2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node
);
77 EXPORT_PER_CPU_SYMBOL(numa_node
);
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
89 int _node_numa_mem_
[MAX_NUMNODES
];
93 * Array of node states.
95 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
96 [N_POSSIBLE
] = NODE_MASK_ALL
,
97 [N_ONLINE
] = { { [0] = 1UL } },
99 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY
] = { { [0] = 1UL } },
106 [N_CPU
] = { { [0] = 1UL } },
109 EXPORT_SYMBOL(node_states
);
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock
);
114 unsigned long totalram_pages __read_mostly
;
115 unsigned long totalreserve_pages __read_mostly
;
116 unsigned long totalcma_pages __read_mostly
;
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
123 unsigned long dirty_balance_reserve __read_mostly
;
125 int percpu_pagelist_fraction
;
126 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page
*page
)
141 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
143 page
->index
= migratetype
;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask
;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex
));
161 if (saved_gfp_mask
) {
162 gfp_allowed_mask
= saved_gfp_mask
;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex
));
170 WARN_ON(saved_gfp_mask
);
171 saved_gfp_mask
= gfp_allowed_mask
;
172 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly
;
187 static void __free_pages_ok(struct page
*page
, unsigned int order
);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
201 #ifdef CONFIG_ZONE_DMA
204 #ifdef CONFIG_ZONE_DMA32
207 #ifdef CONFIG_HIGHMEM
213 EXPORT_SYMBOL(totalram_pages
);
215 static char * const zone_names
[MAX_NR_ZONES
] = {
216 #ifdef CONFIG_ZONE_DMA
219 #ifdef CONFIG_ZONE_DMA32
223 #ifdef CONFIG_HIGHMEM
227 #ifdef CONFIG_ZONE_DEVICE
232 static void free_compound_page(struct page
*page
);
233 compound_page_dtor
* const compound_page_dtors
[] = {
236 #ifdef CONFIG_HUGETLB_PAGE
241 int min_free_kbytes
= 1024;
242 int user_min_free_kbytes
= -1;
244 static unsigned long __meminitdata nr_kernel_pages
;
245 static unsigned long __meminitdata nr_all_pages
;
246 static unsigned long __meminitdata dma_reserve
;
248 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
250 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
251 static unsigned long __initdata required_kernelcore
;
252 static unsigned long __initdata required_movablecore
;
253 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
255 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
257 EXPORT_SYMBOL(movable_zone
);
258 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
261 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
262 int nr_online_nodes __read_mostly
= 1;
263 EXPORT_SYMBOL(nr_node_ids
);
264 EXPORT_SYMBOL(nr_online_nodes
);
267 int page_group_by_mobility_disabled __read_mostly
;
269 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
272 * Determine how many pages need to be initialized durig early boot
273 * (non-deferred initialization).
274 * The value of first_deferred_pfn will be set later, once non-deferred pages
275 * are initialized, but for now set it ULONG_MAX.
277 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
279 phys_addr_t start_addr
, end_addr
;
280 unsigned long max_pgcnt
;
281 unsigned long reserved
;
284 * Initialise at least 2G of a node but also take into account that
285 * two large system hashes that can take up 1GB for 0.25TB/node.
287 max_pgcnt
= max(2UL << (30 - PAGE_SHIFT
),
288 (pgdat
->node_spanned_pages
>> 8));
291 * Compensate the all the memblock reservations (e.g. crash kernel)
292 * from the initial estimation to make sure we will initialize enough
295 start_addr
= PFN_PHYS(pgdat
->node_start_pfn
);
296 end_addr
= PFN_PHYS(pgdat
->node_start_pfn
+ max_pgcnt
);
297 reserved
= memblock_reserved_memory_within(start_addr
, end_addr
);
298 max_pgcnt
+= PHYS_PFN(reserved
);
300 pgdat
->static_init_pgcnt
= min(max_pgcnt
, pgdat
->node_spanned_pages
);
301 pgdat
->first_deferred_pfn
= ULONG_MAX
;
304 /* Returns true if the struct page for the pfn is uninitialised */
305 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
307 int nid
= early_pfn_to_nid(pfn
);
309 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
315 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
317 if (pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
324 * Returns false when the remaining initialisation should be deferred until
325 * later in the boot cycle when it can be parallelised.
327 static inline bool update_defer_init(pg_data_t
*pgdat
,
328 unsigned long pfn
, unsigned long zone_end
,
329 unsigned long *nr_initialised
)
331 /* Always populate low zones for address-contrained allocations */
332 if (zone_end
< pgdat_end_pfn(pgdat
))
334 /* Initialise at least 2G of the highest zone */
336 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
337 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
338 pgdat
->first_deferred_pfn
= pfn
;
345 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
349 static inline bool early_page_uninitialised(unsigned long pfn
)
354 static inline bool early_page_nid_uninitialised(unsigned long pfn
, int nid
)
359 static inline bool update_defer_init(pg_data_t
*pgdat
,
360 unsigned long pfn
, unsigned long zone_end
,
361 unsigned long *nr_initialised
)
368 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
370 if (unlikely(page_group_by_mobility_disabled
&&
371 migratetype
< MIGRATE_PCPTYPES
))
372 migratetype
= MIGRATE_UNMOVABLE
;
374 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
375 PB_migrate
, PB_migrate_end
);
378 #ifdef CONFIG_DEBUG_VM
379 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
383 unsigned long pfn
= page_to_pfn(page
);
384 unsigned long sp
, start_pfn
;
387 seq
= zone_span_seqbegin(zone
);
388 start_pfn
= zone
->zone_start_pfn
;
389 sp
= zone
->spanned_pages
;
390 if (!zone_spans_pfn(zone
, pfn
))
392 } while (zone_span_seqretry(zone
, seq
));
395 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
396 pfn
, zone_to_nid(zone
), zone
->name
,
397 start_pfn
, start_pfn
+ sp
);
402 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
404 if (!pfn_valid_within(page_to_pfn(page
)))
406 if (zone
!= page_zone(page
))
412 * Temporary debugging check for pages not lying within a given zone.
414 static int bad_range(struct zone
*zone
, struct page
*page
)
416 if (page_outside_zone_boundaries(zone
, page
))
418 if (!page_is_consistent(zone
, page
))
424 static inline int bad_range(struct zone
*zone
, struct page
*page
)
430 static void bad_page(struct page
*page
, const char *reason
,
431 unsigned long bad_flags
)
433 static unsigned long resume
;
434 static unsigned long nr_shown
;
435 static unsigned long nr_unshown
;
437 /* Don't complain about poisoned pages */
438 if (PageHWPoison(page
)) {
439 page_mapcount_reset(page
); /* remove PageBuddy */
444 * Allow a burst of 60 reports, then keep quiet for that minute;
445 * or allow a steady drip of one report per second.
447 if (nr_shown
== 60) {
448 if (time_before(jiffies
, resume
)) {
454 "BUG: Bad page state: %lu messages suppressed\n",
461 resume
= jiffies
+ 60 * HZ
;
463 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
464 current
->comm
, page_to_pfn(page
));
465 dump_page_badflags(page
, reason
, bad_flags
);
470 /* Leave bad fields for debug, except PageBuddy could make trouble */
471 page_mapcount_reset(page
); /* remove PageBuddy */
472 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
476 * Higher-order pages are called "compound pages". They are structured thusly:
478 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
480 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
481 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
483 * The first tail page's ->compound_dtor holds the offset in array of compound
484 * page destructors. See compound_page_dtors.
486 * The first tail page's ->compound_order holds the order of allocation.
487 * This usage means that zero-order pages may not be compound.
490 static void free_compound_page(struct page
*page
)
492 __free_pages_ok(page
, compound_order(page
));
495 void prep_compound_page(struct page
*page
, unsigned int order
)
498 int nr_pages
= 1 << order
;
500 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
501 set_compound_order(page
, order
);
503 for (i
= 1; i
< nr_pages
; i
++) {
504 struct page
*p
= page
+ i
;
505 set_page_count(p
, 0);
506 set_compound_head(p
, page
);
510 #ifdef CONFIG_DEBUG_PAGEALLOC
511 unsigned int _debug_guardpage_minorder
;
512 bool _debug_pagealloc_enabled __read_mostly
;
513 bool _debug_guardpage_enabled __read_mostly
;
515 static int __init
early_debug_pagealloc(char *buf
)
520 if (strcmp(buf
, "on") == 0)
521 _debug_pagealloc_enabled
= true;
525 early_param("debug_pagealloc", early_debug_pagealloc
);
527 static bool need_debug_guardpage(void)
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
536 static void init_debug_guardpage(void)
538 if (!debug_pagealloc_enabled())
541 _debug_guardpage_enabled
= true;
544 struct page_ext_operations debug_guardpage_ops
= {
545 .need
= need_debug_guardpage
,
546 .init
= init_debug_guardpage
,
549 static int __init
debug_guardpage_minorder_setup(char *buf
)
553 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
554 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
557 _debug_guardpage_minorder
= res
;
558 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
563 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
564 unsigned int order
, int migratetype
)
566 struct page_ext
*page_ext
;
568 if (!debug_guardpage_enabled())
571 page_ext
= lookup_page_ext(page
);
572 if (unlikely(!page_ext
))
575 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
577 INIT_LIST_HEAD(&page
->lru
);
578 set_page_private(page
, order
);
579 /* Guard pages are not available for any usage */
580 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
583 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
584 unsigned int order
, int migratetype
)
586 struct page_ext
*page_ext
;
588 if (!debug_guardpage_enabled())
591 page_ext
= lookup_page_ext(page
);
592 if (unlikely(!page_ext
))
595 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
597 set_page_private(page
, 0);
598 if (!is_migrate_isolate(migratetype
))
599 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
602 struct page_ext_operations debug_guardpage_ops
= { NULL
, };
603 static inline void set_page_guard(struct zone
*zone
, struct page
*page
,
604 unsigned int order
, int migratetype
) {}
605 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
606 unsigned int order
, int migratetype
) {}
609 static inline void set_page_order(struct page
*page
, unsigned int order
)
611 set_page_private(page
, order
);
612 __SetPageBuddy(page
);
615 static inline void rmv_page_order(struct page
*page
)
617 __ClearPageBuddy(page
);
618 set_page_private(page
, 0);
622 * This function checks whether a page is free && is the buddy
623 * we can do coalesce a page and its buddy if
624 * (a) the buddy is not in a hole &&
625 * (b) the buddy is in the buddy system &&
626 * (c) a page and its buddy have the same order &&
627 * (d) a page and its buddy are in the same zone.
629 * For recording whether a page is in the buddy system, we set ->_mapcount
630 * PAGE_BUDDY_MAPCOUNT_VALUE.
631 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
632 * serialized by zone->lock.
634 * For recording page's order, we use page_private(page).
636 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
639 if (!pfn_valid_within(page_to_pfn(buddy
)))
642 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
643 if (page_zone_id(page
) != page_zone_id(buddy
))
646 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
651 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
653 * zone check is done late to avoid uselessly
654 * calculating zone/node ids for pages that could
657 if (page_zone_id(page
) != page_zone_id(buddy
))
660 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
668 * Freeing function for a buddy system allocator.
670 * The concept of a buddy system is to maintain direct-mapped table
671 * (containing bit values) for memory blocks of various "orders".
672 * The bottom level table contains the map for the smallest allocatable
673 * units of memory (here, pages), and each level above it describes
674 * pairs of units from the levels below, hence, "buddies".
675 * At a high level, all that happens here is marking the table entry
676 * at the bottom level available, and propagating the changes upward
677 * as necessary, plus some accounting needed to play nicely with other
678 * parts of the VM system.
679 * At each level, we keep a list of pages, which are heads of continuous
680 * free pages of length of (1 << order) and marked with _mapcount
681 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
683 * So when we are allocating or freeing one, we can derive the state of the
684 * other. That is, if we allocate a small block, and both were
685 * free, the remainder of the region must be split into blocks.
686 * If a block is freed, and its buddy is also free, then this
687 * triggers coalescing into a block of larger size.
692 static inline void __free_one_page(struct page
*page
,
694 struct zone
*zone
, unsigned int order
,
697 unsigned long page_idx
;
698 unsigned long combined_idx
;
699 unsigned long uninitialized_var(buddy_idx
);
701 unsigned int max_order
;
703 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
705 VM_BUG_ON(!zone_is_initialized(zone
));
706 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
708 VM_BUG_ON(migratetype
== -1);
709 if (likely(!is_migrate_isolate(migratetype
)))
710 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
712 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
714 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
715 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
718 while (order
< max_order
- 1) {
719 buddy_idx
= __find_buddy_index(page_idx
, order
);
720 buddy
= page
+ (buddy_idx
- page_idx
);
721 if (!page_is_buddy(page
, buddy
, order
))
724 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
725 * merge with it and move up one order.
727 if (page_is_guard(buddy
)) {
728 clear_page_guard(zone
, buddy
, order
, migratetype
);
730 list_del(&buddy
->lru
);
731 zone
->free_area
[order
].nr_free
--;
732 rmv_page_order(buddy
);
734 combined_idx
= buddy_idx
& page_idx
;
735 page
= page
+ (combined_idx
- page_idx
);
736 page_idx
= combined_idx
;
739 if (max_order
< MAX_ORDER
) {
740 /* If we are here, it means order is >= pageblock_order.
741 * We want to prevent merge between freepages on isolate
742 * pageblock and normal pageblock. Without this, pageblock
743 * isolation could cause incorrect freepage or CMA accounting.
745 * We don't want to hit this code for the more frequent
748 if (unlikely(has_isolate_pageblock(zone
))) {
751 buddy_idx
= __find_buddy_index(page_idx
, order
);
752 buddy
= page
+ (buddy_idx
- page_idx
);
753 buddy_mt
= get_pageblock_migratetype(buddy
);
755 if (migratetype
!= buddy_mt
756 && (is_migrate_isolate(migratetype
) ||
757 is_migrate_isolate(buddy_mt
)))
761 goto continue_merging
;
765 set_page_order(page
, order
);
768 * If this is not the largest possible page, check if the buddy
769 * of the next-highest order is free. If it is, it's possible
770 * that pages are being freed that will coalesce soon. In case,
771 * that is happening, add the free page to the tail of the list
772 * so it's less likely to be used soon and more likely to be merged
773 * as a higher order page
775 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
776 struct page
*higher_page
, *higher_buddy
;
777 combined_idx
= buddy_idx
& page_idx
;
778 higher_page
= page
+ (combined_idx
- page_idx
);
779 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
780 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
781 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
782 list_add_tail(&page
->lru
,
783 &zone
->free_area
[order
].free_list
[migratetype
]);
788 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
790 zone
->free_area
[order
].nr_free
++;
793 static inline int free_pages_check(struct page
*page
)
795 const char *bad_reason
= NULL
;
796 unsigned long bad_flags
= 0;
798 if (unlikely(page_mapcount(page
)))
799 bad_reason
= "nonzero mapcount";
800 if (unlikely(page
->mapping
!= NULL
))
801 bad_reason
= "non-NULL mapping";
802 if (unlikely(atomic_read(&page
->_count
) != 0))
803 bad_reason
= "nonzero _count";
804 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
805 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
806 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
809 if (unlikely(page
->mem_cgroup
))
810 bad_reason
= "page still charged to cgroup";
812 if (unlikely(bad_reason
)) {
813 bad_page(page
, bad_reason
, bad_flags
);
816 page_cpupid_reset_last(page
);
817 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
818 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
823 * Frees a number of pages from the PCP lists
824 * Assumes all pages on list are in same zone, and of same order.
825 * count is the number of pages to free.
827 * If the zone was previously in an "all pages pinned" state then look to
828 * see if this freeing clears that state.
830 * And clear the zone's pages_scanned counter, to hold off the "all pages are
831 * pinned" detection logic.
833 static void free_pcppages_bulk(struct zone
*zone
, int count
,
834 struct per_cpu_pages
*pcp
)
838 unsigned long nr_scanned
;
840 spin_lock(&zone
->lock
);
841 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
843 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
846 * Ensure proper count is passed which otherwise would stuck in the
847 * below while (list_empty(list)) loop.
849 count
= min(pcp
->count
, count
);
852 struct list_head
*list
;
855 * Remove pages from lists in a round-robin fashion. A
856 * batch_free count is maintained that is incremented when an
857 * empty list is encountered. This is so more pages are freed
858 * off fuller lists instead of spinning excessively around empty
863 if (++migratetype
== MIGRATE_PCPTYPES
)
865 list
= &pcp
->lists
[migratetype
];
866 } while (list_empty(list
));
868 /* This is the only non-empty list. Free them all. */
869 if (batch_free
== MIGRATE_PCPTYPES
)
873 int mt
; /* migratetype of the to-be-freed page */
875 page
= list_entry(list
->prev
, struct page
, lru
);
876 /* must delete as __free_one_page list manipulates */
877 list_del(&page
->lru
);
879 mt
= get_pcppage_migratetype(page
);
880 /* MIGRATE_ISOLATE page should not go to pcplists */
881 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
882 /* Pageblock could have been isolated meanwhile */
883 if (unlikely(has_isolate_pageblock(zone
)))
884 mt
= get_pageblock_migratetype(page
);
886 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
887 trace_mm_page_pcpu_drain(page
, 0, mt
);
888 } while (--count
&& --batch_free
&& !list_empty(list
));
890 spin_unlock(&zone
->lock
);
893 static void free_one_page(struct zone
*zone
,
894 struct page
*page
, unsigned long pfn
,
898 unsigned long nr_scanned
;
899 spin_lock(&zone
->lock
);
900 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
902 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
904 if (unlikely(has_isolate_pageblock(zone
) ||
905 is_migrate_isolate(migratetype
))) {
906 migratetype
= get_pfnblock_migratetype(page
, pfn
);
908 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
909 spin_unlock(&zone
->lock
);
912 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
917 * We rely page->lru.next never has bit 0 set, unless the page
918 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
920 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
922 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
926 if (unlikely(!PageTail(page
))) {
927 bad_page(page
, "PageTail not set", 0);
930 if (unlikely(compound_head(page
) != head_page
)) {
931 bad_page(page
, "compound_head not consistent", 0);
936 clear_compound_head(page
);
940 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
941 unsigned long zone
, int nid
)
943 set_page_links(page
, zone
, nid
, pfn
);
944 init_page_count(page
);
945 page_mapcount_reset(page
);
946 page_cpupid_reset_last(page
);
948 INIT_LIST_HEAD(&page
->lru
);
949 #ifdef WANT_PAGE_VIRTUAL
950 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
951 if (!is_highmem_idx(zone
))
952 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
956 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
959 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
962 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
963 static void init_reserved_page(unsigned long pfn
)
968 if (!early_page_uninitialised(pfn
))
971 nid
= early_pfn_to_nid(pfn
);
972 pgdat
= NODE_DATA(nid
);
974 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
975 struct zone
*zone
= &pgdat
->node_zones
[zid
];
977 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
980 __init_single_pfn(pfn
, zid
, nid
);
983 static inline void init_reserved_page(unsigned long pfn
)
986 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
989 * Initialised pages do not have PageReserved set. This function is
990 * called for each range allocated by the bootmem allocator and
991 * marks the pages PageReserved. The remaining valid pages are later
992 * sent to the buddy page allocator.
