1 // SPDX-License-Identifier: GPL-2.0-only
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
23 #include <asm/cpu_device_id.h>
25 #include "../perf_event.h"
28 * Intel PerfMon, used on Core and later.
30 static u64 intel_perfmon_event_map
[PERF_COUNT_HW_MAX
] __read_mostly
=
32 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
33 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
34 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
35 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
37 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
38 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
39 [PERF_COUNT_HW_REF_CPU_CYCLES
] = 0x0300, /* pseudo-encoding */
42 static struct event_constraint intel_core_event_constraints
[] __read_mostly
=
44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53 static struct event_constraint intel_core2_event_constraints
[] __read_mostly
=
55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71 static struct event_constraint intel_nehalem_event_constraints
[] __read_mostly
=
73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87 static struct extra_reg intel_nehalem_extra_regs
[] __read_mostly
=
89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95 static struct event_constraint intel_westmere_event_constraints
[] __read_mostly
=
97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107 static struct event_constraint intel_snb_event_constraints
[] __read_mostly
=
109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
123 * When HT is off these events can only run on the bottom 4 counters
124 * When HT is on, they are impacted by the HT bug and require EXCL access
126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
134 static struct event_constraint intel_ivb_event_constraints
[] __read_mostly
=
136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
151 * When HT is off these events can only run on the bottom 4 counters
152 * When HT is on, they are impacted by the HT bug and require EXCL access
154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
162 static struct extra_reg intel_westmere_extra_regs
[] __read_mostly
=
164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0xffff, RSP_1
),
167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171 static struct event_constraint intel_v1_event_constraints
[] __read_mostly
=
176 static struct event_constraint intel_gen_event_constraints
[] __read_mostly
=
178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 static struct event_constraint intel_slm_event_constraints
[] __read_mostly
=
186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
192 static struct event_constraint intel_skl_event_constraints
[] = {
193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
199 * when HT is off, these can only run on the bottom 4 counters
201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
210 static struct extra_reg intel_knl_extra_regs
[] __read_mostly
= {
211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x799ffbb6e7ull
, RSP_0
),
212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x399ffbffe7ull
, RSP_1
),
216 static struct extra_reg intel_snb_extra_regs
[] __read_mostly
= {
217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3f807f8fffull
, RSP_0
),
219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3f807f8fffull
, RSP_1
),
220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
224 static struct extra_reg intel_snbep_extra_regs
[] __read_mostly
= {
225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
232 static struct extra_reg intel_skl_extra_regs
[] __read_mostly
= {
233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
237 * Note the low 8 bits eventsel code is not a continuous field, containing
238 * some #GPing bits. These are masked out.
240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND
, 0x7fff17, FE
),
244 static struct event_constraint intel_icl_event_constraints
[] = {
245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
246 INTEL_UEVENT_CONSTRAINT(0x1c0, 0), /* INST_RETIRED.PREC_DIST */
247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
250 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
251 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
252 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
253 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
254 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
255 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
256 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
257 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
258 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
259 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
260 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
261 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
265 static struct extra_reg intel_icl_extra_regs
[] __read_mostly
= {
266 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffffbfffull
, RSP_0
),
267 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffffbfffull
, RSP_1
),
268 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
269 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND
, 0x7fff17, FE
),
273 EVENT_ATTR_STR(mem
-loads
, mem_ld_nhm
, "event=0x0b,umask=0x10,ldlat=3");
274 EVENT_ATTR_STR(mem
-loads
, mem_ld_snb
, "event=0xcd,umask=0x1,ldlat=3");
275 EVENT_ATTR_STR(mem
-stores
, mem_st_snb
, "event=0xcd,umask=0x2");
277 static struct attribute
*nhm_mem_events_attrs
[] = {
278 EVENT_PTR(mem_ld_nhm
),
283 * topdown events for Intel Core CPUs.
285 * The events are all in slots, which is a free slot in a 4 wide
286 * pipeline. Some events are already reported in slots, for cycle
287 * events we multiply by the pipeline width (4).
289 * With Hyper Threading on, topdown metrics are either summed or averaged
290 * between the threads of a core: (count_t0 + count_t1).
292 * For the average case the metric is always scaled to pipeline width,
293 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
296 EVENT_ATTR_STR_HT(topdown
-total
-slots
, td_total_slots
,
297 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
298 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
299 EVENT_ATTR_STR_HT(topdown
-total
-slots
.scale
, td_total_slots_scale
, "4", "2");
300 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued
,
301 "event=0xe,umask=0x1"); /* uops_issued.any */
302 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired
,
303 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
304 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles
,
305 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
306 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
, td_recovery_bubbles
,
307 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
308 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
309 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
.scale
, td_recovery_bubbles_scale
,
312 static struct attribute
*snb_events_attrs
[] = {
313 EVENT_PTR(td_slots_issued
),
314 EVENT_PTR(td_slots_retired
),
315 EVENT_PTR(td_fetch_bubbles
),
316 EVENT_PTR(td_total_slots
),
317 EVENT_PTR(td_total_slots_scale
),
318 EVENT_PTR(td_recovery_bubbles
),
319 EVENT_PTR(td_recovery_bubbles_scale
),
323 static struct attribute
*snb_mem_events_attrs
[] = {
324 EVENT_PTR(mem_ld_snb
),
325 EVENT_PTR(mem_st_snb
),
329 static struct event_constraint intel_hsw_event_constraints
[] = {
330 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
331 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
332 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
333 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
334 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
335 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
336 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
337 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
338 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
339 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
340 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
341 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
344 * When HT is off these events can only run on the bottom 4 counters
345 * When HT is on, they are impacted by the HT bug and require EXCL access
347 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
348 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
349 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
350 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
355 static struct event_constraint intel_bdw_event_constraints
[] = {
356 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
357 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
358 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
359 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
360 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
362 * when HT is off, these can only run on the bottom 4 counters
364 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
365 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
366 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
367 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
371 static u64
intel_pmu_event_map(int hw_event
)
373 return intel_perfmon_event_map
[hw_event
];
377 * Notes on the events:
378 * - data reads do not include code reads (comparable to earlier tables)
379 * - data counts include speculative execution (except L1 write, dtlb, bpu)
380 * - remote node access includes remote memory, remote cache, remote mmio.
381 * - prefetches are not included in the counts.
