Merge tag 'staging-5.8-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux/fpc-iii.git] / kernel / bpf / ringbuf.c
blob180414bb0d3e9a94d26225f15370b139d0d7689f
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <uapi/linux/btf.h>
13 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
15 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
16 #define RINGBUF_PGOFF \
17 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
18 /* consumer page and producer page */
19 #define RINGBUF_POS_PAGES 2
21 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
23 /* Maximum size of ring buffer area is limited by 32-bit page offset within
24 * record header, counted in pages. Reserve 8 bits for extensibility, and take
25 * into account few extra pages for consumer/producer pages and
26 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
27 * ring buffer.
29 #define RINGBUF_MAX_DATA_SZ \
30 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
32 struct bpf_ringbuf {
33 wait_queue_head_t waitq;
34 struct irq_work work;
35 u64 mask;
36 struct page **pages;
37 int nr_pages;
38 spinlock_t spinlock ____cacheline_aligned_in_smp;
39 /* Consumer and producer counters are put into separate pages to allow
40 * mapping consumer page as r/w, but restrict producer page to r/o.
41 * This protects producer position from being modified by user-space
42 * application and ruining in-kernel position tracking.
44 unsigned long consumer_pos __aligned(PAGE_SIZE);
45 unsigned long producer_pos __aligned(PAGE_SIZE);
46 char data[] __aligned(PAGE_SIZE);
49 struct bpf_ringbuf_map {
50 struct bpf_map map;
51 struct bpf_map_memory memory;
52 struct bpf_ringbuf *rb;
55 /* 8-byte ring buffer record header structure */
56 struct bpf_ringbuf_hdr {
57 u32 len;
58 u32 pg_off;
61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
63 const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
64 __GFP_ZERO;
65 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
66 int nr_data_pages = data_sz >> PAGE_SHIFT;
67 int nr_pages = nr_meta_pages + nr_data_pages;
68 struct page **pages, *page;
69 struct bpf_ringbuf *rb;
70 size_t array_size;
71 int i;
73 /* Each data page is mapped twice to allow "virtual"
74 * continuous read of samples wrapping around the end of ring
75 * buffer area:
76 * ------------------------------------------------------
77 * | meta pages | real data pages | same data pages |
78 * ------------------------------------------------------
79 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
80 * ------------------------------------------------------
81 * | | TA DA | TA DA |
82 * ------------------------------------------------------
83 * ^^^^^^^
84 * |
85 * Here, no need to worry about special handling of wrapped-around
86 * data due to double-mapped data pages. This works both in kernel and
87 * when mmap()'ed in user-space, simplifying both kernel and
88 * user-space implementations significantly.
90 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
91 if (array_size > PAGE_SIZE)
92 pages = vmalloc_node(array_size, numa_node);
93 else
94 pages = kmalloc_node(array_size, flags, numa_node);
95 if (!pages)
96 return NULL;
98 for (i = 0; i < nr_pages; i++) {
99 page = alloc_pages_node(numa_node, flags, 0);
100 if (!page) {
101 nr_pages = i;
102 goto err_free_pages;
104 pages[i] = page;
105 if (i >= nr_meta_pages)
106 pages[nr_data_pages + i] = page;
109 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
110 VM_ALLOC | VM_USERMAP, PAGE_KERNEL);
111 if (rb) {
112 rb->pages = pages;
113 rb->nr_pages = nr_pages;
114 return rb;
117 err_free_pages:
118 for (i = 0; i < nr_pages; i++)
119 __free_page(pages[i]);
120 kvfree(pages);
121 return NULL;
124 static void bpf_ringbuf_notify(struct irq_work *work)
126 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
128 wake_up_all(&rb->waitq);
131 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
133 struct bpf_ringbuf *rb;
135 if (!data_sz || !PAGE_ALIGNED(data_sz))
136 return ERR_PTR(-EINVAL);
138 #ifdef CONFIG_64BIT
139 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
140 if (data_sz > RINGBUF_MAX_DATA_SZ)
141 return ERR_PTR(-E2BIG);
142 #endif
144 rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
145 if (!rb)
146 return ERR_PTR(-ENOMEM);