994 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
996 unsigned long start_pfn
= PFN_DOWN(start
);
997 unsigned long end_pfn
= PFN_UP(end
);
999 for (; start_pfn
< end_pfn
; start_pfn
++) {
1000 if (pfn_valid(start_pfn
)) {
1001 struct page
*page
= pfn_to_page(start_pfn
);
1003 init_reserved_page(start_pfn
);
1005 /* Avoid false-positive PageTail() */
1006 INIT_LIST_HEAD(&page
->lru
);
1008 SetPageReserved(page
);
1013 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
1015 bool compound
= PageCompound(page
);
1018 VM_BUG_ON_PAGE(PageTail(page
), page
);
1019 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1021 trace_mm_page_free(page
, order
);
1022 kmemcheck_free_shadow(page
, order
);
1023 kasan_free_pages(page
, order
);
1026 page
->mapping
= NULL
;
1027 bad
+= free_pages_check(page
);
1028 for (i
= 1; i
< (1 << order
); i
++) {
1030 bad
+= free_tail_pages_check(page
, page
+ i
);
1031 bad
+= free_pages_check(page
+ i
);
1036 reset_page_owner(page
, order
);
1038 if (!PageHighMem(page
)) {
1039 debug_check_no_locks_freed(page_address(page
),
1040 PAGE_SIZE
<< order
);
1041 debug_check_no_obj_freed(page_address(page
),
1042 PAGE_SIZE
<< order
);
1044 arch_free_page(page
, order
);
1045 kernel_map_pages(page
, 1 << order
, 0);
1050 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1052 unsigned long flags
;
1054 unsigned long pfn
= page_to_pfn(page
);
1056 if (!free_pages_prepare(page
, order
))
1059 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1060 local_irq_save(flags
);
1061 __count_vm_events(PGFREE
, 1 << order
);
1062 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1063 local_irq_restore(flags
);
1066 static void __init
__free_pages_boot_core(struct page
*page
,
1067 unsigned long pfn
, unsigned int order
)
1069 unsigned int nr_pages
= 1 << order
;
1070 struct page
*p
= page
;
1074 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1076 __ClearPageReserved(p
);
1077 set_page_count(p
, 0);
1079 __ClearPageReserved(p
);
1080 set_page_count(p
, 0);
1082 page_zone(page
)->managed_pages
+= nr_pages
;
1083 set_page_refcounted(page
);
1084 __free_pages(page
, order
);
1087 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1088 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1090 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1092 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1094 static DEFINE_SPINLOCK(early_pfn_lock
);
1097 spin_lock(&early_pfn_lock
);
1098 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1100 nid
= first_online_node
;
1101 spin_unlock(&early_pfn_lock
);
1107 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1108 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1109 struct mminit_pfnnid_cache
*state
)
1113 nid
= __early_pfn_to_nid(pfn
, state
);
1114 if (nid
>= 0 && nid
!= node
)
1119 /* Only safe to use early in boot when initialisation is single-threaded */
1120 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1122 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1127 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1131 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1132 struct mminit_pfnnid_cache
*state
)
1139 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1142 if (early_page_uninitialised(pfn
))
1144 return __free_pages_boot_core(page
, pfn
, order
);
1147 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1148 static void __init
deferred_free_range(struct page
*page
,
1149 unsigned long pfn
, int nr_pages
)
1156 /* Free a large naturally-aligned chunk if possible */
1157 if (nr_pages
== MAX_ORDER_NR_PAGES
&&
1158 (pfn
& (MAX_ORDER_NR_PAGES
-1)) == 0) {
1159 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1160 __free_pages_boot_core(page
, pfn
, MAX_ORDER
-1);
1164 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++)
1165 __free_pages_boot_core(page
, pfn
, 0);
1168 /* Completion tracking for deferred_init_memmap() threads */
1169 static atomic_t pgdat_init_n_undone __initdata
;
1170 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1172 static inline void __init
pgdat_init_report_one_done(void)
1174 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1175 complete(&pgdat_init_all_done_comp
);
1178 /* Initialise remaining memory on a node */
1179 static int __init
deferred_init_memmap(void *data
)
1181 pg_data_t
*pgdat
= data
;
1182 int nid
= pgdat
->node_id
;
1183 struct mminit_pfnnid_cache nid_init_state
= { };
1184 unsigned long start
= jiffies
;
1185 unsigned long nr_pages
= 0;
1186 unsigned long walk_start
, walk_end
;
1189 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1190 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1192 if (first_init_pfn
== ULONG_MAX
) {
1193 pgdat_init_report_one_done();
1197 /* Bind memory initialisation thread to a local node if possible */
1198 if (!cpumask_empty(cpumask
))
1199 set_cpus_allowed_ptr(current
, cpumask
);
1201 /* Sanity check boundaries */
1202 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1203 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1204 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1206 /* Only the highest zone is deferred so find it */
1207 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1208 zone
= pgdat
->node_zones
+ zid
;
1209 if (first_init_pfn
< zone_end_pfn(zone
))
1213 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1214 unsigned long pfn
, end_pfn
;
1215 struct page
*page
= NULL
;
1216 struct page
*free_base_page
= NULL
;
1217 unsigned long free_base_pfn
= 0;
1220 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1221 pfn
= first_init_pfn
;
1222 if (pfn
< walk_start
)
1224 if (pfn
< zone
->zone_start_pfn
)
1225 pfn
= zone
->zone_start_pfn
;
1227 for (; pfn
< end_pfn
; pfn
++) {
1228 if (!pfn_valid_within(pfn
))
1232 * Ensure pfn_valid is checked every
1233 * MAX_ORDER_NR_PAGES for memory holes
1235 if ((pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
1236 if (!pfn_valid(pfn
)) {
1242 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1247 /* Minimise pfn page lookups and scheduler checks */
1248 if (page
&& (pfn
& (MAX_ORDER_NR_PAGES
- 1)) != 0) {
1251 nr_pages
+= nr_to_free
;
1252 deferred_free_range(free_base_page
,
1253 free_base_pfn
, nr_to_free
);
1254 free_base_page
= NULL
;
1255 free_base_pfn
= nr_to_free
= 0;
1257 page
= pfn_to_page(pfn
);
1262 VM_BUG_ON(page_zone(page
) != zone
);
1266 __init_single_page(page
, pfn
, zid
, nid
);
1267 if (!free_base_page
) {
1268 free_base_page
= page
;
1269 free_base_pfn
= pfn
;
1274 /* Where possible, batch up pages for a single free */
1277 /* Free the current block of pages to allocator */
1278 nr_pages
+= nr_to_free
;
1279 deferred_free_range(free_base_page
, free_base_pfn
,
1281 free_base_page
= NULL
;
1282 free_base_pfn
= nr_to_free
= 0;
1285 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1288 /* Sanity check that the next zone really is unpopulated */
1289 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1291 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1292 jiffies_to_msecs(jiffies
- start
));
1294 pgdat_init_report_one_done();
1298 void __init
page_alloc_init_late(void)
1302 /* There will be num_node_state(N_MEMORY) threads */
1303 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1304 for_each_node_state(nid
, N_MEMORY
) {
1305 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1308 /* Block until all are initialised */
1309 wait_for_completion(&pgdat_init_all_done_comp
);
1311 /* Reinit limits that are based on free pages after the kernel is up */
1312 files_maxfiles_init();
1314 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1317 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1318 void __init
init_cma_reserved_pageblock(struct page
*page
)
1320 unsigned i
= pageblock_nr_pages
;
1321 struct page
*p
= page
;
1324 __ClearPageReserved(p
);
1325 set_page_count(p
, 0);
1328 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1330 if (pageblock_order
>= MAX_ORDER
) {
1331 i
= pageblock_nr_pages
;
1334 set_page_refcounted(p
);
1335 __free_pages(p
, MAX_ORDER
- 1);
1336 p
+= MAX_ORDER_NR_PAGES
;
1337 } while (i
-= MAX_ORDER_NR_PAGES
);
1339 set_page_refcounted(page
);
1340 __free_pages(page
, pageblock_order
);
1343 adjust_managed_page_count(page
, pageblock_nr_pages
);
1348 * The order of subdivision here is critical for the IO subsystem.
1349 * Please do not alter this order without good reasons and regression
1350 * testing. Specifically, as large blocks of memory are subdivided,
1351 * the order in which smaller blocks are delivered depends on the order
1352 * they're subdivided in this function. This is the primary factor
1353 * influencing the order in which pages are delivered to the IO
1354 * subsystem according to empirical testing, and this is also justified
1355 * by considering the behavior of a buddy system containing a single
1356 * large block of memory acted on by a series of small allocations.
1357 * This behavior is a critical factor in sglist merging's success.
1361 static inline void expand(struct zone
*zone
, struct page
*page
,
1362 int low
, int high
, struct free_area
*area
,
1365 unsigned long size
= 1 << high
;
1367 while (high
> low
) {
1371 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1373 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
) &&
1374 debug_guardpage_enabled() &&
1375 high
< debug_guardpage_minorder()) {
1377 * Mark as guard pages (or page), that will allow to
1378 * merge back to allocator when buddy will be freed.
1379 * Corresponding page table entries will not be touched,
1380 * pages will stay not present in virtual address space
1382 set_page_guard(zone
, &page
[size
], high
, migratetype
);
1385 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1387 set_page_order(&page
[size
], high
);
1392 * This page is about to be returned from the page allocator
1394 static inline int check_new_page(struct page
*page
)
1396 const char *bad_reason
= NULL
;
1397 unsigned long bad_flags
= 0;
1399 if (unlikely(page_mapcount(page
)))
1400 bad_reason
= "nonzero mapcount";
1401 if (unlikely(page
->mapping
!= NULL
))
1402 bad_reason
= "non-NULL mapping";
1403 if (unlikely(atomic_read(&page
->_count
) != 0))
1404 bad_reason
= "nonzero _count";
1405 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1406 bad_reason
= "HWPoisoned (hardware-corrupted)";
1407 bad_flags
= __PG_HWPOISON
;
1409 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1410 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1411 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1414 if (unlikely(page
->mem_cgroup
))
1415 bad_reason
= "page still charged to cgroup";
1417 if (unlikely(bad_reason
)) {
1418 bad_page(page
, bad_reason
, bad_flags
);
1424 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1429 for (i
= 0; i
< (1 << order
); i
++) {
1430 struct page
*p
= page
+ i
;
1431 if (unlikely(check_new_page(p
)))
1435 set_page_private(page
, 0);
1436 set_page_refcounted(page
);
1438 arch_alloc_page(page
, order
);
1439 kernel_map_pages(page
, 1 << order
, 1);
1440 kasan_alloc_pages(page
, order
);
1442 if (gfp_flags
& __GFP_ZERO
)
1443 for (i
= 0; i
< (1 << order
); i
++)
1444 clear_highpage(page
+ i
);
1446 if (order
&& (gfp_flags
& __GFP_COMP
))
1447 prep_compound_page(page
, order
);
1449 set_page_owner(page
, order
, gfp_flags
);
1452 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1453 * allocate the page. The expectation is that the caller is taking
1454 * steps that will free more memory. The caller should avoid the page
1455 * being used for !PFMEMALLOC purposes.
1457 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1458 set_page_pfmemalloc(page
);
1460 clear_page_pfmemalloc(page
);
1466 * Go through the free lists for the given migratetype and remove
1467 * the smallest available page from the freelists
1470 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1473 unsigned int current_order
;
1474 struct free_area
*area
;
1477 /* Find a page of the appropriate size in the preferred list */
1478 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1479 area
= &(zone
->free_area
[current_order
]);
1480 if (list_empty(&area
->free_list
[migratetype
]))
1483 page
= list_entry(area
->free_list
[migratetype
].next
,
1485 list_del(&page
->lru
);
1486 rmv_page_order(page
);
1488 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1489 set_pcppage_migratetype(page
, migratetype
);
1498 * This array describes the order lists are fallen back to when
1499 * the free lists for the desirable migrate type are depleted
1501 static int fallbacks
[MIGRATE_TYPES
][4] = {
1502 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1503 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1504 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1506 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1508 #ifdef CONFIG_MEMORY_ISOLATION
1509 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1514 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1517 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1520 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1521 unsigned int order
) { return NULL
; }
1525 * Move the free pages in a range to the free lists of the requested type.
1526 * Note that start_page and end_pages are not aligned on a pageblock
1527 * boundary. If alignment is required, use move_freepages_block()
1529 int move_freepages(struct zone
*zone
,
1530 struct page
*start_page
, struct page
*end_page
,
1535 int pages_moved
= 0;
1537 #ifndef CONFIG_HOLES_IN_ZONE
1539 * page_zone is not safe to call in this context when
1540 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1541 * anyway as we check zone boundaries in move_freepages_block().
1542 * Remove at a later date when no bug reports exist related to
1543 * grouping pages by mobility
1545 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1548 for (page
= start_page
; page
<= end_page
;) {
1549 if (!pfn_valid_within(page_to_pfn(page
))) {
1554 /* Make sure we are not inadvertently changing nodes */
1555 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1557 if (!PageBuddy(page
)) {
1562 order
= page_order(page
);
1563 list_move(&page
->lru
,
1564 &zone
->free_area
[order
].free_list
[migratetype
]);
1566 pages_moved
+= 1 << order
;
1572 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1575 unsigned long start_pfn
, end_pfn
;
1576 struct page
*start_page
, *end_page
;
1578 start_pfn
= page_to_pfn(page
);
1579 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1580 start_page
= pfn_to_page(start_pfn
);
1581 end_page
= start_page
+ pageblock_nr_pages
- 1;
1582 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1584 /* Do not cross zone boundaries */
1585 if (!zone_spans_pfn(zone
, start_pfn
))
1587 if (!zone_spans_pfn(zone
, end_pfn
))
1590 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1593 static void change_pageblock_range(struct page
*pageblock_page
,
1594 int start_order
, int migratetype
)
1596 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1598 while (nr_pageblocks
--) {
1599 set_pageblock_migratetype(pageblock_page
, migratetype
);
1600 pageblock_page
+= pageblock_nr_pages
;
1605 * When we are falling back to another migratetype during allocation, try to
1606 * steal extra free pages from the same pageblocks to satisfy further
1607 * allocations, instead of polluting multiple pageblocks.
1609 * If we are stealing a relatively large buddy page, it is likely there will
1610 * be more free pages in the pageblock, so try to steal them all. For
1611 * reclaimable and unmovable allocations, we steal regardless of page size,
1612 * as fragmentation caused by those allocations polluting movable pageblocks
1613 * is worse than movable allocations stealing from unmovable and reclaimable
1616 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1619 * Leaving this order check is intended, although there is
1620 * relaxed order check in next check. The reason is that
1621 * we can actually steal whole pageblock if this condition met,
1622 * but, below check doesn't guarantee it and that is just heuristic
1623 * so could be changed anytime.
1625 if (order
>= pageblock_order
)
1628 if (order
>= pageblock_order
/ 2 ||
1629 start_mt
== MIGRATE_RECLAIMABLE
||
1630 start_mt
== MIGRATE_UNMOVABLE
||
1631 page_group_by_mobility_disabled
)
1638 * This function implements actual steal behaviour. If order is large enough,
1639 * we can steal whole pageblock. If not, we first move freepages in this
1640 * pageblock and check whether half of pages are moved or not. If half of
1641 * pages are moved, we can change migratetype of pageblock and permanently
1642 * use it's pages as requested migratetype in the future.
1644 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1647 unsigned int current_order
= page_order(page
);
1650 /* Take ownership for orders >= pageblock_order */
1651 if (current_order
>= pageblock_order
) {
1652 change_pageblock_range(page
, current_order
, start_type
);
1656 pages
= move_freepages_block(zone
, page
, start_type
);
1658 /* Claim the whole block if over half of it is free */
1659 if (pages
>= (1 << (pageblock_order
-1)) ||
1660 page_group_by_mobility_disabled
)
1661 set_pageblock_migratetype(page
, start_type
);
1665 * Check whether there is a suitable fallback freepage with requested order.
1666 * If only_stealable is true, this function returns fallback_mt only if
1667 * we can steal other freepages all together. This would help to reduce
1668 * fragmentation due to mixed migratetype pages in one pageblock.
1670 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1671 int migratetype
, bool only_stealable
, bool *can_steal
)
1676 if (area
->nr_free
== 0)
1681 fallback_mt
= fallbacks
[migratetype
][i
];
1682 if (fallback_mt
== MIGRATE_TYPES
)
1685 if (list_empty(&area
->free_list
[fallback_mt
]))
1688 if (can_steal_fallback(order
, migratetype
))
1691 if (!only_stealable
)
1702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1703 * there are no empty page blocks that contain a page with a suitable order
1705 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
1706 unsigned int alloc_order
)
1709 unsigned long max_managed
, flags
;
1712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1713 * Check is race-prone but harmless.
1715 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
1716 if (zone
->nr_reserved_highatomic
>= max_managed
)
1719 spin_lock_irqsave(&zone
->lock
, flags
);
1721 /* Recheck the nr_reserved_highatomic limit under the lock */
1722 if (zone
->nr_reserved_highatomic
>= max_managed
)
1726 mt
= get_pageblock_migratetype(page
);
1727 if (mt
!= MIGRATE_HIGHATOMIC
&&
1728 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
1729 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
1730 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
1731 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
1735 spin_unlock_irqrestore(&zone
->lock
, flags
);
1739 * Used when an allocation is about to fail under memory pressure. This
1740 * potentially hurts the reliability of high-order allocations when under
1741 * intense memory pressure but failed atomic allocations should be easier
1742 * to recover from than an OOM.
1744 static void unreserve_highatomic_pageblock(const struct alloc_context
*ac
)
1746 struct zonelist
*zonelist
= ac
->zonelist
;
1747 unsigned long flags
;
1753 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
1755 /* Preserve at least one pageblock */
1756 if (zone
->nr_reserved_highatomic
<= pageblock_nr_pages
)
1759 spin_lock_irqsave(&zone
->lock
, flags
);
1760 for (order
= 0; order
< MAX_ORDER
; order
++) {
1761 struct free_area
*area
= &(zone
->free_area
[order
]);
1763 if (list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
1766 page
= list_entry(area
->free_list
[MIGRATE_HIGHATOMIC
].next
,
1770 * In page freeing path, migratetype change is racy so
1771 * we can counter several free pages in a pageblock
1772 * in this loop althoug we changed the pageblock type
1773 * from highatomic to ac->migratetype. So we should
1774 * adjust the count once.
1776 if (get_pageblock_migratetype(page
) ==
1777 MIGRATE_HIGHATOMIC
) {
1779 * It should never happen but changes to
1780 * locking could inadvertently allow a per-cpu
1781 * drain to add pages to MIGRATE_HIGHATOMIC
1782 * while unreserving so be safe and watch for
1785 zone
->nr_reserved_highatomic
-= min(
1787 zone
->nr_reserved_highatomic
);
1791 * Convert to ac->migratetype and avoid the normal
1792 * pageblock stealing heuristics. Minimally, the caller
1793 * is doing the work and needs the pages. More
1794 * importantly, if the block was always converted to
1795 * MIGRATE_UNMOVABLE or another type then the number
1796 * of pageblocks that cannot be completely freed
1799 set_pageblock_migratetype(page
, ac
->migratetype
);
1800 move_freepages_block(zone
, page
, ac
->migratetype
);
1801 spin_unlock_irqrestore(&zone
->lock
, flags
);
1804 spin_unlock_irqrestore(&zone
->lock
, flags
);
1808 /* Remove an element from the buddy allocator from the fallback list */
1809 static inline struct page
*
1810 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1812 struct free_area
*area
;
1813 unsigned int current_order
;
1818 /* Find the largest possible block of pages in the other list */
1819 for (current_order
= MAX_ORDER
-1;
1820 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1822 area
= &(zone
->free_area
[current_order
]);
1823 fallback_mt
= find_suitable_fallback(area
, current_order
,
1824 start_migratetype
, false, &can_steal
);
1825 if (fallback_mt
== -1)
1828 page
= list_entry(area
->free_list
[fallback_mt
].next
,
1831 steal_suitable_fallback(zone
, page
, start_migratetype
);
1833 /* Remove the page from the freelists */
1835 list_del(&page
->lru
);
1836 rmv_page_order(page
);
1838 expand(zone
, page
, order
, current_order
, area
,
1841 * The pcppage_migratetype may differ from pageblock's
1842 * migratetype depending on the decisions in
1843 * find_suitable_fallback(). This is OK as long as it does not
1844 * differ for MIGRATE_CMA pageblocks. Those can be used as
1845 * fallback only via special __rmqueue_cma_fallback() function
1847 set_pcppage_migratetype(page
, start_migratetype
);
1849 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1850 start_migratetype
, fallback_mt
);
1859 * Do the hard work of removing an element from the buddy allocator.
1860 * Call me with the zone->lock already held.