382 * - icache miss does not include decoded icache
385 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
386 #define SKL_DEMAND_RFO BIT_ULL(1)
387 #define SKL_ANY_RESPONSE BIT_ULL(16)
388 #define SKL_SUPPLIER_NONE BIT_ULL(17)
389 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
390 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
391 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
392 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
393 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
394 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
395 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
396 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
397 #define SKL_SPL_HIT BIT_ULL(30)
398 #define SKL_SNOOP_NONE BIT_ULL(31)
399 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
400 #define SKL_SNOOP_MISS BIT_ULL(33)
401 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
402 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
403 #define SKL_SNOOP_HITM BIT_ULL(36)
404 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
405 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
406 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
407 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
408 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
409 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
410 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
411 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
412 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
413 SKL_SNOOP_HITM|SKL_SPL_HIT)
414 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
415 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
416 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
417 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
418 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
420 static __initconst
const u64 skl_hw_cache_event_ids
421 [PERF_COUNT_HW_CACHE_MAX
]
422 [PERF_COUNT_HW_CACHE_OP_MAX
]
423 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
427 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
428 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
431 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
432 [ C(RESULT_MISS
) ] = 0x0,
434 [ C(OP_PREFETCH
) ] = {
435 [ C(RESULT_ACCESS
) ] = 0x0,
436 [ C(RESULT_MISS
) ] = 0x0,
441 [ C(RESULT_ACCESS
) ] = 0x0,
442 [ C(RESULT_MISS
) ] = 0x283, /* ICACHE_64B.MISS */
445 [ C(RESULT_ACCESS
) ] = -1,
446 [ C(RESULT_MISS
) ] = -1,
448 [ C(OP_PREFETCH
) ] = {
449 [ C(RESULT_ACCESS
) ] = 0x0,
450 [ C(RESULT_MISS
) ] = 0x0,
455 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
456 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
459 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
460 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
462 [ C(OP_PREFETCH
) ] = {
463 [ C(RESULT_ACCESS
) ] = 0x0,
464 [ C(RESULT_MISS
) ] = 0x0,
469 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
470 [ C(RESULT_MISS
) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
473 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
474 [ C(RESULT_MISS
) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
476 [ C(OP_PREFETCH
) ] = {
477 [ C(RESULT_ACCESS
) ] = 0x0,
478 [ C(RESULT_MISS
) ] = 0x0,
483 [ C(RESULT_ACCESS
) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
484 [ C(RESULT_MISS
) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
487 [ C(RESULT_ACCESS
) ] = -1,
488 [ C(RESULT_MISS
) ] = -1,
490 [ C(OP_PREFETCH
) ] = {
491 [ C(RESULT_ACCESS
) ] = -1,
492 [ C(RESULT_MISS
) ] = -1,
497 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
498 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
501 [ C(RESULT_ACCESS
) ] = -1,
502 [ C(RESULT_MISS
) ] = -1,
504 [ C(OP_PREFETCH
) ] = {
505 [ C(RESULT_ACCESS
) ] = -1,
506 [ C(RESULT_MISS
) ] = -1,
511 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
512 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
515 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
516 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
518 [ C(OP_PREFETCH
) ] = {
519 [ C(RESULT_ACCESS
) ] = 0x0,
520 [ C(RESULT_MISS
) ] = 0x0,
525 static __initconst
const u64 skl_hw_cache_extra_regs
526 [PERF_COUNT_HW_CACHE_MAX
]
527 [PERF_COUNT_HW_CACHE_OP_MAX
]
528 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
532 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
533 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
534 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
535 SKL_L3_MISS
|SKL_ANY_SNOOP
|
539 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
540 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
541 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
542 SKL_L3_MISS
|SKL_ANY_SNOOP
|
545 [ C(OP_PREFETCH
) ] = {
546 [ C(RESULT_ACCESS
) ] = 0x0,
547 [ C(RESULT_MISS
) ] = 0x0,
552 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
553 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
554 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
555 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
558 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
559 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
560 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
561 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
563 [ C(OP_PREFETCH
) ] = {
564 [ C(RESULT_ACCESS
) ] = 0x0,
565 [ C(RESULT_MISS
) ] = 0x0,
570 #define SNB_DMND_DATA_RD (1ULL << 0)
571 #define SNB_DMND_RFO (1ULL << 1)
572 #define SNB_DMND_IFETCH (1ULL << 2)
573 #define SNB_DMND_WB (1ULL << 3)
574 #define SNB_PF_DATA_RD (1ULL << 4)
575 #define SNB_PF_RFO (1ULL << 5)
576 #define SNB_PF_IFETCH (1ULL << 6)
577 #define SNB_LLC_DATA_RD (1ULL << 7)
578 #define SNB_LLC_RFO (1ULL << 8)
579 #define SNB_LLC_IFETCH (1ULL << 9)
580 #define SNB_BUS_LOCKS (1ULL << 10)
581 #define SNB_STRM_ST (1ULL << 11)
582 #define SNB_OTHER (1ULL << 15)
583 #define SNB_RESP_ANY (1ULL << 16)
584 #define SNB_NO_SUPP (1ULL << 17)
585 #define SNB_LLC_HITM (1ULL << 18)
586 #define SNB_LLC_HITE (1ULL << 19)
587 #define SNB_LLC_HITS (1ULL << 20)
588 #define SNB_LLC_HITF (1ULL << 21)
589 #define SNB_LOCAL (1ULL << 22)
590 #define SNB_REMOTE (0xffULL << 23)
591 #define SNB_SNP_NONE (1ULL << 31)
592 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
593 #define SNB_SNP_MISS (1ULL << 33)
594 #define SNB_NO_FWD (1ULL << 34)
595 #define SNB_SNP_FWD (1ULL << 35)
596 #define SNB_HITM (1ULL << 36)
597 #define SNB_NON_DRAM (1ULL << 37)
599 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
600 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
601 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
603 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
604 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
607 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
608 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
610 #define SNB_L3_ACCESS SNB_RESP_ANY
611 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
613 static __initconst
const u64 snb_hw_cache_extra_regs
614 [PERF_COUNT_HW_CACHE_MAX
]
615 [PERF_COUNT_HW_CACHE_OP_MAX
]
616 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
620 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_L3_ACCESS
