid direct use of dev->offload_to_mirror within this
3842 * function since multiple threads might simultaneously
3843 * increment it beyond the range of dev->layout_map_count -1.
3848 if (le16_to_cpu(map
->layout_map_count
) <= 1)
3851 /* Verify first and last block are in same RAID group */
3852 r5or6_blocks_per_row
=
3853 le16_to_cpu(map
->strip_size
) *
3854 le16_to_cpu(map
->data_disks_per_row
);
3855 BUG_ON(r5or6_blocks_per_row
== 0);
3856 stripesize
= r5or6_blocks_per_row
*
3857 le16_to_cpu(map
->layout_map_count
);
3858 #if BITS_PER_LONG == 32
3859 tmpdiv
= first_block
;
3860 first_group
= do_div(tmpdiv
, stripesize
);
3861 tmpdiv
= first_group
;
3862 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
3863 first_group
= tmpdiv
;
3864 tmpdiv
= last_block
;
3865 last_group
= do_div(tmpdiv
, stripesize
);
3866 tmpdiv
= last_group
;
3867 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
3868 last_group
= tmpdiv
;
3870 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
3871 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
3873 if (first_group
!= last_group
)
3874 return IO_ACCEL_INELIGIBLE
;
3876 /* Verify request is in a single row of RAID 5/6 */
3877 #if BITS_PER_LONG == 32
3878 tmpdiv
= first_block
;
3879 (void) do_div(tmpdiv
, stripesize
);
3880 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
3881 tmpdiv
= last_block
;
3882 (void) do_div(tmpdiv
, stripesize
);
3883 r5or6_last_row
= r0_last_row
= tmpdiv
;
3885 first_row
= r5or6_first_row
= r0_first_row
=
3886 first_block
/ stripesize
;
3887 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
3889 if (r5or6_first_row
!= r5or6_last_row
)
3890 return IO_ACCEL_INELIGIBLE
;
3893 /* Verify request is in a single column */
3894 #if BITS_PER_LONG == 32
3895 tmpdiv
= first_block
;
3896 first_row_offset
= do_div(tmpdiv
, stripesize
);
3897 tmpdiv
= first_row_offset
;
3898 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
3899 r5or6_first_row_offset
= first_row_offset
;
3900 tmpdiv
= last_block
;
3901 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
3902 tmpdiv
= r5or6_last_row_offset
;
3903 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
3904 tmpdiv
= r5or6_first_row_offset
;
3905 (void) do_div(tmpdiv
, map
->strip_size
);
3906 first_column
= r5or6_first_column
= tmpdiv
;
3907 tmpdiv
= r5or6_last_row_offset
;
3908 (void) do_div(tmpdiv
, map
->strip_size
);
3909 r5or6_last_column
= tmpdiv
;
3911 first_row_offset
= r5or6_first_row_offset
=
3912 (u32
)((first_block
% stripesize
) %
3913 r5or6_blocks_per_row
);
3915 r5or6_last_row_offset
=
3916 (u32
)((last_block
% stripesize
) %
3917 r5or6_blocks_per_row
);
3919 first_column
= r5or6_first_column
=
3920 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
3922 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
3924 if (r5or6_first_column
!= r5or6_last_column
)
3925 return IO_ACCEL_INELIGIBLE
;
3927 /* Request is eligible */
3928 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
3929 le16_to_cpu(map
->row_cnt
);
3931 map_index
= (first_group
*
3932 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
3933 (map_row
* total_disks_per_row
) + first_column
;
3936 return IO_ACCEL_INELIGIBLE
;
3939 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
3940 return IO_ACCEL_INELIGIBLE
;
3942 c
->phys_disk
= dev
->phys_disk
[map_index
];
3944 disk_handle
= dd
[map_index
].ioaccel_handle
;
3945 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
3946 first_row
* le16_to_cpu(map
->strip_size
) +
3947 (first_row_offset
- first_column
*
3948 le16_to_cpu(map
->strip_size
));
3949 disk_block_cnt
= block_cnt
;
3951 /* handle differing logical/physical block sizes */
3952 if (map
->phys_blk_shift
) {
3953 disk_block
<<= map
->phys_blk_shift
;
3954 disk_block_cnt
<<= map
->phys_blk_shift
;
3956 BUG_ON(disk_block_cnt
> 0xffff);
3958 /* build the new CDB for the physical disk I/O */
3959 if (disk_block
> 0xffffffff) {
3960 cdb
[0] = is_write
? WRITE_16
: READ_16
;
3962 cdb
[2] = (u8
) (disk_block
>> 56);
3963 cdb
[3] = (u8
) (disk_block
>> 48);
3964 cdb
[4] = (u8
) (disk_block
>> 40);
3965 cdb
[5] = (u8
) (disk_block
>> 32);
3966 cdb
[6] = (u8
) (disk_block
>> 24);
3967 cdb
[7] = (u8
) (disk_block
>> 16);
3968 cdb
[8] = (u8
) (disk_block
>> 8);
3969 cdb
[9] = (u8
) (disk_block
);
3970 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
3971 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
3972 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
3973 cdb
[13] = (u8
) (disk_block_cnt
);
3978 cdb
[0] = is_write
? WRITE_10
: READ_10
;
3980 cdb
[2] = (u8
) (disk_block
>> 24);
3981 cdb
[3] = (u8
) (disk_block
>> 16);
3982 cdb
[4] = (u8
) (disk_block
>> 8);
3983 cdb
[5] = (u8
) (disk_block
);
3985 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
3986 cdb
[8] = (u8
) (disk_block_cnt
);
3990 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
3992 dev
->phys_disk
[map_index
]);
3995 /* Submit commands down the "normal" RAID stack path */
3996 static int hpsa_ciss_submit(struct ctlr_info
*h
,
3997 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
3998 unsigned char scsi3addr
[])
4000 cmd
->host_scribble
= (unsigned char *) c
;
4001 c
->cmd_type
= CMD_SCSI
;
4003 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
4004 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
4005 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
4007 /* Fill in the request block... */
4009 c
->Request
.Timeout
= 0;
4010 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
4011 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
4012 c
->Request
.CDBLen
= cmd
->cmd_len
;
4013 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
4014 switch (cmd
->sc_data_direction
) {
4016 c
->Request
.type_attr_dir
=
4017 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
4019 case DMA_FROM_DEVICE
:
4020 c
->Request
.type_attr_dir
=
4021 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
4024 c
->Request
.type_attr_dir
=
4025 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
4027 case DMA_BIDIRECTIONAL
:
4028 /* This can happen if a buggy application does a scsi passthru
4029 * and sets both inlen and outlen to non-zero. ( see
4030 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4033 c
->Request
.type_attr_dir
=
4034 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
4035 /* This is technically wrong, and hpsa controllers should
4036 * reject it with CMD_INVALID, which is the most correct
4037 * response, but non-fibre backends appear to let it
4038 * slide by, and give the same results as if this field
4039 * were set correctly. Either way is acceptable for
4040 * our purposes here.
4046 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4047 cmd
->sc_data_direction
);
4052 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
4054 return SCSI_MLQUEUE_HOST_BUSY
;
4056 enqueue_cmd_and_start_io(h
, c
);
4057 /* the cmd'll come back via intr handler in complete_scsi_command() */
4061 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
4063 struct scsi_cmnd
*cmd
;
4064 struct hpsa_scsi_dev_t
*dev
;
4065 struct CommandList
*c
=
4066 container_of(work
, struct CommandList
, work
);
4069 dev
= cmd
->device
->hostdata
;
4071 cmd
->result
= DID_NO_CONNECT
<< 16;
4072 cmd
->scsi_done(cmd
);
4075 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
4077 * If we get here, it means dma mapping failed. Try
4078 * again via scsi mid layer, which will then get
4079 * SCSI_MLQUEUE_HOST_BUSY.
4081 cmd
->result
= DID_IMM_RETRY
<< 16;
4082 cmd
->scsi_done(cmd
);
4086 /* Running in struct Scsi_Host->host_lock less mode */
4087 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
4089 struct ctlr_info
*h
;
4090 struct hpsa_scsi_dev_t
*dev
;
4091 unsigned char scsi3addr
[8];
4092 struct CommandList
*c
;
4095 /* Get the ptr to our adapter structure out of cmd->host. */
4096 h
= sdev_to_hba(cmd
->device
);
4097 dev
= cmd
->device
->hostdata
;
4099 cmd
->result
= DID_NO_CONNECT
<< 16;
4100 cmd
->scsi_done(cmd
);
4103 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
4105 if (unlikely(lockup_detected(h
))) {
4106 cmd
->result
= DID_ERROR
<< 16;
4107 cmd
->scsi_done(cmd
);
4111 if (c
== NULL
) { /* trouble... */
4112 dev_err(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
4113 return SCSI_MLQUEUE_HOST_BUSY
;
4115 if (unlikely(lockup_detected(h
))) {
4116 cmd
->result
= DID_ERROR
<< 16;
4118 cmd
->scsi_done(cmd
);
4123 * Call alternate submit routine for I/O accelerated commands.
4124 * Retries always go down the normal I/O path.
4126 if (likely(cmd
->retries
== 0 &&
4127 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
4128 h
->acciopath_status
)) {
4130 cmd
->host_scribble
= (unsigned char *) c
;
4131 c
->cmd_type
= CMD_SCSI
;
4134 if (dev
->offload_enabled
) {
4135 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
4137 return 0; /* Sent on ioaccel path */
4138 if (rc
< 0) { /* scsi_dma_map failed. */
4140 return SCSI_MLQUEUE_HOST_BUSY
;
4142 } else if (dev
->ioaccel_handle
) {
4143 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
4145 return 0; /* Sent on direct map path */
4146 if (rc
< 0) { /* scsi_dma_map failed. */
4148 return SCSI_MLQUEUE_HOST_BUSY
;
4152 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
4155 static void hpsa_scan_complete(struct ctlr_info
*h
)
4157 unsigned long flags
;
4159 spin_lock_irqsave(&h
->scan_lock
, flags
);
4160 h
->scan_finished
= 1;
4161 wake_up_all(&h
->scan_wait_queue
);
4162 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4165 static void hpsa_scan_start(struct Scsi_Host
*sh
)
4167 struct ctlr_info
*h
= shost_to_hba(sh
);
4168 unsigned long flags
;
4171 * Don't let rescans be initiated on a controller known to be locked
4172 * up. If the controller locks up *during* a rescan, that thread is
4173 * probably hosed, but at least we can prevent new rescan threads from
4174 * piling up on a locked up controller.
4176 if (unlikely(lockup_detected(h
)))
4177 return hpsa_scan_complete(h
);
4179 /* wait until any scan already in progress is finished. */
4181 spin_lock_irqsave(&h
->scan_lock
, flags
);
4182 if (h
->scan_finished
)
4184 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4185 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
4186 /* Note: We don't need to worry about a race between this
4187 * thread and driver unload because the midlayer will
4188 * have incremented the reference count, so unload won't
4189 * happen if we're in here.
4192 h
->scan_finished
= 0; /* mark scan as in progress */
4193 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4195 if (unlikely(lockup_detected(h
)))
4196 return hpsa_scan_complete(h
);
4198 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
4200 hpsa_scan_complete(h
);
4203 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
4205 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
4212 else if (qdepth
> logical_drive
->queue_depth
)
4213 qdepth
= logical_drive
->queue_depth
;
4215 return scsi_change_queue_depth(sdev
, qdepth
);
4218 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
4219 unsigned long elapsed_time
)
4221 struct ctlr_info
*h
= shost_to_hba(sh
);
4222 unsigned long flags
;
4225 spin_lock_irqsave(&h
->scan_lock
, flags
);
4226 finished
= h
->scan_finished
;
4227 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4231 static void hpsa_unregister_scsi(struct ctlr_info
*h
)
4233 /* we are being forcibly unloaded, and may not refuse. */
4234 scsi_remove_host(h
->scsi_host
);
4235 scsi_host_put(h
->scsi_host
);
4236 h
->scsi_host
= NULL
;
4239 static int hpsa_register_scsi(struct ctlr_info
*h
)
4241 struct Scsi_Host
*sh
;
4244 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
4251 sh
->max_channel
= 3;
4252 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
4253 sh
->max_lun
= HPSA_MAX_LUN
;
4254 sh
->max_id
= HPSA_MAX_LUN
;
4255 sh
->can_queue
= h
->nr_cmds
-
4256 HPSA_CMDS_RESERVED_FOR_ABORTS
-
4257 HPSA_CMDS_RESERVED_FOR_DRIVER
-
4258 HPSA_MAX_CONCURRENT_PASSTHRUS
;
4259 sh
->cmd_per_lun
= sh
->can_queue
;
4260 sh
->sg_tablesize
= h
->maxsgentries
;
4262 sh
->hostdata
[0] = (unsigned long) h
;
4263 sh
->irq
= h
->intr
[h
->intr_mode
];
4264 sh
->unique_id
= sh
->irq
;
4265 error
= scsi_add_host(sh
, &h
->pdev
->dev
);
4272 dev_err(&h
->pdev
->dev
, "%s: scsi_add_host"
4273 " failed for controller %d\n", __func__
, h
->ctlr
);
4277 dev_err(&h
->pdev
->dev
, "%s: scsi_host_alloc"
4278 " failed for controller %d\n", __func__
, h
->ctlr
);
4282 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
4283 unsigned char lunaddr
[])
4287 int waittime
= 1; /* seconds */
4288 struct CommandList
*c
;
4292 dev_warn(&h
->pdev
->dev
, "out of memory in "
4293 "wait_for_device_to_become_ready.\n");
4297 /* Send test unit ready until device ready, or give up. */
4298 while (count
< HPSA_TUR_RETRY_LIMIT
) {
4300 /* Wait for a bit. do this first, because if we send
4301 * the TUR right away, the reset will just abort it.
