Linux 4.4.252
[linux/fpc-iii.git] / mm / page_alloc.c
blob3570aaf2a6204da68b90fcd2f30f0ac699a4338a
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
93 * Array of node states.
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
109 EXPORT_SYMBOL(node_states);
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
123 unsigned long dirty_balance_reserve __read_mostly;
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page *page)
138 return page->index;
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
143 page->index = migratetype;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
187 static void __free_pages_ok(struct page *page, unsigned int order);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
209 #endif
213 EXPORT_SYMBOL(totalram_pages);
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
232 static void free_compound_page(struct page *page);
233 compound_page_dtor * const compound_page_dtors[] = {
234 NULL,
235 free_compound_page,
236 #ifdef CONFIG_HUGETLB_PAGE
237 free_huge_page,
238 #endif
241 int min_free_kbytes = 1024;
242 int user_min_free_kbytes = -1;
244 static unsigned long __meminitdata nr_kernel_pages;
245 static unsigned long __meminitdata nr_all_pages;
246 static unsigned long __meminitdata dma_reserve;
248 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
250 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
251 static unsigned long __initdata required_kernelcore;
252 static unsigned long __initdata required_movablecore;
253 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
255 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
256 int movable_zone;
257 EXPORT_SYMBOL(movable_zone);
258 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
260 #if MAX_NUMNODES > 1
261 int nr_node_ids __read_mostly = MAX_NUMNODES;
262 int nr_online_nodes __read_mostly = 1;
263 EXPORT_SYMBOL(nr_node_ids);
264 EXPORT_SYMBOL(nr_online_nodes);
265 #endif
267 int page_group_by_mobility_disabled __read_mostly;
269 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
272 * Determine how many pages need to be initialized durig early boot
273 * (non-deferred initialization).
274 * The value of first_deferred_pfn will be set later, once non-deferred pages
275 * are initialized, but for now set it ULONG_MAX.
277 static inline void reset_deferred_meminit(pg_data_t *pgdat)
279 phys_addr_t start_addr, end_addr;
280 unsigned long max_pgcnt;
281 unsigned long reserved;
284 * Initialise at least 2G of a node but also take into account that
285 * two large system hashes that can take up 1GB for 0.25TB/node.
287 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
288 (pgdat->node_spanned_pages >> 8));
291 * Compensate the all the memblock reservations (e.g. crash kernel)
292 * from the initial estimation to make sure we will initialize enough
293 * memory to boot.
295 start_addr = PFN_PHYS(pgdat->node_start_pfn);
296 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
297 reserved = memblock_reserved_memory_within(start_addr, end_addr);
298 max_pgcnt += PHYS_PFN(reserved);
300 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
301 pgdat->first_deferred_pfn = ULONG_MAX;
304 /* Returns true if the struct page for the pfn is uninitialised */
305 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
307 int nid = early_pfn_to_nid(pfn);
309 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
310 return true;
312 return false;
315 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
317 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
318 return true;
320 return false;
324 * Returns false when the remaining initialisation should be deferred until
325 * later in the boot cycle when it can be parallelised.
327 static inline bool update_defer_init(pg_data_t *pgdat,
328 unsigned long pfn, unsigned long zone_end,
329 unsigned long *nr_initialised)
331 /* Always populate low zones for address-contrained allocations */
332 if (zone_end < pgdat_end_pfn(pgdat))
333 return true;
334 /* Initialise at least 2G of the highest zone */
335 (*nr_initialised)++;
336 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
337 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
338 pgdat->first_deferred_pfn = pfn;
339 return false;
342 return true;
344 #else
345 static inline void reset_deferred_meminit(pg_data_t *pgdat)
349 static inline bool early_page_uninitialised(unsigned long pfn)
351 return false;
354 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
356 return false;
359 static inline bool update_defer_init(pg_data_t *pgdat,
360 unsigned long pfn, unsigned long zone_end,
361 unsigned long *nr_initialised)
363 return true;
365 #endif
368 void set_pageblock_migratetype(struct page *page, int migratetype)
370 if (unlikely(page_group_by_mobility_disabled &&
371 migratetype < MIGRATE_PCPTYPES))
372 migratetype = MIGRATE_UNMOVABLE;
374 set_pageblock_flags_group(page, (unsigned long)migratetype,
375 PB_migrate, PB_migrate_end);
378 #ifdef CONFIG_DEBUG_VM
379 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
381 int ret = 0;
382 unsigned seq;
383 unsigned long pfn = page_to_pfn(page);
384 unsigned long sp, start_pfn;
386 do {
387 seq = zone_span_seqbegin(zone);
388 start_pfn = zone->zone_start_pfn;
389 sp = zone->spanned_pages;
390 if (!zone_spans_pfn(zone, pfn))
391 ret = 1;
392 } while (zone_span_seqretry(zone, seq));
394 if (ret)
395 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
396 pfn, zone_to_nid(zone), zone->name,
397 start_pfn, start_pfn + sp);
399 return ret;
402 static int page_is_consistent(struct zone *zone, struct page *page)
404 if (!pfn_valid_within(page_to_pfn(page)))
405 return 0;
406 if (zone != page_zone(page))
407 return 0;
409 return 1;
412 * Temporary debugging check for pages not lying within a given zone.
414 static int bad_range(struct zone *zone, struct page *page)
416 if (page_outside_zone_boundaries(zone, page))
417 return 1;
418 if (!page_is_consistent(zone, page))
419 return 1;
421 return 0;
423 #else
424 static inline int bad_range(struct zone *zone, struct page *page)
426 return 0;
428 #endif
430 static void bad_page(struct page *page, const char *reason,
431 unsigned long bad_flags)
433 static unsigned long resume;
434 static unsigned long nr_shown;
435 static unsigned long nr_unshown;
437 /* Don't complain about poisoned pages */
438 if (PageHWPoison(page)) {
439 page_mapcount_reset(page); /* remove PageBuddy */
440 return;
444 * Allow a burst of 60 reports, then keep quiet for that minute;
445 * or allow a steady drip of one report per second.
447 if (nr_shown == 60) {
448 if (time_before(jiffies, resume)) {
449 nr_unshown++;
450 goto out;
452 if (nr_unshown) {
453 printk(KERN_ALERT
454 "BUG: Bad page state: %lu messages suppressed\n",
455 nr_unshown);
456 nr_unshown = 0;
458 nr_shown = 0;
460 if (nr_shown++ == 0)
461 resume = jiffies + 60 * HZ;
463 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
464 current->comm, page_to_pfn(page));
465 dump_page_badflags(page, reason, bad_flags);
467 print_modules();
468 dump_stack();
469 out:
470 /* Leave bad fields for debug, except PageBuddy could make trouble */
471 page_mapcount_reset(page); /* remove PageBuddy */
472 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
476 * Higher-order pages are called "compound pages". They are structured thusly:
478 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
480 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
481 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
483 * The first tail page's ->compound_dtor holds the offset in array of compound
484 * page destructors. See compound_page_dtors.
486 * The first tail page's ->compound_order holds the order of allocation.
487 * This usage means that zero-order pages may not be compound.
490 static void free_compound_page(struct page *page)
492 __free_pages_ok(page, compound_order(page));
495 void prep_compound_page(struct page *page, unsigned int order)
497 int i;
498 int nr_pages = 1 << order;
500 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
501 set_compound_order(page, order);
502 __SetPageHead(page);
503 for (i = 1; i < nr_pages; i++) {
504 struct page *p = page + i;
505 set_page_count(p, 0);
506 set_compound_head(p, page);
510 #ifdef CONFIG_DEBUG_PAGEALLOC
511 unsigned int _debug_guardpage_minorder;
512 bool _debug_pagealloc_enabled __read_mostly;
513 bool _debug_guardpage_enabled __read_mostly;
515 static int __init early_debug_pagealloc(char *buf)
517 if (!buf)
518 return -EINVAL;
520 if (strcmp(buf, "on") == 0)
521 _debug_pagealloc_enabled = true;
523 return 0;
525 early_param("debug_pagealloc", early_debug_pagealloc);
527 static bool need_debug_guardpage(void)
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
533 return true;
536 static void init_debug_guardpage(void)
538 if (!debug_pagealloc_enabled())
539 return;
541 _debug_guardpage_enabled = true;
544 struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
549 static int __init debug_guardpage_minorder_setup(char *buf)
551 unsigned long res;
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
554 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
555 return 0;
557 _debug_guardpage_minorder = res;
558 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
559 return 0;
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
563 static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
566 struct page_ext *page_ext;
568 if (!debug_guardpage_enabled())
569 return;
571 page_ext = lookup_page_ext(page);
572 if (unlikely(!page_ext))
573 return;
575 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
577 INIT_LIST_HEAD(&page->lru);
578 set_page_private(page, order);
579 /* Guard pages are not available for any usage */
580 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
583 static inline void clear_page_guard(struct zone *zone, struct page *page,
584 unsigned int order, int migratetype)
586 struct page_ext *page_ext;
588 if (!debug_guardpage_enabled())
589 return;
591 page_ext = lookup_page_ext(page);
592 if (unlikely(!page_ext))
593 return;
595 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
597 set_page_private(page, 0);
598 if (!is_migrate_isolate(migratetype))
599 __mod_zone_freepage_state(zone, (1 << order), migratetype);
601 #else
602 struct page_ext_operations debug_guardpage_ops = { NULL, };
603 static inline void set_page_guard(struct zone *zone, struct page *page,
604 unsigned int order, int migratetype) {}
605 static inline void clear_page_guard(struct zone *zone, struct page *page,
606 unsigned int order, int migratetype) {}
607 #endif
609 static inline void set_page_order(struct page *page, unsigned int order)
611 set_page_private(page, order);
612 __SetPageBuddy(page);
615 static inline void rmv_page_order(struct page *page)
617 __ClearPageBuddy(page);
618 set_page_private(page, 0);
622 * This function checks whether a page is free && is the buddy
623 * we can do coalesce a page and its buddy if
624 * (a) the buddy is not in a hole &&
625 * (b) the buddy is in the buddy system &&
626 * (c) a page and its buddy have the same order &&
627 * (d) a page and its buddy are in the same zone.
629 * For recording whether a page is in the buddy system, we set ->_mapcount
630 * PAGE_BUDDY_MAPCOUNT_VALUE.
631 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
632 * serialized by zone->lock.
634 * For recording page's order, we use page_private(page).
636 static inline int page_is_buddy(struct page *page, struct page *buddy,
637 unsigned int order)
639 if (!pfn_valid_within(page_to_pfn(buddy)))
640 return 0;
642 if (page_is_guard(buddy) && page_order(buddy) == order) {
643 if (page_zone_id(page) != page_zone_id(buddy))
644 return 0;
646 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
648 return 1;
651 if (PageBuddy(buddy) && page_order(buddy) == order) {
653 * zone check is done late to avoid uselessly
654 * calculating zone/node ids for pages that could
655 * never merge.
657 if (page_zone_id(page) != page_zone_id(buddy))
658 return 0;
660 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
662 return 1;
664 return 0;
668 * Freeing function for a buddy system allocator.
670 * The concept of a buddy system is to maintain direct-mapped table
671 * (containing bit values) for memory blocks of various "orders".
672 * The bottom level table contains the map for the smallest allocatable
673 * units of memory (here, pages), and each level above it describes
674 * pairs of units from the levels below, hence, "buddies".
675 * At a high level, all that happens here is marking the table entry
676 * at the bottom level available, and propagating the changes upward
677 * as necessary, plus some accounting needed to play nicely with other
678 * parts of the VM system.
679 * At each level, we keep a list of pages, which are heads of continuous
680 * free pages of length of (1 << order) and marked with _mapcount
681 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
682 * field.
683 * So when we are allocating or freeing one, we can derive the state of the
684 * other. That is, if we allocate a small block, and both were
685 * free, the remainder of the region must be split into blocks.
686 * If a block is freed, and its buddy is also free, then this
687 * triggers coalescing into a block of larger size.
689 * -- nyc
692 static inline void __free_one_page(struct page *page,
693 unsigned long pfn,
694 struct zone *zone, unsigned int order,
695 int migratetype)
697 unsigned long page_idx;
698 unsigned long combined_idx;
699 unsigned long uninitialized_var(buddy_idx);
700 struct page *buddy;
701 unsigned int max_order;
703 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
705 VM_BUG_ON(!zone_is_initialized(zone));
706 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
708 VM_BUG_ON(migratetype == -1);
709 if (likely(!is_migrate_isolate(migratetype)))
710 __mod_zone_freepage_state(zone, 1 << order, migratetype);
712 page_idx = pfn & ((1 << MAX_ORDER) - 1);
714 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
715 VM_BUG_ON_PAGE(bad_range(zone, page), page);
717 continue_merging:
718 while (order < max_order - 1) {
719 buddy_idx = __find_buddy_index(page_idx, order);
720 buddy = page + (buddy_idx - page_idx);
721 if (!page_is_buddy(page, buddy, order))
722 goto done_merging;
724 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
725 * merge with it and move up one order.
727 if (page_is_guard(buddy)) {
728 clear_page_guard(zone, buddy, order, migratetype);
729 } else {
730 list_del(&buddy->lru);
731 zone->free_area[order].nr_free--;
732 rmv_page_order(buddy);
734 combined_idx = buddy_idx & page_idx;
735 page = page + (combined_idx - page_idx);
736 page_idx = combined_idx;
737 order++;
739 if (max_order < MAX_ORDER) {
740 /* If we are here, it means order is >= pageblock_order.
741 * We want to prevent merge between freepages on isolate
742 * pageblock and normal pageblock. Without this, pageblock
743 * isolation could cause incorrect freepage or CMA accounting.
745 * We don't want to hit this code for the more frequent
746 * low-order merging.
748 if (unlikely(has_isolate_pageblock(zone))) {
749 int buddy_mt;
751 buddy_idx = __find_buddy_index(page_idx, order);
752 buddy = page + (buddy_idx - page_idx);
753 buddy_mt = get_pageblock_migratetype(buddy);
755 if (migratetype != buddy_mt
756 && (is_migrate_isolate(migratetype) ||
757 is_migrate_isolate(buddy_mt)))
758 goto done_merging;
760 max_order++;
761 goto continue_merging;
764 done_merging:
765 set_page_order(page, order);
768 * If this is not the largest possible page, check if the buddy
769 * of the next-highest order is free. If it is, it's possible
770 * that pages are being freed that will coalesce soon. In case,
771 * that is happening, add the free page to the tail of the list
772 * so it's less likely to be used soon and more likely to be merged
773 * as a higher order page
775 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
776 struct page *higher_page, *higher_buddy;
777 combined_idx = buddy_idx & page_idx;
778 higher_page = page + (combined_idx - page_idx);
779 buddy_idx = __find_buddy_index(combined_idx, order + 1);
780 higher_buddy = higher_page + (buddy_idx - combined_idx);
781 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
782 list_add_tail(&page->lru,
783 &zone->free_area[order].free_list[migratetype]);
784 goto out;
788 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
789 out:
790 zone->free_area[order].nr_free++;
793 static inline int free_pages_check(struct page *page)
795 const char *bad_reason = NULL;
796 unsigned long bad_flags = 0;
798 if (unlikely(page_mapcount(page)))
799 bad_reason = "nonzero mapcount";
800 if (unlikely(page->mapping != NULL))
801 bad_reason = "non-NULL mapping";
802 if (unlikely(atomic_read(&page->_count) != 0))
803 bad_reason = "nonzero _count";
804 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
805 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
806 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
808 #ifdef CONFIG_MEMCG
809 if (unlikely(page->mem_cgroup))
810 bad_reason = "page still charged to cgroup";
811 #endif
812 if (unlikely(bad_reason)) {
813 bad_page(page, bad_reason, bad_flags);
814 return 1;
816 page_cpupid_reset_last(page);
817 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
818 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
819 return 0;
823 * Frees a number of pages from the PCP lists
824 * Assumes all pages on list are in same zone, and of same order.
825 * count is the number of pages to free.
827 * If the zone was previously in an "all pages pinned" state then look to
828 * see if this freeing clears that state.
830 * And clear the zone's pages_scanned counter, to hold off the "all pages are
831 * pinned" detection logic.
833 static void free_pcppages_bulk(struct zone *zone, int count,
834 struct per_cpu_pages *pcp)
836 int migratetype = 0;
837 int batch_free = 0;
838 unsigned long nr_scanned;
840 spin_lock(&zone->lock);
841 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
842 if (nr_scanned)
843 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
846 * Ensure proper count is passed which otherwise would stuck in the
847 * below while (list_empty(list)) loop.
849 count = min(pcp->count, count);
850 while (count) {
851 struct page *page;
852 struct list_head *list;
855 * Remove pages from lists in a round-robin fashion. A
856 * batch_free count is maintained that is incremented when an
857 * empty list is encountered. This is so more pages are freed
858 * off fuller lists instead of spinning excessively around empty
859 * lists
861 do {
862 batch_free++;
863 if (++migratetype == MIGRATE_PCPTYPES)
864 migratetype = 0;
865 list = &pcp->lists[migratetype];
866 } while (list_empty(list));
868 /* This is the only non-empty list. Free them all. */
869 if (batch_free == MIGRATE_PCPTYPES)
870 batch_free = count;
872 do {
873 int mt; /* migratetype of the to-be-freed page */
875 page = list_entry(list->prev, struct page, lru);
876 /* must delete as __free_one_page list manipulates */
877 list_del(&page->lru);
879 mt = get_pcppage_migratetype(page);
880 /* MIGRATE_ISOLATE page should not go to pcplists */
881 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
882 /* Pageblock could have been isolated meanwhile */
883 if (unlikely(has_isolate_pageblock(zone)))
884 mt = get_pageblock_migratetype(page);
886 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
887 trace_mm_page_pcpu_drain(page, 0, mt);
888 } while (--count && --batch_free && !list_empty(list));
890 spin_unlock(&zone->lock);
893 static void free_one_page(struct zone *zone,
894 struct page *page, unsigned long pfn,
895 unsigned int order,
896 int migratetype)
898 unsigned long nr_scanned;
899 spin_lock(&zone->lock);
900 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
901 if (nr_scanned)
902 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
904 if (unlikely(has_isolate_pageblock(zone) ||
905 is_migrate_isolate(migratetype))) {
906 migratetype = get_pfnblock_migratetype(page, pfn);
908 __free_one_page(page, pfn, zone, order, migratetype);
909 spin_unlock(&zone->lock);
912 static int free_tail_pages_check(struct page *head_page, struct page *page)
914 int ret = 1;
917 * We rely page->lru.next never has bit 0 set, unless the page
918 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
920 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
922 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
923 ret = 0;
924 goto out;
926 if (unlikely(!PageTail(page))) {
927 bad_page(page, "PageTail not set", 0);
928 goto out;
930 if (unlikely(compound_head(page) != head_page)) {
931 bad_page(page, "compound_head not consistent", 0);
932 goto out;
934 ret = 0;
935 out:
936 clear_compound_head(page);
937 return ret;
940 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
941 unsigned long zone, int nid)
943 set_page_links(page, zone, nid, pfn);
944 init_page_count(page);
945 page_mapcount_reset(page);
946 page_cpupid_reset_last(page);
948 INIT_LIST_HEAD(&page->lru);
949 #ifdef WANT_PAGE_VIRTUAL
950 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
951 if (!is_highmem_idx(zone))
952 set_page_address(page, __va(pfn << PAGE_SHIFT));
953 #endif
956 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
957 int nid)
959 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
962 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
963 static void init_reserved_page(unsigned long pfn)
965 pg_data_t *pgdat;
966 int nid, zid;
968 if (!early_page_uninitialised(pfn))
969 return;
971 nid = early_pfn_to_nid(pfn);
972 pgdat = NODE_DATA(nid);
974 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
975 struct zone *zone = &pgdat->node_zones[zid];
977 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
978 break;
980 __init_single_pfn(pfn, zid, nid);
982 #else
983 static inline void init_reserved_page(unsigned long pfn)
986 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
989 * Initialised pages do not have PageReserved set. This function is
990 * called for each range allocated by the bootmem allocator and
991 * marks the pages PageReserved. The remaining valid pages are later
992 * sent to the buddy page allocator.
