treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / sparc / mm / init_64.c
blob1cf0d666dea3d70fb69500dbe44d7dfd646adace
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/sparc64/mm/init.c
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
54 #include "init_64.h"
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
89 static unsigned long cpu_pgsz_mask;
91 #define MAX_BANKS 1024
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
98 static int cmp_p64(const void *a, const void *b)
100 const struct linux_prom64_registers *x = a, *y = b;
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
109 static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
113 phandle node = prom_finddevice("/memory");
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
129 prom_halt();
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
155 memmove(&regs[i], &regs[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
157 i--;
158 ents--;
159 continue;
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
165 *num_ents = ents;
167 sort(regs, ents, sizeof(struct linux_prom64_registers),
168 cmp_p64, NULL);
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
189 int num_kernel_image_mappings;
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
198 inline void flush_dcache_page_impl(struct page *page)
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping_file(page) != NULL));
209 #else
210 if (page_mapping_file(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
247 unsigned long mask = (1UL << PG_dcache_dirty);
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
271 unsigned long tsb_addr = (unsigned long) ent;
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
276 __tsb_insert(tsb_addr, tag, pte);
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
281 static void flush_dcache(unsigned long pfn)
283 struct page *page;
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
295 /* This is just to optimize away some function calls
296 * in the SMP case.
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
303 clear_dcache_dirty_cpu(page, cpu);
305 put_cpu();
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
318 if (unlikely(!tsb))
319 return;
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init add_huge_page_size(unsigned long size)
330 unsigned int order;
332 if (size_to_hstate(size))
333 return;
335 order = ilog2(size) - PAGE_SHIFT;
336 hugetlb_add_hstate(order);
339 static int __init hugetlbpage_init(void)
341 add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342 add_huge_page_size(1UL << HPAGE_SHIFT);
343 add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344 add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
346 return 0;
349 arch_initcall(hugetlbpage_init);
351 static void __init pud_huge_patch(void)
353 struct pud_huge_patch_entry *p;
354 unsigned long addr;
356 p = &__pud_huge_patch;
357 addr = p->addr;
358 *(unsigned int *)addr = p->insn;
360 __asm__ __volatile__("flush %0" : : "r" (addr));
363 static int __init setup_hugepagesz(char *string)
365 unsigned long long hugepage_size;
366 unsigned int hugepage_shift;
367 unsigned short hv_pgsz_idx;
368 unsigned int hv_pgsz_mask;
369 int rc = 0;
371 hugepage_size = memparse(string, &string);
372 hugepage_shift = ilog2(hugepage_size);
374 switch (hugepage_shift) {
375 case HPAGE_16GB_SHIFT:
376 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
377 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
378 pud_huge_patch();
379 break;
380 case HPAGE_2GB_SHIFT:
381 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
382 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
383 break;
384 case HPAGE_256MB_SHIFT:
385 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
386 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
387 break;
388 case HPAGE_SHIFT:
389 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
390 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
391 break;
392 case HPAGE_64K_SHIFT:
393 hv_pgsz_mask = HV_PGSZ_MASK_64K;
394 hv_pgsz_idx = HV_PGSZ_IDX_64K;
395 break;
396 default:
397 hv_pgsz_mask = 0;
400 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
401 hugetlb_bad_size();
402 pr_err("hugepagesz=%llu not supported by MMU.\n",
403 hugepage_size);
404 goto out;
407 add_huge_page_size(hugepage_size);
408 rc = 1;
410 out:
411 return rc;
413 __setup("hugepagesz=", setup_hugepagesz);
414 #endif /* CONFIG_HUGETLB_PAGE */
416 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
418 struct mm_struct *mm;
419 unsigned long flags;
420 bool is_huge_tsb;
421 pte_t pte = *ptep;
423 if (tlb_type != hypervisor) {
424 unsigned long pfn = pte_pfn(pte);
426 if (pfn_valid(pfn))
427 flush_dcache(pfn);
430 mm = vma->vm_mm;
432 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
433 if (!pte_accessible(mm, pte))
434 return;
436 spin_lock_irqsave(&mm->context.lock, flags);
438 is_huge_tsb = false;
439 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
440 if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
441 unsigned long hugepage_size = PAGE_SIZE;
443 if (is_vm_hugetlb_page(vma))
444 hugepage_size = huge_page_size(hstate_vma(vma));
446 if (hugepage_size >= PUD_SIZE) {
447 unsigned long mask = 0x1ffc00000UL;
449 /* Transfer bits [32:22] from address to resolve
450 * at 4M granularity.
452 pte_val(pte) &= ~mask;
453 pte_val(pte) |= (address & mask);
454 } else if (hugepage_size >= PMD_SIZE) {
455 /* We are fabricating 8MB pages using 4MB
456 * real hw pages.
458 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
461 if (hugepage_size >= PMD_SIZE) {
462 __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
463 REAL_HPAGE_SHIFT, address, pte_val(pte));
464 is_huge_tsb = true;
467 #endif
468 if (!is_huge_tsb)
469 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
470 address, pte_val(pte));
472 spin_unlock_irqrestore(&mm->context.lock, flags);
475 void flush_dcache_page(struct page *page)
477 struct address_space *mapping;
478 int this_cpu;
480 if (tlb_type == hypervisor)
481 return;
483 /* Do not bother with the expensive D-cache flush if it
484 * is merely the zero page. The 'bigcore' testcase in GDB
485 * causes this case to run millions of times.
487 if (page == ZERO_PAGE(0))
488 return;
490 this_cpu = get_cpu();
492 mapping = page_mapping_file(page);
493 if (mapping && !mapping_mapped(mapping)) {
494 int dirty = test_bit(PG_dcache_dirty, &page->flags);
495 if (dirty) {
496 int dirty_cpu = dcache_dirty_cpu(page);
498 if (dirty_cpu == this_cpu)
499 goto out;
500 smp_flush_dcache_page_impl(page, dirty_cpu);
502 set_dcache_dirty(page, this_cpu);
503 } else {
504 /* We could delay the flush for the !page_mapping
505 * case too. But that case is for exec env/arg
506 * pages and those are %99 certainly going to get
507 * faulted into the tlb (and thus flushed) anyways.
509 flush_dcache_page_impl(page);
512 out:
513 put_cpu();
515 EXPORT_SYMBOL(flush_dcache_page);
517 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
519 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
520 if (tlb_type == spitfire) {
521 unsigned long kaddr;
523 /* This code only runs on Spitfire cpus so this is
524 * why we can assume _PAGE_PADDR_4U.
526 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
527 unsigned long paddr, mask = _PAGE_PADDR_4U;
529 if (kaddr >= PAGE_OFFSET)
530 paddr = kaddr & mask;
531 else {
532 pgd_t *pgdp = pgd_offset_k(kaddr);
533 p4d_t *p4dp = p4d_offset(pgdp, kaddr);
534 pud_t *pudp = pud_offset(p4dp, kaddr);
535 pmd_t *pmdp = pmd_offset(pudp, kaddr);
536 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
538 paddr = pte_val(*ptep) & mask;
540 __flush_icache_page(paddr);
544 EXPORT_SYMBOL(flush_icache_range);
546 void mmu_info(struct seq_file *m)
548 static const char *pgsz_strings[] = {
549 "8K", "64K", "512K", "4MB", "32MB",
550 "256MB", "2GB", "16GB",
552 int i, printed;
554 if (tlb_type == cheetah)
555 seq_printf(m, "MMU Type\t: Cheetah\n");
556 else if (tlb_type == cheetah_plus)
557 seq_printf(m, "MMU Type\t: Cheetah+\n");
558 else if (tlb_type == spitfire)
559 seq_printf(m, "MMU Type\t: Spitfire\n");
560 else if (tlb_type == hypervisor)
561 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
562 else
563 seq_printf(m, "MMU Type\t: ???\n");
565 seq_printf(m, "MMU PGSZs\t: ");
566 printed = 0;
567 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
568 if (cpu_pgsz_mask & (1UL << i)) {
569 seq_printf(m, "%s%s",
570 printed ? "," : "", pgsz_strings[i]);
571 printed++;
574 seq_putc(m, '\n');
576 #ifdef CONFIG_DEBUG_DCFLUSH
577 seq_printf(m, "DCPageFlushes\t: %d\n",
578 atomic_read(&dcpage_flushes));
579 #ifdef CONFIG_SMP
580 seq_printf(m, "DCPageFlushesXC\t: %d\n",
581 atomic_read(&dcpage_flushes_xcall));
582 #endif /* CONFIG_SMP */
583 #endif /* CONFIG_DEBUG_DCFLUSH */
586 struct linux_prom_translation prom_trans[512] __read_mostly;
587 unsigned int prom_trans_ents __read_mostly;
589 unsigned long kern_locked_tte_data;
591 /* The obp translations are saved based on 8k pagesize, since obp can
592 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
593 * HI_OBP_ADDRESS range are handled in ktlb.S.