4303 msleep(1000 * waittime
);
4305 rc
= 0; /* Device ready. */
4307 /* Increase wait time with each try, up to a point. */
4308 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
4309 waittime
= waittime
* 2;
4311 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4312 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
4313 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
4314 hpsa_scsi_do_simple_cmd_core(h
, c
);
4315 /* no unmap needed here because no data xfer. */
4317 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
4320 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
4321 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
4322 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
4323 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
4326 dev_warn(&h
->pdev
->dev
, "waiting %d secs "
4327 "for device to become ready.\n", waittime
);
4328 rc
= 1; /* device not ready. */
4332 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
4334 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
4340 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4341 * complaining. Doing a host- or bus-reset can't do anything good here.
4343 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
4346 struct ctlr_info
*h
;
4347 struct hpsa_scsi_dev_t
*dev
;
4349 /* find the controller to which the command to be aborted was sent */
4350 h
= sdev_to_hba(scsicmd
->device
);
4351 if (h
== NULL
) /* paranoia */
4354 if (lockup_detected(h
))
4357 dev
= scsicmd
->device
->hostdata
;
4359 dev_err(&h
->pdev
->dev
, "hpsa_eh_device_reset_handler: "
4360 "device lookup failed.\n");
4363 dev_warn(&h
->pdev
->dev
, "resetting device %d:%d:%d:%d\n",
4364 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
4365 /* send a reset to the SCSI LUN which the command was sent to */
4366 rc
= hpsa_send_reset(h
, dev
->scsi3addr
, HPSA_RESET_TYPE_LUN
);
4367 if (rc
== 0 && wait_for_device_to_become_ready(h
, dev
->scsi3addr
) == 0)
4370 dev_warn(&h
->pdev
->dev
, "resetting device failed.\n");
4374 static void swizzle_abort_tag(u8
*tag
)
4378 memcpy(original_tag
, tag
, 8);
4379 tag
[0] = original_tag
[3];
4380 tag
[1] = original_tag
[2];
4381 tag
[2] = original_tag
[1];
4382 tag
[3] = original_tag
[0];
4383 tag
[4] = original_tag
[7];
4384 tag
[5] = original_tag
[6];
4385 tag
[6] = original_tag
[5];
4386 tag
[7] = original_tag
[4];
4389 static void hpsa_get_tag(struct ctlr_info
*h
,
4390 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
4393 if (c
->cmd_type
== CMD_IOACCEL1
) {
4394 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
4395 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4396 tag
= le64_to_cpu(cm1
->tag
);
4397 *tagupper
= cpu_to_le32(tag
>> 32);
4398 *taglower
= cpu_to_le32(tag
);
4401 if (c
->cmd_type
== CMD_IOACCEL2
) {
4402 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
4403 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4404 /* upper tag not used in ioaccel2 mode */
4405 memset(tagupper
, 0, sizeof(*tagupper
));
4406 *taglower
= cm2
->Tag
;
4409 tag
= le64_to_cpu(c
->Header
.tag
);
4410 *tagupper
= cpu_to_le32(tag
>> 32);
4411 *taglower
= cpu_to_le32(tag
);
4414 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
4415 struct CommandList
*abort
, int swizzle
)
4418 struct CommandList
*c
;
4419 struct ErrorInfo
*ei
;
4420 __le32 tagupper
, taglower
;
4423 if (c
== NULL
) { /* trouble... */
4424 dev_warn(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
4428 /* fill_cmd can't fail here, no buffer to map */
4429 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, abort
,
4430 0, 0, scsi3addr
, TYPE_MSG
);
4432 swizzle_abort_tag(&c
->Request
.CDB
[4]);
4433 hpsa_scsi_do_simple_cmd_core(h
, c
);
4434 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
4435 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4436 __func__
, tagupper
, taglower
);
4437 /* no unmap needed here because no data xfer. */
4440 switch (ei
->CommandStatus
) {
4443 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
4447 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4448 __func__
, tagupper
, taglower
);
4449 hpsa_scsi_interpret_error(h
, c
);
4454 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
4455 __func__
, tagupper
, taglower
);
4459 /* ioaccel2 path firmware cannot handle abort task requests.
4460 * Change abort requests to physical target reset, and send to the
4461 * address of the physical disk used for the ioaccel 2 command.
4462 * Return 0 on success (IO_OK)
4466 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
4467 unsigned char *scsi3addr
, struct CommandList
*abort
)
4470 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
4471 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
4472 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
4473 unsigned char *psa
= &phys_scsi3addr
[0];
4475 /* Get a pointer to the hpsa logical device. */
4476 scmd
= abort
->scsi_cmd
;
4477 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
4479 dev_warn(&h
->pdev
->dev
,
4480 "Cannot abort: no device pointer for command.\n");
4481 return -1; /* not abortable */
4484 if (h
->raid_offload_debug
> 0)
4485 dev_info(&h
->pdev
->dev
,
4486 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4487 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
4488 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
4489 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
4491 if (!dev
->offload_enabled
) {
4492 dev_warn(&h
->pdev
->dev
,
4493 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4494 return -1; /* not abortable */
4497 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4498 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
4499 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
4500 return -1; /* not abortable */
4503 /* send the reset */
4504 if (h
->raid_offload_debug
> 0)
4505 dev_info(&h
->pdev
->dev
,
4506 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4507 psa
[0], psa
[1], psa
[2], psa
[3],
4508 psa
[4], psa
[5], psa
[6], psa
[7]);
4509 rc
= hpsa_send_reset(h
, psa
, HPSA_RESET_TYPE_TARGET
);
4511 dev_warn(&h
->pdev
->dev
,
4512 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4513 psa
[0], psa
[1], psa
[2], psa
[3],
4514 psa
[4], psa
[5], psa
[6], psa
[7]);
4515 return rc
; /* failed to reset */
4518 /* wait for device to recover */
4519 if (wait_for_device_to_become_ready(h
, psa
) != 0) {
4520 dev_warn(&h
->pdev
->dev
,
4521 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4522 psa
[0], psa
[1], psa
[2], psa
[3],
4523 psa
[4], psa
[5], psa
[6], psa
[7]);
4524 return -1; /* failed to recover */
4527 /* device recovered */
4528 dev_info(&h
->pdev
->dev
,
4529 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4530 psa
[0], psa
[1], psa
[2], psa
[3],
4531 psa
[4], psa
[5], psa
[6], psa
[7]);
4533 return rc
; /* success */
4536 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4537 * tell which kind we're dealing with, so we send the abort both ways. There
4538 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4539 * way we construct our tags but we check anyway in case the assumptions which
4540 * make this true someday become false.
4542 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
4543 unsigned char *scsi3addr
, struct CommandList
*abort
)
4545 /* ioccelerator mode 2 commands should be aborted via the
4546 * accelerated path, since RAID path is unaware of these commands,
4547 * but underlying firmware can't handle abort TMF.
4548 * Change abort to physical device reset.
4550 if (abort
->cmd_type
== CMD_IOACCEL2
)
4551 return hpsa_send_reset_as_abort_ioaccel2(h
, scsi3addr
, abort
);
4553 return hpsa_send_abort(h
, scsi3addr
, abort
, 0) &&
4554 hpsa_send_abort(h
, scsi3addr
, abort
, 1);
4557 /* Send an abort for the specified command.
4558 * If the device and controller support it,
4559 * send a task abort request.
4561 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
4565 struct ctlr_info
*h
;
4566 struct hpsa_scsi_dev_t
*dev
;
4567 struct CommandList
*abort
; /* pointer to command to be aborted */
4568 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
4569 char msg
[256]; /* For debug messaging. */
4571 __le32 tagupper
, taglower
;
4574 /* Find the controller of the command to be aborted */
4575 h
= sdev_to_hba(sc
->device
);
4577 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4580 if (lockup_detected(h
))
4583 /* Check that controller supports some kind of task abort */
4584 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
4585 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
4588 memset(msg
, 0, sizeof(msg
));
4589 ml
+= sprintf(msg
+ml
, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4590 h
->scsi_host
->host_no
, sc
->device
->channel
,
4591 sc
->device
->id
, sc
->device
->lun
);
4593 /* Find the device of the command to be aborted */
4594 dev
= sc
->device
->hostdata
;
4596 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
4601 /* Get SCSI command to be aborted */
4602 abort
= (struct CommandList
*) sc
->host_scribble
;
4603 if (abort
== NULL
) {
4604 /* This can happen if the command already completed. */
4607 refcount
= atomic_inc_return(&abort
->refcount
);
4608 if (refcount
== 1) { /* Command is done already. */
4612 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
4613 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
4614 as
= abort
->scsi_cmd
;
4616 ml
+= sprintf(msg
+ml
, "Command:0x%x SN:0x%lx ",
4617 as
->cmnd
[0], as
->serial_number
);
4618 dev_dbg(&h
->pdev
->dev
, "%s\n", msg
);
4619 dev_warn(&h
->pdev
->dev
, "Abort request on C%d:B%d:T%d:L%d\n",
4620 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
4622 * Command is in flight, or possibly already completed
4623 * by the firmware (but not to the scsi mid layer) but we can't
4624 * distinguish which. Send the abort down.
4626 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
);
4628 dev_dbg(&h
->pdev
->dev
, "%s Request FAILED.\n", msg
);
4629 dev_warn(&h
->pdev
->dev
, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4630 h
->scsi_host
->host_no
,
4631 dev
->bus
, dev
->target
, dev
->lun
);
4635 dev_info(&h
->pdev
->dev
, "%s REQUEST SUCCEEDED.\n", msg
);
4637 /* If the abort(s) above completed and actually aborted the
4638 * command, then the command to be aborted should already be
4639 * completed. If not, wait around a bit more to see if they
4640 * manage to complete normally.
4642 #define ABORT_COMPLETE_WAIT_SECS 30
4643 for (i
= 0; i
< ABORT_COMPLETE_WAIT_SECS
* 10; i
++) {
4644 refcount
= atomic_read(&abort
->refcount
);
4652 dev_warn(&h
->pdev
->dev
, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4653 msg
, ABORT_COMPLETE_WAIT_SECS
);
4659 * For operations that cannot sleep, a command block is allocated at init,
4660 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4661 * which ones are free or in use. Lock must be held when calling this.
4662 * cmd_free() is the complement.
4665 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
4667 struct CommandList
*c
;
4669 union u64bit temp64
;
4670 dma_addr_t cmd_dma_handle
, err_dma_handle
;
4672 unsigned long offset
;
4675 * There is some *extremely* small but non-zero chance that that
4676 * multiple threads could get in here, and one thread could
4677 * be scanning through the list of bits looking for a free
4678 * one, but the free ones are always behind him, and other
4679 * threads sneak in behind him and eat them before he can
4680 * get to them, so that while there is always a free one, a
4681 * very unlucky thread might be starved anyway, never able to
4682 * beat the other threads. In reality, this happens so
4683 * infrequently as to be indistinguishable from never.