994 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
996 unsigned long start_pfn = PFN_DOWN(start);
997 unsigned long end_pfn = PFN_UP(end);
999 for (; start_pfn < end_pfn; start_pfn++) {
1000 if (pfn_valid(start_pfn)) {
1001 struct page *page = pfn_to_page(start_pfn);
1003 init_reserved_page(start_pfn);
1005 /* Avoid false-positive PageTail() */
1006 INIT_LIST_HEAD(&page->lru);
1008 SetPageReserved(page);
1013 static bool free_pages_prepare(struct page *page, unsigned int order)
1015 bool compound = PageCompound(page);
1016 int i, bad = 0;
1018 VM_BUG_ON_PAGE(PageTail(page), page);
1019 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1021 trace_mm_page_free(page, order);
1022 kmemcheck_free_shadow(page, order);
1023 kasan_free_pages(page, order);
1025 if (PageAnon(page))
1026 page->mapping = NULL;
1027 bad += free_pages_check(page);
1028 for (i = 1; i < (1 << order); i++) {
1029 if (compound)
1030 bad += free_tail_pages_check(page, page + i);
1031 bad += free_pages_check(page + i);
1033 if (bad)
1034 return false;
1036 reset_page_owner(page, order);
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 debug_check_no_obj_freed(page_address(page),
1042 PAGE_SIZE << order);
1044 arch_free_page(page, order);
1045 kernel_map_pages(page, 1 << order, 0);
1047 return true;
1050 static void __free_pages_ok(struct page *page, unsigned int order)
1052 unsigned long flags;
1053 int migratetype;
1054 unsigned long pfn = page_to_pfn(page);
1056 if (!free_pages_prepare(page, order))
1057 return;
1059 migratetype = get_pfnblock_migratetype(page, pfn);
1060 local_irq_save(flags);
1061 __count_vm_events(PGFREE, 1 << order);
1062 free_one_page(page_zone(page), page, pfn, order, migratetype);
1063 local_irq_restore(flags);
1066 static void __init __free_pages_boot_core(struct page *page,
1067 unsigned long pfn, unsigned int order)
1069 unsigned int nr_pages = 1 << order;
1070 struct page *p = page;
1071 unsigned int loop;
1073 prefetchw(p);
1074 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1075 prefetchw(p + 1);
1076 __ClearPageReserved(p);
1077 set_page_count(p, 0);
1079 __ClearPageReserved(p);
1080 set_page_count(p, 0);
1082 page_zone(page)->managed_pages += nr_pages;
1083 set_page_refcounted(page);
1084 __free_pages(page, order);
1087 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1088 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1090 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1092 int __meminit early_pfn_to_nid(unsigned long pfn)
1094 static DEFINE_SPINLOCK(early_pfn_lock);
1095 int nid;
1097 spin_lock(&early_pfn_lock);
1098 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1099 if (nid < 0)
1100 nid = first_online_node;
1101 spin_unlock(&early_pfn_lock);
1103 return nid;
1105 #endif
1107 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1108 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1109 struct mminit_pfnnid_cache *state)
1111 int nid;
1113 nid = __early_pfn_to_nid(pfn, state);
1114 if (nid >= 0 && nid != node)
1115 return false;
1116 return true;
1119 /* Only safe to use early in boot when initialisation is single-threaded */
1120 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1122 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1125 #else
1127 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1129 return true;
1131 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1134 return true;
1136 #endif
1139 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1140 unsigned int order)
1142 if (early_page_uninitialised(pfn))
1143 return;
1144 return __free_pages_boot_core(page, pfn, order);
1147 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1148 static void __init deferred_free_range(struct page *page,
1149 unsigned long pfn, int nr_pages)
1151 int i;
1153 if (!page)
1154 return;
1156 /* Free a large naturally-aligned chunk if possible */
1157 if (nr_pages == MAX_ORDER_NR_PAGES &&
1158 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1159 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1160 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1161 return;
1164 for (i = 0; i < nr_pages; i++, page++, pfn++)
1165 __free_pages_boot_core(page, pfn, 0);
1168 /* Completion tracking for deferred_init_memmap() threads */
1169 static atomic_t pgdat_init_n_undone __initdata;
1170 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1172 static inline void __init pgdat_init_report_one_done(void)
1174 if (atomic_dec_and_test(&pgdat_init_n_undone))
1175 complete(&pgdat_init_all_done_comp);
1178 /* Initialise remaining memory on a node */
1179 static int __init deferred_init_memmap(void *data)
1181 pg_data_t *pgdat = data;
1182 int nid = pgdat->node_id;
1183 struct mminit_pfnnid_cache nid_init_state = { };
1184 unsigned long start = jiffies;
1185 unsigned long nr_pages = 0;
1186 unsigned long walk_start, walk_end;
1187 int i, zid;
1188 struct zone *zone;
1189 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1190 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1192 if (first_init_pfn == ULONG_MAX) {
1193 pgdat_init_report_one_done();
1194 return 0;
1197 /* Bind memory initialisation thread to a local node if possible */
1198 if (!cpumask_empty(cpumask))
1199 set_cpus_allowed_ptr(current, cpumask);
1201 /* Sanity check boundaries */
1202 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1203 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1204 pgdat->first_deferred_pfn = ULONG_MAX;
1206 /* Only the highest zone is deferred so find it */
1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 zone = pgdat->node_zones + zid;
1209 if (first_init_pfn < zone_end_pfn(zone))
1210 break;
1213 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1214 unsigned long pfn, end_pfn;
1215 struct page *page = NULL;
1216 struct page *free_base_page = NULL;
1217 unsigned long free_base_pfn = 0;
1218 int nr_to_free = 0;
1220 end_pfn = min(walk_end, zone_end_pfn(zone));
1221 pfn = first_init_pfn;
1222 if (pfn < walk_start)
1223 pfn = walk_start;
1224 if (pfn < zone->zone_start_pfn)
1225 pfn = zone->zone_start_pfn;
1227 for (; pfn < end_pfn; pfn++) {
1228 if (!pfn_valid_within(pfn))
1229 goto free_range;
1232 * Ensure pfn_valid is checked every
1233 * MAX_ORDER_NR_PAGES for memory holes
1235 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1236 if (!pfn_valid(pfn)) {
1237 page = NULL;
1238 goto free_range;
1242 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1243 page = NULL;
1244 goto free_range;
1247 /* Minimise pfn page lookups and scheduler checks */
1248 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1249 page++;
1250 } else {
1251 nr_pages += nr_to_free;
1252 deferred_free_range(free_base_page,
1253 free_base_pfn, nr_to_free);
1254 free_base_page = NULL;
1255 free_base_pfn = nr_to_free = 0;
1257 page = pfn_to_page(pfn);
1258 cond_resched();
1261 if (page->flags) {
1262 VM_BUG_ON(page_zone(page) != zone);
1263 goto free_range;
1266 __init_single_page(page, pfn, zid, nid);
1267 if (!free_base_page) {
1268 free_base_page = page;
1269 free_base_pfn = pfn;
1270 nr_to_free = 0;
1272 nr_to_free++;
1274 /* Where possible, batch up pages for a single free */
1275 continue;
1276 free_range:
1277 /* Free the current block of pages to allocator */
1278 nr_pages += nr_to_free;
1279 deferred_free_range(free_base_page, free_base_pfn,
1280 nr_to_free);
1281 free_base_page = NULL;
1282 free_base_pfn = nr_to_free = 0;
1285 first_init_pfn = max(end_pfn, first_init_pfn);
1288 /* Sanity check that the next zone really is unpopulated */
1289 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1291 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1292 jiffies_to_msecs(jiffies - start));
1294 pgdat_init_report_one_done();
1295 return 0;
1298 void __init page_alloc_init_late(void)
1300 int nid;
1302 /* There will be num_node_state(N_MEMORY) threads */
1303 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1304 for_each_node_state(nid, N_MEMORY) {
1305 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1308 /* Block until all are initialised */
1309 wait_for_completion(&pgdat_init_all_done_comp);
1311 /* Reinit limits that are based on free pages after the kernel is up */
1312 files_maxfiles_init();
1314 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1316 #ifdef CONFIG_CMA
1317 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1318 void __init init_cma_reserved_pageblock(struct page *page)
1320 unsigned i = pageblock_nr_pages;
1321 struct page *p = page;
1323 do {
1324 __ClearPageReserved(p);
1325 set_page_count(p, 0);
1326 } while (++p, --i);
1328 set_pageblock_migratetype(page, MIGRATE_CMA);
1330 if (pageblock_order >= MAX_ORDER) {
1331 i = pageblock_nr_pages;
1332 p = page;
1333 do {
1334 set_page_refcounted(p);
1335 __free_pages(p, MAX_ORDER - 1);
1336 p += MAX_ORDER_NR_PAGES;
1337 } while (i -= MAX_ORDER_NR_PAGES);
1338 } else {
1339 set_page_refcounted(page);
1340 __free_pages(page, pageblock_order);
1343 adjust_managed_page_count(page, pageblock_nr_pages);
1345 #endif
1348 * The order of subdivision here is critical for the IO subsystem.
1349 * Please do not alter this order without good reasons and regression
1350 * testing. Specifically, as large blocks of memory are subdivided,
1351 * the order in which smaller blocks are delivered depends on the order
1352 * they're subdivided in this function. This is the primary factor
1353 * influencing the order in which pages are delivered to the IO
1354 * subsystem according to empirical testing, and this is also justified
1355 * by considering the behavior of a buddy system containing a single
1356 * large block of memory acted on by a series of small allocations.
1357 * This behavior is a critical factor in sglist merging's success.
1359 * -- nyc
1361 static inline void expand(struct zone *zone, struct page *page,
1362 int low, int high, struct free_area *area,
1363 int migratetype)
1365 unsigned long size = 1 << high;
1367 while (high > low) {
1368 area--;
1369 high--;
1370 size >>= 1;
1371 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1373 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1374 debug_guardpage_enabled() &&
1375 high < debug_guardpage_minorder()) {
1377 * Mark as guard pages (or page), that will allow to
1378 * merge back to allocator when buddy will be freed.
1379 * Corresponding page table entries will not be touched,
1380 * pages will stay not present in virtual address space
1382 set_page_guard(zone, &page[size], high, migratetype);
1383 continue;
1385 list_add(&page[size].lru, &area->free_list[migratetype]);
1386 area->nr_free++;
1387 set_page_order(&page[size], high);
1392 * This page is about to be returned from the page allocator
1394 static inline int check_new_page(struct page *page)
1396 const char *bad_reason = NULL;
1397 unsigned long bad_flags = 0;
1399 if (unlikely(page_mapcount(page)))
1400 bad_reason = "nonzero mapcount";
1401 if (unlikely(page->mapping != NULL))
1402 bad_reason = "non-NULL mapping";
1403 if (unlikely(atomic_read(&page->_count) != 0))
1404 bad_reason = "nonzero _count";
1405 if (unlikely(page->flags & __PG_HWPOISON)) {
1406 bad_reason = "HWPoisoned (hardware-corrupted)";
1407 bad_flags = __PG_HWPOISON;
1409 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1410 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1411 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1413 #ifdef CONFIG_MEMCG
1414 if (unlikely(page->mem_cgroup))
1415 bad_reason = "page still charged to cgroup";
1416 #endif
1417 if (unlikely(bad_reason)) {
1418 bad_page(page, bad_reason, bad_flags);
1419 return 1;
1421 return 0;
1424 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1425 int alloc_flags)
1427 int i;
1429 for (i = 0; i < (1 << order); i++) {
1430 struct page *p = page + i;
1431 if (unlikely(check_new_page(p)))
1432 return 1;
1435 set_page_private(page, 0);
1436 set_page_refcounted(page);
1438 arch_alloc_page(page, order);
1439 kernel_map_pages(page, 1 << order, 1);
1440 kasan_alloc_pages(page, order);
1442 if (gfp_flags & __GFP_ZERO)
1443 for (i = 0; i < (1 << order); i++)
1444 clear_highpage(page + i);
1446 if (order && (gfp_flags & __GFP_COMP))
1447 prep_compound_page(page, order);
1449 set_page_owner(page, order, gfp_flags);
1452 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1453 * allocate the page. The expectation is that the caller is taking
1454 * steps that will free more memory. The caller should avoid the page
1455 * being used for !PFMEMALLOC purposes.
1457 if (alloc_flags & ALLOC_NO_WATERMARKS)
1458 set_page_pfmemalloc(page);
1459 else
1460 clear_page_pfmemalloc(page);
1462 return 0;
1466 * Go through the free lists for the given migratetype and remove
1467 * the smallest available page from the freelists
1469 static inline
1470 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1471 int migratetype)
1473 unsigned int current_order;
1474 struct free_area *area;
1475 struct page *page;
1477 /* Find a page of the appropriate size in the preferred list */
1478 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1479 area = &(zone->free_area[current_order]);
1480 if (list_empty(&area->free_list[migratetype]))
1481 continue;
1483 page = list_entry(area->free_list[migratetype].next,
1484 struct page, lru);
1485 list_del(&page->lru);
1486 rmv_page_order(page);
1487 area->nr_free--;
1488 expand(zone, page, order, current_order, area, migratetype);
1489 set_pcppage_migratetype(page, migratetype);
1490 return page;
1493 return NULL;
1498 * This array describes the order lists are fallen back to when
1499 * the free lists for the desirable migrate type are depleted
1501 static int fallbacks[MIGRATE_TYPES][4] = {
1502 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1503 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1504 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1505 #ifdef CONFIG_CMA
1506 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1507 #endif
1508 #ifdef CONFIG_MEMORY_ISOLATION
1509 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1510 #endif
1513 #ifdef CONFIG_CMA
1514 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1515 unsigned int order)
1517 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1519 #else
1520 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1521 unsigned int order) { return NULL; }
1522 #endif
1525 * Move the free pages in a range to the free lists of the requested type.
1526 * Note that start_page and end_pages are not aligned on a pageblock
1527 * boundary. If alignment is required, use move_freepages_block()
1529 int move_freepages(struct zone *zone,
1530 struct page *start_page, struct page *end_page,
1531 int migratetype)
1533 struct page *page;
1534 unsigned int order;
1535 int pages_moved = 0;
1537 #ifndef CONFIG_HOLES_IN_ZONE
1539 * page_zone is not safe to call in this context when
1540 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1541 * anyway as we check zone boundaries in move_freepages_block().
1542 * Remove at a later date when no bug reports exist related to
1543 * grouping pages by mobility
1545 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1546 #endif
1548 for (page = start_page; page <= end_page;) {
1549 if (!pfn_valid_within(page_to_pfn(page))) {
1550 page++;
1551 continue;
1554 /* Make sure we are not inadvertently changing nodes */
1555 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1557 if (!PageBuddy(page)) {
1558 page++;
1559 continue;
1562 order = page_order(page);
1563 list_move(&page->lru,
1564 &zone->free_area[order].free_list[migratetype]);
1565 page += 1 << order;
1566 pages_moved += 1 << order;
1569 return pages_moved;
1572 int move_freepages_block(struct zone *zone, struct page *page,
1573 int migratetype)
1575 unsigned long start_pfn, end_pfn;
1576 struct page *start_page, *end_page;
1578 start_pfn = page_to_pfn(page);
1579 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1580 start_page = pfn_to_page(start_pfn);
1581 end_page = start_page + pageblock_nr_pages - 1;
1582 end_pfn = start_pfn + pageblock_nr_pages - 1;
1584 /* Do not cross zone boundaries */
1585 if (!zone_spans_pfn(zone, start_pfn))
1586 start_page = page;
1587 if (!zone_spans_pfn(zone, end_pfn))
1588 return 0;
1590 return move_freepages(zone, start_page, end_page, migratetype);
1593 static void change_pageblock_range(struct page *pageblock_page,
1594 int start_order, int migratetype)
1596 int nr_pageblocks = 1 << (start_order - pageblock_order);
1598 while (nr_pageblocks--) {
1599 set_pageblock_migratetype(pageblock_page, migratetype);
1600 pageblock_page += pageblock_nr_pages;
1605 * When we are falling back to another migratetype during allocation, try to
1606 * steal extra free pages from the same pageblocks to satisfy further
1607 * allocations, instead of polluting multiple pageblocks.
1609 * If we are stealing a relatively large buddy page, it is likely there will
1610 * be more free pages in the pageblock, so try to steal them all. For
1611 * reclaimable and unmovable allocations, we steal regardless of page size,
1612 * as fragmentation caused by those allocations polluting movable pageblocks
1613 * is worse than movable allocations stealing from unmovable and reclaimable
1614 * pageblocks.
1616 static bool can_steal_fallback(unsigned int order, int start_mt)
1619 * Leaving this order check is intended, although there is
1620 * relaxed order check in next check. The reason is that
1621 * we can actually steal whole pageblock if this condition met,
1622 * but, below check doesn't guarantee it and that is just heuristic
1623 * so could be changed anytime.
1625 if (order >= pageblock_order)
1626 return true;
1628 if (order >= pageblock_order / 2 ||
1629 start_mt == MIGRATE_RECLAIMABLE ||
1630 start_mt == MIGRATE_UNMOVABLE ||
1631 page_group_by_mobility_disabled)
1632 return true;
1634 return false;
1638 * This function implements actual steal behaviour. If order is large enough,
1639 * we can steal whole pageblock. If not, we first move freepages in this
1640 * pageblock and check whether half of pages are moved or not. If half of
1641 * pages are moved, we can change migratetype of pageblock and permanently
1642 * use it's pages as requested migratetype in the future.
1644 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1645 int start_type)
1647 unsigned int current_order = page_order(page);
1648 int pages;
1650 /* Take ownership for orders >= pageblock_order */
1651 if (current_order >= pageblock_order) {
1652 change_pageblock_range(page, current_order, start_type);
1653 return;
1656 pages = move_freepages_block(zone, page, start_type);
1658 /* Claim the whole block if over half of it is free */
1659 if (pages >= (1 << (pageblock_order-1)) ||
1660 page_group_by_mobility_disabled)
1661 set_pageblock_migratetype(page, start_type);
1665 * Check whether there is a suitable fallback freepage with requested order.
1666 * If only_stealable is true, this function returns fallback_mt only if
1667 * we can steal other freepages all together. This would help to reduce
1668 * fragmentation due to mixed migratetype pages in one pageblock.
1670 int find_suitable_fallback(struct free_area *area, unsigned int order,
1671 int migratetype, bool only_stealable, bool *can_steal)
1673 int i;
1674 int fallback_mt;
1676 if (area->nr_free == 0)
1677 return -1;
1679 *can_steal = false;
1680 for (i = 0;; i++) {
1681 fallback_mt = fallbacks[migratetype][i];
1682 if (fallback_mt == MIGRATE_TYPES)
1683 break;
1685 if (list_empty(&area->free_list[fallback_mt]))
1686 continue;
1688 if (can_steal_fallback(order, migratetype))
1689 *can_steal = true;
1691 if (!only_stealable)
1692 return fallback_mt;
1694 if (*can_steal)
1695 return fallback_mt;
1698 return -1;
1702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1703 * there are no empty page blocks that contain a page with a suitable order
1705 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1706 unsigned int alloc_order)
1708 int mt;
1709 unsigned long max_managed, flags;
1712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1713 * Check is race-prone but harmless.
1715 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1716 if (zone->nr_reserved_highatomic >= max_managed)
1717 return;
1719 spin_lock_irqsave(&zone->lock, flags);
1721 /* Recheck the nr_reserved_highatomic limit under the lock */
1722 if (zone->nr_reserved_highatomic >= max_managed)
1723 goto out_unlock;
1725 /* Yoink! */
1726 mt = get_pageblock_migratetype(page);
1727 if (mt != MIGRATE_HIGHATOMIC &&
1728 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1729 zone->nr_reserved_highatomic += pageblock_nr_pages;
1730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1734 out_unlock:
1735 spin_unlock_irqrestore(&zone->lock, flags);
1739 * Used when an allocation is about to fail under memory pressure. This
1740 * potentially hurts the reliability of high-order allocations when under
1741 * intense memory pressure but failed atomic allocations should be easier
1742 * to recover from than an OOM.
1744 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1746 struct zonelist *zonelist = ac->zonelist;
1747 unsigned long flags;
1748 struct zoneref *z;
1749 struct zone *zone;
1750 struct page *page;
1751 int order;
1753 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1754 ac->nodemask) {
1755 /* Preserve at least one pageblock */
1756 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1757 continue;
1759 spin_lock_irqsave(&zone->lock, flags);
1760 for (order = 0; order < MAX_ORDER; order++) {
1761 struct free_area *area = &(zone->free_area[order]);
1763 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1764 continue;
1766 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1767 struct page, lru);
1770 * In page freeing path, migratetype change is racy so
1771 * we can counter several free pages in a pageblock
1772 * in this loop althoug we changed the pageblock type
1773 * from highatomic to ac->migratetype. So we should
1774 * adjust the count once.
1776 if (get_pageblock_migratetype(page) ==
1777 MIGRATE_HIGHATOMIC) {
1779 * It should never happen but changes to
1780 * locking could inadvertently allow a per-cpu
1781 * drain to add pages to MIGRATE_HIGHATOMIC
1782 * while unreserving so be safe and watch for
1783 * underflows.
1785 zone->nr_reserved_highatomic -= min(
1786 pageblock_nr_pages,
1787 zone->nr_reserved_highatomic);
1791 * Convert to ac->migratetype and avoid the normal
1792 * pageblock stealing heuristics. Minimally, the caller
1793 * is doing the work and needs the pages. More
1794 * importantly, if the block was always converted to
1795 * MIGRATE_UNMOVABLE or another type then the number
1796 * of pageblocks that cannot be completely freed
1797 * may increase.
1799 set_pageblock_migratetype(page, ac->migratetype);
1800 move_freepages_block(zone, page, ac->migratetype);
1801 spin_unlock_irqrestore(&zone->lock, flags);
1802 return;
1804 spin_unlock_irqrestore(&zone->lock, flags);
1808 /* Remove an element from the buddy allocator from the fallback list */
1809 static inline struct page *
1810 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1812 struct free_area *area;
1813 unsigned int current_order;
1814 struct page *page;
1815 int fallback_mt;
1816 bool can_steal;
1818 /* Find the largest possible block of pages in the other list */
1819 for (current_order = MAX_ORDER-1;
1820 current_order >= order && current_order <= MAX_ORDER-1;
1821 --current_order) {
1822 area = &(zone->free_area[current_order]);
1823 fallback_mt = find_suitable_fallback(area, current_order,
1824 start_migratetype, false, &can_steal);
1825 if (fallback_mt == -1)
1826 continue;
1828 page = list_entry(area->free_list[fallback_mt].next,
1829 struct page, lru);
1830 if (can_steal)
1831 steal_suitable_fallback(zone, page, start_migratetype);
1833 /* Remove the page from the freelists */
1834 area->nr_free--;
1835 list_del(&page->lru);
1836 rmv_page_order(page);
1838 expand(zone, page, order, current_order, area,
1839 start_migratetype);
1841 * The pcppage_migratetype may differ from pageblock's
1842 * migratetype depending on the decisions in
1843 * find_suitable_fallback(). This is OK as long as it does not
1844 * differ for MIGRATE_CMA pageblocks. Those can be used as
1845 * fallback only via special __rmqueue_cma_fallback() function
1847 set_pcppage_migratetype(page, start_migratetype);
1849 trace_mm_page_alloc_extfrag(page, order, current_order,
1850 start_migratetype, fallback_mt);
1852 return page;
1855 return NULL;
1859 * Do the hard work of removing an element from the buddy allocator.
1860 * Call me with the zone->lock already held.
1862 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1863 int migratetype, gfp_t gfp_flags)
1865 struct page *page;
1867 page = __rmqueue_smallest(zone, order, migratetype);
1868 if (unlikely(!page)) {
1869 if (migratetype == MIGRATE_MOVABLE)
1870 page = __rmqueue_cma_fallback(zone, order);
1872 if (!page)
1873 page = __rmqueue_fallback(zone, order, migratetype);
1876 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1877 return page;
1881 * Obtain a specified number of elements from the buddy allocator, all under
1882 * a single hold of the lock, for efficiency. Add them to the supplied list.
1883 * Returns the number of new pages which were placed at *list.
1885 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1886 unsigned long count, struct list_head *list,
1887 int migratetype, bool cold)
1889 int i;
1891 spin_lock(&zone->lock);
1892 for (i = 0; i < count; ++i) {
1893 struct page *page = __rmqueue(zone, order, migratetype, 0);
1894 if (unlikely(page == NULL))
1895 break;
1898 * Split buddy pages returned by expand() are received here
1899 * in physical page order. The page is added to the callers and
1900 * list and the list head then moves forward. From the callers
1901 * perspective, the linked list is ordered by page number in
1902 * some conditions. This is useful for IO devices that can
1903 * merge IO requests if the physical pages are ordered
1904 * properly.
1906 if (likely(!cold))
1907 list_add(&page->lru, list);
1908 else
1909 list_add_tail(&page->lru, list);
1910 list = &page->lru;
1911 if (is_migrate_cma(get_pcppage_migratetype(page)))
1912 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1913 -(1 << order));
1915 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1916 spin_unlock(&zone->lock);
1917 return i;
1920 #ifdef CONFIG_NUMA
1922 * Called from the vmstat counter updater to drain pagesets of this
1923 * currently executing processor on remote nodes after they have
1924 * expired.
1926 * Note that this function must be called with the thread pinned to
1927 * a single processor.
1929 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1931 unsigned long flags;
1932 int to_drain, batch;
1934 local_irq_save(flags);
1935 batch = READ_ONCE(pcp->batch);
1936 to_drain = min(pcp->count, batch);
1937 if (to_drain > 0) {
1938 free_pcppages_bulk(zone, to_drain, pcp);
1939 pcp->count -= to_drain;
1941 local_irq_restore(flags);
1943 #endif
1946 * Drain pcplists of the indicated processor and zone.
1948 * The processor must either be the current processor and the
1949 * thread pinned to the current processor or a processor that
1950 * is not online.
