2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels
[] = {
73 DB8500_DMA_MEMCPY_EV_0
,
74 DB8500_DMA_MEMCPY_EV_1
,
75 DB8500_DMA_MEMCPY_EV_2
,
76 DB8500_DMA_MEMCPY_EV_3
,
77 DB8500_DMA_MEMCPY_EV_4
,
78 DB8500_DMA_MEMCPY_EV_5
,
81 /* Default configuration for physcial memcpy */
82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy
= {
83 .mode
= STEDMA40_MODE_PHYSICAL
,
84 .dir
= DMA_MEM_TO_MEM
,
86 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
87 .src_info
.psize
= STEDMA40_PSIZE_PHY_1
,
88 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
90 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
91 .dst_info
.psize
= STEDMA40_PSIZE_PHY_1
,
92 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
95 /* Default configuration for logical memcpy */
96 static struct stedma40_chan_cfg dma40_memcpy_conf_log
= {
97 .mode
= STEDMA40_MODE_LOGICAL
,
98 .dir
= DMA_MEM_TO_MEM
,
100 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
101 .src_info
.psize
= STEDMA40_PSIZE_LOG_1
,
102 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
104 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
105 .dst_info
.psize
= STEDMA40_PSIZE_LOG_1
,
106 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
120 D40_DMA_SUSPEND_REQ
= 2,
121 D40_DMA_SUSPENDED
= 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
134 D40_DEACTIVATE_EVENTLINE
= 0,
135 D40_ACTIVATE_EVENTLINE
= 1,
136 D40_SUSPEND_REQ_EVENTLINE
= 2,
137 D40_ROUND_EVENTLINE
= 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static u32 d40_backup_regs
[] = {
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a
[] = {
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b
[] = {
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static u32 d40_backup_regs_chan
[] = {
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup
{
245 static struct d40_interrupt_lookup il_v4a
[] = {
246 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
247 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
248 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
249 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
250 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
251 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
252 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
253 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
254 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
255 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
258 static struct d40_interrupt_lookup il_v4b
[] = {
259 {D40_DREG_CLCTIS1
, D40_DREG_CLCICR1
, false, 0},
260 {D40_DREG_CLCTIS2
, D40_DREG_CLCICR2
, false, 32},
261 {D40_DREG_CLCTIS3
, D40_DREG_CLCICR3
, false, 64},
262 {D40_DREG_CLCTIS4
, D40_DREG_CLCICR4
, false, 96},
263 {D40_DREG_CLCTIS5
, D40_DREG_CLCICR5
, false, 128},
264 {D40_DREG_CLCEIS1
, D40_DREG_CLCICR1
, true, 0},
265 {D40_DREG_CLCEIS2
, D40_DREG_CLCICR2
, true, 32},
266 {D40_DREG_CLCEIS3
, D40_DREG_CLCICR3
, true, 64},
267 {D40_DREG_CLCEIS4
, D40_DREG_CLCICR4
, true, 96},
268 {D40_DREG_CLCEIS5
, D40_DREG_CLCICR5
, true, 128},
269 {D40_DREG_CPCTIS
, D40_DREG_CPCICR
, false, D40_PHY_CHAN
},
270 {D40_DREG_CPCEIS
, D40_DREG_CPCICR
, true, D40_PHY_CHAN
},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
284 static __initdata
struct d40_reg_val dma_init_reg_v4a
[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
288 /* Interrupts on all logical channels */
289 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
290 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
291 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
292 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
293 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
294 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
295 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
296 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
297 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
298 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
299 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
300 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
302 static __initdata
struct d40_reg_val dma_init_reg_v4b
[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
306 /* Interrupts on all logical channels */
307 { .reg
= D40_DREG_CLCMIS1
, .val
= 0xFFFFFFFF},
308 { .reg
= D40_DREG_CLCMIS2
, .val
= 0xFFFFFFFF},
309 { .reg
= D40_DREG_CLCMIS3
, .val
= 0xFFFFFFFF},
310 { .reg
= D40_DREG_CLCMIS4
, .val
= 0xFFFFFFFF},
311 { .reg
= D40_DREG_CLCMIS5
, .val
= 0xFFFFFFFF},
312 { .reg
= D40_DREG_CLCICR1
, .val
= 0xFFFFFFFF},
313 { .reg
= D40_DREG_CLCICR2
, .val
= 0xFFFFFFFF},
314 { .reg
= D40_DREG_CLCICR3
, .val
= 0xFFFFFFFF},
315 { .reg
= D40_DREG_CLCICR4
, .val
= 0xFFFFFFFF},
316 { .reg
= D40_DREG_CLCICR5
, .val
= 0xFFFFFFFF},
317 { .reg
= D40_DREG_CLCTIS1
, .val
= 0xFFFFFFFF},
318 { .reg
= D40_DREG_CLCTIS2
, .val
= 0xFFFFFFFF},
319 { .reg
= D40_DREG_CLCTIS3
, .val
= 0xFFFFFFFF},
320 { .reg
= D40_DREG_CLCTIS4
, .val
= 0xFFFFFFFF},
321 { .reg
= D40_DREG_CLCTIS5
, .val
= 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool
{
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
364 struct d40_phy_lli_bidir lli_phy
;
366 struct d40_log_lli_bidir lli_log
;
368 struct d40_lli_pool lli_pool
;
373 struct dma_async_tx_descriptor txd
;
374 struct list_head node
;
376 bool is_in_client_list
;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
391 struct d40_lcla_pool
{
394 void *base_unaligned
;
397 struct d40_desc
**alloc_map
;
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
426 * struct d40_chan - Struct that describes a channel.
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
454 * This struct can either "be" a logical or a physical channel.
461 struct d40_phy_res
*phy_chan
;
462 struct dma_chan chan
;
463 struct tasklet_struct tasklet
;
464 struct list_head client
;
465 struct list_head pending_queue
;
466 struct list_head active
;
467 struct list_head done
;
468 struct list_head queue
;
469 struct list_head prepare_queue
;
470 struct stedma40_chan_cfg dma_cfg
;
472 struct d40_base
*base
;
473 /* Default register configurations */
476 struct d40_def_lcsp log_def
;
477 struct d40_log_lli_full
*lcpa
;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr
;
480 enum dma_transfer_direction runtime_direction
;
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
500 struct d40_gen_dmac
{
509 struct d40_interrupt_lookup
*il
;
511 struct d40_reg_val
*init_reg
;
516 * struct d40_base - The big global struct, one for each probe'd instance.
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 * @gen_dmac: the struct for generic registers values to represent u8500/8540
563 spinlock_t interrupt_lock
;
564 spinlock_t execmd_lock
;
566 void __iomem
*virtbase
;
569 phys_addr_t phy_start
;
570 resource_size_t phy_size
;
572 int num_memcpy_chans
;
575 struct device_dma_parameters dma_parms
;
576 struct dma_device dma_both
;
577 struct dma_device dma_slave
;
578 struct dma_device dma_memcpy
;
579 struct d40_chan
*phy_chans
;
580 struct d40_chan
*log_chans
;
581 struct d40_chan
**lookup_log_chans
;
582 struct d40_chan
**lookup_phy_chans
;
583 struct stedma40_platform_data
*plat_data
;
584 struct regulator
*lcpa_regulator
;
585 /* Physical half channels */
586 struct d40_phy_res
*phy_res
;
587 struct d40_lcla_pool lcla_pool
;
590 resource_size_t lcpa_size
;
591 struct kmem_cache
*desc_slab
;
592 u32 reg_val_backup
[BACKUP_REGS_SZ
];
593 u32 reg_val_backup_v4
[BACKUP_REGS_SZ_MAX
];
594 u32
*reg_val_backup_chan
;
595 u16 gcc_pwr_off_mask
;
596 struct d40_gen_dmac gen_dmac
;
599 static struct device
*chan2dev(struct d40_chan
*d40c
)
601 return &d40c
->chan
.dev
->device
;
604 static bool chan_is_physical(struct d40_chan
*chan
)
606 return chan
->log_num
== D40_PHY_CHAN
;
609 static bool chan_is_logical(struct d40_chan
*chan
)
611 return !chan_is_physical(chan
);
614 static void __iomem
*chan_base(struct d40_chan
*chan
)
616 return chan
->base
->virtbase
+ D40_DREG_PCBASE
+
617 chan
->phy_chan
->num
* D40_DREG_PCDELTA
;
620 #define d40_err(dev, format, arg...) \
621 dev_err(dev, "[%s] " format, __func__, ## arg)
623 #define chan_err(d40c, format, arg...) \
624 d40_err(chan2dev(d40c), format, ## arg)
626 static int d40_pool_lli_alloc(struct d40_chan
*d40c
, struct d40_desc
*d40d
,
629 bool is_log
= chan_is_logical(d40c
);
634 align
= sizeof(struct d40_log_lli
);
636 align
= sizeof(struct d40_phy_lli
);
639 base
= d40d
->lli_pool
.pre_alloc_lli
;
640 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
641 d40d
->lli_pool
.base
= NULL
;
643 d40d
->lli_pool
.size
= lli_len
* 2 * align
;
645 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
646 d40d
->lli_pool
.base
= base
;
648 if (d40d
->lli_pool
.base
== NULL
)
653 d40d
->lli_log
.src
= PTR_ALIGN(base
, align
);
654 d40d
->lli_log
.dst
= d40d
->lli_log
.src
+ lli_len
;
656 d40d
->lli_pool
.dma_addr
= 0;
658 d40d
->lli_phy
.src
= PTR_ALIGN(base
, align
);
659 d40d
->lli_phy
.dst
= d40d
->lli_phy
.src
+ lli_len
;
661 d40d
->lli_pool
.dma_addr
= dma_map_single(d40c
->base
->dev
,
666 if (dma_mapping_error(d40c
->base
->dev
,
667 d40d
->lli_pool
.dma_addr
)) {
668 kfree(d40d
->lli_pool
.base
);
669 d40d
->lli_pool
.base
= NULL
;
670 d40d
->lli_pool
.dma_addr
= 0;
678 static void d40_pool_lli_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
680 if (d40d
->lli_pool
.dma_addr
)
681 dma_unmap_single(d40c
->base
->dev
, d40d
->lli_pool
.dma_addr
,
682 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
684 kfree(d40d
->lli_pool
.base
);
685 d40d
->lli_pool
.base
= NULL
;
686 d40d
->lli_pool
.size
= 0;
687 d40d
->lli_log
.src
= NULL
;
688 d40d
->lli_log
.dst
= NULL
;
689 d40d
->lli_phy
.src
= NULL
;
690 d40d
->lli_phy
.dst
= NULL
;
693 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
694 struct d40_desc
*d40d
)
700 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
703 * Allocate both src and dst at the same time, therefore the half
704 * start on 1 since 0 can't be used since zero is used as end marker.
