1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Performance event support - powerpc architecture code
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
25 #define BHRB_MAX_ENTRIES 32
26 #define BHRB_TARGET 0x0000000000000002
27 #define BHRB_PREDICTION 0x0000000000000001
28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
30 struct cpu_hw_events
{
37 struct perf_event
*event
[MAX_HWEVENTS
];
38 u64 events
[MAX_HWEVENTS
];
39 unsigned int flags
[MAX_HWEVENTS
];
41 * The order of the MMCR array is:
42 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43 * - 32-bit, MMCR0, MMCR1, MMCR2
45 unsigned long mmcr
[4];
46 struct perf_event
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
47 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
48 u64 alternatives
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
49 unsigned long amasks
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
50 unsigned long avalues
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
52 unsigned int txn_flags
;
56 u64 bhrb_filter
; /* BHRB HW branch filter */
57 unsigned int bhrb_users
;
59 struct perf_branch_stack bhrb_stack
;
60 struct perf_branch_entry bhrb_entries
[BHRB_MAX_ENTRIES
];
64 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
66 static struct power_pmu
*ppmu
;
69 * Normally, to ignore kernel events we set the FCS (freeze counters
70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71 * hypervisor bit set in the MSR, or if we are running on a processor
72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73 * then we need to use the FCHV bit to ignore kernel events.
75 static unsigned int freeze_events_kernel
= MMCR0_FCS
;
78 * 32-bit doesn't have MMCRA but does have an MMCR2,
79 * and a few other names are different.
84 #define MMCR0_PMCjCE MMCR0_PMCnCE
90 #define MMCR0_PMCC_U6 0
92 #define SPRN_MMCRA SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE 0
95 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
99 static inline void perf_get_data_addr(struct perf_event
*event
, struct pt_regs
*regs
, u64
*addrp
) { }
100 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
104 static inline void perf_read_regs(struct pt_regs
*regs
)
108 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
113 static inline int siar_valid(struct pt_regs
*regs
)
118 static bool is_ebb_event(struct perf_event
*event
) { return false; }
119 static int ebb_event_check(struct perf_event
*event
) { return 0; }
120 static void ebb_event_add(struct perf_event
*event
) { }
121 static void ebb_switch_out(unsigned long mmcr0
) { }
122 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
124 return cpuhw
->mmcr
[0];
127 static inline void power_pmu_bhrb_enable(struct perf_event
*event
) {}
128 static inline void power_pmu_bhrb_disable(struct perf_event
*event
) {}
129 static void power_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
) {}
130 static inline void power_pmu_bhrb_read(struct perf_event
*event
, struct cpu_hw_events
*cpuhw
) {}
131 static void pmao_restore_workaround(bool ebb
) { }
132 #endif /* CONFIG_PPC32 */
134 bool is_sier_available(void)
136 if (ppmu
->flags
& PPMU_HAS_SIER
)
142 static bool regs_use_siar(struct pt_regs
*regs
)
145 * When we take a performance monitor exception the regs are setup
146 * using perf_read_regs() which overloads some fields, in particular
147 * regs->result to tell us whether to use SIAR.
149 * However if the regs are from another exception, eg. a syscall, then
150 * they have not been setup using perf_read_regs() and so regs->result
151 * is something random.
153 return ((TRAP(regs
) == 0xf00) && regs
->result
);
157 * Things that are specific to 64-bit implementations.
161 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
163 unsigned long mmcra
= regs
->dsisr
;
165 if ((ppmu
->flags
& PPMU_HAS_SSLOT
) && (mmcra
& MMCRA_SAMPLE_ENABLE
)) {
166 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
168 return 4 * (slot
- 1);
175 * The user wants a data address recorded.
176 * If we're not doing instruction sampling, give them the SDAR
177 * (sampled data address). If we are doing instruction sampling, then
178 * only give them the SDAR if it corresponds to the instruction
179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
182 static inline void perf_get_data_addr(struct perf_event
*event
, struct pt_regs
*regs
, u64
*addrp
)
184 unsigned long mmcra
= regs
->dsisr
;
187 if (ppmu
->flags
& PPMU_HAS_SIER
)
188 sdar_valid
= regs
->dar
& SIER_SDAR_VALID
;
190 unsigned long sdsync
;
192 if (ppmu
->flags
& PPMU_SIAR_VALID
)
193 sdsync
= POWER7P_MMCRA_SDAR_VALID
;
194 else if (ppmu
->flags
& PPMU_ALT_SIPR
)
195 sdsync
= POWER6_MMCRA_SDSYNC
;
196 else if (ppmu
->flags
& PPMU_NO_SIAR
)
197 sdsync
= MMCRA_SAMPLE_ENABLE
;
199 sdsync
= MMCRA_SDSYNC
;
201 sdar_valid
= mmcra
& sdsync
;
204 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || sdar_valid
)
205 *addrp
= mfspr(SPRN_SDAR
);
207 if (is_kernel_addr(mfspr(SPRN_SDAR
)) && perf_allow_kernel(&event
->attr
) != 0)
211 static bool regs_sihv(struct pt_regs
*regs
)
213 unsigned long sihv
= MMCRA_SIHV
;
215 if (ppmu
->flags
& PPMU_HAS_SIER
)
216 return !!(regs
->dar
& SIER_SIHV
);
218 if (ppmu
->flags
& PPMU_ALT_SIPR
)
219 sihv
= POWER6_MMCRA_SIHV
;
221 return !!(regs
->dsisr
& sihv
);
224 static bool regs_sipr(struct pt_regs
*regs
)
226 unsigned long sipr
= MMCRA_SIPR
;
228 if (ppmu
->flags
& PPMU_HAS_SIER
)
229 return !!(regs
->dar
& SIER_SIPR
);
231 if (ppmu
->flags
& PPMU_ALT_SIPR
)
232 sipr
= POWER6_MMCRA_SIPR
;
234 return !!(regs
->dsisr
& sipr
);
237 static inline u32
perf_flags_from_msr(struct pt_regs
*regs
)
239 if (regs
->msr
& MSR_PR
)
240 return PERF_RECORD_MISC_USER
;
241 if ((regs
->msr
& MSR_HV
) && freeze_events_kernel
!= MMCR0_FCHV
)
242 return PERF_RECORD_MISC_HYPERVISOR
;
243 return PERF_RECORD_MISC_KERNEL
;
246 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
248 bool use_siar
= regs_use_siar(regs
);
251 return perf_flags_from_msr(regs
);
254 * If we don't have flags in MMCRA, rather than using
255 * the MSR, we intuit the flags from the address in
256 * SIAR which should give slightly more reliable
259 if (ppmu
->flags
& PPMU_NO_SIPR
) {
260 unsigned long siar
= mfspr(SPRN_SIAR
);
261 if (is_kernel_addr(siar
))
262 return PERF_RECORD_MISC_KERNEL
;
263 return PERF_RECORD_MISC_USER
;
266 /* PR has priority over HV, so order below is important */
268 return PERF_RECORD_MISC_USER
;
270 if (regs_sihv(regs
) && (freeze_events_kernel
!= MMCR0_FCHV
))
271 return PERF_RECORD_MISC_HYPERVISOR
;
273 return PERF_RECORD_MISC_KERNEL
;
277 * Overload regs->dsisr to store MMCRA so we only need to read it once
279 * Overload regs->dar to store SIER if we have it.
280 * Overload regs->result to specify whether we should use the MSR (result
281 * is zero) or the SIAR (result is non zero).
283 static inline void perf_read_regs(struct pt_regs
*regs
)
285 unsigned long mmcra
= mfspr(SPRN_MMCRA
);
286 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
291 if (ppmu
->flags
& PPMU_HAS_SIER
)
292 regs
->dar
= mfspr(SPRN_SIER
);
295 * If this isn't a PMU exception (eg a software event) the SIAR is
296 * not valid. Use pt_regs.