1862 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1863 int migratetype
, gfp_t gfp_flags
)
1867 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1868 if (unlikely(!page
)) {
1869 if (migratetype
== MIGRATE_MOVABLE
)
1870 page
= __rmqueue_cma_fallback(zone
, order
);
1873 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1876 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1881 * Obtain a specified number of elements from the buddy allocator, all under
1882 * a single hold of the lock, for efficiency. Add them to the supplied list.
1883 * Returns the number of new pages which were placed at *list.
1885 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1886 unsigned long count
, struct list_head
*list
,
1887 int migratetype
, bool cold
)
1891 spin_lock(&zone
->lock
);
1892 for (i
= 0; i
< count
; ++i
) {
1893 struct page
*page
= __rmqueue(zone
, order
, migratetype
, 0);
1894 if (unlikely(page
== NULL
))
1898 * Split buddy pages returned by expand() are received here
1899 * in physical page order. The page is added to the callers and
1900 * list and the list head then moves forward. From the callers
1901 * perspective, the linked list is ordered by page number in
1902 * some conditions. This is useful for IO devices that can
1903 * merge IO requests if the physical pages are ordered
1907 list_add(&page
->lru
, list
);
1909 list_add_tail(&page
->lru
, list
);
1911 if (is_migrate_cma(get_pcppage_migratetype(page
)))
1912 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1915 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1916 spin_unlock(&zone
->lock
);
1922 * Called from the vmstat counter updater to drain pagesets of this
1923 * currently executing processor on remote nodes after they have
1926 * Note that this function must be called with the thread pinned to
1927 * a single processor.
1929 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1931 unsigned long flags
;
1932 int to_drain
, batch
;
1934 local_irq_save(flags
);
1935 batch
= READ_ONCE(pcp
->batch
);
1936 to_drain
= min(pcp
->count
, batch
);
1938 free_pcppages_bulk(zone
, to_drain
, pcp
);
1939 pcp
->count
-= to_drain
;
1941 local_irq_restore(flags
);
1946 * Drain pcplists of the indicated processor and zone.
1948 * The processor must either be the current processor and the
1949 * thread pinned to the current processor or a processor that
1952 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
1954 unsigned long flags
;
1955 struct per_cpu_pageset
*pset
;
1956 struct per_cpu_pages
*pcp
;
1958 local_irq_save(flags
);
1959 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1963 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1966 local_irq_restore(flags
);
1970 * Drain pcplists of all zones on the indicated processor.
1972 * The processor must either be the current processor and the
1973 * thread pinned to the current processor or a processor that
1976 static void drain_pages(unsigned int cpu
)
1980 for_each_populated_zone(zone
) {
1981 drain_pages_zone(cpu
, zone
);
1986 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1988 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1989 * the single zone's pages.
1991 void drain_local_pages(struct zone
*zone
)
1993 int cpu
= smp_processor_id();
1996 drain_pages_zone(cpu
, zone
);
2002 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2004 * When zone parameter is non-NULL, spill just the single zone's pages.
2006 * Note that this code is protected against sending an IPI to an offline
2007 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2008 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2009 * nothing keeps CPUs from showing up after we populated the cpumask and
2010 * before the call to on_each_cpu_mask().
2012 void drain_all_pages(struct zone
*zone
)
2017 * Allocate in the BSS so we wont require allocation in
2018 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2020 static cpumask_t cpus_with_pcps
;
2023 * We don't care about racing with CPU hotplug event
2024 * as offline notification will cause the notified
2025 * cpu to drain that CPU pcps and on_each_cpu_mask
2026 * disables preemption as part of its processing
2028 for_each_online_cpu(cpu
) {
2029 struct per_cpu_pageset
*pcp
;
2031 bool has_pcps
= false;
2034 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2038 for_each_populated_zone(z
) {
2039 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2040 if (pcp
->pcp
.count
) {
2048 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2050 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2052 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2056 #ifdef CONFIG_HIBERNATION
2058 void mark_free_pages(struct zone
*zone
)
2060 unsigned long pfn
, max_zone_pfn
;
2061 unsigned long flags
;
2062 unsigned int order
, t
;
2063 struct list_head
*curr
;
2065 if (zone_is_empty(zone
))
2068 spin_lock_irqsave(&zone
->lock
, flags
);
2070 max_zone_pfn
= zone_end_pfn(zone
);
2071 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2072 if (pfn_valid(pfn
)) {
2073 struct page
*page
= pfn_to_page(pfn
);
2075 if (!swsusp_page_is_forbidden(page
))
2076 swsusp_unset_page_free(page
);
2079 for_each_migratetype_order(order
, t
) {
2080 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
2083 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
2084 for (i
= 0; i
< (1UL << order
); i
++)
2085 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2088 spin_unlock_irqrestore(&zone
->lock
, flags
);
2090 #endif /* CONFIG_PM */
2093 * Free a 0-order page
2094 * cold == true ? free a cold page : free a hot page
2096 void free_hot_cold_page(struct page
*page
, bool cold
)
2098 struct zone
*zone
= page_zone(page
);
2099 struct per_cpu_pages
*pcp
;
2100 unsigned long flags
;
2101 unsigned long pfn
= page_to_pfn(page
);
2104 if (!free_pages_prepare(page
, 0))
2107 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2108 set_pcppage_migratetype(page
, migratetype
);
2109 local_irq_save(flags
);
2110 __count_vm_event(PGFREE
);
2113 * We only track unmovable, reclaimable and movable on pcp lists.
2114 * Free ISOLATE pages back to the allocator because they are being
2115 * offlined but treat RESERVE as movable pages so we can get those
2116 * areas back if necessary. Otherwise, we may have to free
2117 * excessively into the page allocator
2119 if (migratetype
>= MIGRATE_PCPTYPES
) {
2120 if (unlikely(is_migrate_isolate(migratetype
))) {
2121 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2124 migratetype
= MIGRATE_MOVABLE
;
2127 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2129 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2131 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2133 if (pcp
->count
>= pcp
->high
) {
2134 unsigned long batch
= READ_ONCE(pcp
->batch
);
2135 free_pcppages_bulk(zone
, batch
, pcp
);
2136 pcp
->count
-= batch
;
2140 local_irq_restore(flags
);
2144 * Free a list of 0-order pages
2146 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2148 struct page
*page
, *next
;
2150 list_for_each_entry_safe(page
, next
, list
, lru
) {
2151 trace_mm_page_free_batched(page
, cold
);
2152 free_hot_cold_page(page
, cold
);
2157 * split_page takes a non-compound higher-order page, and splits it into
2158 * n (1<<order) sub-pages: page[0..n]
2159 * Each sub-page must be freed individually.
2161 * Note: this is probably too low level an operation for use in drivers.
2162 * Please consult with lkml before using this in your driver.
2164 void split_page(struct page
*page
, unsigned int order
)
2169 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2170 VM_BUG_ON_PAGE(!page_count(page
), page
);
2172 #ifdef CONFIG_KMEMCHECK
2174 * Split shadow pages too, because free(page[0]) would
2175 * otherwise free the whole shadow.
2177 if (kmemcheck_page_is_tracked(page
))
2178 split_page(virt_to_page(page
[0].shadow
), order
);
2181 gfp_mask
= get_page_owner_gfp(page
);
2182 set_page_owner(page
, 0, gfp_mask
);
2183 for (i
= 1; i
< (1 << order
); i
++) {
2184 set_page_refcounted(page
+ i
);
2185 set_page_owner(page
+ i
, 0, gfp_mask
);
2188 EXPORT_SYMBOL_GPL(split_page
);
2190 int __isolate_free_page(struct page
*page
, unsigned int order
)
2192 unsigned long watermark
;
2196 BUG_ON(!PageBuddy(page
));
2198 zone
= page_zone(page
);
2199 mt
= get_pageblock_migratetype(page
);
2201 if (!is_migrate_isolate(mt
)) {
2202 /* Obey watermarks as if the page was being allocated */
2203 watermark
= low_wmark_pages(zone
) + (1 << order
);
2204 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
2207 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2210 /* Remove page from free list */
2211 list_del(&page
->lru
);
2212 zone
->free_area
[order
].nr_free
--;
2213 rmv_page_order(page
);
2215 set_page_owner(page
, order
, __GFP_MOVABLE
);
2217 /* Set the pageblock if the isolated page is at least a pageblock */
2218 if (order
>= pageblock_order
- 1) {
2219 struct page
*endpage
= page
+ (1 << order
) - 1;
2220 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2221 int mt
= get_pageblock_migratetype(page
);
2222 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
2223 set_pageblock_migratetype(page
,
2229 return 1UL << order
;
2233 * Similar to split_page except the page is already free. As this is only
2234 * being used for migration, the migratetype of the block also changes.
2235 * As this is called with interrupts disabled, the caller is responsible
2236 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2239 * Note: this is probably too low level an operation for use in drivers.
2240 * Please consult with lkml before using this in your driver.
2242 int split_free_page(struct page
*page
)
2247 order
= page_order(page
);
2249 nr_pages
= __isolate_free_page(page
, order
);
2253 /* Split into individual pages */
2254 set_page_refcounted(page
);
2255 split_page(page
, order
);
2260 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2263 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2264 struct zone
*zone
, unsigned int order
,
2265 gfp_t gfp_flags
, int alloc_flags
, int migratetype
)
2267 unsigned long flags
;
2269 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2271 if (likely(order
== 0)) {
2272 struct per_cpu_pages
*pcp
;
2273 struct list_head
*list
;
2275 local_irq_save(flags
);
2276 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2277 list
= &pcp
->lists
[migratetype
];
2278 if (list_empty(list
)) {
2279 pcp
->count
+= rmqueue_bulk(zone
, 0,
2282 if (unlikely(list_empty(list
)))
2287 page
= list_entry(list
->prev
, struct page
, lru
);
2289 page
= list_entry(list
->next
, struct page
, lru
);
2291 list_del(&page
->lru
);
2294 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
2296 * __GFP_NOFAIL is not to be used in new code.
2298 * All __GFP_NOFAIL callers should be fixed so that they
2299 * properly detect and handle allocation failures.
2301 * We most definitely don't want callers attempting to
2302 * allocate greater than order-1 page units with
2305 WARN_ON_ONCE(order
> 1);
2307 spin_lock_irqsave(&zone
->lock
, flags
);
2310 if (alloc_flags
& ALLOC_HARDER
) {
2311 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2313 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2316 page
= __rmqueue(zone
, order
, migratetype
, gfp_flags
);
2317 spin_unlock(&zone
->lock
);
2320 __mod_zone_freepage_state(zone
, -(1 << order
),
2321 get_pcppage_migratetype(page
));
2324 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
2325 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
2326 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
2327 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2329 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
2330 zone_statistics(preferred_zone
, zone
, gfp_flags
);
2331 local_irq_restore(flags
);
2333 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2337 local_irq_restore(flags
);
2341 #ifdef CONFIG_FAIL_PAGE_ALLOC
2344 struct fault_attr attr
;
2346 bool ignore_gfp_highmem
;
2347 bool ignore_gfp_reclaim
;
2349 } fail_page_alloc
= {
2350 .attr
= FAULT_ATTR_INITIALIZER
,
2351 .ignore_gfp_reclaim
= true,
2352 .ignore_gfp_highmem
= true,
2356 static int __init
setup_fail_page_alloc(char *str
)
2358 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2360 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2362 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2364 if (order
< fail_page_alloc
.min_order
)
2366 if (gfp_mask
& __GFP_NOFAIL
)
2368 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2370 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2371 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2374 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2377 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2379 static int __init
fail_page_alloc_debugfs(void)
2381 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2384 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2385 &fail_page_alloc
.attr
);
2387 return PTR_ERR(dir
);
2389 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2390 &fail_page_alloc
.ignore_gfp_reclaim
))
2392 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2393 &fail_page_alloc
.ignore_gfp_highmem
))
2395 if (!debugfs_create_u32("min-order", mode
, dir
,
2396 &fail_page_alloc
.min_order
))
2401 debugfs_remove_recursive(dir
);
2406 late_initcall(fail_page_alloc_debugfs
);
2408 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2410 #else /* CONFIG_FAIL_PAGE_ALLOC */
2412 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2417 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2420 * Return true if free base pages are above 'mark'. For high-order checks it
2421 * will return true of the order-0 watermark is reached and there is at least
2422 * one free page of a suitable size. Checking now avoids taking the zone lock
2423 * to check in the allocation paths if no pages are free.
2425 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
2426 unsigned long mark
, int classzone_idx
, int alloc_flags
,
2431 const int alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2433 /* free_pages may go negative - that's OK */
2434 free_pages
-= (1 << order
) - 1;
2436 if (alloc_flags
& ALLOC_HIGH
)
2440 * If the caller does not have rights to ALLOC_HARDER then subtract
2441 * the high-atomic reserves. This will over-estimate the size of the
2442 * atomic reserve but it avoids a search.
2444 if (likely(!alloc_harder
))
2445 free_pages
-= z
->nr_reserved_highatomic
;
2450 /* If allocation can't use CMA areas don't use free CMA pages */
2451 if (!(alloc_flags
& ALLOC_CMA
))
2452 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2456 * Check watermarks for an order-0 allocation request. If these
2457 * are not met, then a high-order request also cannot go ahead
2458 * even if a suitable page happened to be free.
2460 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2463 /* If this is an order-0 request then the watermark is fine */
2467 /* For a high-order request, check at least one suitable page is free */
2468 for (o
= order
; o
< MAX_ORDER
; o
++) {
2469 struct free_area
*area
= &z
->free_area
[o
];
2475 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2476 if (!list_empty(&area
->free_list
[mt
]))
2481 if ((alloc_flags
& ALLOC_CMA
) &&
2482 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2487 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
2493 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2494 int classzone_idx
, int alloc_flags
)
2496 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2497 zone_page_state(z
, NR_FREE_PAGES
));
2500 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2501 unsigned long mark
, int classzone_idx
)
2503 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2505 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2506 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2508 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2513 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2515 return local_zone
->node
== zone
->node
;
2518 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2520 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
2523 #else /* CONFIG_NUMA */
2524 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
2529 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2533 #endif /* CONFIG_NUMA */
2535 static void reset_alloc_batches(struct zone
*preferred_zone
)
2537 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2540 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2541 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2542 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2543 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
2544 } while (zone
++ != preferred_zone
);
2548 * get_page_from_freelist goes through the zonelist trying to allocate
2551 static struct page
*
2552 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2553 const struct alloc_context
*ac
)
2555 struct zonelist
*zonelist
= ac
->zonelist
;
2557 struct page
*page
= NULL
;
2559 int nr_fair_skipped
= 0;
2560 bool zonelist_rescan
;
2563 zonelist_rescan
= false;
2566 * Scan zonelist, looking for a zone with enough free.
2567 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2569 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2573 if (cpusets_enabled() &&
2574 (alloc_flags
& ALLOC_CPUSET
) &&
2575 !cpuset_zone_allowed(zone
, gfp_mask
))
2578 * Distribute pages in proportion to the individual
2579 * zone size to ensure fair page aging. The zone a
2580 * page was allocated in should have no effect on the
2581 * time the page has in memory before being reclaimed.
2583 if (alloc_flags
& ALLOC_FAIR
) {
2584 if (!zone_local(ac
->preferred_zone
, zone
))
2586 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
2592 * When allocating a page cache page for writing, we
2593 * want to get it from a zone that is within its dirty
2594 * limit, such that no single zone holds more than its
2595 * proportional share of globally allowed dirty pages.
2596 * The dirty limits take into account the zone's
2597 * lowmem reserves and high watermark so that kswapd
2598 * should be able to balance it without having to
2599 * write pages from its LRU list.
2601 * This may look like it could increase pressure on
2602 * lower zones by failing allocations in higher zones
2603 * before they are full. But the pages that do spill
2604 * over are limited as the lower zones are protected
2605 * by this very same mechanism. It should not become
2606 * a practical burden to them.
2608 * XXX: For now, allow allocations to potentially
2609 * exceed the per-zone dirty limit in the slowpath
2610 * (spread_dirty_pages unset) before going into reclaim,
2611 * which is important when on a NUMA setup the allowed
2612 * zones are together not big enough to reach the
2613 * global limit. The proper fix for these situations
2614 * will require awareness of zones in the
2615 * dirty-throttling and the flusher threads.
2617 if (ac
->spread_dirty_pages
&& !zone_dirty_ok(zone
))
2620 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2621 if (!zone_watermark_ok(zone
, order
, mark
,
2622 ac
->classzone_idx
, alloc_flags
)) {
2625 /* Checked here to keep the fast path fast */
2626 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2627 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2630 if (zone_reclaim_mode
== 0 ||
2631 !zone_allows_reclaim(ac
->preferred_zone
, zone
))
2634 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2636 case ZONE_RECLAIM_NOSCAN
:
2639 case ZONE_RECLAIM_FULL
:
2640 /* scanned but unreclaimable */
2643 /* did we reclaim enough */
2644 if (zone_watermark_ok(zone
, order
, mark
,
2645 ac
->classzone_idx
, alloc_flags
))
2653 page
= buffered_rmqueue(ac
->preferred_zone
, zone
, order
,
2654 gfp_mask
, alloc_flags
, ac
->migratetype
);
2656 if (prep_new_page(page
, order
, gfp_mask
, alloc_flags
))
2660 * If this is a high-order atomic allocation then check
2661 * if the pageblock should be reserved for the future
2663 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2664 reserve_highatomic_pageblock(page
, zone
, order
);
2671 * The first pass makes sure allocations are spread fairly within the
2672 * local node. However, the local node might have free pages left
2673 * after the fairness batches are exhausted, and remote zones haven't
2674 * even been considered yet. Try once more without fairness, and
2675 * include remote zones now, before entering the slowpath and waking
2676 * kswapd: prefer spilling to a remote zone over swapping locally.
2678 if (alloc_flags
& ALLOC_FAIR
) {
2679 alloc_flags
&= ~ALLOC_FAIR
;
2680 if (nr_fair_skipped
) {
2681 zonelist_rescan
= true;
2682 reset_alloc_batches(ac
->preferred_zone
);
2684 if (nr_online_nodes
> 1)
2685 zonelist_rescan
= true;
2688 if (zonelist_rescan
)
2695 * Large machines with many possible nodes should not always dump per-node
2696 * meminfo in irq context.
2698 static inline bool should_suppress_show_mem(void)
2703 ret
= in_interrupt();
2708 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2709 DEFAULT_RATELIMIT_INTERVAL
,
2710 DEFAULT_RATELIMIT_BURST
);
2712 void warn_alloc_failed(gfp_t gfp_mask
, unsigned int order
, const char *fmt
, ...)
2714 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2716 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2717 debug_guardpage_minorder() > 0)
2721 * This documents exceptions given to allocations in certain
2722 * contexts that are allowed to allocate outside current's set
2725 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2726 if (test_thread_flag(TIF_MEMDIE
) ||
2727 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2728 filter
&= ~SHOW_MEM_FILTER_NODES
;
2729 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
2730 filter
&= ~SHOW_MEM_FILTER_NODES
;
2733 struct va_format vaf
;
2736 va_start(args
, fmt
);
2741 pr_warn("%pV", &vaf
);
2746 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2747 current
->comm
, order
, gfp_mask
);
2750 if (!should_suppress_show_mem())
2754 static inline struct page
*
2755 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2756 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
2758 struct oom_control oc
= {
2759 .zonelist
= ac
->zonelist
,
2760 .nodemask
= ac
->nodemask
,
2761 .gfp_mask
= gfp_mask
,
2766 *did_some_progress
= 0;
2769 * Acquire the oom lock. If that fails, somebody else is
2770 * making progress for us.
2772 if (!mutex_trylock(&oom_lock
)) {
2773 *did_some_progress
= 1;
2774 schedule_timeout_uninterruptible(1);
2779 * Go through the zonelist yet one more time, keep very high watermark
2780 * here, this is only to catch a parallel oom killing, we must fail if
2781 * we're still under heavy pressure.