1952 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1954 unsigned long flags;
1955 struct per_cpu_pageset *pset;
1956 struct per_cpu_pages *pcp;
1958 local_irq_save(flags);
1959 pset = per_cpu_ptr(zone->pageset, cpu);
1961 pcp = &pset->pcp;
1962 if (pcp->count) {
1963 free_pcppages_bulk(zone, pcp->count, pcp);
1964 pcp->count = 0;
1966 local_irq_restore(flags);
1970 * Drain pcplists of all zones on the indicated processor.
1972 * The processor must either be the current processor and the
1973 * thread pinned to the current processor or a processor that
1974 * is not online.
1976 static void drain_pages(unsigned int cpu)
1978 struct zone *zone;
1980 for_each_populated_zone(zone) {
1981 drain_pages_zone(cpu, zone);
1986 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1988 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1989 * the single zone's pages.
1991 void drain_local_pages(struct zone *zone)
1993 int cpu = smp_processor_id();
1995 if (zone)
1996 drain_pages_zone(cpu, zone);
1997 else
1998 drain_pages(cpu);
2002 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2004 * When zone parameter is non-NULL, spill just the single zone's pages.
2006 * Note that this code is protected against sending an IPI to an offline
2007 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2008 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2009 * nothing keeps CPUs from showing up after we populated the cpumask and
2010 * before the call to on_each_cpu_mask().
2012 void drain_all_pages(struct zone *zone)
2014 int cpu;
2017 * Allocate in the BSS so we wont require allocation in
2018 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2020 static cpumask_t cpus_with_pcps;
2023 * We don't care about racing with CPU hotplug event
2024 * as offline notification will cause the notified
2025 * cpu to drain that CPU pcps and on_each_cpu_mask
2026 * disables preemption as part of its processing
2028 for_each_online_cpu(cpu) {
2029 struct per_cpu_pageset *pcp;
2030 struct zone *z;
2031 bool has_pcps = false;
2033 if (zone) {
2034 pcp = per_cpu_ptr(zone->pageset, cpu);
2035 if (pcp->pcp.count)
2036 has_pcps = true;
2037 } else {
2038 for_each_populated_zone(z) {
2039 pcp = per_cpu_ptr(z->pageset, cpu);
2040 if (pcp->pcp.count) {
2041 has_pcps = true;
2042 break;
2047 if (has_pcps)
2048 cpumask_set_cpu(cpu, &cpus_with_pcps);
2049 else
2050 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2052 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2053 zone, 1);
2056 #ifdef CONFIG_HIBERNATION
2058 void mark_free_pages(struct zone *zone)
2060 unsigned long pfn, max_zone_pfn;
2061 unsigned long flags;
2062 unsigned int order, t;
2063 struct list_head *curr;
2065 if (zone_is_empty(zone))
2066 return;
2068 spin_lock_irqsave(&zone->lock, flags);
2070 max_zone_pfn = zone_end_pfn(zone);
2071 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2072 if (pfn_valid(pfn)) {
2073 struct page *page = pfn_to_page(pfn);
2075 if (!swsusp_page_is_forbidden(page))
2076 swsusp_unset_page_free(page);
2079 for_each_migratetype_order(order, t) {
2080 list_for_each(curr, &zone->free_area[order].free_list[t]) {
2081 unsigned long i;
2083 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2084 for (i = 0; i < (1UL << order); i++)
2085 swsusp_set_page_free(pfn_to_page(pfn + i));
2088 spin_unlock_irqrestore(&zone->lock, flags);
2090 #endif /* CONFIG_PM */
2093 * Free a 0-order page
2094 * cold == true ? free a cold page : free a hot page
2096 void free_hot_cold_page(struct page *page, bool cold)
2098 struct zone *zone = page_zone(page);
2099 struct per_cpu_pages *pcp;
2100 unsigned long flags;
2101 unsigned long pfn = page_to_pfn(page);
2102 int migratetype;
2104 if (!free_pages_prepare(page, 0))
2105 return;
2107 migratetype = get_pfnblock_migratetype(page, pfn);
2108 set_pcppage_migratetype(page, migratetype);
2109 local_irq_save(flags);
2110 __count_vm_event(PGFREE);
2113 * We only track unmovable, reclaimable and movable on pcp lists.
2114 * Free ISOLATE pages back to the allocator because they are being
2115 * offlined but treat RESERVE as movable pages so we can get those
2116 * areas back if necessary. Otherwise, we may have to free
2117 * excessively into the page allocator
2119 if (migratetype >= MIGRATE_PCPTYPES) {
2120 if (unlikely(is_migrate_isolate(migratetype))) {
2121 free_one_page(zone, page, pfn, 0, migratetype);
2122 goto out;
2124 migratetype = MIGRATE_MOVABLE;
2127 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2128 if (!cold)
2129 list_add(&page->lru, &pcp->lists[migratetype]);
2130 else
2131 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2132 pcp->count++;
2133 if (pcp->count >= pcp->high) {
2134 unsigned long batch = READ_ONCE(pcp->batch);
2135 free_pcppages_bulk(zone, batch, pcp);
2136 pcp->count -= batch;
2139 out:
2140 local_irq_restore(flags);
2144 * Free a list of 0-order pages
2146 void free_hot_cold_page_list(struct list_head *list, bool cold)
2148 struct page *page, *next;
2150 list_for_each_entry_safe(page, next, list, lru) {
2151 trace_mm_page_free_batched(page, cold);
2152 free_hot_cold_page(page, cold);
2157 * split_page takes a non-compound higher-order page, and splits it into
2158 * n (1<<order) sub-pages: page[0..n]
2159 * Each sub-page must be freed individually.
2161 * Note: this is probably too low level an operation for use in drivers.
2162 * Please consult with lkml before using this in your driver.
2164 void split_page(struct page *page, unsigned int order)
2166 int i;
2167 gfp_t gfp_mask;
2169 VM_BUG_ON_PAGE(PageCompound(page), page);
2170 VM_BUG_ON_PAGE(!page_count(page), page);
2172 #ifdef CONFIG_KMEMCHECK
2174 * Split shadow pages too, because free(page[0]) would
2175 * otherwise free the whole shadow.
2177 if (kmemcheck_page_is_tracked(page))
2178 split_page(virt_to_page(page[0].shadow), order);
2179 #endif
2181 gfp_mask = get_page_owner_gfp(page);
2182 set_page_owner(page, 0, gfp_mask);
2183 for (i = 1; i < (1 << order); i++) {
2184 set_page_refcounted(page + i);
2185 set_page_owner(page + i, 0, gfp_mask);
2188 EXPORT_SYMBOL_GPL(split_page);
2190 int __isolate_free_page(struct page *page, unsigned int order)
2192 unsigned long watermark;
2193 struct zone *zone;
2194 int mt;
2196 BUG_ON(!PageBuddy(page));
2198 zone = page_zone(page);
2199 mt = get_pageblock_migratetype(page);
2201 if (!is_migrate_isolate(mt)) {
2202 /* Obey watermarks as if the page was being allocated */
2203 watermark = low_wmark_pages(zone) + (1 << order);
2204 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2205 return 0;
2207 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2210 /* Remove page from free list */
2211 list_del(&page->lru);
2212 zone->free_area[order].nr_free--;
2213 rmv_page_order(page);
2215 set_page_owner(page, order, __GFP_MOVABLE);
2217 /* Set the pageblock if the isolated page is at least a pageblock */
2218 if (order >= pageblock_order - 1) {
2219 struct page *endpage = page + (1 << order) - 1;
2220 for (; page < endpage; page += pageblock_nr_pages) {
2221 int mt = get_pageblock_migratetype(page);
2222 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2223 set_pageblock_migratetype(page,
2224 MIGRATE_MOVABLE);
2229 return 1UL << order;
2233 * Similar to split_page except the page is already free. As this is only
2234 * being used for migration, the migratetype of the block also changes.
2235 * As this is called with interrupts disabled, the caller is responsible
2236 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2237 * are enabled.
2239 * Note: this is probably too low level an operation for use in drivers.
2240 * Please consult with lkml before using this in your driver.
2242 int split_free_page(struct page *page)
2244 unsigned int order;
2245 int nr_pages;
2247 order = page_order(page);
2249 nr_pages = __isolate_free_page(page, order);
2250 if (!nr_pages)
2251 return 0;
2253 /* Split into individual pages */
2254 set_page_refcounted(page);
2255 split_page(page, order);
2256 return nr_pages;
2260 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2262 static inline
2263 struct page *buffered_rmqueue(struct zone *preferred_zone,
2264 struct zone *zone, unsigned int order,
2265 gfp_t gfp_flags, int alloc_flags, int migratetype)
2267 unsigned long flags;
2268 struct page *page;
2269 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2271 if (likely(order == 0)) {
2272 struct per_cpu_pages *pcp;
2273 struct list_head *list;
2275 local_irq_save(flags);
2276 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2277 list = &pcp->lists[migratetype];
2278 if (list_empty(list)) {
2279 pcp->count += rmqueue_bulk(zone, 0,
2280 pcp->batch, list,
2281 migratetype, cold);
2282 if (unlikely(list_empty(list)))
2283 goto failed;
2286 if (cold)
2287 page = list_entry(list->prev, struct page, lru);
2288 else
2289 page = list_entry(list->next, struct page, lru);
2291 list_del(&page->lru);
2292 pcp->count--;
2293 } else {
2294 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2296 * __GFP_NOFAIL is not to be used in new code.
2298 * All __GFP_NOFAIL callers should be fixed so that they
2299 * properly detect and handle allocation failures.
2301 * We most definitely don't want callers attempting to
2302 * allocate greater than order-1 page units with
2303 * __GFP_NOFAIL.
2305 WARN_ON_ONCE(order > 1);
2307 spin_lock_irqsave(&zone->lock, flags);
2309 page = NULL;
2310 if (alloc_flags & ALLOC_HARDER) {
2311 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2312 if (page)
2313 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2315 if (!page)
2316 page = __rmqueue(zone, order, migratetype, gfp_flags);
2317 spin_unlock(&zone->lock);
2318 if (!page)
2319 goto failed;
2320 __mod_zone_freepage_state(zone, -(1 << order),
2321 get_pcppage_migratetype(page));
2324 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2325 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2326 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2327 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2329 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2330 zone_statistics(preferred_zone, zone, gfp_flags);
2331 local_irq_restore(flags);
2333 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2334 return page;
2336 failed:
2337 local_irq_restore(flags);
2338 return NULL;
2341 #ifdef CONFIG_FAIL_PAGE_ALLOC
2343 static struct {
2344 struct fault_attr attr;
2346 bool ignore_gfp_highmem;
2347 bool ignore_gfp_reclaim;
2348 u32 min_order;
2349 } fail_page_alloc = {
2350 .attr = FAULT_ATTR_INITIALIZER,
2351 .ignore_gfp_reclaim = true,
2352 .ignore_gfp_highmem = true,
2353 .min_order = 1,
2356 static int __init setup_fail_page_alloc(char *str)
2358 return setup_fault_attr(&fail_page_alloc.attr, str);
2360 __setup("fail_page_alloc=", setup_fail_page_alloc);
2362 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2364 if (order < fail_page_alloc.min_order)
2365 return false;
2366 if (gfp_mask & __GFP_NOFAIL)
2367 return false;
2368 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2369 return false;
2370 if (fail_page_alloc.ignore_gfp_reclaim &&
2371 (gfp_mask & __GFP_DIRECT_RECLAIM))
2372 return false;
2374 return should_fail(&fail_page_alloc.attr, 1 << order);
2377 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2379 static int __init fail_page_alloc_debugfs(void)
2381 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2382 struct dentry *dir;
2384 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2385 &fail_page_alloc.attr);
2386 if (IS_ERR(dir))
2387 return PTR_ERR(dir);
2389 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2390 &fail_page_alloc.ignore_gfp_reclaim))
2391 goto fail;
2392 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2393 &fail_page_alloc.ignore_gfp_highmem))
2394 goto fail;
2395 if (!debugfs_create_u32("min-order", mode, dir,
2396 &fail_page_alloc.min_order))
2397 goto fail;
2399 return 0;
2400 fail:
2401 debugfs_remove_recursive(dir);
2403 return -ENOMEM;
2406 late_initcall(fail_page_alloc_debugfs);
2408 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2410 #else /* CONFIG_FAIL_PAGE_ALLOC */
2412 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2414 return false;
2417 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2420 * Return true if free base pages are above 'mark'. For high-order checks it
2421 * will return true of the order-0 watermark is reached and there is at least
2422 * one free page of a suitable size. Checking now avoids taking the zone lock
2423 * to check in the allocation paths if no pages are free.
2425 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2426 unsigned long mark, int classzone_idx, int alloc_flags,
2427 long free_pages)
2429 long min = mark;
2430 int o;
2431 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2433 /* free_pages may go negative - that's OK */
2434 free_pages -= (1 << order) - 1;
2436 if (alloc_flags & ALLOC_HIGH)
2437 min -= min / 2;
2440 * If the caller does not have rights to ALLOC_HARDER then subtract
2441 * the high-atomic reserves. This will over-estimate the size of the
2442 * atomic reserve but it avoids a search.
2444 if (likely(!alloc_harder))
2445 free_pages -= z->nr_reserved_highatomic;
2446 else
2447 min -= min / 4;
2449 #ifdef CONFIG_CMA
2450 /* If allocation can't use CMA areas don't use free CMA pages */
2451 if (!(alloc_flags & ALLOC_CMA))
2452 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2453 #endif
2456 * Check watermarks for an order-0 allocation request. If these
2457 * are not met, then a high-order request also cannot go ahead
2458 * even if a suitable page happened to be free.
2460 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2461 return false;
2463 /* If this is an order-0 request then the watermark is fine */
2464 if (!order)
2465 return true;
2467 /* For a high-order request, check at least one suitable page is free */
2468 for (o = order; o < MAX_ORDER; o++) {
2469 struct free_area *area = &z->free_area[o];
2470 int mt;
2472 if (!area->nr_free)
2473 continue;
2475 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2476 if (!list_empty(&area->free_list[mt]))
2477 return true;
2480 #ifdef CONFIG_CMA
2481 if ((alloc_flags & ALLOC_CMA) &&
2482 !list_empty(&area->free_list[MIGRATE_CMA])) {
2483 return true;
2485 #endif
2486 if (alloc_harder &&
2487 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
2488 return true;
2490 return false;
2493 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2494 int classzone_idx, int alloc_flags)
2496 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2497 zone_page_state(z, NR_FREE_PAGES));
2500 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2501 unsigned long mark, int classzone_idx)
2503 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2505 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2506 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2508 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2509 free_pages);
2512 #ifdef CONFIG_NUMA
2513 static bool zone_local(struct zone *local_zone, struct zone *zone)
2515 return local_zone->node == zone->node;
2518 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2520 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2521 RECLAIM_DISTANCE;
2523 #else /* CONFIG_NUMA */
2524 static bool zone_local(struct zone *local_zone, struct zone *zone)
2526 return true;
2529 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2531 return true;
2533 #endif /* CONFIG_NUMA */
2535 static void reset_alloc_batches(struct zone *preferred_zone)
2537 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2539 do {
2540 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2541 high_wmark_pages(zone) - low_wmark_pages(zone) -
2542 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2543 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2544 } while (zone++ != preferred_zone);
2548 * get_page_from_freelist goes through the zonelist trying to allocate
2549 * a page.
2551 static struct page *
2552 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2553 const struct alloc_context *ac)
2555 struct zonelist *zonelist = ac->zonelist;
2556 struct zoneref *z;
2557 struct page *page = NULL;
2558 struct zone *zone;
2559 int nr_fair_skipped = 0;
2560 bool zonelist_rescan;
2562 zonelist_scan:
2563 zonelist_rescan = false;
2566 * Scan zonelist, looking for a zone with enough free.
2567 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2569 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2570 ac->nodemask) {
2571 unsigned long mark;
2573 if (cpusets_enabled() &&
2574 (alloc_flags & ALLOC_CPUSET) &&
2575 !cpuset_zone_allowed(zone, gfp_mask))
2576 continue;
2578 * Distribute pages in proportion to the individual
2579 * zone size to ensure fair page aging. The zone a
2580 * page was allocated in should have no effect on the
2581 * time the page has in memory before being reclaimed.
2583 if (alloc_flags & ALLOC_FAIR) {
2584 if (!zone_local(ac->preferred_zone, zone))
2585 break;
2586 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2587 nr_fair_skipped++;
2588 continue;
2592 * When allocating a page cache page for writing, we
2593 * want to get it from a zone that is within its dirty
2594 * limit, such that no single zone holds more than its
2595 * proportional share of globally allowed dirty pages.
2596 * The dirty limits take into account the zone's
2597 * lowmem reserves and high watermark so that kswapd
2598 * should be able to balance it without having to
2599 * write pages from its LRU list.
2601 * This may look like it could increase pressure on
2602 * lower zones by failing allocations in higher zones
2603 * before they are full. But the pages that do spill
2604 * over are limited as the lower zones are protected
2605 * by this very same mechanism. It should not become
2606 * a practical burden to them.
2608 * XXX: For now, allow allocations to potentially
2609 * exceed the per-zone dirty limit in the slowpath
2610 * (spread_dirty_pages unset) before going into reclaim,
2611 * which is important when on a NUMA setup the allowed
2612 * zones are together not big enough to reach the
2613 * global limit. The proper fix for these situations
2614 * will require awareness of zones in the
2615 * dirty-throttling and the flusher threads.
2617 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2618 continue;
2620 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2621 if (!zone_watermark_ok(zone, order, mark,
2622 ac->classzone_idx, alloc_flags)) {
2623 int ret;
2625 /* Checked here to keep the fast path fast */
2626 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2627 if (alloc_flags & ALLOC_NO_WATERMARKS)
2628 goto try_this_zone;
2630 if (zone_reclaim_mode == 0 ||
2631 !zone_allows_reclaim(ac->preferred_zone, zone))
2632 continue;
2634 ret = zone_reclaim(zone, gfp_mask, order);
2635 switch (ret) {
2636 case ZONE_RECLAIM_NOSCAN:
2637 /* did not scan */
2638 continue;
2639 case ZONE_RECLAIM_FULL:
2640 /* scanned but unreclaimable */
2641 continue;
2642 default:
2643 /* did we reclaim enough */
2644 if (zone_watermark_ok(zone, order, mark,
2645 ac->classzone_idx, alloc_flags))
2646 goto try_this_zone;
2648 continue;
2652 try_this_zone:
2653 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2654 gfp_mask, alloc_flags, ac->migratetype);
2655 if (page) {
2656 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2657 goto try_this_zone;
2660 * If this is a high-order atomic allocation then check
2661 * if the pageblock should be reserved for the future
2663 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2664 reserve_highatomic_pageblock(page, zone, order);
2666 return page;
2671 * The first pass makes sure allocations are spread fairly within the
2672 * local node. However, the local node might have free pages left
2673 * after the fairness batches are exhausted, and remote zones haven't
2674 * even been considered yet. Try once more without fairness, and
2675 * include remote zones now, before entering the slowpath and waking
2676 * kswapd: prefer spilling to a remote zone over swapping locally.
2678 if (alloc_flags & ALLOC_FAIR) {
2679 alloc_flags &= ~ALLOC_FAIR;
2680 if (nr_fair_skipped) {
2681 zonelist_rescan = true;
2682 reset_alloc_batches(ac->preferred_zone);
2684 if (nr_online_nodes > 1)
2685 zonelist_rescan = true;
2688 if (zonelist_rescan)
2689 goto zonelist_scan;
2691 return NULL;
2695 * Large machines with many possible nodes should not always dump per-node
2696 * meminfo in irq context.
2698 static inline bool should_suppress_show_mem(void)
2700 bool ret = false;
2702 #if NODES_SHIFT > 8
2703 ret = in_interrupt();
2704 #endif
2705 return ret;
2708 static DEFINE_RATELIMIT_STATE(nopage_rs,
2709 DEFAULT_RATELIMIT_INTERVAL,
2710 DEFAULT_RATELIMIT_BURST);
2712 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2714 unsigned int filter = SHOW_MEM_FILTER_NODES;
2716 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2717 debug_guardpage_minorder() > 0)
2718 return;
2721 * This documents exceptions given to allocations in certain
2722 * contexts that are allowed to allocate outside current's set
2723 * of allowed nodes.
2725 if (!(gfp_mask & __GFP_NOMEMALLOC))
2726 if (test_thread_flag(TIF_MEMDIE) ||
2727 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2728 filter &= ~SHOW_MEM_FILTER_NODES;
2729 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2730 filter &= ~SHOW_MEM_FILTER_NODES;
2732 if (fmt) {
2733 struct va_format vaf;
2734 va_list args;
2736 va_start(args, fmt);
2738 vaf.fmt = fmt;
2739 vaf.va = &args;
2741 pr_warn("%pV", &vaf);
2743 va_end(args);
2746 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2747 current->comm, order, gfp_mask);
2749 dump_stack();
2750 if (!should_suppress_show_mem())
2751 show_mem(filter);
2754 static inline struct page *
2755 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2756 const struct alloc_context *ac, unsigned long *did_some_progress)
2758 struct oom_control oc = {
2759 .zonelist = ac->zonelist,
2760 .nodemask = ac->nodemask,
2761 .gfp_mask = gfp_mask,
2762 .order = order,
2764 struct page *page;
2766 *did_some_progress = 0;
2769 * Acquire the oom lock. If that fails, somebody else is
2770 * making progress for us.
2772 if (!mutex_trylock(&oom_lock)) {
2773 *did_some_progress = 1;
2774 schedule_timeout_uninterruptible(1);
2775 return NULL;
2779 * Go through the zonelist yet one more time, keep very high watermark
2780 * here, this is only to catch a parallel oom killing, we must fail if
2781 * we're still under heavy pressure.
2783 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2784 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2785 if (page)
2786 goto out;
2788 if (!(gfp_mask & __GFP_NOFAIL)) {
2789 /* Coredumps can quickly deplete all memory reserves */
2790 if (current->flags & PF_DUMPCORE)
2791 goto out;
2792 /* The OOM killer will not help higher order allocs */
2793 if (order > PAGE_ALLOC_COSTLY_ORDER)
2794 goto out;
2795 /* The OOM killer does not needlessly kill tasks for lowmem */
2796 if (ac->high_zoneidx < ZONE_NORMAL)
2797 goto out;
2798 /* The OOM killer does not compensate for IO-less reclaim */
2799 if (!(gfp_mask & __GFP_FS)) {
2801 * XXX: Page reclaim didn't yield anything,
2802 * and the OOM killer can't be invoked, but
2803 * keep looping as per tradition.