595 static inline int in_obp_range(unsigned long vaddr)
597 return (vaddr >= LOW_OBP_ADDRESS &&
598 vaddr < HI_OBP_ADDRESS);
601 static int cmp_ptrans(const void *a, const void *b)
603 const struct linux_prom_translation *x = a, *y = b;
605 if (x->virt > y->virt)
606 return 1;
607 if (x->virt < y->virt)
608 return -1;
609 return 0;
612 /* Read OBP translations property into 'prom_trans[]'. */
613 static void __init read_obp_translations(void)
615 int n, node, ents, first, last, i;
617 node = prom_finddevice("/virtual-memory");
618 n = prom_getproplen(node, "translations");
619 if (unlikely(n == 0 || n == -1)) {
620 prom_printf("prom_mappings: Couldn't get size.\n");
621 prom_halt();
623 if (unlikely(n > sizeof(prom_trans))) {
624 prom_printf("prom_mappings: Size %d is too big.\n", n);
625 prom_halt();
628 if ((n = prom_getproperty(node, "translations",
629 (char *)&prom_trans[0],
630 sizeof(prom_trans))) == -1) {
631 prom_printf("prom_mappings: Couldn't get property.\n");
632 prom_halt();
635 n = n / sizeof(struct linux_prom_translation);
637 ents = n;
639 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
640 cmp_ptrans, NULL);
642 /* Now kick out all the non-OBP entries. */
643 for (i = 0; i < ents; i++) {
644 if (in_obp_range(prom_trans[i].virt))
645 break;
647 first = i;
648 for (; i < ents; i++) {
649 if (!in_obp_range(prom_trans[i].virt))
650 break;
652 last = i;
654 for (i = 0; i < (last - first); i++) {
655 struct linux_prom_translation *src = &prom_trans[i + first];
656 struct linux_prom_translation *dest = &prom_trans[i];
658 *dest = *src;
660 for (; i < ents; i++) {
661 struct linux_prom_translation *dest = &prom_trans[i];
662 dest->virt = dest->size = dest->data = 0x0UL;
665 prom_trans_ents = last - first;
667 if (tlb_type == spitfire) {
668 /* Clear diag TTE bits. */
669 for (i = 0; i < prom_trans_ents; i++)
670 prom_trans[i].data &= ~0x0003fe0000000000UL;
673 /* Force execute bit on. */
674 for (i = 0; i < prom_trans_ents; i++)
675 prom_trans[i].data |= (tlb_type == hypervisor ?
676 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
679 static void __init hypervisor_tlb_lock(unsigned long vaddr,
680 unsigned long pte,
681 unsigned long mmu)
683 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
685 if (ret != 0) {
686 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
687 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
688 prom_halt();
692 static unsigned long kern_large_tte(unsigned long paddr);
694 static void __init remap_kernel(void)
696 unsigned long phys_page, tte_vaddr, tte_data;
697 int i, tlb_ent = sparc64_highest_locked_tlbent();
699 tte_vaddr = (unsigned long) KERNBASE;
700 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
701 tte_data = kern_large_tte(phys_page);
703 kern_locked_tte_data = tte_data;
705 /* Now lock us into the TLBs via Hypervisor or OBP. */
706 if (tlb_type == hypervisor) {
707 for (i = 0; i < num_kernel_image_mappings; i++) {
708 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
709 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
710 tte_vaddr += 0x400000;
711 tte_data += 0x400000;
713 } else {
714 for (i = 0; i < num_kernel_image_mappings; i++) {
715 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
716 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
717 tte_vaddr += 0x400000;
718 tte_data += 0x400000;
720 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
722 if (tlb_type == cheetah_plus) {
723 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
724 CTX_CHEETAH_PLUS_NUC);
725 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
726 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
731 static void __init inherit_prom_mappings(void)
733 /* Now fixup OBP's idea about where we really are mapped. */
734 printk("Remapping the kernel... ");
735 remap_kernel();
736 printk("done.\n");
739 void prom_world(int enter)
741 if (!enter)
742 set_fs(get_fs());
744 __asm__ __volatile__("flushw");
747 void __flush_dcache_range(unsigned long start, unsigned long end)
749 unsigned long va;
751 if (tlb_type == spitfire) {
752 int n = 0;
754 for (va = start; va < end; va += 32) {
755 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
756 if (++n >= 512)
757 break;
759 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
760 start = __pa(start);
761 end = __pa(end);
762 for (va = start; va < end; va += 32)
763 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
764 "membar #Sync"
765 : /* no outputs */
766 : "r" (va),
767 "i" (ASI_DCACHE_INVALIDATE));
770 EXPORT_SYMBOL(__flush_dcache_range);
772 /* get_new_mmu_context() uses "cache + 1". */
773 DEFINE_SPINLOCK(ctx_alloc_lock);
774 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
775 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
776 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
777 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
778 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
780 static void mmu_context_wrap(void)
782 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
783 unsigned long new_ver, new_ctx, old_ctx;
784 struct mm_struct *mm;
785 int cpu;
787 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
789 /* Reserve kernel context */
790 set_bit(0, mmu_context_bmap);
792 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
793 if (unlikely(new_ver == 0))
794 new_ver = CTX_FIRST_VERSION;
795 tlb_context_cache = new_ver;
798 * Make sure that any new mm that are added into per_cpu_secondary_mm,
799 * are going to go through get_new_mmu_context() path.
801 mb();
804 * Updated versions to current on those CPUs that had valid secondary
805 * contexts
807 for_each_online_cpu(cpu) {
809 * If a new mm is stored after we took this mm from the array,
810 * it will go into get_new_mmu_context() path, because we
811 * already bumped the version in tlb_context_cache.
813 mm = per_cpu(per_cpu_secondary_mm, cpu);
815 if (unlikely(!mm || mm == &init_mm))
816 continue;
818 old_ctx = mm->context.sparc64_ctx_val;
819 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
820 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
821 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
822 mm->context.sparc64_ctx_val = new_ctx;
827 /* Caller does TLB context flushing on local CPU if necessary.
828 * The caller also ensures that CTX_VALID(mm->context) is false.
830 * We must be careful about boundary cases so that we never
831 * let the user have CTX 0 (nucleus) or we ever use a CTX
832 * version of zero (and thus NO_CONTEXT would not be caught
833 * by version mis-match tests in mmu_context.h).
835 * Always invoked with interrupts disabled.
837 void get_new_mmu_context(struct mm_struct *mm)
839 unsigned long ctx, new_ctx;
840 unsigned long orig_pgsz_bits;
842 spin_lock(&ctx_alloc_lock);
843 retry:
844 /* wrap might have happened, test again if our context became valid */
845 if (unlikely(CTX_VALID(mm->context)))
846 goto out;
847 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
848 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
849 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
850 if (new_ctx >= (1 << CTX_NR_BITS)) {
851 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
852 if (new_ctx >= ctx) {
853 mmu_context_wrap();
854 goto retry;
857 if (mm->context.sparc64_ctx_val)
858 cpumask_clear(mm_cpumask(mm));
859 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
860 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
861 tlb_context_cache = new_ctx;
862 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
863 out:
864 spin_unlock(&ctx_alloc_lock);
867 static int numa_enabled = 1;
868 static int numa_debug;
870 static int __init early_numa(char *p)
872 if (!p)
873 return 0;
875 if (strstr(p, "off"))
876 numa_enabled = 0;
878 if (strstr(p, "debug"))
879 numa_debug = 1;
881 return 0;
883 early_param("numa", early_numa);
885 #define numadbg(f, a...) \
886 do { if (numa_debug) \
887 printk(KERN_INFO f, ## a); \
888 } while (0)
890 static void __init find_ramdisk(unsigned long phys_base)
892 #ifdef CONFIG_BLK_DEV_INITRD
893 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
894 unsigned long ramdisk_image;
896 /* Older versions of the bootloader only supported a
897 * 32-bit physical address for the ramdisk image
898 * location, stored at sparc_ramdisk_image. Newer
899 * SILO versions set sparc_ramdisk_image to zero and
900 * provide a full 64-bit physical address at
901 * sparc_ramdisk_image64.
903 ramdisk_image = sparc_ramdisk_image;
904 if (!ramdisk_image)
905 ramdisk_image = sparc_ramdisk_image64;
907 /* Another bootloader quirk. The bootloader normalizes
908 * the physical address to KERNBASE, so we have to
909 * factor that back out and add in the lowest valid
910 * physical page address to get the true physical address.
912 ramdisk_image -= KERNBASE;
913 ramdisk_image += phys_base;
915 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
916 ramdisk_image, sparc_ramdisk_size);
918 initrd_start = ramdisk_image;
919 initrd_end = ramdisk_image + sparc_ramdisk_size;
921 memblock_reserve(initrd_start, sparc_ramdisk_size);
923 initrd_start += PAGE_OFFSET;
924 initrd_end += PAGE_OFFSET;
926 #endif
929 struct node_mem_mask {
930 unsigned long mask;
931 unsigned long match;
933 static struct node_mem_mask node_masks[MAX_NUMNODES];
934 static int num_node_masks;
936 #ifdef CONFIG_NEED_MULTIPLE_NODES
938 struct mdesc_mlgroup {
939 u64 node;
940 u64 latency;
941 u64 match;
942 u64 mask;
945 static struct mdesc_mlgroup *mlgroups;
946 static int num_mlgroups;
948 int numa_cpu_lookup_table[NR_CPUS];
949 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
951 struct mdesc_mblock {
952 u64 base;
953 u64 size;
954 u64 offset; /* RA-to-PA */
956 static struct mdesc_mblock *mblocks;
957 static int num_mblocks;
959 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
961 struct mdesc_mblock *m = NULL;
962 int i;
964 for (i = 0; i < num_mblocks; i++) {
965 m = &mblocks[i];
967 if (addr >= m->base &&
968 addr < (m->base + m->size)) {
969 break;
973 return m;
976 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
978 int prev_nid, new_nid;
980 prev_nid = NUMA_NO_NODE;
981 for ( ; start < end; start += PAGE_SIZE) {
982 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
983 struct node_mem_mask *p = &node_masks[new_nid];
985 if ((start & p->mask) == p->match) {
986 if (prev_nid == NUMA_NO_NODE)
987 prev_nid = new_nid;
988 break;
992 if (new_nid == num_node_masks) {
993 prev_nid = 0;
994 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
995 start);
996 break;
999 if (prev_nid != new_nid)
1000 break;
1002 *nid = prev_nid;
1004 return start > end ? end : start;
1007 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1009 u64 ret_end, pa_start, m_mask, m_match, m_end;
1010 struct mdesc_mblock *mblock;
1011 int _nid, i;
1013 if (tlb_type != hypervisor)
1014 return memblock_nid_range_sun4u(start, end, nid);
1016 mblock = addr_to_mblock(start);
1017 if (!mblock) {
1018 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1019 start);
1021 _nid = 0;
1022 ret_end = end;
1023 goto done;
1026 pa_start = start + mblock->offset;
1027 m_match = 0;
1028 m_mask = 0;
1030 for (_nid = 0; _nid < num_node_masks; _nid++) {
1031 struct node_mem_mask *const m = &node_masks[_nid];
1033 if ((pa_start & m->mask) == m->match) {
1034 m_match = m->match;
1035 m_mask = m->mask;
1036 break;
1040 if (num_node_masks == _nid) {
1041 /* We could not find NUMA group, so default to 0, but lets
1042 * search for latency group, so we could calculate the correct
1043 * end address that we return
1045 _nid = 0;
1047 for (i = 0; i < num_mlgroups; i++) {
1048 struct mdesc_mlgroup *const m = &mlgroups[i];
1050 if ((pa_start & m->mask) == m->match) {
1051 m_match = m->match;
1052 m_mask = m->mask;
1053 break;
1057 if (i == num_mlgroups) {
1058 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1059 start);
1061 ret_end = end;
1062 goto done;
1067 * Each latency group has match and mask, and each memory block has an
1068 * offset. An address belongs to a latency group if its address matches
1069 * the following formula: ((addr + offset) & mask) == match
1070 * It is, however, slow to check every single page if it matches a
1071 * particular latency group. As optimization we calculate end value by
1072 * using bit arithmetics.
