treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / powerpc / kernel / process.c
blob4df94b6e2f3229dc3030b5d33d1f79cbe15a679a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
78 extern unsigned long _get_SP(void);
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
86 bool tm_suspend_disabled __ro_after_init = false;
88 static void check_if_tm_restore_required(struct task_struct *tsk)
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
96 if (tsk == current && tsk->thread.regs &&
97 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 !test_thread_flag(TIF_RESTORE_TM)) {
99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 set_thread_flag(TIF_RESTORE_TM);
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
111 static int __init enable_strict_msr_control(char *str)
113 strict_msr_control = true;
114 pr_info("Enabling strict facility control\n");
116 return 0;
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
123 unsigned long oldmsr = mfmsr();
124 unsigned long newmsr;
126 newmsr = oldmsr | bits;
128 #ifdef CONFIG_VSX
129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130 newmsr |= MSR_VSX;
131 #endif
133 if (oldmsr != newmsr)
134 mtmsr_isync(newmsr);
136 return newmsr;
138 EXPORT_SYMBOL_GPL(msr_check_and_set);
140 /* notrace because it's called by restore_math */
141 void notrace __msr_check_and_clear(unsigned long bits)
143 unsigned long oldmsr = mfmsr();
144 unsigned long newmsr;
146 newmsr = oldmsr & ~bits;
148 #ifdef CONFIG_VSX
149 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
150 newmsr &= ~MSR_VSX;
151 #endif
153 if (oldmsr != newmsr)
154 mtmsr_isync(newmsr);
156 EXPORT_SYMBOL(__msr_check_and_clear);
158 #ifdef CONFIG_PPC_FPU
159 static void __giveup_fpu(struct task_struct *tsk)
161 unsigned long msr;
163 save_fpu(tsk);
164 msr = tsk->thread.regs->msr;
165 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
166 #ifdef CONFIG_VSX
167 if (cpu_has_feature(CPU_FTR_VSX))
168 msr &= ~MSR_VSX;
169 #endif
170 tsk->thread.regs->msr = msr;
173 void giveup_fpu(struct task_struct *tsk)
175 check_if_tm_restore_required(tsk);
177 msr_check_and_set(MSR_FP);
178 __giveup_fpu(tsk);
179 msr_check_and_clear(MSR_FP);
181 EXPORT_SYMBOL(giveup_fpu);
184 * Make sure the floating-point register state in the
185 * the thread_struct is up to date for task tsk.
187 void flush_fp_to_thread(struct task_struct *tsk)
189 if (tsk->thread.regs) {
191 * We need to disable preemption here because if we didn't,
192 * another process could get scheduled after the regs->msr
193 * test but before we have finished saving the FP registers
194 * to the thread_struct. That process could take over the
195 * FPU, and then when we get scheduled again we would store
196 * bogus values for the remaining FP registers.
198 preempt_disable();
199 if (tsk->thread.regs->msr & MSR_FP) {
201 * This should only ever be called for current or
202 * for a stopped child process. Since we save away
203 * the FP register state on context switch,
204 * there is something wrong if a stopped child appears
205 * to still have its FP state in the CPU registers.
207 BUG_ON(tsk != current);
208 giveup_fpu(tsk);
210 preempt_enable();
213 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
215 void enable_kernel_fp(void)
217 unsigned long cpumsr;
219 WARN_ON(preemptible());
221 cpumsr = msr_check_and_set(MSR_FP);
223 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
224 check_if_tm_restore_required(current);
226 * If a thread has already been reclaimed then the
227 * checkpointed registers are on the CPU but have definitely
228 * been saved by the reclaim code. Don't need to and *cannot*
229 * giveup as this would save to the 'live' structure not the
230 * checkpointed structure.
232 if (!MSR_TM_ACTIVE(cpumsr) &&
233 MSR_TM_ACTIVE(current->thread.regs->msr))
234 return;
235 __giveup_fpu(current);
238 EXPORT_SYMBOL(enable_kernel_fp);
240 static int restore_fp(struct task_struct *tsk)
242 if (tsk->thread.load_fp) {
243 load_fp_state(&current->thread.fp_state);
244 current->thread.load_fp++;
245 return 1;
247 return 0;
249 #else
250 static int restore_fp(struct task_struct *tsk) { return 0; }
251 #endif /* CONFIG_PPC_FPU */
253 #ifdef CONFIG_ALTIVEC
254 #define loadvec(thr) ((thr).load_vec)
256 static void __giveup_altivec(struct task_struct *tsk)
258 unsigned long msr;
260 save_altivec(tsk);
261 msr = tsk->thread.regs->msr;
262 msr &= ~MSR_VEC;
263 #ifdef CONFIG_VSX
264 if (cpu_has_feature(CPU_FTR_VSX))
265 msr &= ~MSR_VSX;
266 #endif
267 tsk->thread.regs->msr = msr;
270 void giveup_altivec(struct task_struct *tsk)
272 check_if_tm_restore_required(tsk);
274 msr_check_and_set(MSR_VEC);
275 __giveup_altivec(tsk);
276 msr_check_and_clear(MSR_VEC);
278 EXPORT_SYMBOL(giveup_altivec);
280 void enable_kernel_altivec(void)
282 unsigned long cpumsr;
284 WARN_ON(preemptible());
286 cpumsr = msr_check_and_set(MSR_VEC);
288 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
289 check_if_tm_restore_required(current);
291 * If a thread has already been reclaimed then the
292 * checkpointed registers are on the CPU but have definitely
293 * been saved by the reclaim code. Don't need to and *cannot*
294 * giveup as this would save to the 'live' structure not the
295 * checkpointed structure.
297 if (!MSR_TM_ACTIVE(cpumsr) &&
298 MSR_TM_ACTIVE(current->thread.regs->msr))
299 return;
300 __giveup_altivec(current);
303 EXPORT_SYMBOL(enable_kernel_altivec);
306 * Make sure the VMX/Altivec register state in the
307 * the thread_struct is up to date for task tsk.
309 void flush_altivec_to_thread(struct task_struct *tsk)
311 if (tsk->thread.regs) {
312 preempt_disable();
313 if (tsk->thread.regs->msr & MSR_VEC) {
314 BUG_ON(tsk != current);
315 giveup_altivec(tsk);
317 preempt_enable();
320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
322 static int restore_altivec(struct task_struct *tsk)
324 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
325 load_vr_state(&tsk->thread.vr_state);
326 tsk->thread.used_vr = 1;
327 tsk->thread.load_vec++;
329 return 1;
331 return 0;
333 #else
334 #define loadvec(thr) 0
335 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
336 #endif /* CONFIG_ALTIVEC */
338 #ifdef CONFIG_VSX
339 static void __giveup_vsx(struct task_struct *tsk)
341 unsigned long msr = tsk->thread.regs->msr;
344 * We should never be ssetting MSR_VSX without also setting
345 * MSR_FP and MSR_VEC
347 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
349 /* __giveup_fpu will clear MSR_VSX */
350 if (msr & MSR_FP)
351 __giveup_fpu(tsk);
352 if (msr & MSR_VEC)
353 __giveup_altivec(tsk);
356 static void giveup_vsx(struct task_struct *tsk)
358 check_if_tm_restore_required(tsk);
360 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361 __giveup_vsx(tsk);
362 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
365 void enable_kernel_vsx(void)
367 unsigned long cpumsr;
369 WARN_ON(preemptible());
371 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
373 if (current->thread.regs &&
374 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
375 check_if_tm_restore_required(current);
377 * If a thread has already been reclaimed then the
378 * checkpointed registers are on the CPU but have definitely
379 * been saved by the reclaim code. Don't need to and *cannot*
380 * giveup as this would save to the 'live' structure not the
381 * checkpointed structure.