2805 *did_some_progress = 1;
2806 goto out;
2808 if (pm_suspended_storage())
2809 goto out;
2810 /* The OOM killer may not free memory on a specific node */
2811 if (gfp_mask & __GFP_THISNODE)
2812 goto out;
2814 /* Exhausted what can be done so it's blamo time */
2815 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2816 *did_some_progress = 1;
2817 out:
2818 mutex_unlock(&oom_lock);
2819 return page;
2822 #ifdef CONFIG_COMPACTION
2823 /* Try memory compaction for high-order allocations before reclaim */
2824 static struct page *
2825 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2826 int alloc_flags, const struct alloc_context *ac,
2827 enum migrate_mode mode, int *contended_compaction,
2828 bool *deferred_compaction)
2830 unsigned long compact_result;
2831 struct page *page;
2833 if (!order)
2834 return NULL;
2836 current->flags |= PF_MEMALLOC;
2837 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2838 mode, contended_compaction);
2839 current->flags &= ~PF_MEMALLOC;
2841 switch (compact_result) {
2842 case COMPACT_DEFERRED:
2843 *deferred_compaction = true;
2844 /* fall-through */
2845 case COMPACT_SKIPPED:
2846 return NULL;
2847 default:
2848 break;
2852 * At least in one zone compaction wasn't deferred or skipped, so let's
2853 * count a compaction stall
2855 count_vm_event(COMPACTSTALL);
2857 page = get_page_from_freelist(gfp_mask, order,
2858 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2860 if (page) {
2861 struct zone *zone = page_zone(page);
2863 zone->compact_blockskip_flush = false;
2864 compaction_defer_reset(zone, order, true);
2865 count_vm_event(COMPACTSUCCESS);
2866 return page;
2870 * It's bad if compaction run occurs and fails. The most likely reason
2871 * is that pages exist, but not enough to satisfy watermarks.
2873 count_vm_event(COMPACTFAIL);
2875 cond_resched();
2877 return NULL;
2879 #else
2880 static inline struct page *
2881 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2882 int alloc_flags, const struct alloc_context *ac,
2883 enum migrate_mode mode, int *contended_compaction,
2884 bool *deferred_compaction)
2886 return NULL;
2888 #endif /* CONFIG_COMPACTION */
2890 /* Perform direct synchronous page reclaim */
2891 static int
2892 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2893 const struct alloc_context *ac)
2895 struct reclaim_state reclaim_state;
2896 int progress;
2898 cond_resched();
2900 /* We now go into synchronous reclaim */
2901 cpuset_memory_pressure_bump();
2902 current->flags |= PF_MEMALLOC;
2903 lockdep_set_current_reclaim_state(gfp_mask);
2904 reclaim_state.reclaimed_slab = 0;
2905 current->reclaim_state = &reclaim_state;
2907 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2908 ac->nodemask);
2910 current->reclaim_state = NULL;
2911 lockdep_clear_current_reclaim_state();
2912 current->flags &= ~PF_MEMALLOC;
2914 cond_resched();
2916 return progress;
2919 /* The really slow allocator path where we enter direct reclaim */
2920 static inline struct page *
2921 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2922 int alloc_flags, const struct alloc_context *ac,
2923 unsigned long *did_some_progress)
2925 struct page *page = NULL;
2926 bool drained = false;
2928 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2929 if (unlikely(!(*did_some_progress)))
2930 return NULL;
2932 retry:
2933 page = get_page_from_freelist(gfp_mask, order,
2934 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2937 * If an allocation failed after direct reclaim, it could be because
2938 * pages are pinned on the per-cpu lists or in high alloc reserves.
2939 * Shrink them them and try again
2941 if (!page && !drained) {
2942 unreserve_highatomic_pageblock(ac);
2943 drain_all_pages(NULL);
2944 drained = true;
2945 goto retry;
2948 return page;
2952 * This is called in the allocator slow-path if the allocation request is of
2953 * sufficient urgency to ignore watermarks and take other desperate measures
2955 static inline struct page *
2956 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2957 const struct alloc_context *ac)
2959 struct page *page;
2961 do {
2962 page = get_page_from_freelist(gfp_mask, order,
2963 ALLOC_NO_WATERMARKS, ac);
2965 if (!page && gfp_mask & __GFP_NOFAIL)
2966 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2967 HZ/50);
2968 } while (!page && (gfp_mask & __GFP_NOFAIL));
2970 return page;
2973 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2975 struct zoneref *z;
2976 struct zone *zone;
2978 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2979 ac->high_zoneidx, ac->nodemask)
2980 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2983 static inline int
2984 gfp_to_alloc_flags(gfp_t gfp_mask)
2986 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2988 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2989 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2992 * The caller may dip into page reserves a bit more if the caller
2993 * cannot run direct reclaim, or if the caller has realtime scheduling
2994 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2995 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2997 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2999 if (gfp_mask & __GFP_ATOMIC) {
3001 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3002 * if it can't schedule.
3004 if (!(gfp_mask & __GFP_NOMEMALLOC))
3005 alloc_flags |= ALLOC_HARDER;
3007 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3008 * comment for __cpuset_node_allowed().
3010 alloc_flags &= ~ALLOC_CPUSET;
3011 } else if (unlikely(rt_task(current)) && !in_interrupt())
3012 alloc_flags |= ALLOC_HARDER;
3014 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3015 if (gfp_mask & __GFP_MEMALLOC)
3016 alloc_flags |= ALLOC_NO_WATERMARKS;
3017 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3018 alloc_flags |= ALLOC_NO_WATERMARKS;
3019 else if (!in_interrupt() &&
3020 ((current->flags & PF_MEMALLOC) ||
3021 unlikely(test_thread_flag(TIF_MEMDIE))))
3022 alloc_flags |= ALLOC_NO_WATERMARKS;
3024 #ifdef CONFIG_CMA
3025 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3026 alloc_flags |= ALLOC_CMA;
3027 #endif
3028 return alloc_flags;
3031 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3033 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3036 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3038 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3041 static inline struct page *
3042 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3043 struct alloc_context *ac)
3045 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3046 struct page *page = NULL;
3047 int alloc_flags;
3048 unsigned long pages_reclaimed = 0;
3049 unsigned long did_some_progress;
3050 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3051 bool deferred_compaction = false;
3052 int contended_compaction = COMPACT_CONTENDED_NONE;
3055 * In the slowpath, we sanity check order to avoid ever trying to
3056 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3057 * be using allocators in order of preference for an area that is
3058 * too large.
3060 if (order >= MAX_ORDER) {
3061 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3062 return NULL;
3066 * We also sanity check to catch abuse of atomic reserves being used by
3067 * callers that are not in atomic context.
3069 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3070 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3071 gfp_mask &= ~__GFP_ATOMIC;
3074 * If this allocation cannot block and it is for a specific node, then
3075 * fail early. There's no need to wakeup kswapd or retry for a
3076 * speculative node-specific allocation.
3078 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3079 goto nopage;
3081 retry:
3082 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3083 wake_all_kswapds(order, ac);
3086 * OK, we're below the kswapd watermark and have kicked background
3087 * reclaim. Now things get more complex, so set up alloc_flags according
3088 * to how we want to proceed.
3090 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3093 * Find the true preferred zone if the allocation is unconstrained by
3094 * cpusets.
3096 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3097 struct zoneref *preferred_zoneref;
3098 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3099 ac->high_zoneidx, NULL, &ac->preferred_zone);
3100 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3103 /* This is the last chance, in general, before the goto nopage. */
3104 page = get_page_from_freelist(gfp_mask, order,
3105 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3106 if (page)
3107 goto got_pg;
3109 /* Allocate without watermarks if the context allows */
3110 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3112 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3113 * the allocation is high priority and these type of
3114 * allocations are system rather than user orientated
3116 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3118 if (page) {
3119 goto got_pg;
3123 /* Caller is not willing to reclaim, we can't balance anything */
3124 if (!can_direct_reclaim) {
3126 * All existing users of the deprecated __GFP_NOFAIL are
3127 * blockable, so warn of any new users that actually allow this
3128 * type of allocation to fail.
3130 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3131 goto nopage;
3134 /* Avoid recursion of direct reclaim */
3135 if (current->flags & PF_MEMALLOC)
3136 goto nopage;
3138 /* Avoid allocations with no watermarks from looping endlessly */
3139 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3140 goto nopage;
3143 * Try direct compaction. The first pass is asynchronous. Subsequent
3144 * attempts after direct reclaim are synchronous
3146 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3147 migration_mode,
3148 &contended_compaction,
3149 &deferred_compaction);
3150 if (page)
3151 goto got_pg;
3153 /* Checks for THP-specific high-order allocations */
3154 if (is_thp_gfp_mask(gfp_mask)) {
3156 * If compaction is deferred for high-order allocations, it is
3157 * because sync compaction recently failed. If this is the case
3158 * and the caller requested a THP allocation, we do not want
3159 * to heavily disrupt the system, so we fail the allocation
3160 * instead of entering direct reclaim.
3162 if (deferred_compaction)
3163 goto nopage;
3166 * In all zones where compaction was attempted (and not
3167 * deferred or skipped), lock contention has been detected.
3168 * For THP allocation we do not want to disrupt the others
3169 * so we fallback to base pages instead.
3171 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3172 goto nopage;
3175 * If compaction was aborted due to need_resched(), we do not
3176 * want to further increase allocation latency, unless it is
3177 * khugepaged trying to collapse.
3179 if (contended_compaction == COMPACT_CONTENDED_SCHED
3180 && !(current->flags & PF_KTHREAD))
3181 goto nopage;
3185 * It can become very expensive to allocate transparent hugepages at
3186 * fault, so use asynchronous memory compaction for THP unless it is
3187 * khugepaged trying to collapse.
3189 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3190 migration_mode = MIGRATE_SYNC_LIGHT;
3192 /* Try direct reclaim and then allocating */
3193 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3194 &did_some_progress);
3195 if (page)
3196 goto got_pg;
3198 /* Do not loop if specifically requested */
3199 if (gfp_mask & __GFP_NORETRY)
3200 goto noretry;
3202 /* Keep reclaiming pages as long as there is reasonable progress */
3203 pages_reclaimed += did_some_progress;
3204 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3205 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3206 /* Wait for some write requests to complete then retry */
3207 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3208 goto retry;
3211 /* Reclaim has failed us, start killing things */
3212 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3213 if (page)
3214 goto got_pg;
3216 /* Retry as long as the OOM killer is making progress */
3217 if (did_some_progress)
3218 goto retry;
3220 noretry:
3222 * High-order allocations do not necessarily loop after
3223 * direct reclaim and reclaim/compaction depends on compaction
3224 * being called after reclaim so call directly if necessary
3226 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3227 ac, migration_mode,
3228 &contended_compaction,
3229 &deferred_compaction);
3230 if (page)
3231 goto got_pg;
3232 nopage:
3233 warn_alloc_failed(gfp_mask, order, NULL);
3234 got_pg:
3235 return page;
3239 * This is the 'heart' of the zoned buddy allocator.
3241 struct page *
3242 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3243 struct zonelist *zonelist, nodemask_t *nodemask)
3245 struct zoneref *preferred_zoneref;
3246 struct page *page = NULL;
3247 unsigned int cpuset_mems_cookie;
3248 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3249 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3250 struct alloc_context ac = {
3251 .high_zoneidx = gfp_zone(gfp_mask),
3252 .nodemask = nodemask,
3253 .migratetype = gfpflags_to_migratetype(gfp_mask),
3256 gfp_mask &= gfp_allowed_mask;
3258 lockdep_trace_alloc(gfp_mask);
3260 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3262 if (should_fail_alloc_page(gfp_mask, order))
3263 return NULL;
3266 * Check the zones suitable for the gfp_mask contain at least one
3267 * valid zone. It's possible to have an empty zonelist as a result
3268 * of __GFP_THISNODE and a memoryless node
3270 if (unlikely(!zonelist->_zonerefs->zone))
3271 return NULL;
3273 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3274 alloc_flags |= ALLOC_CMA;
3276 retry_cpuset:
3277 cpuset_mems_cookie = read_mems_allowed_begin();
3279 /* We set it here, as __alloc_pages_slowpath might have changed it */
3280 ac.zonelist = zonelist;
3282 /* Dirty zone balancing only done in the fast path */
3283 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3285 /* The preferred zone is used for statistics later */
3286 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3287 ac.nodemask ? : &cpuset_current_mems_allowed,
3288 &ac.preferred_zone);
3289 if (!ac.preferred_zone)
3290 goto out;
3291 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3293 /* First allocation attempt */
3294 alloc_mask = gfp_mask|__GFP_HARDWALL;
3295 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3296 if (unlikely(!page)) {
3298 * Runtime PM, block IO and its error handling path
3299 * can deadlock because I/O on the device might not
3300 * complete.
3302 alloc_mask = memalloc_noio_flags(gfp_mask);
3303 ac.spread_dirty_pages = false;
3305 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3308 if (kmemcheck_enabled && page)
3309 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3311 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3313 out:
3315 * When updating a task's mems_allowed, it is possible to race with
3316 * parallel threads in such a way that an allocation can fail while
3317 * the mask is being updated. If a page allocation is about to fail,
3318 * check if the cpuset changed during allocation and if so, retry.
3320 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3321 goto retry_cpuset;
3323 return page;
3325 EXPORT_SYMBOL(__alloc_pages_nodemask);
3328 * Common helper functions.
3330 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3332 struct page *page;
3335 * __get_free_pages() returns a 32-bit address, which cannot represent
3336 * a highmem page
3338 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3340 page = alloc_pages(gfp_mask, order);
3341 if (!page)
3342 return 0;
3343 return (unsigned long) page_address(page);
3345 EXPORT_SYMBOL(__get_free_pages);
3347 unsigned long get_zeroed_page(gfp_t gfp_mask)
3349 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3351 EXPORT_SYMBOL(get_zeroed_page);
3353 void __free_pages(struct page *page, unsigned int order)
3355 if (put_page_testzero(page)) {
3356 if (order == 0)
3357 free_hot_cold_page(page, false);
3358 else
3359 __free_pages_ok(page, order);
3363 EXPORT_SYMBOL(__free_pages);
3365 void free_pages(unsigned long addr, unsigned int order)
3367 if (addr != 0) {
3368 VM_BUG_ON(!virt_addr_valid((void *)addr));
3369 __free_pages(virt_to_page((void *)addr), order);
3373 EXPORT_SYMBOL(free_pages);
3376 * Page Fragment:
3377 * An arbitrary-length arbitrary-offset area of memory which resides
3378 * within a 0 or higher order page. Multiple fragments within that page
3379 * are individually refcounted, in the page's reference counter.
3381 * The page_frag functions below provide a simple allocation framework for
3382 * page fragments. This is used by the network stack and network device
3383 * drivers to provide a backing region of memory for use as either an
3384 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3386 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3387 gfp_t gfp_mask)
3389 struct page *page = NULL;
3390 gfp_t gfp = gfp_mask;
3392 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3393 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3394 __GFP_NOMEMALLOC;
3395 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3396 PAGE_FRAG_CACHE_MAX_ORDER);
3397 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3398 #endif
3399 if (unlikely(!page))
3400 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3402 nc->va = page ? page_address(page) : NULL;
3404 return page;
3407 void *__alloc_page_frag(struct page_frag_cache *nc,
3408 unsigned int fragsz, gfp_t gfp_mask)
3410 unsigned int size = PAGE_SIZE;
3411 struct page *page;
3412 int offset;
3414 if (unlikely(!nc->va)) {
3415 refill:
3416 page = __page_frag_refill(nc, gfp_mask);
3417 if (!page)
3418 return NULL;
3420 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3421 /* if size can vary use size else just use PAGE_SIZE */
3422 size = nc->size;
3423 #endif
3424 /* Even if we own the page, we do not use atomic_set().
3425 * This would break get_page_unless_zero() users.
3427 atomic_add(size - 1, &page->_count);
3429 /* reset page count bias and offset to start of new frag */
3430 nc->pfmemalloc = page_is_pfmemalloc(page);
3431 nc->pagecnt_bias = size;
3432 nc->offset = size;
3435 offset = nc->offset - fragsz;
3436 if (unlikely(offset < 0)) {
3437 page = virt_to_page(nc->va);
3439 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3440 goto refill;
3442 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3443 /* if size can vary use size else just use PAGE_SIZE */
3444 size = nc->size;
3445 #endif
3446 /* OK, page count is 0, we can safely set it */
3447 atomic_set(&page->_count, size);
3449 /* reset page count bias and offset to start of new frag */
3450 nc->pagecnt_bias = size;
3451 offset = size - fragsz;
3454 nc->pagecnt_bias--;
3455 nc->offset = offset;
3457 return nc->va + offset;
3459 EXPORT_SYMBOL(__alloc_page_frag);
3462 * Frees a page fragment allocated out of either a compound or order 0 page.
3464 void __free_page_frag(void *addr)
3466 struct page *page = virt_to_head_page(addr);
3468 if (unlikely(put_page_testzero(page)))
3469 __free_pages_ok(page, compound_order(page));
3471 EXPORT_SYMBOL(__free_page_frag);
3474 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3475 * of the current memory cgroup.
3477 * It should be used when the caller would like to use kmalloc, but since the
3478 * allocation is large, it has to fall back to the page allocator.
3480 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3482 struct page *page;
3484 page = alloc_pages(gfp_mask, order);
3485 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3486 __free_pages(page, order);
3487 page = NULL;
3489 return page;
3492 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3494 struct page *page;
3496 page = alloc_pages_node(nid, gfp_mask, order);
3497 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3498 __free_pages(page, order);
3499 page = NULL;
3501 return page;
3505 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3506 * alloc_kmem_pages.
3508 void __free_kmem_pages(struct page *page, unsigned int order)
3510 memcg_kmem_uncharge(page, order);
3511 __free_pages(page, order);
3514 void free_kmem_pages(unsigned long addr, unsigned int order)
3516 if (addr != 0) {
3517 VM_BUG_ON(!virt_addr_valid((void *)addr));
3518 __free_kmem_pages(virt_to_page((void *)addr), order);
3522 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3523 size_t size)
3525 if (addr) {
3526 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3527 unsigned long used = addr + PAGE_ALIGN(size);
3529 split_page(virt_to_page((void *)addr), order);
3530 while (used < alloc_end) {
3531 free_page(used);
3532 used += PAGE_SIZE;
3535 return (void *)addr;
3539 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3540 * @size: the number of bytes to allocate
3541 * @gfp_mask: GFP flags for the allocation
3543 * This function is similar to alloc_pages(), except that it allocates the
3544 * minimum number of pages to satisfy the request. alloc_pages() can only
3545 * allocate memory in power-of-two pages.
3547 * This function is also limited by MAX_ORDER.
3549 * Memory allocated by this function must be released by free_pages_exact().
3551 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3553 unsigned int order = get_order(size);
3554 unsigned long addr;
3556 addr = __get_free_pages(gfp_mask, order);
3557 return make_alloc_exact(addr, order, size);
3559 EXPORT_SYMBOL(alloc_pages_exact);
3562 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3563 * pages on a node.
3564 * @nid: the preferred node ID where memory should be allocated
3565 * @size: the number of bytes to allocate
3566 * @gfp_mask: GFP flags for the allocation
3568 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3569 * back.
3571 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3573 unsigned int order = get_order(size);
3574 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3575 if (!p)
3576 return NULL;
3577 return make_alloc_exact((unsigned long)page_address(p), order, size);
3581 * free_pages_exact - release memory allocated via alloc_pages_exact()
3582 * @virt: the value returned by alloc_pages_exact.
3583 * @size: size of allocation, same value as passed to alloc_pages_exact().
3585 * Release the memory allocated by a previous call to alloc_pages_exact.
3587 void free_pages_exact(void *virt, size_t size)
3589 unsigned long addr = (unsigned long)virt;
3590 unsigned long end = addr + PAGE_ALIGN(size);
3592 while (addr < end) {
3593 free_page(addr);
3594 addr += PAGE_SIZE;
3597 EXPORT_SYMBOL(free_pages_exact);
3600 * nr_free_zone_pages - count number of pages beyond high watermark
3601 * @offset: The zone index of the highest zone
3603 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3604 * high watermark within all zones at or below a given zone index. For each
3605 * zone, the number of pages is calculated as:
3606 * managed_pages - high_pages
3608 static unsigned long nr_free_zone_pages(int offset)
3610 struct zoneref *z;
3611 struct zone *zone;
3613 /* Just pick one node, since fallback list is circular */
3614 unsigned long sum = 0;
3616 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3618 for_each_zone_zonelist(zone, z, zonelist, offset) {
3619 unsigned long size = zone->managed_pages;
3620 unsigned long high = high_wmark_pages(zone);
3621 if (size > high)
3622 sum += size - high;
3625 return sum;
3629 * nr_free_buffer_pages - count number of pages beyond high watermark
3631 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3632 * watermark within ZONE_DMA and ZONE_NORMAL.
3634 unsigned long nr_free_buffer_pages(void)
3636 return nr_free_zone_pages(gfp_zone(GFP_USER));
3638 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3641 * nr_free_pagecache_pages - count number of pages beyond high watermark
3643 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3644 * high watermark within all zones.
3646 unsigned long nr_free_pagecache_pages(void)
3648 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3651 static inline void show_node(struct zone *zone)
3653 if (IS_ENABLED(CONFIG_NUMA))
3654 printk("Node %d ", zone_to_nid(zone));
3657 long si_mem_available(void)
3659 long available;
3660 unsigned long pagecache;
3661 unsigned long wmark_low = 0;
3662 unsigned long pages[NR_LRU_LISTS];
3663 struct zone *zone;
3664 int lru;
3666 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3667 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3669 for_each_zone(zone)
3670 wmark_low += zone->watermark[WMARK_LOW];
3673 * Estimate the amount of memory available for userspace allocations,
3674 * without causing swapping.
3676 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3679 * Not all the page cache can be freed, otherwise the system will
3680 * start swapping. Assume at least half of the page cache, or the
3681 * low watermark worth of cache, needs to stay.
3683 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3684 pagecache -= min(pagecache / 2, wmark_low);
3685 available += pagecache;
3688 * Part of the reclaimable slab consists of items that are in use,
3689 * and cannot be freed. Cap this estimate at the low watermark.
3691 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3692 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3694 if (available < 0)
3695 available = 0;
3696 return available;
3698 EXPORT_SYMBOL_GPL(si_mem_available);
3700 void si_meminfo(struct sysinfo *val)
3702 val->totalram = totalram_pages;
3703 val->sharedram = global_page_state(NR_SHMEM);
3704 val->freeram = global_page_state(NR_FREE_PAGES);
3705 val->bufferram = nr_blockdev_pages();
3706 val->totalhigh = totalhigh_pages;
3707 val->freehigh = nr_free_highpages();
3708 val->mem_unit = PAGE_SIZE;
3711 EXPORT_SYMBOL(si_meminfo);
3713 #ifdef CONFIG_NUMA
3714 void si_meminfo_node(struct sysinfo *val, int nid)
3716 int zone_type; /* needs to be signed */
3717 unsigned long managed_pages = 0;
3718 pg_data_t *pgdat = NODE_DATA(nid);
3720 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3721 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3722 val->totalram = managed_pages;
3723 val->sharedram = node_page_state(nid, NR_SHMEM);
3724 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3725 #ifdef CONFIG_HIGHMEM
3726 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3727 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3728 NR_FREE_PAGES);
3729 #else
3730 val->totalhigh = 0;
3731 val->freehigh = 0;
3732 #endif
3733 val->mem_unit = PAGE_SIZE;
3735 #endif
3738 * Determine whether the node should be displayed or not, depending on whether
3739 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3741 bool skip_free_areas_node(unsigned int flags, int nid)
3743 bool ret = false;
3744 unsigned int cpuset_mems_cookie;
3746 if (!(flags & SHOW_MEM_FILTER_NODES))
3747 goto out;
3749 do {
3750 cpuset_mems_cookie = read_mems_allowed_begin();
3751 ret = !node_isset(nid, cpuset_current_mems_allowed);
3752 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3753 out:
3754 return ret;
3757 #define K(x) ((x) << (PAGE_SHIFT-10))
3759 static void show_migration_types(unsigned char type)
3761 static const char types[MIGRATE_TYPES] = {
3762 [MIGRATE_UNMOVABLE] = 'U',
3763 [MIGRATE_MOVABLE] = 'M',
3764 [MIGRATE_RECLAIMABLE] = 'E',
3765 [MIGRATE_HIGHATOMIC] = 'H',
3766 #ifdef CONFIG_CMA
3767 [MIGRATE_CMA] = 'C',
3768 #endif
3769 #ifdef CONFIG_MEMORY_ISOLATION
3770 [MIGRATE_ISOLATE] = 'I',
3771 #endif
3773 char tmp[MIGRATE_TYPES + 1];
3774 char *p = tmp;
3775 int i;
3777 for (i = 0; i < MIGRATE_TYPES; i++) {
3778 if (type & (1 << i))
3779 *p++ = types[i];
3782 *p = '\0';
3783 printk("(%s) ", tmp);
3787 * Show free area list (used inside shift_scroll-lock stuff)
3788 * We also calculate the percentage fragmentation. We do this by counting the
3789 * memory on each free list with the exception of the first item on the list.
