parisc iommu: fix panic due to trying to allocate too large region
[linux/fpc-iii.git] / drivers / net / ethernet / sun / sunhme.c
blob436fa9d5a07190a555adc6a6b7119700845b2b73
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 * 2006, 2008 David S. Miller (davem@davemloft.net)
8 * Changes :
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
43 #ifdef CONFIG_SPARC
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <asm/idprom.h>
47 #include <asm/openprom.h>
48 #include <asm/oplib.h>
49 #include <asm/prom.h>
50 #include <asm/auxio.h>
51 #endif
52 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm/irq.h>
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
61 #include "sunhme.h"
63 #define DRV_NAME "sunhme"
64 #define DRV_VERSION "3.10"
65 #define DRV_RELDATE "August 26, 2008"
66 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
68 static char version[] =
69 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
76 static int macaddr[6];
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98 unsigned int tstamp;
99 int tx_new, tx_old;
100 unsigned int action;
101 #define TXLOG_ACTION_IRQ 0x01
102 #define TXLOG_ACTION_TXMIT 0x02
103 #define TXLOG_ACTION_TBUSY 0x04
104 #define TXLOG_ACTION_NBUFS 0x08
105 unsigned int status;
107 #define TX_LOG_LEN 128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
112 struct hme_tx_logent *tlp;
113 unsigned long flags;
115 local_irq_save(flags);
116 tlp = &tx_log[txlog_cur_entry];
117 tlp->tstamp = (unsigned int)jiffies;
118 tlp->tx_new = hp->tx_new;
119 tlp->tx_old = hp->tx_old;
120 tlp->action = a;
121 tlp->status = s;
122 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123 local_irq_restore(flags);
125 static __inline__ void tx_dump_log(void)
127 int i, this;
129 this = txlog_cur_entry;
130 for (i = 0; i < TX_LOG_LEN; i++) {
131 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132 tx_log[this].tstamp,
133 tx_log[this].tx_new, tx_log[this].tx_old,
134 tx_log[this].action, tx_log[this].status);
135 this = (this + 1) & (TX_LOG_LEN - 1);
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
140 struct hmeal_init_block *hb = hp->happy_block;
141 struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142 int i;
144 for (i = 0; i < TX_RING_SIZE; i+=4) {
145 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146 i, i + 4,
147 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
153 #else
154 #define tx_add_log(hp, a, s) do { } while(0)
155 #define tx_dump_log() do { } while(0)
156 #define tx_dump_ring(hp) do { } while(0)
157 #endif
159 #ifdef HMEDEBUG
160 #define HMD(x) printk x
161 #else
162 #define HMD(x)
163 #endif
165 /* #define AUTO_SWITCH_DEBUG */
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x) printk x
169 #else
170 #define ASD(x)
171 #endif
173 #define DEFAULT_IPG0 16 /* For lance-mode only */
174 #define DEFAULT_IPG1 8 /* For all modes */
175 #define DEFAULT_IPG2 4 /* For all modes */
176 #define DEFAULT_JAMSIZE 4 /* Toe jam */
178 /* NOTE: In the descriptor writes one _must_ write the address
179 * member _first_. The card must not be allowed to see
180 * the updated descriptor flags until the address is
181 * correct. I've added a write memory barrier between
182 * the two stores so that I can sleep well at night... -DaveM
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
188 sbus_writel(val, reg);
191 static u32 sbus_hme_read32(void __iomem *reg)
193 return sbus_readl(reg);
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
198 rxd->rx_addr = (__force hme32)addr;
199 wmb();
200 rxd->rx_flags = (__force hme32)flags;
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
205 txd->tx_addr = (__force hme32)addr;
206 wmb();
207 txd->tx_flags = (__force hme32)flags;
210 static u32 sbus_hme_read_desc32(hme32 *p)
212 return (__force u32)*p;
215 static void pci_hme_write32(void __iomem *reg, u32 val)
217 writel(val, reg);
220 static u32 pci_hme_read32(void __iomem *reg)
222 return readl(reg);
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
227 rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228 wmb();
229 rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
234 txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235 wmb();
236 txd->tx_flags = (__force hme32)cpu_to_le32(flags);
239 static u32 pci_hme_read_desc32(hme32 *p)
241 return le32_to_cpup((__le32 *)p);
244 #define hme_write32(__hp, __reg, __val) \
245 ((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247 ((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 ((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253 ((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
262 #else
263 #ifdef CONFIG_SBUS
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266 sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
268 sbus_readl(__reg)
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
271 wmb(); \
272 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
273 } while(0)
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
276 wmb(); \
277 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
278 } while(0)
279 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
288 #else
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291 writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
293 readl(__reg)
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
296 wmb(); \
297 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
298 } while(0)
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
301 wmb(); \
302 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
303 } while(0)
304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
306 return le32_to_cpup((__le32 *)p);
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
316 #endif
317 #endif
320 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
323 hme_write32(hp, tregs + TCVR_BBDATA, bit);
324 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
325 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
328 #if 0
329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
331 u32 ret;
333 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
334 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
335 ret = hme_read32(hp, tregs + TCVR_CFG);
336 if (internal)
337 ret &= TCV_CFG_MDIO0;
338 else
339 ret &= TCV_CFG_MDIO1;
341 return ret;
343 #endif
345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
347 u32 retval;
349 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
350 udelay(1);
351 retval = hme_read32(hp, tregs + TCVR_CFG);
352 if (internal)
353 retval &= TCV_CFG_MDIO0;
354 else
355 retval &= TCV_CFG_MDIO1;
356 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
358 return retval;
361 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
363 static int happy_meal_bb_read(struct happy_meal *hp,
364 void __iomem *tregs, int reg)
366 u32 tmp;
367 int retval = 0;
368 int i;
370 ASD(("happy_meal_bb_read: reg=%d ", reg));
372 /* Enable the MIF BitBang outputs. */
373 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
375 /* Force BitBang into the idle state. */
376 for (i = 0; i < 32; i++)
377 BB_PUT_BIT(hp, tregs, 1);
379 /* Give it the read sequence. */
380 BB_PUT_BIT(hp, tregs, 0);
381 BB_PUT_BIT(hp, tregs, 1);
382 BB_PUT_BIT(hp, tregs, 1);
383 BB_PUT_BIT(hp, tregs, 0);
385 /* Give it the PHY address. */
386 tmp = hp->paddr & 0xff;
387 for (i = 4; i >= 0; i--)
388 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
390 /* Tell it what register we want to read. */
391 tmp = (reg & 0xff);
392 for (i = 4; i >= 0; i--)
393 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
395 /* Close down the MIF BitBang outputs. */
396 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
398 /* Now read in the value. */
399 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
400 for (i = 15; i >= 0; i--)
401 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
402 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 ASD(("value=%x\n", retval));
406 return retval;
409 static void happy_meal_bb_write(struct happy_meal *hp,
410 void __iomem *tregs, int reg,
411 unsigned short value)
413 u32 tmp;
414 int i;
416 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
418 /* Enable the MIF BitBang outputs. */
419 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
421 /* Force BitBang into the idle state. */
422 for (i = 0; i < 32; i++)
423 BB_PUT_BIT(hp, tregs, 1);
425 /* Give it write sequence. */
426 BB_PUT_BIT(hp, tregs, 0);
427 BB_PUT_BIT(hp, tregs, 1);
428 BB_PUT_BIT(hp, tregs, 0);
429 BB_PUT_BIT(hp, tregs, 1);
431 /* Give it the PHY address. */
432 tmp = (hp->paddr & 0xff);
433 for (i = 4; i >= 0; i--)
434 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
436 /* Tell it what register we will be writing. */
437 tmp = (reg & 0xff);
438 for (i = 4; i >= 0; i--)
439 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
441 /* Tell it to become ready for the bits. */
442 BB_PUT_BIT(hp, tregs, 1);
443 BB_PUT_BIT(hp, tregs, 0);
445 for (i = 15; i >= 0; i--)
446 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
448 /* Close down the MIF BitBang outputs. */
449 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
452 #define TCVR_READ_TRIES 16
454 static int happy_meal_tcvr_read(struct happy_meal *hp,
455 void __iomem *tregs, int reg)
457 int tries = TCVR_READ_TRIES;
458 int retval;
460 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
461 if (hp->tcvr_type == none) {
462 ASD(("no transceiver, value=TCVR_FAILURE\n"));
463 return TCVR_FAILURE;
466 if (!(hp->happy_flags & HFLAG_FENABLE)) {
467 ASD(("doing bit bang\n"));
468 return happy_meal_bb_read(hp, tregs, reg);
471 hme_write32(hp, tregs + TCVR_FRAME,
472 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
473 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
474 udelay(20);
475 if (!tries) {
476 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
477 return TCVR_FAILURE;
479 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
480 ASD(("value=%04x\n", retval));
481 return retval;
484 #define TCVR_WRITE_TRIES 16
486 static void happy_meal_tcvr_write(struct happy_meal *hp,
487 void __iomem *tregs, int reg,
488 unsigned short value)
490 int tries = TCVR_WRITE_TRIES;
492 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
494 /* Welcome to Sun Microsystems, can I take your order please? */
495 if (!(hp->happy_flags & HFLAG_FENABLE)) {
496 happy_meal_bb_write(hp, tregs, reg, value);
497 return;
500 /* Would you like fries with that? */
501 hme_write32(hp, tregs + TCVR_FRAME,
502 (FRAME_WRITE | (hp->paddr << 23) |
503 ((reg & 0xff) << 18) | (value & 0xffff)));
504 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
505 udelay(20);
507 /* Anything else? */
508 if (!tries)
509 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
511 /* Fifty-two cents is your change, have a nice day. */
514 /* Auto negotiation. The scheme is very simple. We have a timer routine
515 * that keeps watching the auto negotiation process as it progresses.
516 * The DP83840 is first told to start doing it's thing, we set up the time
517 * and place the timer state machine in it's initial state.
519 * Here the timer peeks at the DP83840 status registers at each click to see
520 * if the auto negotiation has completed, we assume here that the DP83840 PHY
521 * will time out at some point and just tell us what (didn't) happen. For
522 * complete coverage we only allow so many of the ticks at this level to run,
523 * when this has expired we print a warning message and try another strategy.
524 * This "other" strategy is to force the interface into various speed/duplex
525 * configurations and we stop when we see a link-up condition before the
526 * maximum number of "peek" ticks have occurred.
528 * Once a valid link status has been detected we configure the BigMAC and
529 * the rest of the Happy Meal to speak the most efficient protocol we could
530 * get a clean link for. The priority for link configurations, highest first
531 * is:
532 * 100 Base-T Full Duplex
533 * 100 Base-T Half Duplex
534 * 10 Base-T Full Duplex
535 * 10 Base-T Half Duplex
537 * We start a new timer now, after a successful auto negotiation status has
538 * been detected. This timer just waits for the link-up bit to get set in
539 * the BMCR of the DP83840. When this occurs we print a kernel log message
540 * describing the link type in use and the fact that it is up.
542 * If a fatal error of some sort is signalled and detected in the interrupt
543 * service routine, and the chip is reset, or the link is ifconfig'd down
544 * and then back up, this entire process repeats itself all over again.