706 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
707 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
709 if (!d40c
->base
->lcla_pool
.alloc_map
[idx
]) {
710 d40c
->base
->lcla_pool
.alloc_map
[idx
] = d40d
;
717 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
722 static int d40_lcla_free_all(struct d40_chan
*d40c
,
723 struct d40_desc
*d40d
)
729 if (chan_is_physical(d40c
))
732 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
734 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
735 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
737 if (d40c
->base
->lcla_pool
.alloc_map
[idx
] == d40d
) {
738 d40c
->base
->lcla_pool
.alloc_map
[idx
] = NULL
;
740 if (d40d
->lcla_alloc
== 0) {
747 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
753 static void d40_desc_remove(struct d40_desc
*d40d
)
755 list_del(&d40d
->node
);
758 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
760 struct d40_desc
*desc
= NULL
;
762 if (!list_empty(&d40c
->client
)) {
766 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
767 if (async_tx_test_ack(&d
->txd
)) {
770 memset(desc
, 0, sizeof(*desc
));
777 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
780 INIT_LIST_HEAD(&desc
->node
);
785 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
788 d40_pool_lli_free(d40c
, d40d
);
789 d40_lcla_free_all(d40c
, d40d
);
790 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
793 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
795 list_add_tail(&desc
->node
, &d40c
->active
);
798 static void d40_phy_lli_load(struct d40_chan
*chan
, struct d40_desc
*desc
)
800 struct d40_phy_lli
*lli_dst
= desc
->lli_phy
.dst
;
801 struct d40_phy_lli
*lli_src
= desc
->lli_phy
.src
;
802 void __iomem
*base
= chan_base(chan
);
804 writel(lli_src
->reg_cfg
, base
+ D40_CHAN_REG_SSCFG
);
805 writel(lli_src
->reg_elt
, base
+ D40_CHAN_REG_SSELT
);
806 writel(lli_src
->reg_ptr
, base
+ D40_CHAN_REG_SSPTR
);
807 writel(lli_src
->reg_lnk
, base
+ D40_CHAN_REG_SSLNK
);
809 writel(lli_dst
->reg_cfg
, base
+ D40_CHAN_REG_SDCFG
);
810 writel(lli_dst
->reg_elt
, base
+ D40_CHAN_REG_SDELT
);
811 writel(lli_dst
->reg_ptr
, base
+ D40_CHAN_REG_SDPTR
);
812 writel(lli_dst
->reg_lnk
, base
+ D40_CHAN_REG_SDLNK
);
815 static void d40_desc_done(struct d40_chan
*d40c
, struct d40_desc
*desc
)
817 list_add_tail(&desc
->node
, &d40c
->done
);
820 static void d40_log_lli_to_lcxa(struct d40_chan
*chan
, struct d40_desc
*desc
)
822 struct d40_lcla_pool
*pool
= &chan
->base
->lcla_pool
;
823 struct d40_log_lli_bidir
*lli
= &desc
->lli_log
;
824 int lli_current
= desc
->lli_current
;
825 int lli_len
= desc
->lli_len
;
826 bool cyclic
= desc
->cyclic
;
827 int curr_lcla
= -EINVAL
;
829 bool use_esram_lcla
= chan
->base
->plat_data
->use_esram_lcla
;
833 * We may have partially running cyclic transfers, in case we did't get
834 * enough LCLA entries.
836 linkback
= cyclic
&& lli_current
== 0;
839 * For linkback, we need one LCLA even with only one link, because we
840 * can't link back to the one in LCPA space
842 if (linkback
|| (lli_len
- lli_current
> 1)) {
844 * If the channel is expected to use only soft_lli don't
845 * allocate a lcla. This is to avoid a HW issue that exists
846 * in some controller during a peripheral to memory transfer
847 * that uses linked lists.
849 if (!(chan
->phy_chan
->use_soft_lli
&&
850 chan
->dma_cfg
.dir
== DMA_DEV_TO_MEM
))
851 curr_lcla
= d40_lcla_alloc_one(chan
, desc
);
853 first_lcla
= curr_lcla
;
857 * For linkback, we normally load the LCPA in the loop since we need to
858 * link it to the second LCLA and not the first. However, if we
859 * couldn't even get a first LCLA, then we have to run in LCPA and
862 if (!linkback
|| curr_lcla
== -EINVAL
) {
863 unsigned int flags
= 0;
865 if (curr_lcla
== -EINVAL
)
866 flags
|= LLI_TERM_INT
;
868 d40_log_lli_lcpa_write(chan
->lcpa
,
869 &lli
->dst
[lli_current
],
870 &lli
->src
[lli_current
],
879 for (; lli_current
< lli_len
; lli_current
++) {
880 unsigned int lcla_offset
= chan
->phy_chan
->num
* 1024 +
882 struct d40_log_lli
*lcla
= pool
->base
+ lcla_offset
;
883 unsigned int flags
= 0;
886 if (lli_current
+ 1 < lli_len
)
887 next_lcla
= d40_lcla_alloc_one(chan
, desc
);
889 next_lcla
= linkback
? first_lcla
: -EINVAL
;
891 if (cyclic
|| next_lcla
== -EINVAL
)
892 flags
|= LLI_TERM_INT
;
894 if (linkback
&& curr_lcla
== first_lcla
) {
895 /* First link goes in both LCPA and LCLA */
896 d40_log_lli_lcpa_write(chan
->lcpa
,
897 &lli
->dst
[lli_current
],
898 &lli
->src
[lli_current
],
903 * One unused LCLA in the cyclic case if the very first
906 d40_log_lli_lcla_write(lcla
,
907 &lli
->dst
[lli_current
],
908 &lli
->src
[lli_current
],
912 * Cache maintenance is not needed if lcla is
915 if (!use_esram_lcla
) {
916 dma_sync_single_range_for_device(chan
->base
->dev
,
917 pool
->dma_addr
, lcla_offset
,
918 2 * sizeof(struct d40_log_lli
),
921 curr_lcla
= next_lcla
;
923 if (curr_lcla
== -EINVAL
|| curr_lcla
== first_lcla
) {
929 desc
->lli_current
= lli_current
;
932 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
934 if (chan_is_physical(d40c
)) {
935 d40_phy_lli_load(d40c
, d40d
);
936 d40d
->lli_current
= d40d
->lli_len
;
938 d40_log_lli_to_lcxa(d40c
, d40d
);
941 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
943 return list_first_entry_or_null(&d40c
->active
, struct d40_desc
, node
);
946 /* remove desc from current queue and add it to the pending_queue */
947 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
949 d40_desc_remove(desc
);
950 desc
->is_in_client_list
= false;
951 list_add_tail(&desc
->node
, &d40c
->pending_queue
);
954 static struct d40_desc
*d40_first_pending(struct d40_chan
*d40c
)
956 return list_first_entry_or_null(&d40c
->pending_queue
, struct d40_desc
,
960 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
962 return list_first_entry_or_null(&d40c
->queue
, struct d40_desc
, node
);
965 static struct d40_desc
*d40_first_done(struct d40_chan
*d40c
)
967 return list_first_entry_or_null(&d40c
->done
, struct d40_desc
, node
);
970 static int d40_psize_2_burst_size(bool is_log
, int psize
)
973 if (psize
== STEDMA40_PSIZE_LOG_1
)
976 if (psize
== STEDMA40_PSIZE_PHY_1
)
984 * The dma only supports transmitting packages up to
985 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
987 * Calculate the total number of dma elements required to send the entire sg list.
989 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
992 u32 max_w
= max(data_width1
, data_width2
);
993 u32 min_w
= min(data_width1
, data_width2
);
994 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
* min_w
, max_w
);
996 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
999 if (!IS_ALIGNED(size
, max_w
))
1002 if (size
<= seg_max
)
1005 dmalen
= size
/ seg_max
;
1006 if (dmalen
* seg_max
< size
)
1012 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
1013 u32 data_width1
, u32 data_width2
)
1015 struct scatterlist
*sg
;
1020 for_each_sg(sgl
, sg
, sg_len
, i
) {
1021 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
1022 data_width1
, data_width2
);
1030 static int __d40_execute_command_phy(struct d40_chan
*d40c
,
1031 enum d40_command command
)
1035 void __iomem
*active_reg
;
1037 unsigned long flags
;
1040 if (command
== D40_DMA_STOP
) {
1041 ret
= __d40_execute_command_phy(d40c
, D40_DMA_SUSPEND_REQ
);
1046 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
1048 if (d40c
->phy_chan
->num
% 2 == 0)
1049 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1051 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1053 if (command
== D40_DMA_SUSPEND_REQ
) {
1054 status
= (readl(active_reg
) &
1055 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1056 D40_CHAN_POS(d40c
->phy_chan
->num
);
1058 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1062 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
1063 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
1066 if (command
== D40_DMA_SUSPEND_REQ
) {
1068 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
1069 status
= (readl(active_reg
) &
1070 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1071 D40_CHAN_POS(d40c
->phy_chan
->num
);
1075 * Reduce the number of bus accesses while
1076 * waiting for the DMA to suspend.
1080 if (status
== D40_DMA_STOP
||
1081 status
== D40_DMA_SUSPENDED
)
1085 if (i
== D40_SUSPEND_MAX_IT
) {
1087 "unable to suspend the chl %d (log: %d) status %x\n",
1088 d40c
->phy_chan
->num
, d40c
->log_num
,
1096 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
1100 static void d40_term_all(struct d40_chan
*d40c
)
1102 struct d40_desc
*d40d
;
1103 struct d40_desc
*_d
;
1105 /* Release completed descriptors */
1106 while ((d40d
= d40_first_done(d40c
))) {
1107 d40_desc_remove(d40d
);
1108 d40_desc_free(d40c
, d40d
);
1111 /* Release active descriptors */
1112 while ((d40d
= d40_first_active_get(d40c
))) {
1113 d40_desc_remove(d40d
);
1114 d40_desc_free(d40c
, d40d
);
1117 /* Release queued descriptors waiting for transfer */
1118 while ((d40d
= d40_first_queued(d40c
))) {
1119 d40_desc_remove(d40d
);
1120 d40_desc_free(d40c
, d40d
);
1123 /* Release pending descriptors */
1124 while ((d40d
= d40_first_pending(d40c
))) {
1125 d40_desc_remove(d40d
);
1126 d40_desc_free(d40c
, d40d
);
1129 /* Release client owned descriptors */
1130 if (!list_empty(&d40c
->client
))
1131 list_for_each_entry_safe(d40d
, _d
, &d40c
->client
, node
) {
1132 d40_desc_remove(d40d
);
1133 d40_desc_free(d40c
, d40d
);
1136 /* Release descriptors in prepare queue */
1137 if (!list_empty(&d40c
->prepare_queue
))
1138 list_for_each_entry_safe(d40d
, _d
,
1139 &d40c
->prepare_queue
, node
) {
1140 d40_desc_remove(d40d
);
1141 d40_desc_free(d40c
, d40d
);
1144 d40c
->pending_tx
= 0;
1147 static void __d40_config_set_event(struct d40_chan
*d40c
,
1148 enum d40_events event_type
, u32 event
,
1151 void __iomem
*addr
= chan_base(d40c
) + reg
;
1155 switch (event_type
) {
1157 case D40_DEACTIVATE_EVENTLINE
:
1159 writel((D40_DEACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1160 | ~D40_EVENTLINE_MASK(event
), addr
);
1163 case D40_SUSPEND_REQ_EVENTLINE
:
1164 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1165 D40_EVENTLINE_POS(event
);
1167 if (status
== D40_DEACTIVATE_EVENTLINE
||
1168 status
== D40_SUSPEND_REQ_EVENTLINE
)
1171 writel((D40_SUSPEND_REQ_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1172 | ~D40_EVENTLINE_MASK(event
), addr
);
1174 for (tries
= 0 ; tries
< D40_SUSPEND_MAX_IT
; tries
++) {
1176 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1177 D40_EVENTLINE_POS(event
);
1181 * Reduce the number of bus accesses while
1182 * waiting for the DMA to suspend.