2783 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
2784 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
2788 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2789 /* Coredumps can quickly deplete all memory reserves */
2790 if (current
->flags
& PF_DUMPCORE
)
2792 /* The OOM killer will not help higher order allocs */
2793 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2795 /* The OOM killer does not needlessly kill tasks for lowmem */
2796 if (ac
->high_zoneidx
< ZONE_NORMAL
)
2798 /* The OOM killer does not compensate for IO-less reclaim */
2799 if (!(gfp_mask
& __GFP_FS
)) {
2801 * XXX: Page reclaim didn't yield anything,
2802 * and the OOM killer can't be invoked, but
2803 * keep looping as per tradition.
2805 *did_some_progress
= 1;
2808 if (pm_suspended_storage())
2810 /* The OOM killer may not free memory on a specific node */
2811 if (gfp_mask
& __GFP_THISNODE
)
2814 /* Exhausted what can be done so it's blamo time */
2815 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
))
2816 *did_some_progress
= 1;
2818 mutex_unlock(&oom_lock
);
2822 #ifdef CONFIG_COMPACTION
2823 /* Try memory compaction for high-order allocations before reclaim */
2824 static struct page
*
2825 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2826 int alloc_flags
, const struct alloc_context
*ac
,
2827 enum migrate_mode mode
, int *contended_compaction
,
2828 bool *deferred_compaction
)
2830 unsigned long compact_result
;
2836 current
->flags
|= PF_MEMALLOC
;
2837 compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
2838 mode
, contended_compaction
);
2839 current
->flags
&= ~PF_MEMALLOC
;
2841 switch (compact_result
) {
2842 case COMPACT_DEFERRED
:
2843 *deferred_compaction
= true;
2845 case COMPACT_SKIPPED
:
2852 * At least in one zone compaction wasn't deferred or skipped, so let's
2853 * count a compaction stall
2855 count_vm_event(COMPACTSTALL
);
2857 page
= get_page_from_freelist(gfp_mask
, order
,
2858 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2861 struct zone
*zone
= page_zone(page
);
2863 zone
->compact_blockskip_flush
= false;
2864 compaction_defer_reset(zone
, order
, true);
2865 count_vm_event(COMPACTSUCCESS
);
2870 * It's bad if compaction run occurs and fails. The most likely reason
2871 * is that pages exist, but not enough to satisfy watermarks.
2873 count_vm_event(COMPACTFAIL
);
2880 static inline struct page
*
2881 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2882 int alloc_flags
, const struct alloc_context
*ac
,
2883 enum migrate_mode mode
, int *contended_compaction
,
2884 bool *deferred_compaction
)
2888 #endif /* CONFIG_COMPACTION */
2890 /* Perform direct synchronous page reclaim */
2892 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
2893 const struct alloc_context
*ac
)
2895 struct reclaim_state reclaim_state
;
2900 /* We now go into synchronous reclaim */
2901 cpuset_memory_pressure_bump();
2902 current
->flags
|= PF_MEMALLOC
;
2903 lockdep_set_current_reclaim_state(gfp_mask
);
2904 reclaim_state
.reclaimed_slab
= 0;
2905 current
->reclaim_state
= &reclaim_state
;
2907 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
2910 current
->reclaim_state
= NULL
;
2911 lockdep_clear_current_reclaim_state();
2912 current
->flags
&= ~PF_MEMALLOC
;
2919 /* The really slow allocator path where we enter direct reclaim */
2920 static inline struct page
*
2921 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2922 int alloc_flags
, const struct alloc_context
*ac
,
2923 unsigned long *did_some_progress
)
2925 struct page
*page
= NULL
;
2926 bool drained
= false;
2928 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
2929 if (unlikely(!(*did_some_progress
)))
2933 page
= get_page_from_freelist(gfp_mask
, order
,
2934 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
2937 * If an allocation failed after direct reclaim, it could be because
2938 * pages are pinned on the per-cpu lists or in high alloc reserves.
2939 * Shrink them them and try again
2941 if (!page
&& !drained
) {
2942 unreserve_highatomic_pageblock(ac
);
2943 drain_all_pages(NULL
);
2952 * This is called in the allocator slow-path if the allocation request is of
2953 * sufficient urgency to ignore watermarks and take other desperate measures
2955 static inline struct page
*
2956 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2957 const struct alloc_context
*ac
)
2962 page
= get_page_from_freelist(gfp_mask
, order
,
2963 ALLOC_NO_WATERMARKS
, ac
);
2965 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2966 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
,
2968 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2973 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
2978 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
2979 ac
->high_zoneidx
, ac
->nodemask
)
2980 wakeup_kswapd(zone
, order
, zone_idx(ac
->preferred_zone
));
2984 gfp_to_alloc_flags(gfp_t gfp_mask
)
2986 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2988 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2989 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2992 * The caller may dip into page reserves a bit more if the caller
2993 * cannot run direct reclaim, or if the caller has realtime scheduling
2994 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2995 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2997 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2999 if (gfp_mask
& __GFP_ATOMIC
) {
3001 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3002 * if it can't schedule.
3004 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3005 alloc_flags
|= ALLOC_HARDER
;
3007 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3008 * comment for __cpuset_node_allowed().
3010 alloc_flags
&= ~ALLOC_CPUSET
;
3011 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3012 alloc_flags
|= ALLOC_HARDER
;
3014 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
3015 if (gfp_mask
& __GFP_MEMALLOC
)
3016 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3017 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3018 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3019 else if (!in_interrupt() &&
3020 ((current
->flags
& PF_MEMALLOC
) ||
3021 unlikely(test_thread_flag(TIF_MEMDIE
))))
3022 alloc_flags
|= ALLOC_NO_WATERMARKS
;
3025 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3026 alloc_flags
|= ALLOC_CMA
;
3031 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3033 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
3036 static inline bool is_thp_gfp_mask(gfp_t gfp_mask
)
3038 return (gfp_mask
& (GFP_TRANSHUGE
| __GFP_KSWAPD_RECLAIM
)) == GFP_TRANSHUGE
;
3041 static inline struct page
*
3042 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3043 struct alloc_context
*ac
)
3045 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3046 struct page
*page
= NULL
;
3048 unsigned long pages_reclaimed
= 0;
3049 unsigned long did_some_progress
;
3050 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
3051 bool deferred_compaction
= false;
3052 int contended_compaction
= COMPACT_CONTENDED_NONE
;
3055 * In the slowpath, we sanity check order to avoid ever trying to
3056 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3057 * be using allocators in order of preference for an area that is
3060 if (order
>= MAX_ORDER
) {
3061 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3066 * We also sanity check to catch abuse of atomic reserves being used by
3067 * callers that are not in atomic context.
3069 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3070 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3071 gfp_mask
&= ~__GFP_ATOMIC
;
3074 * If this allocation cannot block and it is for a specific node, then
3075 * fail early. There's no need to wakeup kswapd or retry for a
3076 * speculative node-specific allocation.
3078 if (IS_ENABLED(CONFIG_NUMA
) && (gfp_mask
& __GFP_THISNODE
) && !can_direct_reclaim
)
3082 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3083 wake_all_kswapds(order
, ac
);
3086 * OK, we're below the kswapd watermark and have kicked background
3087 * reclaim. Now things get more complex, so set up alloc_flags according
3088 * to how we want to proceed.
3090 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3093 * Find the true preferred zone if the allocation is unconstrained by
3096 if (!(alloc_flags
& ALLOC_CPUSET
) && !ac
->nodemask
) {
3097 struct zoneref
*preferred_zoneref
;
3098 preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3099 ac
->high_zoneidx
, NULL
, &ac
->preferred_zone
);
3100 ac
->classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3103 /* This is the last chance, in general, before the goto nopage. */
3104 page
= get_page_from_freelist(gfp_mask
, order
,
3105 alloc_flags
& ~ALLOC_NO_WATERMARKS
, ac
);
3109 /* Allocate without watermarks if the context allows */
3110 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
3112 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3113 * the allocation is high priority and these type of
3114 * allocations are system rather than user orientated
3116 page
= __alloc_pages_high_priority(gfp_mask
, order
, ac
);
3123 /* Caller is not willing to reclaim, we can't balance anything */
3124 if (!can_direct_reclaim
) {
3126 * All existing users of the deprecated __GFP_NOFAIL are
3127 * blockable, so warn of any new users that actually allow this
3128 * type of allocation to fail.
3130 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3134 /* Avoid recursion of direct reclaim */
3135 if (current
->flags
& PF_MEMALLOC
)
3138 /* Avoid allocations with no watermarks from looping endlessly */
3139 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3143 * Try direct compaction. The first pass is asynchronous. Subsequent
3144 * attempts after direct reclaim are synchronous
3146 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3148 &contended_compaction
,
3149 &deferred_compaction
);
3153 /* Checks for THP-specific high-order allocations */
3154 if (is_thp_gfp_mask(gfp_mask
)) {
3156 * If compaction is deferred for high-order allocations, it is
3157 * because sync compaction recently failed. If this is the case
3158 * and the caller requested a THP allocation, we do not want
3159 * to heavily disrupt the system, so we fail the allocation
3160 * instead of entering direct reclaim.
3162 if (deferred_compaction
)
3166 * In all zones where compaction was attempted (and not
3167 * deferred or skipped), lock contention has been detected.
3168 * For THP allocation we do not want to disrupt the others
3169 * so we fallback to base pages instead.
3171 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
3175 * If compaction was aborted due to need_resched(), we do not
3176 * want to further increase allocation latency, unless it is
3177 * khugepaged trying to collapse.
3179 if (contended_compaction
== COMPACT_CONTENDED_SCHED
3180 && !(current
->flags
& PF_KTHREAD
))
3185 * It can become very expensive to allocate transparent hugepages at
3186 * fault, so use asynchronous memory compaction for THP unless it is
3187 * khugepaged trying to collapse.
3189 if (!is_thp_gfp_mask(gfp_mask
) || (current
->flags
& PF_KTHREAD
))
3190 migration_mode
= MIGRATE_SYNC_LIGHT
;
3192 /* Try direct reclaim and then allocating */
3193 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3194 &did_some_progress
);
3198 /* Do not loop if specifically requested */
3199 if (gfp_mask
& __GFP_NORETRY
)
3202 /* Keep reclaiming pages as long as there is reasonable progress */
3203 pages_reclaimed
+= did_some_progress
;
3204 if ((did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
3205 ((gfp_mask
& __GFP_REPEAT
) && pages_reclaimed
< (1 << order
))) {
3206 /* Wait for some write requests to complete then retry */
3207 wait_iff_congested(ac
->preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
3211 /* Reclaim has failed us, start killing things */
3212 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3216 /* Retry as long as the OOM killer is making progress */
3217 if (did_some_progress
)
3222 * High-order allocations do not necessarily loop after
3223 * direct reclaim and reclaim/compaction depends on compaction
3224 * being called after reclaim so call directly if necessary
3226 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
,
3228 &contended_compaction
,
3229 &deferred_compaction
);
3233 warn_alloc_failed(gfp_mask
, order
, NULL
);
3239 * This is the 'heart' of the zoned buddy allocator.
3242 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3243 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3245 struct zoneref
*preferred_zoneref
;
3246 struct page
*page
= NULL
;
3247 unsigned int cpuset_mems_cookie
;
3248 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
3249 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
3250 struct alloc_context ac
= {
3251 .high_zoneidx
= gfp_zone(gfp_mask
),
3252 .nodemask
= nodemask
,
3253 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3256 gfp_mask
&= gfp_allowed_mask
;
3258 lockdep_trace_alloc(gfp_mask
);
3260 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3262 if (should_fail_alloc_page(gfp_mask
, order
))
3266 * Check the zones suitable for the gfp_mask contain at least one
3267 * valid zone. It's possible to have an empty zonelist as a result
3268 * of __GFP_THISNODE and a memoryless node
3270 if (unlikely(!zonelist
->_zonerefs
->zone
))
3273 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3274 alloc_flags
|= ALLOC_CMA
;
3277 cpuset_mems_cookie
= read_mems_allowed_begin();
3279 /* We set it here, as __alloc_pages_slowpath might have changed it */
3280 ac
.zonelist
= zonelist
;
3282 /* Dirty zone balancing only done in the fast path */
3283 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3285 /* The preferred zone is used for statistics later */
3286 preferred_zoneref
= first_zones_zonelist(ac
.zonelist
, ac
.high_zoneidx
,
3287 ac
.nodemask
? : &cpuset_current_mems_allowed
,
3288 &ac
.preferred_zone
);
3289 if (!ac
.preferred_zone
)
3291 ac
.classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
3293 /* First allocation attempt */
3294 alloc_mask
= gfp_mask
|__GFP_HARDWALL
;
3295 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3296 if (unlikely(!page
)) {
3298 * Runtime PM, block IO and its error handling path
3299 * can deadlock because I/O on the device might not
3302 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3303 ac
.spread_dirty_pages
= false;
3305 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3308 if (kmemcheck_enabled
&& page
)
3309 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3311 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3315 * When updating a task's mems_allowed, it is possible to race with
3316 * parallel threads in such a way that an allocation can fail while
3317 * the mask is being updated. If a page allocation is about to fail,
3318 * check if the cpuset changed during allocation and if so, retry.
3320 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3325 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3328 * Common helper functions.
3330 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3335 * __get_free_pages() returns a 32-bit address, which cannot represent
3338 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3340 page
= alloc_pages(gfp_mask
, order
);
3343 return (unsigned long) page_address(page
);
3345 EXPORT_SYMBOL(__get_free_pages
);
3347 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3349 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3351 EXPORT_SYMBOL(get_zeroed_page
);
3353 void __free_pages(struct page
*page
, unsigned int order
)
3355 if (put_page_testzero(page
)) {
3357 free_hot_cold_page(page
, false);
3359 __free_pages_ok(page
, order
);
3363 EXPORT_SYMBOL(__free_pages
);
3365 void free_pages(unsigned long addr
, unsigned int order
)
3368 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3369 __free_pages(virt_to_page((void *)addr
), order
);
3373 EXPORT_SYMBOL(free_pages
);
3377 * An arbitrary-length arbitrary-offset area of memory which resides
3378 * within a 0 or higher order page. Multiple fragments within that page
3379 * are individually refcounted, in the page's reference counter.
3381 * The page_frag functions below provide a simple allocation framework for
3382 * page fragments. This is used by the network stack and network device
3383 * drivers to provide a backing region of memory for use as either an
3384 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3386 static struct page
*__page_frag_refill(struct page_frag_cache
*nc
,
3389 struct page
*page
= NULL
;
3390 gfp_t gfp
= gfp_mask
;
3392 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3393 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3395 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3396 PAGE_FRAG_CACHE_MAX_ORDER
);
3397 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3399 if (unlikely(!page
))
3400 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3402 nc
->va
= page
? page_address(page
) : NULL
;
3407 void *__alloc_page_frag(struct page_frag_cache
*nc
,
3408 unsigned int fragsz
, gfp_t gfp_mask
)
3410 unsigned int size
= PAGE_SIZE
;
3414 if (unlikely(!nc
->va
)) {
3416 page
= __page_frag_refill(nc
, gfp_mask
);
3420 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3421 /* if size can vary use size else just use PAGE_SIZE */
3424 /* Even if we own the page, we do not use atomic_set().
3425 * This would break get_page_unless_zero() users.
3427 atomic_add(size
- 1, &page
->_count
);
3429 /* reset page count bias and offset to start of new frag */
3430 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3431 nc
->pagecnt_bias
= size
;
3435 offset
= nc
->offset
- fragsz
;
3436 if (unlikely(offset
< 0)) {
3437 page
= virt_to_page(nc
->va
);
3439 if (!atomic_sub_and_test(nc
->pagecnt_bias
, &page
->_count
))
3442 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3443 /* if size can vary use size else just use PAGE_SIZE */
3446 /* OK, page count is 0, we can safely set it */
3447 atomic_set(&page
->_count
, size
);
3449 /* reset page count bias and offset to start of new frag */
3450 nc
->pagecnt_bias
= size
;
3451 offset
= size
- fragsz
;
3455 nc
->offset
= offset
;
3457 return nc
->va
+ offset
;
3459 EXPORT_SYMBOL(__alloc_page_frag
);
3462 * Frees a page fragment allocated out of either a compound or order 0 page.
3464 void __free_page_frag(void *addr
)
3466 struct page
*page
= virt_to_head_page(addr
);
3468 if (unlikely(put_page_testzero(page
)))
3469 __free_pages_ok(page
, compound_order(page
));
3471 EXPORT_SYMBOL(__free_page_frag
);
3474 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3475 * of the current memory cgroup.
3477 * It should be used when the caller would like to use kmalloc, but since the
3478 * allocation is large, it has to fall back to the page allocator.
3480 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
3484 page
= alloc_pages(gfp_mask
, order
);
3485 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3486 __free_pages(page
, order
);
3492 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
3496 page
= alloc_pages_node(nid
, gfp_mask
, order
);
3497 if (page
&& memcg_kmem_charge(page
, gfp_mask
, order
) != 0) {
3498 __free_pages(page
, order
);
3505 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3508 void __free_kmem_pages(struct page
*page
, unsigned int order
)
3510 memcg_kmem_uncharge(page
, order
);
3511 __free_pages(page
, order
);
3514 void free_kmem_pages(unsigned long addr
, unsigned int order
)
3517 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3518 __free_kmem_pages(virt_to_page((void *)addr
), order
);
3522 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
3526 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
3527 unsigned long used
= addr
+ PAGE_ALIGN(size
);
3529 split_page(virt_to_page((void *)addr
), order
);
3530 while (used
< alloc_end
) {
3535 return (void *)addr
;
3539 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3540 * @size: the number of bytes to allocate
3541 * @gfp_mask: GFP flags for the allocation
3543 * This function is similar to alloc_pages(), except that it allocates the
3544 * minimum number of pages to satisfy the request. alloc_pages() can only
3545 * allocate memory in power-of-two pages.
3547 * This function is also limited by MAX_ORDER.
3549 * Memory allocated by this function must be released by free_pages_exact().
3551 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
3553 unsigned int order
= get_order(size
);
3556 addr
= __get_free_pages(gfp_mask
, order
);
3557 return make_alloc_exact(addr
, order
, size
);
3559 EXPORT_SYMBOL(alloc_pages_exact
);
3562 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3564 * @nid: the preferred node ID where memory should be allocated
3565 * @size: the number of bytes to allocate
3566 * @gfp_mask: GFP flags for the allocation
3568 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3571 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3573 unsigned int order
= get_order(size
);
3574 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3577 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3581 * free_pages_exact - release memory allocated via alloc_pages_exact()
3582 * @virt: the value returned by alloc_pages_exact.
3583 * @size: size of allocation, same value as passed to alloc_pages_exact().
3585 * Release the memory allocated by a previous call to alloc_pages_exact.
3587 void free_pages_exact(void *virt
, size_t size
)
3589 unsigned long addr
= (unsigned long)virt
;
3590 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3592 while (addr
< end
) {
3597 EXPORT_SYMBOL(free_pages_exact
);
3600 * nr_free_zone_pages - count number of pages beyond high watermark
3601 * @offset: The zone index of the highest zone
3603 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3604 * high watermark within all zones at or below a given zone index. For each
3605 * zone, the number of pages is calculated as:
3606 * managed_pages - high_pages
3608 static unsigned long nr_free_zone_pages(int offset
)
3613 /* Just pick one node, since fallback list is circular */
3614 unsigned long sum
= 0;
3616 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3618 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3619 unsigned long size
= zone
->managed_pages
;
3620 unsigned long high
= high_wmark_pages(zone
);
3629 * nr_free_buffer_pages - count number of pages beyond high watermark
3631 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3632 * watermark within ZONE_DMA and ZONE_NORMAL.
3634 unsigned long nr_free_buffer_pages(void)
3636 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3638 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3641 * nr_free_pagecache_pages - count number of pages beyond high watermark
3643 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3644 * high watermark within all zones.
