treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / powerpc / perf / core-book3s.c
blob48604625ab31d54692b428d824bb981dbed92753
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Performance event support - powerpc architecture code
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
25 #define BHRB_MAX_ENTRIES 32
26 #define BHRB_TARGET 0x0000000000000002
27 #define BHRB_PREDICTION 0x0000000000000001
28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
30 struct cpu_hw_events {
31 int n_events;
32 int n_percpu;
33 int disabled;
34 int n_added;
35 int n_limited;
36 u8 pmcs_enabled;
37 struct perf_event *event[MAX_HWEVENTS];
38 u64 events[MAX_HWEVENTS];
39 unsigned int flags[MAX_HWEVENTS];
41 * The order of the MMCR array is:
42 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43 * - 32-bit, MMCR0, MMCR1, MMCR2
45 unsigned long mmcr[4];
46 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
47 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
48 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
52 unsigned int txn_flags;
53 int n_txn_start;
55 /* BHRB bits */
56 u64 bhrb_filter; /* BHRB HW branch filter */
57 unsigned int bhrb_users;
58 void *bhrb_context;
59 struct perf_branch_stack bhrb_stack;
60 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
61 u64 ic_init;
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
66 static struct power_pmu *ppmu;
69 * Normally, to ignore kernel events we set the FCS (freeze counters
70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71 * hypervisor bit set in the MSR, or if we are running on a processor
72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73 * then we need to use the FCHV bit to ignore kernel events.
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
78 * 32-bit doesn't have MMCRA but does have an MMCR2,
79 * and a few other names are different.
81 #ifdef CONFIG_PPC32
83 #define MMCR0_FCHV 0
84 #define MMCR0_PMCjCE MMCR0_PMCnCE
85 #define MMCR0_FC56 0
86 #define MMCR0_PMAO 0
87 #define MMCR0_EBE 0
88 #define MMCR0_BHRBA 0
89 #define MMCR0_PMCC 0
90 #define MMCR0_PMCC_U6 0
92 #define SPRN_MMCRA SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE 0
95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
97 return 0;
99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
100 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
102 return 0;
104 static inline void perf_read_regs(struct pt_regs *regs)
106 regs->result = 0;
108 static inline int perf_intr_is_nmi(struct pt_regs *regs)
110 return 0;
113 static inline int siar_valid(struct pt_regs *regs)
115 return 1;
118 static bool is_ebb_event(struct perf_event *event) { return false; }
119 static int ebb_event_check(struct perf_event *event) { return 0; }
120 static void ebb_event_add(struct perf_event *event) { }
121 static void ebb_switch_out(unsigned long mmcr0) { }
122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
124 return cpuhw->mmcr[0];
127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
131 static void pmao_restore_workaround(bool ebb) { }
132 #endif /* CONFIG_PPC32 */
134 bool is_sier_available(void)
136 if (ppmu->flags & PPMU_HAS_SIER)
137 return true;
139 return false;
142 static bool regs_use_siar(struct pt_regs *regs)
145 * When we take a performance monitor exception the regs are setup
146 * using perf_read_regs() which overloads some fields, in particular
147 * regs->result to tell us whether to use SIAR.
149 * However if the regs are from another exception, eg. a syscall, then
150 * they have not been setup using perf_read_regs() and so regs->result
151 * is something random.
153 return ((TRAP(regs) == 0xf00) && regs->result);
157 * Things that are specific to 64-bit implementations.
159 #ifdef CONFIG_PPC64
161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
163 unsigned long mmcra = regs->dsisr;
165 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
166 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
167 if (slot > 1)
168 return 4 * (slot - 1);
171 return 0;
175 * The user wants a data address recorded.
176 * If we're not doing instruction sampling, give them the SDAR
177 * (sampled data address). If we are doing instruction sampling, then
178 * only give them the SDAR if it corresponds to the instruction
179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
184 unsigned long mmcra = regs->dsisr;
185 bool sdar_valid;
187 if (ppmu->flags & PPMU_HAS_SIER)
188 sdar_valid = regs->dar & SIER_SDAR_VALID;
189 else {
190 unsigned long sdsync;
192 if (ppmu->flags & PPMU_SIAR_VALID)
193 sdsync = POWER7P_MMCRA_SDAR_VALID;
194 else if (ppmu->flags & PPMU_ALT_SIPR)
195 sdsync = POWER6_MMCRA_SDSYNC;
196 else if (ppmu->flags & PPMU_NO_SIAR)
197 sdsync = MMCRA_SAMPLE_ENABLE;
198 else
199 sdsync = MMCRA_SDSYNC;
201 sdar_valid = mmcra & sdsync;
204 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
205 *addrp = mfspr(SPRN_SDAR);
207 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
208 *addrp = 0;
211 static bool regs_sihv(struct pt_regs *regs)
213 unsigned long sihv = MMCRA_SIHV;
215 if (ppmu->flags & PPMU_HAS_SIER)
216 return !!(regs->dar & SIER_SIHV);
218 if (ppmu->flags & PPMU_ALT_SIPR)
219 sihv = POWER6_MMCRA_SIHV;
221 return !!(regs->dsisr & sihv);
224 static bool regs_sipr(struct pt_regs *regs)
226 unsigned long sipr = MMCRA_SIPR;
228 if (ppmu->flags & PPMU_HAS_SIER)
229 return !!(regs->dar & SIER_SIPR);
231 if (ppmu->flags & PPMU_ALT_SIPR)
232 sipr = POWER6_MMCRA_SIPR;
234 return !!(regs->dsisr & sipr);
237 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
239 if (regs->msr & MSR_PR)
240 return PERF_RECORD_MISC_USER;
241 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
242 return PERF_RECORD_MISC_HYPERVISOR;
243 return PERF_RECORD_MISC_KERNEL;
246 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
248 bool use_siar = regs_use_siar(regs);
250 if (!use_siar)
251 return perf_flags_from_msr(regs);
254 * If we don't have flags in MMCRA, rather than using
255 * the MSR, we intuit the flags from the address in
256 * SIAR which should give slightly more reliable
257 * results
259 if (ppmu->flags & PPMU_NO_SIPR) {
260 unsigned long siar = mfspr(SPRN_SIAR);
261 if (is_kernel_addr(siar))
262 return PERF_RECORD_MISC_KERNEL;
263 return PERF_RECORD_MISC_USER;
266 /* PR has priority over HV, so order below is important */
267 if (regs_sipr(regs))
268 return PERF_RECORD_MISC_USER;
270 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
271 return PERF_RECORD_MISC_HYPERVISOR;
273 return PERF_RECORD_MISC_KERNEL;
277 * Overload regs->dsisr to store MMCRA so we only need to read it once
278 * on each interrupt.
279 * Overload regs->dar to store SIER if we have it.
280 * Overload regs->result to specify whether we should use the MSR (result
281 * is zero) or the SIAR (result is non zero).
283 static inline void perf_read_regs(struct pt_regs *regs)
285 unsigned long mmcra = mfspr(SPRN_MMCRA);
286 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
287 int use_siar;
289 regs->dsisr = mmcra;
291 if (ppmu->flags & PPMU_HAS_SIER)
292 regs->dar = mfspr(SPRN_SIER);
295 * If this isn't a PMU exception (eg a software event) the SIAR is
296 * not valid. Use pt_regs.
298 * If it is a marked event use the SIAR.
300 * If the PMU doesn't update the SIAR for non marked events use
301 * pt_regs.
303 * If the PMU has HV/PR flags then check to see if they
304 * place the exception in userspace. If so, use pt_regs. In
305 * continuous sampling mode the SIAR and the PMU exception are
306 * not synchronised, so they may be many instructions apart.
307 * This can result in confusing backtraces. We still want
308 * hypervisor samples as well as samples in the kernel with
309 * interrupts off hence the userspace check.