1074 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1075 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1076 ret_end = m_end > end ? end : m_end;
1078 done:
1079 *nid = _nid;
1080 return ret_end;
1082 #endif
1084 /* This must be invoked after performing all of the necessary
1085 * memblock_set_node() calls for 'nid'. We need to be able to get
1086 * correct data from get_pfn_range_for_nid().
1088 static void __init allocate_node_data(int nid)
1090 struct pglist_data *p;
1091 unsigned long start_pfn, end_pfn;
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1094 NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1095 SMP_CACHE_BYTES, nid);
1096 if (!NODE_DATA(nid)) {
1097 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1098 prom_halt();
1101 NODE_DATA(nid)->node_id = nid;
1102 #endif
1104 p = NODE_DATA(nid);
1106 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1107 p->node_start_pfn = start_pfn;
1108 p->node_spanned_pages = end_pfn - start_pfn;
1111 static void init_node_masks_nonnuma(void)
1113 #ifdef CONFIG_NEED_MULTIPLE_NODES
1114 int i;
1115 #endif
1117 numadbg("Initializing tables for non-numa.\n");
1119 node_masks[0].mask = 0;
1120 node_masks[0].match = 0;
1121 num_node_masks = 1;
1123 #ifdef CONFIG_NEED_MULTIPLE_NODES
1124 for (i = 0; i < NR_CPUS; i++)
1125 numa_cpu_lookup_table[i] = 0;
1127 cpumask_setall(&numa_cpumask_lookup_table[0]);
1128 #endif
1131 #ifdef CONFIG_NEED_MULTIPLE_NODES
1132 struct pglist_data *node_data[MAX_NUMNODES];
1134 EXPORT_SYMBOL(numa_cpu_lookup_table);
1135 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1136 EXPORT_SYMBOL(node_data);
1138 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1139 u32 cfg_handle)
1141 u64 arc;
1143 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1144 u64 target = mdesc_arc_target(md, arc);
1145 const u64 *val;
1147 val = mdesc_get_property(md, target,
1148 "cfg-handle", NULL);
1149 if (val && *val == cfg_handle)
1150 return 0;
1152 return -ENODEV;
1155 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1156 u32 cfg_handle)
1158 u64 arc, candidate, best_latency = ~(u64)0;
1160 candidate = MDESC_NODE_NULL;
1161 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1162 u64 target = mdesc_arc_target(md, arc);
1163 const char *name = mdesc_node_name(md, target);
1164 const u64 *val;
1166 if (strcmp(name, "pio-latency-group"))
1167 continue;
1169 val = mdesc_get_property(md, target, "latency", NULL);
1170 if (!val)
1171 continue;
1173 if (*val < best_latency) {
1174 candidate = target;
1175 best_latency = *val;
1179 if (candidate == MDESC_NODE_NULL)
1180 return -ENODEV;
1182 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1185 int of_node_to_nid(struct device_node *dp)
1187 const struct linux_prom64_registers *regs;
1188 struct mdesc_handle *md;
1189 u32 cfg_handle;
1190 int count, nid;
1191 u64 grp;
1193 /* This is the right thing to do on currently supported
1194 * SUN4U NUMA platforms as well, as the PCI controller does
1195 * not sit behind any particular memory controller.
1197 if (!mlgroups)
1198 return -1;
1200 regs = of_get_property(dp, "reg", NULL);
1201 if (!regs)
1202 return -1;
1204 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1206 md = mdesc_grab();
1208 count = 0;
1209 nid = NUMA_NO_NODE;
1210 mdesc_for_each_node_by_name(md, grp, "group") {
1211 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1212 nid = count;
1213 break;
1215 count++;
1218 mdesc_release(md);
1220 return nid;
1223 static void __init add_node_ranges(void)
1225 struct memblock_region *reg;
1226 unsigned long prev_max;
1228 memblock_resized:
1229 prev_max = memblock.memory.max;
1231 for_each_memblock(memory, reg) {
1232 unsigned long size = reg->size;
1233 unsigned long start, end;
1235 start = reg->base;
1236 end = start + size;
1237 while (start < end) {
1238 unsigned long this_end;
1239 int nid;
1241 this_end = memblock_nid_range(start, end, &nid);
1243 numadbg("Setting memblock NUMA node nid[%d] "
1244 "start[%lx] end[%lx]\n",
1245 nid, start, this_end);
1247 memblock_set_node(start, this_end - start,
1248 &memblock.memory, nid);
1249 if (memblock.memory.max != prev_max)
1250 goto memblock_resized;
1251 start = this_end;
1256 static int __init grab_mlgroups(struct mdesc_handle *md)
1258 unsigned long paddr;
1259 int count = 0;
1260 u64 node;
1262 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1263 count++;
1264 if (!count)
1265 return -ENOENT;
1267 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1268 SMP_CACHE_BYTES);
1269 if (!paddr)
1270 return -ENOMEM;
1272 mlgroups = __va(paddr);
1273 num_mlgroups = count;
1275 count = 0;
1276 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1277 struct mdesc_mlgroup *m = &mlgroups[count++];
1278 const u64 *val;
1280 m->node = node;
1282 val = mdesc_get_property(md, node, "latency", NULL);
1283 m->latency = *val;
1284 val = mdesc_get_property(md, node, "address-match", NULL);
1285 m->match = *val;
1286 val = mdesc_get_property(md, node, "address-mask", NULL);
1287 m->mask = *val;
1289 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1290 "match[%llx] mask[%llx]\n",
1291 count - 1, m->node, m->latency, m->match, m->mask);
1294 return 0;
1297 static int __init grab_mblocks(struct mdesc_handle *md)
1299 unsigned long paddr;
1300 int count = 0;
1301 u64 node;
1303 mdesc_for_each_node_by_name(md, node, "mblock")
1304 count++;
1305 if (!count)
1306 return -ENOENT;
1308 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1309 SMP_CACHE_BYTES);
1310 if (!paddr)
1311 return -ENOMEM;
1313 mblocks = __va(paddr);
1314 num_mblocks = count;
1316 count = 0;
1317 mdesc_for_each_node_by_name(md, node, "mblock") {
1318 struct mdesc_mblock *m = &mblocks[count++];
1319 const u64 *val;
1321 val = mdesc_get_property(md, node, "base", NULL);
1322 m->base = *val;
1323 val = mdesc_get_property(md, node, "size", NULL);
1324 m->size = *val;
1325 val = mdesc_get_property(md, node,
1326 "address-congruence-offset", NULL);
1328 /* The address-congruence-offset property is optional.
1329 * Explicity zero it be identifty this.