546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
548 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
550 /* Downgrade from full to half duplex. Only possible
551 * via ethtool.
553 if (hp->sw_bmcr & BMCR_FULLDPLX) {
554 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
555 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
556 return 0;
559 /* Downgrade from 100 to 10. */
560 if (hp->sw_bmcr & BMCR_SPEED100) {
561 hp->sw_bmcr &= ~(BMCR_SPEED100);
562 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
563 return 0;
566 /* We've tried everything. */
567 return -1;
570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
572 printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
573 if (hp->tcvr_type == external)
574 printk("external ");
575 else
576 printk("internal ");
577 printk("transceiver at ");
578 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
579 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
580 if (hp->sw_lpa & LPA_100FULL)
581 printk("100Mb/s, Full Duplex.\n");
582 else
583 printk("100Mb/s, Half Duplex.\n");
584 } else {
585 if (hp->sw_lpa & LPA_10FULL)
586 printk("10Mb/s, Full Duplex.\n");
587 else
588 printk("10Mb/s, Half Duplex.\n");
592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
594 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
595 if (hp->tcvr_type == external)
596 printk("external ");
597 else
598 printk("internal ");
599 printk("transceiver at ");
600 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
601 if (hp->sw_bmcr & BMCR_SPEED100)
602 printk("100Mb/s, ");
603 else
604 printk("10Mb/s, ");
605 if (hp->sw_bmcr & BMCR_FULLDPLX)
606 printk("Full Duplex.\n");
607 else
608 printk("Half Duplex.\n");
611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
613 int full;
615 /* All we care about is making sure the bigmac tx_cfg has a
616 * proper duplex setting.
618 if (hp->timer_state == arbwait) {
619 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
620 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
621 goto no_response;
622 if (hp->sw_lpa & LPA_100FULL)
623 full = 1;
624 else if (hp->sw_lpa & LPA_100HALF)
625 full = 0;
626 else if (hp->sw_lpa & LPA_10FULL)
627 full = 1;
628 else
629 full = 0;
630 } else {
631 /* Forcing a link mode. */
632 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
633 if (hp->sw_bmcr & BMCR_FULLDPLX)
634 full = 1;
635 else
636 full = 0;
639 /* Before changing other bits in the tx_cfg register, and in
640 * general any of other the TX config registers too, you
641 * must:
642 * 1) Clear Enable
643 * 2) Poll with reads until that bit reads back as zero
644 * 3) Make TX configuration changes
645 * 4) Set Enable once more
647 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
648 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
649 ~(BIGMAC_TXCFG_ENABLE));
650 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
651 barrier();
652 if (full) {
653 hp->happy_flags |= HFLAG_FULL;
654 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
655 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
656 BIGMAC_TXCFG_FULLDPLX);
657 } else {
658 hp->happy_flags &= ~(HFLAG_FULL);
659 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
660 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
661 ~(BIGMAC_TXCFG_FULLDPLX));
663 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
664 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
665 BIGMAC_TXCFG_ENABLE);
666 return 0;
667 no_response:
668 return 1;
671 static int happy_meal_init(struct happy_meal *hp);
673 static int is_lucent_phy(struct happy_meal *hp)
675 void __iomem *tregs = hp->tcvregs;
676 unsigned short mr2, mr3;
677 int ret = 0;
679 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
680 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
681 if ((mr2 & 0xffff) == 0x0180 &&
682 ((mr3 & 0xffff) >> 10) == 0x1d)
683 ret = 1;
685 return ret;
688 static void happy_meal_timer(unsigned long data)
690 struct happy_meal *hp = (struct happy_meal *) data;
691 void __iomem *tregs = hp->tcvregs;
692 int restart_timer = 0;
694 spin_lock_irq(&hp->happy_lock);
696 hp->timer_ticks++;
697 switch(hp->timer_state) {
698 case arbwait:
699 /* Only allow for 5 ticks, thats 10 seconds and much too
700 * long to wait for arbitration to complete.
702 if (hp->timer_ticks >= 10) {
703 /* Enter force mode. */
704 do_force_mode:
705 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
706 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
707 hp->dev->name);
708 hp->sw_bmcr = BMCR_SPEED100;
709 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
711 if (!is_lucent_phy(hp)) {
712 /* OK, seems we need do disable the transceiver for the first
713 * tick to make sure we get an accurate link state at the
714 * second tick.
716 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
717 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
718 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
720 hp->timer_state = ltrywait;
721 hp->timer_ticks = 0;
722 restart_timer = 1;
723 } else {
724 /* Anything interesting happen? */
725 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
726 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
727 int ret;
729 /* Just what we've been waiting for... */
730 ret = set_happy_link_modes(hp, tregs);
731 if (ret) {
732 /* Ooops, something bad happened, go to force
733 * mode.
735 * XXX Broken hubs which don't support 802.3u
736 * XXX auto-negotiation make this happen as well.
738 goto do_force_mode;
741 /* Success, at least so far, advance our state engine. */
742 hp->timer_state = lupwait;
743 restart_timer = 1;
744 } else {
745 restart_timer = 1;
748 break;
750 case lupwait:
751 /* Auto negotiation was successful and we are awaiting a
752 * link up status. I have decided to let this timer run
753 * forever until some sort of error is signalled, reporting
754 * a message to the user at 10 second intervals.
756 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
757 if (hp->sw_bmsr & BMSR_LSTATUS) {
758 /* Wheee, it's up, display the link mode in use and put
759 * the timer to sleep.
761 display_link_mode(hp, tregs);
762 hp->timer_state = asleep;
763 restart_timer = 0;
764 } else {
765 if (hp->timer_ticks >= 10) {
766 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
767 "not completely up.\n", hp->dev->name);
768 hp->timer_ticks = 0;
769 restart_timer = 1;
770 } else {
771 restart_timer = 1;
774 break;
776 case ltrywait:
777 /* Making the timeout here too long can make it take
778 * annoyingly long to attempt all of the link mode
779 * permutations, but then again this is essentially
780 * error recovery code for the most part.
782 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
783 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
784 if (hp->timer_ticks == 1) {
785 if (!is_lucent_phy(hp)) {
786 /* Re-enable transceiver, we'll re-enable the transceiver next
787 * tick, then check link state on the following tick.
789 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
790 happy_meal_tcvr_write(hp, tregs,
791 DP83840_CSCONFIG, hp->sw_csconfig);
793 restart_timer = 1;
794 break;
796 if (hp->timer_ticks == 2) {
797 if (!is_lucent_phy(hp)) {
798 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
799 happy_meal_tcvr_write(hp, tregs,
800 DP83840_CSCONFIG, hp->sw_csconfig);
802 restart_timer = 1;
803 break;
805 if (hp->sw_bmsr & BMSR_LSTATUS) {
806 /* Force mode selection success. */
807 display_forced_link_mode(hp, tregs);
808 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
809 hp->timer_state = asleep;
810 restart_timer = 0;
811 } else {
812 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
813 int ret;
815 ret = try_next_permutation(hp, tregs);
816 if (ret == -1) {
817 /* Aieee, tried them all, reset the
818 * chip and try all over again.
821 /* Let the user know... */
822 printk(KERN_NOTICE "%s: Link down, cable problem?\n",
823 hp->dev->name);
825 ret = happy_meal_init(hp);
826 if (ret) {
827 /* ho hum... */
828 printk(KERN_ERR "%s: Error, cannot re-init the "
829 "Happy Meal.\n", hp->dev->name);
831 goto out;
833 if (!is_lucent_phy(hp)) {
834 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
835 DP83840_CSCONFIG);
836 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
837 happy_meal_tcvr_write(hp, tregs,
838 DP83840_CSCONFIG, hp->sw_csconfig);
840 hp->timer_ticks = 0;
841 restart_timer = 1;
842 } else {
843 restart_timer = 1;
846 break;
848 case asleep:
849 default:
850 /* Can't happens.... */
851 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
852 hp->dev->name);
853 restart_timer = 0;
854 hp->timer_ticks = 0;
855 hp->timer_state = asleep; /* foo on you */
856 break;
859 if (restart_timer) {
860 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
861 add_timer(&hp->happy_timer);
864 out:
865 spin_unlock_irq(&hp->happy_lock);
868 #define TX_RESET_TRIES 32
869 #define RX_RESET_TRIES 32
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
874 int tries = TX_RESET_TRIES;
876 HMD(("happy_meal_tx_reset: reset, "));
878 /* Would you like to try our SMCC Delux? */
879 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
880 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
881 udelay(20);
883 /* Lettuce, tomato, buggy hardware (no extra charge)? */
884 if (!tries)
885 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
887 /* Take care. */
888 HMD(("done\n"));
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
894 int tries = RX_RESET_TRIES;
896 HMD(("happy_meal_rx_reset: reset, "));
898 /* We have a special on GNU/Viking hardware bugs today. */
899 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
900 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
901 udelay(20);
903 /* Will that be all? */
904 if (!tries)
905 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
907 /* Don't forget your vik_1137125_wa. Have a nice day. */
908 HMD(("done\n"));
911 #define STOP_TRIES 16
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
916 int tries = STOP_TRIES;
918 HMD(("happy_meal_stop: reset, "));
920 /* We're consolidating our STB products, it's your lucky day. */
921 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
922 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
923 udelay(20);
925 /* Come back next week when we are "Sun Microelectronics". */
926 if (!tries)
927 printk(KERN_ERR "happy meal: Fry guys.");
929 /* Remember: "Different name, same old buggy as shit hardware." */
930 HMD(("done\n"));
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
936 struct net_device_stats *stats = &hp->net_stats;
938 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
939 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
941 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
942 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
944 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
945 hme_write32(hp, bregs + BMAC_GLECTR, 0);
947 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
949 stats->collisions +=
950 (hme_read32(hp, bregs + BMAC_EXCTR) +
951 hme_read32(hp, bregs + BMAC_LTCTR));
952 hme_write32(hp, bregs + BMAC_EXCTR, 0);
953 hme_write32(hp, bregs + BMAC_LTCTR, 0);
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
959 ASD(("happy_meal_poll_stop: "));
961 /* If polling disabled or not polling already, nothing to do. */
962 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
963 (HFLAG_POLLENABLE | HFLAG_POLL)) {
964 HMD(("not polling, return\n"));
965 return;
968 /* Shut up the MIF. */
969 ASD(("were polling, mif ints off, "));
970 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
972 /* Turn off polling. */
973 ASD(("polling off, "));
974 hme_write32(hp, tregs + TCVR_CFG,
975 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
977 /* We are no longer polling. */
978 hp->happy_flags &= ~(HFLAG_POLL);
980 /* Let the bits set. */
981 udelay(200);
982 ASD(("done\n"));
985 /* Only Sun can take such nice parts and fuck up the programming interface
986 * like this. Good job guys...