298 * If it is a marked event use the SIAR.
300 * If the PMU doesn't update the SIAR for non marked events use
303 * If the PMU has HV/PR flags then check to see if they
304 * place the exception in userspace. If so, use pt_regs. In
305 * continuous sampling mode the SIAR and the PMU exception are
306 * not synchronised, so they may be many instructions apart.
307 * This can result in confusing backtraces. We still want
308 * hypervisor samples as well as samples in the kernel with
309 * interrupts off hence the userspace check.
311 if (TRAP(regs
) != 0xf00)
313 else if ((ppmu
->flags
& PPMU_NO_SIAR
))
317 else if ((ppmu
->flags
& PPMU_NO_CONT_SAMPLING
))
319 else if (!(ppmu
->flags
& PPMU_NO_SIPR
) && regs_sipr(regs
))
324 regs
->result
= use_siar
;
328 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
331 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
333 return (regs
->softe
& IRQS_DISABLED
);
337 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
338 * must be sampled only if the SIAR-valid bit is set.
340 * For unmarked instructions and for processors that don't have the SIAR-Valid
341 * bit, assume that SIAR is valid.
343 static inline int siar_valid(struct pt_regs
*regs
)
345 unsigned long mmcra
= regs
->dsisr
;
346 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
349 if (ppmu
->flags
& PPMU_HAS_SIER
)
350 return regs
->dar
& SIER_SIAR_VALID
;
352 if (ppmu
->flags
& PPMU_SIAR_VALID
)
353 return mmcra
& POWER7P_MMCRA_SIAR_VALID
;
360 /* Reset all possible BHRB entries */
361 static void power_pmu_bhrb_reset(void)
363 asm volatile(PPC_CLRBHRB
);
366 static void power_pmu_bhrb_enable(struct perf_event
*event
)
368 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
373 /* Clear BHRB if we changed task context to avoid data leaks */
374 if (event
->ctx
->task
&& cpuhw
->bhrb_context
!= event
->ctx
) {
375 power_pmu_bhrb_reset();
376 cpuhw
->bhrb_context
= event
->ctx
;
379 perf_sched_cb_inc(event
->ctx
->pmu
);
382 static void power_pmu_bhrb_disable(struct perf_event
*event
)
384 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
389 WARN_ON_ONCE(!cpuhw
->bhrb_users
);
391 perf_sched_cb_dec(event
->ctx
->pmu
);
393 if (!cpuhw
->disabled
&& !cpuhw
->bhrb_users
) {
394 /* BHRB cannot be turned off when other
395 * events are active on the PMU.
398 /* avoid stale pointer */
399 cpuhw
->bhrb_context
= NULL
;
403 /* Called from ctxsw to prevent one process's branch entries to
404 * mingle with the other process's entries during context switch.
406 static void power_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
412 power_pmu_bhrb_reset();
414 /* Calculate the to address for a branch */
415 static __u64
power_pmu_bhrb_to(u64 addr
)
421 if (is_kernel_addr(addr
)) {
422 if (probe_kernel_read(&instr
, (void *)addr
, sizeof(instr
)))
425 return branch_target(&instr
);
428 /* Userspace: need copy instruction here then translate it */
430 ret
= __get_user_inatomic(instr
, (unsigned int __user
*)addr
);
437 target
= branch_target(&instr
);
438 if ((!target
) || (instr
& BRANCH_ABSOLUTE
))
441 /* Translate relative branch target from kernel to user address */
442 return target
- (unsigned long)&instr
+ addr
;
445 /* Processing BHRB entries */
446 static void power_pmu_bhrb_read(struct perf_event
*event
, struct cpu_hw_events
*cpuhw
)
450 int r_index
, u_index
, pred
;
454 while (r_index
< ppmu
->bhrb_nr
) {
455 /* Assembly read function */
456 val
= read_bhrb(r_index
++);
458 /* Terminal marker: End of valid BHRB entries */
461 addr
= val
& BHRB_EA
;
462 pred
= val
& BHRB_PREDICTION
;
469 * BHRB rolling buffer could very much contain the kernel
470 * addresses at this point. Check the privileges before
471 * exporting it to userspace (avoid exposure of regions
472 * where we could have speculative execution)
474 if (is_kernel_addr(addr
) && perf_allow_kernel(&event
->attr
) != 0)
477 /* Branches are read most recent first (ie. mfbhrb 0 is
478 * the most recent branch).
479 * There are two types of valid entries:
480 * 1) a target entry which is the to address of a
481 * computed goto like a blr,bctr,btar. The next
482 * entry read from the bhrb will be branch
483 * corresponding to this target (ie. the actual
484 * blr/bctr/btar instruction).
485 * 2) a from address which is an actual branch. If a
486 * target entry proceeds this, then this is the
487 * matching branch for that target. If this is not
488 * following a target entry, then this is a branch
489 * where the target is given as an immediate field
490 * in the instruction (ie. an i or b form branch).
491 * In this case we need to read the instruction from
492 * memory to determine the target/to address.
495 if (val
& BHRB_TARGET
) {
496 /* Target branches use two entries
497 * (ie. computed gotos/XL form)
499 cpuhw
->bhrb_entries
[u_index
].to
= addr
;
500 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
501 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
503 /* Get from address in next entry */
504 val
= read_bhrb(r_index
++);
505 addr
= val
& BHRB_EA
;
506 if (val
& BHRB_TARGET
) {
507 /* Shouldn't have two targets in a
508 row.. Reset index and try again */
512 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
514 /* Branches to immediate field
516 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
517 cpuhw
->bhrb_entries
[u_index
].to
=
518 power_pmu_bhrb_to(addr
);
519 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
520 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
526 cpuhw
->bhrb_stack
.nr
= u_index
;
530 static bool is_ebb_event(struct perf_event
*event
)
533 * This could be a per-PMU callback, but we'd rather avoid the cost. We
534 * check that the PMU supports EBB, meaning those that don't can still
535 * use bit 63 of the event code for something else if they wish.
537 return (ppmu
->flags
& PPMU_ARCH_207S
) &&
538 ((event
->attr
.config
>> PERF_EVENT_CONFIG_EBB_SHIFT
) & 1);
541 static int ebb_event_check(struct perf_event
*event
)
543 struct perf_event
*leader
= event
->group_leader
;
545 /* Event and group leader must agree on EBB */
546 if (is_ebb_event(leader
) != is_ebb_event(event
))
549 if (is_ebb_event(event
)) {
550 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
553 if (!leader
->attr
.pinned
|| !leader
->attr
.exclusive
)
556 if (event
->attr
.freq
||
557 event
->attr
.inherit
||
558 event
->attr
.sample_type
||
559 event
->attr
.sample_period
||
560 event
->attr
.enable_on_exec
)
567 static void ebb_event_add(struct perf_event
*event
)
569 if (!is_ebb_event(event
) || current
->thread
.used_ebb
)
573 * IFF this is the first time we've added an EBB event, set
574 * PMXE in the user MMCR0 so we can detect when it's cleared by
575 * userspace. We need this so that we can context switch while
576 * userspace is in the EBB handler (where PMXE is 0).