4686 offset
= h
->last_allocation
; /* benignly racy */
4688 i
= find_next_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
, offset
);
4689 if (unlikely(i
== h
->nr_cmds
)) {
4693 c
= h
->cmd_pool
+ i
;
4694 refcount
= atomic_inc_return(&c
->refcount
);
4695 if (unlikely(refcount
> 1)) {
4696 cmd_free(h
, c
); /* already in use */
4697 offset
= (i
+ 1) % h
->nr_cmds
;
4700 set_bit(i
& (BITS_PER_LONG
- 1),
4701 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
4702 break; /* it's ours now. */
4704 h
->last_allocation
= i
; /* benignly racy */
4706 /* Zero out all of commandlist except the last field, refcount */
4707 memset(c
, 0, offsetof(struct CommandList
, refcount
));
4708 c
->Header
.tag
= cpu_to_le64((u64
) (i
<< DIRECT_LOOKUP_SHIFT
));
4709 cmd_dma_handle
= h
->cmd_pool_dhandle
+ i
* sizeof(*c
);
4710 c
->err_info
= h
->errinfo_pool
+ i
;
4711 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4712 err_dma_handle
= h
->errinfo_pool_dhandle
4713 + i
* sizeof(*c
->err_info
);
4717 c
->busaddr
= (u32
) cmd_dma_handle
;
4718 temp64
.val
= (u64
) err_dma_handle
;
4719 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
4720 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
4726 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
4728 if (atomic_dec_and_test(&c
->refcount
)) {
4731 i
= c
- h
->cmd_pool
;
4732 clear_bit(i
& (BITS_PER_LONG
- 1),
4733 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
4737 #ifdef CONFIG_COMPAT
4739 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
4742 IOCTL32_Command_struct __user
*arg32
=
4743 (IOCTL32_Command_struct __user
*) arg
;
4744 IOCTL_Command_struct arg64
;
4745 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
4749 memset(&arg64
, 0, sizeof(arg64
));
4751 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
4752 sizeof(arg64
.LUN_info
));
4753 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
4754 sizeof(arg64
.Request
));
4755 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
4756 sizeof(arg64
.error_info
));
4757 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
4758 err
|= get_user(cp
, &arg32
->buf
);
4759 arg64
.buf
= compat_ptr(cp
);
4760 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
4765 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
4768 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
4769 sizeof(arg32
->error_info
));
4775 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
4776 int cmd
, void __user
*arg
)
4778 BIG_IOCTL32_Command_struct __user
*arg32
=
4779 (BIG_IOCTL32_Command_struct __user
*) arg
;
4780 BIG_IOCTL_Command_struct arg64
;
4781 BIG_IOCTL_Command_struct __user
*p
=
4782 compat_alloc_user_space(sizeof(arg64
));
4786 memset(&arg64
, 0, sizeof(arg64
));
4788 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
4789 sizeof(arg64
.LUN_info
));
4790 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
4791 sizeof(arg64
.Request
));
4792 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
4793 sizeof(arg64
.error_info
));
4794 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
4795 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
4796 err
|= get_user(cp
, &arg32
->buf
);
4797 arg64
.buf
= compat_ptr(cp
);
4798 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
4803 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
4806 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
4807 sizeof(arg32
->error_info
));
4813 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
4816 case CCISS_GETPCIINFO
:
4817 case CCISS_GETINTINFO
:
4818 case CCISS_SETINTINFO
:
4819 case CCISS_GETNODENAME
:
4820 case CCISS_SETNODENAME
:
4821 case CCISS_GETHEARTBEAT
:
4822 case CCISS_GETBUSTYPES
:
4823 case CCISS_GETFIRMVER
:
4824 case CCISS_GETDRIVVER
:
4825 case CCISS_REVALIDVOLS
:
4826 case CCISS_DEREGDISK
:
4827 case CCISS_REGNEWDISK
:
4829 case CCISS_RESCANDISK
:
4830 case CCISS_GETLUNINFO
:
4831 return hpsa_ioctl(dev
, cmd
, arg
);
4833 case CCISS_PASSTHRU32
:
4834 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
4835 case CCISS_BIG_PASSTHRU32
:
4836 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
4839 return -ENOIOCTLCMD
;
4844 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4846 struct hpsa_pci_info pciinfo
;
4850 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
4851 pciinfo
.bus
= h
->pdev
->bus
->number
;
4852 pciinfo
.dev_fn
= h
->pdev
->devfn
;
4853 pciinfo
.board_id
= h
->board_id
;
4854 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
4859 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4861 DriverVer_type DriverVer
;
4862 unsigned char vmaj
, vmin
, vsubmin
;
4865 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
4866 &vmaj
, &vmin
, &vsubmin
);
4868 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
4869 "unrecognized.", HPSA_DRIVER_VERSION
);
4874 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
4877 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
4882 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4884 IOCTL_Command_struct iocommand
;
4885 struct CommandList
*c
;
4892 if (!capable(CAP_SYS_RAWIO
))
4894 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
4896 if ((iocommand
.buf_size
< 1) &&
4897 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
4900 if (iocommand
.buf_size
> 0) {
4901 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
4904 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
4905 /* Copy the data into the buffer we created */
4906 if (copy_from_user(buff
, iocommand
.buf
,
4907 iocommand
.buf_size
)) {
4912 memset(buff
, 0, iocommand
.buf_size
);
4920 /* Fill in the command type */
4921 c
->cmd_type
= CMD_IOCTL_PEND
;
4922 /* Fill in Command Header */
4923 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
4924 if (iocommand
.buf_size
> 0) { /* buffer to fill */
4925 c
->Header
.SGList
= 1;
4926 c
->Header
.SGTotal
= cpu_to_le16(1);
4927 } else { /* no buffers to fill */
4928 c
->Header
.SGList
= 0;
4929 c
->Header
.SGTotal
= cpu_to_le16(0);
4931 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
4933 /* Fill in Request block */
4934 memcpy(&c
->Request
, &iocommand
.Request
,
4935 sizeof(c
->Request
));
4937 /* Fill in the scatter gather information */
4938 if (iocommand
.buf_size
> 0) {
4939 temp64
= pci_map_single(h
->pdev
, buff
,
4940 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
4941 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
4942 c
->SG
[0].Addr
= cpu_to_le64(0);
4943 c
->SG
[0].Len
= cpu_to_le32(0);
4947 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
4948 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
4949 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
4951 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
4952 if (iocommand
.buf_size
> 0)
4953 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
4954 check_ioctl_unit_attention(h
, c
);
4956 /* Copy the error information out */
4957 memcpy(&iocommand
.error_info
, c
->err_info
,
4958 sizeof(iocommand
.error_info
));
4959 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
4963 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
4964 iocommand
.buf_size
> 0) {
4965 /* Copy the data out of the buffer we created */
4966 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
4978 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
4980 BIG_IOCTL_Command_struct
*ioc
;
4981 struct CommandList
*c
;
4982 unsigned char **buff
= NULL
;
4983 int *buff_size
= NULL
;
4989 BYTE __user
*data_ptr
;
4993 if (!capable(CAP_SYS_RAWIO
))
4995 ioc
= (BIG_IOCTL_Command_struct
*)
4996 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
5001 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
5005 if ((ioc
->buf_size
< 1) &&
5006 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
5010 /* Check kmalloc limits using all SGs */
5011 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
5015 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
5019 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
5024 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
5029 left
= ioc
->buf_size
;
5030 data_ptr
= ioc
->buf
;
5032 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
5033 buff_size
[sg_used
] = sz
;
5034 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
5035 if (buff
[sg_used
] == NULL
) {
5039 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
5040 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
5045 memset(buff
[sg_used
], 0, sz
);
5055 c
->cmd_type
= CMD_IOCTL_PEND
;
5056 c
->Header
.ReplyQueue
= 0;
5057 c
->Header
.SGList
= (u8
) sg_used
;
5058 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
5059 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
5060 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
5061 if (ioc
->buf_size
> 0) {
5063 for (i
= 0; i
< sg_used
; i
++) {
5064 temp64
= pci_map_single(h
->pdev
, buff
[i
],
5065 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
5066 if (dma_mapping_error(&h
->pdev
->dev
,
5067 (dma_addr_t
) temp64
)) {
5068 c
->SG
[i
].Addr
= cpu_to_le64(0);
5069 c
->SG
[i
].Len
= cpu_to_le32(0);
5070 hpsa_pci_unmap(h
->pdev
, c
, i
,
5071 PCI_DMA_BIDIRECTIONAL
);
5075 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
5076 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
5077 c
->SG
[i
].Ext
= cpu_to_le32(0);
5079 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
5081 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
5083 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
5084 check_ioctl_unit_attention(h
, c
);
5085 /* Copy the error information out */
5086 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
5087 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
5091 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
5094 /* Copy the data out of the buffer we created */
5095 BYTE __user
*ptr
= ioc
->buf
;
5096 for (i
= 0; i
< sg_used
; i
++) {
5097 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
5101 ptr
+= buff_size
[i
];
5111 for (i
= 0; i
< sg_used
; i
++)
5120 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
5121 struct CommandList
*c
)
5123 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5124 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
5125 (void) check_for_unit_attention(h
, c
);
5131 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
5133 struct ctlr_info
*h
;
5134 void __user
*argp
= (void __user
*)arg
;
5137 h
= sdev_to_hba(dev
);
5140 case CCISS_DEREGDISK
:
5141 case CCISS_REGNEWDISK
:
5143 hpsa_scan_start(h
->scsi_host
);
5145 case CCISS_GETPCIINFO
:
5146 return hpsa_getpciinfo_ioctl(h
, argp
);
5147 case CCISS_GETDRIVVER
:
5148 return hpsa_getdrivver_ioctl(h
, argp
);
5149 case CCISS_PASSTHRU
:
5150 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
5152 rc
= hpsa_passthru_ioctl(h
, argp
);
5153 atomic_inc(&h
->passthru_cmds_avail
);
5155 case CCISS_BIG_PASSTHRU
:
5156 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
5158 rc
= hpsa_big_passthru_ioctl(h
, argp
);
5159 atomic_inc(&h
->passthru_cmds_avail
);
5166 static int hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5169 struct CommandList
*c
;
5174 /* fill_cmd can't fail here, no data buffer to map */
5175 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
5176 RAID_CTLR_LUNID
, TYPE_MSG
);
5177 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
5179 enqueue_cmd_and_start_io(h
, c
);
5180 /* Don't wait for completion, the reset won't complete. Don't free
5181 * the command either. This is the last command we will send before
5182 * re-initializing everything, so it doesn't matter and won't leak.
5187 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
5188 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
5191 int pci_dir
= XFER_NONE
;
5192 struct CommandList
*a
; /* for commands to be aborted */
5194 c
->cmd_type
= CMD_IOCTL_PEND
;
5195 c
->Header
.ReplyQueue
= 0;
5196 if (buff
!= NULL
&& size
> 0) {
5197 c
->Header
.SGList
= 1;
5198 c
->Header
.SGTotal
= cpu_to_le16(1);
5200 c
->Header
.SGList
= 0;
5201 c
->Header
.SGTotal
= cpu_to_le16(0);
5203 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
5205 if (cmd_type
== TYPE_CMD
) {
5208 /* are we trying to read a vital product page */
5209 if (page_code
& VPD_PAGE
) {
5210 c
->Request
.CDB
[1] = 0x01;
5211 c
->Request
.CDB
[2] = (page_code
& 0xff);
5213 c
->Request
.CDBLen
= 6;
5214 c
->Request
.type_attr_dir
=
5215 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5216 c
->Request
.Timeout
= 0;
5217 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
5218 c
->Request
.CDB
[4] = size
& 0xFF;
5220 case HPSA_REPORT_LOG
:
5221 case HPSA_REPORT_PHYS
:
5222 /* Talking to controller so It's a physical command
5223 mode = 00 target = 0. Nothing to write.