,
621 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_L3_MISS
,
624 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_L3_ACCESS
,
625 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_L3_MISS
,
627 [ C(OP_PREFETCH
) ] = {
628 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_L3_ACCESS
,
629 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_L3_MISS
,
634 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_DRAM_ANY
,
635 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_DRAM_REMOTE
,
638 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_DRAM_ANY
,
639 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_DRAM_REMOTE
,
641 [ C(OP_PREFETCH
) ] = {
642 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_ANY
,
643 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_REMOTE
,
648 static __initconst
const u64 snb_hw_cache_event_ids
649 [PERF_COUNT_HW_CACHE_MAX
]
650 [PERF_COUNT_HW_CACHE_OP_MAX
]
651 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
655 [ C(RESULT_ACCESS
) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
656 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPLACEMENT */
659 [ C(RESULT_ACCESS
) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
660 [ C(RESULT_MISS
) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
662 [ C(OP_PREFETCH
) ] = {
663 [ C(RESULT_ACCESS
) ] = 0x0,
664 [ C(RESULT_MISS
) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
669 [ C(RESULT_ACCESS
) ] = 0x0,
670 [ C(RESULT_MISS
) ] = 0x0280, /* ICACHE.MISSES */
673 [ C(RESULT_ACCESS
) ] = -1,
674 [ C(RESULT_MISS
) ] = -1,
676 [ C(OP_PREFETCH
) ] = {
677 [ C(RESULT_ACCESS
) ] = 0x0,
678 [ C(RESULT_MISS
) ] = 0x0,
683 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
684 [ C(RESULT_ACCESS
) ] = 0x01b7,
685 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
686 [ C(RESULT_MISS
) ] = 0x01b7,
689 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
690 [ C(RESULT_ACCESS
) ] = 0x01b7,
691 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
692 [ C(RESULT_MISS
) ] = 0x01b7,
694 [ C(OP_PREFETCH
) ] = {
695 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
696 [ C(RESULT_ACCESS
) ] = 0x01b7,
697 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
698 [ C(RESULT_MISS
) ] = 0x01b7,
703 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
704 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
707 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
708 [ C(RESULT_MISS
) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
710 [ C(OP_PREFETCH
) ] = {
711 [ C(RESULT_ACCESS
) ] = 0x0,
712 [ C(RESULT_MISS
) ] = 0x0,
717 [ C(RESULT_ACCESS
) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
718 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
721 [ C(RESULT_ACCESS
) ] = -1,
722 [ C(RESULT_MISS
) ] = -1,
724 [ C(OP_PREFETCH
) ] = {
725 [ C(RESULT_ACCESS
) ] = -1,
726 [ C(RESULT_MISS
) ] = -1,
731 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
732 [ C(RESULT_MISS
) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
735 [ C(RESULT_ACCESS
) ] = -1,
736 [ C(RESULT_MISS
) ] = -1,
738 [ C(OP_PREFETCH
) ] = {
739 [ C(RESULT_ACCESS
) ] = -1,
740 [ C(RESULT_MISS
) ] = -1,
745 [ C(RESULT_ACCESS
) ] = 0x01b7,
746 [ C(RESULT_MISS
) ] = 0x01b7,
749 [ C(RESULT_ACCESS
) ] = 0x01b7,
750 [ C(RESULT_MISS
) ] = 0x01b7,
752 [ C(OP_PREFETCH
) ] = {
753 [ C(RESULT_ACCESS
) ] = 0x01b7,
754 [ C(RESULT_MISS
) ] = 0x01b7,
761 * Notes on the events:
762 * - data reads do not include code reads (comparable to earlier tables)
763 * - data counts include speculative execution (except L1 write, dtlb, bpu)
764 * - remote node access includes remote memory, remote cache, remote mmio.
765 * - prefetches are not included in the counts because they are not
769 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
770 #define HSW_DEMAND_RFO BIT_ULL(1)
771 #define HSW_ANY_RESPONSE BIT_ULL(16)
772 #define HSW_SUPPLIER_NONE BIT_ULL(17)
773 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
774 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
775 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
776 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
777 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
778 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
779 HSW_L3_MISS_REMOTE_HOP2P)
780 #define HSW_SNOOP_NONE BIT_ULL(31)
781 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
782 #define HSW_SNOOP_MISS BIT_ULL(33)
783 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
784 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
785 #define HSW_SNOOP_HITM BIT_ULL(36)
786 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
787 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
788 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
789 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
790 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
791 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
792 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
793 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
794 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
795 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
796 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
798 #define BDW_L3_MISS_LOCAL BIT(26)
799 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
800 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
801 HSW_L3_MISS_REMOTE_HOP2P)
804 static __initconst
const u64 hsw_hw_cache_event_ids
805 [PERF_COUNT_HW_CACHE_MAX
]
806 [PERF_COUNT_HW_CACHE_OP_MAX
]
807 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
811 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
812 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
815 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
816 [ C(RESULT_MISS
) ] = 0x0,
818 [ C(OP_PREFETCH
) ] = {
819 [ C(RESULT_ACCESS
) ] = 0x0,
820 [ C(RESULT_MISS
) ] = 0x0,
825 [ C(RESULT_ACCESS
) ] = 0x0,
826 [ C(RESULT_MISS
) ] = 0x280, /* ICACHE.MISSES */
829 [ C(RESULT_ACCESS
) ] = -1,
830 [ C(RESULT_MISS
) ] = -1,
832 [ C(OP_PREFETCH
) ] = {
833 [ C(RESULT_ACCESS
) ] = 0x0,
834 [ C(RESULT_MISS
) ] = 0x0,
839 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
840 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
843 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
844 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
846 [ C(OP_PREFETCH
) ] = {
847 [ C(RESULT_ACCESS
) ] = 0x0,
848 [ C(RESULT_MISS
) ] = 0x0,
853 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
854 [ C(RESULT_MISS
) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
857 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
858 [ C(RESULT_MISS
) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
860 [ C(OP_PREFETCH
) ] = {
861 [ C(RESULT_ACCESS
) ] = 0x0,
862 [ C(RESULT_MISS
) ] = 0x0,
867 [ C(RESULT_ACCESS
) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
868 [ C(RESULT_MISS
) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
871 [ C(RESULT_ACCESS
) ] = -1,
872 [ C(RESULT_MISS
) ] = -1,
874 [ C(OP_PREFETCH
) ] = {
875 [ C(RESULT_ACCESS
) ] = -1,
876 [ C(RESULT_MISS
) ] = -1,
881 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
882 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