578 current
->thread
.used_ebb
= 1;
579 current
->thread
.mmcr0
|= MMCR0_PMXE
;
582 static void ebb_switch_out(unsigned long mmcr0
)
584 if (!(mmcr0
& MMCR0_EBE
))
587 current
->thread
.siar
= mfspr(SPRN_SIAR
);
588 current
->thread
.sier
= mfspr(SPRN_SIER
);
589 current
->thread
.sdar
= mfspr(SPRN_SDAR
);
590 current
->thread
.mmcr0
= mmcr0
& MMCR0_USER_MASK
;
591 current
->thread
.mmcr2
= mfspr(SPRN_MMCR2
) & MMCR2_USER_MASK
;
594 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
596 unsigned long mmcr0
= cpuhw
->mmcr
[0];
601 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
602 mmcr0
|= MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC_U6
;
605 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
606 * with pmao_restore_workaround() because we may add PMAO but we never
609 mmcr0
|= current
->thread
.mmcr0
;
612 * Be careful not to set PMXE if userspace had it cleared. This is also
613 * compatible with pmao_restore_workaround() because it has already
614 * cleared PMXE and we leave PMAO alone.
616 if (!(current
->thread
.mmcr0
& MMCR0_PMXE
))
617 mmcr0
&= ~MMCR0_PMXE
;
619 mtspr(SPRN_SIAR
, current
->thread
.siar
);
620 mtspr(SPRN_SIER
, current
->thread
.sier
);
621 mtspr(SPRN_SDAR
, current
->thread
.sdar
);
624 * Merge the kernel & user values of MMCR2. The semantics we implement
625 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
626 * but not clear bits. If a task wants to be able to clear bits, ie.
627 * unfreeze counters, it should not set exclude_xxx in its events and
628 * instead manage the MMCR2 entirely by itself.
630 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
[3] | current
->thread
.mmcr2
);
635 static void pmao_restore_workaround(bool ebb
)
639 if (!cpu_has_feature(CPU_FTR_PMAO_BUG
))
643 * On POWER8E there is a hardware defect which affects the PMU context
644 * switch logic, ie. power_pmu_disable/enable().
646 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
647 * by the hardware. Sometime later the actual PMU exception is
650 * If we context switch, or simply disable/enable, the PMU prior to the
651 * exception arriving, the exception will be lost when we clear PMAO.
653 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
654 * set, and this _should_ generate an exception. However because of the
655 * defect no exception is generated when we write PMAO, and we get
656 * stuck with no counters counting but no exception delivered.
658 * The workaround is to detect this case and tweak the hardware to
659 * create another pending PMU exception.
661 * We do that by setting up PMC6 (cycles) for an imminent overflow and
662 * enabling the PMU. That causes a new exception to be generated in the
663 * chip, but we don't take it yet because we have interrupts hard
664 * disabled. We then write back the PMU state as we want it to be seen
665 * by the exception handler. When we reenable interrupts the exception
666 * handler will be called and see the correct state.
668 * The logic is the same for EBB, except that the exception is gated by
669 * us having interrupts hard disabled as well as the fact that we are
670 * not in userspace. The exception is finally delivered when we return
674 /* Only if PMAO is set and PMAO_SYNC is clear */
675 if ((current
->thread
.mmcr0
& (MMCR0_PMAO
| MMCR0_PMAO_SYNC
)) != MMCR0_PMAO
)
678 /* If we're doing EBB, only if BESCR[GE] is set */
679 if (ebb
&& !(current
->thread
.bescr
& BESCR_GE
))
683 * We are already soft-disabled in power_pmu_enable(). We need to hard
684 * disable to actually prevent the PMU exception from firing.
689 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
690 * Using read/write_pmc() in a for loop adds 12 function calls and
691 * almost doubles our code size.
693 pmcs
[0] = mfspr(SPRN_PMC1
);
694 pmcs
[1] = mfspr(SPRN_PMC2
);
695 pmcs
[2] = mfspr(SPRN_PMC3
);
696 pmcs
[3] = mfspr(SPRN_PMC4
);
697 pmcs
[4] = mfspr(SPRN_PMC5
);
698 pmcs
[5] = mfspr(SPRN_PMC6
);
700 /* Ensure all freeze bits are unset */
701 mtspr(SPRN_MMCR2
, 0);
703 /* Set up PMC6 to overflow in one cycle */
704 mtspr(SPRN_PMC6
, 0x7FFFFFFE);
706 /* Enable exceptions and unfreeze PMC6 */
707 mtspr(SPRN_MMCR0
, MMCR0_PMXE
| MMCR0_PMCjCE
| MMCR0_PMAO
);
709 /* Now we need to refreeze and restore the PMCs */
710 mtspr(SPRN_MMCR0
, MMCR0_FC
| MMCR0_PMAO
);
712 mtspr(SPRN_PMC1
, pmcs
[0]);
713 mtspr(SPRN_PMC2
, pmcs
[1]);
714 mtspr(SPRN_PMC3
, pmcs
[2]);
715 mtspr(SPRN_PMC4
, pmcs
[3]);
716 mtspr(SPRN_PMC5
, pmcs
[4]);
717 mtspr(SPRN_PMC6
, pmcs
[5]);
720 #endif /* CONFIG_PPC64 */
722 static void perf_event_interrupt(struct pt_regs
*regs
);
725 * Read one performance monitor counter (PMC).
727 static unsigned long read_pmc(int idx
)
733 val
= mfspr(SPRN_PMC1
);
736 val
= mfspr(SPRN_PMC2
);
739 val
= mfspr(SPRN_PMC3
);
742 val
= mfspr(SPRN_PMC4
);
745 val
= mfspr(SPRN_PMC5
);
748 val
= mfspr(SPRN_PMC6
);
752 val
= mfspr(SPRN_PMC7
);
755 val
= mfspr(SPRN_PMC8
);
757 #endif /* CONFIG_PPC64 */
759 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
768 static void write_pmc(int idx
, unsigned long val
)
772 mtspr(SPRN_PMC1
, val
);
775 mtspr(SPRN_PMC2
, val
);
778 mtspr(SPRN_PMC3
, val
);
781 mtspr(SPRN_PMC4
, val
);
784 mtspr(SPRN_PMC5
, val
);
787 mtspr(SPRN_PMC6
, val
);
791 mtspr(SPRN_PMC7
, val
);
794 mtspr(SPRN_PMC8
, val
);
796 #endif /* CONFIG_PPC64 */
798 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
802 /* Called from sysrq_handle_showregs() */
803 void perf_event_print_debug(void)
805 unsigned long sdar
, sier
, flags
;
806 u32 pmcs
[MAX_HWEVENTS
];
810 pr_info("Performance monitor hardware not registered.\n");
814 if (!ppmu
->n_counter
)
817 local_irq_save(flags
);
819 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
820 smp_processor_id(), ppmu
->name
, ppmu
->n_counter
);
822 for (i
= 0; i
< ppmu
->n_counter
; i
++)
823 pmcs
[i
] = read_pmc(i
+ 1);
825 for (; i
< MAX_HWEVENTS
; i
++)
826 pmcs
[i
] = 0xdeadbeef;
828 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
829 pmcs
[0], pmcs
[1], pmcs
[2], pmcs
[3]);
831 if (ppmu
->n_counter
> 4)
832 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
833 pmcs
[4], pmcs
[5], pmcs
[6], pmcs
[7]);
835 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
836 mfspr(SPRN_MMCR0
), mfspr(SPRN_MMCR1
), mfspr(SPRN_MMCRA
));
840 sdar
= mfspr(SPRN_SDAR
);
842 if (ppmu
->flags
& PPMU_HAS_SIER
)
843 sier
= mfspr(SPRN_SIER
);
845 if (ppmu
->flags
& PPMU_ARCH_207S
) {
846 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
847 mfspr(SPRN_MMCR2
), mfspr(SPRN_EBBHR
));
848 pr_info("EBBRR: %016lx BESCR: %016lx\n",
849 mfspr(SPRN_EBBRR
), mfspr(SPRN_BESCR
));
852 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
853 mfspr(SPRN_SIAR
), sdar
, sier
);
855 local_irq_restore(flags
);
859 * Check if a set of events can all go on the PMU at once.