311 if (TRAP(regs) != 0xf00)
312 use_siar = 0;
313 else if ((ppmu->flags & PPMU_NO_SIAR))
314 use_siar = 0;
315 else if (marked)
316 use_siar = 1;
317 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
318 use_siar = 0;
319 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
320 use_siar = 0;
321 else
322 use_siar = 1;
324 regs->result = use_siar;
328 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
329 * it as an NMI.
331 static inline int perf_intr_is_nmi(struct pt_regs *regs)
333 return (regs->softe & IRQS_DISABLED);
337 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
338 * must be sampled only if the SIAR-valid bit is set.
340 * For unmarked instructions and for processors that don't have the SIAR-Valid
341 * bit, assume that SIAR is valid.
343 static inline int siar_valid(struct pt_regs *regs)
345 unsigned long mmcra = regs->dsisr;
346 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
348 if (marked) {
349 if (ppmu->flags & PPMU_HAS_SIER)
350 return regs->dar & SIER_SIAR_VALID;
352 if (ppmu->flags & PPMU_SIAR_VALID)
353 return mmcra & POWER7P_MMCRA_SIAR_VALID;
356 return 1;
360 /* Reset all possible BHRB entries */
361 static void power_pmu_bhrb_reset(void)
363 asm volatile(PPC_CLRBHRB);
366 static void power_pmu_bhrb_enable(struct perf_event *event)
368 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
370 if (!ppmu->bhrb_nr)
371 return;
373 /* Clear BHRB if we changed task context to avoid data leaks */
374 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
375 power_pmu_bhrb_reset();
376 cpuhw->bhrb_context = event->ctx;
378 cpuhw->bhrb_users++;
379 perf_sched_cb_inc(event->ctx->pmu);
382 static void power_pmu_bhrb_disable(struct perf_event *event)
384 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
386 if (!ppmu->bhrb_nr)
387 return;
389 WARN_ON_ONCE(!cpuhw->bhrb_users);
390 cpuhw->bhrb_users--;
391 perf_sched_cb_dec(event->ctx->pmu);
393 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
394 /* BHRB cannot be turned off when other
395 * events are active on the PMU.
398 /* avoid stale pointer */
399 cpuhw->bhrb_context = NULL;
403 /* Called from ctxsw to prevent one process's branch entries to
404 * mingle with the other process's entries during context switch.
406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
408 if (!ppmu->bhrb_nr)
409 return;
411 if (sched_in)
412 power_pmu_bhrb_reset();
414 /* Calculate the to address for a branch */
415 static __u64 power_pmu_bhrb_to(u64 addr)
417 unsigned int instr;
418 int ret;
419 __u64 target;
421 if (is_kernel_addr(addr)) {
422 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
423 return 0;
425 return branch_target(&instr);
428 /* Userspace: need copy instruction here then translate it */
429 pagefault_disable();
430 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
431 if (ret) {
432 pagefault_enable();
433 return 0;
435 pagefault_enable();
437 target = branch_target(&instr);
438 if ((!target) || (instr & BRANCH_ABSOLUTE))
439 return target;
441 /* Translate relative branch target from kernel to user address */
442 return target - (unsigned long)&instr + addr;
445 /* Processing BHRB entries */
446 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
448 u64 val;
449 u64 addr;
450 int r_index, u_index, pred;
452 r_index = 0;
453 u_index = 0;
454 while (r_index < ppmu->bhrb_nr) {
455 /* Assembly read function */
456 val = read_bhrb(r_index++);
457 if (!val)
458 /* Terminal marker: End of valid BHRB entries */
459 break;
460 else {
461 addr = val & BHRB_EA;
462 pred = val & BHRB_PREDICTION;
464 if (!addr)
465 /* invalid entry */
466 continue;
469 * BHRB rolling buffer could very much contain the kernel
470 * addresses at this point. Check the privileges before
471 * exporting it to userspace (avoid exposure of regions
472 * where we could have speculative execution)
474 if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
475 continue;
477 /* Branches are read most recent first (ie. mfbhrb 0 is
478 * the most recent branch).
479 * There are two types of valid entries:
480 * 1) a target entry which is the to address of a
481 * computed goto like a blr,bctr,btar. The next
482 * entry read from the bhrb will be branch
483 * corresponding to this target (ie. the actual
484 * blr/bctr/btar instruction).
485 * 2) a from address which is an actual branch. If a
486 * target entry proceeds this, then this is the
487 * matching branch for that target. If this is not
488 * following a target entry, then this is a branch
489 * where the target is given as an immediate field
490 * in the instruction (ie. an i or b form branch).
491 * In this case we need to read the instruction from
492 * memory to determine the target/to address.
495 if (val & BHRB_TARGET) {
496 /* Target branches use two entries
497 * (ie. computed gotos/XL form)
499 cpuhw->bhrb_entries[u_index].to = addr;
500 cpuhw->bhrb_entries[u_index].mispred = pred;
501 cpuhw->bhrb_entries[u_index].predicted = ~pred;
503 /* Get from address in next entry */
504 val = read_bhrb(r_index++);
505 addr = val & BHRB_EA;
506 if (val & BHRB_TARGET) {
507 /* Shouldn't have two targets in a
508 row.. Reset index and try again */
509 r_index--;
510 addr = 0;
512 cpuhw->bhrb_entries[u_index].from = addr;
513 } else {
514 /* Branches to immediate field
515 (ie I or B form) */
516 cpuhw->bhrb_entries[u_index].from = addr;
517 cpuhw->bhrb_entries[u_index].to =
518 power_pmu_bhrb_to(addr);
519 cpuhw->bhrb_entries[u_index].mispred = pred;
520 cpuhw->bhrb_entries[u_index].predicted = ~pred;
522 u_index++;
526 cpuhw->bhrb_stack.nr = u_index;
527 return;
530 static bool is_ebb_event(struct perf_event *event)
533 * This could be a per-PMU callback, but we'd rather avoid the cost. We
534 * check that the PMU supports EBB, meaning those that don't can still
535 * use bit 63 of the event code for something else if they wish.
537 return (ppmu->flags & PPMU_ARCH_207S) &&
538 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
541 static int ebb_event_check(struct perf_event *event)
543 struct perf_event *leader = event->group_leader;
545 /* Event and group leader must agree on EBB */
546 if (is_ebb_event(leader) != is_ebb_event(event))
547 return -EINVAL;
549 if (is_ebb_event(event)) {
550 if (!(event->attach_state & PERF_ATTACH_TASK))
551 return -EINVAL;
553 if (!leader->attr.pinned || !leader->attr.exclusive)
554 return -EINVAL;
556 if (event->attr.freq ||
557 event->attr.inherit ||
558 event->attr.sample_type ||
559 event->attr.sample_period ||
560 event->attr.enable_on_exec)
561 return -EINVAL;
564 return 0;
567 static void ebb_event_add(struct perf_event *event)
569 if (!is_ebb_event(event) || current->thread.used_ebb)
570 return;
573 * IFF this is the first time we've added an EBB event, set
574 * PMXE in the user MMCR0 so we can detect when it's cleared by
575 * userspace. We need this so that we can context switch while
576 * userspace is in the EBB handler (where PMXE is 0).
578 current->thread.used_ebb = 1;
579 current->thread.mmcr0 |= MMCR0_PMXE;
582 static void ebb_switch_out(unsigned long mmcr0)
584 if (!(mmcr0 & MMCR0_EBE))
585 return;
587 current->thread.siar = mfspr(SPRN_SIAR);
588 current->thread.sier = mfspr(SPRN_SIER);
589 current->thread.sdar = mfspr(SPRN_SDAR);
590 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
591 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
594 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
596 unsigned long mmcr0 = cpuhw->mmcr[0];
598 if (!ebb)
599 goto out;
601 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
602 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
605 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
606 * with pmao_restore_workaround() because we may add PMAO but we never
607 * clear it here.
609 mmcr0 |= current->thread.mmcr0;
612 * Be careful not to set PMXE if userspace had it cleared. This is also
613 * compatible with pmao_restore_workaround() because it has already
614 * cleared PMXE and we leave PMAO alone.