3646 unsigned long nr_free_pagecache_pages(void)
3648 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3651 static inline void show_node(struct zone
*zone
)
3653 if (IS_ENABLED(CONFIG_NUMA
))
3654 printk("Node %d ", zone_to_nid(zone
));
3657 long si_mem_available(void)
3660 unsigned long pagecache
;
3661 unsigned long wmark_low
= 0;
3662 unsigned long pages
[NR_LRU_LISTS
];
3666 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
3667 pages
[lru
] = global_page_state(NR_LRU_BASE
+ lru
);
3670 wmark_low
+= zone
->watermark
[WMARK_LOW
];
3673 * Estimate the amount of memory available for userspace allocations,
3674 * without causing swapping.
3676 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
3679 * Not all the page cache can be freed, otherwise the system will
3680 * start swapping. Assume at least half of the page cache, or the
3681 * low watermark worth of cache, needs to stay.
3683 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
3684 pagecache
-= min(pagecache
/ 2, wmark_low
);
3685 available
+= pagecache
;
3688 * Part of the reclaimable slab consists of items that are in use,
3689 * and cannot be freed. Cap this estimate at the low watermark.
3691 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
3692 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
3698 EXPORT_SYMBOL_GPL(si_mem_available
);
3700 void si_meminfo(struct sysinfo
*val
)
3702 val
->totalram
= totalram_pages
;
3703 val
->sharedram
= global_page_state(NR_SHMEM
);
3704 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3705 val
->bufferram
= nr_blockdev_pages();
3706 val
->totalhigh
= totalhigh_pages
;
3707 val
->freehigh
= nr_free_highpages();
3708 val
->mem_unit
= PAGE_SIZE
;
3711 EXPORT_SYMBOL(si_meminfo
);
3714 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3716 int zone_type
; /* needs to be signed */
3717 unsigned long managed_pages
= 0;
3718 pg_data_t
*pgdat
= NODE_DATA(nid
);
3720 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3721 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3722 val
->totalram
= managed_pages
;
3723 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3724 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3725 #ifdef CONFIG_HIGHMEM
3726 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3727 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3733 val
->mem_unit
= PAGE_SIZE
;
3738 * Determine whether the node should be displayed or not, depending on whether
3739 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3741 bool skip_free_areas_node(unsigned int flags
, int nid
)
3744 unsigned int cpuset_mems_cookie
;
3746 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3750 cpuset_mems_cookie
= read_mems_allowed_begin();
3751 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3752 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3757 #define K(x) ((x) << (PAGE_SHIFT-10))
3759 static void show_migration_types(unsigned char type
)
3761 static const char types
[MIGRATE_TYPES
] = {
3762 [MIGRATE_UNMOVABLE
] = 'U',
3763 [MIGRATE_MOVABLE
] = 'M',
3764 [MIGRATE_RECLAIMABLE
] = 'E',
3765 [MIGRATE_HIGHATOMIC
] = 'H',
3767 [MIGRATE_CMA
] = 'C',
3769 #ifdef CONFIG_MEMORY_ISOLATION
3770 [MIGRATE_ISOLATE
] = 'I',
3773 char tmp
[MIGRATE_TYPES
+ 1];
3777 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3778 if (type
& (1 << i
))
3783 printk("(%s) ", tmp
);
3787 * Show free area list (used inside shift_scroll-lock stuff)
3788 * We also calculate the percentage fragmentation. We do this by counting the
3789 * memory on each free list with the exception of the first item on the list.
3792 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3795 void show_free_areas(unsigned int filter
)
3797 unsigned long free_pcp
= 0;
3801 for_each_populated_zone(zone
) {
3802 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3805 for_each_online_cpu(cpu
)
3806 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3809 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3810 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3811 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3812 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3813 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3814 " free:%lu free_pcp:%lu free_cma:%lu\n",
3815 global_page_state(NR_ACTIVE_ANON
),
3816 global_page_state(NR_INACTIVE_ANON
),
3817 global_page_state(NR_ISOLATED_ANON
),
3818 global_page_state(NR_ACTIVE_FILE
),
3819 global_page_state(NR_INACTIVE_FILE
),
3820 global_page_state(NR_ISOLATED_FILE
),
3821 global_page_state(NR_UNEVICTABLE
),
3822 global_page_state(NR_FILE_DIRTY
),
3823 global_page_state(NR_WRITEBACK
),
3824 global_page_state(NR_UNSTABLE_NFS
),
3825 global_page_state(NR_SLAB_RECLAIMABLE
),
3826 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3827 global_page_state(NR_FILE_MAPPED
),
3828 global_page_state(NR_SHMEM
),
3829 global_page_state(NR_PAGETABLE
),
3830 global_page_state(NR_BOUNCE
),
3831 global_page_state(NR_FREE_PAGES
),
3833 global_page_state(NR_FREE_CMA_PAGES
));
3835 for_each_populated_zone(zone
) {
3838 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3842 for_each_online_cpu(cpu
)
3843 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
3851 " active_anon:%lukB"
3852 " inactive_anon:%lukB"
3853 " active_file:%lukB"
3854 " inactive_file:%lukB"
3855 " unevictable:%lukB"
3856 " isolated(anon):%lukB"
3857 " isolated(file):%lukB"
3865 " slab_reclaimable:%lukB"
3866 " slab_unreclaimable:%lukB"
3867 " kernel_stack:%lukB"
3874 " writeback_tmp:%lukB"
3875 " pages_scanned:%lu"
3876 " all_unreclaimable? %s"
3879 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3880 K(min_wmark_pages(zone
)),
3881 K(low_wmark_pages(zone
)),
3882 K(high_wmark_pages(zone
)),
3883 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3884 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3885 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3886 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3887 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3888 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3889 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3890 K(zone
->present_pages
),
3891 K(zone
->managed_pages
),
3892 K(zone_page_state(zone
, NR_MLOCK
)),
3893 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3894 K(zone_page_state(zone
, NR_WRITEBACK
)),
3895 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3896 K(zone_page_state(zone
, NR_SHMEM
)),
3897 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3898 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3899 zone_page_state(zone
, NR_KERNEL_STACK
) *
3901 K(zone_page_state(zone
, NR_PAGETABLE
)),
3902 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3903 K(zone_page_state(zone
, NR_BOUNCE
)),
3905 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
3906 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3907 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3908 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3909 (!zone_reclaimable(zone
) ? "yes" : "no")
3911 printk("lowmem_reserve[]:");
3912 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3913 printk(" %ld", zone
->lowmem_reserve
[i
]);
3917 for_each_populated_zone(zone
) {
3919 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
3920 unsigned char types
[MAX_ORDER
];
3922 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3925 printk("%s: ", zone
->name
);
3927 spin_lock_irqsave(&zone
->lock
, flags
);
3928 for (order
= 0; order
< MAX_ORDER
; order
++) {
3929 struct free_area
*area
= &zone
->free_area
[order
];
3932 nr
[order
] = area
->nr_free
;
3933 total
+= nr
[order
] << order
;
3936 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3937 if (!list_empty(&area
->free_list
[type
]))
3938 types
[order
] |= 1 << type
;
3941 spin_unlock_irqrestore(&zone
->lock
, flags
);
3942 for (order
= 0; order
< MAX_ORDER
; order
++) {
3943 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3945 show_migration_types(types
[order
]);
3947 printk("= %lukB\n", K(total
));
3950 hugetlb_show_meminfo();
3952 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3954 show_swap_cache_info();
3957 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3959 zoneref
->zone
= zone
;
3960 zoneref
->zone_idx
= zone_idx(zone
);
3964 * Builds allocation fallback zone lists.
3966 * Add all populated zones of a node to the zonelist.
3968 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3972 enum zone_type zone_type
= MAX_NR_ZONES
;
3976 zone
= pgdat
->node_zones
+ zone_type
;
3977 if (populated_zone(zone
)) {
3978 zoneref_set_zone(zone
,
3979 &zonelist
->_zonerefs
[nr_zones
++]);
3980 check_highest_zone(zone_type
);
3982 } while (zone_type
);
3990 * 0 = automatic detection of better ordering.
3991 * 1 = order by ([node] distance, -zonetype)
3992 * 2 = order by (-zonetype, [node] distance)
3994 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3995 * the same zonelist. So only NUMA can configure this param.
3997 #define ZONELIST_ORDER_DEFAULT 0
3998 #define ZONELIST_ORDER_NODE 1
3999 #define ZONELIST_ORDER_ZONE 2
4001 /* zonelist order in the kernel.
4002 * set_zonelist_order() will set this to NODE or ZONE.
4004 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4005 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4009 /* The value user specified ....changed by config */
4010 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4011 /* string for sysctl */
4012 #define NUMA_ZONELIST_ORDER_LEN 16
4013 char numa_zonelist_order
[16] = "default";
4016 * interface for configure zonelist ordering.
4017 * command line option "numa_zonelist_order"
4018 * = "[dD]efault - default, automatic configuration.
4019 * = "[nN]ode - order by node locality, then by zone within node
4020 * = "[zZ]one - order by zone, then by locality within zone
4023 static int __parse_numa_zonelist_order(char *s
)
4025 if (*s
== 'd' || *s
== 'D') {
4026 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4027 } else if (*s
== 'n' || *s
== 'N') {
4028 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4029 } else if (*s
== 'z' || *s
== 'Z') {
4030 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4033 "Ignoring invalid numa_zonelist_order value: "
4040 static __init
int setup_numa_zonelist_order(char *s
)
4047 ret
= __parse_numa_zonelist_order(s
);
4049 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4053 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4056 * sysctl handler for numa_zonelist_order
4058 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4059 void __user
*buffer
, size_t *length
,
4062 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4064 static DEFINE_MUTEX(zl_order_mutex
);
4066 mutex_lock(&zl_order_mutex
);
4068 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4072 strcpy(saved_string
, (char *)table
->data
);
4074 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4078 int oldval
= user_zonelist_order
;
4080 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4083 * bogus value. restore saved string
4085 strncpy((char *)table
->data
, saved_string
,
4086 NUMA_ZONELIST_ORDER_LEN
);
4087 user_zonelist_order
= oldval
;
4088 } else if (oldval
!= user_zonelist_order
) {
4089 mutex_lock(&zonelists_mutex
);
4090 build_all_zonelists(NULL
, NULL
);
4091 mutex_unlock(&zonelists_mutex
);
4095 mutex_unlock(&zl_order_mutex
);
4100 #define MAX_NODE_LOAD (nr_online_nodes)
4101 static int node_load
[MAX_NUMNODES
];
4104 * find_next_best_node - find the next node that should appear in a given node's fallback list
4105 * @node: node whose fallback list we're appending
4106 * @used_node_mask: nodemask_t of already used nodes
4108 * We use a number of factors to determine which is the next node that should
4109 * appear on a given node's fallback list. The node should not have appeared
4110 * already in @node's fallback list, and it should be the next closest node
4111 * according to the distance array (which contains arbitrary distance values
4112 * from each node to each node in the system), and should also prefer nodes
4113 * with no CPUs, since presumably they'll have very little allocation pressure
4114 * on them otherwise.
4115 * It returns -1 if no node is found.
4117 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4120 int min_val
= INT_MAX
;
4121 int best_node
= NUMA_NO_NODE
;
4122 const struct cpumask
*tmp
= cpumask_of_node(0);
4124 /* Use the local node if we haven't already */
4125 if (!node_isset(node
, *used_node_mask
)) {
4126 node_set(node
, *used_node_mask
);
4130 for_each_node_state(n
, N_MEMORY
) {
4132 /* Don't want a node to appear more than once */
4133 if (node_isset(n
, *used_node_mask
))
4136 /* Use the distance array to find the distance */
4137 val
= node_distance(node
, n
);
4139 /* Penalize nodes under us ("prefer the next node") */
4142 /* Give preference to headless and unused nodes */
4143 tmp
= cpumask_of_node(n
);
4144 if (!cpumask_empty(tmp
))
4145 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4147 /* Slight preference for less loaded node */
4148 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4149 val
+= node_load
[n
];
4151 if (val
< min_val
) {
4158 node_set(best_node
, *used_node_mask
);
4165 * Build zonelists ordered by node and zones within node.
4166 * This results in maximum locality--normal zone overflows into local
4167 * DMA zone, if any--but risks exhausting DMA zone.
4169 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4172 struct zonelist
*zonelist
;
4174 zonelist
= &pgdat
->node_zonelists
[0];
4175 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4177 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4178 zonelist
->_zonerefs
[j
].zone
= NULL
;
4179 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4183 * Build gfp_thisnode zonelists
4185 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4188 struct zonelist
*zonelist
;
4190 zonelist
= &pgdat
->node_zonelists
[1];
4191 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4192 zonelist
->_zonerefs
[j
].zone
= NULL
;
4193 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4197 * Build zonelists ordered by zone and nodes within zones.
4198 * This results in conserving DMA zone[s] until all Normal memory is
4199 * exhausted, but results in overflowing to remote node while memory
4200 * may still exist in local DMA zone.
4202 static int node_order
[MAX_NUMNODES
];
4204 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4207 int zone_type
; /* needs to be signed */
4209 struct zonelist
*zonelist
;
4211 zonelist
= &pgdat
->node_zonelists
[0];
4213 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4214 for (j
= 0; j
< nr_nodes
; j
++) {
4215 node
= node_order
[j
];
4216 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4217 if (populated_zone(z
)) {
4219 &zonelist
->_zonerefs
[pos
++]);
4220 check_highest_zone(zone_type
);
4224 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4225 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4228 #if defined(CONFIG_64BIT)
4230 * Devices that require DMA32/DMA are relatively rare and do not justify a
4231 * penalty to every machine in case the specialised case applies. Default
4232 * to Node-ordering on 64-bit NUMA machines
4234 static int default_zonelist_order(void)
4236 return ZONELIST_ORDER_NODE
;
4240 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4241 * by the kernel. If processes running on node 0 deplete the low memory zone
4242 * then reclaim will occur more frequency increasing stalls and potentially
4243 * be easier to OOM if a large percentage of the zone is under writeback or
4244 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4245 * Hence, default to zone ordering on 32-bit.
4247 static int default_zonelist_order(void)
4249 return ZONELIST_ORDER_ZONE
;
4251 #endif /* CONFIG_64BIT */
4253 static void set_zonelist_order(void)
4255 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4256 current_zonelist_order
= default_zonelist_order();
4258 current_zonelist_order
= user_zonelist_order
;
4261 static void build_zonelists(pg_data_t
*pgdat
)
4265 nodemask_t used_mask
;
4266 int local_node
, prev_node
;
4267 struct zonelist
*zonelist
;
4268 unsigned int order
= current_zonelist_order
;
4270 /* initialize zonelists */
4271 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4272 zonelist
= pgdat
->node_zonelists
+ i
;
4273 zonelist
->_zonerefs
[0].zone
= NULL
;
4274 zonelist
->_zonerefs
[0].zone_idx
= 0;
4277 /* NUMA-aware ordering of nodes */
4278 local_node
= pgdat
->node_id
;
4279 load
= nr_online_nodes
;
4280 prev_node
= local_node
;
4281 nodes_clear(used_mask
);
4283 memset(node_order
, 0, sizeof(node_order
));
4286 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4288 * We don't want to pressure a particular node.
4289 * So adding penalty to the first node in same
4290 * distance group to make it round-robin.
4292 if (node_distance(local_node
, node
) !=
4293 node_distance(local_node
, prev_node
))
4294 node_load
[node
] = load
;
4298 if (order
== ZONELIST_ORDER_NODE
)
4299 build_zonelists_in_node_order(pgdat
, node
);
4301 node_order
[j
++] = node
; /* remember order */
4304 if (order
== ZONELIST_ORDER_ZONE
) {
4305 /* calculate node order -- i.e., DMA last! */
4306 build_zonelists_in_zone_order(pgdat
, j
);
4309 build_thisnode_zonelists(pgdat
);
4312 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4314 * Return node id of node used for "local" allocations.
4315 * I.e., first node id of first zone in arg node's generic zonelist.
4316 * Used for initializing percpu 'numa_mem', which is used primarily
4317 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4319 int local_memory_node(int node
)
4323 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4324 gfp_zone(GFP_KERNEL
),
4331 #else /* CONFIG_NUMA */
4333 static void set_zonelist_order(void)
4335 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4338 static void build_zonelists(pg_data_t
*pgdat
)
4340 int node
, local_node
;
4342 struct zonelist
*zonelist
;
4344 local_node
= pgdat
->node_id
;
4346 zonelist
= &pgdat
->node_zonelists
[0];
4347 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4350 * Now we build the zonelist so that it contains the zones
4351 * of all the other nodes.
4352 * We don't want to pressure a particular node, so when
4353 * building the zones for node N, we make sure that the
4354 * zones coming right after the local ones are those from
4355 * node N+1 (modulo N)
4357 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4358 if (!node_online(node
))
4360 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4362 for (node
= 0; node
< local_node
; node
++) {
4363 if (!node_online(node
))
4365 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4368 zonelist
->_zonerefs
[j
].zone
= NULL
;
4369 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4372 #endif /* CONFIG_NUMA */
4375 * Boot pageset table. One per cpu which is going to be used for all
4376 * zones and all nodes. The parameters will be set in such a way
4377 * that an item put on a list will immediately be handed over to
4378 * the buddy list. This is safe since pageset manipulation is done
4379 * with interrupts disabled.
4381 * The boot_pagesets must be kept even after bootup is complete for
4382 * unused processors and/or zones. They do play a role for bootstrapping
4383 * hotplugged processors.
4385 * zoneinfo_show() and maybe other functions do
4386 * not check if the processor is online before following the pageset pointer.
4387 * Other parts of the kernel may not check if the zone is available.
4389 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4390 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4391 static void setup_zone_pageset(struct zone
*zone
);
4394 * Global mutex to protect against size modification of zonelists
4395 * as well as to serialize pageset setup for the new populated zone.
4397 DEFINE_MUTEX(zonelists_mutex
);
4399 /* return values int ....just for stop_machine() */
4400 static int __build_all_zonelists(void *data
)
4404 pg_data_t
*self
= data
;
4407 memset(node_load
, 0, sizeof(node_load
));
4410 if (self
&& !node_online(self
->node_id
)) {
4411 build_zonelists(self
);
4414 for_each_online_node(nid
) {
4415 pg_data_t
*pgdat
= NODE_DATA(nid
);
4417 build_zonelists(pgdat
);
4421 * Initialize the boot_pagesets that are going to be used
4422 * for bootstrapping processors. The real pagesets for
4423 * each zone will be allocated later when the per cpu
4424 * allocator is available.
4426 * boot_pagesets are used also for bootstrapping offline
4427 * cpus if the system is already booted because the pagesets
4428 * are needed to initialize allocators on a specific cpu too.
4429 * F.e. the percpu allocator needs the page allocator which
4430 * needs the percpu allocator in order to allocate its pagesets
4431 * (a chicken-egg dilemma).
4433 for_each_possible_cpu(cpu
) {
4434 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4436 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4438 * We now know the "local memory node" for each node--
4439 * i.e., the node of the first zone in the generic zonelist.
4440 * Set up numa_mem percpu variable for on-line cpus. During
4441 * boot, only the boot cpu should be on-line; we'll init the
4442 * secondary cpus' numa_mem as they come on-line. During
4443 * node/memory hotplug, we'll fixup all on-line cpus.
4445 if (cpu_online(cpu
))
4446 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4453 static noinline
void __init
4454 build_all_zonelists_init(void)
4456 __build_all_zonelists(NULL
);
4457 mminit_verify_zonelist();
4458 cpuset_init_current_mems_allowed();
4462 * Called with zonelists_mutex held always
4463 * unless system_state == SYSTEM_BOOTING.
4465 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4466 * [we're only called with non-NULL zone through __meminit paths] and
4467 * (2) call of __init annotated helper build_all_zonelists_init
4468 * [protected by SYSTEM_BOOTING].