383 if (!MSR_TM_ACTIVE(cpumsr) &&
384 MSR_TM_ACTIVE(current->thread.regs->msr))
385 return;
386 __giveup_vsx(current);
389 EXPORT_SYMBOL(enable_kernel_vsx);
391 void flush_vsx_to_thread(struct task_struct *tsk)
393 if (tsk->thread.regs) {
394 preempt_disable();
395 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
396 BUG_ON(tsk != current);
397 giveup_vsx(tsk);
399 preempt_enable();
402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
404 static int restore_vsx(struct task_struct *tsk)
406 if (cpu_has_feature(CPU_FTR_VSX)) {
407 tsk->thread.used_vsr = 1;
408 return 1;
411 return 0;
413 #else
414 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
415 #endif /* CONFIG_VSX */
417 #ifdef CONFIG_SPE
418 void giveup_spe(struct task_struct *tsk)
420 check_if_tm_restore_required(tsk);
422 msr_check_and_set(MSR_SPE);
423 __giveup_spe(tsk);
424 msr_check_and_clear(MSR_SPE);
426 EXPORT_SYMBOL(giveup_spe);
428 void enable_kernel_spe(void)
430 WARN_ON(preemptible());
432 msr_check_and_set(MSR_SPE);
434 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
435 check_if_tm_restore_required(current);
436 __giveup_spe(current);
439 EXPORT_SYMBOL(enable_kernel_spe);
441 void flush_spe_to_thread(struct task_struct *tsk)
443 if (tsk->thread.regs) {
444 preempt_disable();
445 if (tsk->thread.regs->msr & MSR_SPE) {
446 BUG_ON(tsk != current);
447 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
448 giveup_spe(tsk);
450 preempt_enable();
453 #endif /* CONFIG_SPE */
455 static unsigned long msr_all_available;
457 static int __init init_msr_all_available(void)
459 #ifdef CONFIG_PPC_FPU
460 msr_all_available |= MSR_FP;
461 #endif
462 #ifdef CONFIG_ALTIVEC
463 if (cpu_has_feature(CPU_FTR_ALTIVEC))
464 msr_all_available |= MSR_VEC;
465 #endif
466 #ifdef CONFIG_VSX
467 if (cpu_has_feature(CPU_FTR_VSX))
468 msr_all_available |= MSR_VSX;
469 #endif
470 #ifdef CONFIG_SPE
471 if (cpu_has_feature(CPU_FTR_SPE))
472 msr_all_available |= MSR_SPE;
473 #endif
475 return 0;
477 early_initcall(init_msr_all_available);
479 void giveup_all(struct task_struct *tsk)
481 unsigned long usermsr;
483 if (!tsk->thread.regs)
484 return;
486 check_if_tm_restore_required(tsk);
488 usermsr = tsk->thread.regs->msr;
490 if ((usermsr & msr_all_available) == 0)
491 return;
493 msr_check_and_set(msr_all_available);
495 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
497 #ifdef CONFIG_PPC_FPU
498 if (usermsr & MSR_FP)
499 __giveup_fpu(tsk);
500 #endif
501 #ifdef CONFIG_ALTIVEC
502 if (usermsr & MSR_VEC)
503 __giveup_altivec(tsk);
504 #endif
505 #ifdef CONFIG_SPE
506 if (usermsr & MSR_SPE)
507 __giveup_spe(tsk);
508 #endif
510 msr_check_and_clear(msr_all_available);
512 EXPORT_SYMBOL(giveup_all);
515 * The exception exit path calls restore_math() with interrupts hard disabled
516 * but the soft irq state not "reconciled". ftrace code that calls
517 * local_irq_save/restore causes warnings.
519 * Rather than complicate the exit path, just don't trace restore_math. This
520 * could be done by having ftrace entry code check for this un-reconciled
521 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
522 * temporarily fix it up for the duration of the ftrace call.
524 void notrace restore_math(struct pt_regs *regs)
526 unsigned long msr;
528 if (!MSR_TM_ACTIVE(regs->msr) &&
529 !current->thread.load_fp && !loadvec(current->thread))
530 return;
532 msr = regs->msr;
533 msr_check_and_set(msr_all_available);
536 * Only reload if the bit is not set in the user MSR, the bit BEING set
537 * indicates that the registers are hot
539 if ((!(msr & MSR_FP)) && restore_fp(current))
540 msr |= MSR_FP | current->thread.fpexc_mode;
542 if ((!(msr & MSR_VEC)) && restore_altivec(current))
543 msr |= MSR_VEC;
545 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
546 restore_vsx(current)) {
547 msr |= MSR_VSX;
550 msr_check_and_clear(msr_all_available);
552 regs->msr = msr;
555 static void save_all(struct task_struct *tsk)
557 unsigned long usermsr;
559 if (!tsk->thread.regs)
560 return;
562 usermsr = tsk->thread.regs->msr;
564 if ((usermsr & msr_all_available) == 0)
565 return;
567 msr_check_and_set(msr_all_available);
569 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
571 if (usermsr & MSR_FP)
572 save_fpu(tsk);
574 if (usermsr & MSR_VEC)
575 save_altivec(tsk);
577 if (usermsr & MSR_SPE)
578 __giveup_spe(tsk);
580 msr_check_and_clear(msr_all_available);
581 thread_pkey_regs_save(&tsk->thread);
584 void flush_all_to_thread(struct task_struct *tsk)
586 if (tsk->thread.regs) {
587 preempt_disable();
588 BUG_ON(tsk != current);
589 #ifdef CONFIG_SPE
590 if (tsk->thread.regs->msr & MSR_SPE)
591 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
592 #endif
593 save_all(tsk);
595 preempt_enable();
598 EXPORT_SYMBOL(flush_all_to_thread);
600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
601 void do_send_trap(struct pt_regs *regs, unsigned long address,
602 unsigned long error_code, int breakpt)
604 current->thread.trap_nr = TRAP_HWBKPT;
605 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
606 11, SIGSEGV) == NOTIFY_STOP)
607 return;
609 /* Deliver the signal to userspace */
610 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
611 (void __user *)address);
613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
614 void do_break (struct pt_regs *regs, unsigned long address,
615 unsigned long error_code)
617 current->thread.trap_nr = TRAP_HWBKPT;
618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 11, SIGSEGV) == NOTIFY_STOP)
620 return;
622 if (debugger_break_match(regs))
623 return;
625 /* Clear the breakpoint */
626 hw_breakpoint_disable();
628 /* Deliver the signal to userspace */
629 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
637 * Set the debug registers back to their default "safe" values.