616 if (!(current->thread.mmcr0 & MMCR0_PMXE))
617 mmcr0 &= ~MMCR0_PMXE;
619 mtspr(SPRN_SIAR, current->thread.siar);
620 mtspr(SPRN_SIER, current->thread.sier);
621 mtspr(SPRN_SDAR, current->thread.sdar);
624 * Merge the kernel & user values of MMCR2. The semantics we implement
625 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
626 * but not clear bits. If a task wants to be able to clear bits, ie.
627 * unfreeze counters, it should not set exclude_xxx in its events and
628 * instead manage the MMCR2 entirely by itself.
630 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
631 out:
632 return mmcr0;
635 static void pmao_restore_workaround(bool ebb)
637 unsigned pmcs[6];
639 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
640 return;
643 * On POWER8E there is a hardware defect which affects the PMU context
644 * switch logic, ie. power_pmu_disable/enable().
646 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
647 * by the hardware. Sometime later the actual PMU exception is
648 * delivered.
650 * If we context switch, or simply disable/enable, the PMU prior to the
651 * exception arriving, the exception will be lost when we clear PMAO.
653 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
654 * set, and this _should_ generate an exception. However because of the
655 * defect no exception is generated when we write PMAO, and we get
656 * stuck with no counters counting but no exception delivered.
658 * The workaround is to detect this case and tweak the hardware to
659 * create another pending PMU exception.
661 * We do that by setting up PMC6 (cycles) for an imminent overflow and
662 * enabling the PMU. That causes a new exception to be generated in the
663 * chip, but we don't take it yet because we have interrupts hard
664 * disabled. We then write back the PMU state as we want it to be seen
665 * by the exception handler. When we reenable interrupts the exception
666 * handler will be called and see the correct state.
668 * The logic is the same for EBB, except that the exception is gated by
669 * us having interrupts hard disabled as well as the fact that we are
670 * not in userspace. The exception is finally delivered when we return
671 * to userspace.
674 /* Only if PMAO is set and PMAO_SYNC is clear */
675 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
676 return;
678 /* If we're doing EBB, only if BESCR[GE] is set */
679 if (ebb && !(current->thread.bescr & BESCR_GE))
680 return;
683 * We are already soft-disabled in power_pmu_enable(). We need to hard
684 * disable to actually prevent the PMU exception from firing.
686 hard_irq_disable();
689 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
690 * Using read/write_pmc() in a for loop adds 12 function calls and
691 * almost doubles our code size.
693 pmcs[0] = mfspr(SPRN_PMC1);
694 pmcs[1] = mfspr(SPRN_PMC2);
695 pmcs[2] = mfspr(SPRN_PMC3);
696 pmcs[3] = mfspr(SPRN_PMC4);
697 pmcs[4] = mfspr(SPRN_PMC5);
698 pmcs[5] = mfspr(SPRN_PMC6);
700 /* Ensure all freeze bits are unset */
701 mtspr(SPRN_MMCR2, 0);
703 /* Set up PMC6 to overflow in one cycle */
704 mtspr(SPRN_PMC6, 0x7FFFFFFE);
706 /* Enable exceptions and unfreeze PMC6 */
707 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
709 /* Now we need to refreeze and restore the PMCs */
710 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
712 mtspr(SPRN_PMC1, pmcs[0]);
713 mtspr(SPRN_PMC2, pmcs[1]);
714 mtspr(SPRN_PMC3, pmcs[2]);
715 mtspr(SPRN_PMC4, pmcs[3]);
716 mtspr(SPRN_PMC5, pmcs[4]);
717 mtspr(SPRN_PMC6, pmcs[5]);
720 #endif /* CONFIG_PPC64 */
722 static void perf_event_interrupt(struct pt_regs *regs);
725 * Read one performance monitor counter (PMC).
727 static unsigned long read_pmc(int idx)
729 unsigned long val;
731 switch (idx) {
732 case 1:
733 val = mfspr(SPRN_PMC1);
734 break;
735 case 2:
736 val = mfspr(SPRN_PMC2);
737 break;
738 case 3:
739 val = mfspr(SPRN_PMC3);
740 break;
741 case 4:
742 val = mfspr(SPRN_PMC4);
743 break;
744 case 5:
745 val = mfspr(SPRN_PMC5);
746 break;
747 case 6:
748 val = mfspr(SPRN_PMC6);
749 break;
750 #ifdef CONFIG_PPC64
751 case 7:
752 val = mfspr(SPRN_PMC7);
753 break;
754 case 8:
755 val = mfspr(SPRN_PMC8);
756 break;
757 #endif /* CONFIG_PPC64 */
758 default:
759 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
760 val = 0;
762 return val;
766 * Write one PMC.
768 static void write_pmc(int idx, unsigned long val)
770 switch (idx) {
771 case 1:
772 mtspr(SPRN_PMC1, val);
773 break;
774 case 2:
775 mtspr(SPRN_PMC2, val);
776 break;
777 case 3:
778 mtspr(SPRN_PMC3, val);
779 break;
780 case 4:
781 mtspr(SPRN_PMC4, val);
782 break;
783 case 5:
784 mtspr(SPRN_PMC5, val);
785 break;
786 case 6:
787 mtspr(SPRN_PMC6, val);
788 break;
789 #ifdef CONFIG_PPC64
790 case 7:
791 mtspr(SPRN_PMC7, val);
792 break;
793 case 8:
794 mtspr(SPRN_PMC8, val);
795 break;
796 #endif /* CONFIG_PPC64 */
797 default:
798 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
802 /* Called from sysrq_handle_showregs() */
803 void perf_event_print_debug(void)
805 unsigned long sdar, sier, flags;
806 u32 pmcs[MAX_HWEVENTS];
807 int i;
809 if (!ppmu) {
810 pr_info("Performance monitor hardware not registered.\n");
811 return;
814 if (!ppmu->n_counter)
815 return;
817 local_irq_save(flags);
819 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
820 smp_processor_id(), ppmu->name, ppmu->n_counter);
822 for (i = 0; i < ppmu->n_counter; i++)
823 pmcs[i] = read_pmc(i + 1);
825 for (; i < MAX_HWEVENTS; i++)
826 pmcs[i] = 0xdeadbeef;
828 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
829 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
831 if (ppmu->n_counter > 4)
832 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
833 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
835 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
836 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
838 sdar = sier = 0;
839 #ifdef CONFIG_PPC64
840 sdar = mfspr(SPRN_SDAR);
842 if (ppmu->flags & PPMU_HAS_SIER)
843 sier = mfspr(SPRN_SIER);
845 if (ppmu->flags & PPMU_ARCH_207S) {
846 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
847 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
848 pr_info("EBBRR: %016lx BESCR: %016lx\n",
849 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
851 #endif
852 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
853 mfspr(SPRN_SIAR), sdar, sier);
855 local_irq_restore(flags);
859 * Check if a set of events can all go on the PMU at once.
860 * If they can't, this will look at alternative codes for the events
861 * and see if any combination of alternative codes is feasible.
862 * The feasible set is returned in event_id[].