885 [ C(RESULT_ACCESS
) ] = -1,
886 [ C(RESULT_MISS
) ] = -1,
888 [ C(OP_PREFETCH
) ] = {
889 [ C(RESULT_ACCESS
) ] = -1,
890 [ C(RESULT_MISS
) ] = -1,
895 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
896 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
899 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
900 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
902 [ C(OP_PREFETCH
) ] = {
903 [ C(RESULT_ACCESS
) ] = 0x0,
904 [ C(RESULT_MISS
) ] = 0x0,
909 static __initconst
const u64 hsw_hw_cache_extra_regs
910 [PERF_COUNT_HW_CACHE_MAX
]
911 [PERF_COUNT_HW_CACHE_OP_MAX
]
912 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
916 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
918 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
919 HSW_L3_MISS
|HSW_ANY_SNOOP
,
922 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
924 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
925 HSW_L3_MISS
|HSW_ANY_SNOOP
,
927 [ C(OP_PREFETCH
) ] = {
928 [ C(RESULT_ACCESS
) ] = 0x0,
929 [ C(RESULT_MISS
) ] = 0x0,
934 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
935 HSW_L3_MISS_LOCAL_DRAM
|
937 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
942 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
943 HSW_L3_MISS_LOCAL_DRAM
|
945 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
949 [ C(OP_PREFETCH
) ] = {
950 [ C(RESULT_ACCESS
) ] = 0x0,
951 [ C(RESULT_MISS
) ] = 0x0,
956 static __initconst
const u64 westmere_hw_cache_event_ids
957 [PERF_COUNT_HW_CACHE_MAX
]
958 [PERF_COUNT_HW_CACHE_OP_MAX
]
959 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
963 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
964 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
967 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
968 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
970 [ C(OP_PREFETCH
) ] = {
971 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
972 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
977 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
978 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
981 [ C(RESULT_ACCESS
) ] = -1,
982 [ C(RESULT_MISS
) ] = -1,
984 [ C(OP_PREFETCH
) ] = {
985 [ C(RESULT_ACCESS
) ] = 0x0,
986 [ C(RESULT_MISS
) ] = 0x0,
991 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
992 [ C(RESULT_ACCESS
) ] = 0x01b7,
993 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
994 [ C(RESULT_MISS
) ] = 0x01b7,
997 * Use RFO, not WRITEBACK, because a write miss would typically occur
1001 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1002 [ C(RESULT_ACCESS
) ] = 0x01b7,
1003 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1004 [ C(RESULT_MISS
) ] = 0x01b7,
1006 [ C(OP_PREFETCH
) ] = {
1007 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1008 [ C(RESULT_ACCESS
) ] = 0x01b7,
1009 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1010 [ C(RESULT_MISS
) ] = 0x01b7,
1015 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1016 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1019 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1020 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1022 [ C(OP_PREFETCH
) ] = {
1023 [ C(RESULT_ACCESS
) ] = 0x0,
1024 [ C(RESULT_MISS
) ] = 0x0,
1029 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1030 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.ANY */
1033 [ C(RESULT_ACCESS
) ] = -1,
1034 [ C(RESULT_MISS
) ] = -1,
1036 [ C(OP_PREFETCH
) ] = {
1037 [ C(RESULT_ACCESS
) ] = -1,
1038 [ C(RESULT_MISS
) ] = -1,
1043 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1044 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1047 [ C(RESULT_ACCESS
) ] = -1,
1048 [ C(RESULT_MISS
) ] = -1,
1050 [ C(OP_PREFETCH
) ] = {
1051 [ C(RESULT_ACCESS
) ] = -1,
1052 [ C(RESULT_MISS
) ] = -1,
1057 [ C(RESULT_ACCESS
) ] = 0x01b7,
1058 [ C(RESULT_MISS
) ] = 0x01b7,
1061 [ C(RESULT_ACCESS
) ] = 0x01b7,
1062 [ C(RESULT_MISS
) ] = 0x01b7,
1064 [ C(OP_PREFETCH
) ] = {
1065 [ C(RESULT_ACCESS
) ] = 0x01b7,
1066 [ C(RESULT_MISS
) ] = 0x01b7,
1072 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1073 * See IA32 SDM Vol 3B 30.6.1.3
1076 #define NHM_DMND_DATA_RD (1 << 0)
1077 #define NHM_DMND_RFO (1 << 1)
1078 #define NHM_DMND_IFETCH (1 << 2)
1079 #define NHM_DMND_WB (1 << 3)
1080 #define NHM_PF_DATA_RD (1 << 4)
1081 #define NHM_PF_DATA_RFO (1 << 5)
1082 #define NHM_PF_IFETCH (1 << 6)
1083 #define NHM_OFFCORE_OTHER (1 << 7)
1084 #define NHM_UNCORE_HIT (1 << 8)
1085 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1086 #define NHM_OTHER_CORE_HITM (1 << 10)
1088 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1089 #define NHM_REMOTE_DRAM (1 << 13)
1090 #define NHM_LOCAL_DRAM (1 << 14)
1091 #define NHM_NON_DRAM (1 << 15)
1093 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1094 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1096 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1097 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1098 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1100 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1101 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1102 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1104 static __initconst
const u64 nehalem_hw_cache_extra_regs
1105 [PERF_COUNT_HW_CACHE_MAX
]
1106 [PERF_COUNT_HW_CACHE_OP_MAX
]
1107 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1111 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_L3_ACCESS
,
1112 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_L3_MISS
,
1115 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_L3_ACCESS
,
1116 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_L3_MISS
,
1118 [ C(OP_PREFETCH
) ] = {
1119 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_L3_ACCESS
,
1120 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_L3_MISS
,
1125 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_LOCAL
|NHM_REMOTE
,
1126 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_REMOTE
,
1129 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_LOCAL
|NHM_REMOTE
,
1130 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_REMOTE
,
1132 [ C(OP_PREFETCH
) ] = {
1133 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_LOCAL
|NHM_REMOTE
,
1134 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_REMOTE
,
1139 static __initconst
const u64 nehalem_hw_cache_event_ids
1140 [PERF_COUNT_HW_CACHE_MAX
]
1141 [PERF_COUNT_HW_CACHE_OP_MAX
]
1142 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1146 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1147 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
1150 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1151 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
1153 [ C(OP_PREFETCH
) ] = {
1154 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1155 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
1160 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1161 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1164 [ C(RESULT_ACCESS
) ] = -1,
1165 [ C(RESULT_MISS
) ] = -1,
1167 [ C(OP_PREFETCH
) ] = {
1168 [ C(RESULT_ACCESS
) ] = 0x0,
1169 [ C(RESULT_MISS
) ] = 0x0,