1331 if (val)
1332 m->offset = *val;
1333 else
1334 m->offset = 0UL;
1336 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1337 count - 1, m->base, m->size, m->offset);
1340 return 0;
1343 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1344 u64 grp, cpumask_t *mask)
1346 u64 arc;
1348 cpumask_clear(mask);
1350 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1351 u64 target = mdesc_arc_target(md, arc);
1352 const char *name = mdesc_node_name(md, target);
1353 const u64 *id;
1355 if (strcmp(name, "cpu"))
1356 continue;
1357 id = mdesc_get_property(md, target, "id", NULL);
1358 if (*id < nr_cpu_ids)
1359 cpumask_set_cpu(*id, mask);
1363 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1365 int i;
1367 for (i = 0; i < num_mlgroups; i++) {
1368 struct mdesc_mlgroup *m = &mlgroups[i];
1369 if (m->node == node)
1370 return m;
1372 return NULL;
1375 int __node_distance(int from, int to)
1377 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1378 pr_warn("Returning default NUMA distance value for %d->%d\n",
1379 from, to);
1380 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1382 return numa_latency[from][to];
1384 EXPORT_SYMBOL(__node_distance);
1386 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1388 int i;
1390 for (i = 0; i < MAX_NUMNODES; i++) {
1391 struct node_mem_mask *n = &node_masks[i];
1393 if ((grp->mask == n->mask) && (grp->match == n->match))
1394 break;
1396 return i;
1399 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1400 u64 grp, int index)
1402 u64 arc;
1404 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1405 int tnode;
1406 u64 target = mdesc_arc_target(md, arc);
1407 struct mdesc_mlgroup *m = find_mlgroup(target);
1409 if (!m)
1410 continue;
1411 tnode = find_best_numa_node_for_mlgroup(m);
1412 if (tnode == MAX_NUMNODES)
1413 continue;
1414 numa_latency[index][tnode] = m->latency;
1418 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1419 int index)
1421 struct mdesc_mlgroup *candidate = NULL;
1422 u64 arc, best_latency = ~(u64)0;
1423 struct node_mem_mask *n;
1425 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1426 u64 target = mdesc_arc_target(md, arc);
1427 struct mdesc_mlgroup *m = find_mlgroup(target);
1428 if (!m)
1429 continue;
1430 if (m->latency < best_latency) {
1431 candidate = m;
1432 best_latency = m->latency;
1435 if (!candidate)
1436 return -ENOENT;
1438 if (num_node_masks != index) {
1439 printk(KERN_ERR "Inconsistent NUMA state, "
1440 "index[%d] != num_node_masks[%d]\n",
1441 index, num_node_masks);
1442 return -EINVAL;
1445 n = &node_masks[num_node_masks++];
1447 n->mask = candidate->mask;
1448 n->match = candidate->match;
1450 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1451 index, n->mask, n->match, candidate->latency);
1453 return 0;
1456 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1457 int index)
1459 cpumask_t mask;
1460 int cpu;
1462 numa_parse_mdesc_group_cpus(md, grp, &mask);
1464 for_each_cpu(cpu, &mask)
1465 numa_cpu_lookup_table[cpu] = index;
1466 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1468 if (numa_debug) {
1469 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1470 for_each_cpu(cpu, &mask)
1471 printk("%d ", cpu);
1472 printk("]\n");
1475 return numa_attach_mlgroup(md, grp, index);
1478 static int __init numa_parse_mdesc(void)
1480 struct mdesc_handle *md = mdesc_grab();
1481 int i, j, err, count;
1482 u64 node;
1484 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1485 if (node == MDESC_NODE_NULL) {
1486 mdesc_release(md);
1487 return -ENOENT;
1490 err = grab_mblocks(md);
1491 if (err < 0)
1492 goto out;
1494 err = grab_mlgroups(md);
1495 if (err < 0)
1496 goto out;
1498 count = 0;
1499 mdesc_for_each_node_by_name(md, node, "group") {
1500 err = numa_parse_mdesc_group(md, node, count);
1501 if (err < 0)
1502 break;
1503 count++;
1506 count = 0;
1507 mdesc_for_each_node_by_name(md, node, "group") {
1508 find_numa_latencies_for_group(md, node, count);
1509 count++;
1512 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1513 for (i = 0; i < MAX_NUMNODES; i++) {
1514 u64 self_latency = numa_latency[i][i];
1516 for (j = 0; j < MAX_NUMNODES; j++) {
1517 numa_latency[i][j] =
1518 (numa_latency[i][j] * LOCAL_DISTANCE) /
1519 self_latency;
1523 add_node_ranges();
1525 for (i = 0; i < num_node_masks; i++) {
1526 allocate_node_data(i);
1527 node_set_online(i);
1530 err = 0;
1531 out:
1532 mdesc_release(md);
1533 return err;
1536 static int __init numa_parse_jbus(void)
1538 unsigned long cpu, index;
1540 /* NUMA node id is encoded in bits 36 and higher, and there is
1541 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1543 index = 0;
1544 for_each_present_cpu(cpu) {
1545 numa_cpu_lookup_table[cpu] = index;
1546 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1547 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1548 node_masks[index].match = cpu << 36UL;
1550 index++;
1552 num_node_masks = index;
1554 add_node_ranges();
1556 for (index = 0; index < num_node_masks; index++) {
1557 allocate_node_data(index);
1558 node_set_online(index);
1561 return 0;
1564 static int __init numa_parse_sun4u(void)
1566 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1567 unsigned long ver;
1569 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1570 if ((ver >> 32UL) == __JALAPENO_ID ||
1571 (ver >> 32UL) == __SERRANO_ID)
1572 return numa_parse_jbus();
1574 return -1;
1577 static int __init bootmem_init_numa(void)
1579 int i, j;
1580 int err = -1;
1582 numadbg("bootmem_init_numa()\n");
1584 /* Some sane defaults for numa latency values */
1585 for (i = 0; i < MAX_NUMNODES; i++) {
1586 for (j = 0; j < MAX_NUMNODES; j++)
1587 numa_latency[i][j] = (i == j) ?
1588 LOCAL_DISTANCE : REMOTE_DISTANCE;
1591 if (numa_enabled) {
1592 if (tlb_type == hypervisor)
1593 err = numa_parse_mdesc();
1594 else
1595 err = numa_parse_sun4u();
1597 return err;
1600 #else
1602 static int bootmem_init_numa(void)
1604 return -1;
1607 #endif
1609 static void __init bootmem_init_nonnuma(void)
1611 unsigned long top_of_ram = memblock_end_of_DRAM();
1612 unsigned long total_ram = memblock_phys_mem_size();
1614 numadbg("bootmem_init_nonnuma()\n");
1616 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1617 top_of_ram, total_ram);
1618 printk(KERN_INFO "Memory hole size: %ldMB\n",
1619 (top_of_ram - total_ram) >> 20);
1621 init_node_masks_nonnuma();
1622 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1623 allocate_node_data(0);
1624 node_set_online(0);
1627 static unsigned long __init bootmem_init(unsigned long phys_base)
1629 unsigned long end_pfn;
1631 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1632 max_pfn = max_low_pfn = end_pfn;
1633 min_low_pfn = (phys_base >> PAGE_SHIFT);
1635 if (bootmem_init_numa() < 0)
1636 bootmem_init_nonnuma();
1638 /* Dump memblock with node info. */
1639 memblock_dump_all();
1641 /* XXX cpu notifier XXX */
1643 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1644 sparse_init();
1646 return end_pfn;
1649 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1650 static int pall_ents __initdata;
1652 static unsigned long max_phys_bits = 40;
1654 bool kern_addr_valid(unsigned long addr)
1656 pgd_t *pgd;
1657 p4d_t *p4d;
1658 pud_t *pud;
1659 pmd_t *pmd;
1660 pte_t *pte;
1662 if ((long)addr < 0L) {
1663 unsigned long pa = __pa(addr);
1665 if ((pa >> max_phys_bits) != 0UL)
1666 return false;
1668 return pfn_valid(pa >> PAGE_SHIFT);
1671 if (addr >= (unsigned long) KERNBASE &&
1672 addr < (unsigned long)&_end)
1673 return true;
1675 pgd = pgd_offset_k(addr);
1676 if (pgd_none(*pgd))
1677 return 0;
1679 p4d = p4d_offset(pgd, addr);
1680 if (p4d_none(*p4d))
1681 return 0;
1683 pud = pud_offset(p4d, addr);
1684 if (pud_none(*pud))
1685 return 0;
1687 if (pud_large(*pud))
1688 return pfn_valid(pud_pfn(*pud));
1690 pmd = pmd_offset(pud, addr);
1691 if (pmd_none(*pmd))
1692 return 0;
1694 if (pmd_large(*pmd))
1695 return pfn_valid(pmd_pfn(*pmd));
1697 pte = pte_offset_kernel(pmd, addr);
1698 if (pte_none(*pte))
1699 return 0;
1701 return pfn_valid(pte_pfn(*pte));
1703 EXPORT_SYMBOL(kern_addr_valid);
1705 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1706 unsigned long vend,
1707 pud_t *pud)
1709 const unsigned long mask16gb = (1UL << 34) - 1UL;
1710 u64 pte_val = vstart;
1712 /* Each PUD is 8GB */
1713 if ((vstart & mask16gb) ||
1714 (vend - vstart <= mask16gb)) {
1715 pte_val ^= kern_linear_pte_xor[2];
1716 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1718 return vstart + PUD_SIZE;
1721 pte_val ^= kern_linear_pte_xor[3];
1722 pte_val |= _PAGE_PUD_HUGE;
1724 vend = vstart + mask16gb + 1UL;
1725 while (vstart < vend) {
1726 pud_val(*pud) = pte_val;
1728 pte_val += PUD_SIZE;
1729 vstart += PUD_SIZE;
1730 pud++;
1732 return vstart;
1735 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1736 bool guard)
1738 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1739 return true;
1741 return false;
1744 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1745 unsigned long vend,
1746 pmd_t *pmd)
1748 const unsigned long mask256mb = (1UL << 28) - 1UL;
1749 const unsigned long mask2gb = (1UL << 31) - 1UL;
1750 u64 pte_val = vstart;
1752 /* Each PMD is 8MB */