639 static void set_debug_reg_defaults(struct thread_struct *thread)
641 thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645 thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649 thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655 DBCR1_IAC3US | DBCR1_IAC4US;
657 * Force Data Address Compare User/Supervisor bits to be User-only
658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662 thread->debug.dbcr1 = 0;
663 #endif
666 static void prime_debug_regs(struct debug_reg *debug)
669 * We could have inherited MSR_DE from userspace, since
670 * it doesn't get cleared on exception entry. Make sure
671 * MSR_DE is clear before we enable any debug events.
673 mtmsr(mfmsr() & ~MSR_DE);
675 mtspr(SPRN_IAC1, debug->iac1);
676 mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 mtspr(SPRN_IAC3, debug->iac3);
679 mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681 mtspr(SPRN_DAC1, debug->dac1);
682 mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 mtspr(SPRN_DVC1, debug->dvc1);
685 mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687 mtspr(SPRN_DBCR0, debug->dbcr0);
688 mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690 mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
694 * Unless neither the old or new thread are making use of the
695 * debug registers, set the debug registers from the values
696 * stored in the new thread.
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
700 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701 || (new_debug->dbcr0 & DBCR0_IDM))
702 prime_debug_regs(new_debug);
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_breakpoint(struct arch_hw_breakpoint *brk)
709 preempt_disable();
710 __set_breakpoint(brk);
711 preempt_enable();
714 static void set_debug_reg_defaults(struct thread_struct *thread)
716 thread->hw_brk.address = 0;
717 thread->hw_brk.type = 0;
718 thread->hw_brk.len = 0;
719 thread->hw_brk.hw_len = 0;
720 if (ppc_breakpoint_available())
721 set_breakpoint(&thread->hw_brk);
723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
724 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
729 mtspr(SPRN_DAC1, dabr);
730 #ifdef CONFIG_PPC_47x
731 isync();
732 #endif
733 return 0;
735 #elif defined(CONFIG_PPC_BOOK3S)
736 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 mtspr(SPRN_DABR, dabr);
739 if (cpu_has_feature(CPU_FTR_DABRX))
740 mtspr(SPRN_DABRX, dabrx);
741 return 0;
743 #elif defined(CONFIG_PPC_8xx)
744 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
746 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
747 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
748 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
750 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
751 lctrl1 |= 0xa0000;
752 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
753 lctrl1 |= 0xf0000;
754 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
755 lctrl2 = 0;
757 mtspr(SPRN_LCTRL2, 0);
758 mtspr(SPRN_CMPE, addr);
759 mtspr(SPRN_CMPF, addr + 4);
760 mtspr(SPRN_LCTRL1, lctrl1);
761 mtspr(SPRN_LCTRL2, lctrl2);
763 return 0;
765 #else
766 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
768 return -EINVAL;
770 #endif
772 static inline int set_dabr(struct arch_hw_breakpoint *brk)
774 unsigned long dabr, dabrx;
776 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
777 dabrx = ((brk->type >> 3) & 0x7);
779 if (ppc_md.set_dabr)
780 return ppc_md.set_dabr(dabr, dabrx);
782 return __set_dabr(dabr, dabrx);
785 void __set_breakpoint(struct arch_hw_breakpoint *brk)
787 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
789 if (dawr_enabled())
790 // Power8 or later
791 set_dawr(brk);
792 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
793 // Power7 or earlier
794 set_dabr(brk);
795 else
796 // Shouldn't happen due to higher level checks
797 WARN_ON_ONCE(1);
800 /* Check if we have DAWR or DABR hardware */
801 bool ppc_breakpoint_available(void)
803 if (dawr_enabled())
804 return true; /* POWER8 DAWR or POWER9 forced DAWR */
805 if (cpu_has_feature(CPU_FTR_ARCH_207S))
806 return false; /* POWER9 with DAWR disabled */
807 /* DABR: Everything but POWER8 and POWER9 */
808 return true;
810 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
812 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
813 struct arch_hw_breakpoint *b)
815 if (a->address != b->address)
816 return false;
817 if (a->type != b->type)
818 return false;
819 if (a->len != b->len)
820 return false;
821 /* no need to check hw_len. it's calculated from address and len */
822 return true;
825 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
827 static inline bool tm_enabled(struct task_struct *tsk)
829 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
832 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
835 * Use the current MSR TM suspended bit to track if we have
836 * checkpointed state outstanding.
837 * On signal delivery, we'd normally reclaim the checkpointed
838 * state to obtain stack pointer (see:get_tm_stackpointer()).
839 * This will then directly return to userspace without going
840 * through __switch_to(). However, if the stack frame is bad,
841 * we need to exit this thread which calls __switch_to() which
842 * will again attempt to reclaim the already saved tm state.
843 * Hence we need to check that we've not already reclaimed
844 * this state.
845 * We do this using the current MSR, rather tracking it in
846 * some specific thread_struct bit, as it has the additional
847 * benefit of checking for a potential TM bad thing exception.
849 if (!MSR_TM_SUSPENDED(mfmsr()))
850 return;
852 giveup_all(container_of(thr, struct task_struct, thread));
854 tm_reclaim(thr, cause);
857 * If we are in a transaction and FP is off then we can't have
858 * used FP inside that transaction. Hence the checkpointed
859 * state is the same as the live state. We need to copy the
860 * live state to the checkpointed state so that when the
861 * transaction is restored, the checkpointed state is correct
862 * and the aborted transaction sees the correct state. We use
863 * ckpt_regs.msr here as that's what tm_reclaim will use to
864 * determine if it's going to write the checkpointed state or
865 * not. So either this will write the checkpointed registers,
866 * or reclaim will. Similarly for VMX.
868 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
869 memcpy(&thr->ckfp_state, &thr->fp_state,
870 sizeof(struct thread_fp_state));
871 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
872 memcpy(&thr->ckvr_state, &thr->vr_state,
873 sizeof(struct thread_vr_state));
876 void tm_reclaim_current(uint8_t cause)
878 tm_enable();
879 tm_reclaim_thread(&current->thread, cause);
882 static inline void tm_reclaim_task(struct task_struct *tsk)
884 /* We have to work out if we're switching from/to a task that's in the
885 * middle of a transaction.
887 * In switching we need to maintain a 2nd register state as
888 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
889 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
890 * ckvr_state
892 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
894 struct thread_struct *thr = &tsk->thread;
896 if (!thr->regs)
897 return;
899 if (!MSR_TM_ACTIVE(thr->regs->msr))
900 goto out_and_saveregs;
902 WARN_ON(tm_suspend_disabled);
904 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
905 "ccr=%lx, msr=%lx, trap=%lx)\n",
906 tsk->pid, thr->regs->nip,
907 thr->regs->ccr, thr->regs->msr,
908 thr->regs->trap);
910 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
912 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
913 tsk->pid);
915 out_and_saveregs:
916 /* Always save the regs here, even if a transaction's not active.
917 * This context-switches a thread's TM info SPRs. We do it here to
918 * be consistent with the restore path (in recheckpoint) which
919 * cannot happen later in _switch().