988 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
989 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
994 u32 tconfig;
995 int result, tries = TCVR_RESET_TRIES;
997 tconfig = hme_read32(hp, tregs + TCVR_CFG);
998 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
999 if (hp->tcvr_type == external) {
1000 ASD(("external<"));
1001 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002 hp->tcvr_type = internal;
1003 hp->paddr = TCV_PADDR_ITX;
1004 ASD(("ISOLATE,"));
1005 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008 if (result == TCVR_FAILURE) {
1009 ASD(("phyread_fail>\n"));
1010 return -1;
1012 ASD(("phyread_ok,PSELECT>"));
1013 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014 hp->tcvr_type = external;
1015 hp->paddr = TCV_PADDR_ETX;
1016 } else {
1017 if (tconfig & TCV_CFG_MDIO1) {
1018 ASD(("internal<PSELECT,"));
1019 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020 ASD(("ISOLATE,"));
1021 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024 if (result == TCVR_FAILURE) {
1025 ASD(("phyread_fail>\n"));
1026 return -1;
1028 ASD(("phyread_ok,~PSELECT>"));
1029 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030 hp->tcvr_type = internal;
1031 hp->paddr = TCV_PADDR_ITX;
1035 ASD(("BMCR_RESET "));
1036 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1038 while (--tries) {
1039 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040 if (result == TCVR_FAILURE)
1041 return -1;
1042 hp->sw_bmcr = result;
1043 if (!(result & BMCR_RESET))
1044 break;
1045 udelay(20);
1047 if (!tries) {
1048 ASD(("BMCR RESET FAILED!\n"));
1049 return -1;
1051 ASD(("RESET_OK\n"));
1053 /* Get fresh copies of the PHY registers. */
1054 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1059 ASD(("UNISOLATE"));
1060 hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063 tries = TCVR_UNISOLATE_TRIES;
1064 while (--tries) {
1065 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066 if (result == TCVR_FAILURE)
1067 return -1;
1068 if (!(result & BMCR_ISOLATE))
1069 break;
1070 udelay(20);
1072 if (!tries) {
1073 ASD((" FAILED!\n"));
1074 return -1;
1076 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077 if (!is_lucent_phy(hp)) {
1078 result = happy_meal_tcvr_read(hp, tregs,
1079 DP83840_CSCONFIG);
1080 happy_meal_tcvr_write(hp, tregs,
1081 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1083 return 0;
1086 /* Figure out whether we have an internal or external transceiver.
1088 * hp->happy_lock must be held
1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095 if (hp->happy_flags & HFLAG_POLL) {
1096 /* If we are polling, we must stop to get the transceiver type. */
1097 ASD(("<polling> "));
1098 if (hp->tcvr_type == internal) {
1099 if (tconfig & TCV_CFG_MDIO1) {
1100 ASD(("<internal> <poll stop> "));
1101 happy_meal_poll_stop(hp, tregs);
1102 hp->paddr = TCV_PADDR_ETX;
1103 hp->tcvr_type = external;
1104 ASD(("<external>\n"));
1105 tconfig &= ~(TCV_CFG_PENABLE);
1106 tconfig |= TCV_CFG_PSELECT;
1107 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1109 } else {
1110 if (hp->tcvr_type == external) {
1111 ASD(("<external> "));
1112 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113 ASD(("<poll stop> "));
1114 happy_meal_poll_stop(hp, tregs);
1115 hp->paddr = TCV_PADDR_ITX;
1116 hp->tcvr_type = internal;
1117 ASD(("<internal>\n"));
1118 hme_write32(hp, tregs + TCVR_CFG,
1119 hme_read32(hp, tregs + TCVR_CFG) &
1120 ~(TCV_CFG_PSELECT));
1122 ASD(("\n"));
1123 } else {
1124 ASD(("<none>\n"));
1127 } else {
1128 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130 /* Else we can just work off of the MDIO bits. */
1131 ASD(("<not polling> "));
1132 if (reread & TCV_CFG_MDIO1) {
1133 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134 hp->paddr = TCV_PADDR_ETX;
1135 hp->tcvr_type = external;
1136 ASD(("<external>\n"));
1137 } else {
1138 if (reread & TCV_CFG_MDIO0) {
1139 hme_write32(hp, tregs + TCVR_CFG,
1140 tconfig & ~(TCV_CFG_PSELECT));
1141 hp->paddr = TCV_PADDR_ITX;
1142 hp->tcvr_type = internal;
1143 ASD(("<internal>\n"));
1144 } else {
1145 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146 hp->tcvr_type = none; /* Grrr... */
1147 ASD(("<none>\n"));
1153 /* The receive ring buffers are a bit tricky to get right. Here goes...
1155 * The buffers we dma into must be 64 byte aligned. So we use a special
1156 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157 * we really need.
1159 * We use skb_reserve() to align the data block we get in the skb. We
1160 * also program the etxregs->cfg register to use an offset of 2. This
1161 * imperical constant plus the ethernet header size will always leave
1162 * us with a nicely aligned ip header once we pass things up to the
1163 * protocol layers.
1165 * The numbers work out to:
1167 * Max ethernet frame size 1518
1168 * Ethernet header size 14
1169 * Happy Meal base offset 2
1171 * Say a skb data area is at 0xf001b010, and its size alloced is
1172 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174 * First our alloc_skb() routine aligns the data base to a 64 byte
1175 * boundary. We now have 0xf001b040 as our skb data address. We
1176 * plug this into the receive descriptor address.
1178 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179 * So now the data we will end up looking at starts at 0xf001b042. When
1180 * the packet arrives, we will check out the size received and subtract
1181 * this from the skb->length. Then we just pass the packet up to the
1182 * protocols as is, and allocate a new skb to replace this slot we have
1183 * just received from.
1185 * The ethernet layer will strip the ether header from the front of the
1186 * skb we just sent to it, this leaves us with the ip header sitting
1187 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1188 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1189 * bit checksum is obtained from the low bits of the receive descriptor
1190 * flags, thus:
1192 * skb->csum = rxd->rx_flags & 0xffff;
1193 * skb->ip_summed = CHECKSUM_COMPLETE;
1195 * before sending off the skb to the protocols, and we are good as gold.
1197 static void happy_meal_clean_rings(struct happy_meal *hp)
1199 int i;
1201 for (i = 0; i < RX_RING_SIZE; i++) {
1202 if (hp->rx_skbs[i] != NULL) {
1203 struct sk_buff *skb = hp->rx_skbs[i];
1204 struct happy_meal_rxd *rxd;
1205 u32 dma_addr;
1207 rxd = &hp->happy_block->happy_meal_rxd[i];
1208 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209 dma_unmap_single(hp->dma_dev, dma_addr,
1210 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1211 dev_kfree_skb_any(skb);
1212 hp->rx_skbs[i] = NULL;
1216 for (i = 0; i < TX_RING_SIZE; i++) {
1217 if (hp->tx_skbs[i] != NULL) {
1218 struct sk_buff *skb = hp->tx_skbs[i];
1219 struct happy_meal_txd *txd;
1220 u32 dma_addr;
1221 int frag;
1223 hp->tx_skbs[i] = NULL;
1225 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226 txd = &hp->happy_block->happy_meal_txd[i];
1227 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1228 if (!frag)
1229 dma_unmap_single(hp->dma_dev, dma_addr,
1230 (hme_read_desc32(hp, &txd->tx_flags)
1231 & TXFLAG_SIZE),
1232 DMA_TO_DEVICE);
1233 else
1234 dma_unmap_page(hp->dma_dev, dma_addr,
1235 (hme_read_desc32(hp, &txd->tx_flags)
1236 & TXFLAG_SIZE),
1237 DMA_TO_DEVICE);
1239 if (frag != skb_shinfo(skb)->nr_frags)
1240 i++;
1243 dev_kfree_skb_any(skb);
1248 /* hp->happy_lock must be held */
1249 static void happy_meal_init_rings(struct happy_meal *hp)
1251 struct hmeal_init_block *hb = hp->happy_block;
1252 int i;
1254 HMD(("happy_meal_init_rings: counters to zero, "));
1255 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1257 /* Free any skippy bufs left around in the rings. */
1258 HMD(("clean, "));
1259 happy_meal_clean_rings(hp);
1261 /* Now get new skippy bufs for the receive ring. */
1262 HMD(("init rxring, "));
1263 for (i = 0; i < RX_RING_SIZE; i++) {
1264 struct sk_buff *skb;
1266 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1267 if (!skb) {
1268 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1269 continue;
1271 hp->rx_skbs[i] = skb;
1273 /* Because we reserve afterwards. */
1274 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1275 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1276 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1277 dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1278 DMA_FROM_DEVICE));
1279 skb_reserve(skb, RX_OFFSET);
1282 HMD(("init txring, "));
1283 for (i = 0; i < TX_RING_SIZE; i++)
1284 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1286 HMD(("done\n"));
1289 /* hp->happy_lock must be held */
1290 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1291 void __iomem *tregs,
1292 struct ethtool_cmd *ep)
1294 int timeout;
1296 /* Read all of the registers we are interested in now. */
1297 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1298 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1299 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1300 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1302 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1304 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1305 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1306 /* Advertise everything we can support. */
1307 if (hp->sw_bmsr & BMSR_10HALF)
1308 hp->sw_advertise |= (ADVERTISE_10HALF);
1309 else
1310 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1312 if (hp->sw_bmsr & BMSR_10FULL)
1313 hp->sw_advertise |= (ADVERTISE_10FULL);
1314 else
1315 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1316 if (hp->sw_bmsr & BMSR_100HALF)
1317 hp->sw_advertise |= (ADVERTISE_100HALF);
1318 else
1319 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1320 if (hp->sw_bmsr & BMSR_100FULL)
1321 hp->sw_advertise |= (ADVERTISE_100FULL);
1322 else
1323 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1324 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1326 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1327 * XXX and this is because the DP83840 does not support it, changes
1328 * XXX would need to be made to the tx/rx logic in the driver as well
1329 * XXX so I completely skip checking for it in the BMSR for now.
1332 #ifdef AUTO_SWITCH_DEBUG
1333 ASD(("%s: Advertising [ ", hp->dev->name));
1334 if (hp->sw_advertise & ADVERTISE_10HALF)
1335 ASD(("10H "));
1336 if (hp->sw_advertise & ADVERTISE_10FULL)
1337 ASD(("10F "));
1338 if (hp->sw_advertise & ADVERTISE_100HALF)
1339 ASD(("100H "));
1340 if (hp->sw_advertise & ADVERTISE_100FULL)
1341 ASD(("100F "));
1342 #endif
1344 /* Enable Auto-Negotiation, this is usually on already... */
1345 hp->sw_bmcr |= BMCR_ANENABLE;
1346 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1348 /* Restart it to make sure it is going. */
1349 hp->sw_bmcr |= BMCR_ANRESTART;
1350 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1352 /* BMCR_ANRESTART self clears when the process has begun. */
1354 timeout = 64; /* More than enough. */
1355 while (--timeout) {
1356 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1357 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1358 break; /* got it. */
1359 udelay(10);
1361 if (!timeout) {
1362 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1363 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1364 printk(KERN_NOTICE "%s: Performing force link detection.\n",
1365 hp->dev->name);
1366 goto force_link;
1367 } else {
1368 hp->timer_state = arbwait;
1370 } else {
1371 force_link:
1372 /* Force the link up, trying first a particular mode.
1373 * Either we are here at the request of ethtool or
1374 * because the Happy Meal would not start to autoneg.