1186 if (status
== D40_DEACTIVATE_EVENTLINE
)
1190 if (tries
== D40_SUSPEND_MAX_IT
) {
1192 "unable to stop the event_line chl %d (log: %d)"
1193 "status %x\n", d40c
->phy_chan
->num
,
1194 d40c
->log_num
, status
);
1198 case D40_ACTIVATE_EVENTLINE
:
1200 * The hardware sometimes doesn't register the enable when src and dst
1201 * event lines are active on the same logical channel. Retry to ensure
1202 * it does. Usually only one retry is sufficient.
1206 writel((D40_ACTIVATE_EVENTLINE
<<
1207 D40_EVENTLINE_POS(event
)) |
1208 ~D40_EVENTLINE_MASK(event
), addr
);
1210 if (readl(addr
) & D40_EVENTLINE_MASK(event
))
1215 dev_dbg(chan2dev(d40c
),
1216 "[%s] workaround enable S%cLNK (%d tries)\n",
1217 __func__
, reg
== D40_CHAN_REG_SSLNK
? 'S' : 'D',
1223 case D40_ROUND_EVENTLINE
:
1230 static void d40_config_set_event(struct d40_chan
*d40c
,
1231 enum d40_events event_type
)
1233 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1235 /* Enable event line connected to device (or memcpy) */
1236 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
1237 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
1238 __d40_config_set_event(d40c
, event_type
, event
,
1239 D40_CHAN_REG_SSLNK
);
1241 if (d40c
->dma_cfg
.dir
!= DMA_DEV_TO_MEM
)
1242 __d40_config_set_event(d40c
, event_type
, event
,
1243 D40_CHAN_REG_SDLNK
);
1246 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
1248 void __iomem
*chanbase
= chan_base(d40c
);
1251 val
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
1252 val
|= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
1258 __d40_execute_command_log(struct d40_chan
*d40c
, enum d40_command command
)
1260 unsigned long flags
;
1263 void __iomem
*active_reg
;
1265 if (d40c
->phy_chan
->num
% 2 == 0)
1266 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1268 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1271 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
1275 case D40_DMA_SUSPEND_REQ
:
1277 active_status
= (readl(active_reg
) &
1278 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1279 D40_CHAN_POS(d40c
->phy_chan
->num
);
1281 if (active_status
== D40_DMA_RUN
)
1282 d40_config_set_event(d40c
, D40_SUSPEND_REQ_EVENTLINE
);
1284 d40_config_set_event(d40c
, D40_DEACTIVATE_EVENTLINE
);
1286 if (!d40_chan_has_events(d40c
) && (command
== D40_DMA_STOP
))
1287 ret
= __d40_execute_command_phy(d40c
, command
);
1293 d40_config_set_event(d40c
, D40_ACTIVATE_EVENTLINE
);
1294 ret
= __d40_execute_command_phy(d40c
, command
);
1297 case D40_DMA_SUSPENDED
:
1302 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
1306 static int d40_channel_execute_command(struct d40_chan
*d40c
,
1307 enum d40_command command
)
1309 if (chan_is_logical(d40c
))
1310 return __d40_execute_command_log(d40c
, command
);
1312 return __d40_execute_command_phy(d40c
, command
);
1315 static u32
d40_get_prmo(struct d40_chan
*d40c
)
1317 static const unsigned int phy_map
[] = {
1318 [STEDMA40_PCHAN_BASIC_MODE
]
1319 = D40_DREG_PRMO_PCHAN_BASIC
,
1320 [STEDMA40_PCHAN_MODULO_MODE
]
1321 = D40_DREG_PRMO_PCHAN_MODULO
,
1322 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
1323 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
1325 static const unsigned int log_map
[] = {
1326 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
1327 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
1328 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
1329 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
1330 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
1331 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
1334 if (chan_is_physical(d40c
))
1335 return phy_map
[d40c
->dma_cfg
.mode_opt
];
1337 return log_map
[d40c
->dma_cfg
.mode_opt
];
1340 static void d40_config_write(struct d40_chan
*d40c
)
1345 /* Odd addresses are even addresses + 4 */
1346 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
1347 /* Setup channel mode to logical or physical */
1348 var
= ((u32
)(chan_is_logical(d40c
)) + 1) <<
1349 D40_CHAN_POS(d40c
->phy_chan
->num
);
1350 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
1352 /* Setup operational mode option register */
1353 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
1355 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
1357 if (chan_is_logical(d40c
)) {
1358 int lidx
= (d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
)
1359 & D40_SREG_ELEM_LOG_LIDX_MASK
;
1360 void __iomem
*chanbase
= chan_base(d40c
);
1362 /* Set default config for CFG reg */
1363 writel(d40c
->src_def_cfg
, chanbase
+ D40_CHAN_REG_SSCFG
);
1364 writel(d40c
->dst_def_cfg
, chanbase
+ D40_CHAN_REG_SDCFG
);
1366 /* Set LIDX for lcla */
1367 writel(lidx
, chanbase
+ D40_CHAN_REG_SSELT
);
1368 writel(lidx
, chanbase
+ D40_CHAN_REG_SDELT
);
1370 /* Clear LNK which will be used by d40_chan_has_events() */
1371 writel(0, chanbase
+ D40_CHAN_REG_SSLNK
);
1372 writel(0, chanbase
+ D40_CHAN_REG_SDLNK
);
1376 static u32
d40_residue(struct d40_chan
*d40c
)
1380 if (chan_is_logical(d40c
))
1381 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
1382 >> D40_MEM_LCSP2_ECNT_POS
;
1384 u32 val
= readl(chan_base(d40c
) + D40_CHAN_REG_SDELT
);
1385 num_elt
= (val
& D40_SREG_ELEM_PHY_ECNT_MASK
)
1386 >> D40_SREG_ELEM_PHY_ECNT_POS
;
1389 return num_elt
* d40c
->dma_cfg
.dst_info
.data_width
;
1392 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
1396 if (chan_is_logical(d40c
))
1397 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
1399 is_link
= readl(chan_base(d40c
) + D40_CHAN_REG_SDLNK
)
1400 & D40_SREG_LNK_PHYS_LNK_MASK
;
1405 static int d40_pause(struct dma_chan
*chan
)
1407 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1409 unsigned long flags
;
1411 if (d40c
->phy_chan
== NULL
) {
1412 chan_err(d40c
, "Channel is not allocated!\n");
1419 spin_lock_irqsave(&d40c
->lock
, flags
);
1420 pm_runtime_get_sync(d40c
->base
->dev
);
1422 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1424 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1425 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1426 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1430 static int d40_resume(struct dma_chan
*chan
)
1432 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
1434 unsigned long flags
;
1436 if (d40c
->phy_chan
== NULL
) {
1437 chan_err(d40c
, "Channel is not allocated!\n");
1444 spin_lock_irqsave(&d40c
->lock
, flags
);
1445 pm_runtime_get_sync(d40c
->base
->dev
);
1447 /* If bytes left to transfer or linked tx resume job */
1448 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
))
1449 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1451 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1452 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1453 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1457 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
1459 struct d40_chan
*d40c
= container_of(tx
->chan
,
1462 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
1463 unsigned long flags
;
1464 dma_cookie_t cookie
;
1466 spin_lock_irqsave(&d40c
->lock
, flags
);
1467 cookie
= dma_cookie_assign(tx
);
1468 d40_desc_queue(d40c
, d40d
);
1469 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1474 static int d40_start(struct d40_chan
*d40c
)
1476 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1479 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1481 struct d40_desc
*d40d
;
1484 /* Start queued jobs, if any */
1485 d40d
= d40_first_queued(d40c
);
1490 pm_runtime_get_sync(d40c
->base
->dev
);
1493 /* Remove from queue */
1494 d40_desc_remove(d40d
);
1496 /* Add to active queue */
1497 d40_desc_submit(d40c
, d40d
);
1499 /* Initiate DMA job */
1500 d40_desc_load(d40c
, d40d
);
1503 err
= d40_start(d40c
);
1512 /* called from interrupt context */
1513 static void dma_tc_handle(struct d40_chan
*d40c
)
1515 struct d40_desc
*d40d
;
1517 /* Get first active entry from list */
1518 d40d
= d40_first_active_get(d40c
);
1525 * If this was a paritially loaded list, we need to reloaded
1526 * it, and only when the list is completed. We need to check
1527 * for done because the interrupt will hit for every link, and
1528 * not just the last one.
1530 if (d40d
->lli_current
< d40d
->lli_len
1531 && !d40_tx_is_linked(d40c
)
1532 && !d40_residue(d40c
)) {
1533 d40_lcla_free_all(d40c
, d40d
);
1534 d40_desc_load(d40c
, d40d
);
1535 (void) d40_start(d40c
);
1537 if (d40d
->lli_current
== d40d
->lli_len
)
1538 d40d
->lli_current
= 0;
1541 d40_lcla_free_all(d40c
, d40d
);
1543 if (d40d
->lli_current
< d40d
->lli_len
) {
1544 d40_desc_load(d40c
, d40d
);
1546 (void) d40_start(d40c
);
1550 if (d40_queue_start(d40c
) == NULL
) {
1553 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1554 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1557 d40_desc_remove(d40d
);
1558 d40_desc_done(d40c
, d40d
);
1562 tasklet_schedule(&d40c
->tasklet
);
1566 static void dma_tasklet(unsigned long data
)
1568 struct d40_chan
*d40c
= (struct d40_chan
*) data
;
1569 struct d40_desc
*d40d
;
1570 unsigned long flags
;
1571 bool callback_active
;
1572 struct dmaengine_desc_callback cb
;
1574 spin_lock_irqsave(&d40c
->lock
, flags
);
1576 /* Get first entry from the done list */
1577 d40d
= d40_first_done(d40c
);
1579 /* Check if we have reached here for cyclic job */
1580 d40d
= d40_first_active_get(d40c
);
1581 if (d40d
== NULL
|| !d40d
->cyclic
)
1582 goto check_pending_tx
;
1586 dma_cookie_complete(&d40d
->txd
);
1589 * If terminating a channel pending_tx is set to zero.
1590 * This prevents any finished active jobs to return to the client.