921 tm_save_sprs(thr);
924 extern void __tm_recheckpoint(struct thread_struct *thread);
926 void tm_recheckpoint(struct thread_struct *thread)
928 unsigned long flags;
930 if (!(thread->regs->msr & MSR_TM))
931 return;
933 /* We really can't be interrupted here as the TEXASR registers can't
934 * change and later in the trecheckpoint code, we have a userspace R1.
935 * So let's hard disable over this region.
937 local_irq_save(flags);
938 hard_irq_disable();
940 /* The TM SPRs are restored here, so that TEXASR.FS can be set
941 * before the trecheckpoint and no explosion occurs.
943 tm_restore_sprs(thread);
945 __tm_recheckpoint(thread);
947 local_irq_restore(flags);
950 static inline void tm_recheckpoint_new_task(struct task_struct *new)
952 if (!cpu_has_feature(CPU_FTR_TM))
953 return;
955 /* Recheckpoint the registers of the thread we're about to switch to.
957 * If the task was using FP, we non-lazily reload both the original and
958 * the speculative FP register states. This is because the kernel
959 * doesn't see if/when a TM rollback occurs, so if we take an FP
960 * unavailable later, we are unable to determine which set of FP regs
961 * need to be restored.
963 if (!tm_enabled(new))
964 return;
966 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
967 tm_restore_sprs(&new->thread);
968 return;
970 /* Recheckpoint to restore original checkpointed register state. */
971 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
972 new->pid, new->thread.regs->msr);
974 tm_recheckpoint(&new->thread);
977 * The checkpointed state has been restored but the live state has
978 * not, ensure all the math functionality is turned off to trigger
979 * restore_math() to reload.
981 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
983 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
984 "(kernel msr 0x%lx)\n",
985 new->pid, mfmsr());
988 static inline void __switch_to_tm(struct task_struct *prev,
989 struct task_struct *new)
991 if (cpu_has_feature(CPU_FTR_TM)) {
992 if (tm_enabled(prev) || tm_enabled(new))
993 tm_enable();
995 if (tm_enabled(prev)) {
996 prev->thread.load_tm++;
997 tm_reclaim_task(prev);
998 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
999 prev->thread.regs->msr &= ~MSR_TM;
1002 tm_recheckpoint_new_task(new);
1007 * This is called if we are on the way out to userspace and the
1008 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1009 * FP and/or vector state and does so if necessary.
1010 * If userspace is inside a transaction (whether active or
1011 * suspended) and FP/VMX/VSX instructions have ever been enabled
1012 * inside that transaction, then we have to keep them enabled
1013 * and keep the FP/VMX/VSX state loaded while ever the transaction
1014 * continues. The reason is that if we didn't, and subsequently
1015 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1016 * we don't know whether it's the same transaction, and thus we
1017 * don't know which of the checkpointed state and the transactional
1018 * state to use.
1020 void restore_tm_state(struct pt_regs *regs)
1022 unsigned long msr_diff;
1025 * This is the only moment we should clear TIF_RESTORE_TM as
1026 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1027 * again, anything else could lead to an incorrect ckpt_msr being
1028 * saved and therefore incorrect signal contexts.
1030 clear_thread_flag(TIF_RESTORE_TM);
1031 if (!MSR_TM_ACTIVE(regs->msr))
1032 return;
1034 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1035 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1037 /* Ensure that restore_math() will restore */
1038 if (msr_diff & MSR_FP)
1039 current->thread.load_fp = 1;
1040 #ifdef CONFIG_ALTIVEC
1041 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1042 current->thread.load_vec = 1;
1043 #endif
1044 restore_math(regs);
1046 regs->msr |= msr_diff;
1049 #else
1050 #define tm_recheckpoint_new_task(new)
1051 #define __switch_to_tm(prev, new)
1052 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1054 static inline void save_sprs(struct thread_struct *t)
1056 #ifdef CONFIG_ALTIVEC
1057 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1058 t->vrsave = mfspr(SPRN_VRSAVE);
1059 #endif
1060 #ifdef CONFIG_PPC_BOOK3S_64
1061 if (cpu_has_feature(CPU_FTR_DSCR))
1062 t->dscr = mfspr(SPRN_DSCR);
1064 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1065 t->bescr = mfspr(SPRN_BESCR);
1066 t->ebbhr = mfspr(SPRN_EBBHR);
1067 t->ebbrr = mfspr(SPRN_EBBRR);
1069 t->fscr = mfspr(SPRN_FSCR);
1072 * Note that the TAR is not available for use in the kernel.
1073 * (To provide this, the TAR should be backed up/restored on
1074 * exception entry/exit instead, and be in pt_regs. FIXME,
1075 * this should be in pt_regs anyway (for debug).)
1077 t->tar = mfspr(SPRN_TAR);
1079 #endif
1081 thread_pkey_regs_save(t);
1084 static inline void restore_sprs(struct thread_struct *old_thread,
1085 struct thread_struct *new_thread)
1087 #ifdef CONFIG_ALTIVEC
1088 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1089 old_thread->vrsave != new_thread->vrsave)
1090 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1091 #endif
1092 #ifdef CONFIG_PPC_BOOK3S_64
1093 if (cpu_has_feature(CPU_FTR_DSCR)) {
1094 u64 dscr = get_paca()->dscr_default;
1095 if (new_thread->dscr_inherit)
1096 dscr = new_thread->dscr;
1098 if (old_thread->dscr != dscr)
1099 mtspr(SPRN_DSCR, dscr);
1102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103 if (old_thread->bescr != new_thread->bescr)
1104 mtspr(SPRN_BESCR, new_thread->bescr);
1105 if (old_thread->ebbhr != new_thread->ebbhr)
1106 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1107 if (old_thread->ebbrr != new_thread->ebbrr)
1108 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1110 if (old_thread->fscr != new_thread->fscr)
1111 mtspr(SPRN_FSCR, new_thread->fscr);
1113 if (old_thread->tar != new_thread->tar)
1114 mtspr(SPRN_TAR, new_thread->tar);
1117 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1118 old_thread->tidr != new_thread->tidr)
1119 mtspr(SPRN_TIDR, new_thread->tidr);
1120 #endif
1122 thread_pkey_regs_restore(new_thread, old_thread);
1125 struct task_struct *__switch_to(struct task_struct *prev,
1126 struct task_struct *new)
1128 struct thread_struct *new_thread, *old_thread;
1129 struct task_struct *last;
1130 #ifdef CONFIG_PPC_BOOK3S_64
1131 struct ppc64_tlb_batch *batch;
1132 #endif
1134 new_thread = &new->thread;
1135 old_thread = &current->thread;
1137 WARN_ON(!irqs_disabled());
1139 #ifdef CONFIG_PPC_BOOK3S_64
1140 batch = this_cpu_ptr(&ppc64_tlb_batch);
1141 if (batch->active) {
1142 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1143 if (batch->index)
1144 __flush_tlb_pending(batch);
1145 batch->active = 0;
1147 #endif /* CONFIG_PPC_BOOK3S_64 */
1149 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1150 switch_booke_debug_regs(&new->thread.debug);
1151 #else
1153 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1154 * schedule DABR
1156 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1157 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1158 __set_breakpoint(&new->thread.hw_brk);
1159 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1160 #endif
1163 * We need to save SPRs before treclaim/trecheckpoint as these will
1164 * change a number of them.