864 static int power_check_constraints(struct cpu_hw_events *cpuhw,
865 u64 event_id[], unsigned int cflags[],
866 int n_ev)
868 unsigned long mask, value, nv;
869 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
870 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
871 int i, j;
872 unsigned long addf = ppmu->add_fields;
873 unsigned long tadd = ppmu->test_adder;
874 unsigned long grp_mask = ppmu->group_constraint_mask;
875 unsigned long grp_val = ppmu->group_constraint_val;
877 if (n_ev > ppmu->n_counter)
878 return -1;
880 /* First see if the events will go on as-is */
881 for (i = 0; i < n_ev; ++i) {
882 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
883 && !ppmu->limited_pmc_event(event_id[i])) {
884 ppmu->get_alternatives(event_id[i], cflags[i],
885 cpuhw->alternatives[i]);
886 event_id[i] = cpuhw->alternatives[i][0];
888 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
889 &cpuhw->avalues[i][0]))
890 return -1;
892 value = mask = 0;
893 for (i = 0; i < n_ev; ++i) {
894 nv = (value | cpuhw->avalues[i][0]) +
895 (value & cpuhw->avalues[i][0] & addf);
897 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
898 break;
900 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
901 & (~grp_mask)) != 0)
902 break;
904 value = nv;
905 mask |= cpuhw->amasks[i][0];
907 if (i == n_ev) {
908 if ((value & mask & grp_mask) != (mask & grp_val))
909 return -1;
910 else
911 return 0; /* all OK */
914 /* doesn't work, gather alternatives... */
915 if (!ppmu->get_alternatives)
916 return -1;
917 for (i = 0; i < n_ev; ++i) {
918 choice[i] = 0;
919 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
920 cpuhw->alternatives[i]);
921 for (j = 1; j < n_alt[i]; ++j)
922 ppmu->get_constraint(cpuhw->alternatives[i][j],
923 &cpuhw->amasks[i][j],
924 &cpuhw->avalues[i][j]);
927 /* enumerate all possibilities and see if any will work */
928 i = 0;
929 j = -1;
930 value = mask = nv = 0;
931 while (i < n_ev) {
932 if (j >= 0) {
933 /* we're backtracking, restore context */
934 value = svalues[i];
935 mask = smasks[i];
936 j = choice[i];
939 * See if any alternative k for event_id i,
940 * where k > j, will satisfy the constraints.
942 while (++j < n_alt[i]) {
943 nv = (value | cpuhw->avalues[i][j]) +
944 (value & cpuhw->avalues[i][j] & addf);
945 if ((((nv + tadd) ^ value) & mask) == 0 &&
946 (((nv + tadd) ^ cpuhw->avalues[i][j])
947 & cpuhw->amasks[i][j]) == 0)
948 break;
950 if (j >= n_alt[i]) {
952 * No feasible alternative, backtrack
953 * to event_id i-1 and continue enumerating its
954 * alternatives from where we got up to.
956 if (--i < 0)
957 return -1;
958 } else {
960 * Found a feasible alternative for event_id i,
961 * remember where we got up to with this event_id,
962 * go on to the next event_id, and start with
963 * the first alternative for it.
965 choice[i] = j;
966 svalues[i] = value;
967 smasks[i] = mask;
968 value = nv;
969 mask |= cpuhw->amasks[i][j];
970 ++i;
971 j = -1;
975 /* OK, we have a feasible combination, tell the caller the solution */
976 for (i = 0; i < n_ev; ++i)
977 event_id[i] = cpuhw->alternatives[i][choice[i]];
978 return 0;
982 * Check if newly-added events have consistent settings for
983 * exclude_{user,kernel,hv} with each other and any previously
984 * added events.
986 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
987 int n_prev, int n_new)
989 int eu = 0, ek = 0, eh = 0;
990 int i, n, first;
991 struct perf_event *event;
994 * If the PMU we're on supports per event exclude settings then we
995 * don't need to do any of this logic. NB. This assumes no PMU has both
996 * per event exclude and limited PMCs.
998 if (ppmu->flags & PPMU_ARCH_207S)
999 return 0;
1001 n = n_prev + n_new;
1002 if (n <= 1)
1003 return 0;
1005 first = 1;
1006 for (i = 0; i < n; ++i) {
1007 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1008 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1009 continue;
1011 event = ctrs[i];
1012 if (first) {
1013 eu = event->attr.exclude_user;
1014 ek = event->attr.exclude_kernel;
1015 eh = event->attr.exclude_hv;
1016 first = 0;
1017 } else if (event->attr.exclude_user != eu ||
1018 event->attr.exclude_kernel != ek ||
1019 event->attr.exclude_hv != eh) {
1020 return -EAGAIN;
1024 if (eu || ek || eh)
1025 for (i = 0; i < n; ++i)
1026 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1027 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1029 return 0;
1032 static u64 check_and_compute_delta(u64 prev, u64 val)
1034 u64 delta = (val - prev) & 0xfffffffful;
1037 * POWER7 can roll back counter values, if the new value is smaller
1038 * than the previous value it will cause the delta and the counter to
1039 * have bogus values unless we rolled a counter over. If a coutner is
1040 * rolled back, it will be smaller, but within 256, which is the maximum
1041 * number of events to rollback at once. If we detect a rollback
1042 * return 0. This can lead to a small lack of precision in the
1043 * counters.
1045 if (prev > val && (prev - val) < 256)
1046 delta = 0;
1048 return delta;
1051 static void power_pmu_read(struct perf_event *event)
1053 s64 val, delta, prev;
1055 if (event->hw.state & PERF_HES_STOPPED)
1056 return;
1058 if (!event->hw.idx)
1059 return;
1061 if (is_ebb_event(event)) {
1062 val = read_pmc(event->hw.idx);
1063 local64_set(&event->hw.prev_count, val);
1064 return;
1068 * Performance monitor interrupts come even when interrupts
1069 * are soft-disabled, as long as interrupts are hard-enabled.
1070 * Therefore we treat them like NMIs.
1072 do {
1073 prev = local64_read(&event->hw.prev_count);
1074 barrier();
1075 val = read_pmc(event->hw.idx);
1076 delta = check_and_compute_delta(prev, val);
1077 if (!delta)
1078 return;
1079 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1081 local64_add(delta, &event->count);
1084 * A number of places program the PMC with (0x80000000 - period_left).
1085 * We never want period_left to be less than 1 because we will program
1086 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1087 * roll around to 0 before taking an exception. We have seen this
1088 * on POWER8.
1090 * To fix this, clamp the minimum value of period_left to 1.
1092 do {
1093 prev = local64_read(&event->hw.period_left);
1094 val = prev - delta;
1095 if (val < 1)
1096 val = 1;
1097 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1101 * On some machines, PMC5 and PMC6 can't be written, don't respect
1102 * the freeze conditions, and don't generate interrupts. This tells
1103 * us if `event' is using such a PMC.
1105 static int is_limited_pmc(int pmcnum)
1107 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1108 && (pmcnum == 5 || pmcnum == 6);
1111 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1112 unsigned long pmc5, unsigned long pmc6)
1114 struct perf_event *event;
1115 u64 val, prev, delta;
1116 int i;
1118 for (i = 0; i < cpuhw->n_limited; ++i) {
1119 event = cpuhw->limited_counter[i];
1120 if (!event->hw.idx)
1121 continue;
1122 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1123 prev = local64_read(&event->hw.prev_count);
1124 event->hw.idx = 0;
1125 delta = check_and_compute_delta(prev, val);
1126 if (delta)
1127 local64_add(delta, &event->count);
1131 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1132 unsigned long pmc5, unsigned long pmc6)
1134 struct perf_event *event;
1135 u64 val, prev;
1136 int i;
1138 for (i = 0; i < cpuhw->n_limited; ++i) {
1139 event = cpuhw->limited_counter[i];
1140 event->hw.idx = cpuhw->limited_hwidx[i];
1141 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1142 prev = local64_read(&event->hw.prev_count);
1143 if (check_and_compute_delta(prev, val))
1144 local64_set(&event->hw.prev_count, val);
1145 perf_event_update_userpage(event);
1150 * Since limited events don't respect the freeze conditions, we
1151 * have to read them immediately after freezing or unfreezing the
1152 * other events. We try to keep the values from the limited
1153 * events as consistent as possible by keeping the delay (in
1154 * cycles and instructions) between freezing/unfreezing and reading
1155 * the limited events as small and consistent as possible.
1156 * Therefore, if any limited events are in use, we read them
1157 * both, and always in the same order, to minimize variability,
1158 * and do it inside the same asm that writes MMCR0.