1592 if (d40c
->pending_tx
== 0) {
1593 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1597 /* Callback to client */
1598 callback_active
= !!(d40d
->txd
.flags
& DMA_PREP_INTERRUPT
);
1599 dmaengine_desc_get_callback(&d40d
->txd
, &cb
);
1601 if (!d40d
->cyclic
) {
1602 if (async_tx_test_ack(&d40d
->txd
)) {
1603 d40_desc_remove(d40d
);
1604 d40_desc_free(d40c
, d40d
);
1605 } else if (!d40d
->is_in_client_list
) {
1606 d40_desc_remove(d40d
);
1607 d40_lcla_free_all(d40c
, d40d
);
1608 list_add_tail(&d40d
->node
, &d40c
->client
);
1609 d40d
->is_in_client_list
= true;
1615 if (d40c
->pending_tx
)
1616 tasklet_schedule(&d40c
->tasklet
);
1618 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1620 if (callback_active
)
1621 dmaengine_desc_callback_invoke(&cb
, NULL
);
1625 /* Rescue manouver if receiving double interrupts */
1626 if (d40c
->pending_tx
> 0)
1628 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1631 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1637 struct d40_chan
*d40c
;
1638 unsigned long flags
;
1639 struct d40_base
*base
= data
;
1640 u32 regs
[base
->gen_dmac
.il_size
];
1641 struct d40_interrupt_lookup
*il
= base
->gen_dmac
.il
;
1642 u32 il_size
= base
->gen_dmac
.il_size
;
1644 spin_lock_irqsave(&base
->interrupt_lock
, flags
);
1646 /* Read interrupt status of both logical and physical channels */
1647 for (i
= 0; i
< il_size
; i
++)
1648 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1652 chan
= find_next_bit((unsigned long *)regs
,
1653 BITS_PER_LONG
* il_size
, chan
+ 1);
1655 /* No more set bits found? */
1656 if (chan
== BITS_PER_LONG
* il_size
)
1659 row
= chan
/ BITS_PER_LONG
;
1660 idx
= chan
& (BITS_PER_LONG
- 1);
1662 if (il
[row
].offset
== D40_PHY_CHAN
)
1663 d40c
= base
->lookup_phy_chans
[idx
];
1665 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1669 * No error because this can happen if something else
1670 * in the system is using the channel.
1676 writel(BIT(idx
), base
->virtbase
+ il
[row
].clr
);
1678 spin_lock(&d40c
->lock
);
1680 if (!il
[row
].is_error
)
1681 dma_tc_handle(d40c
);
1683 d40_err(base
->dev
, "IRQ chan: %ld offset %d idx %d\n",
1684 chan
, il
[row
].offset
, idx
);
1686 spin_unlock(&d40c
->lock
);
1689 spin_unlock_irqrestore(&base
->interrupt_lock
, flags
);
1694 static int d40_validate_conf(struct d40_chan
*d40c
,
1695 struct stedma40_chan_cfg
*conf
)
1698 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1701 chan_err(d40c
, "Invalid direction.\n");
1705 if ((is_log
&& conf
->dev_type
> d40c
->base
->num_log_chans
) ||
1706 (!is_log
&& conf
->dev_type
> d40c
->base
->num_phy_chans
) ||
1707 (conf
->dev_type
< 0)) {
1708 chan_err(d40c
, "Invalid device type (%d)\n", conf
->dev_type
);
1712 if (conf
->dir
== DMA_DEV_TO_DEV
) {
1714 * DMAC HW supports it. Will be added to this driver,
1715 * in case any dma client requires it.
1717 chan_err(d40c
, "periph to periph not supported\n");
1721 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1722 conf
->src_info
.data_width
!=
1723 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1724 conf
->dst_info
.data_width
) {
1726 * The DMAC hardware only supports
1727 * src (burst x width) == dst (burst x width)
1730 chan_err(d40c
, "src (burst x width) != dst (burst x width)\n");
1737 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
,
1738 bool is_src
, int log_event_line
, bool is_log
,
1741 unsigned long flags
;
1742 spin_lock_irqsave(&phy
->lock
, flags
);
1744 *first_user
= ((phy
->allocated_src
| phy
->allocated_dst
)
1748 /* Physical interrupts are masked per physical full channel */
1749 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1750 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1751 phy
->allocated_dst
= D40_ALLOC_PHY
;
1752 phy
->allocated_src
= D40_ALLOC_PHY
;
1755 goto not_found_unlock
;
1758 /* Logical channel */
1760 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1761 goto not_found_unlock
;
1763 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1764 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1766 if (!(phy
->allocated_src
& BIT(log_event_line
))) {
1767 phy
->allocated_src
|= BIT(log_event_line
);
1770 goto not_found_unlock
;
1772 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1773 goto not_found_unlock
;
1775 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1776 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1778 if (!(phy
->allocated_dst
& BIT(log_event_line
))) {
1779 phy
->allocated_dst
|= BIT(log_event_line
);
1784 spin_unlock_irqrestore(&phy
->lock
, flags
);
1787 spin_unlock_irqrestore(&phy
->lock
, flags
);
1791 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1794 unsigned long flags
;
1795 bool is_free
= false;
1797 spin_lock_irqsave(&phy
->lock
, flags
);
1798 if (!log_event_line
) {
1799 phy
->allocated_dst
= D40_ALLOC_FREE
;
1800 phy
->allocated_src
= D40_ALLOC_FREE
;
1805 /* Logical channel */
1807 phy
->allocated_src
&= ~BIT(log_event_line
);
1808 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1809 phy
->allocated_src
= D40_ALLOC_FREE
;
1811 phy
->allocated_dst
&= ~BIT(log_event_line
);
1812 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1813 phy
->allocated_dst
= D40_ALLOC_FREE
;
1816 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1819 spin_unlock_irqrestore(&phy
->lock
, flags
);
1824 static int d40_allocate_channel(struct d40_chan
*d40c
, bool *first_phy_user
)
1826 int dev_type
= d40c
->dma_cfg
.dev_type
;
1829 struct d40_phy_res
*phys
;
1835 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1837 phys
= d40c
->base
->phy_res
;
1838 num_phy_chans
= d40c
->base
->num_phy_chans
;
1840 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
1841 log_num
= 2 * dev_type
;
1843 } else if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
1844 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1845 /* dst event lines are used for logical memcpy */
1846 log_num
= 2 * dev_type
+ 1;
1851 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1852 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1855 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1856 /* Find physical half channel */
1857 if (d40c
->dma_cfg
.use_fixed_channel
) {
1858 i
= d40c
->dma_cfg
.phy_channel
;
1859 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1864 for (i
= 0; i
< num_phy_chans
; i
++) {
1865 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1872 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1873 int phy_num
= j
+ event_group
* 2;
1874 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1875 if (d40_alloc_mask_set(&phys
[i
],
1885 d40c
->phy_chan
= &phys
[i
];
1886 d40c
->log_num
= D40_PHY_CHAN
;
1892 /* Find logical channel */
1893 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1894 int phy_num
= j
+ event_group
* 2;
1896 if (d40c
->dma_cfg
.use_fixed_channel
) {
1897 i
= d40c
->dma_cfg
.phy_channel
;
1899 if ((i
!= phy_num
) && (i
!= phy_num
+ 1)) {
1900 dev_err(chan2dev(d40c
),
1901 "invalid fixed phy channel %d\n", i
);
1905 if (d40_alloc_mask_set(&phys
[i
], is_src
, event_line
,
1906 is_log
, first_phy_user
))
1909 dev_err(chan2dev(d40c
),
1910 "could not allocate fixed phy channel %d\n", i
);
1915 * Spread logical channels across all available physical rather
1916 * than pack every logical channel at the first available phy
1920 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1921 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1927 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
1928 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1938 d40c
->phy_chan
= &phys
[i
];
1939 d40c
->log_num
= log_num
;
1943 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
1945 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
1951 static int d40_config_memcpy(struct d40_chan
*d40c
)
1953 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
1955 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
1956 d40c
->dma_cfg
= dma40_memcpy_conf_log
;
1957 d40c
->dma_cfg
.dev_type
= dma40_memcpy_channels
[d40c
->chan
.chan_id
];
1959 d40_log_cfg(&d40c
->dma_cfg
,
1960 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
1962 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
1963 dma_has_cap(DMA_SLAVE
, cap
)) {
1964 d40c
->dma_cfg
= dma40_memcpy_conf_phy
;
1966 /* Generate interrrupt at end of transfer or relink. */
1967 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_TIM_POS
);
1969 /* Generate interrupt on error. */
1970 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
1971 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
1974 chan_err(d40c
, "No memcpy\n");
1981 static int d40_free_dma(struct d40_chan
*d40c
)
1985 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1986 struct d40_phy_res
*phy
= d40c
->phy_chan
;
1989 /* Terminate all queued and active transfers */
1993 chan_err(d40c
, "phy == null\n");
1997 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1998 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1999 chan_err(d40c
, "channel already free\n");
2003 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2004 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
)
2006 else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2009 chan_err(d40c
, "Unknown direction\n");
2013 pm_runtime_get_sync(d40c
->base
->dev
);
2014 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2016 chan_err(d40c
, "stop failed\n");
2017 goto mark_last_busy
;
2020 d40_alloc_mask_free(phy
, is_src
, chan_is_logical(d40c
) ? event
: 0);
2022 if (chan_is_logical(d40c
))
2023 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
2025 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
2028 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2029 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2033 d40c
->phy_chan
= NULL
;
2034 d40c
->configured
= false;
2036 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2037 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2041 static bool d40_is_paused(struct d40_chan
*d40c
)
2043 void __iomem
*chanbase
= chan_base(d40c
);
2044 bool is_paused
= false;
2045 unsigned long flags
;