1377 /* Disable auto-negotiation in BMCR, enable the duplex and
1378 * speed setting, init the timer state machine, and fire it off.
1380 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1381 hp->sw_bmcr = BMCR_SPEED100;
1382 } else {
1383 if (ethtool_cmd_speed(ep) == SPEED_100)
1384 hp->sw_bmcr = BMCR_SPEED100;
1385 else
1386 hp->sw_bmcr = 0;
1387 if (ep->duplex == DUPLEX_FULL)
1388 hp->sw_bmcr |= BMCR_FULLDPLX;
1390 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1392 if (!is_lucent_phy(hp)) {
1393 /* OK, seems we need do disable the transceiver for the first
1394 * tick to make sure we get an accurate link state at the
1395 * second tick.
1397 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1398 DP83840_CSCONFIG);
1399 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1400 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1401 hp->sw_csconfig);
1403 hp->timer_state = ltrywait;
1406 hp->timer_ticks = 0;
1407 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1408 hp->happy_timer.data = (unsigned long) hp;
1409 hp->happy_timer.function = happy_meal_timer;
1410 add_timer(&hp->happy_timer);
1413 /* hp->happy_lock must be held */
1414 static int happy_meal_init(struct happy_meal *hp)
1416 void __iomem *gregs = hp->gregs;
1417 void __iomem *etxregs = hp->etxregs;
1418 void __iomem *erxregs = hp->erxregs;
1419 void __iomem *bregs = hp->bigmacregs;
1420 void __iomem *tregs = hp->tcvregs;
1421 u32 regtmp, rxcfg;
1422 unsigned char *e = &hp->dev->dev_addr[0];
1424 /* If auto-negotiation timer is running, kill it. */
1425 del_timer(&hp->happy_timer);
1427 HMD(("happy_meal_init: happy_flags[%08x] ",
1428 hp->happy_flags));
1429 if (!(hp->happy_flags & HFLAG_INIT)) {
1430 HMD(("set HFLAG_INIT, "));
1431 hp->happy_flags |= HFLAG_INIT;
1432 happy_meal_get_counters(hp, bregs);
1435 /* Stop polling. */
1436 HMD(("to happy_meal_poll_stop\n"));
1437 happy_meal_poll_stop(hp, tregs);
1439 /* Stop transmitter and receiver. */
1440 HMD(("happy_meal_init: to happy_meal_stop\n"));
1441 happy_meal_stop(hp, gregs);
1443 /* Alloc and reset the tx/rx descriptor chains. */
1444 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1445 happy_meal_init_rings(hp);
1447 /* Shut up the MIF. */
1448 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1449 hme_read32(hp, tregs + TCVR_IMASK)));
1450 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1452 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1453 if (hp->happy_flags & HFLAG_FENABLE) {
1454 HMD(("use frame old[%08x], ",
1455 hme_read32(hp, tregs + TCVR_CFG)));
1456 hme_write32(hp, tregs + TCVR_CFG,
1457 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1458 } else {
1459 HMD(("use bitbang old[%08x], ",
1460 hme_read32(hp, tregs + TCVR_CFG)));
1461 hme_write32(hp, tregs + TCVR_CFG,
1462 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1465 /* Check the state of the transceiver. */
1466 HMD(("to happy_meal_transceiver_check\n"));
1467 happy_meal_transceiver_check(hp, tregs);
1469 /* Put the Big Mac into a sane state. */
1470 HMD(("happy_meal_init: "));
1471 switch(hp->tcvr_type) {
1472 case none:
1473 /* Cannot operate if we don't know the transceiver type! */
1474 HMD(("AAIEEE no transceiver type, EAGAIN"));
1475 return -EAGAIN;
1477 case internal:
1478 /* Using the MII buffers. */
1479 HMD(("internal, using MII, "));
1480 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1481 break;
1483 case external:
1484 /* Not using the MII, disable it. */
1485 HMD(("external, disable MII, "));
1486 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1487 break;
1490 if (happy_meal_tcvr_reset(hp, tregs))
1491 return -EAGAIN;
1493 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1494 HMD(("tx/rx reset, "));
1495 happy_meal_tx_reset(hp, bregs);
1496 happy_meal_rx_reset(hp, bregs);
1498 /* Set jam size and inter-packet gaps to reasonable defaults. */
1499 HMD(("jsize/ipg1/ipg2, "));
1500 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1501 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1502 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1504 /* Load up the MAC address and random seed. */
1505 HMD(("rseed/macaddr, "));
1507 /* The docs recommend to use the 10LSB of our MAC here. */
1508 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1510 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1511 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1512 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1514 HMD(("htable, "));
1515 if ((hp->dev->flags & IFF_ALLMULTI) ||
1516 (netdev_mc_count(hp->dev) > 64)) {
1517 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1518 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1519 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1520 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1521 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1522 u16 hash_table[4];
1523 struct netdev_hw_addr *ha;
1524 u32 crc;
1526 memset(hash_table, 0, sizeof(hash_table));
1527 netdev_for_each_mc_addr(ha, hp->dev) {
1528 crc = ether_crc_le(6, ha->addr);
1529 crc >>= 26;
1530 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1532 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1533 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1534 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1535 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1536 } else {
1537 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1538 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1539 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1540 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1543 /* Set the RX and TX ring ptrs. */
1544 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1545 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1546 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1547 hme_write32(hp, erxregs + ERX_RING,
1548 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1549 hme_write32(hp, etxregs + ETX_RING,
1550 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1552 /* Parity issues in the ERX unit of some HME revisions can cause some
1553 * registers to not be written unless their parity is even. Detect such
1554 * lost writes and simply rewrite with a low bit set (which will be ignored
1555 * since the rxring needs to be 2K aligned).
1557 if (hme_read32(hp, erxregs + ERX_RING) !=
1558 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1559 hme_write32(hp, erxregs + ERX_RING,
1560 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1561 | 0x4);
1563 /* Set the supported burst sizes. */
1564 HMD(("happy_meal_init: old[%08x] bursts<",
1565 hme_read32(hp, gregs + GREG_CFG)));
1567 #ifndef CONFIG_SPARC
1568 /* It is always PCI and can handle 64byte bursts. */
1569 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1570 #else
1571 if ((hp->happy_bursts & DMA_BURST64) &&
1572 ((hp->happy_flags & HFLAG_PCI) != 0
1573 #ifdef CONFIG_SBUS
1574 || sbus_can_burst64()
1575 #endif
1576 || 0)) {
1577 u32 gcfg = GREG_CFG_BURST64;
1579 /* I have no idea if I should set the extended
1580 * transfer mode bit for Cheerio, so for now I
1581 * do not. -DaveM
1583 #ifdef CONFIG_SBUS
1584 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1585 struct platform_device *op = hp->happy_dev;
1586 if (sbus_can_dma_64bit()) {
1587 sbus_set_sbus64(&op->dev,
1588 hp->happy_bursts);
1589 gcfg |= GREG_CFG_64BIT;
1592 #endif
1594 HMD(("64>"));
1595 hme_write32(hp, gregs + GREG_CFG, gcfg);
1596 } else if (hp->happy_bursts & DMA_BURST32) {
1597 HMD(("32>"));
1598 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1599 } else if (hp->happy_bursts & DMA_BURST16) {
1600 HMD(("16>"));
1601 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1602 } else {
1603 HMD(("XXX>"));
1604 hme_write32(hp, gregs + GREG_CFG, 0);
1606 #endif /* CONFIG_SPARC */
1608 /* Turn off interrupts we do not want to hear. */
1609 HMD((", enable global interrupts, "));
1610 hme_write32(hp, gregs + GREG_IMASK,
1611 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1612 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1614 /* Set the transmit ring buffer size. */
1615 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1616 hme_read32(hp, etxregs + ETX_RSIZE)));
1617 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1619 /* Enable transmitter DVMA. */
1620 HMD(("tx dma enable old[%08x], ",
1621 hme_read32(hp, etxregs + ETX_CFG)));
1622 hme_write32(hp, etxregs + ETX_CFG,
1623 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1625 /* This chip really rots, for the receiver sometimes when you
1626 * write to its control registers not all the bits get there
1627 * properly. I cannot think of a sane way to provide complete
1628 * coverage for this hardware bug yet.
1630 HMD(("erx regs bug old[%08x]\n",
1631 hme_read32(hp, erxregs + ERX_CFG)));
1632 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1633 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1634 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1635 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1636 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1637 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1638 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1639 /* XXX Should return failure here... */
1642 /* Enable Big Mac hash table filter. */
1643 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1644 hme_read32(hp, bregs + BMAC_RXCFG)));
1645 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1646 if (hp->dev->flags & IFF_PROMISC)
1647 rxcfg |= BIGMAC_RXCFG_PMISC;
1648 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1650 /* Let the bits settle in the chip. */
1651 udelay(10);
1653 /* Ok, configure the Big Mac transmitter. */
1654 HMD(("BIGMAC init, "));
1655 regtmp = 0;
1656 if (hp->happy_flags & HFLAG_FULL)
1657 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1659 /* Don't turn on the "don't give up" bit for now. It could cause hme
1660 * to deadlock with the PHY if a Jabber occurs.
1662 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1664 /* Give up after 16 TX attempts. */
1665 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1667 /* Enable the output drivers no matter what. */
1668 regtmp = BIGMAC_XCFG_ODENABLE;
1670 /* If card can do lance mode, enable it. */
1671 if (hp->happy_flags & HFLAG_LANCE)
1672 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1674 /* Disable the MII buffers if using external transceiver. */
1675 if (hp->tcvr_type == external)
1676 regtmp |= BIGMAC_XCFG_MIIDISAB;
1678 HMD(("XIF config old[%08x], ",
1679 hme_read32(hp, bregs + BMAC_XIFCFG)));
1680 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1682 /* Start things up. */
1683 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1684 hme_read32(hp, bregs + BMAC_TXCFG),
1685 hme_read32(hp, bregs + BMAC_RXCFG)));
1687 /* Set larger TX/RX size to allow for 802.1q */
1688 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1689 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1691 hme_write32(hp, bregs + BMAC_TXCFG,
1692 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1693 hme_write32(hp, bregs + BMAC_RXCFG,
1694 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1696 /* Get the autonegotiation started, and the watch timer ticking. */
1697 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1699 /* Success. */
1700 return 0;
1703 /* hp->happy_lock must be held */
1704 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1706 void __iomem *tregs = hp->tcvregs;
1707 void __iomem *bregs = hp->bigmacregs;
1708 void __iomem *gregs = hp->gregs;
1710 happy_meal_stop(hp, gregs);
1711 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1712 if (hp->happy_flags & HFLAG_FENABLE)
1713 hme_write32(hp, tregs + TCVR_CFG,
1714 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1715 else
1716 hme_write32(hp, tregs + TCVR_CFG,
1717 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1718 happy_meal_transceiver_check(hp, tregs);
1719 switch(hp->tcvr_type) {
1720 case none:
1721 return;
1722 case internal:
1723 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1724 break;
1725 case external:
1726 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1727 break;
1729 if (happy_meal_tcvr_reset(hp, tregs))
1730 return;
1732 /* Latch PHY registers as of now. */
1733 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1734 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1736 /* Advertise everything we can support. */
1737 if (hp->sw_bmsr & BMSR_10HALF)
1738 hp->sw_advertise |= (ADVERTISE_10HALF);
1739 else
1740 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1742 if (hp->sw_bmsr & BMSR_10FULL)
1743 hp->sw_advertise |= (ADVERTISE_10FULL);
1744 else
1745 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1746 if (hp->sw_bmsr & BMSR_100HALF)
1747 hp->sw_advertise |= (ADVERTISE_100HALF);
1748 else
1749 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1750 if (hp->sw_bmsr & BMSR_100FULL)
1751 hp->sw_advertise |= (ADVERTISE_100FULL);
1752 else
1753 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1755 /* Update the PHY advertisement register. */
1756 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1759 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1760 * the hardware, so we cannot re-read it and get a correct value.