1160 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1162 unsigned long pmc5, pmc6;
1164 if (!cpuhw->n_limited) {
1165 mtspr(SPRN_MMCR0, mmcr0);
1166 return;
1170 * Write MMCR0, then read PMC5 and PMC6 immediately.
1171 * To ensure we don't get a performance monitor interrupt
1172 * between writing MMCR0 and freezing/thawing the limited
1173 * events, we first write MMCR0 with the event overflow
1174 * interrupt enable bits turned off.
1176 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1177 : "=&r" (pmc5), "=&r" (pmc6)
1178 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1179 "i" (SPRN_MMCR0),
1180 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1182 if (mmcr0 & MMCR0_FC)
1183 freeze_limited_counters(cpuhw, pmc5, pmc6);
1184 else
1185 thaw_limited_counters(cpuhw, pmc5, pmc6);
1188 * Write the full MMCR0 including the event overflow interrupt
1189 * enable bits, if necessary.
1191 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1192 mtspr(SPRN_MMCR0, mmcr0);
1196 * Disable all events to prevent PMU interrupts and to allow
1197 * events to be added or removed.
1199 static void power_pmu_disable(struct pmu *pmu)
1201 struct cpu_hw_events *cpuhw;
1202 unsigned long flags, mmcr0, val;
1204 if (!ppmu)
1205 return;
1206 local_irq_save(flags);
1207 cpuhw = this_cpu_ptr(&cpu_hw_events);
1209 if (!cpuhw->disabled) {
1211 * Check if we ever enabled the PMU on this cpu.
1213 if (!cpuhw->pmcs_enabled) {
1214 ppc_enable_pmcs();
1215 cpuhw->pmcs_enabled = 1;
1219 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1221 val = mmcr0 = mfspr(SPRN_MMCR0);
1222 val |= MMCR0_FC;
1223 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1224 MMCR0_FC56);
1227 * The barrier is to make sure the mtspr has been
1228 * executed and the PMU has frozen the events etc.
1229 * before we return.
1231 write_mmcr0(cpuhw, val);
1232 mb();
1233 isync();
1236 * Disable instruction sampling if it was enabled
1238 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1239 mtspr(SPRN_MMCRA,
1240 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1241 mb();
1242 isync();
1245 cpuhw->disabled = 1;
1246 cpuhw->n_added = 0;
1248 ebb_switch_out(mmcr0);
1250 #ifdef CONFIG_PPC64
1252 * These are readable by userspace, may contain kernel
1253 * addresses and are not switched by context switch, so clear
1254 * them now to avoid leaking anything to userspace in general
1255 * including to another process.
1257 if (ppmu->flags & PPMU_ARCH_207S) {
1258 mtspr(SPRN_SDAR, 0);
1259 mtspr(SPRN_SIAR, 0);
1261 #endif
1264 local_irq_restore(flags);
1268 * Re-enable all events if disable == 0.
1269 * If we were previously disabled and events were added, then
1270 * put the new config on the PMU.
1272 static void power_pmu_enable(struct pmu *pmu)
1274 struct perf_event *event;
1275 struct cpu_hw_events *cpuhw;
1276 unsigned long flags;
1277 long i;
1278 unsigned long val, mmcr0;
1279 s64 left;
1280 unsigned int hwc_index[MAX_HWEVENTS];
1281 int n_lim;
1282 int idx;
1283 bool ebb;
1285 if (!ppmu)
1286 return;
1287 local_irq_save(flags);
1289 cpuhw = this_cpu_ptr(&cpu_hw_events);
1290 if (!cpuhw->disabled)
1291 goto out;
1293 if (cpuhw->n_events == 0) {
1294 ppc_set_pmu_inuse(0);
1295 goto out;
1298 cpuhw->disabled = 0;
1301 * EBB requires an exclusive group and all events must have the EBB
1302 * flag set, or not set, so we can just check a single event. Also we
1303 * know we have at least one event.
1305 ebb = is_ebb_event(cpuhw->event[0]);
1308 * If we didn't change anything, or only removed events,
1309 * no need to recalculate MMCR* settings and reset the PMCs.
1310 * Just reenable the PMU with the current MMCR* settings
1311 * (possibly updated for removal of events).
1313 if (!cpuhw->n_added) {
1314 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1315 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1316 goto out_enable;
1320 * Clear all MMCR settings and recompute them for the new set of events.
1322 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1324 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1325 cpuhw->mmcr, cpuhw->event)) {
1326 /* shouldn't ever get here */
1327 printk(KERN_ERR "oops compute_mmcr failed\n");
1328 goto out;
1331 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1333 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1334 * bits for the first event. We have already checked that all
1335 * events have the same value for these bits as the first event.
1337 event = cpuhw->event[0];
1338 if (event->attr.exclude_user)
1339 cpuhw->mmcr[0] |= MMCR0_FCP;
1340 if (event->attr.exclude_kernel)
1341 cpuhw->mmcr[0] |= freeze_events_kernel;
1342 if (event->attr.exclude_hv)
1343 cpuhw->mmcr[0] |= MMCR0_FCHV;
1347 * Write the new configuration to MMCR* with the freeze
1348 * bit set and set the hardware events to their initial values.
1349 * Then unfreeze the events.
1351 ppc_set_pmu_inuse(1);
1352 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1353 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1354 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1355 | MMCR0_FC);
1356 if (ppmu->flags & PPMU_ARCH_207S)
1357 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1360 * Read off any pre-existing events that need to move
1361 * to another PMC.
1363 for (i = 0; i < cpuhw->n_events; ++i) {
1364 event = cpuhw->event[i];
1365 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1366 power_pmu_read(event);
1367 write_pmc(event->hw.idx, 0);
1368 event->hw.idx = 0;
1373 * Initialize the PMCs for all the new and moved events.
1375 cpuhw->n_limited = n_lim = 0;
1376 for (i = 0; i < cpuhw->n_events; ++i) {
1377 event = cpuhw->event[i];
1378 if (event->hw.idx)
1379 continue;
1380 idx = hwc_index[i] + 1;
1381 if (is_limited_pmc(idx)) {
1382 cpuhw->limited_counter[n_lim] = event;
1383 cpuhw->limited_hwidx[n_lim] = idx;
1384 ++n_lim;
1385 continue;
1388 if (ebb)
1389 val = local64_read(&event->hw.prev_count);
1390 else {
1391 val = 0;
1392 if (event->hw.sample_period) {
1393 left = local64_read(&event->hw.period_left);
1394 if (left < 0x80000000L)
1395 val = 0x80000000L - left;
1397 local64_set(&event->hw.prev_count, val);
1400 event->hw.idx = idx;
1401 if (event->hw.state & PERF_HES_STOPPED)
1402 val = 0;
1403 write_pmc(idx, val);
1405 perf_event_update_userpage(event);
1407 cpuhw->n_limited = n_lim;
1408 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1410 out_enable:
1411 pmao_restore_workaround(ebb);
1413 mmcr0 = ebb_switch_in(ebb, cpuhw);
1415 mb();
1416 if (cpuhw->bhrb_users)
1417 ppmu->config_bhrb(cpuhw->bhrb_filter);
1419 write_mmcr0(cpuhw, mmcr0);
1422 * Enable instruction sampling if necessary
1424 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1425 mb();
1426 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1429 out:
1431 local_irq_restore(flags);
1434 static int collect_events(struct perf_event *group, int max_count,
1435 struct perf_event *ctrs[], u64 *events,
1436 unsigned int *flags)
1438 int n = 0;
1439 struct perf_event *event;
1441 if (group->pmu->task_ctx_nr == perf_hw_context) {
1442 if (n >= max_count)
1443 return -1;
1444 ctrs[n] = group;
1445 flags[n] = group->hw.event_base;
1446 events[n++] = group->hw.config;
1448 for_each_sibling_event(event, group) {
1449 if (event->pmu->task_ctx_nr == perf_hw_context &&
1450 event->state != PERF_EVENT_STATE_OFF) {
1451 if (n >= max_count)
1452 return -1;
1453 ctrs[n] = event;
1454 flags[n] = event->hw.event_base;
1455 events[n++] = event->hw.config;
1458 return n;
1462 * Add an event to the PMU.