1166 save_sprs(&prev->thread);
1168 /* Save FPU, Altivec, VSX and SPE state */
1169 giveup_all(prev);
1171 __switch_to_tm(prev, new);
1173 if (!radix_enabled()) {
1175 * We can't take a PMU exception inside _switch() since there
1176 * is a window where the kernel stack SLB and the kernel stack
1177 * are out of sync. Hard disable here.
1179 hard_irq_disable();
1183 * Call restore_sprs() before calling _switch(). If we move it after
1184 * _switch() then we miss out on calling it for new tasks. The reason
1185 * for this is we manually create a stack frame for new tasks that
1186 * directly returns through ret_from_fork() or
1187 * ret_from_kernel_thread(). See copy_thread() for details.
1189 restore_sprs(old_thread, new_thread);
1191 last = _switch(old_thread, new_thread);
1193 #ifdef CONFIG_PPC_BOOK3S_64
1194 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1195 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1196 batch = this_cpu_ptr(&ppc64_tlb_batch);
1197 batch->active = 1;
1200 if (current->thread.regs) {
1201 restore_math(current->thread.regs);
1204 * The copy-paste buffer can only store into foreign real
1205 * addresses, so unprivileged processes can not see the
1206 * data or use it in any way unless they have foreign real
1207 * mappings. If the new process has the foreign real address
1208 * mappings, we must issue a cp_abort to clear any state and
1209 * prevent snooping, corruption or a covert channel.
1211 if (current->thread.used_vas)
1212 asm volatile(PPC_CP_ABORT);
1214 #endif /* CONFIG_PPC_BOOK3S_64 */
1216 return last;
1219 #define NR_INSN_TO_PRINT 16
1221 static void show_instructions(struct pt_regs *regs)
1223 int i;
1224 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1226 printk("Instruction dump:");
1228 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1229 int instr;
1231 if (!(i % 8))
1232 pr_cont("\n");
1234 #if !defined(CONFIG_BOOKE)
1235 /* If executing with the IMMU off, adjust pc rather
1236 * than print XXXXXXXX.
1238 if (!(regs->msr & MSR_IR))
1239 pc = (unsigned long)phys_to_virt(pc);
1240 #endif
1242 if (!__kernel_text_address(pc) ||
1243 probe_kernel_address((const void *)pc, instr)) {
1244 pr_cont("XXXXXXXX ");
1245 } else {
1246 if (regs->nip == pc)
1247 pr_cont("<%08x> ", instr);
1248 else
1249 pr_cont("%08x ", instr);
1252 pc += sizeof(int);
1255 pr_cont("\n");
1258 void show_user_instructions(struct pt_regs *regs)
1260 unsigned long pc;
1261 int n = NR_INSN_TO_PRINT;
1262 struct seq_buf s;
1263 char buf[96]; /* enough for 8 times 9 + 2 chars */
1265 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1268 * Make sure the NIP points at userspace, not kernel text/data or
1269 * elsewhere.
1271 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1272 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1273 current->comm, current->pid);
1274 return;
1277 seq_buf_init(&s, buf, sizeof(buf));
1279 while (n) {
1280 int i;
1282 seq_buf_clear(&s);
1284 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1285 int instr;
1287 if (probe_kernel_address((const void *)pc, instr)) {
1288 seq_buf_printf(&s, "XXXXXXXX ");
1289 continue;
1291 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1294 if (!seq_buf_has_overflowed(&s))
1295 pr_info("%s[%d]: code: %s\n", current->comm,
1296 current->pid, s.buffer);
1300 struct regbit {
1301 unsigned long bit;
1302 const char *name;
1305 static struct regbit msr_bits[] = {
1306 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1307 {MSR_SF, "SF"},
1308 {MSR_HV, "HV"},
1309 #endif
1310 {MSR_VEC, "VEC"},
1311 {MSR_VSX, "VSX"},
1312 #ifdef CONFIG_BOOKE
1313 {MSR_CE, "CE"},
1314 #endif
1315 {MSR_EE, "EE"},
1316 {MSR_PR, "PR"},
1317 {MSR_FP, "FP"},
1318 {MSR_ME, "ME"},
1319 #ifdef CONFIG_BOOKE
1320 {MSR_DE, "DE"},
1321 #else
1322 {MSR_SE, "SE"},
1323 {MSR_BE, "BE"},
1324 #endif
1325 {MSR_IR, "IR"},
1326 {MSR_DR, "DR"},
1327 {MSR_PMM, "PMM"},
1328 #ifndef CONFIG_BOOKE
1329 {MSR_RI, "RI"},
1330 {MSR_LE, "LE"},
1331 #endif
1332 {0, NULL}
1335 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1337 const char *s = "";
1339 for (; bits->bit; ++bits)
1340 if (val & bits->bit) {
1341 pr_cont("%s%s", s, bits->name);
1342 s = sep;
1346 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1347 static struct regbit msr_tm_bits[] = {
1348 {MSR_TS_T, "T"},
1349 {MSR_TS_S, "S"},
1350 {MSR_TM, "E"},
1351 {0, NULL}
1354 static void print_tm_bits(unsigned long val)
1357 * This only prints something if at least one of the TM bit is set.
1358 * Inside the TM[], the output means:
1359 * E: Enabled (bit 32)
1360 * S: Suspended (bit 33)
1361 * T: Transactional (bit 34)
1363 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1364 pr_cont(",TM[");
1365 print_bits(val, msr_tm_bits, "");
1366 pr_cont("]");
1369 #else
1370 static void print_tm_bits(unsigned long val) {}
1371 #endif
1373 static void print_msr_bits(unsigned long val)
1375 pr_cont("<");
1376 print_bits(val, msr_bits, ",");
1377 print_tm_bits(val);
1378 pr_cont(">");
1381 #ifdef CONFIG_PPC64
1382 #define REG "%016lx"
1383 #define REGS_PER_LINE 4
1384 #define LAST_VOLATILE 13
1385 #else
1386 #define REG "%08lx"
1387 #define REGS_PER_LINE 8
1388 #define LAST_VOLATILE 12
1389 #endif
1391 void show_regs(struct pt_regs * regs)
1393 int i, trap;
1395 show_regs_print_info(KERN_DEFAULT);
1397 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1398 regs->nip, regs->link, regs->ctr);
1399 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1400 regs, regs->trap, print_tainted(), init_utsname()->release);
1401 printk("MSR: "REG" ", regs->msr);
1402 print_msr_bits(regs->msr);
1403 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1404 trap = TRAP(regs);
1405 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1406 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1407 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1408 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1409 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1410 #else
1411 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1412 #endif
1413 #ifdef CONFIG_PPC64
1414 pr_cont("IRQMASK: %lx ", regs->softe);
1415 #endif
1416 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1417 if (MSR_TM_ACTIVE(regs->msr))
1418 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1419 #endif
1421 for (i = 0; i < 32; i++) {
1422 if ((i % REGS_PER_LINE) == 0)
1423 pr_cont("\nGPR%02d: ", i);
1424 pr_cont(REG " ", regs->gpr[i]);
1425 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1426 break;
1428 pr_cont("\n");
1429 #ifdef CONFIG_KALLSYMS
1431 * Lookup NIP late so we have the best change of getting the
1432 * above info out without failing
1434 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1435 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1436 #endif
1437 show_stack(current, (unsigned long *) regs->gpr[1]);
1438 if (!user_mode(regs))
1439 show_instructions(regs);
1442 void flush_thread(void)
1444 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1445 flush_ptrace_hw_breakpoint(current);
1446 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1447 set_debug_reg_defaults(&current->thread);
1448 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1451 #ifdef CONFIG_PPC_BOOK3S_64
1452 void arch_setup_new_exec(void)
1454 if (radix_enabled())
1455 return;
1456 hash__setup_new_exec();
1458 #endif
1460 int set_thread_uses_vas(void)
1462 #ifdef CONFIG_PPC_BOOK3S_64
1463 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1464 return -EINVAL;
1466 current->thread.used_vas = 1;
1469 * Even a process that has no foreign real address mapping can use
1470 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1471 * to clear any pending COPY and prevent a covert channel.