1174 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1175 [ C(RESULT_ACCESS
) ] = 0x01b7,
1176 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1177 [ C(RESULT_MISS
) ] = 0x01b7,
1180 * Use RFO, not WRITEBACK, because a write miss would typically occur
1184 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1185 [ C(RESULT_ACCESS
) ] = 0x01b7,
1186 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1187 [ C(RESULT_MISS
) ] = 0x01b7,
1189 [ C(OP_PREFETCH
) ] = {
1190 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1191 [ C(RESULT_ACCESS
) ] = 0x01b7,
1192 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1193 [ C(RESULT_MISS
) ] = 0x01b7,
1198 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1199 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1202 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1203 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1205 [ C(OP_PREFETCH
) ] = {
1206 [ C(RESULT_ACCESS
) ] = 0x0,
1207 [ C(RESULT_MISS
) ] = 0x0,
1212 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1213 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1216 [ C(RESULT_ACCESS
) ] = -1,
1217 [ C(RESULT_MISS
) ] = -1,
1219 [ C(OP_PREFETCH
) ] = {
1220 [ C(RESULT_ACCESS
) ] = -1,
1221 [ C(RESULT_MISS
) ] = -1,
1226 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1227 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1230 [ C(RESULT_ACCESS
) ] = -1,
1231 [ C(RESULT_MISS
) ] = -1,
1233 [ C(OP_PREFETCH
) ] = {
1234 [ C(RESULT_ACCESS
) ] = -1,
1235 [ C(RESULT_MISS
) ] = -1,
1240 [ C(RESULT_ACCESS
) ] = 0x01b7,
1241 [ C(RESULT_MISS
) ] = 0x01b7,
1244 [ C(RESULT_ACCESS
) ] = 0x01b7,
1245 [ C(RESULT_MISS
) ] = 0x01b7,
1247 [ C(OP_PREFETCH
) ] = {
1248 [ C(RESULT_ACCESS
) ] = 0x01b7,
1249 [ C(RESULT_MISS
) ] = 0x01b7,
1254 static __initconst
const u64 core2_hw_cache_event_ids
1255 [PERF_COUNT_HW_CACHE_MAX
]
1256 [PERF_COUNT_HW_CACHE_OP_MAX
]
1257 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1261 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1262 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1265 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1266 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1268 [ C(OP_PREFETCH
) ] = {
1269 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1270 [ C(RESULT_MISS
) ] = 0,
1275 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
1276 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
1279 [ C(RESULT_ACCESS
) ] = -1,
1280 [ C(RESULT_MISS
) ] = -1,
1282 [ C(OP_PREFETCH
) ] = {
1283 [ C(RESULT_ACCESS
) ] = 0,
1284 [ C(RESULT_MISS
) ] = 0,
1289 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1290 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1293 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1294 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1296 [ C(OP_PREFETCH
) ] = {
1297 [ C(RESULT_ACCESS
) ] = 0,
1298 [ C(RESULT_MISS
) ] = 0,
1303 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1304 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1307 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1308 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1310 [ C(OP_PREFETCH
) ] = {
1311 [ C(RESULT_ACCESS
) ] = 0,
1312 [ C(RESULT_MISS
) ] = 0,
1317 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1318 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
1321 [ C(RESULT_ACCESS
) ] = -1,
1322 [ C(RESULT_MISS
) ] = -1,
1324 [ C(OP_PREFETCH
) ] = {
1325 [ C(RESULT_ACCESS
) ] = -1,
1326 [ C(RESULT_MISS
) ] = -1,
1331 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1332 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1335 [ C(RESULT_ACCESS
) ] = -1,
1336 [ C(RESULT_MISS
) ] = -1,
1338 [ C(OP_PREFETCH
) ] = {
1339 [ C(RESULT_ACCESS
) ] = -1,
1340 [ C(RESULT_MISS
) ] = -1,
1345 static __initconst
const u64 atom_hw_cache_event_ids
1346 [PERF_COUNT_HW_CACHE_MAX
]
1347 [PERF_COUNT_HW_CACHE_OP_MAX
]
1348 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1352 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
1353 [ C(RESULT_MISS
) ] = 0,
1356 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
1357 [ C(RESULT_MISS
) ] = 0,
1359 [ C(OP_PREFETCH
) ] = {
1360 [ C(RESULT_ACCESS
) ] = 0x0,
1361 [ C(RESULT_MISS
) ] = 0,
1366 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1367 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1370 [ C(RESULT_ACCESS
) ] = -1,
1371 [ C(RESULT_MISS
) ] = -1,
1373 [ C(OP_PREFETCH
) ] = {
1374 [ C(RESULT_ACCESS
) ] = 0,
1375 [ C(RESULT_MISS
) ] = 0,
1380 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1381 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1384 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1385 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1387 [ C(OP_PREFETCH
) ] = {
1388 [ C(RESULT_ACCESS
) ] = 0,
1389 [ C(RESULT_MISS
) ] = 0,
1394 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1395 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1398 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1399 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1401 [ C(OP_PREFETCH
) ] = {
1402 [ C(RESULT_ACCESS
) ] = 0,
1403 [ C(RESULT_MISS
) ] = 0,
1408 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1409 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
1412 [ C(RESULT_ACCESS
) ] = -1,
1413 [ C(RESULT_MISS
) ] = -1,
1415 [ C(OP_PREFETCH
) ] = {
1416 [ C(RESULT_ACCESS
) ] = -1,
1417 [ C(RESULT_MISS
) ] = -1,
1422 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1423 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1426 [ C(RESULT_ACCESS
) ] = -1,
1427 [ C(RESULT_MISS
) ] = -1,
1429 [ C(OP_PREFETCH
) ] = {
1430 [ C(RESULT_ACCESS
) ] = -1,
1431 [ C(RESULT_MISS
) ] = -1,
1436 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_slm
, "event=0x3c");
1437 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_slm
, "2");
1438 /* no_alloc_cycles.not_delivered */
1439 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_slm
,
1440 "event=0xca,umask=0x50");
1441 EVENT_ATTR_STR(topdown
-fetch
-bubbles
.scale
, td_fetch_bubbles_scale_slm
, "2");
1442 /* uops_retired.all */
1443 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_slm
,
1444 "event=0xc2,umask=0x10");
1445 /* uops_retired.all */
1446 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_slm
,
1447 "event=0xc2,umask=0x10");
1449 static struct attribute
*slm_events_attrs
[] = {
1450 EVENT_PTR(td_total_slots_slm
),
1451 EVENT_PTR(td_total_slots_scale_slm
),
1452 EVENT_PTR(td_fetch_bubbles_slm
),
1453 EVENT_PTR(td_fetch_bubbles_scale_slm
),
1454 EVENT_PTR(td_slots_issued_slm
),
1455 EVENT_PTR(td_slots_retired_slm
),
1459 static struct extra_reg intel_slm_extra_regs
[] __read_mostly
=
1461 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1462 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x768005ffffull
, RSP_0
),
1463 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x368005ffffull
, RSP_1
),
1467 #define SLM_DMND_READ SNB_DMND_DATA_RD
1468 #define SLM_DMND_WRITE SNB_DMND_RFO
1469 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1471 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1472 #define SLM_LLC_ACCESS SNB_RESP_ANY
1473 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1475 static __initconst