1463 * If all events are not already frozen, then we disable and
1464 * re-enable the PMU in order to get hw_perf_enable to do the
1465 * actual work of reconfiguring the PMU.
1467 static int power_pmu_add(struct perf_event *event, int ef_flags)
1469 struct cpu_hw_events *cpuhw;
1470 unsigned long flags;
1471 int n0;
1472 int ret = -EAGAIN;
1474 local_irq_save(flags);
1475 perf_pmu_disable(event->pmu);
1478 * Add the event to the list (if there is room)
1479 * and check whether the total set is still feasible.
1481 cpuhw = this_cpu_ptr(&cpu_hw_events);
1482 n0 = cpuhw->n_events;
1483 if (n0 >= ppmu->n_counter)
1484 goto out;
1485 cpuhw->event[n0] = event;
1486 cpuhw->events[n0] = event->hw.config;
1487 cpuhw->flags[n0] = event->hw.event_base;
1490 * This event may have been disabled/stopped in record_and_restart()
1491 * because we exceeded the ->event_limit. If re-starting the event,
1492 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1493 * notification is re-enabled.
1495 if (!(ef_flags & PERF_EF_START))
1496 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1497 else
1498 event->hw.state = 0;
1501 * If group events scheduling transaction was started,
1502 * skip the schedulability test here, it will be performed
1503 * at commit time(->commit_txn) as a whole
1505 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1506 goto nocheck;
1508 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1509 goto out;
1510 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1511 goto out;
1512 event->hw.config = cpuhw->events[n0];
1514 nocheck:
1515 ebb_event_add(event);
1517 ++cpuhw->n_events;
1518 ++cpuhw->n_added;
1520 ret = 0;
1521 out:
1522 if (has_branch_stack(event)) {
1523 power_pmu_bhrb_enable(event);
1524 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1525 event->attr.branch_sample_type);
1528 perf_pmu_enable(event->pmu);
1529 local_irq_restore(flags);
1530 return ret;
1534 * Remove an event from the PMU.
1536 static void power_pmu_del(struct perf_event *event, int ef_flags)
1538 struct cpu_hw_events *cpuhw;
1539 long i;
1540 unsigned long flags;
1542 local_irq_save(flags);
1543 perf_pmu_disable(event->pmu);
1545 power_pmu_read(event);
1547 cpuhw = this_cpu_ptr(&cpu_hw_events);
1548 for (i = 0; i < cpuhw->n_events; ++i) {
1549 if (event == cpuhw->event[i]) {
1550 while (++i < cpuhw->n_events) {
1551 cpuhw->event[i-1] = cpuhw->event[i];
1552 cpuhw->events[i-1] = cpuhw->events[i];
1553 cpuhw->flags[i-1] = cpuhw->flags[i];
1555 --cpuhw->n_events;
1556 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1557 if (event->hw.idx) {
1558 write_pmc(event->hw.idx, 0);
1559 event->hw.idx = 0;
1561 perf_event_update_userpage(event);
1562 break;
1565 for (i = 0; i < cpuhw->n_limited; ++i)
1566 if (event == cpuhw->limited_counter[i])
1567 break;
1568 if (i < cpuhw->n_limited) {
1569 while (++i < cpuhw->n_limited) {
1570 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1571 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1573 --cpuhw->n_limited;
1575 if (cpuhw->n_events == 0) {
1576 /* disable exceptions if no events are running */
1577 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1580 if (has_branch_stack(event))
1581 power_pmu_bhrb_disable(event);
1583 perf_pmu_enable(event->pmu);
1584 local_irq_restore(flags);
1588 * POWER-PMU does not support disabling individual counters, hence
1589 * program their cycle counter to their max value and ignore the interrupts.
1592 static void power_pmu_start(struct perf_event *event, int ef_flags)
1594 unsigned long flags;
1595 s64 left;
1596 unsigned long val;
1598 if (!event->hw.idx || !event->hw.sample_period)
1599 return;
1601 if (!(event->hw.state & PERF_HES_STOPPED))
1602 return;
1604 if (ef_flags & PERF_EF_RELOAD)
1605 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1607 local_irq_save(flags);
1608 perf_pmu_disable(event->pmu);
1610 event->hw.state = 0;
1611 left = local64_read(&event->hw.period_left);
1613 val = 0;
1614 if (left < 0x80000000L)
1615 val = 0x80000000L - left;
1617 write_pmc(event->hw.idx, val);
1619 perf_event_update_userpage(event);
1620 perf_pmu_enable(event->pmu);
1621 local_irq_restore(flags);
1624 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1626 unsigned long flags;
1628 if (!event->hw.idx || !event->hw.sample_period)
1629 return;
1631 if (event->hw.state & PERF_HES_STOPPED)
1632 return;
1634 local_irq_save(flags);
1635 perf_pmu_disable(event->pmu);
1637 power_pmu_read(event);
1638 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1639 write_pmc(event->hw.idx, 0);
1641 perf_event_update_userpage(event);
1642 perf_pmu_enable(event->pmu);
1643 local_irq_restore(flags);
1647 * Start group events scheduling transaction
1648 * Set the flag to make pmu::enable() not perform the
1649 * schedulability test, it will be performed at commit time
1651 * We only support PERF_PMU_TXN_ADD transactions. Save the
1652 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1653 * transactions.
1655 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1657 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1659 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1661 cpuhw->txn_flags = txn_flags;
1662 if (txn_flags & ~PERF_PMU_TXN_ADD)
1663 return;
1665 perf_pmu_disable(pmu);
1666 cpuhw->n_txn_start = cpuhw->n_events;
1670 * Stop group events scheduling transaction
1671 * Clear the flag and pmu::enable() will perform the
1672 * schedulability test.
1674 static void power_pmu_cancel_txn(struct pmu *pmu)
1676 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1677 unsigned int txn_flags;
1679 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1681 txn_flags = cpuhw->txn_flags;
1682 cpuhw->txn_flags = 0;
1683 if (txn_flags & ~PERF_PMU_TXN_ADD)
1684 return;
1686 perf_pmu_enable(pmu);
1690 * Commit group events scheduling transaction
1691 * Perform the group schedulability test as a whole
1692 * Return 0 if success
1694 static int power_pmu_commit_txn(struct pmu *pmu)
1696 struct cpu_hw_events *cpuhw;
1697 long i, n;
1699 if (!ppmu)
1700 return -EAGAIN;
1702 cpuhw = this_cpu_ptr(&cpu_hw_events);
1703 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1705 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1706 cpuhw->txn_flags = 0;
1707 return 0;
1710 n = cpuhw->n_events;
1711 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1712 return -EAGAIN;
1713 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1714 if (i < 0)
1715 return -EAGAIN;
1717 for (i = cpuhw->n_txn_start; i < n; ++i)
1718 cpuhw->event[i]->hw.config = cpuhw->events[i];
1720 cpuhw->txn_flags = 0;
1721 perf_pmu_enable(pmu);
1722 return 0;
1726 * Return 1 if we might be able to put event on a limited PMC,
1727 * or 0 if not.
1728 * An event can only go on a limited PMC if it counts something
1729 * that a limited PMC can count, doesn't require interrupts, and
1730 * doesn't exclude any processor mode.
1732 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1733 unsigned int flags)
1735 int n;
1736 u64 alt[MAX_EVENT_ALTERNATIVES];
1738 if (event->attr.exclude_user
1739 || event->attr.exclude_kernel
1740 || event->attr.exclude_hv
1741 || event->attr.sample_period)
1742 return 0;
1744 if (ppmu->limited_pmc_event(ev))
1745 return 1;
1748 * The requested event_id isn't on a limited PMC already;
1749 * see if any alternative code goes on a limited PMC.