1762 * hp->happy_lock must be held
1764 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1766 int reset = 0;
1768 /* Only print messages for non-counter related interrupts. */
1769 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1770 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1771 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1772 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1773 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1774 GREG_STAT_SLVPERR))
1775 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1776 hp->dev->name, status);
1778 if (status & GREG_STAT_RFIFOVF) {
1779 /* Receive FIFO overflow is harmless and the hardware will take
1780 care of it, just some packets are lost. Who cares. */
1781 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1784 if (status & GREG_STAT_STSTERR) {
1785 /* BigMAC SQE link test failed. */
1786 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1787 reset = 1;
1790 if (status & GREG_STAT_TFIFO_UND) {
1791 /* Transmit FIFO underrun, again DMA error likely. */
1792 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1793 hp->dev->name);
1794 reset = 1;
1797 if (status & GREG_STAT_MAXPKTERR) {
1798 /* Driver error, tried to transmit something larger
1799 * than ethernet max mtu.
1801 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1802 reset = 1;
1805 if (status & GREG_STAT_NORXD) {
1806 /* This is harmless, it just means the system is
1807 * quite loaded and the incoming packet rate was
1808 * faster than the interrupt handler could keep up
1809 * with.
1811 printk(KERN_INFO "%s: Happy Meal out of receive "
1812 "descriptors, packet dropped.\n",
1813 hp->dev->name);
1816 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1817 /* All sorts of DMA receive errors. */
1818 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1819 if (status & GREG_STAT_RXERR)
1820 printk("GenericError ");
1821 if (status & GREG_STAT_RXPERR)
1822 printk("ParityError ");
1823 if (status & GREG_STAT_RXTERR)
1824 printk("RxTagBotch ");
1825 printk("]\n");
1826 reset = 1;
1829 if (status & GREG_STAT_EOPERR) {
1830 /* Driver bug, didn't set EOP bit in tx descriptor given
1831 * to the happy meal.
1833 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1834 hp->dev->name);
1835 reset = 1;
1838 if (status & GREG_STAT_MIFIRQ) {
1839 /* MIF signalled an interrupt, were we polling it? */
1840 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1843 if (status &
1844 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1845 /* All sorts of transmit DMA errors. */
1846 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1847 if (status & GREG_STAT_TXEACK)
1848 printk("GenericError ");
1849 if (status & GREG_STAT_TXLERR)
1850 printk("LateError ");
1851 if (status & GREG_STAT_TXPERR)
1852 printk("ParityErro ");
1853 if (status & GREG_STAT_TXTERR)
1854 printk("TagBotch ");
1855 printk("]\n");
1856 reset = 1;
1859 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1860 /* Bus or parity error when cpu accessed happy meal registers
1861 * or it's internal FIFO's. Should never see this.
1863 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1864 hp->dev->name,
1865 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1866 reset = 1;
1869 if (reset) {
1870 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1871 happy_meal_init(hp);
1872 return 1;
1874 return 0;
1877 /* hp->happy_lock must be held */
1878 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1880 void __iomem *tregs = hp->tcvregs;
1882 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1883 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1884 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1886 /* Use the fastest transmission protocol possible. */
1887 if (hp->sw_lpa & LPA_100FULL) {
1888 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1889 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1890 } else if (hp->sw_lpa & LPA_100HALF) {
1891 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1892 hp->sw_bmcr |= BMCR_SPEED100;
1893 } else if (hp->sw_lpa & LPA_10FULL) {
1894 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1895 hp->sw_bmcr |= BMCR_FULLDPLX;
1896 } else {
1897 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1899 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1901 /* Finally stop polling and shut up the MIF. */
1902 happy_meal_poll_stop(hp, tregs);
1905 #ifdef TXDEBUG
1906 #define TXD(x) printk x
1907 #else
1908 #define TXD(x)
1909 #endif
1911 /* hp->happy_lock must be held */
1912 static void happy_meal_tx(struct happy_meal *hp)
1914 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1915 struct happy_meal_txd *this;
1916 struct net_device *dev = hp->dev;
1917 int elem;
1919 elem = hp->tx_old;
1920 TXD(("TX<"));
1921 while (elem != hp->tx_new) {
1922 struct sk_buff *skb;
1923 u32 flags, dma_addr, dma_len;
1924 int frag;
1926 TXD(("[%d]", elem));
1927 this = &txbase[elem];
1928 flags = hme_read_desc32(hp, &this->tx_flags);
1929 if (flags & TXFLAG_OWN)
1930 break;
1931 skb = hp->tx_skbs[elem];
1932 if (skb_shinfo(skb)->nr_frags) {
1933 int last;
1935 last = elem + skb_shinfo(skb)->nr_frags;
1936 last &= (TX_RING_SIZE - 1);
1937 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1938 if (flags & TXFLAG_OWN)
1939 break;
1941 hp->tx_skbs[elem] = NULL;
1942 hp->net_stats.tx_bytes += skb->len;
1944 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1945 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1946 dma_len = hme_read_desc32(hp, &this->tx_flags);
1948 dma_len &= TXFLAG_SIZE;
1949 if (!frag)
1950 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1951 else
1952 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1954 elem = NEXT_TX(elem);
1955 this = &txbase[elem];
1958 dev_kfree_skb_irq(skb);
1959 hp->net_stats.tx_packets++;
1961 hp->tx_old = elem;
1962 TXD((">"));
1964 if (netif_queue_stopped(dev) &&
1965 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1966 netif_wake_queue(dev);
1969 #ifdef RXDEBUG
1970 #define RXD(x) printk x
1971 #else
1972 #define RXD(x)
1973 #endif
1975 /* Originally I used to handle the allocation failure by just giving back just
1976 * that one ring buffer to the happy meal. Problem is that usually when that
1977 * condition is triggered, the happy meal expects you to do something reasonable
1978 * with all of the packets it has DMA'd in. So now I just drop the entire
1979 * ring when we cannot get a new skb and give them all back to the happy meal,
1980 * maybe things will be "happier" now.
1982 * hp->happy_lock must be held
1984 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1986 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1987 struct happy_meal_rxd *this;
1988 int elem = hp->rx_new, drops = 0;
1989 u32 flags;
1991 RXD(("RX<"));
1992 this = &rxbase[elem];
1993 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1994 struct sk_buff *skb;
1995 int len = flags >> 16;
1996 u16 csum = flags & RXFLAG_CSUM;
1997 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1999 RXD(("[%d ", elem));
2001 /* Check for errors. */
2002 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2003 RXD(("ERR(%08x)]", flags));
2004 hp->net_stats.rx_errors++;
2005 if (len < ETH_ZLEN)
2006 hp->net_stats.rx_length_errors++;
2007 if (len & (RXFLAG_OVERFLOW >> 16)) {
2008 hp->net_stats.rx_over_errors++;
2009 hp->net_stats.rx_fifo_errors++;
2012 /* Return it to the Happy meal. */
2013 drop_it:
2014 hp->net_stats.rx_dropped++;
2015 hme_write_rxd(hp, this,
2016 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2017 dma_addr);
2018 goto next;
2020 skb = hp->rx_skbs[elem];
2021 if (len > RX_COPY_THRESHOLD) {
2022 struct sk_buff *new_skb;
2024 /* Now refill the entry, if we can. */
2025 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2026 if (new_skb == NULL) {
2027 drops++;
2028 goto drop_it;
2030 dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2031 hp->rx_skbs[elem] = new_skb;
2032 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2033 hme_write_rxd(hp, this,
2034 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2035 dma_map_single(hp->dma_dev, new_skb->data, RX_BUF_ALLOC_SIZE,
2036 DMA_FROM_DEVICE));
2037 skb_reserve(new_skb, RX_OFFSET);
2039 /* Trim the original skb for the netif. */
2040 skb_trim(skb, len);
2041 } else {
2042 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2044 if (copy_skb == NULL) {
2045 drops++;
2046 goto drop_it;
2049 skb_reserve(copy_skb, 2);
2050 skb_put(copy_skb, len);
2051 dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2052 skb_copy_from_linear_data(skb, copy_skb->data, len);
2053 dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2054 /* Reuse original ring buffer. */
2055 hme_write_rxd(hp, this,
2056 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2057 dma_addr);
2059 skb = copy_skb;
2062 /* This card is _fucking_ hot... */
2063 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2064 skb->ip_summed = CHECKSUM_COMPLETE;
2066 RXD(("len=%d csum=%4x]", len, csum));
2067 skb->protocol = eth_type_trans(skb, dev);
2068 netif_rx(skb);
2070 hp->net_stats.rx_packets++;
2071 hp->net_stats.rx_bytes += len;
2072 next:
2073 elem = NEXT_RX(elem);
2074 this = &rxbase[elem];
2076 hp->rx_new = elem;
2077 if (drops)
2078 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2079 RXD((">"));
2082 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2084 struct net_device *dev = dev_id;
2085 struct happy_meal *hp = netdev_priv(dev);
2086 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2088 HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2090 spin_lock(&hp->happy_lock);
2092 if (happy_status & GREG_STAT_ERRORS) {
2093 HMD(("ERRORS "));
2094 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2095 goto out;
2098 if (happy_status & GREG_STAT_MIFIRQ) {
2099 HMD(("MIFIRQ "));
2100 happy_meal_mif_interrupt(hp);
2103 if (happy_status & GREG_STAT_TXALL) {
2104 HMD(("TXALL "));
2105 happy_meal_tx(hp);
2108 if (happy_status & GREG_STAT_RXTOHOST) {
2109 HMD(("RXTOHOST "));
2110 happy_meal_rx(hp, dev);
2113 HMD(("done\n"));
2114 out:
2115 spin_unlock(&hp->happy_lock);
2117 return IRQ_HANDLED;
2120 #ifdef CONFIG_SBUS
2121 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2123 struct quattro *qp = (struct quattro *) cookie;
2124 int i;
2126 for (i = 0; i < 4; i++) {
2127 struct net_device *dev = qp->happy_meals[i];
2128 struct happy_meal *hp = netdev_priv(dev);
2129 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2131 HMD(("quattro_interrupt: status=%08x ", happy_status));
2133 if (!(happy_status & (GREG_STAT_ERRORS |
2134 GREG_STAT_MIFIRQ |
2135 GREG_STAT_TXALL |
2136 GREG_STAT_RXTOHOST)))
2137 continue;
2139 spin_lock(&hp->happy_lock);
2141 if (happy_status & GREG_STAT_ERRORS) {
2142 HMD(("ERRORS "));
2143 if (happy_meal_is_not_so_happy(hp, happy_status))
2144 goto next;
2147 if (happy_status & GREG_STAT_MIFIRQ) {
2148 HMD(("MIFIRQ "));
2149 happy_meal_mif_interrupt(hp);
2152 if (happy_status & GREG_STAT_TXALL) {
2153 HMD(("TXALL "));
2154 happy_meal_tx(hp);
2157 if (happy_status & GREG_STAT_RXTOHOST) {
2158 HMD(("RXTOHOST "));
2159 happy_meal_rx(hp, dev);
2162 next:
2163 spin_unlock(&hp->happy_lock);
2165 HMD(("done\n"));
2167 return IRQ_HANDLED;
2169 #endif
2171 static int happy_meal_open(struct net_device *dev)
2173 struct happy_meal *hp = netdev_priv(dev);
2174 int res;
2176 HMD(("happy_meal_open: "));
2178 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2179 * into a single source which we register handling at probe time.