4470 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
4472 set_zonelist_order();
4474 if (system_state
== SYSTEM_BOOTING
) {
4475 build_all_zonelists_init();
4477 #ifdef CONFIG_MEMORY_HOTPLUG
4479 setup_zone_pageset(zone
);
4481 /* we have to stop all cpus to guarantee there is no user
4483 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
4484 /* cpuset refresh routine should be here */
4486 vm_total_pages
= nr_free_pagecache_pages();
4488 * Disable grouping by mobility if the number of pages in the
4489 * system is too low to allow the mechanism to work. It would be
4490 * more accurate, but expensive to check per-zone. This check is
4491 * made on memory-hotadd so a system can start with mobility
4492 * disabled and enable it later
4494 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
4495 page_group_by_mobility_disabled
= 1;
4497 page_group_by_mobility_disabled
= 0;
4499 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4500 "Total pages: %ld\n",
4502 zonelist_order_name
[current_zonelist_order
],
4503 page_group_by_mobility_disabled
? "off" : "on",
4506 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
4511 * Helper functions to size the waitqueue hash table.
4512 * Essentially these want to choose hash table sizes sufficiently
4513 * large so that collisions trying to wait on pages are rare.
4514 * But in fact, the number of active page waitqueues on typical
4515 * systems is ridiculously low, less than 200. So this is even
4516 * conservative, even though it seems large.
4518 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4519 * waitqueues, i.e. the size of the waitq table given the number of pages.
4521 #define PAGES_PER_WAITQUEUE 256
4523 #ifndef CONFIG_MEMORY_HOTPLUG
4524 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4526 unsigned long size
= 1;
4528 pages
/= PAGES_PER_WAITQUEUE
;
4530 while (size
< pages
)
4534 * Once we have dozens or even hundreds of threads sleeping
4535 * on IO we've got bigger problems than wait queue collision.
4536 * Limit the size of the wait table to a reasonable size.
4538 size
= min(size
, 4096UL);
4540 return max(size
, 4UL);
4544 * A zone's size might be changed by hot-add, so it is not possible to determine
4545 * a suitable size for its wait_table. So we use the maximum size now.
4547 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4549 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4550 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4551 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4553 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4554 * or more by the traditional way. (See above). It equals:
4556 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4557 * ia64(16K page size) : = ( 8G + 4M)byte.
4558 * powerpc (64K page size) : = (32G +16M)byte.
4560 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4567 * This is an integer logarithm so that shifts can be used later
4568 * to extract the more random high bits from the multiplicative
4569 * hash function before the remainder is taken.
4571 static inline unsigned long wait_table_bits(unsigned long size
)
4577 * Initially all pages are reserved - free ones are freed
4578 * up by free_all_bootmem() once the early boot process is
4579 * done. Non-atomic initialization, single-pass.
4581 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4582 unsigned long start_pfn
, enum memmap_context context
)
4584 pg_data_t
*pgdat
= NODE_DATA(nid
);
4585 unsigned long end_pfn
= start_pfn
+ size
;
4588 unsigned long nr_initialised
= 0;
4590 if (highest_memmap_pfn
< end_pfn
- 1)
4591 highest_memmap_pfn
= end_pfn
- 1;
4593 z
= &pgdat
->node_zones
[zone
];
4594 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4596 * There can be holes in boot-time mem_map[]s
4597 * handed to this function. They do not
4598 * exist on hotplugged memory.
4600 if (context
== MEMMAP_EARLY
) {
4601 if (!early_pfn_valid(pfn
))
4603 if (!early_pfn_in_nid(pfn
, nid
))
4605 if (!update_defer_init(pgdat
, pfn
, end_pfn
,
4611 * Mark the block movable so that blocks are reserved for
4612 * movable at startup. This will force kernel allocations
4613 * to reserve their blocks rather than leaking throughout
4614 * the address space during boot when many long-lived
4615 * kernel allocations are made.
4617 * bitmap is created for zone's valid pfn range. but memmap
4618 * can be created for invalid pages (for alignment)
4619 * check here not to call set_pageblock_migratetype() against
4622 if (!(pfn
& (pageblock_nr_pages
- 1))) {
4623 struct page
*page
= pfn_to_page(pfn
);
4625 __init_single_page(page
, pfn
, zone
, nid
);
4626 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4628 __init_single_pfn(pfn
, zone
, nid
);
4633 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4635 unsigned int order
, t
;
4636 for_each_migratetype_order(order
, t
) {
4637 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4638 zone
->free_area
[order
].nr_free
= 0;
4642 #ifndef __HAVE_ARCH_MEMMAP_INIT
4643 #define memmap_init(size, nid, zone, start_pfn) \
4644 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4647 static int zone_batchsize(struct zone
*zone
)
4653 * The per-cpu-pages pools are set to around 1000th of the
4654 * size of the zone. But no more than 1/2 of a meg.
4656 * OK, so we don't know how big the cache is. So guess.
4658 batch
= zone
->managed_pages
/ 1024;
4659 if (batch
* PAGE_SIZE
> 512 * 1024)
4660 batch
= (512 * 1024) / PAGE_SIZE
;
4661 batch
/= 4; /* We effectively *= 4 below */
4666 * Clamp the batch to a 2^n - 1 value. Having a power
4667 * of 2 value was found to be more likely to have
4668 * suboptimal cache aliasing properties in some cases.
4670 * For example if 2 tasks are alternately allocating
4671 * batches of pages, one task can end up with a lot
4672 * of pages of one half of the possible page colors
4673 * and the other with pages of the other colors.
4675 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4680 /* The deferral and batching of frees should be suppressed under NOMMU
4683 * The problem is that NOMMU needs to be able to allocate large chunks
4684 * of contiguous memory as there's no hardware page translation to
4685 * assemble apparent contiguous memory from discontiguous pages.
4687 * Queueing large contiguous runs of pages for batching, however,
4688 * causes the pages to actually be freed in smaller chunks. As there
4689 * can be a significant delay between the individual batches being
4690 * recycled, this leads to the once large chunks of space being
4691 * fragmented and becoming unavailable for high-order allocations.
4698 * pcp->high and pcp->batch values are related and dependent on one another:
4699 * ->batch must never be higher then ->high.
4700 * The following function updates them in a safe manner without read side
4703 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4704 * those fields changing asynchronously (acording the the above rule).
4706 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4707 * outside of boot time (or some other assurance that no concurrent updaters
4710 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4711 unsigned long batch
)
4713 /* start with a fail safe value for batch */
4717 /* Update high, then batch, in order */
4724 /* a companion to pageset_set_high() */
4725 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4727 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4730 static void pageset_init(struct per_cpu_pageset
*p
)
4732 struct per_cpu_pages
*pcp
;
4735 memset(p
, 0, sizeof(*p
));
4739 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4740 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4743 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4746 pageset_set_batch(p
, batch
);
4750 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4751 * to the value high for the pageset p.
4753 static void pageset_set_high(struct per_cpu_pageset
*p
,
4756 unsigned long batch
= max(1UL, high
/ 4);
4757 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4758 batch
= PAGE_SHIFT
* 8;
4760 pageset_update(&p
->pcp
, high
, batch
);
4763 static void pageset_set_high_and_batch(struct zone
*zone
,
4764 struct per_cpu_pageset
*pcp
)
4766 if (percpu_pagelist_fraction
)
4767 pageset_set_high(pcp
,
4768 (zone
->managed_pages
/
4769 percpu_pagelist_fraction
));
4771 pageset_set_batch(pcp
, zone_batchsize(zone
));
4774 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4776 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4779 pageset_set_high_and_batch(zone
, pcp
);
4782 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4785 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4786 for_each_possible_cpu(cpu
)
4787 zone_pageset_init(zone
, cpu
);
4791 * Allocate per cpu pagesets and initialize them.
4792 * Before this call only boot pagesets were available.
4794 void __init
setup_per_cpu_pageset(void)
4798 for_each_populated_zone(zone
)
4799 setup_zone_pageset(zone
);
4802 static noinline __init_refok
4803 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4809 * The per-page waitqueue mechanism uses hashed waitqueues
4812 zone
->wait_table_hash_nr_entries
=
4813 wait_table_hash_nr_entries(zone_size_pages
);
4814 zone
->wait_table_bits
=
4815 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4816 alloc_size
= zone
->wait_table_hash_nr_entries
4817 * sizeof(wait_queue_head_t
);
4819 if (!slab_is_available()) {
4820 zone
->wait_table
= (wait_queue_head_t
*)
4821 memblock_virt_alloc_node_nopanic(
4822 alloc_size
, zone
->zone_pgdat
->node_id
);
4825 * This case means that a zone whose size was 0 gets new memory
4826 * via memory hot-add.
4827 * But it may be the case that a new node was hot-added. In
4828 * this case vmalloc() will not be able to use this new node's
4829 * memory - this wait_table must be initialized to use this new
4830 * node itself as well.
4831 * To use this new node's memory, further consideration will be
4834 zone
->wait_table
= vmalloc(alloc_size
);
4836 if (!zone
->wait_table
)
4839 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4840 init_waitqueue_head(zone
->wait_table
+ i
);
4845 static __meminit
void zone_pcp_init(struct zone
*zone
)
4848 * per cpu subsystem is not up at this point. The following code
4849 * relies on the ability of the linker to provide the
4850 * offset of a (static) per cpu variable into the per cpu area.
4852 zone
->pageset
= &boot_pageset
;
4854 if (populated_zone(zone
))
4855 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4856 zone
->name
, zone
->present_pages
,
4857 zone_batchsize(zone
));
4860 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4861 unsigned long zone_start_pfn
,
4864 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4866 ret
= zone_wait_table_init(zone
, size
);
4869 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4871 zone
->zone_start_pfn
= zone_start_pfn
;
4873 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4874 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4876 (unsigned long)zone_idx(zone
),
4877 zone_start_pfn
, (zone_start_pfn
+ size
));
4879 zone_init_free_lists(zone
);
4884 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4885 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4888 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4890 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
4891 struct mminit_pfnnid_cache
*state
)
4893 unsigned long start_pfn
, end_pfn
;
4896 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
4897 return state
->last_nid
;
4899 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4901 state
->last_start
= start_pfn
;
4902 state
->last_end
= end_pfn
;
4903 state
->last_nid
= nid
;
4908 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4911 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4912 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4913 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4915 * If an architecture guarantees that all ranges registered contain no holes
4916 * and may be freed, this this function may be used instead of calling
4917 * memblock_free_early_nid() manually.
4919 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4921 unsigned long start_pfn
, end_pfn
;
4924 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4925 start_pfn
= min(start_pfn
, max_low_pfn
);
4926 end_pfn
= min(end_pfn
, max_low_pfn
);
4928 if (start_pfn
< end_pfn
)
4929 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4930 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4936 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4937 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4939 * If an architecture guarantees that all ranges registered contain no holes and may
4940 * be freed, this function may be used instead of calling memory_present() manually.
4942 void __init
sparse_memory_present_with_active_regions(int nid
)
4944 unsigned long start_pfn
, end_pfn
;
4947 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4948 memory_present(this_nid
, start_pfn
, end_pfn
);
4952 * get_pfn_range_for_nid - Return the start and end page frames for a node
4953 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4954 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4955 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4957 * It returns the start and end page frame of a node based on information
4958 * provided by memblock_set_node(). If called for a node
4959 * with no available memory, a warning is printed and the start and end
4962 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4963 unsigned long *start_pfn
, unsigned long *end_pfn
)
4965 unsigned long this_start_pfn
, this_end_pfn
;
4971 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4972 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4973 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4976 if (*start_pfn
== -1UL)
4981 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4982 * assumption is made that zones within a node are ordered in monotonic
4983 * increasing memory addresses so that the "highest" populated zone is used
4985 static void __init
find_usable_zone_for_movable(void)
4988 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4989 if (zone_index
== ZONE_MOVABLE
)
4992 if (arch_zone_highest_possible_pfn
[zone_index
] >
4993 arch_zone_lowest_possible_pfn
[zone_index
])
4997 VM_BUG_ON(zone_index
== -1);
4998 movable_zone
= zone_index
;
5002 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5003 * because it is sized independent of architecture. Unlike the other zones,
5004 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5005 * in each node depending on the size of each node and how evenly kernelcore
5006 * is distributed. This helper function adjusts the zone ranges
5007 * provided by the architecture for a given node by using the end of the
5008 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5009 * zones within a node are in order of monotonic increases memory addresses
5011 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5012 unsigned long zone_type
,
5013 unsigned long node_start_pfn
,
5014 unsigned long node_end_pfn
,
5015 unsigned long *zone_start_pfn
,
5016 unsigned long *zone_end_pfn
)
5018 /* Only adjust if ZONE_MOVABLE is on this node */
5019 if (zone_movable_pfn
[nid
]) {
5020 /* Size ZONE_MOVABLE */
5021 if (zone_type
== ZONE_MOVABLE
) {
5022 *zone_start_pfn
= zone_movable_pfn
[nid
];
5023 *zone_end_pfn
= min(node_end_pfn
,
5024 arch_zone_highest_possible_pfn
[movable_zone
]);
5026 /* Adjust for ZONE_MOVABLE starting within this range */
5027 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
5028 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5029 *zone_end_pfn
= zone_movable_pfn
[nid
];
5031 /* Check if this whole range is within ZONE_MOVABLE */
5032 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5033 *zone_start_pfn
= *zone_end_pfn
;
5038 * Return the number of pages a zone spans in a node, including holes
5039 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5041 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5042 unsigned long zone_type
,
5043 unsigned long node_start_pfn
,
5044 unsigned long node_end_pfn
,
5045 unsigned long *ignored
)
5047 unsigned long zone_start_pfn
, zone_end_pfn
;
5049 /* When hotadd a new node from cpu_up(), the node should be empty */
5050 if (!node_start_pfn
&& !node_end_pfn
)
5053 /* Get the start and end of the zone */
5054 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5055 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5056 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5057 node_start_pfn
, node_end_pfn
,
5058 &zone_start_pfn
, &zone_end_pfn
);
5060 /* Check that this node has pages within the zone's required range */
5061 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
5064 /* Move the zone boundaries inside the node if necessary */
5065 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
5066 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
5068 /* Return the spanned pages */
5069 return zone_end_pfn
- zone_start_pfn
;
5073 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5074 * then all holes in the requested range will be accounted for.
5076 unsigned long __meminit
__absent_pages_in_range(int nid
,
5077 unsigned long range_start_pfn
,
5078 unsigned long range_end_pfn
)
5080 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5081 unsigned long start_pfn
, end_pfn
;
5084 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5085 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5086 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5087 nr_absent
-= end_pfn
- start_pfn
;
5093 * absent_pages_in_range - Return number of page frames in holes within a range
5094 * @start_pfn: The start PFN to start searching for holes
5095 * @end_pfn: The end PFN to stop searching for holes
5097 * It returns the number of pages frames in memory holes within a range.
5099 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5100 unsigned long end_pfn
)
5102 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5105 /* Return the number of page frames in holes in a zone on a node */
5106 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5107 unsigned long zone_type
,
5108 unsigned long node_start_pfn
,
5109 unsigned long node_end_pfn
,
5110 unsigned long *ignored
)
5112 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5113 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5114 unsigned long zone_start_pfn
, zone_end_pfn
;
5116 /* When hotadd a new node from cpu_up(), the node should be empty */
5117 if (!node_start_pfn
&& !node_end_pfn
)
5120 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5121 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5123 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5124 node_start_pfn
, node_end_pfn
,
5125 &zone_start_pfn
, &zone_end_pfn
);
5126 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5129 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5130 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5131 unsigned long zone_type
,
5132 unsigned long node_start_pfn
,
5133 unsigned long node_end_pfn
,
5134 unsigned long *zones_size
)
5136 return zones_size
[zone_type
];
5139 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5140 unsigned long zone_type
,
5141 unsigned long node_start_pfn
,
5142 unsigned long node_end_pfn
,
5143 unsigned long *zholes_size
)
5148 return zholes_size
[zone_type
];
5151 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5153 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5154 unsigned long node_start_pfn
,
5155 unsigned long node_end_pfn
,
5156 unsigned long *zones_size
,
5157 unsigned long *zholes_size
)
5159 unsigned long realtotalpages
= 0, totalpages
= 0;
5162 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5163 struct zone
*zone
= pgdat
->node_zones
+ i
;
5164 unsigned long size
, real_size
;
5166 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5170 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5171 node_start_pfn
, node_end_pfn
,
5173 zone
->spanned_pages
= size
;
5174 zone
->present_pages
= real_size
;
5177 realtotalpages
+= real_size
;
5180 pgdat
->node_spanned_pages
= totalpages
;
5181 pgdat
->node_present_pages
= realtotalpages
;
5182 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5186 #ifndef CONFIG_SPARSEMEM
5188 * Calculate the size of the zone->blockflags rounded to an unsigned long
5189 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5190 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5191 * round what is now in bits to nearest long in bits, then return it in
5194 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5196 unsigned long usemapsize
;
5198 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5199 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5200 usemapsize
= usemapsize
>> pageblock_order
;
5201 usemapsize
*= NR_PAGEBLOCK_BITS
;
5202 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5204 return usemapsize
/ 8;
5207 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5209 unsigned long zone_start_pfn
,
5210 unsigned long zonesize
)
5212 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5213 zone
->pageblock_flags
= NULL
;
5215 zone
->pageblock_flags
=
5216 memblock_virt_alloc_node_nopanic(usemapsize
,
5220 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5221 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5222 #endif /* CONFIG_SPARSEMEM */
5224 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5226 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5227 void __paginginit
set_pageblock_order(void)
5231 /* Check that pageblock_nr_pages has not already been setup */
5232 if (pageblock_order
)
5235 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5236 order
= HUGETLB_PAGE_ORDER
;
5238 order
= MAX_ORDER
- 1;
5241 * Assume the largest contiguous order of interest is a huge page.
5242 * This value may be variable depending on boot parameters on IA64 and
5245 pageblock_order
= order
;
5247 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5250 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5251 * is unused as pageblock_order is set at compile-time. See
5252 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5255 void __paginginit
set_pageblock_order(void)
5259 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5261 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5262 unsigned long present_pages
)
5264 unsigned long pages
= spanned_pages
;
5267 * Provide a more accurate estimation if there are holes within
5268 * the zone and SPARSEMEM is in use. If there are holes within the
5269 * zone, each populated memory region may cost us one or two extra
5270 * memmap pages due to alignment because memmap pages for each
5271 * populated regions may not naturally algined on page boundary.
5272 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5274 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5275 IS_ENABLED(CONFIG_SPARSEMEM
))
5276 pages
= present_pages
;
5278 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5282 * Set up the zone data structures:
5283 * - mark all pages reserved
5284 * - mark all memory queues empty
5285 * - clear the memory bitmaps
5287 * NOTE: pgdat should get zeroed by caller.
5289 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5292 int nid
= pgdat
->node_id
;
5293 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
5296 pgdat_resize_init(pgdat
);
5297 #ifdef CONFIG_NUMA_BALANCING
5298 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5299 pgdat
->numabalancing_migrate_nr_pages
= 0;
5300 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5302 init_waitqueue_head(&pgdat
->kswapd_wait
);
5303 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5304 pgdat_page_ext_init(pgdat
);
5306 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5307 struct zone
*zone
= pgdat
->node_zones
+ j
;
5308 unsigned long size
, realsize
, freesize
, memmap_pages
;
5310 size
= zone
->spanned_pages
;
5311 realsize
= freesize
= zone
->present_pages
;
5314 * Adjust freesize so that it accounts for how much memory
5315 * is used by this zone for memmap. This affects the watermark
5316 * and per-cpu initialisations
5318 memmap_pages
= calc_memmap_size(size
, realsize
);
5319 if (!is_highmem_idx(j
)) {
5320 if (freesize
>= memmap_pages
) {
5321 freesize
-= memmap_pages
;
5324 " %s zone: %lu pages used for memmap\n",
5325 zone_names
[j
], memmap_pages
);
5328 " %s zone: %lu pages exceeds freesize %lu\n",
5329 zone_names
[j
], memmap_pages
, freesize
);
5332 /* Account for reserved pages */
5333 if (j
== 0 && freesize
> dma_reserve
) {
5334 freesize
-= dma_reserve
;
5335 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5336 zone_names
[0], dma_reserve
);
5339 if (!is_highmem_idx(j
))
5340 nr_kernel_pages
+= freesize
;
5341 /* Charge for highmem memmap if there are enough kernel pages */
5342 else if (nr_kernel_pages
> memmap_pages
* 2)
5343 nr_kernel_pages
-= memmap_pages
;
5344 nr_all_pages
+= freesize
;
5347 * Set an approximate value for lowmem here, it will be adjusted
5348 * when the bootmem allocator frees pages into the buddy system.