1751 if (!ppmu->get_alternatives)
1752 return 0;
1754 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1755 n = ppmu->get_alternatives(ev, flags, alt);
1757 return n > 0;
1761 * Find an alternative event_id that goes on a normal PMC, if possible,
1762 * and return the event_id code, or 0 if there is no such alternative.
1763 * (Note: event_id code 0 is "don't count" on all machines.)
1765 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1767 u64 alt[MAX_EVENT_ALTERNATIVES];
1768 int n;
1770 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1771 n = ppmu->get_alternatives(ev, flags, alt);
1772 if (!n)
1773 return 0;
1774 return alt[0];
1777 /* Number of perf_events counting hardware events */
1778 static atomic_t num_events;
1779 /* Used to avoid races in calling reserve/release_pmc_hardware */
1780 static DEFINE_MUTEX(pmc_reserve_mutex);
1783 * Release the PMU if this is the last perf_event.
1785 static void hw_perf_event_destroy(struct perf_event *event)
1787 if (!atomic_add_unless(&num_events, -1, 1)) {
1788 mutex_lock(&pmc_reserve_mutex);
1789 if (atomic_dec_return(&num_events) == 0)
1790 release_pmc_hardware();
1791 mutex_unlock(&pmc_reserve_mutex);
1796 * Translate a generic cache event_id config to a raw event_id code.
1798 static int hw_perf_cache_event(u64 config, u64 *eventp)
1800 unsigned long type, op, result;
1801 int ev;
1803 if (!ppmu->cache_events)
1804 return -EINVAL;
1806 /* unpack config */
1807 type = config & 0xff;
1808 op = (config >> 8) & 0xff;
1809 result = (config >> 16) & 0xff;
1811 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1812 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1813 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1814 return -EINVAL;
1816 ev = (*ppmu->cache_events)[type][op][result];
1817 if (ev == 0)
1818 return -EOPNOTSUPP;
1819 if (ev == -1)
1820 return -EINVAL;
1821 *eventp = ev;
1822 return 0;
1825 static bool is_event_blacklisted(u64 ev)
1827 int i;
1829 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1830 if (ppmu->blacklist_ev[i] == ev)
1831 return true;
1834 return false;
1837 static int power_pmu_event_init(struct perf_event *event)
1839 u64 ev;
1840 unsigned long flags;
1841 struct perf_event *ctrs[MAX_HWEVENTS];
1842 u64 events[MAX_HWEVENTS];
1843 unsigned int cflags[MAX_HWEVENTS];
1844 int n;
1845 int err;
1846 struct cpu_hw_events *cpuhw;
1847 u64 bhrb_filter;
1849 if (!ppmu)
1850 return -ENOENT;
1852 if (has_branch_stack(event)) {
1853 /* PMU has BHRB enabled */
1854 if (!(ppmu->flags & PPMU_ARCH_207S))
1855 return -EOPNOTSUPP;
1858 switch (event->attr.type) {
1859 case PERF_TYPE_HARDWARE:
1860 ev = event->attr.config;
1861 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1862 return -EOPNOTSUPP;
1864 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1865 return -EINVAL;
1866 ev = ppmu->generic_events[ev];
1867 break;
1868 case PERF_TYPE_HW_CACHE:
1869 err = hw_perf_cache_event(event->attr.config, &ev);
1870 if (err)
1871 return err;
1873 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1874 return -EINVAL;
1875 break;
1876 case PERF_TYPE_RAW:
1877 ev = event->attr.config;
1879 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1880 return -EINVAL;
1881 break;
1882 default:
1883 return -ENOENT;
1886 event->hw.config_base = ev;
1887 event->hw.idx = 0;
1890 * If we are not running on a hypervisor, force the
1891 * exclude_hv bit to 0 so that we don't care what
1892 * the user set it to.
1894 if (!firmware_has_feature(FW_FEATURE_LPAR))
1895 event->attr.exclude_hv = 0;
1898 * If this is a per-task event, then we can use
1899 * PM_RUN_* events interchangeably with their non RUN_*
1900 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1901 * XXX we should check if the task is an idle task.
1903 flags = 0;
1904 if (event->attach_state & PERF_ATTACH_TASK)
1905 flags |= PPMU_ONLY_COUNT_RUN;
1908 * If this machine has limited events, check whether this
1909 * event_id could go on a limited event.
1911 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1912 if (can_go_on_limited_pmc(event, ev, flags)) {
1913 flags |= PPMU_LIMITED_PMC_OK;
1914 } else if (ppmu->limited_pmc_event(ev)) {
1916 * The requested event_id is on a limited PMC,
1917 * but we can't use a limited PMC; see if any
1918 * alternative goes on a normal PMC.
1920 ev = normal_pmc_alternative(ev, flags);
1921 if (!ev)
1922 return -EINVAL;
1926 /* Extra checks for EBB */
1927 err = ebb_event_check(event);
1928 if (err)
1929 return err;
1932 * If this is in a group, check if it can go on with all the
1933 * other hardware events in the group. We assume the event
1934 * hasn't been linked into its leader's sibling list at this point.
1936 n = 0;
1937 if (event->group_leader != event) {
1938 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1939 ctrs, events, cflags);
1940 if (n < 0)
1941 return -EINVAL;
1943 events[n] = ev;
1944 ctrs[n] = event;
1945 cflags[n] = flags;
1946 if (check_excludes(ctrs, cflags, n, 1))
1947 return -EINVAL;
1949 cpuhw = &get_cpu_var(cpu_hw_events);
1950 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1952 if (has_branch_stack(event)) {
1953 bhrb_filter = ppmu->bhrb_filter_map(
1954 event->attr.branch_sample_type);
1956 if (bhrb_filter == -1) {
1957 put_cpu_var(cpu_hw_events);
1958 return -EOPNOTSUPP;
1960 cpuhw->bhrb_filter = bhrb_filter;
1963 put_cpu_var(cpu_hw_events);
1964 if (err)
1965 return -EINVAL;
1967 event->hw.config = events[n];
1968 event->hw.event_base = cflags[n];
1969 event->hw.last_period = event->hw.sample_period;
1970 local64_set(&event->hw.period_left, event->hw.last_period);
1973 * For EBB events we just context switch the PMC value, we don't do any
1974 * of the sample_period logic. We use hw.prev_count for this.
1976 if (is_ebb_event(event))
1977 local64_set(&event->hw.prev_count, 0);
1980 * See if we need to reserve the PMU.
1981 * If no events are currently in use, then we have to take a
1982 * mutex to ensure that we don't race with another task doing
1983 * reserve_pmc_hardware or release_pmc_hardware.
1985 err = 0;
1986 if (!atomic_inc_not_zero(&num_events)) {
1987 mutex_lock(&pmc_reserve_mutex);
1988 if (atomic_read(&num_events) == 0 &&
1989 reserve_pmc_hardware(perf_event_interrupt))
1990 err = -EBUSY;
1991 else
1992 atomic_inc(&num_events);
1993 mutex_unlock(&pmc_reserve_mutex);
1995 event->destroy = hw_perf_event_destroy;
1997 return err;
2000 static int power_pmu_event_idx(struct perf_event *event)
2002 return event->hw.idx;
2005 ssize_t power_events_sysfs_show(struct device *dev,
2006 struct device_attribute *attr, char *page)
2008 struct perf_pmu_events_attr *pmu_attr;
2010 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2012 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2015 static struct pmu power_pmu = {
2016 .pmu_enable = power_pmu_enable,
2017 .pmu_disable = power_pmu_disable,
2018 .event_init = power_pmu_event_init,
2019 .add = power_pmu_add,
2020 .del = power_pmu_del,
2021 .start = power_pmu_start,
2022 .stop = power_pmu_stop,
2023 .read = power_pmu_read,
2024 .start_txn = power_pmu_start_txn,
2025 .cancel_txn = power_pmu_cancel_txn,
2026 .commit_txn = power_pmu_commit_txn,
2027 .event_idx = power_pmu_event_idx,
2028 .sched_task = power_pmu_sched_task,
2032 * A counter has overflowed; update its count and record
2033 * things if requested. Note that interrupts are hard-disabled
2034 * here so there is no possibility of being interrupted.