860 * If they can't, this will look at alternative codes for the events
861 * and see if any combination of alternative codes is feasible.
862 * The feasible set is returned in event_id[].
864 static int power_check_constraints(struct cpu_hw_events
*cpuhw
,
865 u64 event_id
[], unsigned int cflags
[],
868 unsigned long mask
, value
, nv
;
869 unsigned long smasks
[MAX_HWEVENTS
], svalues
[MAX_HWEVENTS
];
870 int n_alt
[MAX_HWEVENTS
], choice
[MAX_HWEVENTS
];
872 unsigned long addf
= ppmu
->add_fields
;
873 unsigned long tadd
= ppmu
->test_adder
;
874 unsigned long grp_mask
= ppmu
->group_constraint_mask
;
875 unsigned long grp_val
= ppmu
->group_constraint_val
;
877 if (n_ev
> ppmu
->n_counter
)
880 /* First see if the events will go on as-is */
881 for (i
= 0; i
< n_ev
; ++i
) {
882 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
883 && !ppmu
->limited_pmc_event(event_id
[i
])) {
884 ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
885 cpuhw
->alternatives
[i
]);
886 event_id
[i
] = cpuhw
->alternatives
[i
][0];
888 if (ppmu
->get_constraint(event_id
[i
], &cpuhw
->amasks
[i
][0],
889 &cpuhw
->avalues
[i
][0]))
893 for (i
= 0; i
< n_ev
; ++i
) {
894 nv
= (value
| cpuhw
->avalues
[i
][0]) +
895 (value
& cpuhw
->avalues
[i
][0] & addf
);
897 if (((((nv
+ tadd
) ^ value
) & mask
) & (~grp_mask
)) != 0)
900 if (((((nv
+ tadd
) ^ cpuhw
->avalues
[i
][0]) & cpuhw
->amasks
[i
][0])
905 mask
|= cpuhw
->amasks
[i
][0];
908 if ((value
& mask
& grp_mask
) != (mask
& grp_val
))
911 return 0; /* all OK */
914 /* doesn't work, gather alternatives... */
915 if (!ppmu
->get_alternatives
)
917 for (i
= 0; i
< n_ev
; ++i
) {
919 n_alt
[i
] = ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
920 cpuhw
->alternatives
[i
]);
921 for (j
= 1; j
< n_alt
[i
]; ++j
)
922 ppmu
->get_constraint(cpuhw
->alternatives
[i
][j
],
923 &cpuhw
->amasks
[i
][j
],
924 &cpuhw
->avalues
[i
][j
]);
927 /* enumerate all possibilities and see if any will work */
930 value
= mask
= nv
= 0;
933 /* we're backtracking, restore context */
939 * See if any alternative k for event_id i,
940 * where k > j, will satisfy the constraints.
942 while (++j
< n_alt
[i
]) {
943 nv
= (value
| cpuhw
->avalues
[i
][j
]) +
944 (value
& cpuhw
->avalues
[i
][j
] & addf
);
945 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
946 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][j
])
947 & cpuhw
->amasks
[i
][j
]) == 0)
952 * No feasible alternative, backtrack
953 * to event_id i-1 and continue enumerating its
954 * alternatives from where we got up to.
960 * Found a feasible alternative for event_id i,
961 * remember where we got up to with this event_id,
962 * go on to the next event_id, and start with
963 * the first alternative for it.
969 mask
|= cpuhw
->amasks
[i
][j
];
975 /* OK, we have a feasible combination, tell the caller the solution */
976 for (i
= 0; i
< n_ev
; ++i
)
977 event_id
[i
] = cpuhw
->alternatives
[i
][choice
[i
]];
982 * Check if newly-added events have consistent settings for
983 * exclude_{user,kernel,hv} with each other and any previously
986 static int check_excludes(struct perf_event
**ctrs
, unsigned int cflags
[],
987 int n_prev
, int n_new
)
989 int eu
= 0, ek
= 0, eh
= 0;
991 struct perf_event
*event
;
994 * If the PMU we're on supports per event exclude settings then we
995 * don't need to do any of this logic. NB. This assumes no PMU has both
996 * per event exclude and limited PMCs.
998 if (ppmu
->flags
& PPMU_ARCH_207S
)
1006 for (i
= 0; i
< n
; ++i
) {
1007 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
1008 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
1013 eu
= event
->attr
.exclude_user
;
1014 ek
= event
->attr
.exclude_kernel
;
1015 eh
= event
->attr
.exclude_hv
;
1017 } else if (event
->attr
.exclude_user
!= eu
||
1018 event
->attr
.exclude_kernel
!= ek
||
1019 event
->attr
.exclude_hv
!= eh
) {
1025 for (i
= 0; i
< n
; ++i
)
1026 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
1027 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
1032 static u64
check_and_compute_delta(u64 prev
, u64 val
)
1034 u64 delta
= (val
- prev
) & 0xfffffffful
;
1037 * POWER7 can roll back counter values, if the new value is smaller
1038 * than the previous value it will cause the delta and the counter to
1039 * have bogus values unless we rolled a counter over. If a coutner is
1040 * rolled back, it will be smaller, but within 256, which is the maximum
1041 * number of events to rollback at once. If we detect a rollback
1042 * return 0. This can lead to a small lack of precision in the
1045 if (prev
> val
&& (prev
- val
) < 256)
1051 static void power_pmu_read(struct perf_event
*event
)
1053 s64 val
, delta
, prev
;
1055 if (event
->hw
.state
& PERF_HES_STOPPED
)
1061 if (is_ebb_event(event
)) {
1062 val
= read_pmc(event
->hw
.idx
);
1063 local64_set(&event
->hw
.prev_count
, val
);
1068 * Performance monitor interrupts come even when interrupts
1069 * are soft-disabled, as long as interrupts are hard-enabled.
1070 * Therefore we treat them like NMIs.
1073 prev
= local64_read(&event
->hw
.prev_count
);
1075 val
= read_pmc(event
->hw
.idx
);
1076 delta
= check_and_compute_delta(prev
, val
);
1079 } while (local64_cmpxchg(&event
->hw
.prev_count
, prev
, val
) != prev
);
1081 local64_add(delta
, &event
->count
);
1084 * A number of places program the PMC with (0x80000000 - period_left).
1085 * We never want period_left to be less than 1 because we will program
1086 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1087 * roll around to 0 before taking an exception. We have seen this
1090 * To fix this, clamp the minimum value of period_left to 1.
1093 prev
= local64_read(&event
->hw
.period_left
);
1097 } while (local64_cmpxchg(&event
->hw
.period_left
, prev
, val
) != prev
);
1101 * On some machines, PMC5 and PMC6 can't be written, don't respect
1102 * the freeze conditions, and don't generate interrupts. This tells
1103 * us if `event' is using such a PMC.