1753 if ((vstart & mask256mb) ||
1754 (vend - vstart <= mask256mb)) {
1755 pte_val ^= kern_linear_pte_xor[0];
1756 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1758 return vstart + PMD_SIZE;
1761 if ((vstart & mask2gb) ||
1762 (vend - vstart <= mask2gb)) {
1763 pte_val ^= kern_linear_pte_xor[1];
1764 pte_val |= _PAGE_PMD_HUGE;
1765 vend = vstart + mask256mb + 1UL;
1766 } else {
1767 pte_val ^= kern_linear_pte_xor[2];
1768 pte_val |= _PAGE_PMD_HUGE;
1769 vend = vstart + mask2gb + 1UL;
1772 while (vstart < vend) {
1773 pmd_val(*pmd) = pte_val;
1775 pte_val += PMD_SIZE;
1776 vstart += PMD_SIZE;
1777 pmd++;
1780 return vstart;
1783 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1784 bool guard)
1786 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1787 return true;
1789 return false;
1792 static unsigned long __ref kernel_map_range(unsigned long pstart,
1793 unsigned long pend, pgprot_t prot,
1794 bool use_huge)
1796 unsigned long vstart = PAGE_OFFSET + pstart;
1797 unsigned long vend = PAGE_OFFSET + pend;
1798 unsigned long alloc_bytes = 0UL;
1800 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1801 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1802 vstart, vend);
1803 prom_halt();
1806 while (vstart < vend) {
1807 unsigned long this_end, paddr = __pa(vstart);
1808 pgd_t *pgd = pgd_offset_k(vstart);
1809 p4d_t *p4d;
1810 pud_t *pud;
1811 pmd_t *pmd;
1812 pte_t *pte;
1814 if (pgd_none(*pgd)) {
1815 pud_t *new;
1817 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1818 PAGE_SIZE);
1819 if (!new)
1820 goto err_alloc;
1821 alloc_bytes += PAGE_SIZE;
1822 pgd_populate(&init_mm, pgd, new);
1825 p4d = p4d_offset(pgd, vstart);
1826 if (p4d_none(*p4d)) {
1827 pud_t *new;
1829 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1830 PAGE_SIZE);
1831 if (!new)
1832 goto err_alloc;
1833 alloc_bytes += PAGE_SIZE;
1834 p4d_populate(&init_mm, p4d, new);
1837 pud = pud_offset(p4d, vstart);
1838 if (pud_none(*pud)) {
1839 pmd_t *new;
1841 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1842 vstart = kernel_map_hugepud(vstart, vend, pud);
1843 continue;
1845 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1846 PAGE_SIZE);
1847 if (!new)
1848 goto err_alloc;
1849 alloc_bytes += PAGE_SIZE;
1850 pud_populate(&init_mm, pud, new);
1853 pmd = pmd_offset(pud, vstart);
1854 if (pmd_none(*pmd)) {
1855 pte_t *new;
1857 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1858 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1859 continue;
1861 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1862 PAGE_SIZE);
1863 if (!new)
1864 goto err_alloc;
1865 alloc_bytes += PAGE_SIZE;
1866 pmd_populate_kernel(&init_mm, pmd, new);
1869 pte = pte_offset_kernel(pmd, vstart);
1870 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1871 if (this_end > vend)
1872 this_end = vend;
1874 while (vstart < this_end) {
1875 pte_val(*pte) = (paddr | pgprot_val(prot));
1877 vstart += PAGE_SIZE;
1878 paddr += PAGE_SIZE;
1879 pte++;
1883 return alloc_bytes;
1885 err_alloc:
1886 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1887 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1888 return -ENOMEM;
1891 static void __init flush_all_kernel_tsbs(void)
1893 int i;
1895 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1896 struct tsb *ent = &swapper_tsb[i];
1898 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1900 #ifndef CONFIG_DEBUG_PAGEALLOC
1901 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1902 struct tsb *ent = &swapper_4m_tsb[i];
1904 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1906 #endif
1909 extern unsigned int kvmap_linear_patch[1];
1911 static void __init kernel_physical_mapping_init(void)
1913 unsigned long i, mem_alloced = 0UL;
1914 bool use_huge = true;
1916 #ifdef CONFIG_DEBUG_PAGEALLOC
1917 use_huge = false;
1918 #endif
1919 for (i = 0; i < pall_ents; i++) {
1920 unsigned long phys_start, phys_end;
1922 phys_start = pall[i].phys_addr;
1923 phys_end = phys_start + pall[i].reg_size;
1925 mem_alloced += kernel_map_range(phys_start, phys_end,
1926 PAGE_KERNEL, use_huge);
1929 printk("Allocated %ld bytes for kernel page tables.\n",
1930 mem_alloced);
1932 kvmap_linear_patch[0] = 0x01000000; /* nop */
1933 flushi(&kvmap_linear_patch[0]);
1935 flush_all_kernel_tsbs();
1937 __flush_tlb_all();
1940 #ifdef CONFIG_DEBUG_PAGEALLOC
1941 void __kernel_map_pages(struct page *page, int numpages, int enable)
1943 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1944 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1946 kernel_map_range(phys_start, phys_end,
1947 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1949 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1950 PAGE_OFFSET + phys_end);
1952 /* we should perform an IPI and flush all tlbs,
1953 * but that can deadlock->flush only current cpu.
1955 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1956 PAGE_OFFSET + phys_end);
1958 #endif
1960 unsigned long __init find_ecache_flush_span(unsigned long size)
1962 int i;
1964 for (i = 0; i < pavail_ents; i++) {
1965 if (pavail[i].reg_size >= size)
1966 return pavail[i].phys_addr;
1969 return ~0UL;
1972 unsigned long PAGE_OFFSET;
1973 EXPORT_SYMBOL(PAGE_OFFSET);
1975 unsigned long VMALLOC_END = 0x0000010000000000UL;
1976 EXPORT_SYMBOL(VMALLOC_END);
1978 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1979 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1981 static void __init setup_page_offset(void)
1983 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1984 /* Cheetah/Panther support a full 64-bit virtual
1985 * address, so we can use all that our page tables
1986 * support.
1988 sparc64_va_hole_top = 0xfff0000000000000UL;
1989 sparc64_va_hole_bottom = 0x0010000000000000UL;
1991 max_phys_bits = 42;
1992 } else if (tlb_type == hypervisor) {
1993 switch (sun4v_chip_type) {
1994 case SUN4V_CHIP_NIAGARA1:
1995 case SUN4V_CHIP_NIAGARA2:
1996 /* T1 and T2 support 48-bit virtual addresses. */
1997 sparc64_va_hole_top = 0xffff800000000000UL;
1998 sparc64_va_hole_bottom = 0x0000800000000000UL;
2000 max_phys_bits = 39;
2001 break;
2002 case SUN4V_CHIP_NIAGARA3:
2003 /* T3 supports 48-bit virtual addresses. */
2004 sparc64_va_hole_top = 0xffff800000000000UL;
2005 sparc64_va_hole_bottom = 0x0000800000000000UL;
2007 max_phys_bits = 43;
2008 break;
2009 case SUN4V_CHIP_NIAGARA4:
2010 case SUN4V_CHIP_NIAGARA5:
2011 case SUN4V_CHIP_SPARC64X:
2012 case SUN4V_CHIP_SPARC_M6:
2013 /* T4 and later support 52-bit virtual addresses. */
2014 sparc64_va_hole_top = 0xfff8000000000000UL;
2015 sparc64_va_hole_bottom = 0x0008000000000000UL;
2016 max_phys_bits = 47;
2017 break;
2018 case SUN4V_CHIP_SPARC_M7:
2019 case SUN4V_CHIP_SPARC_SN:
2020 /* M7 and later support 52-bit virtual addresses. */
2021 sparc64_va_hole_top = 0xfff8000000000000UL;
2022 sparc64_va_hole_bottom = 0x0008000000000000UL;
2023 max_phys_bits = 49;
2024 break;
2025 case SUN4V_CHIP_SPARC_M8:
2026 default:
2027 /* M8 and later support 54-bit virtual addresses.
2028 * However, restricting M8 and above VA bits to 53
2029 * as 4-level page table cannot support more than
2030 * 53 VA bits.
2032 sparc64_va_hole_top = 0xfff0000000000000UL;
2033 sparc64_va_hole_bottom = 0x0010000000000000UL;
2034 max_phys_bits = 51;
2035 break;
2039 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2040 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2041 max_phys_bits);
2042 prom_halt();
2045 PAGE_OFFSET = sparc64_va_hole_top;
2046 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2047 (sparc64_va_hole_bottom >> 2));
2049 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2050 PAGE_OFFSET, max_phys_bits);
2051 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2052 VMALLOC_START, VMALLOC_END);
2053 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2054 VMEMMAP_BASE, VMEMMAP_BASE << 1);
2057 static void __init tsb_phys_patch(void)
2059 struct tsb_ldquad_phys_patch_entry *pquad;
2060 struct tsb_phys_patch_entry *p;
2062 pquad = &__tsb_ldquad_phys_patch;
2063 while (pquad < &__tsb_ldquad_phys_patch_end) {
2064 unsigned long addr = pquad->addr;
2066 if (tlb_type == hypervisor)
2067 *(unsigned int *) addr = pquad->sun4v_insn;
2068 else
2069 *(unsigned int *) addr = pquad->sun4u_insn;
2070 wmb();
2071 __asm__ __volatile__("flush %0"
2072 : /* no outputs */
2073 : "r" (addr));
2075 pquad++;
2078 p = &__tsb_phys_patch;
2079 while (p < &__tsb_phys_patch_end) {
2080 unsigned long addr = p->addr;
2082 *(unsigned int *) addr = p->insn;
2083 wmb();
2084 __asm__ __volatile__("flush %0"
2085 : /* no outputs */
2086 : "r" (addr));
2088 p++;
2092 /* Don't mark as init, we give this to the Hypervisor. */
2093 #ifndef CONFIG_DEBUG_PAGEALLOC
2094 #define NUM_KTSB_DESCR 2
2095 #else
2096 #define NUM_KTSB_DESCR 1
2097 #endif
2098 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2100 /* The swapper TSBs are loaded with a base sequence of:
2102 * sethi %uhi(SYMBOL), REG1
2103 * sethi %hi(SYMBOL), REG2
2104 * or REG1, %ulo(SYMBOL), REG1
2105 * or REG2, %lo(SYMBOL), REG2
2106 * sllx REG1, 32, REG1
2107 * or REG1, REG2, REG1
2109 * When we use physical addressing for the TSB accesses, we patch the
2110 * first four instructions in the above sequence.