2181 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2182 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2183 dev->name, dev);
2184 if (res) {
2185 HMD(("EAGAIN\n"));
2186 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2187 hp->irq);
2189 return -EAGAIN;
2193 HMD(("to happy_meal_init\n"));
2195 spin_lock_irq(&hp->happy_lock);
2196 res = happy_meal_init(hp);
2197 spin_unlock_irq(&hp->happy_lock);
2199 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2200 free_irq(hp->irq, dev);
2201 return res;
2204 static int happy_meal_close(struct net_device *dev)
2206 struct happy_meal *hp = netdev_priv(dev);
2208 spin_lock_irq(&hp->happy_lock);
2209 happy_meal_stop(hp, hp->gregs);
2210 happy_meal_clean_rings(hp);
2212 /* If auto-negotiation timer is running, kill it. */
2213 del_timer(&hp->happy_timer);
2215 spin_unlock_irq(&hp->happy_lock);
2217 /* On Quattro QFE cards, all hme interrupts are concentrated
2218 * into a single source which we register handling at probe
2219 * time and never unregister.
2221 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2222 free_irq(hp->irq, dev);
2224 return 0;
2227 #ifdef SXDEBUG
2228 #define SXD(x) printk x
2229 #else
2230 #define SXD(x)
2231 #endif
2233 static void happy_meal_tx_timeout(struct net_device *dev)
2235 struct happy_meal *hp = netdev_priv(dev);
2237 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2238 tx_dump_log();
2239 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2240 hme_read32(hp, hp->gregs + GREG_STAT),
2241 hme_read32(hp, hp->etxregs + ETX_CFG),
2242 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2244 spin_lock_irq(&hp->happy_lock);
2245 happy_meal_init(hp);
2246 spin_unlock_irq(&hp->happy_lock);
2248 netif_wake_queue(dev);
2251 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2252 struct net_device *dev)
2254 struct happy_meal *hp = netdev_priv(dev);
2255 int entry;
2256 u32 tx_flags;
2258 tx_flags = TXFLAG_OWN;
2259 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2260 const u32 csum_start_off = skb_checksum_start_offset(skb);
2261 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2263 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2264 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2265 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2268 spin_lock_irq(&hp->happy_lock);
2270 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2271 netif_stop_queue(dev);
2272 spin_unlock_irq(&hp->happy_lock);
2273 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2274 dev->name);
2275 return NETDEV_TX_BUSY;
2278 entry = hp->tx_new;
2279 SXD(("SX<l[%d]e[%d]>", len, entry));
2280 hp->tx_skbs[entry] = skb;
2282 if (skb_shinfo(skb)->nr_frags == 0) {
2283 u32 mapping, len;
2285 len = skb->len;
2286 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2287 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2288 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2289 (tx_flags | (len & TXFLAG_SIZE)),
2290 mapping);
2291 entry = NEXT_TX(entry);
2292 } else {
2293 u32 first_len, first_mapping;
2294 int frag, first_entry = entry;
2296 /* We must give this initial chunk to the device last.
2297 * Otherwise we could race with the device.
2299 first_len = skb_headlen(skb);
2300 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2301 DMA_TO_DEVICE);
2302 entry = NEXT_TX(entry);
2304 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2305 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2306 u32 len, mapping, this_txflags;
2308 len = skb_frag_size(this_frag);
2309 mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2310 0, len, DMA_TO_DEVICE);
2311 this_txflags = tx_flags;
2312 if (frag == skb_shinfo(skb)->nr_frags - 1)
2313 this_txflags |= TXFLAG_EOP;
2314 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2315 (this_txflags | (len & TXFLAG_SIZE)),
2316 mapping);
2317 entry = NEXT_TX(entry);
2319 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2320 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2321 first_mapping);
2324 hp->tx_new = entry;
2326 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2327 netif_stop_queue(dev);
2329 /* Get it going. */
2330 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2332 spin_unlock_irq(&hp->happy_lock);
2334 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2335 return NETDEV_TX_OK;
2338 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2340 struct happy_meal *hp = netdev_priv(dev);
2342 spin_lock_irq(&hp->happy_lock);
2343 happy_meal_get_counters(hp, hp->bigmacregs);
2344 spin_unlock_irq(&hp->happy_lock);
2346 return &hp->net_stats;
2349 static void happy_meal_set_multicast(struct net_device *dev)
2351 struct happy_meal *hp = netdev_priv(dev);
2352 void __iomem *bregs = hp->bigmacregs;
2353 struct netdev_hw_addr *ha;
2354 u32 crc;
2356 spin_lock_irq(&hp->happy_lock);
2358 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2359 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2360 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2361 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2362 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2363 } else if (dev->flags & IFF_PROMISC) {
2364 hme_write32(hp, bregs + BMAC_RXCFG,
2365 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2366 } else {
2367 u16 hash_table[4];
2369 memset(hash_table, 0, sizeof(hash_table));
2370 netdev_for_each_mc_addr(ha, dev) {
2371 crc = ether_crc_le(6, ha->addr);
2372 crc >>= 26;
2373 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2375 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2376 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2377 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2378 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2381 spin_unlock_irq(&hp->happy_lock);
2384 /* Ethtool support... */
2385 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2387 struct happy_meal *hp = netdev_priv(dev);
2388 u32 speed;
2390 cmd->supported =
2391 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2392 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2393 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2395 /* XXX hardcoded stuff for now */
2396 cmd->port = PORT_TP; /* XXX no MII support */
2397 cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2398 cmd->phy_address = 0; /* XXX fixed PHYAD */
2400 /* Record PHY settings. */
2401 spin_lock_irq(&hp->happy_lock);
2402 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2403 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2404 spin_unlock_irq(&hp->happy_lock);
2406 if (hp->sw_bmcr & BMCR_ANENABLE) {
2407 cmd->autoneg = AUTONEG_ENABLE;
2408 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2409 SPEED_100 : SPEED_10);
2410 if (speed == SPEED_100)
2411 cmd->duplex =
2412 (hp->sw_lpa & (LPA_100FULL)) ?
2413 DUPLEX_FULL : DUPLEX_HALF;
2414 else
2415 cmd->duplex =
2416 (hp->sw_lpa & (LPA_10FULL)) ?
2417 DUPLEX_FULL : DUPLEX_HALF;
2418 } else {
2419 cmd->autoneg = AUTONEG_DISABLE;
2420 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2421 cmd->duplex =
2422 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2423 DUPLEX_FULL : DUPLEX_HALF;
2425 ethtool_cmd_speed_set(cmd, speed);
2426 return 0;
2429 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2431 struct happy_meal *hp = netdev_priv(dev);
2433 /* Verify the settings we care about. */
2434 if (cmd->autoneg != AUTONEG_ENABLE &&
2435 cmd->autoneg != AUTONEG_DISABLE)
2436 return -EINVAL;
2437 if (cmd->autoneg == AUTONEG_DISABLE &&
2438 ((ethtool_cmd_speed(cmd) != SPEED_100 &&
2439 ethtool_cmd_speed(cmd) != SPEED_10) ||
2440 (cmd->duplex != DUPLEX_HALF &&
2441 cmd->duplex != DUPLEX_FULL)))
2442 return -EINVAL;
2444 /* Ok, do it to it. */
2445 spin_lock_irq(&hp->happy_lock);
2446 del_timer(&hp->happy_timer);
2447 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2448 spin_unlock_irq(&hp->happy_lock);
2450 return 0;
2453 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2455 struct happy_meal *hp = netdev_priv(dev);
2457 strlcpy(info->driver, "sunhme", sizeof(info->driver));
2458 strlcpy(info->version, "2.02", sizeof(info->version));
2459 if (hp->happy_flags & HFLAG_PCI) {
2460 struct pci_dev *pdev = hp->happy_dev;
2461 strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2463 #ifdef CONFIG_SBUS
2464 else {
2465 const struct linux_prom_registers *regs;
2466 struct platform_device *op = hp->happy_dev;
2467 regs = of_get_property(op->dev.of_node, "regs", NULL);
2468 if (regs)
2469 snprintf(info->bus_info, sizeof(info->bus_info),
2470 "SBUS:%d",
2471 regs->which_io);
2473 #endif
2476 static u32 hme_get_link(struct net_device *dev)
2478 struct happy_meal *hp = netdev_priv(dev);
2480 spin_lock_irq(&hp->happy_lock);
2481 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2482 spin_unlock_irq(&hp->happy_lock);
2484 return hp->sw_bmsr & BMSR_LSTATUS;
2487 static const struct ethtool_ops hme_ethtool_ops = {
2488 .get_settings = hme_get_settings,
2489 .set_settings = hme_set_settings,
2490 .get_drvinfo = hme_get_drvinfo,
2491 .get_link = hme_get_link,
2494 static int hme_version_printed;
2496 #ifdef CONFIG_SBUS
2497 /* Given a happy meal sbus device, find it's quattro parent.
2498 * If none exist, allocate and return a new one.
2500 * Return NULL on failure.