5225 c
->Request
.CDBLen
= 12;
5226 c
->Request
.type_attr_dir
=
5227 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5228 c
->Request
.Timeout
= 0;
5229 c
->Request
.CDB
[0] = cmd
;
5230 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
5231 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
5232 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
5233 c
->Request
.CDB
[9] = size
& 0xFF;
5235 case HPSA_CACHE_FLUSH
:
5236 c
->Request
.CDBLen
= 12;
5237 c
->Request
.type_attr_dir
=
5238 TYPE_ATTR_DIR(cmd_type
,
5239 ATTR_SIMPLE
, XFER_WRITE
);
5240 c
->Request
.Timeout
= 0;
5241 c
->Request
.CDB
[0] = BMIC_WRITE
;
5242 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
5243 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
5244 c
->Request
.CDB
[8] = size
& 0xFF;
5246 case TEST_UNIT_READY
:
5247 c
->Request
.CDBLen
= 6;
5248 c
->Request
.type_attr_dir
=
5249 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
5250 c
->Request
.Timeout
= 0;
5252 case HPSA_GET_RAID_MAP
:
5253 c
->Request
.CDBLen
= 12;
5254 c
->Request
.type_attr_dir
=
5255 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5256 c
->Request
.Timeout
= 0;
5257 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
5258 c
->Request
.CDB
[1] = cmd
;
5259 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
5260 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
5261 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
5262 c
->Request
.CDB
[9] = size
& 0xFF;
5264 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
5265 c
->Request
.CDBLen
= 10;
5266 c
->Request
.type_attr_dir
=
5267 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5268 c
->Request
.Timeout
= 0;
5269 c
->Request
.CDB
[0] = BMIC_READ
;
5270 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
5271 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
5272 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
5274 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
5275 c
->Request
.CDBLen
= 10;
5276 c
->Request
.type_attr_dir
=
5277 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
5278 c
->Request
.Timeout
= 0;
5279 c
->Request
.CDB
[0] = BMIC_READ
;
5280 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
5281 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
5282 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
5285 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
5289 } else if (cmd_type
== TYPE_MSG
) {
5292 case HPSA_DEVICE_RESET_MSG
:
5293 c
->Request
.CDBLen
= 16;
5294 c
->Request
.type_attr_dir
=
5295 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
5296 c
->Request
.Timeout
= 0; /* Don't time out */
5297 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
5298 c
->Request
.CDB
[0] = cmd
;
5299 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
5300 /* If bytes 4-7 are zero, it means reset the */
5302 c
->Request
.CDB
[4] = 0x00;
5303 c
->Request
.CDB
[5] = 0x00;
5304 c
->Request
.CDB
[6] = 0x00;
5305 c
->Request
.CDB
[7] = 0x00;
5307 case HPSA_ABORT_MSG
:
5308 a
= buff
; /* point to command to be aborted */
5309 dev_dbg(&h
->pdev
->dev
,
5310 "Abort Tag:0x%016llx request Tag:0x%016llx",
5311 a
->Header
.tag
, c
->Header
.tag
);
5312 c
->Request
.CDBLen
= 16;
5313 c
->Request
.type_attr_dir
=
5314 TYPE_ATTR_DIR(cmd_type
,
5315 ATTR_SIMPLE
, XFER_WRITE
);
5316 c
->Request
.Timeout
= 0; /* Don't time out */
5317 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
5318 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
5319 c
->Request
.CDB
[2] = 0x00; /* reserved */
5320 c
->Request
.CDB
[3] = 0x00; /* reserved */
5321 /* Tag to abort goes in CDB[4]-CDB[11] */
5322 memcpy(&c
->Request
.CDB
[4], &a
->Header
.tag
,
5323 sizeof(a
->Header
.tag
));
5324 c
->Request
.CDB
[12] = 0x00; /* reserved */
5325 c
->Request
.CDB
[13] = 0x00; /* reserved */
5326 c
->Request
.CDB
[14] = 0x00; /* reserved */
5327 c
->Request
.CDB
[15] = 0x00; /* reserved */
5330 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
5335 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
5339 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
5341 pci_dir
= PCI_DMA_FROMDEVICE
;
5344 pci_dir
= PCI_DMA_TODEVICE
;
5347 pci_dir
= PCI_DMA_NONE
;
5350 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
5352 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
5358 * Map (physical) PCI mem into (virtual) kernel space
5360 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
5362 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
5363 ulong page_offs
= ((ulong
) base
) - page_base
;
5364 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
5367 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
5370 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
5372 return h
->access
.command_completed(h
, q
);
5375 static inline bool interrupt_pending(struct ctlr_info
*h
)
5377 return h
->access
.intr_pending(h
);
5380 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
5382 return (h
->access
.intr_pending(h
) == 0) ||
5383 (h
->interrupts_enabled
== 0);
5386 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
5389 if (unlikely(tag_index
>= h
->nr_cmds
)) {
5390 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
5396 static inline void finish_cmd(struct CommandList
*c
)
5398 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
5399 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
5400 || c
->cmd_type
== CMD_IOACCEL2
))
5401 complete_scsi_command(c
);
5402 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
5403 complete(c
->waiting
);
5407 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
5409 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5410 #define HPSA_SIMPLE_ERROR_BITS 0x03
5411 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
5412 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
5413 return tag
& ~HPSA_PERF_ERROR_BITS
;
5416 /* process completion of an indexed ("direct lookup") command */
5417 static inline void process_indexed_cmd(struct ctlr_info
*h
,
5421 struct CommandList
*c
;
5423 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
5424 if (!bad_tag(h
, tag_index
, raw_tag
)) {
5425 c
= h
->cmd_pool
+ tag_index
;
5430 /* Some controllers, like p400, will give us one interrupt
5431 * after a soft reset, even if we turned interrupts off.
5432 * Only need to check for this in the hpsa_xxx_discard_completions
5435 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
5437 if (likely(!reset_devices
))
5440 if (likely(h
->interrupts_enabled
))
5443 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
5444 "(known firmware bug.) Ignoring.\n");
5450 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5451 * Relies on (h-q[x] == x) being true for x such that
5452 * 0 <= x < MAX_REPLY_QUEUES.
5454 static struct ctlr_info
*queue_to_hba(u8
*queue
)
5456 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
5459 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
5461 struct ctlr_info
*h
= queue_to_hba(queue
);
5462 u8 q
= *(u8
*) queue
;
5465 if (ignore_bogus_interrupt(h
))
5468 if (interrupt_not_for_us(h
))
5470 h
->last_intr_timestamp
= get_jiffies_64();
5471 while (interrupt_pending(h
)) {
5472 raw_tag
= get_next_completion(h
, q
);
5473 while (raw_tag
!= FIFO_EMPTY
)
5474 raw_tag
= next_command(h
, q
);
5479 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
5481 struct ctlr_info
*h
= queue_to_hba(queue
);
5483 u8 q
= *(u8
*) queue
;
5485 if (ignore_bogus_interrupt(h
))
5488 h
->last_intr_timestamp
= get_jiffies_64();
5489 raw_tag
= get_next_completion(h
, q
);
5490 while (raw_tag
!= FIFO_EMPTY
)
5491 raw_tag
= next_command(h
, q
);
5495 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
5497 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
5499 u8 q
= *(u8
*) queue
;
5501 if (interrupt_not_for_us(h
))
5503 h
->last_intr_timestamp
= get_jiffies_64();
5504 while (interrupt_pending(h
)) {
5505 raw_tag
= get_next_completion(h
, q
);
5506 while (raw_tag
!= FIFO_EMPTY
) {
5507 process_indexed_cmd(h
, raw_tag
);
5508 raw_tag
= next_command(h
, q
);
5514 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
5516 struct ctlr_info
*h
= queue_to_hba(queue
);
5518 u8 q
= *(u8
*) queue
;
5520 h
->last_intr_timestamp
= get_jiffies_64();
5521 raw_tag
= get_next_completion(h
, q
);
5522 while (raw_tag
!= FIFO_EMPTY
) {
5523 process_indexed_cmd(h
, raw_tag
);
5524 raw_tag
= next_command(h
, q
);
5529 /* Send a message CDB to the firmware. Careful, this only works
5530 * in simple mode, not performant mode due to the tag lookup.
5531 * We only ever use this immediately after a controller reset.
5533 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
5537 struct CommandListHeader CommandHeader
;
5538 struct RequestBlock Request
;
5539 struct ErrDescriptor ErrorDescriptor
;
5541 struct Command
*cmd
;
5542 static const size_t cmd_sz
= sizeof(*cmd
) +
5543 sizeof(cmd
->ErrorDescriptor
);
5547 void __iomem
*vaddr
;
5550 vaddr
= pci_ioremap_bar(pdev
, 0);
5554 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5555 * CCISS commands, so they must be allocated from the lower 4GiB of
5558 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
5564 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
5570 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5571 * although there's no guarantee, we assume that the address is at
5572 * least 4-byte aligned (most likely, it's page-aligned).
5574 paddr32
= cpu_to_le32(paddr64
);
5576 cmd
->CommandHeader
.ReplyQueue
= 0;
5577 cmd
->CommandHeader
.SGList
= 0;
5578 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
5579 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
5580 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
5582 cmd
->Request
.CDBLen
= 16;
5583 cmd
->Request
.type_attr_dir
=
5584 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
5585 cmd
->Request
.Timeout
= 0; /* Don't time out */
5586 cmd
->Request
.CDB
[0] = opcode
;
5587 cmd
->Request
.CDB
[1] = type
;
5588 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
5589 cmd
->ErrorDescriptor
.Addr
=
5590 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
5591 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
5593 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
5595 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
5596 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
5597 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
5599 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
5604 /* we leak the DMA buffer here ... no choice since the controller could
5605 * still complete the command.
5607 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
5608 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
5613 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
5615 if (tag
& HPSA_ERROR_BIT
) {
5616 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
5621 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
5626 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5628 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
5629 void __iomem
*vaddr
, u32 use_doorbell
)
5633 /* For everything after the P600, the PCI power state method
5634 * of resetting the controller doesn't work, so we have this
5635 * other way using the doorbell register.
5637 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
5638 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
5640 /* PMC hardware guys tell us we need a 10 second delay after
5641 * doorbell reset and before any attempt to talk to the board
5642 * at all to ensure that this actually works and doesn't fall
5643 * over in some weird corner cases.
5646 } else { /* Try to do it the PCI power state way */
5648 /* Quoting from the Open CISS Specification: "The Power
5649 * Management Control/Status Register (CSR) controls the power
5650 * state of the device. The normal operating state is D0,
5651 * CSR=00h. The software off state is D3, CSR=03h. To reset
5652 * the controller, place the interface device in D3 then to D0,
5653 * this causes a secondary PCI reset which will reset the
5658 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
5660 /* enter the D3hot power management state */
5661 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
5667 /* enter the D0 power management state */
5668 rc
= pci_set_power_state(pdev
, PCI_D0
);
5673 * The P600 requires a small delay when changing states.
5674 * Otherwise we may think the board did not reset and we bail.
5675 * This for kdump only and is particular to the P600.
5682 static void init_driver_version(char *driver_version
, int len
)
5684 memset(driver_version
, 0, len
);
5685 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
5688 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
5690 char *driver_version
;
5691 int i
, size
= sizeof(cfgtable
->driver_version
);
5693 driver_version
= kmalloc(size
, GFP_KERNEL
);
5694 if (!driver_version
)
5697 init_driver_version(driver_version
, size
);
5698 for (i
= 0; i
< size
; i
++)
5699 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
5700 kfree(driver_version
);
5704 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
5705 unsigned char *driver_ver
)
5709 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
5710 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
5713 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
5716 char *driver_ver
, *old_driver_ver
;
5717 int rc
, size
= sizeof(cfgtable
->driver_version
);
5719 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
5720 if (!old_driver_ver
)
5722 driver_ver
= old_driver_ver
+ size
;
5724 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5725 * should have been changed, otherwise we know the reset failed.
5727 init_driver_version(old_driver_ver
, size
);
5728 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
5729 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
5730 kfree(old_driver_ver
);
5733 /* This does a hard reset of the controller using PCI power management
5734 * states or the using the doorbell register.
5736 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
)
5740 u64 cfg_base_addr_index
;
5741 void __iomem
*vaddr
;
5742 unsigned long paddr
;
5743 u32 misc_fw_support
;
5745 struct CfgTable __iomem
*cfgtable
;
5748 u16 command_register
;
5750 /* For controllers as old as the P600, this is very nearly
5753 * pci_save_state(pci_dev);
5754 * pci_set_power_state(pci_dev, PCI_D3hot);
5755 * pci_set_power_state(pci_dev, PCI_D0);
5756 * pci_restore_state(pci_dev);
5758 * For controllers newer than the P600, the pci power state
5759 * method of resetting doesn't work so we have another way
5760 * using the doorbell register.