2113 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2115 unsigned long high_bits, low_bits;
2117 high_bits = (pa >> 32) & 0xffffffff;
2118 low_bits = (pa >> 0) & 0xffffffff;
2120 while (start < end) {
2121 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2123 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2124 __asm__ __volatile__("flush %0" : : "r" (ia));
2126 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2127 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
2129 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2130 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
2132 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2133 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
2135 start++;
2139 static void ktsb_phys_patch(void)
2141 extern unsigned int __swapper_tsb_phys_patch;
2142 extern unsigned int __swapper_tsb_phys_patch_end;
2143 unsigned long ktsb_pa;
2145 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2146 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2147 &__swapper_tsb_phys_patch_end, ktsb_pa);
2148 #ifndef CONFIG_DEBUG_PAGEALLOC
2150 extern unsigned int __swapper_4m_tsb_phys_patch;
2151 extern unsigned int __swapper_4m_tsb_phys_patch_end;
2152 ktsb_pa = (kern_base +
2153 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2154 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2155 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2157 #endif
2160 static void __init sun4v_ktsb_init(void)
2162 unsigned long ktsb_pa;
2164 /* First KTSB for PAGE_SIZE mappings. */
2165 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2167 switch (PAGE_SIZE) {
2168 case 8 * 1024:
2169 default:
2170 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2171 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2172 break;
2174 case 64 * 1024:
2175 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2176 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2177 break;
2179 case 512 * 1024:
2180 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2181 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2182 break;
2184 case 4 * 1024 * 1024:
2185 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2186 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2187 break;
2190 ktsb_descr[0].assoc = 1;
2191 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2192 ktsb_descr[0].ctx_idx = 0;
2193 ktsb_descr[0].tsb_base = ktsb_pa;
2194 ktsb_descr[0].resv = 0;
2196 #ifndef CONFIG_DEBUG_PAGEALLOC
2197 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2198 ktsb_pa = (kern_base +
2199 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2201 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2202 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2203 HV_PGSZ_MASK_256MB |
2204 HV_PGSZ_MASK_2GB |
2205 HV_PGSZ_MASK_16GB) &
2206 cpu_pgsz_mask);
2207 ktsb_descr[1].assoc = 1;
2208 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2209 ktsb_descr[1].ctx_idx = 0;
2210 ktsb_descr[1].tsb_base = ktsb_pa;
2211 ktsb_descr[1].resv = 0;
2212 #endif
2215 void sun4v_ktsb_register(void)
2217 unsigned long pa, ret;
2219 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2221 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2222 if (ret != 0) {
2223 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2224 "errors with %lx\n", pa, ret);
2225 prom_halt();
2229 static void __init sun4u_linear_pte_xor_finalize(void)
2231 #ifndef CONFIG_DEBUG_PAGEALLOC
2232 /* This is where we would add Panther support for
2233 * 32MB and 256MB pages.
2235 #endif
2238 static void __init sun4v_linear_pte_xor_finalize(void)
2240 unsigned long pagecv_flag;
2242 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2243 * enables MCD error. Do not set bit 9 on M7 processor.
2245 switch (sun4v_chip_type) {
2246 case SUN4V_CHIP_SPARC_M7:
2247 case SUN4V_CHIP_SPARC_M8:
2248 case SUN4V_CHIP_SPARC_SN:
2249 pagecv_flag = 0x00;
2250 break;
2251 default:
2252 pagecv_flag = _PAGE_CV_4V;
2253 break;
2255 #ifndef CONFIG_DEBUG_PAGEALLOC
2256 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2257 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2258 PAGE_OFFSET;
2259 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2260 _PAGE_P_4V | _PAGE_W_4V);
2261 } else {
2262 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2265 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2266 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2267 PAGE_OFFSET;
2268 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2269 _PAGE_P_4V | _PAGE_W_4V);
2270 } else {
2271 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2274 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2275 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2276 PAGE_OFFSET;
2277 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2278 _PAGE_P_4V | _PAGE_W_4V);
2279 } else {
2280 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2282 #endif
2285 /* paging_init() sets up the page tables */
2287 static unsigned long last_valid_pfn;
2289 static void sun4u_pgprot_init(void);
2290 static void sun4v_pgprot_init(void);
2292 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2293 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2294 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2295 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2296 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2297 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2299 /* We need to exclude reserved regions. This exclusion will include
2300 * vmlinux and initrd. To be more precise the initrd size could be used to
2301 * compute a new lower limit because it is freed later during initialization.
2303 static void __init reduce_memory(phys_addr_t limit_ram)
2305 limit_ram += memblock_reserved_size();
2306 memblock_enforce_memory_limit(limit_ram);
2309 void __init paging_init(void)
2311 unsigned long end_pfn, shift, phys_base;
2312 unsigned long real_end, i;
2314 setup_page_offset();
2316 /* These build time checkes make sure that the dcache_dirty_cpu()
2317 * page->flags usage will work.
2319 * When a page gets marked as dcache-dirty, we store the
2320 * cpu number starting at bit 32 in the page->flags. Also,
2321 * functions like clear_dcache_dirty_cpu use the cpu mask
2322 * in 13-bit signed-immediate instruction fields.
2326 * Page flags must not reach into upper 32 bits that are used
2327 * for the cpu number
2329 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2332 * The bit fields placed in the high range must not reach below
2333 * the 32 bit boundary. Otherwise we cannot place the cpu field
2334 * at the 32 bit boundary.
2336 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2337 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2339 BUILD_BUG_ON(NR_CPUS > 4096);
2341 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2342 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2344 /* Invalidate both kernel TSBs. */
2345 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2346 #ifndef CONFIG_DEBUG_PAGEALLOC
2347 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2348 #endif
2350 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2351 * bit on M7 processor. This is a conflicting usage of the same
2352 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2353 * Detection error on all pages and this will lead to problems
2354 * later. Kernel does not run with MCD enabled and hence rest
2355 * of the required steps to fully configure memory corruption
2356 * detection are not taken. We need to ensure TTE.mcde is not
2357 * set on M7 processor. Compute the value of cacheability
2358 * flag for use later taking this into consideration.
2360 switch (sun4v_chip_type) {
2361 case SUN4V_CHIP_SPARC_M7:
2362 case SUN4V_CHIP_SPARC_M8:
2363 case SUN4V_CHIP_SPARC_SN:
2364 page_cache4v_flag = _PAGE_CP_4V;
2365 break;
2366 default:
2367 page_cache4v_flag = _PAGE_CACHE_4V;
2368 break;
2371 if (tlb_type == hypervisor)
2372 sun4v_pgprot_init();
2373 else
2374 sun4u_pgprot_init();
2376 if (tlb_type == cheetah_plus ||
2377 tlb_type == hypervisor) {
2378 tsb_phys_patch();
2379 ktsb_phys_patch();
2382 if (tlb_type == hypervisor)
2383 sun4v_patch_tlb_handlers();
2385 /* Find available physical memory...
2387 * Read it twice in order to work around a bug in openfirmware.
2388 * The call to grab this table itself can cause openfirmware to
2389 * allocate memory, which in turn can take away some space from
2390 * the list of available memory. Reading it twice makes sure
2391 * we really do get the final value.
2393 read_obp_translations();
2394 read_obp_memory("reg", &pall[0], &pall_ents);
2395 read_obp_memory("available", &pavail[0], &pavail_ents);
2396 read_obp_memory("available", &pavail[0], &pavail_ents);
2398 phys_base = 0xffffffffffffffffUL;
2399 for (i = 0; i < pavail_ents; i++) {
2400 phys_base = min(phys_base, pavail[i].phys_addr);
2401 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2404 memblock_reserve(kern_base, kern_size);
2406 find_ramdisk(phys_base);
2408 if (cmdline_memory_size)
2409 reduce_memory(cmdline_memory_size);
2411 memblock_allow_resize();
2412 memblock_dump_all();
2414 set_bit(0, mmu_context_bmap);
2416 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2418 real_end = (unsigned long)_end;
2419 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2420 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2421 num_kernel_image_mappings);
2423 /* Set kernel pgd to upper alias so physical page computations
2424 * work.
2426 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2428 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2430 inherit_prom_mappings();
2432 /* Ok, we can use our TLB miss and window trap handlers safely. */
2433 setup_tba();
2435 __flush_tlb_all();
2437 prom_build_devicetree();
2438 of_populate_present_mask();
2439 #ifndef CONFIG_SMP
2440 of_fill_in_cpu_data();
2441 #endif
2443 if (tlb_type == hypervisor) {
2444 sun4v_mdesc_init();
2445 mdesc_populate_present_mask(cpu_all_mask);
2446 #ifndef CONFIG_SMP
2447 mdesc_fill_in_cpu_data(cpu_all_mask);
2448 #endif
2449 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2451 sun4v_linear_pte_xor_finalize();
2453 sun4v_ktsb_init();
2454 sun4v_ktsb_register();
2455 } else {
2456 unsigned long impl, ver;
2458 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2459 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2461 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2462 impl = ((ver >> 32) & 0xffff);
2463 if (impl == PANTHER_IMPL)
2464 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2465 HV_PGSZ_MASK_256MB);
2467 sun4u_linear_pte_xor_finalize();
2470 /* Flush the TLBs and the 4M TSB so that the updated linear
2471 * pte XOR settings are realized for all mappings.