2036 static void record_and_restart(struct perf_event *event, unsigned long val,
2037 struct pt_regs *regs)
2039 u64 period = event->hw.sample_period;
2040 s64 prev, delta, left;
2041 int record = 0;
2043 if (event->hw.state & PERF_HES_STOPPED) {
2044 write_pmc(event->hw.idx, 0);
2045 return;
2048 /* we don't have to worry about interrupts here */
2049 prev = local64_read(&event->hw.prev_count);
2050 delta = check_and_compute_delta(prev, val);
2051 local64_add(delta, &event->count);
2054 * See if the total period for this event has expired,
2055 * and update for the next period.
2057 val = 0;
2058 left = local64_read(&event->hw.period_left) - delta;
2059 if (delta == 0)
2060 left++;
2061 if (period) {
2062 if (left <= 0) {
2063 left += period;
2064 if (left <= 0)
2065 left = period;
2066 record = siar_valid(regs);
2067 event->hw.last_period = event->hw.sample_period;
2069 if (left < 0x80000000LL)
2070 val = 0x80000000LL - left;
2073 write_pmc(event->hw.idx, val);
2074 local64_set(&event->hw.prev_count, val);
2075 local64_set(&event->hw.period_left, left);
2076 perf_event_update_userpage(event);
2079 * Finally record data if requested.
2081 if (record) {
2082 struct perf_sample_data data;
2084 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2086 if (event->attr.sample_type &
2087 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2088 perf_get_data_addr(event, regs, &data.addr);
2090 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2091 struct cpu_hw_events *cpuhw;
2092 cpuhw = this_cpu_ptr(&cpu_hw_events);
2093 power_pmu_bhrb_read(event, cpuhw);
2094 data.br_stack = &cpuhw->bhrb_stack;
2097 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2098 ppmu->get_mem_data_src)
2099 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2101 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2102 ppmu->get_mem_weight)
2103 ppmu->get_mem_weight(&data.weight);
2105 if (perf_event_overflow(event, &data, regs))
2106 power_pmu_stop(event, 0);
2111 * Called from generic code to get the misc flags (i.e. processor mode)
2112 * for an event_id.
2114 unsigned long perf_misc_flags(struct pt_regs *regs)
2116 u32 flags = perf_get_misc_flags(regs);
2118 if (flags)
2119 return flags;
2120 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2121 PERF_RECORD_MISC_KERNEL;
2125 * Called from generic code to get the instruction pointer
2126 * for an event_id.
2128 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2130 bool use_siar = regs_use_siar(regs);
2132 if (use_siar && siar_valid(regs))
2133 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2134 else if (use_siar)
2135 return 0; // no valid instruction pointer
2136 else
2137 return regs->nip;
2140 static bool pmc_overflow_power7(unsigned long val)
2143 * Events on POWER7 can roll back if a speculative event doesn't
2144 * eventually complete. Unfortunately in some rare cases they will
2145 * raise a performance monitor exception. We need to catch this to
2146 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2147 * cycles from overflow.
2149 * We only do this if the first pass fails to find any overflowing
2150 * PMCs because a user might set a period of less than 256 and we
2151 * don't want to mistakenly reset them.
2153 if ((0x80000000 - val) <= 256)
2154 return true;
2156 return false;
2159 static bool pmc_overflow(unsigned long val)
2161 if ((int)val < 0)
2162 return true;
2164 return false;
2168 * Performance monitor interrupt stuff
2170 static void __perf_event_interrupt(struct pt_regs *regs)
2172 int i, j;
2173 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2174 struct perf_event *event;
2175 unsigned long val[8];
2176 int found, active;
2177 int nmi;
2179 if (cpuhw->n_limited)
2180 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2181 mfspr(SPRN_PMC6));
2183 perf_read_regs(regs);
2185 nmi = perf_intr_is_nmi(regs);
2186 if (nmi)
2187 nmi_enter();
2188 else
2189 irq_enter();
2191 /* Read all the PMCs since we'll need them a bunch of times */
2192 for (i = 0; i < ppmu->n_counter; ++i)
2193 val[i] = read_pmc(i + 1);
2195 /* Try to find what caused the IRQ */
2196 found = 0;
2197 for (i = 0; i < ppmu->n_counter; ++i) {
2198 if (!pmc_overflow(val[i]))
2199 continue;
2200 if (is_limited_pmc(i + 1))
2201 continue; /* these won't generate IRQs */
2203 * We've found one that's overflowed. For active
2204 * counters we need to log this. For inactive
2205 * counters, we need to reset it anyway
2207 found = 1;
2208 active = 0;
2209 for (j = 0; j < cpuhw->n_events; ++j) {
2210 event = cpuhw->event[j];
2211 if (event->hw.idx == (i + 1)) {
2212 active = 1;
2213 record_and_restart(event, val[i], regs);
2214 break;
2217 if (!active)
2218 /* reset non active counters that have overflowed */
2219 write_pmc(i + 1, 0);
2221 if (!found && pvr_version_is(PVR_POWER7)) {
2222 /* check active counters for special buggy p7 overflow */
2223 for (i = 0; i < cpuhw->n_events; ++i) {
2224 event = cpuhw->event[i];
2225 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2226 continue;
2227 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2228 /* event has overflowed in a buggy way*/
2229 found = 1;
2230 record_and_restart(event,
2231 val[event->hw.idx - 1],
2232 regs);
2236 if (!found && !nmi && printk_ratelimit())
2237 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2240 * Reset MMCR0 to its normal value. This will set PMXE and
2241 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2242 * and thus allow interrupts to occur again.
2243 * XXX might want to use MSR.PM to keep the events frozen until
2244 * we get back out of this interrupt.
2246 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2248 if (nmi)
2249 nmi_exit();
2250 else
2251 irq_exit();
2254 static void perf_event_interrupt(struct pt_regs *regs)
2256 u64 start_clock = sched_clock();
2258 __perf_event_interrupt(regs);
2259 perf_sample_event_took(sched_clock() - start_clock);
2262 static int power_pmu_prepare_cpu(unsigned int cpu)
2264 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2266 if (ppmu) {
2267 memset(cpuhw, 0, sizeof(*cpuhw));
2268 cpuhw->mmcr[0] = MMCR0_FC;
2270 return 0;
2273 int register_power_pmu(struct power_pmu *pmu)
2275 if (ppmu)
2276 return -EBUSY; /* something's already registered */
2278 ppmu = pmu;
2279 pr_info("%s performance monitor hardware support registered\n",
2280 pmu->name);
2282 power_pmu.attr_groups = ppmu->attr_groups;
2284 #ifdef MSR_HV
2286 * Use FCHV to ignore kernel events if MSR.HV is set.
2288 if (mfmsr() & MSR_HV)
2289 freeze_events_kernel = MMCR0_FCHV;
2290 #endif /* CONFIG_PPC64 */
2292 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2293 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2294 power_pmu_prepare_cpu, NULL);
2295 return 0;
2298 #ifdef CONFIG_PPC64
2299 static int __init init_ppc64_pmu(void)
2301 /* run through all the pmu drivers one at a time */
2302 if (!init_power5_pmu())
2303 return 0;
2304 else if (!init_power5p_pmu())
2305 return 0;
2306 else if (!init_power6_pmu())
2307 return 0;
2308 else if (!init_power7_pmu())
2309 return 0;
2310 else if (!init_power8_pmu())
2311 return 0;
2312 else if (!init_power9_pmu())
2313 return 0;
2314 else if (!init_ppc970_pmu())
2315 return 0;
2316 else
2317 return init_generic_compat_pmu();
2319 early_initcall(init_ppc64_pmu);
2320 #endif