3791 * Bits in @filter:
3792 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3793 * cpuset.
3795 void show_free_areas(unsigned int filter)
3797 unsigned long free_pcp = 0;
3798 int cpu;
3799 struct zone *zone;
3801 for_each_populated_zone(zone) {
3802 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3803 continue;
3805 for_each_online_cpu(cpu)
3806 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3809 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3810 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3811 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3812 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3813 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3814 " free:%lu free_pcp:%lu free_cma:%lu\n",
3815 global_page_state(NR_ACTIVE_ANON),
3816 global_page_state(NR_INACTIVE_ANON),
3817 global_page_state(NR_ISOLATED_ANON),
3818 global_page_state(NR_ACTIVE_FILE),
3819 global_page_state(NR_INACTIVE_FILE),
3820 global_page_state(NR_ISOLATED_FILE),
3821 global_page_state(NR_UNEVICTABLE),
3822 global_page_state(NR_FILE_DIRTY),
3823 global_page_state(NR_WRITEBACK),
3824 global_page_state(NR_UNSTABLE_NFS),
3825 global_page_state(NR_SLAB_RECLAIMABLE),
3826 global_page_state(NR_SLAB_UNRECLAIMABLE),
3827 global_page_state(NR_FILE_MAPPED),
3828 global_page_state(NR_SHMEM),
3829 global_page_state(NR_PAGETABLE),
3830 global_page_state(NR_BOUNCE),
3831 global_page_state(NR_FREE_PAGES),
3832 free_pcp,
3833 global_page_state(NR_FREE_CMA_PAGES));
3835 for_each_populated_zone(zone) {
3836 int i;
3838 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3839 continue;
3841 free_pcp = 0;
3842 for_each_online_cpu(cpu)
3843 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3845 show_node(zone);
3846 printk("%s"
3847 " free:%lukB"
3848 " min:%lukB"
3849 " low:%lukB"
3850 " high:%lukB"
3851 " active_anon:%lukB"
3852 " inactive_anon:%lukB"
3853 " active_file:%lukB"
3854 " inactive_file:%lukB"
3855 " unevictable:%lukB"
3856 " isolated(anon):%lukB"
3857 " isolated(file):%lukB"
3858 " present:%lukB"
3859 " managed:%lukB"
3860 " mlocked:%lukB"
3861 " dirty:%lukB"
3862 " writeback:%lukB"
3863 " mapped:%lukB"
3864 " shmem:%lukB"
3865 " slab_reclaimable:%lukB"
3866 " slab_unreclaimable:%lukB"
3867 " kernel_stack:%lukB"
3868 " pagetables:%lukB"
3869 " unstable:%lukB"
3870 " bounce:%lukB"
3871 " free_pcp:%lukB"
3872 " local_pcp:%ukB"
3873 " free_cma:%lukB"
3874 " writeback_tmp:%lukB"
3875 " pages_scanned:%lu"
3876 " all_unreclaimable? %s"
3877 "\n",
3878 zone->name,
3879 K(zone_page_state(zone, NR_FREE_PAGES)),
3880 K(min_wmark_pages(zone)),
3881 K(low_wmark_pages(zone)),
3882 K(high_wmark_pages(zone)),
3883 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3884 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3885 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3886 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3887 K(zone_page_state(zone, NR_UNEVICTABLE)),
3888 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3889 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3890 K(zone->present_pages),
3891 K(zone->managed_pages),
3892 K(zone_page_state(zone, NR_MLOCK)),
3893 K(zone_page_state(zone, NR_FILE_DIRTY)),
3894 K(zone_page_state(zone, NR_WRITEBACK)),
3895 K(zone_page_state(zone, NR_FILE_MAPPED)),
3896 K(zone_page_state(zone, NR_SHMEM)),
3897 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3898 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3899 zone_page_state(zone, NR_KERNEL_STACK) *
3900 THREAD_SIZE / 1024,
3901 K(zone_page_state(zone, NR_PAGETABLE)),
3902 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3903 K(zone_page_state(zone, NR_BOUNCE)),
3904 K(free_pcp),
3905 K(this_cpu_read(zone->pageset->pcp.count)),
3906 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3907 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3908 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3909 (!zone_reclaimable(zone) ? "yes" : "no")
3911 printk("lowmem_reserve[]:");
3912 for (i = 0; i < MAX_NR_ZONES; i++)
3913 printk(" %ld", zone->lowmem_reserve[i]);
3914 printk("\n");
3917 for_each_populated_zone(zone) {
3918 unsigned int order;
3919 unsigned long nr[MAX_ORDER], flags, total = 0;
3920 unsigned char types[MAX_ORDER];
3922 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3923 continue;
3924 show_node(zone);
3925 printk("%s: ", zone->name);
3927 spin_lock_irqsave(&zone->lock, flags);
3928 for (order = 0; order < MAX_ORDER; order++) {
3929 struct free_area *area = &zone->free_area[order];
3930 int type;
3932 nr[order] = area->nr_free;
3933 total += nr[order] << order;
3935 types[order] = 0;
3936 for (type = 0; type < MIGRATE_TYPES; type++) {
3937 if (!list_empty(&area->free_list[type]))
3938 types[order] |= 1 << type;
3941 spin_unlock_irqrestore(&zone->lock, flags);
3942 for (order = 0; order < MAX_ORDER; order++) {
3943 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3944 if (nr[order])
3945 show_migration_types(types[order]);
3947 printk("= %lukB\n", K(total));
3950 hugetlb_show_meminfo();
3952 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3954 show_swap_cache_info();
3957 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3959 zoneref->zone = zone;
3960 zoneref->zone_idx = zone_idx(zone);
3964 * Builds allocation fallback zone lists.
3966 * Add all populated zones of a node to the zonelist.
3968 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3969 int nr_zones)
3971 struct zone *zone;
3972 enum zone_type zone_type = MAX_NR_ZONES;
3974 do {
3975 zone_type--;
3976 zone = pgdat->node_zones + zone_type;
3977 if (populated_zone(zone)) {
3978 zoneref_set_zone(zone,
3979 &zonelist->_zonerefs[nr_zones++]);
3980 check_highest_zone(zone_type);
3982 } while (zone_type);
3984 return nr_zones;
3989 * zonelist_order:
3990 * 0 = automatic detection of better ordering.
3991 * 1 = order by ([node] distance, -zonetype)
3992 * 2 = order by (-zonetype, [node] distance)
3994 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3995 * the same zonelist. So only NUMA can configure this param.
3997 #define ZONELIST_ORDER_DEFAULT 0
3998 #define ZONELIST_ORDER_NODE 1
3999 #define ZONELIST_ORDER_ZONE 2
4001 /* zonelist order in the kernel.
4002 * set_zonelist_order() will set this to NODE or ZONE.
4004 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4005 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4008 #ifdef CONFIG_NUMA
4009 /* The value user specified ....changed by config */
4010 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4011 /* string for sysctl */
4012 #define NUMA_ZONELIST_ORDER_LEN 16
4013 char numa_zonelist_order[16] = "default";
4016 * interface for configure zonelist ordering.
4017 * command line option "numa_zonelist_order"
4018 * = "[dD]efault - default, automatic configuration.
4019 * = "[nN]ode - order by node locality, then by zone within node
4020 * = "[zZ]one - order by zone, then by locality within zone
4023 static int __parse_numa_zonelist_order(char *s)
4025 if (*s == 'd' || *s == 'D') {
4026 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4027 } else if (*s == 'n' || *s == 'N') {
4028 user_zonelist_order = ZONELIST_ORDER_NODE;
4029 } else if (*s == 'z' || *s == 'Z') {
4030 user_zonelist_order = ZONELIST_ORDER_ZONE;
4031 } else {
4032 printk(KERN_WARNING
4033 "Ignoring invalid numa_zonelist_order value: "
4034 "%s\n", s);
4035 return -EINVAL;
4037 return 0;
4040 static __init int setup_numa_zonelist_order(char *s)
4042 int ret;
4044 if (!s)
4045 return 0;
4047 ret = __parse_numa_zonelist_order(s);
4048 if (ret == 0)
4049 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4051 return ret;
4053 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4056 * sysctl handler for numa_zonelist_order
4058 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4059 void __user *buffer, size_t *length,
4060 loff_t *ppos)
4062 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4063 int ret;
4064 static DEFINE_MUTEX(zl_order_mutex);
4066 mutex_lock(&zl_order_mutex);
4067 if (write) {
4068 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4069 ret = -EINVAL;
4070 goto out;
4072 strcpy(saved_string, (char *)table->data);
4074 ret = proc_dostring(table, write, buffer, length, ppos);
4075 if (ret)
4076 goto out;
4077 if (write) {
4078 int oldval = user_zonelist_order;
4080 ret = __parse_numa_zonelist_order((char *)table->data);
4081 if (ret) {
4083 * bogus value. restore saved string
4085 strncpy((char *)table->data, saved_string,
4086 NUMA_ZONELIST_ORDER_LEN);
4087 user_zonelist_order = oldval;
4088 } else if (oldval != user_zonelist_order) {
4089 mutex_lock(&zonelists_mutex);
4090 build_all_zonelists(NULL, NULL);
4091 mutex_unlock(&zonelists_mutex);
4094 out:
4095 mutex_unlock(&zl_order_mutex);
4096 return ret;
4100 #define MAX_NODE_LOAD (nr_online_nodes)
4101 static int node_load[MAX_NUMNODES];
4104 * find_next_best_node - find the next node that should appear in a given node's fallback list
4105 * @node: node whose fallback list we're appending
4106 * @used_node_mask: nodemask_t of already used nodes
4108 * We use a number of factors to determine which is the next node that should
4109 * appear on a given node's fallback list. The node should not have appeared
4110 * already in @node's fallback list, and it should be the next closest node
4111 * according to the distance array (which contains arbitrary distance values
4112 * from each node to each node in the system), and should also prefer nodes
4113 * with no CPUs, since presumably they'll have very little allocation pressure
4114 * on them otherwise.
4115 * It returns -1 if no node is found.
4117 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4119 int n, val;
4120 int min_val = INT_MAX;
4121 int best_node = NUMA_NO_NODE;
4122 const struct cpumask *tmp = cpumask_of_node(0);
4124 /* Use the local node if we haven't already */
4125 if (!node_isset(node, *used_node_mask)) {
4126 node_set(node, *used_node_mask);
4127 return node;
4130 for_each_node_state(n, N_MEMORY) {
4132 /* Don't want a node to appear more than once */
4133 if (node_isset(n, *used_node_mask))
4134 continue;
4136 /* Use the distance array to find the distance */
4137 val = node_distance(node, n);
4139 /* Penalize nodes under us ("prefer the next node") */
4140 val += (n < node);
4142 /* Give preference to headless and unused nodes */
4143 tmp = cpumask_of_node(n);
4144 if (!cpumask_empty(tmp))
4145 val += PENALTY_FOR_NODE_WITH_CPUS;
4147 /* Slight preference for less loaded node */
4148 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4149 val += node_load[n];
4151 if (val < min_val) {
4152 min_val = val;
4153 best_node = n;
4157 if (best_node >= 0)
4158 node_set(best_node, *used_node_mask);
4160 return best_node;
4165 * Build zonelists ordered by node and zones within node.
4166 * This results in maximum locality--normal zone overflows into local
4167 * DMA zone, if any--but risks exhausting DMA zone.
4169 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4171 int j;
4172 struct zonelist *zonelist;
4174 zonelist = &pgdat->node_zonelists[0];
4175 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4177 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4178 zonelist->_zonerefs[j].zone = NULL;
4179 zonelist->_zonerefs[j].zone_idx = 0;
4183 * Build gfp_thisnode zonelists
4185 static void build_thisnode_zonelists(pg_data_t *pgdat)
4187 int j;
4188 struct zonelist *zonelist;
4190 zonelist = &pgdat->node_zonelists[1];
4191 j = build_zonelists_node(pgdat, zonelist, 0);
4192 zonelist->_zonerefs[j].zone = NULL;
4193 zonelist->_zonerefs[j].zone_idx = 0;
4197 * Build zonelists ordered by zone and nodes within zones.
4198 * This results in conserving DMA zone[s] until all Normal memory is
4199 * exhausted, but results in overflowing to remote node while memory
4200 * may still exist in local DMA zone.
4202 static int node_order[MAX_NUMNODES];
4204 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4206 int pos, j, node;
4207 int zone_type; /* needs to be signed */
4208 struct zone *z;
4209 struct zonelist *zonelist;
4211 zonelist = &pgdat->node_zonelists[0];
4212 pos = 0;
4213 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4214 for (j = 0; j < nr_nodes; j++) {
4215 node = node_order[j];
4216 z = &NODE_DATA(node)->node_zones[zone_type];
4217 if (populated_zone(z)) {
4218 zoneref_set_zone(z,
4219 &zonelist->_zonerefs[pos++]);
4220 check_highest_zone(zone_type);
4224 zonelist->_zonerefs[pos].zone = NULL;
4225 zonelist->_zonerefs[pos].zone_idx = 0;
4228 #if defined(CONFIG_64BIT)
4230 * Devices that require DMA32/DMA are relatively rare and do not justify a
4231 * penalty to every machine in case the specialised case applies. Default
4232 * to Node-ordering on 64-bit NUMA machines
4234 static int default_zonelist_order(void)
4236 return ZONELIST_ORDER_NODE;
4238 #else
4240 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4241 * by the kernel. If processes running on node 0 deplete the low memory zone
4242 * then reclaim will occur more frequency increasing stalls and potentially
4243 * be easier to OOM if a large percentage of the zone is under writeback or
4244 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4245 * Hence, default to zone ordering on 32-bit.
4247 static int default_zonelist_order(void)
4249 return ZONELIST_ORDER_ZONE;
4251 #endif /* CONFIG_64BIT */
4253 static void set_zonelist_order(void)
4255 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4256 current_zonelist_order = default_zonelist_order();
4257 else
4258 current_zonelist_order = user_zonelist_order;
4261 static void build_zonelists(pg_data_t *pgdat)
4263 int j, node, load;
4264 enum zone_type i;
4265 nodemask_t used_mask;
4266 int local_node, prev_node;
4267 struct zonelist *zonelist;
4268 unsigned int order = current_zonelist_order;
4270 /* initialize zonelists */
4271 for (i = 0; i < MAX_ZONELISTS; i++) {
4272 zonelist = pgdat->node_zonelists + i;
4273 zonelist->_zonerefs[0].zone = NULL;
4274 zonelist->_zonerefs[0].zone_idx = 0;
4277 /* NUMA-aware ordering of nodes */
4278 local_node = pgdat->node_id;
4279 load = nr_online_nodes;
4280 prev_node = local_node;
4281 nodes_clear(used_mask);
4283 memset(node_order, 0, sizeof(node_order));
4284 j = 0;
4286 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4288 * We don't want to pressure a particular node.
4289 * So adding penalty to the first node in same
4290 * distance group to make it round-robin.
4292 if (node_distance(local_node, node) !=
4293 node_distance(local_node, prev_node))
4294 node_load[node] = load;
4296 prev_node = node;
4297 load--;
4298 if (order == ZONELIST_ORDER_NODE)
4299 build_zonelists_in_node_order(pgdat, node);
4300 else
4301 node_order[j++] = node; /* remember order */
4304 if (order == ZONELIST_ORDER_ZONE) {
4305 /* calculate node order -- i.e., DMA last! */
4306 build_zonelists_in_zone_order(pgdat, j);
4309 build_thisnode_zonelists(pgdat);
4312 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4314 * Return node id of node used for "local" allocations.
4315 * I.e., first node id of first zone in arg node's generic zonelist.
4316 * Used for initializing percpu 'numa_mem', which is used primarily
4317 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4319 int local_memory_node(int node)
4321 struct zone *zone;
4323 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4324 gfp_zone(GFP_KERNEL),
4325 NULL,
4326 &zone);
4327 return zone->node;
4329 #endif
4331 #else /* CONFIG_NUMA */
4333 static void set_zonelist_order(void)
4335 current_zonelist_order = ZONELIST_ORDER_ZONE;
4338 static void build_zonelists(pg_data_t *pgdat)
4340 int node, local_node;
4341 enum zone_type j;
4342 struct zonelist *zonelist;
4344 local_node = pgdat->node_id;
4346 zonelist = &pgdat->node_zonelists[0];
4347 j = build_zonelists_node(pgdat, zonelist, 0);
4350 * Now we build the zonelist so that it contains the zones
4351 * of all the other nodes.
4352 * We don't want to pressure a particular node, so when
4353 * building the zones for node N, we make sure that the
4354 * zones coming right after the local ones are those from
4355 * node N+1 (modulo N)
4357 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4358 if (!node_online(node))
4359 continue;
4360 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4362 for (node = 0; node < local_node; node++) {
4363 if (!node_online(node))
4364 continue;
4365 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4368 zonelist->_zonerefs[j].zone = NULL;
4369 zonelist->_zonerefs[j].zone_idx = 0;
4372 #endif /* CONFIG_NUMA */
4375 * Boot pageset table. One per cpu which is going to be used for all
4376 * zones and all nodes. The parameters will be set in such a way
4377 * that an item put on a list will immediately be handed over to
4378 * the buddy list. This is safe since pageset manipulation is done
4379 * with interrupts disabled.
4381 * The boot_pagesets must be kept even after bootup is complete for
4382 * unused processors and/or zones. They do play a role for bootstrapping
4383 * hotplugged processors.
4385 * zoneinfo_show() and maybe other functions do
4386 * not check if the processor is online before following the pageset pointer.
4387 * Other parts of the kernel may not check if the zone is available.
4389 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4390 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4391 static void setup_zone_pageset(struct zone *zone);
4394 * Global mutex to protect against size modification of zonelists
4395 * as well as to serialize pageset setup for the new populated zone.
4397 DEFINE_MUTEX(zonelists_mutex);
4399 /* return values int ....just for stop_machine() */
4400 static int __build_all_zonelists(void *data)
4402 int nid;
4403 int cpu;
4404 pg_data_t *self = data;
4406 #ifdef CONFIG_NUMA
4407 memset(node_load, 0, sizeof(node_load));
4408 #endif
4410 if (self && !node_online(self->node_id)) {
4411 build_zonelists(self);
4414 for_each_online_node(nid) {
4415 pg_data_t *pgdat = NODE_DATA(nid);
4417 build_zonelists(pgdat);
4421 * Initialize the boot_pagesets that are going to be used
4422 * for bootstrapping processors. The real pagesets for
4423 * each zone will be allocated later when the per cpu
4424 * allocator is available.
4426 * boot_pagesets are used also for bootstrapping offline
4427 * cpus if the system is already booted because the pagesets
4428 * are needed to initialize allocators on a specific cpu too.
4429 * F.e. the percpu allocator needs the page allocator which
4430 * needs the percpu allocator in order to allocate its pagesets
4431 * (a chicken-egg dilemma).
4433 for_each_possible_cpu(cpu) {
4434 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4436 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4438 * We now know the "local memory node" for each node--
4439 * i.e., the node of the first zone in the generic zonelist.
4440 * Set up numa_mem percpu variable for on-line cpus. During
4441 * boot, only the boot cpu should be on-line; we'll init the
4442 * secondary cpus' numa_mem as they come on-line. During
4443 * node/memory hotplug, we'll fixup all on-line cpus.
4445 if (cpu_online(cpu))
4446 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4447 #endif
4450 return 0;
4453 static noinline void __init
4454 build_all_zonelists_init(void)
4456 __build_all_zonelists(NULL);
4457 mminit_verify_zonelist();
4458 cpuset_init_current_mems_allowed();
4462 * Called with zonelists_mutex held always
4463 * unless system_state == SYSTEM_BOOTING.
4465 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4466 * [we're only called with non-NULL zone through __meminit paths] and
4467 * (2) call of __init annotated helper build_all_zonelists_init
4468 * [protected by SYSTEM_BOOTING].
4470 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4472 set_zonelist_order();
4474 if (system_state == SYSTEM_BOOTING) {
4475 build_all_zonelists_init();
4476 } else {
4477 #ifdef CONFIG_MEMORY_HOTPLUG
4478 if (zone)
4479 setup_zone_pageset(zone);
4480 #endif
4481 /* we have to stop all cpus to guarantee there is no user
4482 of zonelist */
4483 stop_machine(__build_all_zonelists, pgdat, NULL);
4484 /* cpuset refresh routine should be here */
4486 vm_total_pages = nr_free_pagecache_pages();
4488 * Disable grouping by mobility if the number of pages in the
4489 * system is too low to allow the mechanism to work. It would be
4490 * more accurate, but expensive to check per-zone. This check is
4491 * made on memory-hotadd so a system can start with mobility
4492 * disabled and enable it later
4494 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4495 page_group_by_mobility_disabled = 1;
4496 else
4497 page_group_by_mobility_disabled = 0;
4499 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4500 "Total pages: %ld\n",
4501 nr_online_nodes,
4502 zonelist_order_name[current_zonelist_order],
4503 page_group_by_mobility_disabled ? "off" : "on",
4504 vm_total_pages);
4505 #ifdef CONFIG_NUMA
4506 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4507 #endif
4511 * Helper functions to size the waitqueue hash table.
4512 * Essentially these want to choose hash table sizes sufficiently
4513 * large so that collisions trying to wait on pages are rare.
4514 * But in fact, the number of active page waitqueues on typical
4515 * systems is ridiculously low, less than 200. So this is even
4516 * conservative, even though it seems large.
4518 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4519 * waitqueues, i.e. the size of the waitq table given the number of pages.
4521 #define PAGES_PER_WAITQUEUE 256
4523 #ifndef CONFIG_MEMORY_HOTPLUG
4524 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4526 unsigned long size = 1;
4528 pages /= PAGES_PER_WAITQUEUE;
4530 while (size < pages)
4531 size <<= 1;
4534 * Once we have dozens or even hundreds of threads sleeping
4535 * on IO we've got bigger problems than wait queue collision.