1105 static int is_limited_pmc(int pmcnum
)
1107 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
1108 && (pmcnum
== 5 || pmcnum
== 6);
1111 static void freeze_limited_counters(struct cpu_hw_events
*cpuhw
,
1112 unsigned long pmc5
, unsigned long pmc6
)
1114 struct perf_event
*event
;
1115 u64 val
, prev
, delta
;
1118 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1119 event
= cpuhw
->limited_counter
[i
];
1122 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1123 prev
= local64_read(&event
->hw
.prev_count
);
1125 delta
= check_and_compute_delta(prev
, val
);
1127 local64_add(delta
, &event
->count
);
1131 static void thaw_limited_counters(struct cpu_hw_events
*cpuhw
,
1132 unsigned long pmc5
, unsigned long pmc6
)
1134 struct perf_event
*event
;
1138 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1139 event
= cpuhw
->limited_counter
[i
];
1140 event
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
1141 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1142 prev
= local64_read(&event
->hw
.prev_count
);
1143 if (check_and_compute_delta(prev
, val
))
1144 local64_set(&event
->hw
.prev_count
, val
);
1145 perf_event_update_userpage(event
);
1150 * Since limited events don't respect the freeze conditions, we
1151 * have to read them immediately after freezing or unfreezing the
1152 * other events. We try to keep the values from the limited
1153 * events as consistent as possible by keeping the delay (in
1154 * cycles and instructions) between freezing/unfreezing and reading
1155 * the limited events as small and consistent as possible.
1156 * Therefore, if any limited events are in use, we read them
1157 * both, and always in the same order, to minimize variability,
1158 * and do it inside the same asm that writes MMCR0.
1160 static void write_mmcr0(struct cpu_hw_events
*cpuhw
, unsigned long mmcr0
)
1162 unsigned long pmc5
, pmc6
;
1164 if (!cpuhw
->n_limited
) {
1165 mtspr(SPRN_MMCR0
, mmcr0
);
1170 * Write MMCR0, then read PMC5 and PMC6 immediately.
1171 * To ensure we don't get a performance monitor interrupt
1172 * between writing MMCR0 and freezing/thawing the limited
1173 * events, we first write MMCR0 with the event overflow
1174 * interrupt enable bits turned off.
1176 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1177 : "=&r" (pmc5
), "=&r" (pmc6
)
1178 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
1180 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
1182 if (mmcr0
& MMCR0_FC
)
1183 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
1185 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
1188 * Write the full MMCR0 including the event overflow interrupt
1189 * enable bits, if necessary.
1191 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1192 mtspr(SPRN_MMCR0
, mmcr0
);
1196 * Disable all events to prevent PMU interrupts and to allow
1197 * events to be added or removed.
1199 static void power_pmu_disable(struct pmu
*pmu
)
1201 struct cpu_hw_events
*cpuhw
;
1202 unsigned long flags
, mmcr0
, val
;
1206 local_irq_save(flags
);
1207 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1209 if (!cpuhw
->disabled
) {
1211 * Check if we ever enabled the PMU on this cpu.
1213 if (!cpuhw
->pmcs_enabled
) {
1215 cpuhw
->pmcs_enabled
= 1;
1219 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1221 val
= mmcr0
= mfspr(SPRN_MMCR0
);
1223 val
&= ~(MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC
| MMCR0_PMAO
|
1227 * The barrier is to make sure the mtspr has been
1228 * executed and the PMU has frozen the events etc.
1231 write_mmcr0(cpuhw
, val
);
1236 * Disable instruction sampling if it was enabled
1238 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1240 cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1245 cpuhw
->disabled
= 1;
1248 ebb_switch_out(mmcr0
);
1252 * These are readable by userspace, may contain kernel
1253 * addresses and are not switched by context switch, so clear
1254 * them now to avoid leaking anything to userspace in general
1255 * including to another process.
1257 if (ppmu
->flags
& PPMU_ARCH_207S
) {
1258 mtspr(SPRN_SDAR
, 0);
1259 mtspr(SPRN_SIAR
, 0);
1264 local_irq_restore(flags
);
1268 * Re-enable all events if disable == 0.
1269 * If we were previously disabled and events were added, then
1270 * put the new config on the PMU.
1272 static void power_pmu_enable(struct pmu
*pmu
)
1274 struct perf_event
*event
;
1275 struct cpu_hw_events
*cpuhw
;
1276 unsigned long flags
;
1278 unsigned long val
, mmcr0
;
1280 unsigned int hwc_index
[MAX_HWEVENTS
];
1287 local_irq_save(flags
);
1289 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1290 if (!cpuhw
->disabled
)
1293 if (cpuhw
->n_events
== 0) {
1294 ppc_set_pmu_inuse(0);
1298 cpuhw
->disabled
= 0;
1301 * EBB requires an exclusive group and all events must have the EBB
1302 * flag set, or not set, so we can just check a single event. Also we
1303 * know we have at least one event.
1305 ebb
= is_ebb_event(cpuhw
->event
[0]);
1308 * If we didn't change anything, or only removed events,
1309 * no need to recalculate MMCR* settings and reset the PMCs.
1310 * Just reenable the PMU with the current MMCR* settings
1311 * (possibly updated for removal of events).
1313 if (!cpuhw
->n_added
) {
1314 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1315 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1320 * Clear all MMCR settings and recompute them for the new set of events.
1322 memset(cpuhw
->mmcr
, 0, sizeof(cpuhw
->mmcr
));
1324 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_events
, hwc_index
,
1325 cpuhw
->mmcr
, cpuhw
->event
)) {
1326 /* shouldn't ever get here */
1327 printk(KERN_ERR
"oops compute_mmcr failed\n");
1331 if (!(ppmu
->flags
& PPMU_ARCH_207S
)) {
1333 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1334 * bits for the first event. We have already checked that all
1335 * events have the same value for these bits as the first event.
1337 event
= cpuhw
->event
[0];
1338 if (event
->attr
.exclude_user
)
1339 cpuhw
->mmcr
[0] |= MMCR0_FCP
;
1340 if (event
->attr
.exclude_kernel
)
1341 cpuhw
->mmcr
[0] |= freeze_events_kernel
;
1342 if (event
->attr
.exclude_hv
)
1343 cpuhw
->mmcr
[0] |= MMCR0_FCHV
;
1347 * Write the new configuration to MMCR* with the freeze
1348 * bit set and set the hardware events to their initial values.
1349 * Then unfreeze the events.
1351 ppc_set_pmu_inuse(1);
1352 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1353 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1354 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
[0] & ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1356 if (ppmu
->flags
& PPMU_ARCH_207S
)
1357 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
[3]);
1360 * Read off any pre-existing events that need to move
1363 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1364 event
= cpuhw
->event
[i
];
1365 if (event
->hw
.idx
&& event
->hw
.idx
!= hwc_index
[i
] + 1) {
1366 power_pmu_read(event
);
1367 write_pmc(event
->hw
.idx
, 0);
1373 * Initialize the PMCs for all the new and moved events.
1375 cpuhw
->n_limited
= n_lim
= 0;
1376 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1377 event
= cpuhw
->event
[i
];
1380 idx
= hwc_index
[i
] + 1;
1381 if (is_limited_pmc(idx
)) {
1382 cpuhw
->limited_counter
[n_lim
] = event
;
1383 cpuhw
->limited_hwidx
[n_lim
] = idx
;
1389 val
= local64_read(&event
->hw
.prev_count
);
1392 if (event
->hw
.sample_period
) {
1393 left
= local64_read(&event
->hw
.period_left
);
1394 if (left
< 0x80000000L
)
1395 val
= 0x80000000L
- left
;
1397 local64_set(&event
->hw
.prev_count
, val
);
1400 event
->hw
.idx
= idx
;
1401 if (event
->hw
.state
& PERF_HES_STOPPED
)
1403 write_pmc(idx
, val
);
1405 perf_event_update_userpage(event
);
1407 cpuhw
->n_limited
= n_lim
;
1408 cpuhw
->mmcr
[0] |= MMCR0_PMXE
| MMCR0_FCECE
;
1411 pmao_restore_workaround(ebb
);
1413 mmcr0
= ebb_switch_in(ebb
, cpuhw
);
1416 if (cpuhw
->bhrb_users
)
1417 ppmu
->config_bhrb(cpuhw
->bhrb_filter
);
1419 write_mmcr0(cpuhw
, mmcr0
);
1422 * Enable instruction sampling if necessary
1424 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1426 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2]);
1431 local_irq_restore(flags
);
1434 static int collect_events(struct perf_event
*group
, int max_count
,
1435 struct perf_event
*ctrs
[], u64
*events
,
1436 unsigned int *flags
)
1439 struct perf_event
*event
;
1441 if (group
->pmu
->task_ctx_nr
== perf_hw_context
) {
1445 flags
[n
] = group
->hw
.event_base
;
1446 events
[n
++] = group
->hw
.config
;
1448 for_each_sibling_event(event
, group
) {
1449 if (event
->pmu
->task_ctx_nr
== perf_hw_context
&&
1450 event
->state
!= PERF_EVENT_STATE_OFF
) {
1454 flags
[n
] = event
->hw
.event_base
;
1455 events
[n
++] = event
->hw
.config
;
1462 * Add an event to the PMU.