2473 __flush_tlb_all();
2474 #ifndef CONFIG_DEBUG_PAGEALLOC
2475 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2476 #endif
2477 __flush_tlb_all();
2479 /* Setup bootmem... */
2480 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2482 kernel_physical_mapping_init();
2485 unsigned long max_zone_pfns[MAX_NR_ZONES];
2487 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2489 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2491 free_area_init_nodes(max_zone_pfns);
2494 printk("Booting Linux...\n");
2497 int page_in_phys_avail(unsigned long paddr)
2499 int i;
2501 paddr &= PAGE_MASK;
2503 for (i = 0; i < pavail_ents; i++) {
2504 unsigned long start, end;
2506 start = pavail[i].phys_addr;
2507 end = start + pavail[i].reg_size;
2509 if (paddr >= start && paddr < end)
2510 return 1;
2512 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2513 return 1;
2514 #ifdef CONFIG_BLK_DEV_INITRD
2515 if (paddr >= __pa(initrd_start) &&
2516 paddr < __pa(PAGE_ALIGN(initrd_end)))
2517 return 1;
2518 #endif
2520 return 0;
2523 static void __init register_page_bootmem_info(void)
2525 #ifdef CONFIG_NEED_MULTIPLE_NODES
2526 int i;
2528 for_each_online_node(i)
2529 if (NODE_DATA(i)->node_spanned_pages)
2530 register_page_bootmem_info_node(NODE_DATA(i));
2531 #endif
2533 void __init mem_init(void)
2535 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2537 memblock_free_all();
2540 * Must be done after boot memory is put on freelist, because here we
2541 * might set fields in deferred struct pages that have not yet been
2542 * initialized, and memblock_free_all() initializes all the reserved
2543 * deferred pages for us.
2545 register_page_bootmem_info();
2548 * Set up the zero page, mark it reserved, so that page count
2549 * is not manipulated when freeing the page from user ptes.
2551 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2552 if (mem_map_zero == NULL) {
2553 prom_printf("paging_init: Cannot alloc zero page.\n");
2554 prom_halt();
2556 mark_page_reserved(mem_map_zero);
2558 mem_init_print_info(NULL);
2560 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2561 cheetah_ecache_flush_init();
2564 void free_initmem(void)
2566 unsigned long addr, initend;
2567 int do_free = 1;
2569 /* If the physical memory maps were trimmed by kernel command
2570 * line options, don't even try freeing this initmem stuff up.
2571 * The kernel image could have been in the trimmed out region
2572 * and if so the freeing below will free invalid page structs.
2574 if (cmdline_memory_size)
2575 do_free = 0;
2578 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2580 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2581 initend = (unsigned long)(__init_end) & PAGE_MASK;
2582 for (; addr < initend; addr += PAGE_SIZE) {
2583 unsigned long page;
2585 page = (addr +
2586 ((unsigned long) __va(kern_base)) -
2587 ((unsigned long) KERNBASE));
2588 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2590 if (do_free)
2591 free_reserved_page(virt_to_page(page));
2595 pgprot_t PAGE_KERNEL __read_mostly;
2596 EXPORT_SYMBOL(PAGE_KERNEL);
2598 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2599 pgprot_t PAGE_COPY __read_mostly;
2601 pgprot_t PAGE_SHARED __read_mostly;
2602 EXPORT_SYMBOL(PAGE_SHARED);
2604 unsigned long pg_iobits __read_mostly;
2606 unsigned long _PAGE_IE __read_mostly;
2607 EXPORT_SYMBOL(_PAGE_IE);
2609 unsigned long _PAGE_E __read_mostly;
2610 EXPORT_SYMBOL(_PAGE_E);
2612 unsigned long _PAGE_CACHE __read_mostly;
2613 EXPORT_SYMBOL(_PAGE_CACHE);
2615 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2616 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2617 int node, struct vmem_altmap *altmap)
2619 unsigned long pte_base;
2621 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2622 _PAGE_CP_4U | _PAGE_CV_4U |
2623 _PAGE_P_4U | _PAGE_W_4U);
2624 if (tlb_type == hypervisor)
2625 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2626 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2628 pte_base |= _PAGE_PMD_HUGE;
2630 vstart = vstart & PMD_MASK;
2631 vend = ALIGN(vend, PMD_SIZE);
2632 for (; vstart < vend; vstart += PMD_SIZE) {
2633 pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2634 unsigned long pte;
2635 p4d_t *p4d;
2636 pud_t *pud;
2637 pmd_t *pmd;
2639 if (!pgd)
2640 return -ENOMEM;
2642 p4d = vmemmap_p4d_populate(pgd, vstart, node);
2643 if (!p4d)
2644 return -ENOMEM;
2646 pud = vmemmap_pud_populate(p4d, vstart, node);
2647 if (!pud)
2648 return -ENOMEM;
2650 pmd = pmd_offset(pud, vstart);
2651 pte = pmd_val(*pmd);
2652 if (!(pte & _PAGE_VALID)) {
2653 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2655 if (!block)
2656 return -ENOMEM;
2658 pmd_val(*pmd) = pte_base | __pa(block);
2662 return 0;
2665 void vmemmap_free(unsigned long start, unsigned long end,
2666 struct vmem_altmap *altmap)
2669 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2671 static void prot_init_common(unsigned long page_none,
2672 unsigned long page_shared,
2673 unsigned long page_copy,
2674 unsigned long page_readonly,
2675 unsigned long page_exec_bit)
2677 PAGE_COPY = __pgprot(page_copy);
2678 PAGE_SHARED = __pgprot(page_shared);
2680 protection_map[0x0] = __pgprot(page_none);
2681 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2682 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2683 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2684 protection_map[0x4] = __pgprot(page_readonly);
2685 protection_map[0x5] = __pgprot(page_readonly);
2686 protection_map[0x6] = __pgprot(page_copy);
2687 protection_map[0x7] = __pgprot(page_copy);
2688 protection_map[0x8] = __pgprot(page_none);
2689 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2690 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2691 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2692 protection_map[0xc] = __pgprot(page_readonly);
2693 protection_map[0xd] = __pgprot(page_readonly);
2694 protection_map[0xe] = __pgprot(page_shared);
2695 protection_map[0xf] = __pgprot(page_shared);
2698 static void __init sun4u_pgprot_init(void)
2700 unsigned long page_none, page_shared, page_copy, page_readonly;
2701 unsigned long page_exec_bit;
2702 int i;
2704 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2705 _PAGE_CACHE_4U | _PAGE_P_4U |
2706 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2707 _PAGE_EXEC_4U);
2708 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2709 _PAGE_CACHE_4U | _PAGE_P_4U |
2710 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2711 _PAGE_EXEC_4U | _PAGE_L_4U);
2713 _PAGE_IE = _PAGE_IE_4U;
2714 _PAGE_E = _PAGE_E_4U;
2715 _PAGE_CACHE = _PAGE_CACHE_4U;
2717 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2718 __ACCESS_BITS_4U | _PAGE_E_4U);
2720 #ifdef CONFIG_DEBUG_PAGEALLOC
2721 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2722 #else
2723 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2724 PAGE_OFFSET;
2725 #endif
2726 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2727 _PAGE_P_4U | _PAGE_W_4U);
2729 for (i = 1; i < 4; i++)
2730 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2732 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2733 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2734 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2737 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2738 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2739 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2740 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2741 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2742 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2743 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2745 page_exec_bit = _PAGE_EXEC_4U;
2747 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2748 page_exec_bit);
2751 static void __init sun4v_pgprot_init(void)
2753 unsigned long page_none, page_shared, page_copy, page_readonly;
2754 unsigned long page_exec_bit;
2755 int i;
2757 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2758 page_cache4v_flag | _PAGE_P_4V |
2759 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2760 _PAGE_EXEC_4V);
2761 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2763 _PAGE_IE = _PAGE_IE_4V;
2764 _PAGE_E = _PAGE_E_4V;
2765 _PAGE_CACHE = page_cache4v_flag;
2767 #ifdef CONFIG_DEBUG_PAGEALLOC
2768 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2769 #else
2770 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2771 PAGE_OFFSET;
2772 #endif
2773 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2774 _PAGE_W_4V);
2776 for (i = 1; i < 4; i++)
2777 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2779 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2780 __ACCESS_BITS_4V | _PAGE_E_4V);
2782 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2783 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2784 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2785 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2787 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2788 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2789 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2790 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2791 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2792 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2793 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2795 page_exec_bit = _PAGE_EXEC_4V;
2797 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2798 page_exec_bit);
2801 unsigned long pte_sz_bits(unsigned long sz)
2803 if (tlb_type == hypervisor) {
2804 switch (sz) {
2805 case 8 * 1024:
2806 default:
2807 return _PAGE_SZ8K_4V;
2808 case 64 * 1024:
2809 return _PAGE_SZ64K_4V;
2810 case 512 * 1024:
2811 return _PAGE_SZ512K_4V;
2812 case 4 * 1024 * 1024:
2813 return _PAGE_SZ4MB_4V;
2815 } else {
2816 switch (sz) {
2817 case 8 * 1024:
2818 default:
2819 return _PAGE_SZ8K_4U;
2820 case 64 * 1024:
2821 return _PAGE_SZ64K_4U;
2822 case 512 * 1024:
2823 return _PAGE_SZ512K_4U;
2824 case 4 * 1024 * 1024:
2825 return _PAGE_SZ4MB_4U;
2830 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2832 pte_t pte;
2834 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2835 pte_val(pte) |= (((unsigned long)space) << 32);
2836 pte_val(pte) |= pte_sz_bits(page_size);
2838 return pte;
2841 static unsigned long kern_large_tte(unsigned long paddr)
2843 unsigned long val;
2845 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2846 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2847 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2848 if (tlb_type == hypervisor)
2849 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2850 page_cache4v_flag | _PAGE_P_4V |
2851 _PAGE_EXEC_4V | _PAGE_W_4V);
2853 return val | paddr;
2856 /* If not locked, zap it. */
2857 void __flush_tlb_all(void)
2859 unsigned long pstate;
2860 int i;
2862 __asm__ __volatile__("flushw\n\t"
2863 "rdpr %%pstate, %0\n\t"
2864 "wrpr %0, %1, %%pstate"
2865 : "=r" (pstate)
2866 : "i" (PSTATE_IE));
2867 if (tlb_type == hypervisor) {
2868 sun4v_mmu_demap_all();
2869 } else if (tlb_type == spitfire) {
2870 for (i = 0; i < 64; i++) {
2871 /* Spitfire Errata #32 workaround */
2872 /* NOTE: Always runs on spitfire, so no
2873 * cheetah+ page size encodings.