1473 * __switch_to() will issue CP_ABORT on future context switches.
1475 asm volatile(PPC_CP_ABORT);
1477 #endif /* CONFIG_PPC_BOOK3S_64 */
1478 return 0;
1481 #ifdef CONFIG_PPC64
1483 * Assign a TIDR (thread ID) for task @t and set it in the thread
1484 * structure. For now, we only support setting TIDR for 'current' task.
1486 * Since the TID value is a truncated form of it PID, it is possible
1487 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1488 * that 2 threads share the same TID and are waiting, one of the following
1489 * cases will happen:
1491 * 1. The correct thread is running, the wrong thread is not
1492 * In this situation, the correct thread is woken and proceeds to pass it's
1493 * condition check.
1495 * 2. Neither threads are running
1496 * In this situation, neither thread will be woken. When scheduled, the waiting
1497 * threads will execute either a wait, which will return immediately, followed
1498 * by a condition check, which will pass for the correct thread and fail
1499 * for the wrong thread, or they will execute the condition check immediately.
1501 * 3. The wrong thread is running, the correct thread is not
1502 * The wrong thread will be woken, but will fail it's condition check and
1503 * re-execute wait. The correct thread, when scheduled, will execute either
1504 * it's condition check (which will pass), or wait, which returns immediately
1505 * when called the first time after the thread is scheduled, followed by it's
1506 * condition check (which will pass).
1508 * 4. Both threads are running
1509 * Both threads will be woken. The wrong thread will fail it's condition check
1510 * and execute another wait, while the correct thread will pass it's condition
1511 * check.
1513 * @t: the task to set the thread ID for
1515 int set_thread_tidr(struct task_struct *t)
1517 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1518 return -EINVAL;
1520 if (t != current)
1521 return -EINVAL;
1523 if (t->thread.tidr)
1524 return 0;
1526 t->thread.tidr = (u16)task_pid_nr(t);
1527 mtspr(SPRN_TIDR, t->thread.tidr);
1529 return 0;
1531 EXPORT_SYMBOL_GPL(set_thread_tidr);
1533 #endif /* CONFIG_PPC64 */
1535 void
1536 release_thread(struct task_struct *t)
1541 * this gets called so that we can store coprocessor state into memory and
1542 * copy the current task into the new thread.
1544 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1546 flush_all_to_thread(src);
1548 * Flush TM state out so we can copy it. __switch_to_tm() does this
1549 * flush but it removes the checkpointed state from the current CPU and
1550 * transitions the CPU out of TM mode. Hence we need to call
1551 * tm_recheckpoint_new_task() (on the same task) to restore the
1552 * checkpointed state back and the TM mode.
1554 * Can't pass dst because it isn't ready. Doesn't matter, passing
1555 * dst is only important for __switch_to()
1557 __switch_to_tm(src, src);
1559 *dst = *src;
1561 clear_task_ebb(dst);
1563 return 0;
1566 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1568 #ifdef CONFIG_PPC_BOOK3S_64
1569 unsigned long sp_vsid;
1570 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1572 if (radix_enabled())
1573 return;
1575 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1576 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1577 << SLB_VSID_SHIFT_1T;
1578 else
1579 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1580 << SLB_VSID_SHIFT;
1581 sp_vsid |= SLB_VSID_KERNEL | llp;
1582 p->thread.ksp_vsid = sp_vsid;
1583 #endif
1587 * Copy a thread..
1591 * Copy architecture-specific thread state
1593 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1594 unsigned long kthread_arg, struct task_struct *p,
1595 unsigned long tls)
1597 struct pt_regs *childregs, *kregs;
1598 extern void ret_from_fork(void);
1599 extern void ret_from_kernel_thread(void);
1600 void (*f)(void);
1601 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1602 struct thread_info *ti = task_thread_info(p);
1604 klp_init_thread_info(p);
1606 /* Copy registers */
1607 sp -= sizeof(struct pt_regs);
1608 childregs = (struct pt_regs *) sp;
1609 if (unlikely(p->flags & PF_KTHREAD)) {
1610 /* kernel thread */
1611 memset(childregs, 0, sizeof(struct pt_regs));
1612 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1613 /* function */
1614 if (usp)
1615 childregs->gpr[14] = ppc_function_entry((void *)usp);
1616 #ifdef CONFIG_PPC64
1617 clear_tsk_thread_flag(p, TIF_32BIT);
1618 childregs->softe = IRQS_ENABLED;
1619 #endif
1620 childregs->gpr[15] = kthread_arg;
1621 p->thread.regs = NULL; /* no user register state */
1622 ti->flags |= _TIF_RESTOREALL;
1623 f = ret_from_kernel_thread;
1624 } else {
1625 /* user thread */
1626 struct pt_regs *regs = current_pt_regs();
1627 CHECK_FULL_REGS(regs);
1628 *childregs = *regs;
1629 if (usp)
1630 childregs->gpr[1] = usp;
1631 p->thread.regs = childregs;
1632 childregs->gpr[3] = 0; /* Result from fork() */
1633 if (clone_flags & CLONE_SETTLS) {
1634 #ifdef CONFIG_PPC64
1635 if (!is_32bit_task())
1636 childregs->gpr[13] = tls;
1637 else
1638 #endif
1639 childregs->gpr[2] = tls;
1642 f = ret_from_fork;
1644 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1645 sp -= STACK_FRAME_OVERHEAD;
1648 * The way this works is that at some point in the future
1649 * some task will call _switch to switch to the new task.
1650 * That will pop off the stack frame created below and start
1651 * the new task running at ret_from_fork. The new task will
1652 * do some house keeping and then return from the fork or clone
1653 * system call, using the stack frame created above.