1463 * If all events are not already frozen, then we disable and
1464 * re-enable the PMU in order to get hw_perf_enable to do the
1465 * actual work of reconfiguring the PMU.
1467 static int power_pmu_add(struct perf_event
*event
, int ef_flags
)
1469 struct cpu_hw_events
*cpuhw
;
1470 unsigned long flags
;
1474 local_irq_save(flags
);
1475 perf_pmu_disable(event
->pmu
);
1478 * Add the event to the list (if there is room)
1479 * and check whether the total set is still feasible.
1481 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1482 n0
= cpuhw
->n_events
;
1483 if (n0
>= ppmu
->n_counter
)
1485 cpuhw
->event
[n0
] = event
;
1486 cpuhw
->events
[n0
] = event
->hw
.config
;
1487 cpuhw
->flags
[n0
] = event
->hw
.event_base
;
1490 * This event may have been disabled/stopped in record_and_restart()
1491 * because we exceeded the ->event_limit. If re-starting the event,
1492 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1493 * notification is re-enabled.
1495 if (!(ef_flags
& PERF_EF_START
))
1496 event
->hw
.state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1498 event
->hw
.state
= 0;
1501 * If group events scheduling transaction was started,
1502 * skip the schedulability test here, it will be performed
1503 * at commit time(->commit_txn) as a whole
1505 if (cpuhw
->txn_flags
& PERF_PMU_TXN_ADD
)
1508 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, n0
, 1))
1510 if (power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
1512 event
->hw
.config
= cpuhw
->events
[n0
];
1515 ebb_event_add(event
);
1522 if (has_branch_stack(event
)) {
1523 power_pmu_bhrb_enable(event
);
1524 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1525 event
->attr
.branch_sample_type
);
1528 perf_pmu_enable(event
->pmu
);
1529 local_irq_restore(flags
);
1534 * Remove an event from the PMU.
1536 static void power_pmu_del(struct perf_event
*event
, int ef_flags
)
1538 struct cpu_hw_events
*cpuhw
;
1540 unsigned long flags
;
1542 local_irq_save(flags
);
1543 perf_pmu_disable(event
->pmu
);
1545 power_pmu_read(event
);
1547 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1548 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1549 if (event
== cpuhw
->event
[i
]) {
1550 while (++i
< cpuhw
->n_events
) {
1551 cpuhw
->event
[i
-1] = cpuhw
->event
[i
];
1552 cpuhw
->events
[i
-1] = cpuhw
->events
[i
];
1553 cpuhw
->flags
[i
-1] = cpuhw
->flags
[i
];
1556 ppmu
->disable_pmc(event
->hw
.idx
- 1, cpuhw
->mmcr
);
1557 if (event
->hw
.idx
) {
1558 write_pmc(event
->hw
.idx
, 0);
1561 perf_event_update_userpage(event
);
1565 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
1566 if (event
== cpuhw
->limited_counter
[i
])
1568 if (i
< cpuhw
->n_limited
) {
1569 while (++i
< cpuhw
->n_limited
) {
1570 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
1571 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
1575 if (cpuhw
->n_events
== 0) {
1576 /* disable exceptions if no events are running */
1577 cpuhw
->mmcr
[0] &= ~(MMCR0_PMXE
| MMCR0_FCECE
);
1580 if (has_branch_stack(event
))
1581 power_pmu_bhrb_disable(event
);
1583 perf_pmu_enable(event
->pmu
);
1584 local_irq_restore(flags
);
1588 * POWER-PMU does not support disabling individual counters, hence
1589 * program their cycle counter to their max value and ignore the interrupts.
1592 static void power_pmu_start(struct perf_event
*event
, int ef_flags
)
1594 unsigned long flags
;
1598 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1601 if (!(event
->hw
.state
& PERF_HES_STOPPED
))
1604 if (ef_flags
& PERF_EF_RELOAD
)
1605 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1607 local_irq_save(flags
);
1608 perf_pmu_disable(event
->pmu
);
1610 event
->hw
.state
= 0;
1611 left
= local64_read(&event
->hw
.period_left
);
1614 if (left
< 0x80000000L
)
1615 val
= 0x80000000L
- left
;
1617 write_pmc(event
->hw
.idx
, val
);
1619 perf_event_update_userpage(event
);
1620 perf_pmu_enable(event
->pmu
);
1621 local_irq_restore(flags
);
1624 static void power_pmu_stop(struct perf_event
*event
, int ef_flags
)
1626 unsigned long flags
;
1628 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1631 if (event
->hw
.state
& PERF_HES_STOPPED
)
1634 local_irq_save(flags
);
1635 perf_pmu_disable(event
->pmu
);
1637 power_pmu_read(event
);
1638 event
->hw
.state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1639 write_pmc(event
->hw
.idx
, 0);
1641 perf_event_update_userpage(event
);
1642 perf_pmu_enable(event
->pmu
);
1643 local_irq_restore(flags
);
1647 * Start group events scheduling transaction
1648 * Set the flag to make pmu::enable() not perform the
1649 * schedulability test, it will be performed at commit time
1651 * We only support PERF_PMU_TXN_ADD transactions. Save the
1652 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1655 static void power_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1657 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1659 WARN_ON_ONCE(cpuhw
->txn_flags
); /* txn already in flight */
1661 cpuhw
->txn_flags
= txn_flags
;
1662 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1665 perf_pmu_disable(pmu
);
1666 cpuhw
->n_txn_start
= cpuhw
->n_events
;
1670 * Stop group events scheduling transaction
1671 * Clear the flag and pmu::enable() will perform the
1672 * schedulability test.
1674 static void power_pmu_cancel_txn(struct pmu
*pmu
)
1676 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1677 unsigned int txn_flags
;
1679 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1681 txn_flags
= cpuhw
->txn_flags
;
1682 cpuhw
->txn_flags
= 0;
1683 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1686 perf_pmu_enable(pmu
);
1690 * Commit group events scheduling transaction
1691 * Perform the group schedulability test as a whole
1692 * Return 0 if success
1694 static int power_pmu_commit_txn(struct pmu
*pmu
)
1696 struct cpu_hw_events
*cpuhw
;
1702 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1703 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1705 if (cpuhw
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1706 cpuhw
->txn_flags
= 0;
1710 n
= cpuhw
->n_events
;
1711 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, 0, n
))
1713 i
= power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n
);
1717 for (i
= cpuhw
->n_txn_start
; i
< n
; ++i
)
1718 cpuhw
->event
[i
]->hw
.config
= cpuhw
->events
[i
];
1720 cpuhw
->txn_flags
= 0;
1721 perf_pmu_enable(pmu
);
1726 * Return 1 if we might be able to put event on a limited PMC,
1728 * An event can only go on a limited PMC if it counts something
1729 * that a limited PMC can count, doesn't require interrupts, and
1730 * doesn't exclude any processor mode.