const u64 slm_hw_cache_extra_regs
1476 [PERF_COUNT_HW_CACHE_MAX
]
1477 [PERF_COUNT_HW_CACHE_OP_MAX
]
1478 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1482 [ C(RESULT_ACCESS
) ] = SLM_DMND_READ
|SLM_LLC_ACCESS
,
1483 [ C(RESULT_MISS
) ] = 0,
1486 [ C(RESULT_ACCESS
) ] = SLM_DMND_WRITE
|SLM_LLC_ACCESS
,
1487 [ C(RESULT_MISS
) ] = SLM_DMND_WRITE
|SLM_LLC_MISS
,
1489 [ C(OP_PREFETCH
) ] = {
1490 [ C(RESULT_ACCESS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_ACCESS
,
1491 [ C(RESULT_MISS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_MISS
,
1496 static __initconst
const u64 slm_hw_cache_event_ids
1497 [PERF_COUNT_HW_CACHE_MAX
]
1498 [PERF_COUNT_HW_CACHE_OP_MAX
]
1499 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1503 [ C(RESULT_ACCESS
) ] = 0,
1504 [ C(RESULT_MISS
) ] = 0x0104, /* LD_DCU_MISS */
1507 [ C(RESULT_ACCESS
) ] = 0,
1508 [ C(RESULT_MISS
) ] = 0,
1510 [ C(OP_PREFETCH
) ] = {
1511 [ C(RESULT_ACCESS
) ] = 0,
1512 [ C(RESULT_MISS
) ] = 0,
1517 [ C(RESULT_ACCESS
) ] = 0x0380, /* ICACHE.ACCESSES */
1518 [ C(RESULT_MISS
) ] = 0x0280, /* ICACGE.MISSES */
1521 [ C(RESULT_ACCESS
) ] = -1,
1522 [ C(RESULT_MISS
) ] = -1,
1524 [ C(OP_PREFETCH
) ] = {
1525 [ C(RESULT_ACCESS
) ] = 0,
1526 [ C(RESULT_MISS
) ] = 0,
1531 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1532 [ C(RESULT_ACCESS
) ] = 0x01b7,
1533 [ C(RESULT_MISS
) ] = 0,
1536 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1537 [ C(RESULT_ACCESS
) ] = 0x01b7,
1538 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1539 [ C(RESULT_MISS
) ] = 0x01b7,
1541 [ C(OP_PREFETCH
) ] = {
1542 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1543 [ C(RESULT_ACCESS
) ] = 0x01b7,
1544 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1545 [ C(RESULT_MISS
) ] = 0x01b7,
1550 [ C(RESULT_ACCESS
) ] = 0,
1551 [ C(RESULT_MISS
) ] = 0x0804, /* LD_DTLB_MISS */
1554 [ C(RESULT_ACCESS
) ] = 0,
1555 [ C(RESULT_MISS
) ] = 0,
1557 [ C(OP_PREFETCH
) ] = {
1558 [ C(RESULT_ACCESS
) ] = 0,
1559 [ C(RESULT_MISS
) ] = 0,
1564 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1565 [ C(RESULT_MISS
) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1568 [ C(RESULT_ACCESS
) ] = -1,
1569 [ C(RESULT_MISS
) ] = -1,
1571 [ C(OP_PREFETCH
) ] = {
1572 [ C(RESULT_ACCESS
) ] = -1,
1573 [ C(RESULT_MISS
) ] = -1,
1578 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1579 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1582 [ C(RESULT_ACCESS
) ] = -1,
1583 [ C(RESULT_MISS
) ] = -1,
1585 [ C(OP_PREFETCH
) ] = {
1586 [ C(RESULT_ACCESS
) ] = -1,
1587 [ C(RESULT_MISS
) ] = -1,
1592 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_glm
, "event=0x3c");
1593 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_glm
, "3");
1594 /* UOPS_NOT_DELIVERED.ANY */
1595 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_glm
, "event=0x9c");
1596 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1597 EVENT_ATTR_STR(topdown
-recovery
-bubbles
, td_recovery_bubbles_glm
, "event=0xca,umask=0x02");
1598 /* UOPS_RETIRED.ANY */
1599 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_glm
, "event=0xc2");
1600 /* UOPS_ISSUED.ANY */
1601 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_glm
, "event=0x0e");
1603 static struct attribute
*glm_events_attrs
[] = {
1604 EVENT_PTR(td_total_slots_glm
),
1605 EVENT_PTR(td_total_slots_scale_glm
),
1606 EVENT_PTR(td_fetch_bubbles_glm
),
1607 EVENT_PTR(td_recovery_bubbles_glm
),
1608 EVENT_PTR(td_slots_issued_glm
),
1609 EVENT_PTR(td_slots_retired_glm
),
1613 static struct extra_reg intel_glm_extra_regs
[] __read_mostly
= {
1614 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1615 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x760005ffbfull
, RSP_0
),
1616 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x360005ffbfull
, RSP_1
),
1620 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1621 #define GLM_DEMAND_RFO BIT_ULL(1)
1622 #define GLM_ANY_RESPONSE BIT_ULL(16)
1623 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1624 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1625 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1626 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1627 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1628 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1629 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1631 static __initconst
const u64 glm_hw_cache_event_ids
1632 [PERF_COUNT_HW_CACHE_MAX
]
1633 [PERF_COUNT_HW_CACHE_OP_MAX
]
1634 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1637 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1638 [C(RESULT_MISS
)] = 0x0,
1641 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1642 [C(RESULT_MISS
)] = 0x0,
1644 [C(OP_PREFETCH
)] = {
1645 [C(RESULT_ACCESS
)] = 0x0,
1646 [C(RESULT_MISS
)] = 0x0,
1651 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1652 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1655 [C(RESULT_ACCESS
)] = -1,
1656 [C(RESULT_MISS
)] = -1,
1658 [C(OP_PREFETCH
)] = {
1659 [C(RESULT_ACCESS
)] = 0x0,
1660 [C(RESULT_MISS
)] = 0x0,
1665 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1666 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1669 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1670 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1672 [C(OP_PREFETCH
)] = {
1673 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1674 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1679 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1680 [C(RESULT_MISS
)] = 0x0,
1683 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1684 [C(RESULT_MISS
)] = 0x0,
1686 [C(OP_PREFETCH
)] = {
1687 [C(RESULT_ACCESS
)] = 0x0,
1688 [C(RESULT_MISS
)] = 0x0,
1693 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1694 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1697 [C(RESULT_ACCESS
)] = -1,
1698 [C(RESULT_MISS
)] = -1,
1700 [C(OP_PREFETCH
)] = {
1701 [C(RESULT_ACCESS
)] = -1,
1702 [C(RESULT_MISS
)] = -1,
1707 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1708 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1711 [C(RESULT_ACCESS
)] = -1,
1712 [C(RESULT_MISS
)] = -1,
1714 [C(OP_PREFETCH
)] = {
1715 [C(RESULT_ACCESS
)] = -1,
1716 [C(RESULT_MISS
)] = -1,
1721 static __initconst
const u64 glm_hw_cache_extra_regs
1722 [PERF_COUNT_HW_CACHE_MAX
]
1723 [PERF_COUNT_HW_CACHE_OP_MAX
]
1724 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1727 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1729 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1733 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1735 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1738 [C(OP_PREFETCH
)] = {
1739 [C(RESULT_ACCESS
)] = GLM_DEMAND_PREFETCH
|
1741 [C(RESULT_MISS
)] = GLM_DEMAND_PREFETCH
|
1747 static __initconst
const u64 glp_hw_cache_event_ids
1748 [PERF_COUNT_HW_CACHE_MAX
]
1749 [PERF_COUNT_HW_CACHE_OP_MAX
]
1750 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1753 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1754 [C(RESULT_MISS
)] = 0x0,
1757 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1758 [C(RESULT_MISS
)] = 0x0,
1760 [C(OP_PREFETCH
)] = {
1761 [C(RESULT_ACCESS
)] = 0x0,
1762 [C(RESULT_MISS
)] = 0x0,