5763 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
5765 dev_warn(&pdev
->dev
, "Board ID not found\n");
5768 if (!ctlr_is_resettable(board_id
)) {
5769 dev_warn(&pdev
->dev
, "Controller not resettable\n");
5773 /* if controller is soft- but not hard resettable... */
5774 if (!ctlr_is_hard_resettable(board_id
))
5775 return -ENOTSUPP
; /* try soft reset later. */
5777 /* Save the PCI command register */
5778 pci_read_config_word(pdev
, 4, &command_register
);
5779 pci_save_state(pdev
);
5781 /* find the first memory BAR, so we can find the cfg table */
5782 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
5785 vaddr
= remap_pci_mem(paddr
, 0x250);
5789 /* find cfgtable in order to check if reset via doorbell is supported */
5790 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
5791 &cfg_base_addr_index
, &cfg_offset
);
5794 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
5795 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
5800 rc
= write_driver_ver_to_cfgtable(cfgtable
);
5802 goto unmap_cfgtable
;
5804 /* If reset via doorbell register is supported, use that.
5805 * There are two such methods. Favor the newest method.
5807 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
5808 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
5810 use_doorbell
= DOORBELL_CTLR_RESET2
;
5812 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
5814 dev_warn(&pdev
->dev
,
5815 "Soft reset not supported. Firmware update is required.\n");
5816 rc
= -ENOTSUPP
; /* try soft reset */
5817 goto unmap_cfgtable
;
5821 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
5823 goto unmap_cfgtable
;
5825 pci_restore_state(pdev
);
5826 pci_write_config_word(pdev
, 4, command_register
);
5828 /* Some devices (notably the HP Smart Array 5i Controller)
5829 need a little pause here */
5830 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
5832 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
5834 dev_warn(&pdev
->dev
,
5835 "Failed waiting for board to become ready after hard reset\n");
5836 goto unmap_cfgtable
;
5839 rc
= controller_reset_failed(vaddr
);
5841 goto unmap_cfgtable
;
5843 dev_warn(&pdev
->dev
, "Unable to successfully reset "
5844 "controller. Will try soft reset.\n");
5847 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
5859 * We cannot read the structure directly, for portability we must use
5861 * This is for debug only.
5863 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
5869 dev_info(dev
, "Controller Configuration information\n");
5870 dev_info(dev
, "------------------------------------\n");
5871 for (i
= 0; i
< 4; i
++)
5872 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
5873 temp_name
[4] = '\0';
5874 dev_info(dev
, " Signature = %s\n", temp_name
);
5875 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
5876 dev_info(dev
, " Transport methods supported = 0x%x\n",
5877 readl(&(tb
->TransportSupport
)));
5878 dev_info(dev
, " Transport methods active = 0x%x\n",
5879 readl(&(tb
->TransportActive
)));
5880 dev_info(dev
, " Requested transport Method = 0x%x\n",
5881 readl(&(tb
->HostWrite
.TransportRequest
)));
5882 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
5883 readl(&(tb
->HostWrite
.CoalIntDelay
)));
5884 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
5885 readl(&(tb
->HostWrite
.CoalIntCount
)));
5886 dev_info(dev
, " Max outstanding commands = %d\n",
5887 readl(&(tb
->CmdsOutMax
)));
5888 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
5889 for (i
= 0; i
< 16; i
++)
5890 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
5891 temp_name
[16] = '\0';
5892 dev_info(dev
, " Server Name = %s\n", temp_name
);
5893 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
5894 readl(&(tb
->HeartBeat
)));
5895 #endif /* HPSA_DEBUG */
5898 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
5900 int i
, offset
, mem_type
, bar_type
;
5902 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
5905 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
5906 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
5907 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
5910 mem_type
= pci_resource_flags(pdev
, i
) &
5911 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
5913 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
5914 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
5915 offset
+= 4; /* 32 bit */
5917 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
5920 default: /* reserved in PCI 2.2 */
5921 dev_warn(&pdev
->dev
,
5922 "base address is invalid\n");
5927 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
5933 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5934 * controllers that are capable. If not, we use legacy INTx mode.
5937 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
5939 #ifdef CONFIG_PCI_MSI
5941 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
5943 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
5944 hpsa_msix_entries
[i
].vector
= 0;
5945 hpsa_msix_entries
[i
].entry
= i
;
5948 /* Some boards advertise MSI but don't really support it */
5949 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
5950 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
5951 goto default_int_mode
;
5952 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
5953 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
5954 h
->msix_vector
= MAX_REPLY_QUEUES
;
5955 if (h
->msix_vector
> num_online_cpus())
5956 h
->msix_vector
= num_online_cpus();
5957 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
5960 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
5962 goto single_msi_mode
;
5963 } else if (err
< h
->msix_vector
) {
5964 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
5965 "available\n", err
);
5967 h
->msix_vector
= err
;
5968 for (i
= 0; i
< h
->msix_vector
; i
++)
5969 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
5973 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
5974 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
5975 if (!pci_enable_msi(h
->pdev
))
5978 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
5981 #endif /* CONFIG_PCI_MSI */
5982 /* if we get here we're going to use the default interrupt mode */
5983 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
5986 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
5989 u32 subsystem_vendor_id
, subsystem_device_id
;
5991 subsystem_vendor_id
= pdev
->subsystem_vendor
;
5992 subsystem_device_id
= pdev
->subsystem_device
;
5993 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
5994 subsystem_vendor_id
;
5996 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
5997 if (*board_id
== products
[i
].board_id
)
6000 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
6001 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
6003 dev_warn(&pdev
->dev
, "unrecognized board ID: "
6004 "0x%08x, ignoring.\n", *board_id
);
6007 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
6010 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
6011 unsigned long *memory_bar
)
6015 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
6016 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
6017 /* addressing mode bits already removed */
6018 *memory_bar
= pci_resource_start(pdev
, i
);
6019 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
6023 dev_warn(&pdev
->dev
, "no memory BAR found\n");
6027 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
6033 iterations
= HPSA_BOARD_READY_ITERATIONS
;
6035 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
6037 for (i
= 0; i
< iterations
; i
++) {
6038 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
6039 if (wait_for_ready
) {
6040 if (scratchpad
== HPSA_FIRMWARE_READY
)
6043 if (scratchpad
!= HPSA_FIRMWARE_READY
)
6046 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
6048 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
6052 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
6053 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
6056 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
6057 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
6058 *cfg_base_addr
&= (u32
) 0x0000ffff;
6059 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
6060 if (*cfg_base_addr_index
== -1) {
6061 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
6067 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
6071 u64 cfg_base_addr_index
;
6075 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
6076 &cfg_base_addr_index
, &cfg_offset
);
6079 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
6080 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
6082 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
6085 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
6088 /* Find performant mode table. */
6089 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
6090 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
6091 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
6092 sizeof(*h
->transtable
));
6098 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
6100 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
6102 /* Limit commands in memory limited kdump scenario. */
6103 if (reset_devices
&& h
->max_commands
> 32)
6104 h
->max_commands
= 32;
6106 if (h
->max_commands
< 16) {
6107 dev_warn(&h
->pdev
->dev
, "Controller reports "
6108 "max supported commands of %d, an obvious lie. "
6109 "Using 16. Ensure that firmware is up to date.\n",
6111 h
->max_commands
= 16;
6115 /* If the controller reports that the total max sg entries is greater than 512,
6116 * then we know that chained SG blocks work. (Original smart arrays did not
6117 * support chained SG blocks and would return zero for max sg entries.)
6119 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
6121 return h
->maxsgentries
> 512;
6124 /* Interrogate the hardware for some limits:
6125 * max commands, max SG elements without chaining, and with chaining,
6126 * SG chain block size, etc.
6128 static void hpsa_find_board_params(struct ctlr_info
*h
)
6130 hpsa_get_max_perf_mode_cmds(h
);
6131 h
->nr_cmds
= h
->max_commands
;
6132 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
6133 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
6134 if (hpsa_supports_chained_sg_blocks(h
)) {
6135 /* Limit in-command s/g elements to 32 save dma'able memory. */
6136 h
->max_cmd_sg_entries
= 32;
6137 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
6138 h
->maxsgentries
--; /* save one for chain pointer */
6141 * Original smart arrays supported at most 31 s/g entries
6142 * embedded inline in the command (trying to use more
6143 * would lock up the controller)
6145 h
->max_cmd_sg_entries
= 31;
6146 h
->maxsgentries
= 31; /* default to traditional values */
6150 /* Find out what task management functions are supported and cache */
6151 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
6152 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
6153 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
6154 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
6155 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
6158 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
6160 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
6161 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
6167 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
6171 driver_support
= readl(&(h
->cfgtable
->driver_support
));
6172 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6174 driver_support
|= ENABLE_SCSI_PREFETCH
;
6176 driver_support
|= ENABLE_UNIT_ATTN
;
6177 writel(driver_support
, &(h
->cfgtable
->driver_support
));
6180 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6181 * in a prefetch beyond physical memory.
6183 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
6187 if (h
->board_id
!= 0x3225103C)
6189 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
6190 dma_prefetch
|= 0x8000;
6191 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
6194 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
6198 unsigned long flags
;
6199 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6200 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
6201 spin_lock_irqsave(&h
->lock
, flags
);
6202 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
6203 spin_unlock_irqrestore(&h
->lock
, flags
);
6204 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
6206 /* delay and try again */
6207 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
6214 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
6218 unsigned long flags
;
6220 /* under certain very rare conditions, this can take awhile.
6221 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6222 * as we enter this code.)
6224 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
6225 spin_lock_irqsave(&h
->lock
, flags
);
6226 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
6227 spin_unlock_irqrestore(&h
->lock
, flags
);
6228 if (!(doorbell_value
& CFGTBL_ChangeReq
))
6230 /* delay and try again */
6231 msleep(MODE_CHANGE_WAIT_INTERVAL
);
6238 /* return -ENODEV or other reason on error, 0 on success */
6239 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
6243 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
6244 if (!(trans_support
& SIMPLE_MODE
))
6247 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
6249 /* Update the field, and then ring the doorbell */
6250 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
6251 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
6252 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
6253 if (hpsa_wait_for_mode_change_ack(h
))
6255 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
6256 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
6258 h
->transMethod
= CFGTBL_Trans_Simple
;
6261 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
6265 static int hpsa_pci_init(struct ctlr_info
*h
)
6267 int prod_index
, err
;
6269 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
6272 h
->product_name
= products
[prod_index
].product_name
;
6273 h
->access
= *(products
[prod_index
].access
);
6275 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
6276 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
6278 err
= pci_enable_device(h
->pdev
);
6280 dev_warn(&h
->pdev
->dev
, "unable to enable PCI device\n");
6284 err
= pci_request_regions(h
->pdev
, HPSA
);
6286 dev_err(&h
->pdev
->dev
,
6287 "cannot obtain PCI resources, aborting\n");
6291 pci_set_master(h
->pdev
);
6293 hpsa_interrupt_mode(h
);
6294 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
6296 goto err_out_free_res
;
6297 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
6300 goto err_out_free_res
;
6302 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
6304 goto err_out_free_res
;
6305 err
= hpsa_find_cfgtables(h
);
6307 goto err_out_free_res
;
6308 hpsa_find_board_params(h
);
6310 if (!hpsa_CISS_signature_present(h
)) {
6312 goto err_out_free_res
;
6314 hpsa_set_driver_support_bits(h
);
6315 hpsa_p600_dma_prefetch_quirk(h
);
6316 err
= hpsa_enter_simple_mode(h
);
6318 goto err_out_free_res
;
6323 iounmap(h
->transtable
);
6325 iounmap(h
->cfgtable
);
6328 pci_disable_device(h
->pdev
);
6329 pci_release_regions(h
->pdev
);
6333 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
6337 #define HBA_INQUIRY_BYTE_COUNT 64
6338 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
6339 if (!h
->hba_inquiry_data
)
6341 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
6342 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
6344 kfree(h
->hba_inquiry_data
);
6345 h
->hba_inquiry_data
= NULL
;
6349 static int hpsa_init_reset_devices(struct pci_dev
*pdev
)
6352 void __iomem
*vaddr
;
6357 /* kdump kernel is loading, we don't know in which state is
6358 * the pci interface. The dev->enable_cnt is equal zero
6359 * so we call enable+disable, wait a while and switch it on.