1732 static int can_go_on_limited_pmc(struct perf_event
*event
, u64 ev
,
1736 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1738 if (event
->attr
.exclude_user
1739 || event
->attr
.exclude_kernel
1740 || event
->attr
.exclude_hv
1741 || event
->attr
.sample_period
)
1744 if (ppmu
->limited_pmc_event(ev
))
1748 * The requested event_id isn't on a limited PMC already;
1749 * see if any alternative code goes on a limited PMC.
1751 if (!ppmu
->get_alternatives
)
1754 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
1755 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1761 * Find an alternative event_id that goes on a normal PMC, if possible,
1762 * and return the event_id code, or 0 if there is no such alternative.
1763 * (Note: event_id code 0 is "don't count" on all machines.)
1765 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
1767 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1770 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
1771 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1777 /* Number of perf_events counting hardware events */
1778 static atomic_t num_events
;
1779 /* Used to avoid races in calling reserve/release_pmc_hardware */
1780 static DEFINE_MUTEX(pmc_reserve_mutex
);
1783 * Release the PMU if this is the last perf_event.
1785 static void hw_perf_event_destroy(struct perf_event
*event
)
1787 if (!atomic_add_unless(&num_events
, -1, 1)) {
1788 mutex_lock(&pmc_reserve_mutex
);
1789 if (atomic_dec_return(&num_events
) == 0)
1790 release_pmc_hardware();
1791 mutex_unlock(&pmc_reserve_mutex
);
1796 * Translate a generic cache event_id config to a raw event_id code.
1798 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
1800 unsigned long type
, op
, result
;
1803 if (!ppmu
->cache_events
)
1807 type
= config
& 0xff;
1808 op
= (config
>> 8) & 0xff;
1809 result
= (config
>> 16) & 0xff;
1811 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
1812 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
1813 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1816 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1825 static bool is_event_blacklisted(u64 ev
)
1829 for (i
=0; i
< ppmu
->n_blacklist_ev
; i
++) {
1830 if (ppmu
->blacklist_ev
[i
] == ev
)
1837 static int power_pmu_event_init(struct perf_event
*event
)
1840 unsigned long flags
;
1841 struct perf_event
*ctrs
[MAX_HWEVENTS
];
1842 u64 events
[MAX_HWEVENTS
];
1843 unsigned int cflags
[MAX_HWEVENTS
];
1846 struct cpu_hw_events
*cpuhw
;
1852 if (has_branch_stack(event
)) {
1853 /* PMU has BHRB enabled */
1854 if (!(ppmu
->flags
& PPMU_ARCH_207S
))
1858 switch (event
->attr
.type
) {
1859 case PERF_TYPE_HARDWARE
:
1860 ev
= event
->attr
.config
;
1861 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1864 if (ppmu
->blacklist_ev
&& is_event_blacklisted(ev
))
1866 ev
= ppmu
->generic_events
[ev
];
1868 case PERF_TYPE_HW_CACHE
:
1869 err
= hw_perf_cache_event(event
->attr
.config
, &ev
);
1873 if (ppmu
->blacklist_ev
&& is_event_blacklisted(ev
))
1877 ev
= event
->attr
.config
;
1879 if (ppmu
->blacklist_ev
&& is_event_blacklisted(ev
))
1886 event
->hw
.config_base
= ev
;
1890 * If we are not running on a hypervisor, force the
1891 * exclude_hv bit to 0 so that we don't care what
1892 * the user set it to.
1894 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1895 event
->attr
.exclude_hv
= 0;
1898 * If this is a per-task event, then we can use
1899 * PM_RUN_* events interchangeably with their non RUN_*
1900 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1901 * XXX we should check if the task is an idle task.
1904 if (event
->attach_state
& PERF_ATTACH_TASK
)
1905 flags
|= PPMU_ONLY_COUNT_RUN
;
1908 * If this machine has limited events, check whether this
1909 * event_id could go on a limited event.
1911 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1912 if (can_go_on_limited_pmc(event
, ev
, flags
)) {
1913 flags
|= PPMU_LIMITED_PMC_OK
;
1914 } else if (ppmu
->limited_pmc_event(ev
)) {
1916 * The requested event_id is on a limited PMC,
1917 * but we can't use a limited PMC; see if any
1918 * alternative goes on a normal PMC.
1920 ev
= normal_pmc_alternative(ev
, flags
);
1926 /* Extra checks for EBB */
1927 err
= ebb_event_check(event
);
1932 * If this is in a group, check if it can go on with all the
1933 * other hardware events in the group. We assume the event
1934 * hasn't been linked into its leader's sibling list at this point.
1937 if (event
->group_leader
!= event
) {
1938 n
= collect_events(event
->group_leader
, ppmu
->n_counter
- 1,
1939 ctrs
, events
, cflags
);
1946 if (check_excludes(ctrs
, cflags
, n
, 1))
1949 cpuhw
= &get_cpu_var(cpu_hw_events
);
1950 err
= power_check_constraints(cpuhw
, events
, cflags
, n
+ 1);
1952 if (has_branch_stack(event
)) {
1953 bhrb_filter
= ppmu
->bhrb_filter_map(
1954 event
->attr
.branch_sample_type
);
1956 if (bhrb_filter
== -1) {
1957 put_cpu_var(cpu_hw_events
);
1960 cpuhw
->bhrb_filter
= bhrb_filter
;
1963 put_cpu_var(cpu_hw_events
);
1967 event
->hw
.config
= events
[n
];
1968 event
->hw
.event_base
= cflags
[n
];
1969 event
->hw
.last_period
= event
->hw
.sample_period
;
1970 local64_set(&event
->hw
.period_left
, event
->hw
.last_period
);
1973 * For EBB events we just context switch the PMC value, we don't do any
1974 * of the sample_period logic. We use hw.prev_count for this.
1976 if (is_ebb_event(event
))
1977 local64_set(&event
->hw
.prev_count
, 0);
1980 * See if we need to reserve the PMU.
1981 * If no events are currently in use, then we have to take a
1982 * mutex to ensure that we don't race with another task doing
1983 * reserve_pmc_hardware or release_pmc_hardware.
1986 if (!atomic_inc_not_zero(&num_events
)) {
1987 mutex_lock(&pmc_reserve_mutex
);
1988 if (atomic_read(&num_events
) == 0 &&
1989 reserve_pmc_hardware(perf_event_interrupt
))
1992 atomic_inc(&num_events
);
1993 mutex_unlock(&pmc_reserve_mutex
);
1995 event
->destroy
= hw_perf_event_destroy
;
2000 static int power_pmu_event_idx(struct perf_event
*event
)
2002 return event
->hw
.idx
;
2005 ssize_t
power_events_sysfs_show(struct device
*dev
,
2006 struct device_attribute
*attr
, char *page
)
2008 struct perf_pmu_events_attr
*pmu_attr
;
2010 pmu_attr
= container_of(attr
, struct perf_pmu_events_attr
, attr
);
2012 return sprintf(page
, "event=0x%02llx\n", pmu_attr
->id
);
2015 static struct pmu power_pmu
= {
2016 .pmu_enable
= power_pmu_enable
,
2017 .pmu_disable
= power_pmu_disable
,
2018 .event_init
= power_pmu_event_init
,
2019 .add
= power_pmu_add
,
2020 .del
= power_pmu_del
,
2021 .start
= power_pmu_start
,
2022 .stop
= power_pmu_stop
,
2023 .read
= power_pmu_read
,
2024 .start_txn
= power_pmu_start_txn
,
2025 .cancel_txn
= power_pmu_cancel_txn
,
2026 .commit_txn
= power_pmu_commit_txn
,
2027 .event_idx
= power_pmu_event_idx
,
2028 .sched_task
= power_pmu_sched_task
,
2032 * A counter has overflowed; update its count and record
2033 * things if requested. Note that interrupts are hard-disabled
2034 * here so there is no possibility of being interrupted.