5349 * And all highmem pages will be managed by the buddy system.
5351 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5354 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
5356 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
5358 zone
->name
= zone_names
[j
];
5359 spin_lock_init(&zone
->lock
);
5360 spin_lock_init(&zone
->lru_lock
);
5361 zone_seqlock_init(zone
);
5362 zone
->zone_pgdat
= pgdat
;
5363 zone_pcp_init(zone
);
5365 /* For bootup, initialized properly in watermark setup */
5366 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
5368 lruvec_init(&zone
->lruvec
);
5372 set_pageblock_order();
5373 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5374 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5376 memmap_init(size
, nid
, j
, zone_start_pfn
);
5377 zone_start_pfn
+= size
;
5381 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
5383 unsigned long __maybe_unused start
= 0;
5384 unsigned long __maybe_unused offset
= 0;
5386 /* Skip empty nodes */
5387 if (!pgdat
->node_spanned_pages
)
5390 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5391 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5392 offset
= pgdat
->node_start_pfn
- start
;
5393 /* ia64 gets its own node_mem_map, before this, without bootmem */
5394 if (!pgdat
->node_mem_map
) {
5395 unsigned long size
, end
;
5399 * The zone's endpoints aren't required to be MAX_ORDER
5400 * aligned but the node_mem_map endpoints must be in order
5401 * for the buddy allocator to function correctly.
5403 end
= pgdat_end_pfn(pgdat
);
5404 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5405 size
= (end
- start
) * sizeof(struct page
);
5406 map
= alloc_remap(pgdat
->node_id
, size
);
5408 map
= memblock_virt_alloc_node_nopanic(size
,
5410 pgdat
->node_mem_map
= map
+ offset
;
5412 #ifndef CONFIG_NEED_MULTIPLE_NODES
5414 * With no DISCONTIG, the global mem_map is just set as node 0's
5416 if (pgdat
== NODE_DATA(0)) {
5417 mem_map
= NODE_DATA(0)->node_mem_map
;
5418 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5419 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5421 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5424 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5427 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5428 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5430 pg_data_t
*pgdat
= NODE_DATA(nid
);
5431 unsigned long start_pfn
= 0;
5432 unsigned long end_pfn
= 0;
5434 /* pg_data_t should be reset to zero when it's allocated */
5435 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5437 pgdat
->node_id
= nid
;
5438 pgdat
->node_start_pfn
= node_start_pfn
;
5439 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5440 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5441 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5442 (u64
)start_pfn
<< PAGE_SHIFT
,
5443 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5445 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5446 zones_size
, zholes_size
);
5448 alloc_node_mem_map(pgdat
);
5449 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5450 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5451 nid
, (unsigned long)pgdat
,
5452 (unsigned long)pgdat
->node_mem_map
);
5455 reset_deferred_meminit(pgdat
);
5456 free_area_init_core(pgdat
);
5459 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5461 #if MAX_NUMNODES > 1
5463 * Figure out the number of possible node ids.
5465 void __init
setup_nr_node_ids(void)
5467 unsigned int highest
;
5469 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5470 nr_node_ids
= highest
+ 1;
5475 * node_map_pfn_alignment - determine the maximum internode alignment
5477 * This function should be called after node map is populated and sorted.
5478 * It calculates the maximum power of two alignment which can distinguish
5481 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5482 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5483 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5484 * shifted, 1GiB is enough and this function will indicate so.
5486 * This is used to test whether pfn -> nid mapping of the chosen memory
5487 * model has fine enough granularity to avoid incorrect mapping for the
5488 * populated node map.
5490 * Returns the determined alignment in pfn's. 0 if there is no alignment
5491 * requirement (single node).
5493 unsigned long __init
node_map_pfn_alignment(void)
5495 unsigned long accl_mask
= 0, last_end
= 0;
5496 unsigned long start
, end
, mask
;
5500 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5501 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5508 * Start with a mask granular enough to pin-point to the
5509 * start pfn and tick off bits one-by-one until it becomes
5510 * too coarse to separate the current node from the last.
5512 mask
= ~((1 << __ffs(start
)) - 1);
5513 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5516 /* accumulate all internode masks */
5520 /* convert mask to number of pages */
5521 return ~accl_mask
+ 1;
5524 /* Find the lowest pfn for a node */
5525 static unsigned long __init
find_min_pfn_for_node(int nid
)
5527 unsigned long min_pfn
= ULONG_MAX
;
5528 unsigned long start_pfn
;
5531 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5532 min_pfn
= min(min_pfn
, start_pfn
);
5534 if (min_pfn
== ULONG_MAX
) {
5536 "Could not find start_pfn for node %d\n", nid
);
5544 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5546 * It returns the minimum PFN based on information provided via
5547 * memblock_set_node().
5549 unsigned long __init
find_min_pfn_with_active_regions(void)
5551 return find_min_pfn_for_node(MAX_NUMNODES
);
5555 * early_calculate_totalpages()
5556 * Sum pages in active regions for movable zone.
5557 * Populate N_MEMORY for calculating usable_nodes.
5559 static unsigned long __init
early_calculate_totalpages(void)
5561 unsigned long totalpages
= 0;
5562 unsigned long start_pfn
, end_pfn
;
5565 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5566 unsigned long pages
= end_pfn
- start_pfn
;
5568 totalpages
+= pages
;
5570 node_set_state(nid
, N_MEMORY
);
5576 * Find the PFN the Movable zone begins in each node. Kernel memory
5577 * is spread evenly between nodes as long as the nodes have enough
5578 * memory. When they don't, some nodes will have more kernelcore than
5581 static void __init
find_zone_movable_pfns_for_nodes(void)
5584 unsigned long usable_startpfn
;
5585 unsigned long kernelcore_node
, kernelcore_remaining
;
5586 /* save the state before borrow the nodemask */
5587 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5588 unsigned long totalpages
= early_calculate_totalpages();
5589 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5590 struct memblock_region
*r
;
5592 /* Need to find movable_zone earlier when movable_node is specified. */
5593 find_usable_zone_for_movable();
5596 * If movable_node is specified, ignore kernelcore and movablecore
5599 if (movable_node_is_enabled()) {
5600 for_each_memblock(memory
, r
) {
5601 if (!memblock_is_hotpluggable(r
))
5606 usable_startpfn
= PFN_DOWN(r
->base
);
5607 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5608 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5616 * If movablecore=nn[KMG] was specified, calculate what size of
5617 * kernelcore that corresponds so that memory usable for
5618 * any allocation type is evenly spread. If both kernelcore
5619 * and movablecore are specified, then the value of kernelcore
5620 * will be used for required_kernelcore if it's greater than
5621 * what movablecore would have allowed.
5623 if (required_movablecore
) {
5624 unsigned long corepages
;
5627 * Round-up so that ZONE_MOVABLE is at least as large as what
5628 * was requested by the user
5630 required_movablecore
=
5631 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5632 required_movablecore
= min(totalpages
, required_movablecore
);
5633 corepages
= totalpages
- required_movablecore
;
5635 required_kernelcore
= max(required_kernelcore
, corepages
);
5639 * If kernelcore was not specified or kernelcore size is larger
5640 * than totalpages, there is no ZONE_MOVABLE.
5642 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
5645 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5646 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5649 /* Spread kernelcore memory as evenly as possible throughout nodes */
5650 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5651 for_each_node_state(nid
, N_MEMORY
) {
5652 unsigned long start_pfn
, end_pfn
;
5655 * Recalculate kernelcore_node if the division per node
5656 * now exceeds what is necessary to satisfy the requested
5657 * amount of memory for the kernel
5659 if (required_kernelcore
< kernelcore_node
)
5660 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5663 * As the map is walked, we track how much memory is usable
5664 * by the kernel using kernelcore_remaining. When it is
5665 * 0, the rest of the node is usable by ZONE_MOVABLE
5667 kernelcore_remaining
= kernelcore_node
;
5669 /* Go through each range of PFNs within this node */
5670 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5671 unsigned long size_pages
;
5673 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5674 if (start_pfn
>= end_pfn
)
5677 /* Account for what is only usable for kernelcore */
5678 if (start_pfn
< usable_startpfn
) {
5679 unsigned long kernel_pages
;
5680 kernel_pages
= min(end_pfn
, usable_startpfn
)
5683 kernelcore_remaining
-= min(kernel_pages
,
5684 kernelcore_remaining
);
5685 required_kernelcore
-= min(kernel_pages
,
5686 required_kernelcore
);
5688 /* Continue if range is now fully accounted */
5689 if (end_pfn
<= usable_startpfn
) {
5692 * Push zone_movable_pfn to the end so
5693 * that if we have to rebalance
5694 * kernelcore across nodes, we will
5695 * not double account here
5697 zone_movable_pfn
[nid
] = end_pfn
;
5700 start_pfn
= usable_startpfn
;
5704 * The usable PFN range for ZONE_MOVABLE is from
5705 * start_pfn->end_pfn. Calculate size_pages as the
5706 * number of pages used as kernelcore
5708 size_pages
= end_pfn
- start_pfn
;
5709 if (size_pages
> kernelcore_remaining
)
5710 size_pages
= kernelcore_remaining
;
5711 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5714 * Some kernelcore has been met, update counts and
5715 * break if the kernelcore for this node has been
5718 required_kernelcore
-= min(required_kernelcore
,
5720 kernelcore_remaining
-= size_pages
;
5721 if (!kernelcore_remaining
)
5727 * If there is still required_kernelcore, we do another pass with one
5728 * less node in the count. This will push zone_movable_pfn[nid] further
5729 * along on the nodes that still have memory until kernelcore is
5733 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5737 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5738 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5739 zone_movable_pfn
[nid
] =
5740 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5743 /* restore the node_state */
5744 node_states
[N_MEMORY
] = saved_node_state
;
5747 /* Any regular or high memory on that node ? */
5748 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5750 enum zone_type zone_type
;
5752 if (N_MEMORY
== N_NORMAL_MEMORY
)
5755 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5756 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5757 if (populated_zone(zone
)) {
5758 node_set_state(nid
, N_HIGH_MEMORY
);
5759 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5760 zone_type
<= ZONE_NORMAL
)
5761 node_set_state(nid
, N_NORMAL_MEMORY
);
5768 * free_area_init_nodes - Initialise all pg_data_t and zone data
5769 * @max_zone_pfn: an array of max PFNs for each zone
5771 * This will call free_area_init_node() for each active node in the system.
5772 * Using the page ranges provided by memblock_set_node(), the size of each
5773 * zone in each node and their holes is calculated. If the maximum PFN
5774 * between two adjacent zones match, it is assumed that the zone is empty.
5775 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5776 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5777 * starts where the previous one ended. For example, ZONE_DMA32 starts
5778 * at arch_max_dma_pfn.
5780 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5782 unsigned long start_pfn
, end_pfn
;
5785 /* Record where the zone boundaries are */
5786 memset(arch_zone_lowest_possible_pfn
, 0,
5787 sizeof(arch_zone_lowest_possible_pfn
));
5788 memset(arch_zone_highest_possible_pfn
, 0,
5789 sizeof(arch_zone_highest_possible_pfn
));
5791 start_pfn
= find_min_pfn_with_active_regions();
5793 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5794 if (i
== ZONE_MOVABLE
)
5797 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
5798 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
5799 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
5801 start_pfn
= end_pfn
;
5803 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5804 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5806 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5807 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5808 find_zone_movable_pfns_for_nodes();
5810 /* Print out the zone ranges */
5811 pr_info("Zone ranges:\n");
5812 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5813 if (i
== ZONE_MOVABLE
)
5815 pr_info(" %-8s ", zone_names
[i
]);
5816 if (arch_zone_lowest_possible_pfn
[i
] ==
5817 arch_zone_highest_possible_pfn
[i
])
5820 pr_cont("[mem %#018Lx-%#018Lx]\n",
5821 (u64
)arch_zone_lowest_possible_pfn
[i
]
5823 ((u64
)arch_zone_highest_possible_pfn
[i
]
5824 << PAGE_SHIFT
) - 1);
5827 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5828 pr_info("Movable zone start for each node\n");
5829 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5830 if (zone_movable_pfn
[i
])
5831 pr_info(" Node %d: %#018Lx\n", i
,
5832 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
5835 /* Print out the early node map */
5836 pr_info("Early memory node ranges\n");
5837 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5838 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
5839 (u64
)start_pfn
<< PAGE_SHIFT
,
5840 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
5842 /* Initialise every node */
5843 mminit_verify_pageflags_layout();
5844 setup_nr_node_ids();
5845 for_each_online_node(nid
) {
5846 pg_data_t
*pgdat
= NODE_DATA(nid
);
5847 free_area_init_node(nid
, NULL
,
5848 find_min_pfn_for_node(nid
), NULL
);
5850 /* Any memory on that node */
5851 if (pgdat
->node_present_pages
)
5852 node_set_state(nid
, N_MEMORY
);
5853 check_for_memory(pgdat
, nid
);
5857 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5859 unsigned long long coremem
;
5863 coremem
= memparse(p
, &p
);
5864 *core
= coremem
>> PAGE_SHIFT
;
5866 /* Paranoid check that UL is enough for the coremem value */
5867 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5873 * kernelcore=size sets the amount of memory for use for allocations that
5874 * cannot be reclaimed or migrated.
5876 static int __init
cmdline_parse_kernelcore(char *p
)
5878 return cmdline_parse_core(p
, &required_kernelcore
);
5882 * movablecore=size sets the amount of memory for use for allocations that
5883 * can be reclaimed or migrated.
5885 static int __init
cmdline_parse_movablecore(char *p
)
5887 return cmdline_parse_core(p
, &required_movablecore
);
5890 early_param("kernelcore", cmdline_parse_kernelcore
);
5891 early_param("movablecore", cmdline_parse_movablecore
);
5893 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5895 void adjust_managed_page_count(struct page
*page
, long count
)
5897 spin_lock(&managed_page_count_lock
);
5898 page_zone(page
)->managed_pages
+= count
;
5899 totalram_pages
+= count
;
5900 #ifdef CONFIG_HIGHMEM
5901 if (PageHighMem(page
))
5902 totalhigh_pages
+= count
;
5904 spin_unlock(&managed_page_count_lock
);
5906 EXPORT_SYMBOL(adjust_managed_page_count
);
5908 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5911 unsigned long pages
= 0;
5913 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5914 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5915 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5916 if ((unsigned int)poison
<= 0xFF)
5917 memset(pos
, poison
, PAGE_SIZE
);
5918 free_reserved_page(virt_to_page(pos
));
5922 pr_info("Freeing %s memory: %ldK\n",
5923 s
, pages
<< (PAGE_SHIFT
- 10));
5927 EXPORT_SYMBOL(free_reserved_area
);
5929 #ifdef CONFIG_HIGHMEM
5930 void free_highmem_page(struct page
*page
)
5932 __free_reserved_page(page
);
5934 page_zone(page
)->managed_pages
++;
5940 void __init
mem_init_print_info(const char *str
)
5942 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5943 unsigned long init_code_size
, init_data_size
;
5945 physpages
= get_num_physpages();
5946 codesize
= _etext
- _stext
;
5947 datasize
= _edata
- _sdata
;
5948 rosize
= __end_rodata
- __start_rodata
;
5949 bss_size
= __bss_stop
- __bss_start
;
5950 init_data_size
= __init_end
- __init_begin
;
5951 init_code_size
= _einittext
- _sinittext
;
5954 * Detect special cases and adjust section sizes accordingly:
5955 * 1) .init.* may be embedded into .data sections
5956 * 2) .init.text.* may be out of [__init_begin, __init_end],
5957 * please refer to arch/tile/kernel/vmlinux.lds.S.
5958 * 3) .rodata.* may be embedded into .text or .data sections.
5960 #define adj_init_size(start, end, size, pos, adj) \
5962 if (start <= pos && pos < end && size > adj) \
5966 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5967 _sinittext
, init_code_size
);
5968 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5969 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5970 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5971 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5973 #undef adj_init_size
5975 pr_info("Memory: %luK/%luK available "
5976 "(%luK kernel code, %luK rwdata, %luK rodata, "
5977 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5978 #ifdef CONFIG_HIGHMEM
5982 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5983 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5984 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5985 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
-10),
5986 totalcma_pages
<< (PAGE_SHIFT
-10),
5987 #ifdef CONFIG_HIGHMEM
5988 totalhigh_pages
<< (PAGE_SHIFT
-10),
5990 str
? ", " : "", str
? str
: "");
5994 * set_dma_reserve - set the specified number of pages reserved in the first zone
5995 * @new_dma_reserve: The number of pages to mark reserved
5997 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5998 * In the DMA zone, a significant percentage may be consumed by kernel image
5999 * and other unfreeable allocations which can skew the watermarks badly. This
6000 * function may optionally be used to account for unfreeable pages in the
6001 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6002 * smaller per-cpu batchsize.
6004 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6006 dma_reserve
= new_dma_reserve
;
6009 void __init
free_area_init(unsigned long *zones_size
)
6011 free_area_init_node(0, zones_size
,
6012 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6015 static int page_alloc_cpu_notify(struct notifier_block
*self
,
6016 unsigned long action
, void *hcpu
)
6018 int cpu
= (unsigned long)hcpu
;
6020 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
6021 lru_add_drain_cpu(cpu
);
6025 * Spill the event counters of the dead processor
6026 * into the current processors event counters.
6027 * This artificially elevates the count of the current
6030 vm_events_fold_cpu(cpu
);
6033 * Zero the differential counters of the dead processor
6034 * so that the vm statistics are consistent.
6036 * This is only okay since the processor is dead and cannot
6037 * race with what we are doing.
6039 cpu_vm_stats_fold(cpu
);
6044 void __init
page_alloc_init(void)
6046 hotcpu_notifier(page_alloc_cpu_notify
, 0);
6050 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6051 * or min_free_kbytes changes.
6053 static void calculate_totalreserve_pages(void)
6055 struct pglist_data
*pgdat
;
6056 unsigned long reserve_pages
= 0;
6057 enum zone_type i
, j
;
6059 for_each_online_pgdat(pgdat
) {
6060 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6061 struct zone
*zone
= pgdat
->node_zones
+ i
;
6064 /* Find valid and maximum lowmem_reserve in the zone */
6065 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6066 if (zone
->lowmem_reserve
[j
] > max
)
6067 max
= zone
->lowmem_reserve
[j
];
6070 /* we treat the high watermark as reserved pages. */
6071 max
+= high_wmark_pages(zone
);
6073 if (max
> zone
->managed_pages
)
6074 max
= zone
->managed_pages
;
6075 reserve_pages
+= max
;
6077 * Lowmem reserves are not available to
6078 * GFP_HIGHUSER page cache allocations and
6079 * kswapd tries to balance zones to their high
6080 * watermark. As a result, neither should be
6081 * regarded as dirtyable memory, to prevent a
6082 * situation where reclaim has to clean pages
6083 * in order to balance the zones.
6085 zone
->dirty_balance_reserve
= max
;
6088 dirty_balance_reserve
= reserve_pages
;
6089 totalreserve_pages
= reserve_pages
;
6093 * setup_per_zone_lowmem_reserve - called whenever
6094 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6095 * has a correct pages reserved value, so an adequate number of
6096 * pages are left in the zone after a successful __alloc_pages().