148 spin_lock_init(&rb->spinlock);
149 init_waitqueue_head(&rb->waitq);
150 init_irq_work(&rb->work, bpf_ringbuf_notify);
152 rb->mask = data_sz - 1;
153 rb->consumer_pos = 0;
154 rb->producer_pos = 0;
156 return rb;
159 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
161 struct bpf_ringbuf_map *rb_map;
162 u64 cost;
163 int err;
165 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
166 return ERR_PTR(-EINVAL);
168 if (attr->key_size || attr->value_size ||
169 attr->max_entries == 0 || !PAGE_ALIGNED(attr->max_entries))
170 return ERR_PTR(-EINVAL);
172 rb_map = kzalloc(sizeof(*rb_map), GFP_USER);
173 if (!rb_map)
174 return ERR_PTR(-ENOMEM);
176 bpf_map_init_from_attr(&rb_map->map, attr);
178 cost = sizeof(struct bpf_ringbuf_map) +
179 sizeof(struct bpf_ringbuf) +
180 attr->max_entries;
181 err = bpf_map_charge_init(&rb_map->map.memory, cost);
182 if (err)
183 goto err_free_map;
185 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
186 if (IS_ERR(rb_map->rb)) {
187 err = PTR_ERR(rb_map->rb);
188 goto err_uncharge;
191 return &rb_map->map;
193 err_uncharge:
194 bpf_map_charge_finish(&rb_map->map.memory);
195 err_free_map:
196 kfree(rb_map);
197 return ERR_PTR(err);
200 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
202 /* copy pages pointer and nr_pages to local variable, as we are going
203 * to unmap rb itself with vunmap() below
205 struct page **pages = rb->pages;
206 int i, nr_pages = rb->nr_pages;
208 vunmap(rb);
209 for (i = 0; i < nr_pages; i++)
210 __free_page(pages[i]);
211 kvfree(pages);
214 static void ringbuf_map_free(struct bpf_map *map)
216 struct bpf_ringbuf_map *rb_map;
218 /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
219 * so the programs (can be more than one that used this map) were
220 * disconnected from events. Wait for outstanding critical sections in
221 * these programs to complete
223 synchronize_rcu();
225 rb_map = container_of(map, struct bpf_ringbuf_map, map);
226 bpf_ringbuf_free(rb_map->rb);
227 kfree(rb_map);
230 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
232 return ERR_PTR(-ENOTSUPP);
235 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
236 u64 flags)
238 return -ENOTSUPP;
241 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
243 return -ENOTSUPP;
246 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
247 void *next_key)
249 return -ENOTSUPP;
252 static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb)
254 size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT;
256 /* consumer page + producer page + 2 x data pages */
257 return RINGBUF_POS_PAGES + 2 * data_pages;
260 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
262 struct bpf_ringbuf_map *rb_map;
263 size_t mmap_sz;
265 rb_map = container_of(map, struct bpf_ringbuf_map, map);
266 mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT;
268 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz)
269 return -EINVAL;
271 return remap_vmalloc_range(vma, rb_map->rb,
272 vma->vm_pgoff + RINGBUF_PGOFF);
275 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
277 unsigned long cons_pos, prod_pos;
279 cons_pos = smp_load_acquire(&rb->consumer_pos);
280 prod_pos = smp_load_acquire(&rb->producer_pos);
281 return prod_pos - cons_pos;
284 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
285 struct poll_table_struct *pts)
287 struct bpf_ringbuf_map *rb_map;
289 rb_map = container_of(map, struct bpf_ringbuf_map, map);
290 poll_wait(filp, &rb_map->rb->waitq, pts);
292 if (ringbuf_avail_data_sz(rb_map->rb))
293 return EPOLLIN | EPOLLRDNORM;
294 return 0;
297 const struct bpf_map_ops ringbuf_map_ops = {
298 .map_alloc = ringbuf_map_alloc,
299 .map_free = ringbuf_map_free,
300 .map_mmap = ringbuf_map_mmap,
301 .map_poll = ringbuf_map_poll,
302 .map_lookup_elem = ringbuf_map_lookup_elem,
303 .map_update_elem = ringbuf_map_update_elem,
304 .map_delete_elem = ringbuf_map_delete_elem,
305 .map_get_next_key = ringbuf_map_get_next_key,
308 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
309 * calculate offset from record metadata to ring buffer in pages, rounded
310 * down. This page offset is stored as part of record metadata and allows to
311 * restore struct bpf_ringbuf * from record pointer. This page offset is
312 * stored at offset 4 of record metadata header.