2036 static void record_and_restart(struct perf_event
*event
, unsigned long val
,
2037 struct pt_regs
*regs
)
2039 u64 period
= event
->hw
.sample_period
;
2040 s64 prev
, delta
, left
;
2043 if (event
->hw
.state
& PERF_HES_STOPPED
) {
2044 write_pmc(event
->hw
.idx
, 0);
2048 /* we don't have to worry about interrupts here */
2049 prev
= local64_read(&event
->hw
.prev_count
);
2050 delta
= check_and_compute_delta(prev
, val
);
2051 local64_add(delta
, &event
->count
);
2054 * See if the total period for this event has expired,
2055 * and update for the next period.
2058 left
= local64_read(&event
->hw
.period_left
) - delta
;
2066 record
= siar_valid(regs
);
2067 event
->hw
.last_period
= event
->hw
.sample_period
;
2069 if (left
< 0x80000000LL
)
2070 val
= 0x80000000LL
- left
;
2073 write_pmc(event
->hw
.idx
, val
);
2074 local64_set(&event
->hw
.prev_count
, val
);
2075 local64_set(&event
->hw
.period_left
, left
);
2076 perf_event_update_userpage(event
);
2079 * Finally record data if requested.
2082 struct perf_sample_data data
;
2084 perf_sample_data_init(&data
, ~0ULL, event
->hw
.last_period
);
2086 if (event
->attr
.sample_type
&
2087 (PERF_SAMPLE_ADDR
| PERF_SAMPLE_PHYS_ADDR
))
2088 perf_get_data_addr(event
, regs
, &data
.addr
);
2090 if (event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
2091 struct cpu_hw_events
*cpuhw
;
2092 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
2093 power_pmu_bhrb_read(event
, cpuhw
);
2094 data
.br_stack
= &cpuhw
->bhrb_stack
;
2097 if (event
->attr
.sample_type
& PERF_SAMPLE_DATA_SRC
&&
2098 ppmu
->get_mem_data_src
)
2099 ppmu
->get_mem_data_src(&data
.data_src
, ppmu
->flags
, regs
);
2101 if (event
->attr
.sample_type
& PERF_SAMPLE_WEIGHT
&&
2102 ppmu
->get_mem_weight
)
2103 ppmu
->get_mem_weight(&data
.weight
);
2105 if (perf_event_overflow(event
, &data
, regs
))
2106 power_pmu_stop(event
, 0);
2111 * Called from generic code to get the misc flags (i.e. processor mode)
2114 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2116 u32 flags
= perf_get_misc_flags(regs
);
2120 return user_mode(regs
) ? PERF_RECORD_MISC_USER
:
2121 PERF_RECORD_MISC_KERNEL
;
2125 * Called from generic code to get the instruction pointer
2128 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2130 bool use_siar
= regs_use_siar(regs
);
2132 if (use_siar
&& siar_valid(regs
))
2133 return mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
2135 return 0; // no valid instruction pointer
2140 static bool pmc_overflow_power7(unsigned long val
)
2143 * Events on POWER7 can roll back if a speculative event doesn't
2144 * eventually complete. Unfortunately in some rare cases they will
2145 * raise a performance monitor exception. We need to catch this to
2146 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2147 * cycles from overflow.
2149 * We only do this if the first pass fails to find any overflowing
2150 * PMCs because a user might set a period of less than 256 and we
2151 * don't want to mistakenly reset them.
2153 if ((0x80000000 - val
) <= 256)
2159 static bool pmc_overflow(unsigned long val
)
2168 * Performance monitor interrupt stuff
2170 static void __perf_event_interrupt(struct pt_regs
*regs
)
2173 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
2174 struct perf_event
*event
;
2175 unsigned long val
[8];
2179 if (cpuhw
->n_limited
)
2180 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
2183 perf_read_regs(regs
);
2185 nmi
= perf_intr_is_nmi(regs
);
2191 /* Read all the PMCs since we'll need them a bunch of times */
2192 for (i
= 0; i
< ppmu
->n_counter
; ++i
)
2193 val
[i
] = read_pmc(i
+ 1);
2195 /* Try to find what caused the IRQ */
2197 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
2198 if (!pmc_overflow(val
[i
]))
2200 if (is_limited_pmc(i
+ 1))
2201 continue; /* these won't generate IRQs */
2203 * We've found one that's overflowed. For active
2204 * counters we need to log this. For inactive
2205 * counters, we need to reset it anyway
2209 for (j
= 0; j
< cpuhw
->n_events
; ++j
) {
2210 event
= cpuhw
->event
[j
];
2211 if (event
->hw
.idx
== (i
+ 1)) {
2213 record_and_restart(event
, val
[i
], regs
);
2218 /* reset non active counters that have overflowed */
2219 write_pmc(i
+ 1, 0);
2221 if (!found
&& pvr_version_is(PVR_POWER7
)) {
2222 /* check active counters for special buggy p7 overflow */
2223 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
2224 event
= cpuhw
->event
[i
];
2225 if (!event
->hw
.idx
|| is_limited_pmc(event
->hw
.idx
))
2227 if (pmc_overflow_power7(val
[event
->hw
.idx
- 1])) {
2228 /* event has overflowed in a buggy way*/
2230 record_and_restart(event
,
2231 val
[event
->hw
.idx
- 1],
2236 if (!found
&& !nmi
&& printk_ratelimit())
2237 printk(KERN_WARNING
"Can't find PMC that caused IRQ\n");
2240 * Reset MMCR0 to its normal value. This will set PMXE and
2241 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2242 * and thus allow interrupts to occur again.
2243 * XXX might want to use MSR.PM to keep the events frozen until
2244 * we get back out of this interrupt.
2246 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
2254 static void perf_event_interrupt(struct pt_regs
*regs
)
2256 u64 start_clock
= sched_clock();
2258 __perf_event_interrupt(regs
);
2259 perf_sample_event_took(sched_clock() - start_clock
);
2262 static int power_pmu_prepare_cpu(unsigned int cpu
)
2264 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
2267 memset(cpuhw
, 0, sizeof(*cpuhw
));
2268 cpuhw
->mmcr
[0] = MMCR0_FC
;
2273 int register_power_pmu(struct power_pmu
*pmu
)
2276 return -EBUSY
; /* something's already registered */
2279 pr_info("%s performance monitor hardware support registered\n",
2282 power_pmu
.attr_groups
= ppmu
->attr_groups
;
2286 * Use FCHV to ignore kernel events if MSR.HV is set.
2288 if (mfmsr() & MSR_HV
)
2289 freeze_events_kernel
= MMCR0_FCHV
;
2290 #endif /* CONFIG_PPC64 */
2292 perf_pmu_register(&power_pmu
, "cpu", PERF_TYPE_RAW
);
2293 cpuhp_setup_state(CPUHP_PERF_POWER
, "perf/powerpc:prepare",
2294 power_pmu_prepare_cpu
, NULL
);
2299 static int __init
init_ppc64_pmu(void)
2301 /* run through all the pmu drivers one at a time */
2302 if (!init_power5_pmu())
2304 else if (!init_power5p_pmu())
2306 else if (!init_power6_pmu())
2308 else if (!init_power7_pmu())
2310 else if (!init_power8_pmu())
2312 else if (!init_power9_pmu())
2314 else if (!init_ppc970_pmu())
2317 return init_generic_compat_pmu();
2319 early_initcall(init_ppc64_pmu
);