1767 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1768 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1771 [C(RESULT_ACCESS
)] = -1,
1772 [C(RESULT_MISS
)] = -1,
1774 [C(OP_PREFETCH
)] = {
1775 [C(RESULT_ACCESS
)] = 0x0,
1776 [C(RESULT_MISS
)] = 0x0,
1781 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1782 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1785 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1786 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1788 [C(OP_PREFETCH
)] = {
1789 [C(RESULT_ACCESS
)] = 0x0,
1790 [C(RESULT_MISS
)] = 0x0,
1795 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1796 [C(RESULT_MISS
)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1799 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1800 [C(RESULT_MISS
)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1802 [C(OP_PREFETCH
)] = {
1803 [C(RESULT_ACCESS
)] = 0x0,
1804 [C(RESULT_MISS
)] = 0x0,
1809 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1810 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1813 [C(RESULT_ACCESS
)] = -1,
1814 [C(RESULT_MISS
)] = -1,
1816 [C(OP_PREFETCH
)] = {
1817 [C(RESULT_ACCESS
)] = -1,
1818 [C(RESULT_MISS
)] = -1,
1823 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1824 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1827 [C(RESULT_ACCESS
)] = -1,
1828 [C(RESULT_MISS
)] = -1,
1830 [C(OP_PREFETCH
)] = {
1831 [C(RESULT_ACCESS
)] = -1,
1832 [C(RESULT_MISS
)] = -1,
1837 static __initconst
const u64 glp_hw_cache_extra_regs
1838 [PERF_COUNT_HW_CACHE_MAX
]
1839 [PERF_COUNT_HW_CACHE_OP_MAX
]
1840 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1843 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1845 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1849 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1851 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1854 [C(OP_PREFETCH
)] = {
1855 [C(RESULT_ACCESS
)] = 0x0,
1856 [C(RESULT_MISS
)] = 0x0,
1861 #define TNT_LOCAL_DRAM BIT_ULL(26)
1862 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
1863 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
1864 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
1865 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1866 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1867 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1869 static __initconst
const u64 tnt_hw_cache_extra_regs
1870 [PERF_COUNT_HW_CACHE_MAX
]
1871 [PERF_COUNT_HW_CACHE_OP_MAX
]
1872 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1875 [C(RESULT_ACCESS
)] = TNT_DEMAND_READ
|
1877 [C(RESULT_MISS
)] = TNT_DEMAND_READ
|
1881 [C(RESULT_ACCESS
)] = TNT_DEMAND_WRITE
|
1883 [C(RESULT_MISS
)] = TNT_DEMAND_WRITE
|
1886 [C(OP_PREFETCH
)] = {
1887 [C(RESULT_ACCESS
)] = 0x0,
1888 [C(RESULT_MISS
)] = 0x0,
1893 static struct extra_reg intel_tnt_extra_regs
[] __read_mostly
= {
1894 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1895 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffffff9fffull
, RSP_0
),
1896 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0xffffff9fffull
, RSP_1
),
1900 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1901 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1902 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1903 #define KNL_MCDRAM_FAR BIT_ULL(22)
1904 #define KNL_DDR_LOCAL BIT_ULL(23)
1905 #define KNL_DDR_FAR BIT_ULL(24)
1906 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1907 KNL_DDR_LOCAL | KNL_DDR_FAR)
1908 #define KNL_L2_READ SLM_DMND_READ
1909 #define KNL_L2_WRITE SLM_DMND_WRITE
1910 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1911 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1912 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1913 KNL_DRAM_ANY | SNB_SNP_ANY | \
1916 static __initconst
const u64 knl_hw_cache_extra_regs
1917 [PERF_COUNT_HW_CACHE_MAX
]
1918 [PERF_COUNT_HW_CACHE_OP_MAX
]
1919 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1922 [C(RESULT_ACCESS
)] = KNL_L2_READ
| KNL_L2_ACCESS
,
1923 [C(RESULT_MISS
)] = 0,
1926 [C(RESULT_ACCESS
)] = KNL_L2_WRITE
| KNL_L2_ACCESS
,
1927 [C(RESULT_MISS
)] = KNL_L2_WRITE
| KNL_L2_MISS
,
1929 [C(OP_PREFETCH
)] = {
1930 [C(RESULT_ACCESS
)] = KNL_L2_PREFETCH
| KNL_L2_ACCESS
,
1931 [C(RESULT_MISS
)] = KNL_L2_PREFETCH
| KNL_L2_MISS
,
1937 * Used from PMIs where the LBRs are already disabled.
1939 * This function could be called consecutively. It is required to remain in
1940 * disabled state if called consecutively.
1942 * During consecutive calls, the same disable value will be written to related
1943 * registers, so the PMU state remains unchanged.
1945 * intel_bts events don't coexist with intel PMU's BTS events because of
1946 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1947 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1949 static void __intel_pmu_disable_all(void)
1951 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1953 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1955 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
1956 intel_pmu_disable_bts();
1958 intel_pmu_pebs_disable_all();
1961 static void intel_pmu_disable_all(void)
1963 __intel_pmu_disable_all();
1964 intel_pmu_lbr_disable_all();
1967 static void __intel_pmu_enable_all(int added
, bool pmi
)
1969 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1971 intel_pmu_pebs_enable_all();
1972 intel_pmu_lbr_enable_all(pmi
);
1973 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
,
1974 x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
);
1976 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
1977 struct perf_event
*event
=
1978 cpuc
->events
[INTEL_PMC_IDX_FIXED_BTS
];
1980 if (WARN_ON_ONCE(!event
))
1983 intel_pmu_enable_bts(event
->hw
.config
);
1987 static void intel_pmu_enable_all(int added
)
1989 __intel_pmu_enable_all(added
, false);
1994 * Intel Errata AAK100 (model 26)
1995 * Intel Errata AAP53 (model 30)
1996 * Intel Errata BD53 (model 44)
1998 * The official story:
1999 * These chips need to be 'reset' when adding counters by programming the
2000 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2001 * in sequence on the same PMC or on different PMCs.
2003 * In practise it appears some of these events do in fact count, and
2004 * we need to program all 4 events.
2006 static void intel_pmu_nhm_workaround(void)
2008 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2009 static const unsigned long nhm_magic
[4] = {
2015 struct perf_event
*event
;
2019 * The Errata requires below steps:
2020 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2021 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2022 * the corresponding PMCx;
2023 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2024 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2025 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2029 * The real steps we choose are a little different from above.
2030 * A) To reduce MSR operations, we don't run step 1) as they
2031 * are already cleared before this function is called;
2032 * B) Call x86_perf_event_update to save PMCx before configuring
2033 * PERFEVTSELx with magic number;
2034 * C) With step 5), we do clear only when the PERFEVTSELx is
2035 * not used currently.