1655 ((unsigned long *)sp)[0] = 0;
1656 sp -= sizeof(struct pt_regs);
1657 kregs = (struct pt_regs *) sp;
1658 sp -= STACK_FRAME_OVERHEAD;
1659 p->thread.ksp = sp;
1660 #ifdef CONFIG_PPC32
1661 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1662 #endif
1663 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1664 p->thread.ptrace_bps[0] = NULL;
1665 #endif
1667 p->thread.fp_save_area = NULL;
1668 #ifdef CONFIG_ALTIVEC
1669 p->thread.vr_save_area = NULL;
1670 #endif
1672 setup_ksp_vsid(p, sp);
1674 #ifdef CONFIG_PPC64
1675 if (cpu_has_feature(CPU_FTR_DSCR)) {
1676 p->thread.dscr_inherit = current->thread.dscr_inherit;
1677 p->thread.dscr = mfspr(SPRN_DSCR);
1679 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1680 childregs->ppr = DEFAULT_PPR;
1682 p->thread.tidr = 0;
1683 #endif
1684 kregs->nip = ppc_function_entry(f);
1685 return 0;
1688 void preload_new_slb_context(unsigned long start, unsigned long sp);
1691 * Set up a thread for executing a new program
1693 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1695 #ifdef CONFIG_PPC64
1696 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1698 #ifdef CONFIG_PPC_BOOK3S_64
1699 if (!radix_enabled())
1700 preload_new_slb_context(start, sp);
1701 #endif
1702 #endif
1705 * If we exec out of a kernel thread then thread.regs will not be
1706 * set. Do it now.
1708 if (!current->thread.regs) {
1709 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1710 current->thread.regs = regs - 1;
1713 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1715 * Clear any transactional state, we're exec()ing. The cause is
1716 * not important as there will never be a recheckpoint so it's not
1717 * user visible.
1719 if (MSR_TM_SUSPENDED(mfmsr()))
1720 tm_reclaim_current(0);
1721 #endif
1723 memset(regs->gpr, 0, sizeof(regs->gpr));
1724 regs->ctr = 0;
1725 regs->link = 0;
1726 regs->xer = 0;
1727 regs->ccr = 0;
1728 regs->gpr[1] = sp;
1731 * We have just cleared all the nonvolatile GPRs, so make
1732 * FULL_REGS(regs) return true. This is necessary to allow
1733 * ptrace to examine the thread immediately after exec.
1735 regs->trap &= ~1UL;
1737 #ifdef CONFIG_PPC32
1738 regs->mq = 0;
1739 regs->nip = start;
1740 regs->msr = MSR_USER;
1741 #else
1742 if (!is_32bit_task()) {
1743 unsigned long entry;
1745 if (is_elf2_task()) {
1746 /* Look ma, no function descriptors! */
1747 entry = start;
1750 * Ulrich says:
1751 * The latest iteration of the ABI requires that when
1752 * calling a function (at its global entry point),
1753 * the caller must ensure r12 holds the entry point
1754 * address (so that the function can quickly
1755 * establish addressability).
1757 regs->gpr[12] = start;
1758 /* Make sure that's restored on entry to userspace. */
1759 set_thread_flag(TIF_RESTOREALL);
1760 } else {
1761 unsigned long toc;
1763 /* start is a relocated pointer to the function
1764 * descriptor for the elf _start routine. The first
1765 * entry in the function descriptor is the entry
1766 * address of _start and the second entry is the TOC
1767 * value we need to use.
1769 __get_user(entry, (unsigned long __user *)start);
1770 __get_user(toc, (unsigned long __user *)start+1);
1772 /* Check whether the e_entry function descriptor entries
1773 * need to be relocated before we can use them.
1775 if (load_addr != 0) {
1776 entry += load_addr;
1777 toc += load_addr;
1779 regs->gpr[2] = toc;
1781 regs->nip = entry;
1782 regs->msr = MSR_USER64;
1783 } else {
1784 regs->nip = start;
1785 regs->gpr[2] = 0;
1786 regs->msr = MSR_USER32;
1788 #endif
1789 #ifdef CONFIG_VSX
1790 current->thread.used_vsr = 0;
1791 #endif
1792 current->thread.load_slb = 0;
1793 current->thread.load_fp = 0;
1794 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1795 current->thread.fp_save_area = NULL;
1796 #ifdef CONFIG_ALTIVEC
1797 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1798 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1799 current->thread.vr_save_area = NULL;
1800 current->thread.vrsave = 0;
1801 current->thread.used_vr = 0;
1802 current->thread.load_vec = 0;
1803 #endif /* CONFIG_ALTIVEC */
1804 #ifdef CONFIG_SPE
1805 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1806 current->thread.acc = 0;
1807 current->thread.spefscr = 0;
1808 current->thread.used_spe = 0;
1809 #endif /* CONFIG_SPE */
1810 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1811 current->thread.tm_tfhar = 0;
1812 current->thread.tm_texasr = 0;
1813 current->thread.tm_tfiar = 0;
1814 current->thread.load_tm = 0;
1815 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1817 thread_pkey_regs_init(&current->thread);
1819 EXPORT_SYMBOL(start_thread);
1821 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1822 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1824 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1826 struct pt_regs *regs = tsk->thread.regs;
1828 /* This is a bit hairy. If we are an SPE enabled processor
1829 * (have embedded fp) we store the IEEE exception enable flags in
1830 * fpexc_mode. fpexc_mode is also used for setting FP exception
1831 * mode (asyn, precise, disabled) for 'Classic' FP. */
1832 if (val & PR_FP_EXC_SW_ENABLE) {
1833 #ifdef CONFIG_SPE
1834 if (cpu_has_feature(CPU_FTR_SPE)) {
1836 * When the sticky exception bits are set
1837 * directly by userspace, it must call prctl
1838 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1839 * in the existing prctl settings) or
1840 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1841 * the bits being set). <fenv.h> functions
1842 * saving and restoring the whole
1843 * floating-point environment need to do so
1844 * anyway to restore the prctl settings from
1845 * the saved environment.
1847 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1848 tsk->thread.fpexc_mode = val &
1849 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1850 return 0;
1851 } else {
1852 return -EINVAL;
1854 #else
1855 return -EINVAL;
1856 #endif
1859 /* on a CONFIG_SPE this does not hurt us. The bits that
1860 * __pack_fe01 use do not overlap with bits used for
1861 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1862 * on CONFIG_SPE implementations are reserved so writing to
1863 * them does not change anything */
1864 if (val > PR_FP_EXC_PRECISE)
1865 return -EINVAL;
1866 tsk->thread.fpexc_mode = __pack_fe01(val);
1867 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1868 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1869 | tsk->thread.fpexc_mode;
1870 return 0;
1873 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1875 unsigned int val;
1877 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1878 #ifdef CONFIG_SPE
1879 if (cpu_has_feature(CPU_FTR_SPE)) {
1881 * When the sticky exception bits are set
1882 * directly by userspace, it must call prctl
1883 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1884 * in the existing prctl settings) or
1885 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1886 * the bits being set). <fenv.h> functions
1887 * saving and restoring the whole
1888 * floating-point environment need to do so
1889 * anyway to restore the prctl settings from
1890 * the saved environment.