2046 void __iomem
*active_reg
;
2048 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2050 spin_lock_irqsave(&d40c
->lock
, flags
);
2052 if (chan_is_physical(d40c
)) {
2053 if (d40c
->phy_chan
->num
% 2 == 0)
2054 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
2056 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
2058 status
= (readl(active_reg
) &
2059 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
2060 D40_CHAN_POS(d40c
->phy_chan
->num
);
2061 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
2066 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2067 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
2068 status
= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
2069 } else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
2070 status
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
2072 chan_err(d40c
, "Unknown direction\n");
2076 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
2077 D40_EVENTLINE_POS(event
);
2079 if (status
!= D40_DMA_RUN
)
2082 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2087 static u32
stedma40_residue(struct dma_chan
*chan
)
2089 struct d40_chan
*d40c
=
2090 container_of(chan
, struct d40_chan
, chan
);
2092 unsigned long flags
;
2094 spin_lock_irqsave(&d40c
->lock
, flags
);
2095 bytes_left
= d40_residue(d40c
);
2096 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2102 d40_prep_sg_log(struct d40_chan
*chan
, struct d40_desc
*desc
,
2103 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2104 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2105 dma_addr_t dst_dev_addr
)
2107 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2108 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2109 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2112 ret
= d40_log_sg_to_lli(sg_src
, sg_len
,
2115 chan
->log_def
.lcsp1
,
2116 src_info
->data_width
,
2117 dst_info
->data_width
);
2119 ret
= d40_log_sg_to_lli(sg_dst
, sg_len
,
2122 chan
->log_def
.lcsp3
,
2123 dst_info
->data_width
,
2124 src_info
->data_width
);
2126 return ret
< 0 ? ret
: 0;
2130 d40_prep_sg_phy(struct d40_chan
*chan
, struct d40_desc
*desc
,
2131 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2132 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2133 dma_addr_t dst_dev_addr
)
2135 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2136 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2137 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2138 unsigned long flags
= 0;
2142 flags
|= LLI_CYCLIC
| LLI_TERM_INT
;
2144 ret
= d40_phy_sg_to_lli(sg_src
, sg_len
, src_dev_addr
,
2146 virt_to_phys(desc
->lli_phy
.src
),
2148 src_info
, dst_info
, flags
);
2150 ret
= d40_phy_sg_to_lli(sg_dst
, sg_len
, dst_dev_addr
,
2152 virt_to_phys(desc
->lli_phy
.dst
),
2154 dst_info
, src_info
, flags
);
2156 dma_sync_single_for_device(chan
->base
->dev
, desc
->lli_pool
.dma_addr
,
2157 desc
->lli_pool
.size
, DMA_TO_DEVICE
);
2159 return ret
< 0 ? ret
: 0;
2162 static struct d40_desc
*
2163 d40_prep_desc(struct d40_chan
*chan
, struct scatterlist
*sg
,
2164 unsigned int sg_len
, unsigned long dma_flags
)
2166 struct stedma40_chan_cfg
*cfg
;
2167 struct d40_desc
*desc
;
2170 desc
= d40_desc_get(chan
);
2174 cfg
= &chan
->dma_cfg
;
2175 desc
->lli_len
= d40_sg_2_dmalen(sg
, sg_len
, cfg
->src_info
.data_width
,
2176 cfg
->dst_info
.data_width
);
2177 if (desc
->lli_len
< 0) {
2178 chan_err(chan
, "Unaligned size\n");
2182 ret
= d40_pool_lli_alloc(chan
, desc
, desc
->lli_len
);
2184 chan_err(chan
, "Could not allocate lli\n");
2188 desc
->lli_current
= 0;
2189 desc
->txd
.flags
= dma_flags
;
2190 desc
->txd
.tx_submit
= d40_tx_submit
;
2192 dma_async_tx_descriptor_init(&desc
->txd
, &chan
->chan
);
2196 d40_desc_free(chan
, desc
);
2200 static struct dma_async_tx_descriptor
*
2201 d40_prep_sg(struct dma_chan
*dchan
, struct scatterlist
*sg_src
,
2202 struct scatterlist
*sg_dst
, unsigned int sg_len
,
2203 enum dma_transfer_direction direction
, unsigned long dma_flags
)
2205 struct d40_chan
*chan
= container_of(dchan
, struct d40_chan
, chan
);
2206 dma_addr_t src_dev_addr
;
2207 dma_addr_t dst_dev_addr
;
2208 struct d40_desc
*desc
;
2209 unsigned long flags
;
2212 if (!chan
->phy_chan
) {
2213 chan_err(chan
, "Cannot prepare unallocated channel\n");
2217 spin_lock_irqsave(&chan
->lock
, flags
);
2219 desc
= d40_prep_desc(chan
, sg_src
, sg_len
, dma_flags
);
2223 if (sg_next(&sg_src
[sg_len
- 1]) == sg_src
)
2224 desc
->cyclic
= true;
2228 if (direction
== DMA_DEV_TO_MEM
)
2229 src_dev_addr
= chan
->runtime_addr
;
2230 else if (direction
== DMA_MEM_TO_DEV
)
2231 dst_dev_addr
= chan
->runtime_addr
;
2233 if (chan_is_logical(chan
))
2234 ret
= d40_prep_sg_log(chan
, desc
, sg_src
, sg_dst
,
2235 sg_len
, src_dev_addr
, dst_dev_addr
);
2237 ret
= d40_prep_sg_phy(chan
, desc
, sg_src
, sg_dst
,
2238 sg_len
, src_dev_addr
, dst_dev_addr
);
2241 chan_err(chan
, "Failed to prepare %s sg job: %d\n",
2242 chan_is_logical(chan
) ? "log" : "phy", ret
);
2247 * add descriptor to the prepare queue in order to be able
2248 * to free them later in terminate_all
2250 list_add_tail(&desc
->node
, &chan
->prepare_queue
);
2252 spin_unlock_irqrestore(&chan
->lock
, flags
);
2256 d40_desc_free(chan
, desc
);
2258 spin_unlock_irqrestore(&chan
->lock
, flags
);
2262 bool stedma40_filter(struct dma_chan
*chan
, void *data
)
2264 struct stedma40_chan_cfg
*info
= data
;
2265 struct d40_chan
*d40c
=
2266 container_of(chan
, struct d40_chan
, chan
);
2270 err
= d40_validate_conf(d40c
, info
);
2272 d40c
->dma_cfg
= *info
;
2274 err
= d40_config_memcpy(d40c
);
2277 d40c
->configured
= true;
2281 EXPORT_SYMBOL(stedma40_filter
);
2283 static void __d40_set_prio_rt(struct d40_chan
*d40c
, int dev_type
, bool src
)
2285 bool realtime
= d40c
->dma_cfg
.realtime
;
2286 bool highprio
= d40c
->dma_cfg
.high_priority
;
2288 u32 event
= D40_TYPE_TO_EVENT(dev_type
);
2289 u32 group
= D40_TYPE_TO_GROUP(dev_type
);
2290 u32 bit
= BIT(event
);
2292 struct d40_gen_dmac
*dmac
= &d40c
->base
->gen_dmac
;
2294 rtreg
= realtime
? dmac
->realtime_en
: dmac
->realtime_clear
;
2296 * Due to a hardware bug, in some cases a logical channel triggered by
2297 * a high priority destination event line can generate extra packet
2300 * The workaround is to not set the high priority level for the
2301 * destination event lines that trigger logical channels.
2303 if (!src
&& chan_is_logical(d40c
))
2306 prioreg
= highprio
? dmac
->high_prio_en
: dmac
->high_prio_clear
;
2308 /* Destination event lines are stored in the upper halfword */
2312 writel(bit
, d40c
->base
->virtbase
+ prioreg
+ group
* 4);
2313 writel(bit
, d40c
->base
->virtbase
+ rtreg
+ group
* 4);
2316 static void d40_set_prio_realtime(struct d40_chan
*d40c
)
2318 if (d40c
->base
->rev
< 3)
2321 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
2322 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2323 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, true);
2325 if ((d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
) ||
2326 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2327 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, false);
2330 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2331 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2332 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2333 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2334 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2336 static struct dma_chan
*d40_xlate(struct of_phandle_args
*dma_spec
,
2337 struct of_dma
*ofdma
)
2339 struct stedma40_chan_cfg cfg
;
2343 memset(&cfg
, 0, sizeof(struct stedma40_chan_cfg
));
2346 dma_cap_set(DMA_SLAVE
, cap
);
2348 cfg
.dev_type
= dma_spec
->args
[0];
2349 flags
= dma_spec
->args
[2];
2351 switch (D40_DT_FLAGS_MODE(flags
)) {
2352 case 0: cfg
.mode
= STEDMA40_MODE_LOGICAL
; break;
2353 case 1: cfg
.mode
= STEDMA40_MODE_PHYSICAL
; break;
2356 switch (D40_DT_FLAGS_DIR(flags
)) {
2358 cfg
.dir
= DMA_MEM_TO_DEV
;
2359 cfg
.dst_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2362 cfg
.dir
= DMA_DEV_TO_MEM
;
2363 cfg
.src_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2367 if (D40_DT_FLAGS_FIXED_CHAN(flags
)) {
2368 cfg
.phy_channel
= dma_spec
->args
[1];
2369 cfg
.use_fixed_channel
= true;
2372 if (D40_DT_FLAGS_HIGH_PRIO(flags
))
2373 cfg
.high_priority
= true;
2375 return dma_request_channel(cap
, stedma40_filter
, &cfg
);
2378 /* DMA ENGINE functions */
2379 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
2382 unsigned long flags
;
2383 struct d40_chan
*d40c
=
2384 container_of(chan
, struct d40_chan
, chan
);
2386 spin_lock_irqsave(&d40c
->lock
, flags
);
2388 dma_cookie_init(chan
);
2390 /* If no dma configuration is set use default configuration (memcpy) */
2391 if (!d40c
->configured
) {
2392 err
= d40_config_memcpy(d40c
);
2394 chan_err(d40c
, "Failed to configure memcpy channel\n");
2395 goto mark_last_busy
;
2399 err
= d40_allocate_channel(d40c
, &is_free_phy
);
2401 chan_err(d40c
, "Failed to allocate channel\n");
2402 d40c
->configured
= false;
2403 goto mark_last_busy
;
2406 pm_runtime_get_sync(d40c
->base
->dev
);
2408 d40_set_prio_realtime(d40c
);
2410 if (chan_is_logical(d40c
)) {
2411 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2412 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2413 d40c
->dma_cfg
.dev_type
* D40_LCPA_CHAN_SIZE
;
2415 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2416 d40c
->dma_cfg
.dev_type
*
2417 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
2419 /* Unmask the Global Interrupt Mask. */
2420 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2421 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2424 dev_dbg(chan2dev(d40c
), "allocated %s channel (phy %d%s)\n",
2425 chan_is_logical(d40c
) ? "logical" : "physical",
2426 d40c
->phy_chan
->num
,
2427 d40c
->dma_cfg
.use_fixed_channel
? ", fixed" : "");
2431 * Only write channel configuration to the DMA if the physical
2432 * resource is free. In case of multiple logical channels
2433 * on the same physical resource, only the first write is necessary.