6361 rc
= pci_enable_device(pdev
);
6363 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
6366 pci_disable_device(pdev
);
6367 msleep(260); /* a randomly chosen number */
6368 rc
= pci_enable_device(pdev
);
6370 dev_warn(&pdev
->dev
, "failed to enable device.\n");
6374 pci_set_master(pdev
);
6376 vaddr
= pci_ioremap_bar(pdev
, 0);
6377 if (vaddr
== NULL
) {
6381 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
6384 /* Reset the controller with a PCI power-cycle or via doorbell */
6385 rc
= hpsa_kdump_hard_reset_controller(pdev
);
6387 /* -ENOTSUPP here means we cannot reset the controller
6388 * but it's already (and still) up and running in
6389 * "performant mode". Or, it might be 640x, which can't reset
6390 * due to concerns about shared bbwc between 6402/6404 pair.
6395 /* Now try to get the controller to respond to a no-op */
6396 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
6397 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
6398 if (hpsa_noop(pdev
) == 0)
6401 dev_warn(&pdev
->dev
, "no-op failed%s\n",
6402 (i
< 11 ? "; re-trying" : ""));
6407 pci_disable_device(pdev
);
6411 static int hpsa_allocate_cmd_pool(struct ctlr_info
*h
)
6413 h
->cmd_pool_bits
= kzalloc(
6414 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
6415 sizeof(unsigned long), GFP_KERNEL
);
6416 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
6417 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
6418 &(h
->cmd_pool_dhandle
));
6419 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
6420 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
6421 &(h
->errinfo_pool_dhandle
));
6422 if ((h
->cmd_pool_bits
== NULL
)
6423 || (h
->cmd_pool
== NULL
)
6424 || (h
->errinfo_pool
== NULL
)) {
6425 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
6430 hpsa_free_cmd_pool(h
);
6434 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
6436 kfree(h
->cmd_pool_bits
);
6438 pci_free_consistent(h
->pdev
,
6439 h
->nr_cmds
* sizeof(struct CommandList
),
6440 h
->cmd_pool
, h
->cmd_pool_dhandle
);
6441 if (h
->ioaccel2_cmd_pool
)
6442 pci_free_consistent(h
->pdev
,
6443 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
6444 h
->ioaccel2_cmd_pool
, h
->ioaccel2_cmd_pool_dhandle
);
6445 if (h
->errinfo_pool
)
6446 pci_free_consistent(h
->pdev
,
6447 h
->nr_cmds
* sizeof(struct ErrorInfo
),
6449 h
->errinfo_pool_dhandle
);
6450 if (h
->ioaccel_cmd_pool
)
6451 pci_free_consistent(h
->pdev
,
6452 h
->nr_cmds
* sizeof(struct io_accel1_cmd
),
6453 h
->ioaccel_cmd_pool
, h
->ioaccel_cmd_pool_dhandle
);
6456 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
6460 cpu
= cpumask_first(cpu_online_mask
);
6461 for (i
= 0; i
< h
->msix_vector
; i
++) {
6462 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
6463 cpu
= cpumask_next(cpu
, cpu_online_mask
);
6467 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6468 static void hpsa_free_irqs(struct ctlr_info
*h
)
6472 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
6473 /* Single reply queue, only one irq to free */
6475 irq_set_affinity_hint(h
->intr
[i
], NULL
);
6476 free_irq(h
->intr
[i
], &h
->q
[i
]);
6480 for (i
= 0; i
< h
->msix_vector
; i
++) {
6481 irq_set_affinity_hint(h
->intr
[i
], NULL
);
6482 free_irq(h
->intr
[i
], &h
->q
[i
]);
6484 for (; i
< MAX_REPLY_QUEUES
; i
++)
6488 /* returns 0 on success; cleans up and returns -Enn on error */
6489 static int hpsa_request_irqs(struct ctlr_info
*h
,
6490 irqreturn_t (*msixhandler
)(int, void *),
6491 irqreturn_t (*intxhandler
)(int, void *))
6496 * initialize h->q[x] = x so that interrupt handlers know which
6499 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
6502 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
6503 /* If performant mode and MSI-X, use multiple reply queues */
6504 for (i
= 0; i
< h
->msix_vector
; i
++) {
6505 rc
= request_irq(h
->intr
[i
], msixhandler
,
6511 dev_err(&h
->pdev
->dev
,
6512 "failed to get irq %d for %s\n",
6513 h
->intr
[i
], h
->devname
);
6514 for (j
= 0; j
< i
; j
++) {
6515 free_irq(h
->intr
[j
], &h
->q
[j
]);
6518 for (; j
< MAX_REPLY_QUEUES
; j
++)
6523 hpsa_irq_affinity_hints(h
);
6525 /* Use single reply pool */
6526 if (h
->msix_vector
> 0 || h
->msi_vector
) {
6527 rc
= request_irq(h
->intr
[h
->intr_mode
],
6528 msixhandler
, 0, h
->devname
,
6529 &h
->q
[h
->intr_mode
]);
6531 rc
= request_irq(h
->intr
[h
->intr_mode
],
6532 intxhandler
, IRQF_SHARED
, h
->devname
,
6533 &h
->q
[h
->intr_mode
]);
6537 dev_err(&h
->pdev
->dev
, "unable to get irq %d for %s\n",
6538 h
->intr
[h
->intr_mode
], h
->devname
);
6544 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
6546 if (hpsa_send_host_reset(h
, RAID_CTLR_LUNID
,
6547 HPSA_RESET_TYPE_CONTROLLER
)) {
6548 dev_warn(&h
->pdev
->dev
, "Resetting array controller failed.\n");
6552 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
6553 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
)) {
6554 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
6558 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
6559 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
)) {
6560 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
6561 "after soft reset.\n");
6568 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info
*h
)
6571 #ifdef CONFIG_PCI_MSI
6572 if (h
->msix_vector
) {
6573 if (h
->pdev
->msix_enabled
)
6574 pci_disable_msix(h
->pdev
);
6575 } else if (h
->msi_vector
) {
6576 if (h
->pdev
->msi_enabled
)
6577 pci_disable_msi(h
->pdev
);
6579 #endif /* CONFIG_PCI_MSI */
6582 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
6586 for (i
= 0; i
< h
->nreply_queues
; i
++) {
6587 if (!h
->reply_queue
[i
].head
)
6589 pci_free_consistent(h
->pdev
, h
->reply_queue_size
,
6590 h
->reply_queue
[i
].head
, h
->reply_queue
[i
].busaddr
);
6591 h
->reply_queue
[i
].head
= NULL
;
6592 h
->reply_queue
[i
].busaddr
= 0;
6596 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
6598 hpsa_free_irqs_and_disable_msix(h
);
6599 hpsa_free_sg_chain_blocks(h
);
6600 hpsa_free_cmd_pool(h
);
6601 kfree(h
->ioaccel1_blockFetchTable
);
6602 kfree(h
->blockFetchTable
);
6603 hpsa_free_reply_queues(h
);
6607 iounmap(h
->transtable
);
6609 iounmap(h
->cfgtable
);
6610 pci_disable_device(h
->pdev
);
6611 pci_release_regions(h
->pdev
);
6615 /* Called when controller lockup detected. */
6616 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
6619 struct CommandList
*c
;
6621 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
6622 for (i
= 0; i
< h
->nr_cmds
; i
++) {
6623 c
= h
->cmd_pool
+ i
;
6624 refcount
= atomic_inc_return(&c
->refcount
);
6626 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
6633 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
6637 cpu
= cpumask_first(cpu_online_mask
);
6638 for (i
= 0; i
< num_online_cpus(); i
++) {
6639 u32
*lockup_detected
;
6640 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
6641 *lockup_detected
= value
;
6642 cpu
= cpumask_next(cpu
, cpu_online_mask
);
6644 wmb(); /* be sure the per-cpu variables are out to memory */
6647 static void controller_lockup_detected(struct ctlr_info
*h
)
6649 unsigned long flags
;
6650 u32 lockup_detected
;
6652 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6653 spin_lock_irqsave(&h
->lock
, flags
);
6654 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
6655 if (!lockup_detected
) {
6656 /* no heartbeat, but controller gave us a zero. */
6657 dev_warn(&h
->pdev
->dev
,
6658 "lockup detected but scratchpad register is zero\n");
6659 lockup_detected
= 0xffffffff;
6661 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
6662 spin_unlock_irqrestore(&h
->lock
, flags
);
6663 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x\n",
6665 pci_disable_device(h
->pdev
);
6666 fail_all_outstanding_cmds(h
);
6669 static void detect_controller_lockup(struct ctlr_info
*h
)
6673 unsigned long flags
;
6675 now
= get_jiffies_64();
6676 /* If we've received an interrupt recently, we're ok. */
6677 if (time_after64(h
->last_intr_timestamp
+
6678 (h
->heartbeat_sample_interval
), now
))
6682 * If we've already checked the heartbeat recently, we're ok.
6683 * This could happen if someone sends us a signal. We
6684 * otherwise don't care about signals in this thread.
6686 if (time_after64(h
->last_heartbeat_timestamp
+
6687 (h
->heartbeat_sample_interval
), now
))
6690 /* If heartbeat has not changed since we last looked, we're not ok. */
6691 spin_lock_irqsave(&h
->lock
, flags
);
6692 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
6693 spin_unlock_irqrestore(&h
->lock
, flags
);
6694 if (h
->last_heartbeat
== heartbeat
) {
6695 controller_lockup_detected(h
);
6700 h
->last_heartbeat
= heartbeat
;
6701 h
->last_heartbeat_timestamp
= now
;
6704 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
6709 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
6712 /* Ask the controller to clear the events we're handling. */
6713 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
6714 | CFGTBL_Trans_io_accel2
)) &&
6715 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
6716 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
6718 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
6719 event_type
= "state change";
6720 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
6721 event_type
= "configuration change";
6722 /* Stop sending new RAID offload reqs via the IO accelerator */
6723 scsi_block_requests(h
->scsi_host
);
6724 for (i
= 0; i
< h
->ndevices
; i
++)
6725 h
->dev
[i
]->offload_enabled
= 0;
6726 hpsa_drain_accel_commands(h
);
6727 /* Set 'accelerator path config change' bit */
6728 dev_warn(&h
->pdev
->dev
,
6729 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6730 h
->events
, event_type
);
6731 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
6732 /* Set the "clear event notify field update" bit 6 */
6733 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
6734 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6735 hpsa_wait_for_clear_event_notify_ack(h
);
6736 scsi_unblock_requests(h
->scsi_host
);
6738 /* Acknowledge controller notification events. */
6739 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
6740 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
6741 hpsa_wait_for_clear_event_notify_ack(h
);
6743 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
6744 hpsa_wait_for_mode_change_ack(h
);
6750 /* Check a register on the controller to see if there are configuration
6751 * changes (added/changed/removed logical drives, etc.) which mean that
6752 * we should rescan the controller for devices.
6753 * Also check flag for driver-initiated rescan.
6755 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
6757 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
6760 h
->events
= readl(&(h
->cfgtable
->event_notify
));
6761 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
6765 * Check if any of the offline devices have become ready
6767 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
6769 unsigned long flags
;
6770 struct offline_device_entry
*d
;
6771 struct list_head
*this, *tmp
;
6773 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
6774 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
6775 d
= list_entry(this, struct offline_device_entry
,
6777 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
6778 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
6779 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
6780 list_del(&d
->offline_list
);
6781 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
6784 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
6786 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
6790 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
6792 unsigned long flags
;
6793 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
6794 struct ctlr_info
, rescan_ctlr_work
);
6797 if (h
->remove_in_progress
)
6800 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
6801 scsi_host_get(h
->scsi_host
);
6802 hpsa_ack_ctlr_events(h
);
6803 hpsa_scan_start(h
->scsi_host
);
6804 scsi_host_put(h
->scsi_host
);
6806 spin_lock_irqsave(&h
->lock
, flags
);
6807 if (!h
->remove_in_progress
)
6808 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
6809 h
->heartbeat_sample_interval
);
6810 spin_unlock_irqrestore(&h
->lock
, flags
);
6813 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
6815 unsigned long flags
;
6816 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
6817 struct ctlr_info
, monitor_ctlr_work
);
6819 detect_controller_lockup(h
);
6820 if (lockup_detected(h
))
6823 spin_lock_irqsave(&h
->lock
, flags
);
6824 if (!h
->remove_in_progress
)
6825 schedule_delayed_work(&h
->monitor_ctlr_work
,
6826 h
->heartbeat_sample_interval
);
6827 spin_unlock_irqrestore(&h
->lock
, flags
);
6830 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
6833 struct workqueue_struct
*wq
= NULL
;
6835 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
6837 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
6842 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6845 struct ctlr_info
*h
;
6846 int try_soft_reset
= 0;
6847 unsigned long flags
;
6849 if (number_of_controllers
== 0)
6850 printk(KERN_INFO DRIVER_NAME
"\n");
6852 rc
= hpsa_init_reset_devices(pdev
);
6854 if (rc
!= -ENOTSUPP
)
6856 /* If the reset fails in a particular way (it has no way to do
6857 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6858 * a soft reset once we get the controller configured up to the
6859 * point that it can accept a command.