4536 * Limit the size of the wait table to a reasonable size.
4538 size = min(size, 4096UL);
4540 return max(size, 4UL);
4542 #else
4544 * A zone's size might be changed by hot-add, so it is not possible to determine
4545 * a suitable size for its wait_table. So we use the maximum size now.
4547 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4549 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4550 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4551 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4553 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4554 * or more by the traditional way. (See above). It equals:
4556 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4557 * ia64(16K page size) : = ( 8G + 4M)byte.
4558 * powerpc (64K page size) : = (32G +16M)byte.
4560 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4562 return 4096UL;
4564 #endif
4567 * This is an integer logarithm so that shifts can be used later
4568 * to extract the more random high bits from the multiplicative
4569 * hash function before the remainder is taken.
4571 static inline unsigned long wait_table_bits(unsigned long size)
4573 return ffz(~size);
4577 * Initially all pages are reserved - free ones are freed
4578 * up by free_all_bootmem() once the early boot process is
4579 * done. Non-atomic initialization, single-pass.
4581 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4582 unsigned long start_pfn, enum memmap_context context)
4584 pg_data_t *pgdat = NODE_DATA(nid);
4585 unsigned long end_pfn = start_pfn + size;
4586 unsigned long pfn;
4587 struct zone *z;
4588 unsigned long nr_initialised = 0;
4590 if (highest_memmap_pfn < end_pfn - 1)
4591 highest_memmap_pfn = end_pfn - 1;
4593 z = &pgdat->node_zones[zone];
4594 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4596 * There can be holes in boot-time mem_map[]s
4597 * handed to this function. They do not
4598 * exist on hotplugged memory.
4600 if (context == MEMMAP_EARLY) {
4601 if (!early_pfn_valid(pfn))
4602 continue;
4603 if (!early_pfn_in_nid(pfn, nid))
4604 continue;
4605 if (!update_defer_init(pgdat, pfn, end_pfn,
4606 &nr_initialised))
4607 break;
4611 * Mark the block movable so that blocks are reserved for
4612 * movable at startup. This will force kernel allocations
4613 * to reserve their blocks rather than leaking throughout
4614 * the address space during boot when many long-lived
4615 * kernel allocations are made.
4617 * bitmap is created for zone's valid pfn range. but memmap
4618 * can be created for invalid pages (for alignment)
4619 * check here not to call set_pageblock_migratetype() against
4620 * pfn out of zone.
4622 if (!(pfn & (pageblock_nr_pages - 1))) {
4623 struct page *page = pfn_to_page(pfn);
4625 __init_single_page(page, pfn, zone, nid);
4626 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4627 } else {
4628 __init_single_pfn(pfn, zone, nid);
4633 static void __meminit zone_init_free_lists(struct zone *zone)
4635 unsigned int order, t;
4636 for_each_migratetype_order(order, t) {
4637 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4638 zone->free_area[order].nr_free = 0;
4642 #ifndef __HAVE_ARCH_MEMMAP_INIT
4643 #define memmap_init(size, nid, zone, start_pfn) \
4644 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4645 #endif
4647 static int zone_batchsize(struct zone *zone)
4649 #ifdef CONFIG_MMU
4650 int batch;
4653 * The per-cpu-pages pools are set to around 1000th of the
4654 * size of the zone. But no more than 1/2 of a meg.
4656 * OK, so we don't know how big the cache is. So guess.
4658 batch = zone->managed_pages / 1024;
4659 if (batch * PAGE_SIZE > 512 * 1024)
4660 batch = (512 * 1024) / PAGE_SIZE;
4661 batch /= 4; /* We effectively *= 4 below */
4662 if (batch < 1)
4663 batch = 1;
4666 * Clamp the batch to a 2^n - 1 value. Having a power
4667 * of 2 value was found to be more likely to have
4668 * suboptimal cache aliasing properties in some cases.
4670 * For example if 2 tasks are alternately allocating
4671 * batches of pages, one task can end up with a lot
4672 * of pages of one half of the possible page colors
4673 * and the other with pages of the other colors.
4675 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4677 return batch;
4679 #else
4680 /* The deferral and batching of frees should be suppressed under NOMMU
4681 * conditions.
4683 * The problem is that NOMMU needs to be able to allocate large chunks
4684 * of contiguous memory as there's no hardware page translation to
4685 * assemble apparent contiguous memory from discontiguous pages.
4687 * Queueing large contiguous runs of pages for batching, however,
4688 * causes the pages to actually be freed in smaller chunks. As there
4689 * can be a significant delay between the individual batches being
4690 * recycled, this leads to the once large chunks of space being
4691 * fragmented and becoming unavailable for high-order allocations.
4693 return 0;
4694 #endif
4698 * pcp->high and pcp->batch values are related and dependent on one another:
4699 * ->batch must never be higher then ->high.
4700 * The following function updates them in a safe manner without read side
4701 * locking.
4703 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4704 * those fields changing asynchronously (acording the the above rule).
4706 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4707 * outside of boot time (or some other assurance that no concurrent updaters
4708 * exist).
4710 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4711 unsigned long batch)
4713 /* start with a fail safe value for batch */
4714 pcp->batch = 1;
4715 smp_wmb();
4717 /* Update high, then batch, in order */
4718 pcp->high = high;
4719 smp_wmb();
4721 pcp->batch = batch;
4724 /* a companion to pageset_set_high() */
4725 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4727 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4730 static void pageset_init(struct per_cpu_pageset *p)
4732 struct per_cpu_pages *pcp;
4733 int migratetype;
4735 memset(p, 0, sizeof(*p));
4737 pcp = &p->pcp;
4738 pcp->count = 0;
4739 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4740 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4743 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4745 pageset_init(p);
4746 pageset_set_batch(p, batch);
4750 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4751 * to the value high for the pageset p.
4753 static void pageset_set_high(struct per_cpu_pageset *p,
4754 unsigned long high)
4756 unsigned long batch = max(1UL, high / 4);
4757 if ((high / 4) > (PAGE_SHIFT * 8))
4758 batch = PAGE_SHIFT * 8;
4760 pageset_update(&p->pcp, high, batch);
4763 static void pageset_set_high_and_batch(struct zone *zone,
4764 struct per_cpu_pageset *pcp)
4766 if (percpu_pagelist_fraction)
4767 pageset_set_high(pcp,
4768 (zone->managed_pages /
4769 percpu_pagelist_fraction));
4770 else
4771 pageset_set_batch(pcp, zone_batchsize(zone));
4774 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4776 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4778 pageset_init(pcp);
4779 pageset_set_high_and_batch(zone, pcp);
4782 static void __meminit setup_zone_pageset(struct zone *zone)
4784 int cpu;
4785 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4786 for_each_possible_cpu(cpu)
4787 zone_pageset_init(zone, cpu);
4791 * Allocate per cpu pagesets and initialize them.
4792 * Before this call only boot pagesets were available.
4794 void __init setup_per_cpu_pageset(void)
4796 struct zone *zone;
4798 for_each_populated_zone(zone)
4799 setup_zone_pageset(zone);
4802 static noinline __init_refok
4803 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4805 int i;
4806 size_t alloc_size;
4809 * The per-page waitqueue mechanism uses hashed waitqueues
4810 * per zone.
4812 zone->wait_table_hash_nr_entries =
4813 wait_table_hash_nr_entries(zone_size_pages);
4814 zone->wait_table_bits =
4815 wait_table_bits(zone->wait_table_hash_nr_entries);
4816 alloc_size = zone->wait_table_hash_nr_entries
4817 * sizeof(wait_queue_head_t);
4819 if (!slab_is_available()) {
4820 zone->wait_table = (wait_queue_head_t *)
4821 memblock_virt_alloc_node_nopanic(
4822 alloc_size, zone->zone_pgdat->node_id);
4823 } else {
4825 * This case means that a zone whose size was 0 gets new memory
4826 * via memory hot-add.
4827 * But it may be the case that a new node was hot-added. In
4828 * this case vmalloc() will not be able to use this new node's
4829 * memory - this wait_table must be initialized to use this new
4830 * node itself as well.
4831 * To use this new node's memory, further consideration will be
4832 * necessary.
4834 zone->wait_table = vmalloc(alloc_size);
4836 if (!zone->wait_table)
4837 return -ENOMEM;
4839 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4840 init_waitqueue_head(zone->wait_table + i);
4842 return 0;
4845 static __meminit void zone_pcp_init(struct zone *zone)
4848 * per cpu subsystem is not up at this point. The following code
4849 * relies on the ability of the linker to provide the
4850 * offset of a (static) per cpu variable into the per cpu area.
4852 zone->pageset = &boot_pageset;
4854 if (populated_zone(zone))
4855 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4856 zone->name, zone->present_pages,
4857 zone_batchsize(zone));
4860 int __meminit init_currently_empty_zone(struct zone *zone,
4861 unsigned long zone_start_pfn,
4862 unsigned long size)
4864 struct pglist_data *pgdat = zone->zone_pgdat;
4865 int ret;
4866 ret = zone_wait_table_init(zone, size);
4867 if (ret)
4868 return ret;
4869 pgdat->nr_zones = zone_idx(zone) + 1;
4871 zone->zone_start_pfn = zone_start_pfn;
4873 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4874 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4875 pgdat->node_id,
4876 (unsigned long)zone_idx(zone),
4877 zone_start_pfn, (zone_start_pfn + size));
4879 zone_init_free_lists(zone);
4881 return 0;
4884 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4885 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4888 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4890 int __meminit __early_pfn_to_nid(unsigned long pfn,
4891 struct mminit_pfnnid_cache *state)
4893 unsigned long start_pfn, end_pfn;
4894 int nid;
4896 if (state->last_start <= pfn && pfn < state->last_end)
4897 return state->last_nid;
4899 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4900 if (nid != -1) {
4901 state->last_start = start_pfn;
4902 state->last_end = end_pfn;
4903 state->last_nid = nid;
4906 return nid;
4908 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4911 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4912 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4913 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4915 * If an architecture guarantees that all ranges registered contain no holes
4916 * and may be freed, this this function may be used instead of calling
4917 * memblock_free_early_nid() manually.
4919 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4921 unsigned long start_pfn, end_pfn;
4922 int i, this_nid;
4924 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4925 start_pfn = min(start_pfn, max_low_pfn);
4926 end_pfn = min(end_pfn, max_low_pfn);
4928 if (start_pfn < end_pfn)
4929 memblock_free_early_nid(PFN_PHYS(start_pfn),
4930 (end_pfn - start_pfn) << PAGE_SHIFT,
4931 this_nid);
4936 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4937 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4939 * If an architecture guarantees that all ranges registered contain no holes and may
4940 * be freed, this function may be used instead of calling memory_present() manually.
4942 void __init sparse_memory_present_with_active_regions(int nid)
4944 unsigned long start_pfn, end_pfn;
4945 int i, this_nid;
4947 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4948 memory_present(this_nid, start_pfn, end_pfn);
4952 * get_pfn_range_for_nid - Return the start and end page frames for a node
4953 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4954 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4955 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4957 * It returns the start and end page frame of a node based on information
4958 * provided by memblock_set_node(). If called for a node
4959 * with no available memory, a warning is printed and the start and end
4960 * PFNs will be 0.
4962 void __meminit get_pfn_range_for_nid(unsigned int nid,
4963 unsigned long *start_pfn, unsigned long *end_pfn)
4965 unsigned long this_start_pfn, this_end_pfn;
4966 int i;
4968 *start_pfn = -1UL;
4969 *end_pfn = 0;
4971 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4972 *start_pfn = min(*start_pfn, this_start_pfn);
4973 *end_pfn = max(*end_pfn, this_end_pfn);
4976 if (*start_pfn == -1UL)
4977 *start_pfn = 0;
4981 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4982 * assumption is made that zones within a node are ordered in monotonic
4983 * increasing memory addresses so that the "highest" populated zone is used
4985 static void __init find_usable_zone_for_movable(void)
4987 int zone_index;
4988 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4989 if (zone_index == ZONE_MOVABLE)
4990 continue;
4992 if (arch_zone_highest_possible_pfn[zone_index] >
4993 arch_zone_lowest_possible_pfn[zone_index])
4994 break;
4997 VM_BUG_ON(zone_index == -1);
4998 movable_zone = zone_index;
5002 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5003 * because it is sized independent of architecture. Unlike the other zones,
5004 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5005 * in each node depending on the size of each node and how evenly kernelcore
5006 * is distributed. This helper function adjusts the zone ranges
5007 * provided by the architecture for a given node by using the end of the
5008 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5009 * zones within a node are in order of monotonic increases memory addresses
5011 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5012 unsigned long zone_type,
5013 unsigned long node_start_pfn,
5014 unsigned long node_end_pfn,
5015 unsigned long *zone_start_pfn,
5016 unsigned long *zone_end_pfn)
5018 /* Only adjust if ZONE_MOVABLE is on this node */
5019 if (zone_movable_pfn[nid]) {
5020 /* Size ZONE_MOVABLE */
5021 if (zone_type == ZONE_MOVABLE) {
5022 *zone_start_pfn = zone_movable_pfn[nid];
5023 *zone_end_pfn = min(node_end_pfn,
5024 arch_zone_highest_possible_pfn[movable_zone]);
5026 /* Adjust for ZONE_MOVABLE starting within this range */
5027 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5028 *zone_end_pfn > zone_movable_pfn[nid]) {
5029 *zone_end_pfn = zone_movable_pfn[nid];
5031 /* Check if this whole range is within ZONE_MOVABLE */
5032 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5033 *zone_start_pfn = *zone_end_pfn;
5038 * Return the number of pages a zone spans in a node, including holes
5039 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5041 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5042 unsigned long zone_type,
5043 unsigned long node_start_pfn,
5044 unsigned long node_end_pfn,
5045 unsigned long *ignored)
5047 unsigned long zone_start_pfn, zone_end_pfn;
5049 /* When hotadd a new node from cpu_up(), the node should be empty */
5050 if (!node_start_pfn && !node_end_pfn)
5051 return 0;
5053 /* Get the start and end of the zone */
5054 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5055 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5056 adjust_zone_range_for_zone_movable(nid, zone_type,
5057 node_start_pfn, node_end_pfn,
5058 &zone_start_pfn, &zone_end_pfn);
5060 /* Check that this node has pages within the zone's required range */
5061 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5062 return 0;
5064 /* Move the zone boundaries inside the node if necessary */
5065 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5066 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5068 /* Return the spanned pages */
5069 return zone_end_pfn - zone_start_pfn;
5073 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5074 * then all holes in the requested range will be accounted for.
5076 unsigned long __meminit __absent_pages_in_range(int nid,
5077 unsigned long range_start_pfn,
5078 unsigned long range_end_pfn)
5080 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5081 unsigned long start_pfn, end_pfn;
5082 int i;
5084 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5085 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5086 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5087 nr_absent -= end_pfn - start_pfn;
5089 return nr_absent;
5093 * absent_pages_in_range - Return number of page frames in holes within a range
5094 * @start_pfn: The start PFN to start searching for holes
5095 * @end_pfn: The end PFN to stop searching for holes
5097 * It returns the number of pages frames in memory holes within a range.
5099 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5100 unsigned long end_pfn)
5102 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5105 /* Return the number of page frames in holes in a zone on a node */
5106 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5107 unsigned long zone_type,
5108 unsigned long node_start_pfn,
5109 unsigned long node_end_pfn,
5110 unsigned long *ignored)
5112 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5113 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5114 unsigned long zone_start_pfn, zone_end_pfn;
5116 /* When hotadd a new node from cpu_up(), the node should be empty */
5117 if (!node_start_pfn && !node_end_pfn)
5118 return 0;
5120 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5121 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5123 adjust_zone_range_for_zone_movable(nid, zone_type,
5124 node_start_pfn, node_end_pfn,
5125 &zone_start_pfn, &zone_end_pfn);
5126 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5129 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5130 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5131 unsigned long zone_type,
5132 unsigned long node_start_pfn,
5133 unsigned long node_end_pfn,
5134 unsigned long *zones_size)
5136 return zones_size[zone_type];
5139 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5140 unsigned long zone_type,
5141 unsigned long node_start_pfn,
5142 unsigned long node_end_pfn,
5143 unsigned long *zholes_size)
5145 if (!zholes_size)
5146 return 0;
5148 return zholes_size[zone_type];
5151 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5153 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5154 unsigned long node_start_pfn,
5155 unsigned long node_end_pfn,
5156 unsigned long *zones_size,
5157 unsigned long *zholes_size)
5159 unsigned long realtotalpages = 0, totalpages = 0;
5160 enum zone_type i;
5162 for (i = 0; i < MAX_NR_ZONES; i++) {
5163 struct zone *zone = pgdat->node_zones + i;
5164 unsigned long size, real_size;
5166 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5167 node_start_pfn,
5168 node_end_pfn,
5169 zones_size);
5170 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5171 node_start_pfn, node_end_pfn,
5172 zholes_size);
5173 zone->spanned_pages = size;
5174 zone->present_pages = real_size;
5176 totalpages += size;
5177 realtotalpages += real_size;
5180 pgdat->node_spanned_pages = totalpages;
5181 pgdat->node_present_pages = realtotalpages;
5182 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5183 realtotalpages);
5186 #ifndef CONFIG_SPARSEMEM
5188 * Calculate the size of the zone->blockflags rounded to an unsigned long
5189 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5190 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5191 * round what is now in bits to nearest long in bits, then return it in
5192 * bytes.
5194 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5196 unsigned long usemapsize;
5198 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5199 usemapsize = roundup(zonesize, pageblock_nr_pages);
5200 usemapsize = usemapsize >> pageblock_order;
5201 usemapsize *= NR_PAGEBLOCK_BITS;
5202 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5204 return usemapsize / 8;
5207 static void __init setup_usemap(struct pglist_data *pgdat,
5208 struct zone *zone,
5209 unsigned long zone_start_pfn,
5210 unsigned long zonesize)
5212 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5213 zone->pageblock_flags = NULL;
5214 if (usemapsize)
5215 zone->pageblock_flags =
5216 memblock_virt_alloc_node_nopanic(usemapsize,
5217 pgdat->node_id);
5219 #else
5220 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5221 unsigned long zone_start_pfn, unsigned long zonesize) {}
5222 #endif /* CONFIG_SPARSEMEM */
5224 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5226 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5227 void __paginginit set_pageblock_order(void)
5229 unsigned int order;
5231 /* Check that pageblock_nr_pages has not already been setup */
5232 if (pageblock_order)
5233 return;
5235 if (HPAGE_SHIFT > PAGE_SHIFT)
5236 order = HUGETLB_PAGE_ORDER;
5237 else
5238 order = MAX_ORDER - 1;
5241 * Assume the largest contiguous order of interest is a huge page.
5242 * This value may be variable depending on boot parameters on IA64 and
5243 * powerpc.
5245 pageblock_order = order;
5247 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5250 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5251 * is unused as pageblock_order is set at compile-time. See
5252 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5253 * the kernel config
5255 void __paginginit set_pageblock_order(void)
5259 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5261 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5262 unsigned long present_pages)
5264 unsigned long pages = spanned_pages;
5267 * Provide a more accurate estimation if there are holes within
5268 * the zone and SPARSEMEM is in use. If there are holes within the
5269 * zone, each populated memory region may cost us one or two extra
5270 * memmap pages due to alignment because memmap pages for each
5271 * populated regions may not naturally algined on page boundary.
5272 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5274 if (spanned_pages > present_pages + (present_pages >> 4) &&
5275 IS_ENABLED(CONFIG_SPARSEMEM))
5276 pages = present_pages;
5278 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5282 * Set up the zone data structures:
5283 * - mark all pages reserved
5284 * - mark all memory queues empty
5285 * - clear the memory bitmaps
5287 * NOTE: pgdat should get zeroed by caller.
5289 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5291 enum zone_type j;
5292 int nid = pgdat->node_id;
5293 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5294 int ret;
5296 pgdat_resize_init(pgdat);
5297 #ifdef CONFIG_NUMA_BALANCING
5298 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5299 pgdat->numabalancing_migrate_nr_pages = 0;
5300 pgdat->numabalancing_migrate_next_window = jiffies;
5301 #endif
5302 init_waitqueue_head(&pgdat->kswapd_wait);
5303 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5304 pgdat_page_ext_init(pgdat);
5306 for (j = 0; j < MAX_NR_ZONES; j++) {
5307 struct zone *zone = pgdat->node_zones + j;
5308 unsigned long size, realsize, freesize, memmap_pages;
5310 size = zone->spanned_pages;
5311 realsize = freesize = zone->present_pages;
5314 * Adjust freesize so that it accounts for how much memory
5315 * is used by this zone for memmap. This affects the watermark
5316 * and per-cpu initialisations
5318 memmap_pages = calc_memmap_size(size, realsize);
5319 if (!is_highmem_idx(j)) {
5320 if (freesize >= memmap_pages) {
5321 freesize -= memmap_pages;
5322 if (memmap_pages)
5323 printk(KERN_DEBUG
5324 " %s zone: %lu pages used for memmap\n",
5325 zone_names[j], memmap_pages);
5326 } else
5327 printk(KERN_WARNING
5328 " %s zone: %lu pages exceeds freesize %lu\n",
5329 zone_names[j], memmap_pages, freesize);
5332 /* Account for reserved pages */
5333 if (j == 0 && freesize > dma_reserve) {
5334 freesize -= dma_reserve;
5335 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5336 zone_names[0], dma_reserve);
5339 if (!is_highmem_idx(j))
5340 nr_kernel_pages += freesize;
5341 /* Charge for highmem memmap if there are enough kernel pages */
5342 else if (nr_kernel_pages > memmap_pages * 2)
5343 nr_kernel_pages -= memmap_pages;
5344 nr_all_pages += freesize;
5347 * Set an approximate value for lowmem here, it will be adjusted
5348 * when the bootmem allocator frees pages into the buddy system.
5349 * And all highmem pages will be managed by the buddy system.
5351 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5352 #ifdef CONFIG_NUMA
5353 zone->node = nid;
5354 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5355 / 100;
5356 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5357 #endif
5358 zone->name = zone_names[j];
5359 spin_lock_init(&zone->lock);
5360 spin_lock_init(&zone->lru_lock);
5361 zone_seqlock_init(zone);
5362 zone->zone_pgdat = pgdat;
5363 zone_pcp_init(zone);
5365 /* For bootup, initialized properly in watermark setup */
5366 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5368 lruvec_init(&zone->lruvec);
5369 if (!size)
5370 continue;
5372 set_pageblock_order();
5373 setup_usemap(pgdat, zone, zone_start_pfn, size);
5374 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5375 BUG_ON(ret);
5376 memmap_init(size, nid, j, zone_start_pfn);
5377 zone_start_pfn += size;
5381 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5383 unsigned long __maybe_unused start = 0;
5384 unsigned long __maybe_unused offset = 0;
5386 /* Skip empty nodes */
5387 if (!pgdat->node_spanned_pages)
5388 return;
5390 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5391 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5392 offset = pgdat->node_start_pfn - start;
5393 /* ia64 gets its own node_mem_map, before this, without bootmem */
5394 if (!pgdat->node_mem_map) {
5395 unsigned long size, end;
5396 struct page *map;
5399 * The zone's endpoints aren't required to be MAX_ORDER
5400 * aligned but the node_mem_map endpoints must be in order
5401 * for the buddy allocator to function correctly.