2502 static struct quattro *quattro_sbus_find(struct platform_device *child)
2504 struct device *parent = child->dev.parent;
2505 struct platform_device *op;
2506 struct quattro *qp;
2508 op = to_platform_device(parent);
2509 qp = dev_get_drvdata(&op->dev);
2510 if (qp)
2511 return qp;
2513 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2514 if (qp != NULL) {
2515 int i;
2517 for (i = 0; i < 4; i++)
2518 qp->happy_meals[i] = NULL;
2520 qp->quattro_dev = child;
2521 qp->next = qfe_sbus_list;
2522 qfe_sbus_list = qp;
2524 dev_set_drvdata(&op->dev, qp);
2526 return qp;
2529 /* After all quattro cards have been probed, we call these functions
2530 * to register the IRQ handlers for the cards that have been
2531 * successfully probed and skip the cards that failed to initialize
2533 static int __init quattro_sbus_register_irqs(void)
2535 struct quattro *qp;
2537 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2538 struct platform_device *op = qp->quattro_dev;
2539 int err, qfe_slot, skip = 0;
2541 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2542 if (!qp->happy_meals[qfe_slot])
2543 skip = 1;
2545 if (skip)
2546 continue;
2548 err = request_irq(op->archdata.irqs[0],
2549 quattro_sbus_interrupt,
2550 IRQF_SHARED, "Quattro",
2551 qp);
2552 if (err != 0) {
2553 printk(KERN_ERR "Quattro HME: IRQ registration "
2554 "error %d.\n", err);
2555 return err;
2559 return 0;
2562 static void quattro_sbus_free_irqs(void)
2564 struct quattro *qp;
2566 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2567 struct platform_device *op = qp->quattro_dev;
2568 int qfe_slot, skip = 0;
2570 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2571 if (!qp->happy_meals[qfe_slot])
2572 skip = 1;
2574 if (skip)
2575 continue;
2577 free_irq(op->archdata.irqs[0], qp);
2580 #endif /* CONFIG_SBUS */
2582 #ifdef CONFIG_PCI
2583 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2585 struct pci_dev *bdev = pdev->bus->self;
2586 struct quattro *qp;
2588 if (!bdev) return NULL;
2589 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2590 struct pci_dev *qpdev = qp->quattro_dev;
2592 if (qpdev == bdev)
2593 return qp;
2595 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2596 if (qp != NULL) {
2597 int i;
2599 for (i = 0; i < 4; i++)
2600 qp->happy_meals[i] = NULL;
2602 qp->quattro_dev = bdev;
2603 qp->next = qfe_pci_list;
2604 qfe_pci_list = qp;
2606 /* No range tricks necessary on PCI. */
2607 qp->nranges = 0;
2609 return qp;
2611 #endif /* CONFIG_PCI */
2613 static const struct net_device_ops hme_netdev_ops = {
2614 .ndo_open = happy_meal_open,
2615 .ndo_stop = happy_meal_close,
2616 .ndo_start_xmit = happy_meal_start_xmit,
2617 .ndo_tx_timeout = happy_meal_tx_timeout,
2618 .ndo_get_stats = happy_meal_get_stats,
2619 .ndo_set_rx_mode = happy_meal_set_multicast,
2620 .ndo_change_mtu = eth_change_mtu,
2621 .ndo_set_mac_address = eth_mac_addr,
2622 .ndo_validate_addr = eth_validate_addr,
2625 #ifdef CONFIG_SBUS
2626 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2628 struct device_node *dp = op->dev.of_node, *sbus_dp;
2629 struct quattro *qp = NULL;
2630 struct happy_meal *hp;
2631 struct net_device *dev;
2632 int i, qfe_slot = -1;
2633 int err = -ENODEV;
2635 sbus_dp = op->dev.parent->of_node;
2637 /* We can match PCI devices too, do not accept those here. */
2638 if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2639 return err;
2641 if (is_qfe) {
2642 qp = quattro_sbus_find(op);
2643 if (qp == NULL)
2644 goto err_out;
2645 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2646 if (qp->happy_meals[qfe_slot] == NULL)
2647 break;
2648 if (qfe_slot == 4)
2649 goto err_out;
2652 err = -ENOMEM;
2653 dev = alloc_etherdev(sizeof(struct happy_meal));
2654 if (!dev)
2655 goto err_out;
2656 SET_NETDEV_DEV(dev, &op->dev);
2658 if (hme_version_printed++ == 0)
2659 printk(KERN_INFO "%s", version);
2661 /* If user did not specify a MAC address specifically, use
2662 * the Quattro local-mac-address property...
2664 for (i = 0; i < 6; i++) {
2665 if (macaddr[i] != 0)
2666 break;
2668 if (i < 6) { /* a mac address was given */
2669 for (i = 0; i < 6; i++)
2670 dev->dev_addr[i] = macaddr[i];
2671 macaddr[5]++;
2672 } else {
2673 const unsigned char *addr;
2674 int len;
2676 addr = of_get_property(dp, "local-mac-address", &len);
2678 if (qfe_slot != -1 && addr && len == 6)
2679 memcpy(dev->dev_addr, addr, 6);
2680 else
2681 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2684 hp = netdev_priv(dev);
2686 hp->happy_dev = op;
2687 hp->dma_dev = &op->dev;
2689 spin_lock_init(&hp->happy_lock);
2691 err = -ENODEV;
2692 if (qp != NULL) {
2693 hp->qfe_parent = qp;
2694 hp->qfe_ent = qfe_slot;
2695 qp->happy_meals[qfe_slot] = dev;
2698 hp->gregs = of_ioremap(&op->resource[0], 0,
2699 GREG_REG_SIZE, "HME Global Regs");
2700 if (!hp->gregs) {
2701 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2702 goto err_out_free_netdev;
2705 hp->etxregs = of_ioremap(&op->resource[1], 0,
2706 ETX_REG_SIZE, "HME TX Regs");
2707 if (!hp->etxregs) {
2708 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2709 goto err_out_iounmap;
2712 hp->erxregs = of_ioremap(&op->resource[2], 0,
2713 ERX_REG_SIZE, "HME RX Regs");
2714 if (!hp->erxregs) {
2715 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2716 goto err_out_iounmap;
2719 hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2720 BMAC_REG_SIZE, "HME BIGMAC Regs");
2721 if (!hp->bigmacregs) {
2722 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2723 goto err_out_iounmap;
2726 hp->tcvregs = of_ioremap(&op->resource[4], 0,
2727 TCVR_REG_SIZE, "HME Tranceiver Regs");
2728 if (!hp->tcvregs) {
2729 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2730 goto err_out_iounmap;
2733 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2734 if (hp->hm_revision == 0xff)
2735 hp->hm_revision = 0xa0;
2737 /* Now enable the feature flags we can. */
2738 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2739 hp->happy_flags = HFLAG_20_21;
2740 else if (hp->hm_revision != 0xa0)
2741 hp->happy_flags = HFLAG_NOT_A0;
2743 if (qp != NULL)
2744 hp->happy_flags |= HFLAG_QUATTRO;
2746 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2747 hp->happy_bursts = of_getintprop_default(sbus_dp,
2748 "burst-sizes", 0x00);
2750 hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2751 PAGE_SIZE,
2752 &hp->hblock_dvma,
2753 GFP_ATOMIC);
2754 err = -ENOMEM;
2755 if (!hp->happy_block)
2756 goto err_out_iounmap;
2758 /* Force check of the link first time we are brought up. */
2759 hp->linkcheck = 0;
2761 /* Force timer state to 'asleep' with count of zero. */
2762 hp->timer_state = asleep;
2763 hp->timer_ticks = 0;
2765 init_timer(&hp->happy_timer);
2767 hp->dev = dev;
2768 dev->netdev_ops = &hme_netdev_ops;
2769 dev->watchdog_timeo = 5*HZ;
2770 dev->ethtool_ops = &hme_ethtool_ops;
2772 /* Happy Meal can do it all... */
2773 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2774 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2776 hp->irq = op->archdata.irqs[0];
2778 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2779 /* Hook up SBUS register/descriptor accessors. */
2780 hp->read_desc32 = sbus_hme_read_desc32;
2781 hp->write_txd = sbus_hme_write_txd;
2782 hp->write_rxd = sbus_hme_write_rxd;
2783 hp->read32 = sbus_hme_read32;
2784 hp->write32 = sbus_hme_write32;
2785 #endif
2787 /* Grrr, Happy Meal comes up by default not advertising
2788 * full duplex 100baseT capabilities, fix this.
2790 spin_lock_irq(&hp->happy_lock);
2791 happy_meal_set_initial_advertisement(hp);
2792 spin_unlock_irq(&hp->happy_lock);
2794 err = register_netdev(hp->dev);
2795 if (err) {
2796 printk(KERN_ERR "happymeal: Cannot register net device, "
2797 "aborting.\n");
2798 goto err_out_free_coherent;
2801 dev_set_drvdata(&op->dev, hp);
2803 if (qfe_slot != -1)
2804 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2805 dev->name, qfe_slot);
2806 else
2807 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2808 dev->name);
2810 printk("%pM\n", dev->dev_addr);
2812 return 0;
2814 err_out_free_coherent:
2815 dma_free_coherent(hp->dma_dev,
2816 PAGE_SIZE,
2817 hp->happy_block,
2818 hp->hblock_dvma);
2820 err_out_iounmap:
2821 if (hp->gregs)
2822 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2823 if (hp->etxregs)
2824 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2825 if (hp->erxregs)
2826 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2827 if (hp->bigmacregs)
2828 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2829 if (hp->tcvregs)
2830 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2832 if (qp)
2833 qp->happy_meals[qfe_slot] = NULL;
2835 err_out_free_netdev:
2836 free_netdev(dev);
2838 err_out:
2839 return err;
2841 #endif
2843 #ifdef CONFIG_PCI
2844 #ifndef CONFIG_SPARC
2845 static int is_quattro_p(struct pci_dev *pdev)
2847 struct pci_dev *busdev = pdev->bus->self;
2848 struct pci_dev *this_pdev;
2849 int n_hmes;
2851 if (busdev == NULL ||
2852 busdev->vendor != PCI_VENDOR_ID_DEC ||
2853 busdev->device != PCI_DEVICE_ID_DEC_21153)
2854 return 0;
2856 n_hmes = 0;
2857 list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2858 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2859 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2860 n_hmes++;
2863 if (n_hmes != 4)
2864 return 0;
2866 return 1;
2869 /* Fetch MAC address from vital product data of PCI ROM. */
2870 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2872 int this_offset;
2874 for (this_offset = 0x20; this_offset < len; this_offset++) {
2875 void __iomem *p = rom_base + this_offset;
2877 if (readb(p + 0) != 0x90 ||
2878 readb(p + 1) != 0x00 ||
2879 readb(p + 2) != 0x09 ||
2880 readb(p + 3) != 0x4e ||
2881 readb(p + 4) != 0x41 ||
2882 readb(p + 5) != 0x06)
2883 continue;
2885 this_offset += 6;
2886 p += 6;
2888 if (index == 0) {
2889 int i;
2891 for (i = 0; i < 6; i++)
2892 dev_addr[i] = readb(p + i);
2893 return 1;
2895 index--;
2897 return 0;
2900 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2902 size_t size;
2903 void __iomem *p = pci_map_rom(pdev, &size);
2905 if (p) {
2906 int index = 0;
2907 int found;
2909 if (is_quattro_p(pdev))
2910 index = PCI_SLOT(pdev->devfn);
2912 found = readb(p) == 0x55 &&
2913 readb(p + 1) == 0xaa &&