6098 static void setup_per_zone_lowmem_reserve(void)
6100 struct pglist_data
*pgdat
;
6101 enum zone_type j
, idx
;
6103 for_each_online_pgdat(pgdat
) {
6104 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6105 struct zone
*zone
= pgdat
->node_zones
+ j
;
6106 unsigned long managed_pages
= zone
->managed_pages
;
6108 zone
->lowmem_reserve
[j
] = 0;
6112 struct zone
*lower_zone
;
6116 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6117 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6119 lower_zone
= pgdat
->node_zones
+ idx
;
6120 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6121 sysctl_lowmem_reserve_ratio
[idx
];
6122 managed_pages
+= lower_zone
->managed_pages
;
6127 /* update totalreserve_pages */
6128 calculate_totalreserve_pages();
6131 static void __setup_per_zone_wmarks(void)
6133 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6134 unsigned long lowmem_pages
= 0;
6136 unsigned long flags
;
6138 /* Calculate total number of !ZONE_HIGHMEM pages */
6139 for_each_zone(zone
) {
6140 if (!is_highmem(zone
))
6141 lowmem_pages
+= zone
->managed_pages
;
6144 for_each_zone(zone
) {
6147 spin_lock_irqsave(&zone
->lock
, flags
);
6148 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6149 do_div(tmp
, lowmem_pages
);
6150 if (is_highmem(zone
)) {
6152 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6153 * need highmem pages, so cap pages_min to a small
6156 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6157 * deltas control asynch page reclaim, and so should
6158 * not be capped for highmem.
6160 unsigned long min_pages
;
6162 min_pages
= zone
->managed_pages
/ 1024;
6163 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6164 zone
->watermark
[WMARK_MIN
] = min_pages
;
6167 * If it's a lowmem zone, reserve a number of pages
6168 * proportionate to the zone's size.
6170 zone
->watermark
[WMARK_MIN
] = tmp
;
6173 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
6174 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
6176 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
6177 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
6178 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
6180 spin_unlock_irqrestore(&zone
->lock
, flags
);
6183 /* update totalreserve_pages */
6184 calculate_totalreserve_pages();
6188 * setup_per_zone_wmarks - called when min_free_kbytes changes
6189 * or when memory is hot-{added|removed}
6191 * Ensures that the watermark[min,low,high] values for each zone are set
6192 * correctly with respect to min_free_kbytes.
6194 void setup_per_zone_wmarks(void)
6196 mutex_lock(&zonelists_mutex
);
6197 __setup_per_zone_wmarks();
6198 mutex_unlock(&zonelists_mutex
);
6202 * The inactive anon list should be small enough that the VM never has to
6203 * do too much work, but large enough that each inactive page has a chance
6204 * to be referenced again before it is swapped out.
6206 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6207 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6208 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6209 * the anonymous pages are kept on the inactive list.
6212 * memory ratio inactive anon
6213 * -------------------------------------
6222 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
6224 unsigned int gb
, ratio
;
6226 /* Zone size in gigabytes */
6227 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
6229 ratio
= int_sqrt(10 * gb
);
6233 zone
->inactive_ratio
= ratio
;
6236 static void __meminit
setup_per_zone_inactive_ratio(void)
6241 calculate_zone_inactive_ratio(zone
);
6245 * Initialise min_free_kbytes.
6247 * For small machines we want it small (128k min). For large machines
6248 * we want it large (64MB max). But it is not linear, because network
6249 * bandwidth does not increase linearly with machine size. We use
6251 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6252 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6268 int __meminit
init_per_zone_wmark_min(void)
6270 unsigned long lowmem_kbytes
;
6271 int new_min_free_kbytes
;
6273 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6274 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6276 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6277 min_free_kbytes
= new_min_free_kbytes
;
6278 if (min_free_kbytes
< 128)
6279 min_free_kbytes
= 128;
6280 if (min_free_kbytes
> 65536)
6281 min_free_kbytes
= 65536;
6283 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6284 new_min_free_kbytes
, user_min_free_kbytes
);
6286 setup_per_zone_wmarks();
6287 refresh_zone_stat_thresholds();
6288 setup_per_zone_lowmem_reserve();
6289 setup_per_zone_inactive_ratio();
6292 postcore_initcall(init_per_zone_wmark_min
)
6295 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6296 * that we can call two helper functions whenever min_free_kbytes
6299 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6300 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6304 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6309 user_min_free_kbytes
= min_free_kbytes
;
6310 setup_per_zone_wmarks();
6316 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6317 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6322 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6327 zone
->min_unmapped_pages
= (zone
->managed_pages
*
6328 sysctl_min_unmapped_ratio
) / 100;
6332 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6333 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6338 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6343 zone
->min_slab_pages
= (zone
->managed_pages
*
6344 sysctl_min_slab_ratio
) / 100;
6350 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6351 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6352 * whenever sysctl_lowmem_reserve_ratio changes.
6354 * The reserve ratio obviously has absolutely no relation with the
6355 * minimum watermarks. The lowmem reserve ratio can only make sense
6356 * if in function of the boot time zone sizes.
6358 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6359 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6361 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6362 setup_per_zone_lowmem_reserve();
6367 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6368 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6369 * pagelist can have before it gets flushed back to buddy allocator.
6371 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6372 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6375 int old_percpu_pagelist_fraction
;
6378 mutex_lock(&pcp_batch_high_lock
);
6379 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6381 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6382 if (!write
|| ret
< 0)
6385 /* Sanity checking to avoid pcp imbalance */
6386 if (percpu_pagelist_fraction
&&
6387 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6388 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6394 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6397 for_each_populated_zone(zone
) {
6400 for_each_possible_cpu(cpu
)
6401 pageset_set_high_and_batch(zone
,
6402 per_cpu_ptr(zone
->pageset
, cpu
));
6405 mutex_unlock(&pcp_batch_high_lock
);
6410 int hashdist
= HASHDIST_DEFAULT
;
6412 static int __init
set_hashdist(char *str
)
6416 hashdist
= simple_strtoul(str
, &str
, 0);
6419 __setup("hashdist=", set_hashdist
);
6423 * allocate a large system hash table from bootmem
6424 * - it is assumed that the hash table must contain an exact power-of-2
6425 * quantity of entries
6426 * - limit is the number of hash buckets, not the total allocation size
6428 void *__init
alloc_large_system_hash(const char *tablename
,
6429 unsigned long bucketsize
,
6430 unsigned long numentries
,
6433 unsigned int *_hash_shift
,
6434 unsigned int *_hash_mask
,
6435 unsigned long low_limit
,
6436 unsigned long high_limit
)
6438 unsigned long long max
= high_limit
;
6439 unsigned long log2qty
, size
;
6442 /* allow the kernel cmdline to have a say */
6444 /* round applicable memory size up to nearest megabyte */
6445 numentries
= nr_kernel_pages
;
6447 /* It isn't necessary when PAGE_SIZE >= 1MB */
6448 if (PAGE_SHIFT
< 20)
6449 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6451 /* limit to 1 bucket per 2^scale bytes of low memory */
6452 if (scale
> PAGE_SHIFT
)
6453 numentries
>>= (scale
- PAGE_SHIFT
);
6455 numentries
<<= (PAGE_SHIFT
- scale
);
6457 /* Make sure we've got at least a 0-order allocation.. */
6458 if (unlikely(flags
& HASH_SMALL
)) {
6459 /* Makes no sense without HASH_EARLY */
6460 WARN_ON(!(flags
& HASH_EARLY
));
6461 if (!(numentries
>> *_hash_shift
)) {
6462 numentries
= 1UL << *_hash_shift
;
6463 BUG_ON(!numentries
);
6465 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6466 numentries
= PAGE_SIZE
/ bucketsize
;
6468 numentries
= roundup_pow_of_two(numentries
);
6470 /* limit allocation size to 1/16 total memory by default */
6472 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6473 do_div(max
, bucketsize
);
6475 max
= min(max
, 0x80000000ULL
);
6477 if (numentries
< low_limit
)
6478 numentries
= low_limit
;
6479 if (numentries
> max
)
6482 log2qty
= ilog2(numentries
);
6485 size
= bucketsize
<< log2qty
;
6486 if (flags
& HASH_EARLY
)
6487 table
= memblock_virt_alloc_nopanic(size
, 0);
6489 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6492 * If bucketsize is not a power-of-two, we may free
6493 * some pages at the end of hash table which
6494 * alloc_pages_exact() automatically does
6496 if (get_order(size
) < MAX_ORDER
) {
6497 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6498 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6501 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6504 panic("Failed to allocate %s hash table\n", tablename
);
6506 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6509 ilog2(size
) - PAGE_SHIFT
,
6513 *_hash_shift
= log2qty
;
6515 *_hash_mask
= (1 << log2qty
) - 1;
6520 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6521 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6524 #ifdef CONFIG_SPARSEMEM
6525 return __pfn_to_section(pfn
)->pageblock_flags
;
6527 return zone
->pageblock_flags
;
6528 #endif /* CONFIG_SPARSEMEM */
6531 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6533 #ifdef CONFIG_SPARSEMEM
6534 pfn
&= (PAGES_PER_SECTION
-1);
6535 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6537 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6538 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6539 #endif /* CONFIG_SPARSEMEM */
6543 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6544 * @page: The page within the block of interest
6545 * @pfn: The target page frame number
6546 * @end_bitidx: The last bit of interest to retrieve
6547 * @mask: mask of bits that the caller is interested in
6549 * Return: pageblock_bits flags
6551 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6552 unsigned long end_bitidx
,
6556 unsigned long *bitmap
;
6557 unsigned long bitidx
, word_bitidx
;
6560 zone
= page_zone(page
);
6561 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6562 bitidx
= pfn_to_bitidx(zone
, pfn
);
6563 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6564 bitidx
&= (BITS_PER_LONG
-1);
6566 word
= bitmap
[word_bitidx
];
6567 bitidx
+= end_bitidx
;
6568 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6572 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6573 * @page: The page within the block of interest
6574 * @flags: The flags to set
6575 * @pfn: The target page frame number
6576 * @end_bitidx: The last bit of interest
6577 * @mask: mask of bits that the caller is interested in
6579 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6581 unsigned long end_bitidx
,
6585 unsigned long *bitmap
;
6586 unsigned long bitidx
, word_bitidx
;
6587 unsigned long old_word
, word
;
6589 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6591 zone
= page_zone(page
);
6592 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6593 bitidx
= pfn_to_bitidx(zone
, pfn
);
6594 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6595 bitidx
&= (BITS_PER_LONG
-1);
6597 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6599 bitidx
+= end_bitidx
;
6600 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6601 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6603 word
= READ_ONCE(bitmap
[word_bitidx
]);
6605 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6606 if (word
== old_word
)
6613 * This function checks whether pageblock includes unmovable pages or not.
6614 * If @count is not zero, it is okay to include less @count unmovable pages
6616 * PageLRU check without isolation or lru_lock could race so that
6617 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6618 * expect this function should be exact.
6620 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6621 bool skip_hwpoisoned_pages
)
6623 unsigned long pfn
, iter
, found
;
6627 * For avoiding noise data, lru_add_drain_all() should be called
6628 * If ZONE_MOVABLE, the zone never contains unmovable pages
6630 if (zone_idx(zone
) == ZONE_MOVABLE
)
6632 mt
= get_pageblock_migratetype(page
);
6633 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6636 pfn
= page_to_pfn(page
);
6637 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6638 unsigned long check
= pfn
+ iter
;
6640 if (!pfn_valid_within(check
))
6643 page
= pfn_to_page(check
);
6646 * Hugepages are not in LRU lists, but they're movable.
6647 * We need not scan over tail pages bacause we don't
6648 * handle each tail page individually in migration.
6650 if (PageHuge(page
)) {
6651 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6656 * We can't use page_count without pin a page
6657 * because another CPU can free compound page.
6658 * This check already skips compound tails of THP
6659 * because their page->_count is zero at all time.
6661 if (!atomic_read(&page
->_count
)) {
6662 if (PageBuddy(page
))
6663 iter
+= (1 << page_order(page
)) - 1;
6668 * The HWPoisoned page may be not in buddy system, and
6669 * page_count() is not 0.
6671 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6677 * If there are RECLAIMABLE pages, we need to check
6678 * it. But now, memory offline itself doesn't call
6679 * shrink_node_slabs() and it still to be fixed.
6682 * If the page is not RAM, page_count()should be 0.
6683 * we don't need more check. This is an _used_ not-movable page.
6685 * The problematic thing here is PG_reserved pages. PG_reserved
6686 * is set to both of a memory hole page and a _used_ kernel
6695 bool is_pageblock_removable_nolock(struct page
*page
)
6701 * We have to be careful here because we are iterating over memory
6702 * sections which are not zone aware so we might end up outside of
6703 * the zone but still within the section.
6704 * We have to take care about the node as well. If the node is offline
6705 * its NODE_DATA will be NULL - see page_zone.
6707 if (!node_online(page_to_nid(page
)))
6710 zone
= page_zone(page
);
6711 pfn
= page_to_pfn(page
);
6712 if (!zone_spans_pfn(zone
, pfn
))
6715 return !has_unmovable_pages(zone
, page
, 0, true);
6720 static unsigned long pfn_max_align_down(unsigned long pfn
)
6722 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6723 pageblock_nr_pages
) - 1);
6726 static unsigned long pfn_max_align_up(unsigned long pfn
)
6728 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6729 pageblock_nr_pages
));
6732 /* [start, end) must belong to a single zone. */
6733 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6734 unsigned long start
, unsigned long end
)
6736 /* This function is based on compact_zone() from compaction.c. */
6737 unsigned long nr_reclaimed
;
6738 unsigned long pfn
= start
;
6739 unsigned int tries
= 0;
6744 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6745 if (fatal_signal_pending(current
)) {
6750 if (list_empty(&cc
->migratepages
)) {
6751 cc
->nr_migratepages
= 0;
6752 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6758 } else if (++tries
== 5) {
6759 ret
= ret
< 0 ? ret
: -EBUSY
;
6763 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6765 cc
->nr_migratepages
-= nr_reclaimed
;
6767 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6768 NULL
, 0, cc
->mode
, MR_CMA
);
6771 putback_movable_pages(&cc
->migratepages
);
6778 * alloc_contig_range() -- tries to allocate given range of pages
6779 * @start: start PFN to allocate
6780 * @end: one-past-the-last PFN to allocate
6781 * @migratetype: migratetype of the underlaying pageblocks (either
6782 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6783 * in range must have the same migratetype and it must
6784 * be either of the two.
6786 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6787 * aligned, however it's the caller's responsibility to guarantee that
6788 * we are the only thread that changes migrate type of pageblocks the
6791 * The PFN range must belong to a single zone.
6793 * Returns zero on success or negative error code. On success all
6794 * pages which PFN is in [start, end) are allocated for the caller and
6795 * need to be freed with free_contig_range().
6797 int alloc_contig_range(unsigned long start
, unsigned long end
,
6798 unsigned migratetype
)
6800 unsigned long outer_start
, outer_end
;
6804 struct compact_control cc
= {
6805 .nr_migratepages
= 0,
6807 .zone
= page_zone(pfn_to_page(start
)),
6808 .mode
= MIGRATE_SYNC
,
6809 .ignore_skip_hint
= true,
6811 INIT_LIST_HEAD(&cc
.migratepages
);
6814 * What we do here is we mark all pageblocks in range as
6815 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6816 * have different sizes, and due to the way page allocator
6817 * work, we align the range to biggest of the two pages so
6818 * that page allocator won't try to merge buddies from
6819 * different pageblocks and change MIGRATE_ISOLATE to some
6820 * other migration type.
6822 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6823 * migrate the pages from an unaligned range (ie. pages that
6824 * we are interested in). This will put all the pages in
6825 * range back to page allocator as MIGRATE_ISOLATE.
6827 * When this is done, we take the pages in range from page
6828 * allocator removing them from the buddy system. This way
6829 * page allocator will never consider using them.
6831 * This lets us mark the pageblocks back as
6832 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6833 * aligned range but not in the unaligned, original range are
6834 * put back to page allocator so that buddy can use them.
6837 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6838 pfn_max_align_up(end
), migratetype
,
6843 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6848 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6849 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6850 * more, all pages in [start, end) are free in page allocator.
6851 * What we are going to do is to allocate all pages from
6852 * [start, end) (that is remove them from page allocator).
6854 * The only problem is that pages at the beginning and at the
6855 * end of interesting range may be not aligned with pages that
6856 * page allocator holds, ie. they can be part of higher order
6857 * pages. Because of this, we reserve the bigger range and
6858 * once this is done free the pages we are not interested in.
6860 * We don't have to hold zone->lock here because the pages are
6861 * isolated thus they won't get removed from buddy.
6864 lru_add_drain_all();
6865 drain_all_pages(cc
.zone
);
6868 outer_start
= start
;
6869 while (!PageBuddy(pfn_to_page(outer_start
))) {
6870 if (++order
>= MAX_ORDER
) {
6874 outer_start
&= ~0UL << order
;
6877 /* Make sure the range is really isolated. */
6878 if (test_pages_isolated(outer_start
, end
, false)) {
6879 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
6880 __func__
, outer_start
, end
);
6885 /* Grab isolated pages from freelists. */
6886 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6892 /* Free head and tail (if any) */
6893 if (start
!= outer_start
)
6894 free_contig_range(outer_start
, start
- outer_start
);
6895 if (end
!= outer_end
)
6896 free_contig_range(end
, outer_end
- end
);
6899 undo_isolate_page_range(pfn_max_align_down(start
),
6900 pfn_max_align_up(end
), migratetype
);
6904 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6906 unsigned int count
= 0;
6908 for (; nr_pages
--; pfn
++) {
6909 struct page
*page
= pfn_to_page(pfn
);
6911 count
+= page_count(page
) != 1;
6914 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6918 #ifdef CONFIG_MEMORY_HOTPLUG
6920 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6921 * page high values need to be recalulated.
6923 void __meminit
zone_pcp_update(struct zone
*zone
)
6926 mutex_lock(&pcp_batch_high_lock
);
6927 for_each_possible_cpu(cpu
)
6928 pageset_set_high_and_batch(zone
,
6929 per_cpu_ptr(zone
->pageset
, cpu
));
6930 mutex_unlock(&pcp_batch_high_lock
);
6934 void zone_pcp_reset(struct zone
*zone
)
6936 unsigned long flags
;
6938 struct per_cpu_pageset
*pset
;
6940 /* avoid races with drain_pages() */
6941 local_irq_save(flags
);
6942 if (zone
->pageset
!= &boot_pageset
) {
6943 for_each_online_cpu(cpu
) {
6944 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6945 drain_zonestat(zone
, pset
);
6947 free_percpu(zone
->pageset
);
6948 zone
->pageset
= &boot_pageset
;
6950 local_irq_restore(flags
);
6953 #ifdef CONFIG_MEMORY_HOTREMOVE
6955 * All pages in the range must be isolated before calling this.
6958 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6962 unsigned int order
, i
;
6964 unsigned long flags
;
6965 /* find the first valid pfn */
6966 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6971 zone
= page_zone(pfn_to_page(pfn
));
6972 spin_lock_irqsave(&zone
->lock
, flags
);
6974 while (pfn
< end_pfn
) {
6975 if (!pfn_valid(pfn
)) {
6979 page
= pfn_to_page(pfn
);
6981 * The HWPoisoned page may be not in buddy system, and
6982 * page_count() is not 0.
6984 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6986 SetPageReserved(page
);
6990 BUG_ON(page_count(page
));
6991 BUG_ON(!PageBuddy(page
));
6992 order
= page_order(page
);
6993 #ifdef CONFIG_DEBUG_VM
6994 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6995 pfn
, 1 << order
, end_pfn
);
6997 list_del(&page
->lru
);
6998 rmv_page_order(page
);
6999 zone
->free_area
[order
].nr_free
--;
7000 for (i
= 0; i
< (1 << order
); i
++)
7001 SetPageReserved((page
+i
));
7002 pfn
+= (1 << order
);
7004 spin_unlock_irqrestore(&zone
->lock
, flags
);
7008 #ifdef CONFIG_MEMORY_FAILURE
7009 bool is_free_buddy_page(struct page
*page
)
7011 struct zone
*zone
= page_zone(page
);
7012 unsigned long pfn
= page_to_pfn(page
);
7013 unsigned long flags
;
7016 spin_lock_irqsave(&zone
->lock
, flags
);
7017 for (order
= 0; order
< MAX_ORDER
; order
++) {
7018 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7020 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7023 spin_unlock_irqrestore(&zone
->lock
, flags
);
7025 return order
< MAX_ORDER
;