314 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
315 struct bpf_ringbuf_hdr *hdr)
317 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
320 /* Given pointer to ring buffer record header, restore pointer to struct
321 * bpf_ringbuf itself by using page offset stored at offset 4
323 static struct bpf_ringbuf *
324 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
326 unsigned long addr = (unsigned long)(void *)hdr;
327 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
329 return (void*)((addr & PAGE_MASK) - off);
332 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
334 unsigned long cons_pos, prod_pos, new_prod_pos, flags;
335 u32 len, pg_off;
336 struct bpf_ringbuf_hdr *hdr;
338 if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
339 return NULL;
341 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
342 cons_pos = smp_load_acquire(&rb->consumer_pos);
344 if (in_nmi()) {
345 if (!spin_trylock_irqsave(&rb->spinlock, flags))
346 return NULL;
347 } else {
348 spin_lock_irqsave(&rb->spinlock, flags);
351 prod_pos = rb->producer_pos;
352 new_prod_pos = prod_pos + len;
354 /* check for out of ringbuf space by ensuring producer position
355 * doesn't advance more than (ringbuf_size - 1) ahead
357 if (new_prod_pos - cons_pos > rb->mask) {
358 spin_unlock_irqrestore(&rb->spinlock, flags);
359 return NULL;
362 hdr = (void *)rb->data + (prod_pos & rb->mask);
363 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
364 hdr->len = size | BPF_RINGBUF_BUSY_BIT;
365 hdr->pg_off = pg_off;
367 /* pairs with consumer's smp_load_acquire() */
368 smp_store_release(&rb->producer_pos, new_prod_pos);
370 spin_unlock_irqrestore(&rb->spinlock, flags);
372 return (void *)hdr + BPF_RINGBUF_HDR_SZ;
375 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
377 struct bpf_ringbuf_map *rb_map;
379 if (unlikely(flags))
380 return 0;
382 rb_map = container_of(map, struct bpf_ringbuf_map, map);
383 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
386 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
387 .func = bpf_ringbuf_reserve,
388 .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL,
389 .arg1_type = ARG_CONST_MAP_PTR,
390 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
391 .arg3_type = ARG_ANYTHING,
394 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
396 unsigned long rec_pos, cons_pos;
397 struct bpf_ringbuf_hdr *hdr;
398 struct bpf_ringbuf *rb;
399 u32 new_len;
401 hdr = sample - BPF_RINGBUF_HDR_SZ;
402 rb = bpf_ringbuf_restore_from_rec(hdr);
403 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
404 if (discard)
405 new_len |= BPF_RINGBUF_DISCARD_BIT;
407 /* update record header with correct final size prefix */
408 xchg(&hdr->len, new_len);
410 /* if consumer caught up and is waiting for our record, notify about
411 * new data availability
413 rec_pos = (void *)hdr - (void *)rb->data;
414 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
416 if (flags & BPF_RB_FORCE_WAKEUP)
417 irq_work_queue(&rb->work);
418 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
419 irq_work_queue(&rb->work);
422 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
424 bpf_ringbuf_commit(sample, flags, false /* discard */);
425 return 0;
428 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
429 .func = bpf_ringbuf_submit,
430 .ret_type = RET_VOID,
431 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
432 .arg2_type = ARG_ANYTHING,
435 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
437 bpf_ringbuf_commit(sample, flags, true /* discard */);
438 return 0;
441 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
442 .func = bpf_ringbuf_discard,
443 .ret_type = RET_VOID,
444 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
445 .arg2_type = ARG_ANYTHING,
448 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
449 u64, flags)
451 struct bpf_ringbuf_map *rb_map;
452 void *rec;
454 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
455 return -EINVAL;
457 rb_map = container_of(map, struct bpf_ringbuf_map, map);
458 rec = __bpf_ringbuf_reserve(rb_map->rb, size);
459 if (!rec)
460 return -EAGAIN;
462 memcpy(rec, data, size);
463 bpf_ringbuf_commit(rec, flags, false /* discard */);
464 return 0;
467 const struct bpf_func_proto bpf_ringbuf_output_proto = {
468 .func = bpf_ringbuf_output,
469 .ret_type = RET_INTEGER,
470 .arg1_type = ARG_CONST_MAP_PTR,
471 .arg2_type = ARG_PTR_TO_MEM,
472 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
473 .arg4_type = ARG_ANYTHING,
476 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
478 struct bpf_ringbuf *rb;
480 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
482 switch (flags) {
483 case BPF_RB_AVAIL_DATA:
484 return ringbuf_avail_data_sz(rb);
485 case BPF_RB_RING_SIZE:
486 return rb->mask + 1;
487 case BPF_RB_CONS_POS:
488 return smp_load_acquire(&rb->consumer_pos);
489 case BPF_RB_PROD_POS:
490 return smp_load_acquire(&rb->producer_pos);
491 default:
492 return 0;
496 const struct bpf_func_proto bpf_ringbuf_query_proto = {
497 .func = bpf_ringbuf_query,
498 .ret_type = RET_INTEGER,
499 .arg1_type = ARG_CONST_MAP_PTR,
500 .arg2_type = ARG_ANYTHING,