2436 d40_config_write(d40c
);
2438 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2439 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2440 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2444 static void d40_free_chan_resources(struct dma_chan
*chan
)
2446 struct d40_chan
*d40c
=
2447 container_of(chan
, struct d40_chan
, chan
);
2449 unsigned long flags
;
2451 if (d40c
->phy_chan
== NULL
) {
2452 chan_err(d40c
, "Cannot free unallocated channel\n");
2456 spin_lock_irqsave(&d40c
->lock
, flags
);
2458 err
= d40_free_dma(d40c
);
2461 chan_err(d40c
, "Failed to free channel\n");
2462 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2465 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
2469 unsigned long dma_flags
)
2471 struct scatterlist dst_sg
;
2472 struct scatterlist src_sg
;
2474 sg_init_table(&dst_sg
, 1);
2475 sg_init_table(&src_sg
, 1);
2477 sg_dma_address(&dst_sg
) = dst
;
2478 sg_dma_address(&src_sg
) = src
;
2480 sg_dma_len(&dst_sg
) = size
;
2481 sg_dma_len(&src_sg
) = size
;
2483 return d40_prep_sg(chan
, &src_sg
, &dst_sg
, 1,
2484 DMA_MEM_TO_MEM
, dma_flags
);
2487 static struct dma_async_tx_descriptor
*
2488 d40_prep_memcpy_sg(struct dma_chan
*chan
,
2489 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
2490 struct scatterlist
*src_sg
, unsigned int src_nents
,
2491 unsigned long dma_flags
)
2493 if (dst_nents
!= src_nents
)
2496 return d40_prep_sg(chan
, src_sg
, dst_sg
, src_nents
,
2497 DMA_MEM_TO_MEM
, dma_flags
);
2500 static struct dma_async_tx_descriptor
*
2501 d40_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
2502 unsigned int sg_len
, enum dma_transfer_direction direction
,
2503 unsigned long dma_flags
, void *context
)
2505 if (!is_slave_direction(direction
))
2508 return d40_prep_sg(chan
, sgl
, sgl
, sg_len
, direction
, dma_flags
);
2511 static struct dma_async_tx_descriptor
*
2512 dma40_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
2513 size_t buf_len
, size_t period_len
,
2514 enum dma_transfer_direction direction
, unsigned long flags
)
2516 unsigned int periods
= buf_len
/ period_len
;
2517 struct dma_async_tx_descriptor
*txd
;
2518 struct scatterlist
*sg
;
2521 sg
= kcalloc(periods
+ 1, sizeof(struct scatterlist
), GFP_NOWAIT
);
2525 for (i
= 0; i
< periods
; i
++) {
2526 sg_dma_address(&sg
[i
]) = dma_addr
;
2527 sg_dma_len(&sg
[i
]) = period_len
;
2528 dma_addr
+= period_len
;
2531 sg
[periods
].offset
= 0;
2532 sg_dma_len(&sg
[periods
]) = 0;
2533 sg
[periods
].page_link
=
2534 ((unsigned long)sg
| 0x01) & ~0x02;
2536 txd
= d40_prep_sg(chan
, sg
, sg
, periods
, direction
,
2537 DMA_PREP_INTERRUPT
);
2544 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2545 dma_cookie_t cookie
,
2546 struct dma_tx_state
*txstate
)
2548 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2549 enum dma_status ret
;
2551 if (d40c
->phy_chan
== NULL
) {
2552 chan_err(d40c
, "Cannot read status of unallocated channel\n");
2556 ret
= dma_cookie_status(chan
, cookie
, txstate
);
2557 if (ret
!= DMA_COMPLETE
&& txstate
)
2558 dma_set_residue(txstate
, stedma40_residue(chan
));
2560 if (d40_is_paused(d40c
))
2566 static void d40_issue_pending(struct dma_chan
*chan
)
2568 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2569 unsigned long flags
;
2571 if (d40c
->phy_chan
== NULL
) {
2572 chan_err(d40c
, "Channel is not allocated!\n");
2576 spin_lock_irqsave(&d40c
->lock
, flags
);
2578 list_splice_tail_init(&d40c
->pending_queue
, &d40c
->queue
);
2580 /* Busy means that queued jobs are already being processed */
2582 (void) d40_queue_start(d40c
);
2584 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2587 static int d40_terminate_all(struct dma_chan
*chan
)
2589 unsigned long flags
;
2590 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2593 if (d40c
->phy_chan
== NULL
) {
2594 chan_err(d40c
, "Channel is not allocated!\n");
2598 spin_lock_irqsave(&d40c
->lock
, flags
);
2600 pm_runtime_get_sync(d40c
->base
->dev
);
2601 ret
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2603 chan_err(d40c
, "Failed to stop channel\n");
2606 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2607 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2609 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2610 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2614 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2619 dma40_config_to_halfchannel(struct d40_chan
*d40c
,
2620 struct stedma40_half_channel_info
*info
,
2625 if (chan_is_logical(d40c
)) {
2627 psize
= STEDMA40_PSIZE_LOG_16
;
2628 else if (maxburst
>= 8)
2629 psize
= STEDMA40_PSIZE_LOG_8
;
2630 else if (maxburst
>= 4)
2631 psize
= STEDMA40_PSIZE_LOG_4
;
2633 psize
= STEDMA40_PSIZE_LOG_1
;
2636 psize
= STEDMA40_PSIZE_PHY_16
;
2637 else if (maxburst
>= 8)
2638 psize
= STEDMA40_PSIZE_PHY_8
;
2639 else if (maxburst
>= 4)
2640 psize
= STEDMA40_PSIZE_PHY_4
;
2642 psize
= STEDMA40_PSIZE_PHY_1
;
2645 info
->psize
= psize
;
2646 info
->flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2651 /* Runtime reconfiguration extension */
2652 static int d40_set_runtime_config(struct dma_chan
*chan
,
2653 struct dma_slave_config
*config
)
2655 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2656 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2657 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
2658 dma_addr_t config_addr
;
2659 u32 src_maxburst
, dst_maxburst
;
2662 if (d40c
->phy_chan
== NULL
) {
2663 chan_err(d40c
, "Channel is not allocated!\n");
2667 src_addr_width
= config
->src_addr_width
;
2668 src_maxburst
= config
->src_maxburst
;
2669 dst_addr_width
= config
->dst_addr_width
;
2670 dst_maxburst
= config
->dst_maxburst
;
2672 if (config
->direction
== DMA_DEV_TO_MEM
) {
2673 config_addr
= config
->src_addr
;
2675 if (cfg
->dir
!= DMA_DEV_TO_MEM
)
2676 dev_dbg(d40c
->base
->dev
,
2677 "channel was not configured for peripheral "
2678 "to memory transfer (%d) overriding\n",
2680 cfg
->dir
= DMA_DEV_TO_MEM
;
2682 /* Configure the memory side */
2683 if (dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2684 dst_addr_width
= src_addr_width
;
2685 if (dst_maxburst
== 0)
2686 dst_maxburst
= src_maxburst
;
2688 } else if (config
->direction
== DMA_MEM_TO_DEV
) {
2689 config_addr
= config
->dst_addr
;
2691 if (cfg
->dir
!= DMA_MEM_TO_DEV
)
2692 dev_dbg(d40c
->base
->dev
,
2693 "channel was not configured for memory "
2694 "to peripheral transfer (%d) overriding\n",
2696 cfg
->dir
= DMA_MEM_TO_DEV
;
2698 /* Configure the memory side */
2699 if (src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2700 src_addr_width
= dst_addr_width
;
2701 if (src_maxburst
== 0)
2702 src_maxburst
= dst_maxburst
;
2704 dev_err(d40c
->base
->dev
,
2705 "unrecognized channel direction %d\n",
2710 if (config_addr
<= 0) {
2711 dev_err(d40c
->base
->dev
, "no address supplied\n");
2715 if (src_maxburst
* src_addr_width
!= dst_maxburst
* dst_addr_width
) {
2716 dev_err(d40c
->base
->dev
,
2717 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2725 if (src_maxburst
> 16) {
2727 dst_maxburst
= src_maxburst
* src_addr_width
/ dst_addr_width
;
2728 } else if (dst_maxburst
> 16) {
2730 src_maxburst
= dst_maxburst
* dst_addr_width
/ src_addr_width
;
2733 /* Only valid widths are; 1, 2, 4 and 8. */
2734 if (src_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2735 src_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2736 dst_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2737 dst_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2738 !is_power_of_2(src_addr_width
) ||
2739 !is_power_of_2(dst_addr_width
))
2742 cfg
->src_info
.data_width
= src_addr_width
;
2743 cfg
->dst_info
.data_width
= dst_addr_width
;
2745 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->src_info
,
2750 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->dst_info
,
2755 /* Fill in register values */
2756 if (chan_is_logical(d40c
))
2757 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2759 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
, &d40c
->dst_def_cfg
);
2761 /* These settings will take precedence later */
2762 d40c
->runtime_addr
= config_addr
;
2763 d40c
->runtime_direction
= config
->direction
;
2764 dev_dbg(d40c
->base
->dev
,
2765 "configured channel %s for %s, data width %d/%d, "
2766 "maxburst %d/%d elements, LE, no flow control\n",
2767 dma_chan_name(chan
),
2768 (config
->direction
== DMA_DEV_TO_MEM
) ? "RX" : "TX",
2769 src_addr_width
, dst_addr_width
,
2770 src_maxburst
, dst_maxburst
);
2775 /* Initialization functions */
2777 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2778 struct d40_chan
*chans
, int offset
,
2782 struct d40_chan
*d40c
;
2784 INIT_LIST_HEAD(&dma
->channels
);
2786 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2789 d40c
->chan
.device
= dma
;
2791 spin_lock_init(&d40c
->lock
);
2793 d40c
->log_num
= D40_PHY_CHAN
;
2795 INIT_LIST_HEAD(&d40c
->done
);
2796 INIT_LIST_HEAD(&d40c
->active
);
2797 INIT_LIST_HEAD(&d40c
->queue
);
2798 INIT_LIST_HEAD(&d40c
->pending_queue
);
2799 INIT_LIST_HEAD(&d40c
->client
);
2800 INIT_LIST_HEAD(&d40c
->prepare_queue
);
2802 tasklet_init(&d40c
->tasklet
, dma_tasklet
,
2803 (unsigned long) d40c
);
2805 list_add_tail(&d40c
->chan
.device_node
,
2810 static void d40_ops_init(struct d40_base
*base
, struct dma_device
*dev
)
2812 if (dma_has_cap(DMA_SLAVE
, dev
->cap_mask
))
2813 dev
->device_prep_slave_sg
= d40_prep_slave_sg
;
2815 if (dma_has_cap(DMA_MEMCPY
, dev
->cap_mask
)) {
2816 dev
->device_prep_dma_memcpy
= d40_prep_memcpy
;
2819 * This controller can only access address at even
2820 * 32bit boundaries, i.e. 2^2
2822 dev
->copy_align
= DMAENGINE_ALIGN_4_BYTES
;
2825 if (dma_has_cap(DMA_SG
, dev
->cap_mask
))
2826 dev
->device_prep_dma_sg
= d40_prep_memcpy_sg
;
2828 if (dma_has_cap(DMA_CYCLIC
, dev
->cap_mask
))
2829 dev
->device_prep_dma_cyclic
= dma40_prep_dma_cyclic
;
2831 dev
->device_alloc_chan_resources
= d40_alloc_chan_resources
;
2832 dev
->device_free_chan_resources
= d40_free_chan_resources
;
2833 dev
->device_issue_pending
= d40_issue_pending
;
2834 dev
->device_tx_status
= d40_tx_status
;
2835 dev
->device_config
= d40_set_runtime_config
;
2836 dev
->device_pause
= d40_pause
;
2837 dev
->device_resume
= d40_resume
;
2838 dev
->device_terminate_all
= d40_terminate_all
;
2839 dev
->dev
= base
->dev
;
2842 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2843 int num_reserved_chans
)
2847 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2848 0, base
->num_log_chans
);
2850 dma_cap_zero(base
->dma_slave
.cap_mask
);
2851 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2852 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2854 d40_ops_init(base
, &base
->dma_slave
);
2856 err
= dma_async_device_register(&base
->dma_slave
);
2859 d40_err(base
->dev
, "Failed to register slave channels\n");
2863 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2864 base
->num_log_chans
, base
->num_memcpy_chans
);
2866 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2867 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2868 dma_cap_set(DMA_SG
, base
->dma_memcpy
.cap_mask
);
2870 d40_ops_init(base
, &base
->dma_memcpy
);
2872 err
= dma_async_device_register(&base
->dma_memcpy
);
2876 "Failed to register memcpy only channels\n");
2877 goto unregister_slave
;
2880 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2881 0, num_reserved_chans
);
2883 dma_cap_zero(base
->dma_both
.cap_mask
);
2884 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2885 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2886 dma_cap_set(DMA_SG
, base
->dma_both
.cap_mask
);
2887 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2889 d40_ops_init(base
, &base
->dma_both
);
2890 err
= dma_async_device_register(&base
->dma_both
);
2894 "Failed to register logical and physical capable channels\n");
2895 goto unregister_memcpy
;
2899 dma_async_device_unregister(&base
->dma_memcpy
);
2901 dma_async_device_unregister(&base
->dma_slave
);
2906 /* Suspend resume functionality */
2907 #ifdef CONFIG_PM_SLEEP
2908 static int dma40_suspend(struct device
*dev
)
2910 struct platform_device
*pdev
= to_platform_device(dev
);
2911 struct d40_base
*base
= platform_get_drvdata(pdev
);
2914 ret
= pm_runtime_force_suspend(dev
);
2918 if (base
->lcpa_regulator
)
2919 ret