1892 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1893 val = tsk->thread.fpexc_mode;
1894 } else
1895 return -EINVAL;
1896 #else
1897 return -EINVAL;
1898 #endif
1899 else
1900 val = __unpack_fe01(tsk->thread.fpexc_mode);
1901 return put_user(val, (unsigned int __user *) adr);
1904 int set_endian(struct task_struct *tsk, unsigned int val)
1906 struct pt_regs *regs = tsk->thread.regs;
1908 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1909 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1910 return -EINVAL;
1912 if (regs == NULL)
1913 return -EINVAL;
1915 if (val == PR_ENDIAN_BIG)
1916 regs->msr &= ~MSR_LE;
1917 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1918 regs->msr |= MSR_LE;
1919 else
1920 return -EINVAL;
1922 return 0;
1925 int get_endian(struct task_struct *tsk, unsigned long adr)
1927 struct pt_regs *regs = tsk->thread.regs;
1928 unsigned int val;
1930 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1931 !cpu_has_feature(CPU_FTR_REAL_LE))
1932 return -EINVAL;
1934 if (regs == NULL)
1935 return -EINVAL;
1937 if (regs->msr & MSR_LE) {
1938 if (cpu_has_feature(CPU_FTR_REAL_LE))
1939 val = PR_ENDIAN_LITTLE;
1940 else
1941 val = PR_ENDIAN_PPC_LITTLE;
1942 } else
1943 val = PR_ENDIAN_BIG;
1945 return put_user(val, (unsigned int __user *)adr);
1948 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1950 tsk->thread.align_ctl = val;
1951 return 0;
1954 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1956 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1959 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1960 unsigned long nbytes)
1962 unsigned long stack_page;
1963 unsigned long cpu = task_cpu(p);
1965 stack_page = (unsigned long)hardirq_ctx[cpu];
1966 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1967 return 1;
1969 stack_page = (unsigned long)softirq_ctx[cpu];
1970 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1971 return 1;
1973 return 0;
1976 int validate_sp(unsigned long sp, struct task_struct *p,
1977 unsigned long nbytes)
1979 unsigned long stack_page = (unsigned long)task_stack_page(p);
1981 if (sp < THREAD_SIZE)
1982 return 0;
1984 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1985 return 1;
1987 return valid_irq_stack(sp, p, nbytes);
1990 EXPORT_SYMBOL(validate_sp);
1992 static unsigned long __get_wchan(struct task_struct *p)
1994 unsigned long ip, sp;
1995 int count = 0;
1997 if (!p || p == current || p->state == TASK_RUNNING)
1998 return 0;
2000 sp = p->thread.ksp;
2001 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2002 return 0;
2004 do {
2005 sp = *(unsigned long *)sp;
2006 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2007 p->state == TASK_RUNNING)
2008 return 0;
2009 if (count > 0) {
2010 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2011 if (!in_sched_functions(ip))
2012 return ip;
2014 } while (count++ < 16);
2015 return 0;
2018 unsigned long get_wchan(struct task_struct *p)
2020 unsigned long ret;
2022 if (!try_get_task_stack(p))
2023 return 0;
2025 ret = __get_wchan(p);
2027 put_task_stack(p);
2029 return ret;
2032 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2034 void show_stack(struct task_struct *tsk, unsigned long *stack)
2036 unsigned long sp, ip, lr, newsp;
2037 int count = 0;
2038 int firstframe = 1;
2039 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2040 unsigned long ret_addr;
2041 int ftrace_idx = 0;
2042 #endif
2044 if (tsk == NULL)
2045 tsk = current;
2047 if (!try_get_task_stack(tsk))
2048 return;
2050 sp = (unsigned long) stack;
2051 if (sp == 0) {
2052 if (tsk == current)
2053 sp = current_stack_pointer();
2054 else
2055 sp = tsk->thread.ksp;
2058 lr = 0;
2059 printk("Call Trace:\n");
2060 do {
2061 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2062 break;
2064 stack = (unsigned long *) sp;
2065 newsp = stack[0];
2066 ip = stack[STACK_FRAME_LR_SAVE];
2067 if (!firstframe || ip != lr) {
2068 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2069 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2070 ret_addr = ftrace_graph_ret_addr(current,
2071 &ftrace_idx, ip, stack);
2072 if (ret_addr != ip)
2073 pr_cont(" (%pS)", (void *)ret_addr);
2074 #endif
2075 if (firstframe)
2076 pr_cont(" (unreliable)");
2077 pr_cont("\n");
2079 firstframe = 0;
2082 * See if this is an exception frame.
2083 * We look for the "regshere" marker in the current frame.
2085 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2086 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2087 struct pt_regs *regs = (struct pt_regs *)
2088 (sp + STACK_FRAME_OVERHEAD);
2089 lr = regs->link;
2090 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2091 regs->trap, (void *)regs->nip, (void *)lr);
2092 firstframe = 1;
2095 sp = newsp;
2096 } while (count++ < kstack_depth_to_print);
2098 put_task_stack(tsk);
2101 #ifdef CONFIG_PPC64
2102 /* Called with hard IRQs off */
2103 void notrace __ppc64_runlatch_on(void)
2105 struct thread_info *ti = current_thread_info();
2107 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2109 * Least significant bit (RUN) is the only writable bit of
2110 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2111 * earliest ISA where this is the case, but it's convenient.
2113 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2114 } else {
2115 unsigned long ctrl;
2118 * Some architectures (e.g., Cell) have writable fields other
2119 * than RUN, so do the read-modify-write.
2121 ctrl = mfspr(SPRN_CTRLF);
2122 ctrl |= CTRL_RUNLATCH;
2123 mtspr(SPRN_CTRLT, ctrl);
2126 ti->local_flags |= _TLF_RUNLATCH;
2129 /* Called with hard IRQs off */
2130 void notrace __ppc64_runlatch_off(void)
2132 struct thread_info *ti = current_thread_info();
2134 ti->local_flags &= ~_TLF_RUNLATCH;
2136 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2137 mtspr(SPRN_CTRLT, 0);
2138 } else {
2139 unsigned long ctrl;
2141 ctrl = mfspr(SPRN_CTRLF);
2142 ctrl &= ~CTRL_RUNLATCH;
2143 mtspr(SPRN_CTRLT, ctrl);
2146 #endif /* CONFIG_PPC64 */
2148 unsigned long arch_align_stack(unsigned long sp)
2150 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2151 sp -= get_random_int() & ~PAGE_MASK;
2152 return sp & ~0xf;
2155 static inline unsigned long brk_rnd(void)
2157 unsigned long rnd = 0;
2159 /* 8MB for 32bit, 1GB for 64bit */
2160 if (is_32bit_task())
2161 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2162 else
2163 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2165 return rnd << PAGE_SHIFT;
2168 unsigned long arch_randomize_brk(struct mm_struct *mm)
2170 unsigned long base = mm->brk;
2171 unsigned long ret;
2173 #ifdef CONFIG_PPC_BOOK3S_64
2175 * If we are using 1TB segments and we are allowed to randomise
2176 * the heap, we can put it above 1TB so it is backed by a 1TB
2177 * segment. Otherwise the heap will be in the bottom 1TB
2178 * which always uses 256MB segments and this may result in a
2179 * performance penalty. We don't need to worry about radix. For
2180 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2182 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2183 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2184 #endif
2186 ret = PAGE_ALIGN(base + brk_rnd());
2188 if (ret < mm->brk)
2189 return mm->brk;
2191 return ret;