2914 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2915 pci_unmap_rom(pdev, p);
2916 if (found)
2917 return;
2920 /* Sun MAC prefix then 3 random bytes. */
2921 dev_addr[0] = 0x08;
2922 dev_addr[1] = 0x00;
2923 dev_addr[2] = 0x20;
2924 get_random_bytes(&dev_addr[3], 3);
2926 #endif /* !(CONFIG_SPARC) */
2928 static int happy_meal_pci_probe(struct pci_dev *pdev,
2929 const struct pci_device_id *ent)
2931 struct quattro *qp = NULL;
2932 #ifdef CONFIG_SPARC
2933 struct device_node *dp;
2934 #endif
2935 struct happy_meal *hp;
2936 struct net_device *dev;
2937 void __iomem *hpreg_base;
2938 unsigned long hpreg_res;
2939 int i, qfe_slot = -1;
2940 char prom_name[64];
2941 int err;
2943 /* Now make sure pci_dev cookie is there. */
2944 #ifdef CONFIG_SPARC
2945 dp = pci_device_to_OF_node(pdev);
2946 strcpy(prom_name, dp->name);
2947 #else
2948 if (is_quattro_p(pdev))
2949 strcpy(prom_name, "SUNW,qfe");
2950 else
2951 strcpy(prom_name, "SUNW,hme");
2952 #endif
2954 err = -ENODEV;
2956 if (pci_enable_device(pdev))
2957 goto err_out;
2958 pci_set_master(pdev);
2960 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2961 qp = quattro_pci_find(pdev);
2962 if (qp == NULL)
2963 goto err_out;
2964 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2965 if (qp->happy_meals[qfe_slot] == NULL)
2966 break;
2967 if (qfe_slot == 4)
2968 goto err_out;
2971 dev = alloc_etherdev(sizeof(struct happy_meal));
2972 err = -ENOMEM;
2973 if (!dev)
2974 goto err_out;
2975 SET_NETDEV_DEV(dev, &pdev->dev);
2977 if (hme_version_printed++ == 0)
2978 printk(KERN_INFO "%s", version);
2980 hp = netdev_priv(dev);
2982 hp->happy_dev = pdev;
2983 hp->dma_dev = &pdev->dev;
2985 spin_lock_init(&hp->happy_lock);
2987 if (qp != NULL) {
2988 hp->qfe_parent = qp;
2989 hp->qfe_ent = qfe_slot;
2990 qp->happy_meals[qfe_slot] = dev;
2993 hpreg_res = pci_resource_start(pdev, 0);
2994 err = -ENODEV;
2995 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2996 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
2997 goto err_out_clear_quattro;
2999 if (pci_request_regions(pdev, DRV_NAME)) {
3000 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3001 "aborting.\n");
3002 goto err_out_clear_quattro;
3005 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3006 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3007 goto err_out_free_res;
3010 for (i = 0; i < 6; i++) {
3011 if (macaddr[i] != 0)
3012 break;
3014 if (i < 6) { /* a mac address was given */
3015 for (i = 0; i < 6; i++)
3016 dev->dev_addr[i] = macaddr[i];
3017 macaddr[5]++;
3018 } else {
3019 #ifdef CONFIG_SPARC
3020 const unsigned char *addr;
3021 int len;
3023 if (qfe_slot != -1 &&
3024 (addr = of_get_property(dp, "local-mac-address", &len))
3025 != NULL &&
3026 len == 6) {
3027 memcpy(dev->dev_addr, addr, 6);
3028 } else {
3029 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3031 #else
3032 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3033 #endif
3036 /* Layout registers. */
3037 hp->gregs = (hpreg_base + 0x0000UL);
3038 hp->etxregs = (hpreg_base + 0x2000UL);
3039 hp->erxregs = (hpreg_base + 0x4000UL);
3040 hp->bigmacregs = (hpreg_base + 0x6000UL);
3041 hp->tcvregs = (hpreg_base + 0x7000UL);
3043 #ifdef CONFIG_SPARC
3044 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3045 if (hp->hm_revision == 0xff)
3046 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3047 #else
3048 /* works with this on non-sparc hosts */
3049 hp->hm_revision = 0x20;
3050 #endif
3052 /* Now enable the feature flags we can. */
3053 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3054 hp->happy_flags = HFLAG_20_21;
3055 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3056 hp->happy_flags = HFLAG_NOT_A0;
3058 if (qp != NULL)
3059 hp->happy_flags |= HFLAG_QUATTRO;
3061 /* And of course, indicate this is PCI. */
3062 hp->happy_flags |= HFLAG_PCI;
3064 #ifdef CONFIG_SPARC
3065 /* Assume PCI happy meals can handle all burst sizes. */
3066 hp->happy_bursts = DMA_BURSTBITS;
3067 #endif
3069 hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3070 &hp->hblock_dvma, GFP_KERNEL);
3071 err = -ENODEV;
3072 if (!hp->happy_block)
3073 goto err_out_iounmap;
3075 hp->linkcheck = 0;
3076 hp->timer_state = asleep;
3077 hp->timer_ticks = 0;
3079 init_timer(&hp->happy_timer);
3081 hp->irq = pdev->irq;
3082 hp->dev = dev;
3083 dev->netdev_ops = &hme_netdev_ops;
3084 dev->watchdog_timeo = 5*HZ;
3085 dev->ethtool_ops = &hme_ethtool_ops;
3087 /* Happy Meal can do it all... */
3088 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3089 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3091 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3092 /* Hook up PCI register/descriptor accessors. */
3093 hp->read_desc32 = pci_hme_read_desc32;
3094 hp->write_txd = pci_hme_write_txd;
3095 hp->write_rxd = pci_hme_write_rxd;
3096 hp->read32 = pci_hme_read32;
3097 hp->write32 = pci_hme_write32;
3098 #endif
3100 /* Grrr, Happy Meal comes up by default not advertising
3101 * full duplex 100baseT capabilities, fix this.
3103 spin_lock_irq(&hp->happy_lock);
3104 happy_meal_set_initial_advertisement(hp);
3105 spin_unlock_irq(&hp->happy_lock);
3107 err = register_netdev(hp->dev);
3108 if (err) {
3109 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3110 "aborting.\n");
3111 goto err_out_iounmap;
3114 dev_set_drvdata(&pdev->dev, hp);
3116 if (!qfe_slot) {
3117 struct pci_dev *qpdev = qp->quattro_dev;
3119 prom_name[0] = 0;
3120 if (!strncmp(dev->name, "eth", 3)) {
3121 int i = simple_strtoul(dev->name + 3, NULL, 10);
3122 sprintf(prom_name, "-%d", i + 3);
3124 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3125 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3126 qpdev->device == PCI_DEVICE_ID_DEC_21153)
3127 printk("DEC 21153 PCI Bridge\n");
3128 else
3129 printk("unknown bridge %04x.%04x\n",
3130 qpdev->vendor, qpdev->device);
3133 if (qfe_slot != -1)
3134 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3135 dev->name, qfe_slot);
3136 else
3137 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3138 dev->name);
3140 printk("%pM\n", dev->dev_addr);
3142 return 0;
3144 err_out_iounmap:
3145 iounmap(hp->gregs);
3147 err_out_free_res:
3148 pci_release_regions(pdev);
3150 err_out_clear_quattro:
3151 if (qp != NULL)
3152 qp->happy_meals[qfe_slot] = NULL;
3154 free_netdev(dev);
3156 err_out:
3157 return err;
3160 static void happy_meal_pci_remove(struct pci_dev *pdev)
3162 struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3163 struct net_device *net_dev = hp->dev;
3165 unregister_netdev(net_dev);
3167 dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3168 hp->happy_block, hp->hblock_dvma);
3169 iounmap(hp->gregs);
3170 pci_release_regions(hp->happy_dev);
3172 free_netdev(net_dev);
3174 dev_set_drvdata(&pdev->dev, NULL);
3177 static DEFINE_PCI_DEVICE_TABLE(happymeal_pci_ids) = {
3178 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3179 { } /* Terminating entry */
3182 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3184 static struct pci_driver hme_pci_driver = {
3185 .name = "hme",
3186 .id_table = happymeal_pci_ids,
3187 .probe = happy_meal_pci_probe,
3188 .remove = happy_meal_pci_remove,
3191 static int __init happy_meal_pci_init(void)
3193 return pci_register_driver(&hme_pci_driver);
3196 static void happy_meal_pci_exit(void)
3198 pci_unregister_driver(&hme_pci_driver);
3200 while (qfe_pci_list) {
3201 struct quattro *qfe = qfe_pci_list;
3202 struct quattro *next = qfe->next;
3204 kfree(qfe);
3206 qfe_pci_list = next;
3210 #endif
3212 #ifdef CONFIG_SBUS
3213 static const struct of_device_id hme_sbus_match[];
3214 static int hme_sbus_probe(struct platform_device *op)
3216 const struct of_device_id *match;
3217 struct device_node *dp = op->dev.of_node;
3218 const char *model = of_get_property(dp, "model", NULL);
3219 int is_qfe;
3221 match = of_match_device(hme_sbus_match, &op->dev);
3222 if (!match)
3223 return -EINVAL;
3224 is_qfe = (match->data != NULL);
3226 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3227 is_qfe = 1;
3229 return happy_meal_sbus_probe_one(op, is_qfe);
3232 static int hme_sbus_remove(struct platform_device *op)
3234 struct happy_meal *hp = dev_get_drvdata(&op->dev);
3235 struct net_device *net_dev = hp->dev;
3237 unregister_netdev(net_dev);
3239 /* XXX qfe parent interrupt... */
3241 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3242 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3243 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3244 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3245 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3246 dma_free_coherent(hp->dma_dev,
3247 PAGE_SIZE,
3248 hp->happy_block,
3249 hp->hblock_dvma);
3251 free_netdev(net_dev);
3253 dev_set_drvdata(&op->dev, NULL);
3255 return 0;
3258 static const struct of_device_id hme_sbus_match[] = {
3260 .name = "SUNW,hme",
3263 .name = "SUNW,qfe",
3264 .data = (void *) 1,
3267 .name = "qfe",
3268 .data = (void *) 1,
3273 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3275 static struct platform_driver hme_sbus_driver = {
3276 .driver = {
3277 .name = "hme",
3278 .owner = THIS_MODULE,
3279 .of_match_table = hme_sbus_match,
3281 .probe = hme_sbus_probe,
3282 .remove = hme_sbus_remove,
3285 static int __init happy_meal_sbus_init(void)
3287 int err;
3289 err = platform_driver_register(&hme_sbus_driver);
3290 if (!err)
3291 err = quattro_sbus_register_irqs();
3293 return err;
3296 static void happy_meal_sbus_exit(void)
3298 platform_driver_unregister(&hme_sbus_driver);
3299 quattro_sbus_free_irqs();
3301 while (qfe_sbus_list) {
3302 struct quattro *qfe = qfe_sbus_list;
3303 struct quattro *next = qfe->next;
3305 kfree(qfe);
3307 qfe_sbus_list = next;
3310 #endif
3312 static int __init happy_meal_probe(void)
3314 int err = 0;
3316 #ifdef CONFIG_SBUS
3317 err = happy_meal_sbus_init();
3318 #endif
3319 #ifdef CONFIG_PCI
3320 if (!err) {
3321 err = happy_meal_pci_init();
3322 #ifdef CONFIG_SBUS
3323 if (err)
3324 happy_meal_sbus_exit();
3325 #endif
3327 #endif
3329 return err;
3333 static void __exit happy_meal_exit(void)
3335 #ifdef CONFIG_SBUS
3336 happy_meal_sbus_exit();
3337 #endif
3338 #ifdef CONFIG_PCI
3339 happy_meal_pci_exit();
3340 #endif
3343 module_init(happy_meal_probe);
3344 module_exit(happy_meal_exit);