5403 end = pgdat_end_pfn(pgdat);
5404 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5405 size = (end - start) * sizeof(struct page);
5406 map = alloc_remap(pgdat->node_id, size);
5407 if (!map)
5408 map = memblock_virt_alloc_node_nopanic(size,
5409 pgdat->node_id);
5410 pgdat->node_mem_map = map + offset;
5412 #ifndef CONFIG_NEED_MULTIPLE_NODES
5414 * With no DISCONTIG, the global mem_map is just set as node 0's
5416 if (pgdat == NODE_DATA(0)) {
5417 mem_map = NODE_DATA(0)->node_mem_map;
5418 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5419 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5420 mem_map -= offset;
5421 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5423 #endif
5424 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5427 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5428 unsigned long node_start_pfn, unsigned long *zholes_size)
5430 pg_data_t *pgdat = NODE_DATA(nid);
5431 unsigned long start_pfn = 0;
5432 unsigned long end_pfn = 0;
5434 /* pg_data_t should be reset to zero when it's allocated */
5435 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5437 pgdat->node_id = nid;
5438 pgdat->node_start_pfn = node_start_pfn;
5439 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5440 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5441 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5442 (u64)start_pfn << PAGE_SHIFT,
5443 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5444 #endif
5445 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5446 zones_size, zholes_size);
5448 alloc_node_mem_map(pgdat);
5449 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5450 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5451 nid, (unsigned long)pgdat,
5452 (unsigned long)pgdat->node_mem_map);
5453 #endif
5455 reset_deferred_meminit(pgdat);
5456 free_area_init_core(pgdat);
5459 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5461 #if MAX_NUMNODES > 1
5463 * Figure out the number of possible node ids.
5465 void __init setup_nr_node_ids(void)
5467 unsigned int highest;
5469 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5470 nr_node_ids = highest + 1;
5472 #endif
5475 * node_map_pfn_alignment - determine the maximum internode alignment
5477 * This function should be called after node map is populated and sorted.
5478 * It calculates the maximum power of two alignment which can distinguish
5479 * all the nodes.
5481 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5482 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5483 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5484 * shifted, 1GiB is enough and this function will indicate so.
5486 * This is used to test whether pfn -> nid mapping of the chosen memory
5487 * model has fine enough granularity to avoid incorrect mapping for the
5488 * populated node map.
5490 * Returns the determined alignment in pfn's. 0 if there is no alignment
5491 * requirement (single node).
5493 unsigned long __init node_map_pfn_alignment(void)
5495 unsigned long accl_mask = 0, last_end = 0;
5496 unsigned long start, end, mask;
5497 int last_nid = -1;
5498 int i, nid;
5500 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5501 if (!start || last_nid < 0 || last_nid == nid) {
5502 last_nid = nid;
5503 last_end = end;
5504 continue;
5508 * Start with a mask granular enough to pin-point to the
5509 * start pfn and tick off bits one-by-one until it becomes
5510 * too coarse to separate the current node from the last.
5512 mask = ~((1 << __ffs(start)) - 1);
5513 while (mask && last_end <= (start & (mask << 1)))
5514 mask <<= 1;
5516 /* accumulate all internode masks */
5517 accl_mask |= mask;
5520 /* convert mask to number of pages */
5521 return ~accl_mask + 1;
5524 /* Find the lowest pfn for a node */
5525 static unsigned long __init find_min_pfn_for_node(int nid)
5527 unsigned long min_pfn = ULONG_MAX;
5528 unsigned long start_pfn;
5529 int i;
5531 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5532 min_pfn = min(min_pfn, start_pfn);
5534 if (min_pfn == ULONG_MAX) {
5535 printk(KERN_WARNING
5536 "Could not find start_pfn for node %d\n", nid);
5537 return 0;
5540 return min_pfn;
5544 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5546 * It returns the minimum PFN based on information provided via
5547 * memblock_set_node().
5549 unsigned long __init find_min_pfn_with_active_regions(void)
5551 return find_min_pfn_for_node(MAX_NUMNODES);
5555 * early_calculate_totalpages()
5556 * Sum pages in active regions for movable zone.
5557 * Populate N_MEMORY for calculating usable_nodes.
5559 static unsigned long __init early_calculate_totalpages(void)
5561 unsigned long totalpages = 0;
5562 unsigned long start_pfn, end_pfn;
5563 int i, nid;
5565 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5566 unsigned long pages = end_pfn - start_pfn;
5568 totalpages += pages;
5569 if (pages)
5570 node_set_state(nid, N_MEMORY);
5572 return totalpages;
5576 * Find the PFN the Movable zone begins in each node. Kernel memory
5577 * is spread evenly between nodes as long as the nodes have enough
5578 * memory. When they don't, some nodes will have more kernelcore than
5579 * others
5581 static void __init find_zone_movable_pfns_for_nodes(void)
5583 int i, nid;
5584 unsigned long usable_startpfn;
5585 unsigned long kernelcore_node, kernelcore_remaining;
5586 /* save the state before borrow the nodemask */
5587 nodemask_t saved_node_state = node_states[N_MEMORY];
5588 unsigned long totalpages = early_calculate_totalpages();
5589 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5590 struct memblock_region *r;
5592 /* Need to find movable_zone earlier when movable_node is specified. */
5593 find_usable_zone_for_movable();
5596 * If movable_node is specified, ignore kernelcore and movablecore
5597 * options.
5599 if (movable_node_is_enabled()) {
5600 for_each_memblock(memory, r) {
5601 if (!memblock_is_hotpluggable(r))
5602 continue;
5604 nid = r->nid;
5606 usable_startpfn = PFN_DOWN(r->base);
5607 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5608 min(usable_startpfn, zone_movable_pfn[nid]) :
5609 usable_startpfn;
5612 goto out2;
5616 * If movablecore=nn[KMG] was specified, calculate what size of
5617 * kernelcore that corresponds so that memory usable for
5618 * any allocation type is evenly spread. If both kernelcore
5619 * and movablecore are specified, then the value of kernelcore
5620 * will be used for required_kernelcore if it's greater than
5621 * what movablecore would have allowed.
5623 if (required_movablecore) {
5624 unsigned long corepages;
5627 * Round-up so that ZONE_MOVABLE is at least as large as what
5628 * was requested by the user
5630 required_movablecore =
5631 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5632 required_movablecore = min(totalpages, required_movablecore);
5633 corepages = totalpages - required_movablecore;
5635 required_kernelcore = max(required_kernelcore, corepages);
5639 * If kernelcore was not specified or kernelcore size is larger
5640 * than totalpages, there is no ZONE_MOVABLE.
5642 if (!required_kernelcore || required_kernelcore >= totalpages)
5643 goto out;
5645 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5646 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5648 restart:
5649 /* Spread kernelcore memory as evenly as possible throughout nodes */
5650 kernelcore_node = required_kernelcore / usable_nodes;
5651 for_each_node_state(nid, N_MEMORY) {
5652 unsigned long start_pfn, end_pfn;
5655 * Recalculate kernelcore_node if the division per node
5656 * now exceeds what is necessary to satisfy the requested
5657 * amount of memory for the kernel
5659 if (required_kernelcore < kernelcore_node)
5660 kernelcore_node = required_kernelcore / usable_nodes;
5663 * As the map is walked, we track how much memory is usable
5664 * by the kernel using kernelcore_remaining. When it is
5665 * 0, the rest of the node is usable by ZONE_MOVABLE
5667 kernelcore_remaining = kernelcore_node;
5669 /* Go through each range of PFNs within this node */
5670 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5671 unsigned long size_pages;
5673 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5674 if (start_pfn >= end_pfn)
5675 continue;
5677 /* Account for what is only usable for kernelcore */
5678 if (start_pfn < usable_startpfn) {
5679 unsigned long kernel_pages;
5680 kernel_pages = min(end_pfn, usable_startpfn)
5681 - start_pfn;
5683 kernelcore_remaining -= min(kernel_pages,
5684 kernelcore_remaining);
5685 required_kernelcore -= min(kernel_pages,
5686 required_kernelcore);
5688 /* Continue if range is now fully accounted */
5689 if (end_pfn <= usable_startpfn) {
5692 * Push zone_movable_pfn to the end so
5693 * that if we have to rebalance
5694 * kernelcore across nodes, we will
5695 * not double account here
5697 zone_movable_pfn[nid] = end_pfn;
5698 continue;
5700 start_pfn = usable_startpfn;
5704 * The usable PFN range for ZONE_MOVABLE is from
5705 * start_pfn->end_pfn. Calculate size_pages as the
5706 * number of pages used as kernelcore
5708 size_pages = end_pfn - start_pfn;
5709 if (size_pages > kernelcore_remaining)
5710 size_pages = kernelcore_remaining;
5711 zone_movable_pfn[nid] = start_pfn + size_pages;
5714 * Some kernelcore has been met, update counts and
5715 * break if the kernelcore for this node has been
5716 * satisfied
5718 required_kernelcore -= min(required_kernelcore,
5719 size_pages);
5720 kernelcore_remaining -= size_pages;
5721 if (!kernelcore_remaining)
5722 break;
5727 * If there is still required_kernelcore, we do another pass with one
5728 * less node in the count. This will push zone_movable_pfn[nid] further
5729 * along on the nodes that still have memory until kernelcore is
5730 * satisfied
5732 usable_nodes--;
5733 if (usable_nodes && required_kernelcore > usable_nodes)
5734 goto restart;
5736 out2:
5737 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5738 for (nid = 0; nid < MAX_NUMNODES; nid++)
5739 zone_movable_pfn[nid] =
5740 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5742 out:
5743 /* restore the node_state */
5744 node_states[N_MEMORY] = saved_node_state;
5747 /* Any regular or high memory on that node ? */
5748 static void check_for_memory(pg_data_t *pgdat, int nid)
5750 enum zone_type zone_type;
5752 if (N_MEMORY == N_NORMAL_MEMORY)
5753 return;
5755 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5756 struct zone *zone = &pgdat->node_zones[zone_type];
5757 if (populated_zone(zone)) {
5758 node_set_state(nid, N_HIGH_MEMORY);
5759 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5760 zone_type <= ZONE_NORMAL)
5761 node_set_state(nid, N_NORMAL_MEMORY);
5762 break;
5768 * free_area_init_nodes - Initialise all pg_data_t and zone data
5769 * @max_zone_pfn: an array of max PFNs for each zone
5771 * This will call free_area_init_node() for each active node in the system.
5772 * Using the page ranges provided by memblock_set_node(), the size of each
5773 * zone in each node and their holes is calculated. If the maximum PFN
5774 * between two adjacent zones match, it is assumed that the zone is empty.
5775 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5776 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5777 * starts where the previous one ended. For example, ZONE_DMA32 starts
5778 * at arch_max_dma_pfn.
5780 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5782 unsigned long start_pfn, end_pfn;
5783 int i, nid;
5785 /* Record where the zone boundaries are */
5786 memset(arch_zone_lowest_possible_pfn, 0,
5787 sizeof(arch_zone_lowest_possible_pfn));
5788 memset(arch_zone_highest_possible_pfn, 0,
5789 sizeof(arch_zone_highest_possible_pfn));
5791 start_pfn = find_min_pfn_with_active_regions();
5793 for (i = 0; i < MAX_NR_ZONES; i++) {
5794 if (i == ZONE_MOVABLE)
5795 continue;
5797 end_pfn = max(max_zone_pfn[i], start_pfn);
5798 arch_zone_lowest_possible_pfn[i] = start_pfn;
5799 arch_zone_highest_possible_pfn[i] = end_pfn;
5801 start_pfn = end_pfn;
5803 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5804 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5806 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5807 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5808 find_zone_movable_pfns_for_nodes();
5810 /* Print out the zone ranges */
5811 pr_info("Zone ranges:\n");
5812 for (i = 0; i < MAX_NR_ZONES; i++) {
5813 if (i == ZONE_MOVABLE)
5814 continue;
5815 pr_info(" %-8s ", zone_names[i]);
5816 if (arch_zone_lowest_possible_pfn[i] ==
5817 arch_zone_highest_possible_pfn[i])
5818 pr_cont("empty\n");
5819 else
5820 pr_cont("[mem %#018Lx-%#018Lx]\n",
5821 (u64)arch_zone_lowest_possible_pfn[i]
5822 << PAGE_SHIFT,
5823 ((u64)arch_zone_highest_possible_pfn[i]
5824 << PAGE_SHIFT) - 1);
5827 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5828 pr_info("Movable zone start for each node\n");
5829 for (i = 0; i < MAX_NUMNODES; i++) {
5830 if (zone_movable_pfn[i])
5831 pr_info(" Node %d: %#018Lx\n", i,
5832 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5835 /* Print out the early node map */
5836 pr_info("Early memory node ranges\n");
5837 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5838 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5839 (u64)start_pfn << PAGE_SHIFT,
5840 ((u64)end_pfn << PAGE_SHIFT) - 1);
5842 /* Initialise every node */
5843 mminit_verify_pageflags_layout();
5844 setup_nr_node_ids();
5845 for_each_online_node(nid) {
5846 pg_data_t *pgdat = NODE_DATA(nid);
5847 free_area_init_node(nid, NULL,
5848 find_min_pfn_for_node(nid), NULL);
5850 /* Any memory on that node */
5851 if (pgdat->node_present_pages)
5852 node_set_state(nid, N_MEMORY);
5853 check_for_memory(pgdat, nid);
5857 static int __init cmdline_parse_core(char *p, unsigned long *core)
5859 unsigned long long coremem;
5860 if (!p)
5861 return -EINVAL;
5863 coremem = memparse(p, &p);
5864 *core = coremem >> PAGE_SHIFT;
5866 /* Paranoid check that UL is enough for the coremem value */
5867 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5869 return 0;
5873 * kernelcore=size sets the amount of memory for use for allocations that
5874 * cannot be reclaimed or migrated.
5876 static int __init cmdline_parse_kernelcore(char *p)
5878 return cmdline_parse_core(p, &required_kernelcore);
5882 * movablecore=size sets the amount of memory for use for allocations that
5883 * can be reclaimed or migrated.
5885 static int __init cmdline_parse_movablecore(char *p)
5887 return cmdline_parse_core(p, &required_movablecore);
5890 early_param("kernelcore", cmdline_parse_kernelcore);
5891 early_param("movablecore", cmdline_parse_movablecore);
5893 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5895 void adjust_managed_page_count(struct page *page, long count)
5897 spin_lock(&managed_page_count_lock);
5898 page_zone(page)->managed_pages += count;
5899 totalram_pages += count;
5900 #ifdef CONFIG_HIGHMEM
5901 if (PageHighMem(page))
5902 totalhigh_pages += count;
5903 #endif
5904 spin_unlock(&managed_page_count_lock);
5906 EXPORT_SYMBOL(adjust_managed_page_count);
5908 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5910 void *pos;
5911 unsigned long pages = 0;
5913 start = (void *)PAGE_ALIGN((unsigned long)start);
5914 end = (void *)((unsigned long)end & PAGE_MASK);
5915 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5916 if ((unsigned int)poison <= 0xFF)
5917 memset(pos, poison, PAGE_SIZE);
5918 free_reserved_page(virt_to_page(pos));
5921 if (pages && s)
5922 pr_info("Freeing %s memory: %ldK\n",
5923 s, pages << (PAGE_SHIFT - 10));
5925 return pages;
5927 EXPORT_SYMBOL(free_reserved_area);
5929 #ifdef CONFIG_HIGHMEM
5930 void free_highmem_page(struct page *page)
5932 __free_reserved_page(page);
5933 totalram_pages++;
5934 page_zone(page)->managed_pages++;
5935 totalhigh_pages++;
5937 #endif
5940 void __init mem_init_print_info(const char *str)
5942 unsigned long physpages, codesize, datasize, rosize, bss_size;
5943 unsigned long init_code_size, init_data_size;
5945 physpages = get_num_physpages();
5946 codesize = _etext - _stext;
5947 datasize = _edata - _sdata;
5948 rosize = __end_rodata - __start_rodata;
5949 bss_size = __bss_stop - __bss_start;
5950 init_data_size = __init_end - __init_begin;
5951 init_code_size = _einittext - _sinittext;
5954 * Detect special cases and adjust section sizes accordingly:
5955 * 1) .init.* may be embedded into .data sections
5956 * 2) .init.text.* may be out of [__init_begin, __init_end],
5957 * please refer to arch/tile/kernel/vmlinux.lds.S.
5958 * 3) .rodata.* may be embedded into .text or .data sections.
5960 #define adj_init_size(start, end, size, pos, adj) \
5961 do { \
5962 if (start <= pos && pos < end && size > adj) \
5963 size -= adj; \
5964 } while (0)
5966 adj_init_size(__init_begin, __init_end, init_data_size,
5967 _sinittext, init_code_size);
5968 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5969 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5970 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5971 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5973 #undef adj_init_size
5975 pr_info("Memory: %luK/%luK available "
5976 "(%luK kernel code, %luK rwdata, %luK rodata, "
5977 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5978 #ifdef CONFIG_HIGHMEM
5979 ", %luK highmem"
5980 #endif
5981 "%s%s)\n",
5982 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5983 codesize >> 10, datasize >> 10, rosize >> 10,
5984 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5985 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5986 totalcma_pages << (PAGE_SHIFT-10),
5987 #ifdef CONFIG_HIGHMEM
5988 totalhigh_pages << (PAGE_SHIFT-10),
5989 #endif
5990 str ? ", " : "", str ? str : "");
5994 * set_dma_reserve - set the specified number of pages reserved in the first zone
5995 * @new_dma_reserve: The number of pages to mark reserved
5997 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5998 * In the DMA zone, a significant percentage may be consumed by kernel image
5999 * and other unfreeable allocations which can skew the watermarks badly. This
6000 * function may optionally be used to account for unfreeable pages in the
6001 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6002 * smaller per-cpu batchsize.
6004 void __init set_dma_reserve(unsigned long new_dma_reserve)
6006 dma_reserve = new_dma_reserve;
6009 void __init free_area_init(unsigned long *zones_size)
6011 free_area_init_node(0, zones_size,
6012 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6015 static int page_alloc_cpu_notify(struct notifier_block *self,
6016 unsigned long action, void *hcpu)
6018 int cpu = (unsigned long)hcpu;
6020 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6021 lru_add_drain_cpu(cpu);
6022 drain_pages(cpu);
6025 * Spill the event counters of the dead processor
6026 * into the current processors event counters.
6027 * This artificially elevates the count of the current
6028 * processor.
6030 vm_events_fold_cpu(cpu);
6033 * Zero the differential counters of the dead processor
6034 * so that the vm statistics are consistent.
6036 * This is only okay since the processor is dead and cannot
6037 * race with what we are doing.
6039 cpu_vm_stats_fold(cpu);
6041 return NOTIFY_OK;
6044 void __init page_alloc_init(void)
6046 hotcpu_notifier(page_alloc_cpu_notify, 0);
6050 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6051 * or min_free_kbytes changes.
6053 static void calculate_totalreserve_pages(void)
6055 struct pglist_data *pgdat;
6056 unsigned long reserve_pages = 0;
6057 enum zone_type i, j;
6059 for_each_online_pgdat(pgdat) {
6060 for (i = 0; i < MAX_NR_ZONES; i++) {
6061 struct zone *zone = pgdat->node_zones + i;
6062 long max = 0;
6064 /* Find valid and maximum lowmem_reserve in the zone */
6065 for (j = i; j < MAX_NR_ZONES; j++) {
6066 if (zone->lowmem_reserve[j] > max)
6067 max = zone->lowmem_reserve[j];
6070 /* we treat the high watermark as reserved pages. */
6071 max += high_wmark_pages(zone);
6073 if (max > zone->managed_pages)
6074 max = zone->managed_pages;
6075 reserve_pages += max;
6077 * Lowmem reserves are not available to
6078 * GFP_HIGHUSER page cache allocations and
6079 * kswapd tries to balance zones to their high
6080 * watermark. As a result, neither should be
6081 * regarded as dirtyable memory, to prevent a
6082 * situation where reclaim has to clean pages
6083 * in order to balance the zones.
6085 zone->dirty_balance_reserve = max;
6088 dirty_balance_reserve = reserve_pages;
6089 totalreserve_pages = reserve_pages;
6093 * setup_per_zone_lowmem_reserve - called whenever
6094 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6095 * has a correct pages reserved value, so an adequate number of
6096 * pages are left in the zone after a successful __alloc_pages().
6098 static void setup_per_zone_lowmem_reserve(void)
6100 struct pglist_data *pgdat;
6101 enum zone_type j, idx;
6103 for_each_online_pgdat(pgdat) {
6104 for (j = 0; j < MAX_NR_ZONES; j++) {
6105 struct zone *zone = pgdat->node_zones + j;
6106 unsigned long managed_pages = zone->managed_pages;
6108 zone->lowmem_reserve[j] = 0;
6110 idx = j;
6111 while (idx) {
6112 struct zone *lower_zone;
6114 idx--;
6116 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6117 sysctl_lowmem_reserve_ratio[idx] = 1;
6119 lower_zone = pgdat->node_zones + idx;
6120 lower_zone->lowmem_reserve[j] = managed_pages /
6121 sysctl_lowmem_reserve_ratio[idx];
6122 managed_pages += lower_zone->managed_pages;
6127 /* update totalreserve_pages */
6128 calculate_totalreserve_pages();
6131 static void __setup_per_zone_wmarks(void)
6133 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6134 unsigned long lowmem_pages = 0;
6135 struct zone *zone;
6136 unsigned long flags;
6138 /* Calculate total number of !ZONE_HIGHMEM pages */
6139 for_each_zone(zone) {
6140 if (!is_highmem(zone))
6141 lowmem_pages += zone->managed_pages;
6144 for_each_zone(zone) {
6145 u64 tmp;
6147 spin_lock_irqsave(&zone->lock, flags);
6148 tmp = (u64)pages_min * zone->managed_pages;
6149 do_div(tmp, lowmem_pages);
6150 if (is_highmem(zone)) {
6152 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6153 * need highmem pages, so cap pages_min to a small
6154 * value here.
6156 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6157 * deltas control asynch page reclaim, and so should
6158 * not be capped for highmem.
6160 unsigned long min_pages;
6162 min_pages = zone->managed_pages / 1024;
6163 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6164 zone->watermark[WMARK_MIN] = min_pages;
6165 } else {
6167 * If it's a lowmem zone, reserve a number of pages
6168 * proportionate to the zone's size.
6170 zone->watermark[WMARK_MIN] = tmp;
6173 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6174 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6176 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6177 high_wmark_pages(zone) - low_wmark_pages(zone) -
6178 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6180 spin_unlock_irqrestore(&zone->lock, flags);
6183 /* update totalreserve_pages */
6184 calculate_totalreserve_pages();
6188 * setup_per_zone_wmarks - called when min_free_kbytes changes
6189 * or when memory is hot-{added|removed}
6191 * Ensures that the watermark[min,low,high] values for each zone are set
6192 * correctly with respect to min_free_kbytes.