6865 reinit_after_soft_reset
:
6867 /* Command structures must be aligned on a 32-byte boundary because
6868 * the 5 lower bits of the address are used by the hardware. and by
6869 * the driver. See comments in hpsa.h for more info.
6871 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
6872 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
6877 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
6878 INIT_LIST_HEAD(&h
->offline_device_list
);
6879 spin_lock_init(&h
->lock
);
6880 spin_lock_init(&h
->offline_device_lock
);
6881 spin_lock_init(&h
->scan_lock
);
6882 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
6884 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
6885 if (!h
->rescan_ctlr_wq
) {
6890 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
6891 if (!h
->resubmit_wq
) {
6896 /* Allocate and clear per-cpu variable lockup_detected */
6897 h
->lockup_detected
= alloc_percpu(u32
);
6898 if (!h
->lockup_detected
) {
6902 set_lockup_detected_for_all_cpus(h
, 0);
6904 rc
= hpsa_pci_init(h
);
6908 sprintf(h
->devname
, HPSA
"%d", number_of_controllers
);
6909 h
->ctlr
= number_of_controllers
;
6910 number_of_controllers
++;
6912 /* configure PCI DMA stuff */
6913 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
6917 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
6921 dev_err(&pdev
->dev
, "no suitable DMA available\n");
6926 /* make sure the board interrupts are off */
6927 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6929 if (hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
))
6931 dev_info(&pdev
->dev
, "%s: <0x%x> at IRQ %d%s using DAC\n",
6932 h
->devname
, pdev
->device
,
6933 h
->intr
[h
->intr_mode
], dac
? "" : " not");
6934 rc
= hpsa_allocate_cmd_pool(h
);
6936 goto clean2_and_free_irqs
;
6937 if (hpsa_allocate_sg_chain_blocks(h
))
6939 init_waitqueue_head(&h
->scan_wait_queue
);
6940 h
->scan_finished
= 1; /* no scan currently in progress */
6942 pci_set_drvdata(pdev
, h
);
6944 h
->hba_mode_enabled
= 0;
6945 h
->scsi_host
= NULL
;
6946 spin_lock_init(&h
->devlock
);
6947 hpsa_put_ctlr_into_performant_mode(h
);
6949 /* At this point, the controller is ready to take commands.
6950 * Now, if reset_devices and the hard reset didn't work, try
6951 * the soft reset and see if that works.
6953 if (try_soft_reset
) {
6955 /* This is kind of gross. We may or may not get a completion
6956 * from the soft reset command, and if we do, then the value
6957 * from the fifo may or may not be valid. So, we wait 10 secs
6958 * after the reset throwing away any completions we get during
6959 * that time. Unregister the interrupt handler and register
6960 * fake ones to scoop up any residual completions.
6962 spin_lock_irqsave(&h
->lock
, flags
);
6963 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6964 spin_unlock_irqrestore(&h
->lock
, flags
);
6966 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
6967 hpsa_intx_discard_completions
);
6969 dev_warn(&h
->pdev
->dev
,
6970 "Failed to request_irq after soft reset.\n");
6974 rc
= hpsa_kdump_soft_reset(h
);
6976 /* Neither hard nor soft reset worked, we're hosed. */
6979 dev_info(&h
->pdev
->dev
, "Board READY.\n");
6980 dev_info(&h
->pdev
->dev
,
6981 "Waiting for stale completions to drain.\n");
6982 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
6984 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
6986 rc
= controller_reset_failed(h
->cfgtable
);
6988 dev_info(&h
->pdev
->dev
,
6989 "Soft reset appears to have failed.\n");
6991 /* since the controller's reset, we have to go back and re-init
6992 * everything. Easiest to just forget what we've done and do it
6995 hpsa_undo_allocations_after_kdump_soft_reset(h
);
6998 /* don't go to clean4, we already unallocated */
7001 goto reinit_after_soft_reset
;
7004 /* Enable Accelerated IO path at driver layer */
7005 h
->acciopath_status
= 1;
7008 /* Turn the interrupts on so we can service requests */
7009 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
7011 hpsa_hba_inquiry(h
);
7012 hpsa_register_scsi(h
); /* hook ourselves into SCSI subsystem */
7014 /* Monitor the controller for firmware lockups */
7015 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
7016 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
7017 schedule_delayed_work(&h
->monitor_ctlr_work
,
7018 h
->heartbeat_sample_interval
);
7019 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
7020 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
7021 h
->heartbeat_sample_interval
);
7025 hpsa_free_sg_chain_blocks(h
);
7026 hpsa_free_cmd_pool(h
);
7027 clean2_and_free_irqs
:
7032 destroy_workqueue(h
->resubmit_wq
);
7033 if (h
->rescan_ctlr_wq
)
7034 destroy_workqueue(h
->rescan_ctlr_wq
);
7035 if (h
->lockup_detected
)
7036 free_percpu(h
->lockup_detected
);
7041 static void hpsa_flush_cache(struct ctlr_info
*h
)
7044 struct CommandList
*c
;
7046 /* Don't bother trying to flush the cache if locked up */
7047 if (unlikely(lockup_detected(h
)))
7049 flush_buf
= kzalloc(4, GFP_KERNEL
);
7055 dev_warn(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
7058 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
7059 RAID_CTLR_LUNID
, TYPE_CMD
)) {
7062 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_TODEVICE
);
7063 if (c
->err_info
->CommandStatus
!= 0)
7065 dev_warn(&h
->pdev
->dev
,
7066 "error flushing cache on controller\n");
7072 static void hpsa_shutdown(struct pci_dev
*pdev
)
7074 struct ctlr_info
*h
;
7076 h
= pci_get_drvdata(pdev
);
7077 /* Turn board interrupts off and send the flush cache command
7078 * sendcmd will turn off interrupt, and send the flush...
7079 * To write all data in the battery backed cache to disks
7081 hpsa_flush_cache(h
);
7082 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7083 hpsa_free_irqs_and_disable_msix(h
);
7086 static void hpsa_free_device_info(struct ctlr_info
*h
)
7090 for (i
= 0; i
< h
->ndevices
; i
++)
7094 static void hpsa_remove_one(struct pci_dev
*pdev
)
7096 struct ctlr_info
*h
;
7097 unsigned long flags
;
7099 if (pci_get_drvdata(pdev
) == NULL
) {
7100 dev_err(&pdev
->dev
, "unable to remove device\n");
7103 h
= pci_get_drvdata(pdev
);
7105 /* Get rid of any controller monitoring work items */
7106 spin_lock_irqsave(&h
->lock
, flags
);
7107 h
->remove_in_progress
= 1;
7108 spin_unlock_irqrestore(&h
->lock
, flags
);
7109 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
7110 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
7111 destroy_workqueue(h
->rescan_ctlr_wq
);
7112 destroy_workqueue(h
->resubmit_wq
);
7113 hpsa_unregister_scsi(h
); /* unhook from SCSI subsystem */
7114 hpsa_shutdown(pdev
);
7116 iounmap(h
->transtable
);
7117 iounmap(h
->cfgtable
);
7118 hpsa_free_device_info(h
);
7119 hpsa_free_sg_chain_blocks(h
);
7120 pci_free_consistent(h
->pdev
,
7121 h
->nr_cmds
* sizeof(struct CommandList
),
7122 h
->cmd_pool
, h
->cmd_pool_dhandle
);
7123 pci_free_consistent(h
->pdev
,
7124 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7125 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
7126 hpsa_free_reply_queues(h
);
7127 kfree(h
->cmd_pool_bits
);
7128 kfree(h
->blockFetchTable
);
7129 kfree(h
->ioaccel1_blockFetchTable
);
7130 kfree(h
->ioaccel2_blockFetchTable
);
7131 kfree(h
->hba_inquiry_data
);
7132 pci_disable_device(pdev
);
7133 pci_release_regions(pdev
);
7134 free_percpu(h
->lockup_detected
);
7138 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
7139 __attribute__((unused
)) pm_message_t state
)
7144 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
7149 static struct pci_driver hpsa_pci_driver
= {
7151 .probe
= hpsa_init_one
,
7152 .remove
= hpsa_remove_one
,
7153 .id_table
= hpsa_pci_device_id
, /* id_table */
7154 .shutdown
= hpsa_shutdown
,
7155 .suspend
= hpsa_suspend
,
7156 .resume
= hpsa_resume
,
7159 /* Fill in bucket_map[], given nsgs (the max number of
7160 * scatter gather elements supported) and bucket[],
7161 * which is an array of 8 integers. The bucket[] array
7162 * contains 8 different DMA transfer sizes (in 16
7163 * byte increments) which the controller uses to fetch
7164 * commands. This function fills in bucket_map[], which
7165 * maps a given number of scatter gather elements to one of
7166 * the 8 DMA transfer sizes. The point of it is to allow the
7167 * controller to only do as much DMA as needed to fetch the
7168 * command, with the DMA transfer size encoded in the lower
7169 * bits of the command address.
7171 static void calc_bucket_map(int bucket
[], int num_buckets
,
7172 int nsgs
, int min_blocks
, u32
*bucket_map
)
7176 /* Note, bucket_map must have nsgs+1 entries. */
7177 for (i
= 0; i
<= nsgs
; i
++) {
7178 /* Compute size of a command with i SG entries */
7179 size
= i
+ min_blocks
;
7180 b
= num_buckets
; /* Assume the biggest bucket */
7181 /* Find the bucket that is just big enough */
7182 for (j
= 0; j
< num_buckets
; j
++) {
7183 if (bucket
[j
] >= size
) {
7188 /* for a command with i SG entries, use bucket b. */
7193 /* return -ENODEV or other reason on error, 0 on success */
7194 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
7197 unsigned long register_value
;
7198 unsigned long transMethod
= CFGTBL_Trans_Performant
|
7199 (trans_support
& CFGTBL_Trans_use_short_tags
) |
7200 CFGTBL_Trans_enable_directed_msix
|
7201 (trans_support
& (CFGTBL_Trans_io_accel1
|
7202 CFGTBL_Trans_io_accel2
));
7203 struct access_method access
= SA5_performant_access
;
7205 /* This is a bit complicated. There are 8 registers on
7206 * the controller which we write to to tell it 8 different
7207 * sizes of commands which there may be. It's a way of
7208 * reducing the DMA done to fetch each command. Encoded into
7209 * each command's tag are 3 bits which communicate to the controller
7210 * which of the eight sizes that command fits within. The size of
7211 * each command depends on how many scatter gather entries there are.
7212 * Each SG entry requires 16 bytes. The eight registers are programmed
7213 * with the number of 16-byte blocks a command of that size requires.
7214 * The smallest command possible requires 5 such 16 byte blocks.
7215 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7216 * blocks. Note, this only extends to the SG entries contained
7217 * within the command block, and does not extend to chained blocks
7218 * of SG elements. bft[] contains the eight values we write to
7219 * the registers. They are not evenly distributed, but have more
7220 * sizes for small commands, and fewer sizes for larger commands.
7222 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
7223 #define MIN_IOACCEL2_BFT_ENTRY 5
7224 #define HPSA_IOACCEL2_HEADER_SZ 4
7225 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
7226 13, 14, 15, 16, 17, 18, 19,
7227 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
7228 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
7229 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
7230 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
7231 16 * MIN_IOACCEL2_BFT_ENTRY
);
7232 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
7233 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
7234 /* 5 = 1 s/g entry or 4k
7235 * 6 = 2 s/g entry or 8k
7236 * 8 = 4 s/g entry or 16k
7237 * 10 = 6 s/g entry or 24k
7240 /* If the controller supports either ioaccel method then
7241 * we can also use the RAID stack submit path that does not
7242 * perform the superfluous readl() after each command submission.