= regulator_disable(base
->lcpa_regulator
);
2923 static int dma40_resume(struct device
*dev
)
2925 struct platform_device
*pdev
= to_platform_device(dev
);
2926 struct d40_base
*base
= platform_get_drvdata(pdev
);
2929 if (base
->lcpa_regulator
) {
2930 ret
= regulator_enable(base
->lcpa_regulator
);
2935 return pm_runtime_force_resume(dev
);
2940 static void dma40_backup(void __iomem
*baseaddr
, u32
*backup
,
2941 u32
*regaddr
, int num
, bool save
)
2945 for (i
= 0; i
< num
; i
++) {
2946 void __iomem
*addr
= baseaddr
+ regaddr
[i
];
2949 backup
[i
] = readl_relaxed(addr
);
2951 writel_relaxed(backup
[i
], addr
);
2955 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
2959 /* Save/Restore channel specific registers */
2960 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2964 if (base
->phy_res
[i
].reserved
)
2967 addr
= base
->virtbase
+ D40_DREG_PCBASE
+ i
* D40_DREG_PCDELTA
;
2968 idx
= i
* ARRAY_SIZE(d40_backup_regs_chan
);
2970 dma40_backup(addr
, &base
->reg_val_backup_chan
[idx
],
2971 d40_backup_regs_chan
,
2972 ARRAY_SIZE(d40_backup_regs_chan
),
2976 /* Save/Restore global registers */
2977 dma40_backup(base
->virtbase
, base
->reg_val_backup
,
2978 d40_backup_regs
, ARRAY_SIZE(d40_backup_regs
),
2981 /* Save/Restore registers only existing on dma40 v3 and later */
2982 if (base
->gen_dmac
.backup
)
2983 dma40_backup(base
->virtbase
, base
->reg_val_backup_v4
,
2984 base
->gen_dmac
.backup
,
2985 base
->gen_dmac
.backup_size
,
2989 static int dma40_runtime_suspend(struct device
*dev
)
2991 struct platform_device
*pdev
= to_platform_device(dev
);
2992 struct d40_base
*base
= platform_get_drvdata(pdev
);
2994 d40_save_restore_registers(base
, true);
2996 /* Don't disable/enable clocks for v1 due to HW bugs */
2998 writel_relaxed(base
->gcc_pwr_off_mask
,
2999 base
->virtbase
+ D40_DREG_GCC
);
3004 static int dma40_runtime_resume(struct device
*dev
)
3006 struct platform_device
*pdev
= to_platform_device(dev
);
3007 struct d40_base
*base
= platform_get_drvdata(pdev
);
3009 d40_save_restore_registers(base
, false);
3011 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
,
3012 base
->virtbase
+ D40_DREG_GCC
);
3017 static const struct dev_pm_ops dma40_pm_ops
= {
3018 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend
, dma40_resume
)
3019 SET_RUNTIME_PM_OPS(dma40_runtime_suspend
,
3020 dma40_runtime_resume
,
3024 /* Initialization functions. */
3026 static int __init
d40_phy_res_init(struct d40_base
*base
)
3029 int num_phy_chans_avail
= 0;
3031 int odd_even_bit
= -2;
3032 int gcc
= D40_DREG_GCC_ENA
;
3034 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
3035 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
3037 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3038 base
->phy_res
[i
].num
= i
;
3039 odd_even_bit
+= 2 * ((i
% 2) == 0);
3040 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
3041 /* Mark security only channels as occupied */
3042 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
3043 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
3044 base
->phy_res
[i
].reserved
= true;
3045 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3047 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3052 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
3053 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
3054 base
->phy_res
[i
].reserved
= false;
3055 num_phy_chans_avail
++;
3057 spin_lock_init(&base
->phy_res
[i
].lock
);
3060 /* Mark disabled channels as occupied */
3061 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
3062 int chan
= base
->plat_data
->disabled_channels
[i
];
3064 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
3065 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
3066 base
->phy_res
[chan
].reserved
= true;
3067 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3069 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3071 num_phy_chans_avail
--;
3074 /* Mark soft_lli channels */
3075 for (i
= 0; i
< base
->plat_data
->num_of_soft_lli_chans
; i
++) {
3076 int chan
= base
->plat_data
->soft_lli_chans
[i
];
3078 base
->phy_res
[chan
].use_soft_lli
= true;
3081 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
3082 num_phy_chans_avail
, base
->num_phy_chans
);
3084 /* Verify settings extended vs standard */
3085 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
3087 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3089 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
3090 (val
[0] & 0x3) != 1)
3092 "[%s] INFO: channel %d is misconfigured (%d)\n",
3093 __func__
, i
, val
[0] & 0x3);
3095 val
[0] = val
[0] >> 2;
3099 * To keep things simple, Enable all clocks initially.
3100 * The clocks will get managed later post channel allocation.
3101 * The clocks for the event lines on which reserved channels exists
3102 * are not managed here.
3104 writel(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3105 base
->gcc_pwr_off_mask
= gcc
;
3107 return num_phy_chans_avail
;
3110 static struct d40_base
* __init
d40_hw_detect_init(struct platform_device
*pdev
)
3112 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3114 void __iomem
*virtbase
;
3115 struct resource
*res
;
3116 struct d40_base
*base
;
3119 int num_memcpy_chans
;
3120 int clk_ret
= -EINVAL
;
3126 clk
= clk_get(&pdev
->dev
, NULL
);
3128 d40_err(&pdev
->dev
, "No matching clock found\n");
3129 goto check_prepare_enabled
;
3132 clk_ret
= clk_prepare_enable(clk
);
3134 d40_err(&pdev
->dev
, "Failed to prepare/enable clock\n");
3135 goto disable_unprepare
;
3138 /* Get IO for DMAC base address */
3139 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "base");
3141 goto disable_unprepare
;
3143 if (request_mem_region(res
->start
, resource_size(res
),
3144 D40_NAME
" I/O base") == NULL
)
3145 goto release_region
;
3147 virtbase
= ioremap(res
->start
, resource_size(res
));
3149 goto release_region
;
3151 /* This is just a regular AMBA PrimeCell ID actually */
3152 for (pid
= 0, i
= 0; i
< 4; i
++)
3153 pid
|= (readl(virtbase
+ resource_size(res
) - 0x20 + 4 * i
)
3155 for (cid
= 0, i
= 0; i
< 4; i
++)
3156 cid
|= (readl(virtbase
+ resource_size(res
) - 0x10 + 4 * i
)
3159 if (cid
!= AMBA_CID
) {
3160 d40_err(&pdev
->dev
, "Unknown hardware! No PrimeCell ID\n");
3163 if (AMBA_MANF_BITS(pid
) != AMBA_VENDOR_ST
) {
3164 d40_err(&pdev
->dev
, "Unknown designer! Got %x wanted %x\n",
3165 AMBA_MANF_BITS(pid
),
3171 * DB8500ed has revision 0
3173 * DB8500v1 has revision 2
3174 * DB8500v2 has revision 3
3175 * AP9540v1 has revision 4
3176 * DB8540v1 has revision 4
3178 rev
= AMBA_REV_BITS(pid
);
3180 d40_err(&pdev
->dev
, "hardware revision: %d is not supported", rev
);
3184 /* The number of physical channels on this HW */
3185 if (plat_data
->num_of_phy_chans
)
3186 num_phy_chans
= plat_data
->num_of_phy_chans
;
3188 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
3190 /* The number of channels used for memcpy */
3191 if (plat_data
->num_of_memcpy_chans
)
3192 num_memcpy_chans
= plat_data
->num_of_memcpy_chans
;
3194 num_memcpy_chans
= ARRAY_SIZE(dma40_memcpy_channels
);
3196 num_log_chans
= num_phy_chans
* D40_MAX_LOG_CHAN_PER_PHY
;
3198 dev_info(&pdev
->dev
,
3199 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3200 rev
, &res
->start
, num_phy_chans
, num_log_chans
);
3202 base
= kzalloc(ALIGN(sizeof(struct d40_base
), 4) +
3203 (num_phy_chans
+ num_log_chans
+ num_memcpy_chans
) *
3204 sizeof(struct d40_chan
), GFP_KERNEL
);
3211 base
->num_memcpy_chans
= num_memcpy_chans
;
3212 base
->num_phy_chans
= num_phy_chans
;
3213 base
->num_log_chans
= num_log_chans
;
3214 base
->phy_start
= res
->start
;
3215 base
->phy_size
= resource_size(res
);
3216 base
->virtbase
= virtbase
;
3217 base
->plat_data
= plat_data
;
3218 base
->dev
= &pdev
->dev
;
3219 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
3220 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
3222 if (base
->plat_data
->num_of_phy_chans
== 14) {
3223 base
->gen_dmac
.backup
= d40_backup_regs_v4b
;
3224 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4B
;
3225 base
->gen_dmac
.interrupt_en
= D40_DREG_CPCMIS
;
3226 base
->gen_dmac
.interrupt_clear
= D40_DREG_CPCICR
;
3227 base
->gen_dmac
.realtime_en
= D40_DREG_CRSEG1
;
3228 base
->gen_dmac
.realtime_clear
= D40_DREG_CRCEG1
;
3229 base
->gen_dmac
.high_prio_en
= D40_DREG_CPSEG1
;
3230 base
->gen_dmac
.high_prio_clear
= D40_DREG_CPCEG1
;
3231 base
->gen_dmac
.il
= il_v4b
;
3232 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4b
);
3233 base
->gen_dmac
.init_reg
= dma_init_reg_v4b
;
3234 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4b
);
3236 if (base
->rev
>= 3) {
3237 base
->gen_dmac
.backup
= d40_backup_regs_v4a
;
3238 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4A
;
3240 base
->gen_dmac
.interrupt_en
= D40_DREG_PCMIS
;
3241 base
->gen_dmac
.interrupt_clear
= D40_DREG_PCICR
;
3242 base
->gen_dmac
.realtime_en
= D40_DREG_RSEG1
;
3243 base
->gen_dmac
.realtime_clear
= D40_DREG_RCEG1
;
3244 base
->gen_dmac
.high_prio_en
= D40_DREG_PSEG1
;
3245 base
->gen_dmac
.high_prio_clear
= D40_DREG_PCEG1
;
3246 base
->gen_dmac
.il
= il_v4a
;
3247 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4a
);
3248 base
->gen_dmac
.init_reg
= dma_init_reg_v4a
;
3249 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4a
);
3252 base
->phy_res
= kcalloc(num_phy_chans
,
3253 sizeof(*base
->phy_res
),
3258 base
->lookup_phy_chans
= kcalloc(num_phy_chans
,
3259 sizeof(*base
->lookup_phy_chans
),
3261 if (!base
->lookup_phy_chans
)
3264 base
->lookup_log_chans
= kcalloc(num_log_chans
,
3265 sizeof(*base
->lookup_log_chans
),
3267 if (!base
->lookup_log_chans
)
3268 goto free_phy_chans
;
3270 base
->reg_val_backup_chan
= kmalloc_array(base
->num_phy_chans
,
3271 sizeof(d40_backup_regs_chan
),
3273 if (!base
->reg_val_backup_chan
)
3274 goto free_log_chans
;
3276 base
->lcla_pool
.alloc_map
= kcalloc(num_phy_chans
3277 * D40_LCLA_LINK_PER_EVENT_GRP
,
3278 sizeof(*base
->lcla_pool
.alloc_map
),
3280 if (!base
->lcla_pool
.alloc_map
)
3281 goto free_backup_chan
;
3283 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
3284 0, SLAB_HWCACHE_ALIGN
,
3286 if (base
->desc_slab
== NULL
)
3291 kfree(base
->lcla_pool
.alloc_map
);
3293 kfree(base
->reg_val_backup_chan
);
3295 kfree(base
->lookup_log_chans
);
3297 kfree(base
->lookup_phy_chans
);
3299 kfree(base
->phy_res
);
3305 release_mem_region(res
->start
, resource_size(res
));
3306 check_prepare_enabled
:
3309 clk_disable_unprepare(clk
);
3315 static void __init
d40_hw_init(struct d40_base
*base
)
3319 u32 prmseo
[2] = {0, 0};
3320 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3323 struct d40_reg_val
*dma_init_reg
= base
->gen_dmac
.init_reg
;
3324 u32 reg_size
= base
->gen_dmac
.init_reg_size
;
3326 for (i
= 0; i
< reg_size
; i
++)
3327 writel(dma_init_reg
[i
].val
,
3328 base
->virtbase
+ dma_init_reg
[i
].reg
);
3330 /* Configure all our dma channels to default settings */
3331 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3333 activeo
[i
% 2] = activeo
[i
% 2] << 2;
3335 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
3337 activeo
[i
% 2] |= 3;
3341 /* Enable interrupt # */
3342 pcmis
= (pcmis
<< 1) | 1;
3344 /* Clear interrupt # */
3345 pcicr
= (pcicr
<< 1) | 1;
3347 /* Set channel to physical mode */
3348 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
3353 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
3354 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
3355 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
3356 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
3358 /* Write which interrupt to enable */
3359 writel(pcmis
, base
->virtbase
+ base
->gen_dmac
.interrupt_en
);
3361 /* Write which interrupt to clear */
3362 writel(pcicr
, base
->virtbase
+ base
->gen_dmac
.interrupt_clear
);
3364 /* These are __initdata and cannot be accessed after init */
3365 base
->gen_dmac
.init_reg
= NULL
;
3366 base
->gen_dmac
.init_reg_size
= 0;
3369 static int __init
d40_lcla_allocate(struct d40_base
*base
)
3371 struct d40_lcla_pool
*pool
= &base
->lcla_pool
;
3372 unsigned long *page_list
;
3377 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3378 * To full fill this hardware requirement without wasting 256 kb
3379 * we allocate pages until we get an aligned one.