6194 void setup_per_zone_wmarks(void)
6196 mutex_lock(&zonelists_mutex);
6197 __setup_per_zone_wmarks();
6198 mutex_unlock(&zonelists_mutex);
6202 * The inactive anon list should be small enough that the VM never has to
6203 * do too much work, but large enough that each inactive page has a chance
6204 * to be referenced again before it is swapped out.
6206 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6207 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6208 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6209 * the anonymous pages are kept on the inactive list.
6211 * total target max
6212 * memory ratio inactive anon
6213 * -------------------------------------
6214 * 10MB 1 5MB
6215 * 100MB 1 50MB
6216 * 1GB 3 250MB
6217 * 10GB 10 0.9GB
6218 * 100GB 31 3GB
6219 * 1TB 101 10GB
6220 * 10TB 320 32GB
6222 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6224 unsigned int gb, ratio;
6226 /* Zone size in gigabytes */
6227 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6228 if (gb)
6229 ratio = int_sqrt(10 * gb);
6230 else
6231 ratio = 1;
6233 zone->inactive_ratio = ratio;
6236 static void __meminit setup_per_zone_inactive_ratio(void)
6238 struct zone *zone;
6240 for_each_zone(zone)
6241 calculate_zone_inactive_ratio(zone);
6245 * Initialise min_free_kbytes.
6247 * For small machines we want it small (128k min). For large machines
6248 * we want it large (64MB max). But it is not linear, because network
6249 * bandwidth does not increase linearly with machine size. We use
6251 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6252 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6254 * which yields
6256 * 16MB: 512k
6257 * 32MB: 724k
6258 * 64MB: 1024k
6259 * 128MB: 1448k
6260 * 256MB: 2048k
6261 * 512MB: 2896k
6262 * 1024MB: 4096k
6263 * 2048MB: 5792k
6264 * 4096MB: 8192k
6265 * 8192MB: 11584k
6266 * 16384MB: 16384k
6268 int __meminit init_per_zone_wmark_min(void)
6270 unsigned long lowmem_kbytes;
6271 int new_min_free_kbytes;
6273 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6274 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6276 if (new_min_free_kbytes > user_min_free_kbytes) {
6277 min_free_kbytes = new_min_free_kbytes;
6278 if (min_free_kbytes < 128)
6279 min_free_kbytes = 128;
6280 if (min_free_kbytes > 65536)
6281 min_free_kbytes = 65536;
6282 } else {
6283 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6284 new_min_free_kbytes, user_min_free_kbytes);
6286 setup_per_zone_wmarks();
6287 refresh_zone_stat_thresholds();
6288 setup_per_zone_lowmem_reserve();
6289 setup_per_zone_inactive_ratio();
6290 return 0;
6292 postcore_initcall(init_per_zone_wmark_min)
6295 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6296 * that we can call two helper functions whenever min_free_kbytes
6297 * changes.
6299 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6300 void __user *buffer, size_t *length, loff_t *ppos)
6302 int rc;
6304 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6305 if (rc)
6306 return rc;
6308 if (write) {
6309 user_min_free_kbytes = min_free_kbytes;
6310 setup_per_zone_wmarks();
6312 return 0;
6315 #ifdef CONFIG_NUMA
6316 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6317 void __user *buffer, size_t *length, loff_t *ppos)
6319 struct zone *zone;
6320 int rc;
6322 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6323 if (rc)
6324 return rc;
6326 for_each_zone(zone)
6327 zone->min_unmapped_pages = (zone->managed_pages *
6328 sysctl_min_unmapped_ratio) / 100;
6329 return 0;
6332 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6333 void __user *buffer, size_t *length, loff_t *ppos)
6335 struct zone *zone;
6336 int rc;
6338 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6339 if (rc)
6340 return rc;
6342 for_each_zone(zone)
6343 zone->min_slab_pages = (zone->managed_pages *
6344 sysctl_min_slab_ratio) / 100;
6345 return 0;
6347 #endif
6350 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6351 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6352 * whenever sysctl_lowmem_reserve_ratio changes.
6354 * The reserve ratio obviously has absolutely no relation with the
6355 * minimum watermarks. The lowmem reserve ratio can only make sense
6356 * if in function of the boot time zone sizes.
6358 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6359 void __user *buffer, size_t *length, loff_t *ppos)
6361 proc_dointvec_minmax(table, write, buffer, length, ppos);
6362 setup_per_zone_lowmem_reserve();
6363 return 0;
6367 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6368 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6369 * pagelist can have before it gets flushed back to buddy allocator.
6371 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6372 void __user *buffer, size_t *length, loff_t *ppos)
6374 struct zone *zone;
6375 int old_percpu_pagelist_fraction;
6376 int ret;
6378 mutex_lock(&pcp_batch_high_lock);
6379 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6381 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6382 if (!write || ret < 0)
6383 goto out;
6385 /* Sanity checking to avoid pcp imbalance */
6386 if (percpu_pagelist_fraction &&
6387 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6388 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6389 ret = -EINVAL;
6390 goto out;
6393 /* No change? */
6394 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6395 goto out;
6397 for_each_populated_zone(zone) {
6398 unsigned int cpu;
6400 for_each_possible_cpu(cpu)
6401 pageset_set_high_and_batch(zone,
6402 per_cpu_ptr(zone->pageset, cpu));
6404 out:
6405 mutex_unlock(&pcp_batch_high_lock);
6406 return ret;
6409 #ifdef CONFIG_NUMA
6410 int hashdist = HASHDIST_DEFAULT;
6412 static int __init set_hashdist(char *str)
6414 if (!str)
6415 return 0;
6416 hashdist = simple_strtoul(str, &str, 0);
6417 return 1;
6419 __setup("hashdist=", set_hashdist);
6420 #endif
6423 * allocate a large system hash table from bootmem
6424 * - it is assumed that the hash table must contain an exact power-of-2
6425 * quantity of entries
6426 * - limit is the number of hash buckets, not the total allocation size
6428 void *__init alloc_large_system_hash(const char *tablename,
6429 unsigned long bucketsize,
6430 unsigned long numentries,
6431 int scale,
6432 int flags,
6433 unsigned int *_hash_shift,
6434 unsigned int *_hash_mask,
6435 unsigned long low_limit,
6436 unsigned long high_limit)
6438 unsigned long long max = high_limit;
6439 unsigned long log2qty, size;
6440 void *table = NULL;
6442 /* allow the kernel cmdline to have a say */
6443 if (!numentries) {
6444 /* round applicable memory size up to nearest megabyte */
6445 numentries = nr_kernel_pages;
6447 /* It isn't necessary when PAGE_SIZE >= 1MB */
6448 if (PAGE_SHIFT < 20)
6449 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6451 /* limit to 1 bucket per 2^scale bytes of low memory */
6452 if (scale > PAGE_SHIFT)
6453 numentries >>= (scale - PAGE_SHIFT);
6454 else
6455 numentries <<= (PAGE_SHIFT - scale);
6457 /* Make sure we've got at least a 0-order allocation.. */
6458 if (unlikely(flags & HASH_SMALL)) {
6459 /* Makes no sense without HASH_EARLY */
6460 WARN_ON(!(flags & HASH_EARLY));
6461 if (!(numentries >> *_hash_shift)) {
6462 numentries = 1UL << *_hash_shift;
6463 BUG_ON(!numentries);
6465 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6466 numentries = PAGE_SIZE / bucketsize;
6468 numentries = roundup_pow_of_two(numentries);
6470 /* limit allocation size to 1/16 total memory by default */
6471 if (max == 0) {
6472 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6473 do_div(max, bucketsize);
6475 max = min(max, 0x80000000ULL);
6477 if (numentries < low_limit)
6478 numentries = low_limit;
6479 if (numentries > max)
6480 numentries = max;
6482 log2qty = ilog2(numentries);
6484 do {
6485 size = bucketsize << log2qty;
6486 if (flags & HASH_EARLY)
6487 table = memblock_virt_alloc_nopanic(size, 0);
6488 else if (hashdist)
6489 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6490 else {
6492 * If bucketsize is not a power-of-two, we may free
6493 * some pages at the end of hash table which
6494 * alloc_pages_exact() automatically does
6496 if (get_order(size) < MAX_ORDER) {
6497 table = alloc_pages_exact(size, GFP_ATOMIC);
6498 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6501 } while (!table && size > PAGE_SIZE && --log2qty);
6503 if (!table)
6504 panic("Failed to allocate %s hash table\n", tablename);
6506 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6507 tablename,
6508 (1UL << log2qty),
6509 ilog2(size) - PAGE_SHIFT,
6510 size);
6512 if (_hash_shift)
6513 *_hash_shift = log2qty;
6514 if (_hash_mask)
6515 *_hash_mask = (1 << log2qty) - 1;
6517 return table;
6520 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6521 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6522 unsigned long pfn)
6524 #ifdef CONFIG_SPARSEMEM
6525 return __pfn_to_section(pfn)->pageblock_flags;
6526 #else
6527 return zone->pageblock_flags;
6528 #endif /* CONFIG_SPARSEMEM */
6531 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6533 #ifdef CONFIG_SPARSEMEM
6534 pfn &= (PAGES_PER_SECTION-1);
6535 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6536 #else
6537 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6538 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6539 #endif /* CONFIG_SPARSEMEM */
6543 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6544 * @page: The page within the block of interest
6545 * @pfn: The target page frame number
6546 * @end_bitidx: The last bit of interest to retrieve
6547 * @mask: mask of bits that the caller is interested in
6549 * Return: pageblock_bits flags
6551 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6552 unsigned long end_bitidx,
6553 unsigned long mask)
6555 struct zone *zone;
6556 unsigned long *bitmap;
6557 unsigned long bitidx, word_bitidx;
6558 unsigned long word;
6560 zone = page_zone(page);
6561 bitmap = get_pageblock_bitmap(zone, pfn);
6562 bitidx = pfn_to_bitidx(zone, pfn);
6563 word_bitidx = bitidx / BITS_PER_LONG;
6564 bitidx &= (BITS_PER_LONG-1);
6566 word = bitmap[word_bitidx];
6567 bitidx += end_bitidx;
6568 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6572 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6573 * @page: The page within the block of interest
6574 * @flags: The flags to set
6575 * @pfn: The target page frame number
6576 * @end_bitidx: The last bit of interest
6577 * @mask: mask of bits that the caller is interested in
6579 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6580 unsigned long pfn,
6581 unsigned long end_bitidx,
6582 unsigned long mask)
6584 struct zone *zone;
6585 unsigned long *bitmap;
6586 unsigned long bitidx, word_bitidx;
6587 unsigned long old_word, word;
6589 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6591 zone = page_zone(page);
6592 bitmap = get_pageblock_bitmap(zone, pfn);
6593 bitidx = pfn_to_bitidx(zone, pfn);
6594 word_bitidx = bitidx / BITS_PER_LONG;
6595 bitidx &= (BITS_PER_LONG-1);
6597 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6599 bitidx += end_bitidx;
6600 mask <<= (BITS_PER_LONG - bitidx - 1);
6601 flags <<= (BITS_PER_LONG - bitidx - 1);
6603 word = READ_ONCE(bitmap[word_bitidx]);
6604 for (;;) {
6605 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6606 if (word == old_word)
6607 break;
6608 word = old_word;
6613 * This function checks whether pageblock includes unmovable pages or not.
6614 * If @count is not zero, it is okay to include less @count unmovable pages
6616 * PageLRU check without isolation or lru_lock could race so that
6617 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6618 * expect this function should be exact.
6620 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6621 bool skip_hwpoisoned_pages)
6623 unsigned long pfn, iter, found;
6624 int mt;
6627 * For avoiding noise data, lru_add_drain_all() should be called
6628 * If ZONE_MOVABLE, the zone never contains unmovable pages
6630 if (zone_idx(zone) == ZONE_MOVABLE)
6631 return false;
6632 mt = get_pageblock_migratetype(page);
6633 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6634 return false;
6636 pfn = page_to_pfn(page);
6637 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6638 unsigned long check = pfn + iter;
6640 if (!pfn_valid_within(check))
6641 continue;
6643 page = pfn_to_page(check);
6646 * Hugepages are not in LRU lists, but they're movable.
6647 * We need not scan over tail pages bacause we don't
6648 * handle each tail page individually in migration.
6650 if (PageHuge(page)) {
6651 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6652 continue;
6656 * We can't use page_count without pin a page
6657 * because another CPU can free compound page.
6658 * This check already skips compound tails of THP
6659 * because their page->_count is zero at all time.
6661 if (!atomic_read(&page->_count)) {
6662 if (PageBuddy(page))
6663 iter += (1 << page_order(page)) - 1;
6664 continue;
6668 * The HWPoisoned page may be not in buddy system, and
6669 * page_count() is not 0.
6671 if (skip_hwpoisoned_pages && PageHWPoison(page))
6672 continue;
6674 if (!PageLRU(page))
6675 found++;
6677 * If there are RECLAIMABLE pages, we need to check
6678 * it. But now, memory offline itself doesn't call
6679 * shrink_node_slabs() and it still to be fixed.
6682 * If the page is not RAM, page_count()should be 0.
6683 * we don't need more check. This is an _used_ not-movable page.
6685 * The problematic thing here is PG_reserved pages. PG_reserved
6686 * is set to both of a memory hole page and a _used_ kernel
6687 * page at boot.
6689 if (found > count)
6690 return true;
6692 return false;
6695 bool is_pageblock_removable_nolock(struct page *page)
6697 struct zone *zone;
6698 unsigned long pfn;
6701 * We have to be careful here because we are iterating over memory
6702 * sections which are not zone aware so we might end up outside of
6703 * the zone but still within the section.
6704 * We have to take care about the node as well. If the node is offline
6705 * its NODE_DATA will be NULL - see page_zone.
6707 if (!node_online(page_to_nid(page)))
6708 return false;
6710 zone = page_zone(page);
6711 pfn = page_to_pfn(page);
6712 if (!zone_spans_pfn(zone, pfn))
6713 return false;
6715 return !has_unmovable_pages(zone, page, 0, true);
6718 #ifdef CONFIG_CMA
6720 static unsigned long pfn_max_align_down(unsigned long pfn)
6722 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6723 pageblock_nr_pages) - 1);
6726 static unsigned long pfn_max_align_up(unsigned long pfn)
6728 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6729 pageblock_nr_pages));
6732 /* [start, end) must belong to a single zone. */
6733 static int __alloc_contig_migrate_range(struct compact_control *cc,
6734 unsigned long start, unsigned long end)
6736 /* This function is based on compact_zone() from compaction.c. */
6737 unsigned long nr_reclaimed;
6738 unsigned long pfn = start;
6739 unsigned int tries = 0;
6740 int ret = 0;
6742 migrate_prep();
6744 while (pfn < end || !list_empty(&cc->migratepages)) {
6745 if (fatal_signal_pending(current)) {
6746 ret = -EINTR;
6747 break;
6750 if (list_empty(&cc->migratepages)) {
6751 cc->nr_migratepages = 0;
6752 pfn = isolate_migratepages_range(cc, pfn, end);
6753 if (!pfn) {
6754 ret = -EINTR;
6755 break;
6757 tries = 0;
6758 } else if (++tries == 5) {
6759 ret = ret < 0 ? ret : -EBUSY;
6760 break;
6763 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6764 &cc->migratepages);
6765 cc->nr_migratepages -= nr_reclaimed;
6767 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6768 NULL, 0, cc->mode, MR_CMA);
6770 if (ret < 0) {
6771 putback_movable_pages(&cc->migratepages);
6772 return ret;
6774 return 0;
6778 * alloc_contig_range() -- tries to allocate given range of pages
6779 * @start: start PFN to allocate
6780 * @end: one-past-the-last PFN to allocate
6781 * @migratetype: migratetype of the underlaying pageblocks (either
6782 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6783 * in range must have the same migratetype and it must
6784 * be either of the two.
6786 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6787 * aligned, however it's the caller's responsibility to guarantee that
6788 * we are the only thread that changes migrate type of pageblocks the
6789 * pages fall in.
6791 * The PFN range must belong to a single zone.
6793 * Returns zero on success or negative error code. On success all
6794 * pages which PFN is in [start, end) are allocated for the caller and
6795 * need to be freed with free_contig_range().
6797 int alloc_contig_range(unsigned long start, unsigned long end,
6798 unsigned migratetype)
6800 unsigned long outer_start, outer_end;
6801 unsigned int order;
6802 int ret = 0;
6804 struct compact_control cc = {
6805 .nr_migratepages = 0,
6806 .order = -1,
6807 .zone = page_zone(pfn_to_page(start)),
6808 .mode = MIGRATE_SYNC,
6809 .ignore_skip_hint = true,
6811 INIT_LIST_HEAD(&cc.migratepages);
6814 * What we do here is we mark all pageblocks in range as
6815 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6816 * have different sizes, and due to the way page allocator
6817 * work, we align the range to biggest of the two pages so
6818 * that page allocator won't try to merge buddies from
6819 * different pageblocks and change MIGRATE_ISOLATE to some
6820 * other migration type.
6822 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6823 * migrate the pages from an unaligned range (ie. pages that
6824 * we are interested in). This will put all the pages in
6825 * range back to page allocator as MIGRATE_ISOLATE.
6827 * When this is done, we take the pages in range from page
6828 * allocator removing them from the buddy system. This way
6829 * page allocator will never consider using them.
6831 * This lets us mark the pageblocks back as
6832 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6833 * aligned range but not in the unaligned, original range are
6834 * put back to page allocator so that buddy can use them.
6837 ret = start_isolate_page_range(pfn_max_align_down(start),
6838 pfn_max_align_up(end), migratetype,
6839 false);
6840 if (ret)
6841 return ret;
6843 ret = __alloc_contig_migrate_range(&cc, start, end);
6844 if (ret)
6845 goto done;
6848 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6849 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6850 * more, all pages in [start, end) are free in page allocator.
6851 * What we are going to do is to allocate all pages from
6852 * [start, end) (that is remove them from page allocator).
6854 * The only problem is that pages at the beginning and at the
6855 * end of interesting range may be not aligned with pages that
6856 * page allocator holds, ie. they can be part of higher order
6857 * pages. Because of this, we reserve the bigger range and
6858 * once this is done free the pages we are not interested in.
6860 * We don't have to hold zone->lock here because the pages are
6861 * isolated thus they won't get removed from buddy.
6864 lru_add_drain_all();
6865 drain_all_pages(cc.zone);
6867 order = 0;
6868 outer_start = start;
6869 while (!PageBuddy(pfn_to_page(outer_start))) {
6870 if (++order >= MAX_ORDER) {
6871 ret = -EBUSY;
6872 goto done;
6874 outer_start &= ~0UL << order;
6877 /* Make sure the range is really isolated. */
6878 if (test_pages_isolated(outer_start, end, false)) {
6879 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
6880 __func__, outer_start, end);
6881 ret = -EBUSY;
6882 goto done;
6885 /* Grab isolated pages from freelists. */
6886 outer_end = isolate_freepages_range(&cc, outer_start, end);
6887 if (!outer_end) {
6888 ret = -EBUSY;
6889 goto done;
6892 /* Free head and tail (if any) */
6893 if (start != outer_start)
6894 free_contig_range(outer_start, start - outer_start);
6895 if (end != outer_end)
6896 free_contig_range(end, outer_end - end);
6898 done:
6899 undo_isolate_page_range(pfn_max_align_down(start),
6900 pfn_max_align_up(end), migratetype);
6901 return ret;
6904 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6906 unsigned int count = 0;
6908 for (; nr_pages--; pfn++) {
6909 struct page *page = pfn_to_page(pfn);
6911 count += page_count(page) != 1;
6912 __free_page(page);
6914 WARN(count != 0, "%d pages are still in use!\n", count);
6916 #endif
6918 #ifdef CONFIG_MEMORY_HOTPLUG
6920 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6921 * page high values need to be recalulated.
6923 void __meminit zone_pcp_update(struct zone *zone)
6925 unsigned cpu;
6926 mutex_lock(&pcp_batch_high_lock);
6927 for_each_possible_cpu(cpu)
6928 pageset_set_high_and_batch(zone,
6929 per_cpu_ptr(zone->pageset, cpu));
6930 mutex_unlock(&pcp_batch_high_lock);
6932 #endif
6934 void zone_pcp_reset(struct zone *zone)
6936 unsigned long flags;
6937 int cpu;
6938 struct per_cpu_pageset *pset;
6940 /* avoid races with drain_pages() */
6941 local_irq_save(flags);
6942 if (zone->pageset != &boot_pageset) {
6943 for_each_online_cpu(cpu) {
6944 pset = per_cpu_ptr(zone->pageset, cpu);
6945 drain_zonestat(zone, pset);
6947 free_percpu(zone->pageset);
6948 zone->pageset = &boot_pageset;
6950 local_irq_restore(flags);
6953 #ifdef CONFIG_MEMORY_HOTREMOVE
6955 * All pages in the range must be isolated before calling this.
6957 void
6958 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6960 struct page *page;
6961 struct zone *zone;
6962 unsigned int order, i;
6963 unsigned long pfn;
6964 unsigned long flags;
6965 /* find the first valid pfn */
6966 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6967 if (pfn_valid(pfn))
6968 break;
6969 if (pfn == end_pfn)
6970 return;
6971 zone = page_zone(pfn_to_page(pfn));
6972 spin_lock_irqsave(&zone->lock, flags);
6973 pfn = start_pfn;
6974 while (pfn < end_pfn) {
6975 if (!pfn_valid(pfn)) {
6976 pfn++;
6977 continue;
6979 page = pfn_to_page(pfn);
6981 * The HWPoisoned page may be not in buddy system, and
6982 * page_count() is not 0.
6984 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6985 pfn++;
6986 SetPageReserved(page);
6987 continue;
6990 BUG_ON(page_count(page));
6991 BUG_ON(!PageBuddy(page));
6992 order = page_order(page);
6993 #ifdef CONFIG_DEBUG_VM
6994 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6995 pfn, 1 << order, end_pfn);
6996 #endif
6997 list_del(&page->lru);
6998 rmv_page_order(page);
6999 zone->free_area[order].nr_free--;
7000 for (i = 0; i < (1 << order); i++)
7001 SetPageReserved((page+i));
7002 pfn += (1 << order);
7004 spin_unlock_irqrestore(&zone->lock, flags);
7006 #endif
7008 #ifdef CONFIG_MEMORY_FAILURE
7009 bool is_free_buddy_page(struct page *page)
7011 struct zone *zone = page_zone(page);
7012 unsigned long pfn = page_to_pfn(page);
7013 unsigned long flags;
7014 unsigned int order;
7016 spin_lock_irqsave(&zone->lock, flags);
7017 for (order = 0; order < MAX_ORDER; order++) {
7018 struct page *page_head = page - (pfn & ((1 << order) - 1));
7020 if (PageBuddy(page_head) && page_order(page_head) >= order)
7021 break;
7023 spin_unlock_irqrestore(&zone->lock, flags);
7025 return order < MAX_ORDER;
7027 #endif