7244 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
7245 access
= SA5_performant_access_no_read
;
7247 /* Controller spec: zero out this buffer. */
7248 for (i
= 0; i
< h
->nreply_queues
; i
++)
7249 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
7251 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
7252 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
7253 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
7254 for (i
= 0; i
< 8; i
++)
7255 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
7257 /* size of controller ring buffer */
7258 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
7259 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
7260 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
7261 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
7263 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7264 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
7265 writel(h
->reply_queue
[i
].busaddr
,
7266 &h
->transtable
->RepQAddr
[i
].lower
);
7269 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7270 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7272 * enable outbound interrupt coalescing in accelerator mode;
7274 if (trans_support
& CFGTBL_Trans_io_accel1
) {
7275 access
= SA5_ioaccel_mode1_access
;
7276 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
7277 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
7279 if (trans_support
& CFGTBL_Trans_io_accel2
) {
7280 access
= SA5_ioaccel_mode2_access
;
7281 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
7282 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
7285 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7286 if (hpsa_wait_for_mode_change_ack(h
)) {
7287 dev_err(&h
->pdev
->dev
,
7288 "performant mode problem - doorbell timeout\n");
7291 register_value
= readl(&(h
->cfgtable
->TransportActive
));
7292 if (!(register_value
& CFGTBL_Trans_Performant
)) {
7293 dev_err(&h
->pdev
->dev
,
7294 "performant mode problem - transport not active\n");
7297 /* Change the access methods to the performant access methods */
7299 h
->transMethod
= transMethod
;
7301 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
7302 (trans_support
& CFGTBL_Trans_io_accel2
)))
7305 if (trans_support
& CFGTBL_Trans_io_accel1
) {
7306 /* Set up I/O accelerator mode */
7307 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7308 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
7309 h
->reply_queue
[i
].current_entry
=
7310 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
7312 bft
[7] = h
->ioaccel_maxsg
+ 8;
7313 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
7314 h
->ioaccel1_blockFetchTable
);
7316 /* initialize all reply queue entries to unused */
7317 for (i
= 0; i
< h
->nreply_queues
; i
++)
7318 memset(h
->reply_queue
[i
].head
,
7319 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
7320 h
->reply_queue_size
);
7322 /* set all the constant fields in the accelerator command
7323 * frames once at init time to save CPU cycles later.
7325 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7326 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
7328 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
7329 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
7330 (i
* sizeof(struct ErrorInfo
)));
7331 cp
->err_info_len
= sizeof(struct ErrorInfo
);
7332 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
7333 cp
->host_context_flags
=
7334 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
7335 cp
->timeout_sec
= 0;
7338 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
7340 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
7341 (i
* sizeof(struct io_accel1_cmd
)));
7343 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
7344 u64 cfg_offset
, cfg_base_addr_index
;
7345 u32 bft2_offset
, cfg_base_addr
;
7348 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7349 &cfg_base_addr_index
, &cfg_offset
);
7350 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
7351 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
7352 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
7353 4, h
->ioaccel2_blockFetchTable
);
7354 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
7355 BUILD_BUG_ON(offsetof(struct CfgTable
,
7356 io_accel_request_size_offset
) != 0xb8);
7357 h
->ioaccel2_bft2_regs
=
7358 remap_pci_mem(pci_resource_start(h
->pdev
,
7359 cfg_base_addr_index
) +
7360 cfg_offset
+ bft2_offset
,
7362 sizeof(*h
->ioaccel2_bft2_regs
));
7363 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
7364 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
7366 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7367 if (hpsa_wait_for_mode_change_ack(h
)) {
7368 dev_err(&h
->pdev
->dev
,
7369 "performant mode problem - enabling ioaccel mode\n");
7375 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info
*h
)
7378 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
7379 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
7380 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
7382 /* Command structures must be aligned on a 128-byte boundary
7383 * because the 7 lower bits of the address are used by the
7386 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
7387 IOACCEL1_COMMANDLIST_ALIGNMENT
);
7388 h
->ioaccel_cmd_pool
=
7389 pci_alloc_consistent(h
->pdev
,
7390 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
7391 &(h
->ioaccel_cmd_pool_dhandle
));
7393 h
->ioaccel1_blockFetchTable
=
7394 kmalloc(((h
->ioaccel_maxsg
+ 1) *
7395 sizeof(u32
)), GFP_KERNEL
);
7397 if ((h
->ioaccel_cmd_pool
== NULL
) ||
7398 (h
->ioaccel1_blockFetchTable
== NULL
))
7401 memset(h
->ioaccel_cmd_pool
, 0,
7402 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
7406 if (h
->ioaccel_cmd_pool
)
7407 pci_free_consistent(h
->pdev
,
7408 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
7409 h
->ioaccel_cmd_pool
, h
->ioaccel_cmd_pool_dhandle
);
7410 kfree(h
->ioaccel1_blockFetchTable
);
7414 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info
*h
)
7416 /* Allocate ioaccel2 mode command blocks and block fetch table */
7419 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
7420 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
7421 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
7423 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
7424 IOACCEL2_COMMANDLIST_ALIGNMENT
);
7425 h
->ioaccel2_cmd_pool
=
7426 pci_alloc_consistent(h
->pdev
,
7427 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
7428 &(h
->ioaccel2_cmd_pool_dhandle
));
7430 h
->ioaccel2_blockFetchTable
=
7431 kmalloc(((h
->ioaccel_maxsg
+ 1) *
7432 sizeof(u32
)), GFP_KERNEL
);
7434 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
7435 (h
->ioaccel2_blockFetchTable
== NULL
))
7438 memset(h
->ioaccel2_cmd_pool
, 0,
7439 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
7443 if (h
->ioaccel2_cmd_pool
)
7444 pci_free_consistent(h
->pdev
,
7445 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
7446 h
->ioaccel2_cmd_pool
, h
->ioaccel2_cmd_pool_dhandle
);
7447 kfree(h
->ioaccel2_blockFetchTable
);
7451 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
7454 unsigned long transMethod
= CFGTBL_Trans_Performant
|
7455 CFGTBL_Trans_use_short_tags
;
7458 if (hpsa_simple_mode
)
7461 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7462 if (!(trans_support
& PERFORMANT_MODE
))
7465 /* Check for I/O accelerator mode support */
7466 if (trans_support
& CFGTBL_Trans_io_accel1
) {
7467 transMethod
|= CFGTBL_Trans_io_accel1
|
7468 CFGTBL_Trans_enable_directed_msix
;
7469 if (hpsa_alloc_ioaccel_cmd_and_bft(h
))
7472 if (trans_support
& CFGTBL_Trans_io_accel2
) {
7473 transMethod
|= CFGTBL_Trans_io_accel2
|
7474 CFGTBL_Trans_enable_directed_msix
;
7475 if (ioaccel2_alloc_cmds_and_bft(h
))
7480 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
7481 hpsa_get_max_perf_mode_cmds(h
);
7482 /* Performant mode ring buffer and supporting data structures */
7483 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
7485 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7486 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
7487 h
->reply_queue_size
,
7488 &(h
->reply_queue
[i
].busaddr
));
7489 if (!h
->reply_queue
[i
].head
)
7491 h
->reply_queue
[i
].size
= h
->max_commands
;
7492 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
7493 h
->reply_queue
[i
].current_entry
= 0;
7496 /* Need a block fetch table for performant mode */
7497 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
7498 sizeof(u32
)), GFP_KERNEL
);
7499 if (!h
->blockFetchTable
)
7502 hpsa_enter_performant_mode(h
, trans_support
);
7506 hpsa_free_reply_queues(h
);
7507 kfree(h
->blockFetchTable
);
7510 static int is_accelerated_cmd(struct CommandList
*c
)
7512 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
7515 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
7517 struct CommandList
*c
= NULL
;
7518 int i
, accel_cmds_out
;
7521 do { /* wait for all outstanding ioaccel commands to drain out */
7523 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7524 c
= h
->cmd_pool
+ i
;
7525 refcount
= atomic_inc_return(&c
->refcount
);
7526 if (refcount
> 1) /* Command is allocated */
7527 accel_cmds_out
+= is_accelerated_cmd(c
);
7530 if (accel_cmds_out
<= 0)
7537 * This is it. Register the PCI driver information for the cards we control
7538 * the OS will call our registered routines when it finds one of our cards.
7540 static int __init
hpsa_init(void)
7542 return pci_register_driver(&hpsa_pci_driver
);
7545 static void __exit
hpsa_cleanup(void)
7547 pci_unregister_driver(&hpsa_pci_driver
);
7550 static void __attribute__((unused
)) verify_offsets(void)
7552 #define VERIFY_OFFSET(member, offset) \
7553 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7555 VERIFY_OFFSET(structure_size
, 0);
7556 VERIFY_OFFSET(volume_blk_size
, 4);
7557 VERIFY_OFFSET(volume_blk_cnt
, 8);
7558 VERIFY_OFFSET(phys_blk_shift
, 16);
7559 VERIFY_OFFSET(parity_rotation_shift
, 17);
7560 VERIFY_OFFSET(strip_size
, 18);
7561 VERIFY_OFFSET(disk_starting_blk
, 20);
7562 VERIFY_OFFSET(disk_blk_cnt
, 28);
7563 VERIFY_OFFSET(data_disks_per_row
, 36);
7564 VERIFY_OFFSET(metadata_disks_per_row
, 38);
7565 VERIFY_OFFSET(row_cnt
, 40);
7566 VERIFY_OFFSET(layout_map_count
, 42);
7567 VERIFY_OFFSET(flags
, 44);
7568 VERIFY_OFFSET(dekindex
, 46);
7569 /* VERIFY_OFFSET(reserved, 48 */
7570 VERIFY_OFFSET(data
, 64);
7572 #undef VERIFY_OFFSET
7574 #define VERIFY_OFFSET(member, offset) \
7575 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7577 VERIFY_OFFSET(IU_type
, 0);
7578 VERIFY_OFFSET(direction
, 1);
7579 VERIFY_OFFSET(reply_queue
, 2);
7580 /* VERIFY_OFFSET(reserved1, 3); */
7581 VERIFY_OFFSET(scsi_nexus
, 4);
7582 VERIFY_OFFSET(Tag
, 8);
7583 VERIFY_OFFSET(cdb
, 16);
7584 VERIFY_OFFSET(cciss_lun
, 32);
7585 VERIFY_OFFSET(data_len
, 40);
7586 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
7587 VERIFY_OFFSET(sg_count
, 45);
7588 /* VERIFY_OFFSET(reserved3 */
7589 VERIFY_OFFSET(err_ptr
, 48);
7590 VERIFY_OFFSET(err_len
, 56);
7591 /* VERIFY_OFFSET(reserved4 */
7592 VERIFY_OFFSET(sg
, 64);
7594 #undef VERIFY_OFFSET
7596 #define VERIFY_OFFSET(member, offset) \
7597 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7599 VERIFY_OFFSET(dev_handle
, 0x00);
7600 VERIFY_OFFSET(reserved1
, 0x02);
7601 VERIFY_OFFSET(function
, 0x03);
7602 VERIFY_OFFSET(reserved2
, 0x04);
7603 VERIFY_OFFSET(err_info
, 0x0C);
7604 VERIFY_OFFSET(reserved3
, 0x10);
7605 VERIFY_OFFSET(err_info_len
, 0x12);
7606 VERIFY_OFFSET(reserved4
, 0x13);
7607 VERIFY_OFFSET(sgl_offset
, 0x14);
7608 VERIFY_OFFSET(reserved5
, 0x15);
7609 VERIFY_OFFSET(transfer_len
, 0x1C);
7610 VERIFY_OFFSET(reserved6
, 0x20);
7611 VERIFY_OFFSET(io_flags
, 0x24);
7612 VERIFY_OFFSET(reserved7
, 0x26);
7613 VERIFY_OFFSET(LUN
, 0x34);
7614 VERIFY_OFFSET(control
, 0x3C);
7615 VERIFY_OFFSET(CDB
, 0x40);
7616 VERIFY_OFFSET(reserved8
, 0x50);
7617 VERIFY_OFFSET(host_context_flags
, 0x60);
7618 VERIFY_OFFSET(timeout_sec
, 0x62);
7619 VERIFY_OFFSET(ReplyQueue
, 0x64);
7620 VERIFY_OFFSET(reserved9
, 0x65);
7621 VERIFY_OFFSET(tag
, 0x68);
7622 VERIFY_OFFSET(host_addr
, 0x70);
7623 VERIFY_OFFSET(CISS_LUN
, 0x78);
7624 VERIFY_OFFSET(SG
, 0x78 + 8);
7625 #undef VERIFY_OFFSET
7628 module_init(hpsa_init
);
7629 module_exit(hpsa_cleanup
);