3381 page_list
= kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS
,
3387 /* Calculating how many pages that are required */
3388 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
3390 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
3391 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
3392 base
->lcla_pool
.pages
);
3393 if (!page_list
[i
]) {
3395 d40_err(base
->dev
, "Failed to allocate %d pages.\n",
3396 base
->lcla_pool
.pages
);
3399 for (j
= 0; j
< i
; j
++)
3400 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3401 goto free_page_list
;
3404 if ((virt_to_phys((void *)page_list
[i
]) &
3405 (LCLA_ALIGNMENT
- 1)) == 0)
3409 for (j
= 0; j
< i
; j
++)
3410 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3412 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
3413 base
->lcla_pool
.base
= (void *)page_list
[i
];
3416 * After many attempts and no succees with finding the correct
3417 * alignment, try with allocating a big buffer.
3420 "[%s] Failed to get %d pages @ 18 bit align.\n",
3421 __func__
, base
->lcla_pool
.pages
);
3422 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
3423 base
->num_phy_chans
+
3426 if (!base
->lcla_pool
.base_unaligned
) {
3428 goto free_page_list
;
3431 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
3435 pool
->dma_addr
= dma_map_single(base
->dev
, pool
->base
,
3436 SZ_1K
* base
->num_phy_chans
,
3438 if (dma_mapping_error(base
->dev
, pool
->dma_addr
)) {
3441 goto free_page_list
;
3444 writel(virt_to_phys(base
->lcla_pool
.base
),
3445 base
->virtbase
+ D40_DREG_LCLA
);
3452 static int __init
d40_of_probe(struct platform_device
*pdev
,
3453 struct device_node
*np
)
3455 struct stedma40_platform_data
*pdata
;
3456 int num_phy
= 0, num_memcpy
= 0, num_disabled
= 0;
3459 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
3463 /* If absent this value will be obtained from h/w. */
3464 of_property_read_u32(np
, "dma-channels", &num_phy
);
3466 pdata
->num_of_phy_chans
= num_phy
;
3468 list
= of_get_property(np
, "memcpy-channels", &num_memcpy
);
3469 num_memcpy
/= sizeof(*list
);
3471 if (num_memcpy
> D40_MEMCPY_MAX_CHANS
|| num_memcpy
<= 0) {
3473 "Invalid number of memcpy channels specified (%d)\n",
3477 pdata
->num_of_memcpy_chans
= num_memcpy
;
3479 of_property_read_u32_array(np
, "memcpy-channels",
3480 dma40_memcpy_channels
,
3483 list
= of_get_property(np
, "disabled-channels", &num_disabled
);
3484 num_disabled
/= sizeof(*list
);
3486 if (num_disabled
>= STEDMA40_MAX_PHYS
|| num_disabled
< 0) {
3488 "Invalid number of disabled channels specified (%d)\n",
3493 of_property_read_u32_array(np
, "disabled-channels",
3494 pdata
->disabled_channels
,
3496 pdata
->disabled_channels
[num_disabled
] = -1;
3498 pdev
->dev
.platform_data
= pdata
;
3503 static int __init
d40_probe(struct platform_device
*pdev
)
3505 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3506 struct device_node
*np
= pdev
->dev
.of_node
;
3508 struct d40_base
*base
;
3509 struct resource
*res
;
3510 int num_reserved_chans
;
3515 if (d40_of_probe(pdev
, np
)) {
3517 goto report_failure
;
3520 d40_err(&pdev
->dev
, "No pdata or Device Tree provided\n");
3521 goto report_failure
;
3525 base
= d40_hw_detect_init(pdev
);
3527 goto report_failure
;
3529 num_reserved_chans
= d40_phy_res_init(base
);
3531 platform_set_drvdata(pdev
, base
);
3533 spin_lock_init(&base
->interrupt_lock
);
3534 spin_lock_init(&base
->execmd_lock
);
3536 /* Get IO for logical channel parameter address */
3537 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "lcpa");
3540 d40_err(&pdev
->dev
, "No \"lcpa\" memory resource\n");
3543 base
->lcpa_size
= resource_size(res
);
3544 base
->phy_lcpa
= res
->start
;
3546 if (request_mem_region(res
->start
, resource_size(res
),
3547 D40_NAME
" I/O lcpa") == NULL
) {
3549 d40_err(&pdev
->dev
, "Failed to request LCPA region %pR\n", res
);
3553 /* We make use of ESRAM memory for this. */
3554 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
3555 if (res
->start
!= val
&& val
!= 0) {
3556 dev_warn(&pdev
->dev
,
3557 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3558 __func__
, val
, &res
->start
);
3560 writel(res
->start
, base
->virtbase
+ D40_DREG_LCPA
);
3562 base
->lcpa_base
= ioremap(res
->start
, resource_size(res
));
3563 if (!base
->lcpa_base
) {
3565 d40_err(&pdev
->dev
, "Failed to ioremap LCPA region\n");
3568 /* If lcla has to be located in ESRAM we don't need to allocate */
3569 if (base
->plat_data
->use_esram_lcla
) {
3570 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
3575 "No \"lcla_esram\" memory resource\n");
3578 base
->lcla_pool
.base
= ioremap(res
->start
,
3579 resource_size(res
));
3580 if (!base
->lcla_pool
.base
) {
3582 d40_err(&pdev
->dev
, "Failed to ioremap LCLA region\n");
3585 writel(res
->start
, base
->virtbase
+ D40_DREG_LCLA
);
3588 ret
= d40_lcla_allocate(base
);
3590 d40_err(&pdev
->dev
, "Failed to allocate LCLA area\n");
3595 spin_lock_init(&base
->lcla_pool
.lock
);
3597 base
->irq
= platform_get_irq(pdev
, 0);
3599 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
3601 d40_err(&pdev
->dev
, "No IRQ defined\n");
3605 if (base
->plat_data
->use_esram_lcla
) {
3607 base
->lcpa_regulator
= regulator_get(base
->dev
, "lcla_esram");
3608 if (IS_ERR(base
->lcpa_regulator
)) {
3609 d40_err(&pdev
->dev
, "Failed to get lcpa_regulator\n");
3610 ret
= PTR_ERR(base
->lcpa_regulator
);
3611 base
->lcpa_regulator
= NULL
;
3615 ret
= regulator_enable(base
->lcpa_regulator
);
3618 "Failed to enable lcpa_regulator\n");
3619 regulator_put(base
->lcpa_regulator
);
3620 base
->lcpa_regulator
= NULL
;
3625 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3627 pm_runtime_irq_safe(base
->dev
);
3628 pm_runtime_set_autosuspend_delay(base
->dev
, DMA40_AUTOSUSPEND_DELAY
);
3629 pm_runtime_use_autosuspend(base
->dev
);
3630 pm_runtime_mark_last_busy(base
->dev
);
3631 pm_runtime_set_active(base
->dev
);
3632 pm_runtime_enable(base
->dev
);
3634 ret
= d40_dmaengine_init(base
, num_reserved_chans
);
3638 base
->dev
->dma_parms
= &base
->dma_parms
;
3639 ret
= dma_set_max_seg_size(base
->dev
, STEDMA40_MAX_SEG_SIZE
);
3641 d40_err(&pdev
->dev
, "Failed to set dma max seg size\n");
3648 ret
= of_dma_controller_register(np
, d40_xlate
, NULL
);
3651 "could not register of_dma_controller\n");
3654 dev_info(base
->dev
, "initialized\n");
3657 kmem_cache_destroy(base
->desc_slab
);
3659 iounmap(base
->virtbase
);
3661 if (base
->lcla_pool
.base
&& base
->plat_data
->use_esram_lcla
) {
3662 iounmap(base
->lcla_pool
.base
);
3663 base
->lcla_pool
.base
= NULL
;
3666 if (base
->lcla_pool
.dma_addr
)
3667 dma_unmap_single(base
->dev
, base
->lcla_pool
.dma_addr
,
3668 SZ_1K
* base
->num_phy_chans
,
3671 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
3672 free_pages((unsigned long)base
->lcla_pool
.base
,
3673 base
->lcla_pool
.pages
);
3675 kfree(base
->lcla_pool
.base_unaligned
);
3678 release_mem_region(base
->phy_lcpa
,
3680 if (base
->phy_start
)
3681 release_mem_region(base
->phy_start
,
3684 clk_disable_unprepare(base
->clk
);
3688 if (base
->lcpa_regulator
) {
3689 regulator_disable(base
->lcpa_regulator
);
3690 regulator_put(base
->lcpa_regulator
);
3693 kfree(base
->lcla_pool
.alloc_map
);
3694 kfree(base
->lookup_log_chans
);
3695 kfree(base
->lookup_phy_chans
);
3696 kfree(base
->phy_res
);
3699 d40_err(&pdev
->dev
, "probe failed\n");
3703 static const struct of_device_id d40_match
[] = {
3704 { .compatible
= "stericsson,dma40", },
3708 static struct platform_driver d40_driver
= {
3711 .pm
= &dma40_pm_ops
,
3712 .of_match_table
= d40_match
,
3716 static int __init
stedma40_init(void)
3718 return platform_driver_probe(&d40_driver
, d40_probe
);
3720 subsys_initcall(stedma40_init
);