2875 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2876 "flush %%g6"
2877 : /* No outputs */
2878 : "r" (0),
2879 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2881 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2882 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2883 "membar #Sync"
2884 : /* no outputs */
2885 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2886 spitfire_put_dtlb_data(i, 0x0UL);
2889 /* Spitfire Errata #32 workaround */
2890 /* NOTE: Always runs on spitfire, so no
2891 * cheetah+ page size encodings.
2893 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2894 "flush %%g6"
2895 : /* No outputs */
2896 : "r" (0),
2897 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2899 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2900 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2901 "membar #Sync"
2902 : /* no outputs */
2903 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2904 spitfire_put_itlb_data(i, 0x0UL);
2907 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2908 cheetah_flush_dtlb_all();
2909 cheetah_flush_itlb_all();
2911 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2912 : : "r" (pstate));
2915 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2917 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2918 pte_t *pte = NULL;
2920 if (page)
2921 pte = (pte_t *) page_address(page);
2923 return pte;
2926 pgtable_t pte_alloc_one(struct mm_struct *mm)
2928 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2929 if (!page)
2930 return NULL;
2931 if (!pgtable_pte_page_ctor(page)) {
2932 free_unref_page(page);
2933 return NULL;
2935 return (pte_t *) page_address(page);
2938 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2940 free_page((unsigned long)pte);
2943 static void __pte_free(pgtable_t pte)
2945 struct page *page = virt_to_page(pte);
2947 pgtable_pte_page_dtor(page);
2948 __free_page(page);
2951 void pte_free(struct mm_struct *mm, pgtable_t pte)
2953 __pte_free(pte);
2956 void pgtable_free(void *table, bool is_page)
2958 if (is_page)
2959 __pte_free(table);
2960 else
2961 kmem_cache_free(pgtable_cache, table);
2964 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2965 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2966 pmd_t *pmd)
2968 unsigned long pte, flags;
2969 struct mm_struct *mm;
2970 pmd_t entry = *pmd;
2972 if (!pmd_large(entry) || !pmd_young(entry))
2973 return;
2975 pte = pmd_val(entry);
2977 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2978 if (!(pte & _PAGE_VALID))
2979 return;
2981 /* We are fabricating 8MB pages using 4MB real hw pages. */
2982 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2984 mm = vma->vm_mm;
2986 spin_lock_irqsave(&mm->context.lock, flags);
2988 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2989 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2990 addr, pte);
2992 spin_unlock_irqrestore(&mm->context.lock, flags);
2994 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2996 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2997 static void context_reload(void *__data)
2999 struct mm_struct *mm = __data;
3001 if (mm == current->mm)
3002 load_secondary_context(mm);
3005 void hugetlb_setup(struct pt_regs *regs)
3007 struct mm_struct *mm = current->mm;
3008 struct tsb_config *tp;
3010 if (faulthandler_disabled() || !mm) {
3011 const struct exception_table_entry *entry;
3013 entry = search_exception_tables(regs->tpc);
3014 if (entry) {
3015 regs->tpc = entry->fixup;
3016 regs->tnpc = regs->tpc + 4;
3017 return;
3019 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3020 die_if_kernel("HugeTSB in atomic", regs);
3023 tp = &mm->context.tsb_block[MM_TSB_HUGE];
3024 if (likely(tp->tsb == NULL))
3025 tsb_grow(mm, MM_TSB_HUGE, 0);
3027 tsb_context_switch(mm);
3028 smp_tsb_sync(mm);
3030 /* On UltraSPARC-III+ and later, configure the second half of
3031 * the Data-TLB for huge pages.
3033 if (tlb_type == cheetah_plus) {
3034 bool need_context_reload = false;
3035 unsigned long ctx;
3037 spin_lock_irq(&ctx_alloc_lock);
3038 ctx = mm->context.sparc64_ctx_val;
3039 ctx &= ~CTX_PGSZ_MASK;
3040 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3041 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3043 if (ctx != mm->context.sparc64_ctx_val) {
3044 /* When changing the page size fields, we
3045 * must perform a context flush so that no
3046 * stale entries match. This flush must
3047 * occur with the original context register
3048 * settings.
3050 do_flush_tlb_mm(mm);
3052 /* Reload the context register of all processors
3053 * also executing in this address space.
3055 mm->context.sparc64_ctx_val = ctx;
3056 need_context_reload = true;
3058 spin_unlock_irq(&ctx_alloc_lock);
3060 if (need_context_reload)
3061 on_each_cpu(context_reload, mm, 0);
3064 #endif
3066 static struct resource code_resource = {
3067 .name = "Kernel code",
3068 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3071 static struct resource data_resource = {
3072 .name = "Kernel data",
3073 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3076 static struct resource bss_resource = {
3077 .name = "Kernel bss",
3078 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3081 static inline resource_size_t compute_kern_paddr(void *addr)
3083 return (resource_size_t) (addr - KERNBASE + kern_base);
3086 static void __init kernel_lds_init(void)
3088 code_resource.start = compute_kern_paddr(_text);
3089 code_resource.end = compute_kern_paddr(_etext - 1);
3090 data_resource.start = compute_kern_paddr(_etext);
3091 data_resource.end = compute_kern_paddr(_edata - 1);
3092 bss_resource.start = compute_kern_paddr(__bss_start);
3093 bss_resource.end = compute_kern_paddr(_end - 1);
3096 static int __init report_memory(void)
3098 int i;
3099 struct resource *res;
3101 kernel_lds_init();
3103 for (i = 0; i < pavail_ents; i++) {
3104 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3106 if (!res) {
3107 pr_warn("Failed to allocate source.\n");
3108 break;
3111 res->name = "System RAM";
3112 res->start = pavail[i].phys_addr;
3113 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3114 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3116 if (insert_resource(&iomem_resource, res) < 0) {
3117 pr_warn("Resource insertion failed.\n");
3118 break;
3121 insert_resource(res, &code_resource);
3122 insert_resource(res, &data_resource);
3123 insert_resource(res, &bss_resource);
3126 return 0;
3128 arch_initcall(report_memory);
3130 #ifdef CONFIG_SMP
3131 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3132 #else
3133 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3134 #endif
3136 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3138 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3139 if (start < LOW_OBP_ADDRESS) {
3140 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3141 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3143 if (end > HI_OBP_ADDRESS) {
3144 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3145 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3147 } else {
3148 flush_tsb_kernel_range(start, end);
3149 do_flush_tlb_kernel_range(start, end);
3153 void copy_user_highpage(struct page *to, struct page *from,
3154 unsigned long vaddr, struct vm_area_struct *vma)
3156 char *vfrom, *vto;
3158 vfrom = kmap_atomic(from);
3159 vto = kmap_atomic(to);
3160 copy_user_page(vto, vfrom, vaddr, to);
3161 kunmap_atomic(vto);
3162 kunmap_atomic(vfrom);
3164 /* If this page has ADI enabled, copy over any ADI tags
3165 * as well
3167 if (vma->vm_flags & VM_SPARC_ADI) {
3168 unsigned long pfrom, pto, i, adi_tag;
3170 pfrom = page_to_phys(from);
3171 pto = page_to_phys(to);
3173 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3174 asm volatile("ldxa [%1] %2, %0\n\t"
3175 : "=r" (adi_tag)
3176 : "r" (i), "i" (ASI_MCD_REAL));
3177 asm volatile("stxa %0, [%1] %2\n\t"
3179 : "r" (adi_tag), "r" (pto),
3180 "i" (ASI_MCD_REAL));
3181 pto += adi_blksize();
3183 asm volatile("membar #Sync\n\t");
3186 EXPORT_SYMBOL(copy_user_highpage);
3188 void copy_highpage(struct page *to, struct page *from)
3190 char *vfrom, *vto;
3192 vfrom = kmap_atomic(from);
3193 vto = kmap_atomic(to);
3194 copy_page(vto, vfrom);
3195 kunmap_atomic(vto);
3196 kunmap_atomic(vfrom);
3198 /* If this platform is ADI enabled, copy any ADI tags
3199 * as well
3201 if (adi_capable()) {
3202 unsigned long pfrom, pto, i, adi_tag;
3204 pfrom = page_to_phys(from);
3205 pto = page_to_phys(to);
3207 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3208 asm volatile("ldxa [%1] %2, %0\n\t"
3209 : "=r" (adi_tag)
3210 : "r" (i), "i" (ASI_MCD_REAL));
3211 asm volatile("stxa %0, [%1] %2\n\t"
3213 : "r" (adi_tag), "r" (pto),
3214 "i" (ASI_MCD_REAL));
3215 pto += adi_blksize();
3217 asm volatile("membar #Sync\n\t");
3220 EXPORT_SYMBOL(copy_highpage);