2036 * D) Call x86_perf_event_set_period to restore PMCx;
2039 /* We always operate 4 pairs of PERF Counters */
2040 for (i
= 0; i
< 4; i
++) {
2041 event
= cpuc
->events
[i
];
2043 x86_perf_event_update(event
);
2046 for (i
= 0; i
< 4; i
++) {
2047 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, nhm_magic
[i
]);
2048 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0
+ i
, 0x0);
2051 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0xf);
2052 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0x0);
2054 for (i
= 0; i
< 4; i
++) {
2055 event
= cpuc
->events
[i
];
2058 x86_perf_event_set_period(event
);
2059 __x86_pmu_enable_event(&event
->hw
,
2060 ARCH_PERFMON_EVENTSEL_ENABLE
);
2062 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, 0x0);
2066 static void intel_pmu_nhm_enable_all(int added
)
2069 intel_pmu_nhm_workaround();
2070 intel_pmu_enable_all(added
);
2073 static void intel_set_tfa(struct cpu_hw_events
*cpuc
, bool on
)
2075 u64 val
= on
? MSR_TFA_RTM_FORCE_ABORT
: 0;
2077 if (cpuc
->tfa_shadow
!= val
) {
2078 cpuc
->tfa_shadow
= val
;
2079 wrmsrl(MSR_TSX_FORCE_ABORT
, val
);
2083 static void intel_tfa_commit_scheduling(struct cpu_hw_events
*cpuc
, int idx
, int cntr
)
2086 * We're going to use PMC3, make sure TFA is set before we touch it.
2089 intel_set_tfa(cpuc
, true);
2092 static void intel_tfa_pmu_enable_all(int added
)
2094 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2097 * If we find PMC3 is no longer used when we enable the PMU, we can
2100 if (!test_bit(3, cpuc
->active_mask
))
2101 intel_set_tfa(cpuc
, false);
2103 intel_pmu_enable_all(added
);
2106 static void enable_counter_freeze(void)
2108 update_debugctlmsr(get_debugctlmsr() |
2109 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI
);
2112 static void disable_counter_freeze(void)
2114 update_debugctlmsr(get_debugctlmsr() &
2115 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI
);
2118 static inline u64
intel_pmu_get_status(void)
2122 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
2127 static inline void intel_pmu_ack_status(u64 ack
)
2129 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
2132 static void intel_pmu_disable_fixed(struct hw_perf_event
*hwc
)
2134 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
2137 mask
= 0xfULL
<< (idx
* 4);
2139 rdmsrl(hwc
->config_base
, ctrl_val
);
2141 wrmsrl(hwc
->config_base
, ctrl_val
);
2144 static inline bool event_is_checkpointed(struct perf_event
*event
)
2146 return (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) != 0;
2149 static void intel_pmu_disable_event(struct perf_event
*event
)
2151 struct hw_perf_event
*hwc
= &event
->hw
;
2152 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2154 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
2155 intel_pmu_disable_bts();
2156 intel_pmu_drain_bts_buffer();
2160 cpuc
->intel_ctrl_guest_mask
&= ~(1ull << hwc
->idx
);
2161 cpuc
->intel_ctrl_host_mask
&= ~(1ull << hwc
->idx
);
2162 cpuc
->intel_cp_status
&= ~(1ull << hwc
->idx
);
2164 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
))
2165 intel_pmu_disable_fixed(hwc
);
2167 x86_pmu_disable_event(event
);
2170 * Needs to be called after x86_pmu_disable_event,
2171 * so we don't trigger the event without PEBS bit set.
2173 if (unlikely(event
->attr
.precise_ip
))
2174 intel_pmu_pebs_disable(event
);
2177 static void intel_pmu_del_event(struct perf_event
*event
)
2179 if (needs_branch_stack(event
))
2180 intel_pmu_lbr_del(event
);
2181 if (event
->attr
.precise_ip
)
2182 intel_pmu_pebs_del(event
);
2185 static void intel_pmu_read_event(struct perf_event
*event
)
2187 if (event
->hw
.flags
& PERF_X86_EVENT_AUTO_RELOAD
)
2188 intel_pmu_auto_reload_read(event
);
2190 x86_perf_event_update(event
);
2193 static void intel_pmu_enable_fixed(struct perf_event
*event
)
2195 struct hw_perf_event
*hwc
= &event
->hw
;
2196 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
2197 u64 ctrl_val
, mask
, bits
= 0;
2200 * Enable IRQ generation (0x8), if not PEBS,
2201 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2204 if (!event
->attr
.precise_ip
)
2206 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
2208 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
2212 * ANY bit is supported in v3 and up
2214 if (x86_pmu
.version
> 2 && hwc
->config
& ARCH_PERFMON_EVENTSEL_ANY
)
2218 mask
= 0xfULL
<< (idx
* 4);
2220 if (x86_pmu
.intel_cap
.pebs_baseline
&& event
->attr
.precise_ip
) {
2221 bits
|= ICL_FIXED_0_ADAPTIVE
<< (idx
* 4);
2222 mask
|= ICL_FIXED_0_ADAPTIVE
<< (idx
* 4);
2225 rdmsrl(hwc
->config_base
, ctrl_val
);
2228 wrmsrl(hwc
->config_base
, ctrl_val
);
2231 static void intel_pmu_enable_event(struct perf_event
*event
)
2233 struct hw_perf_event
*hwc
= &event
->hw
;
2234 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2236 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
2237 if (!__this_cpu_read(cpu_hw_events
.enabled
))
2240 intel_pmu_enable_bts(hwc
->config
);
2244 if (event
->attr
.exclude_host
)
2245 cpuc
->intel_ctrl_guest_mask
|= (1ull << hwc
->idx
);
2246 if (event
->attr
.exclude_guest
)
2247 cpuc
->intel_ctrl_host_mask
|= (1ull << hwc
->idx
);
2249 if (unlikely(event_is_checkpointed(event
)))
2250 cpuc
->intel_cp_status
|= (1ull << hwc
->idx
);
2252 if (unlikely(event
->attr
.precise_ip
))
2253 intel_pmu_pebs_enable(event
);
2255 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
2256 intel_pmu_enable_fixed(event
);
2260 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
2263 static void intel_pmu_add_event(struct perf_event
*event
)
2265 if (event
->attr
.precise_ip
)
2266 intel_pmu_pebs_add(event
);
2267 if (needs_branch_stack(event
))
2268 intel_pmu_lbr_add(event
);
2272 * Save and restart an expired event. Called by NMI contexts,
2273 * so it has to be careful about preempting normal event ops:
2275 int intel_pmu_save_and_restart(struct perf_event
*event
)
2277 x86_perf_event_update(event
);
2279 * For a checkpointed counter always reset back to 0. This
2280 * avoids a situation where the counter overflows, aborts the
2281 * transaction and is then set back to shortly before the
2282 * overflow, and overflows and aborts again.
2284 if (unlikely(event_is_checkpointed(event
))) {
2285 /* No race with NMIs because the counter should not be armed */
2286 wrmsrl(event
->hw
.event_base
, 0);
2287 local64_set(&event
->hw
.prev_count
, 0);
2289 return x86_perf_event_set_period(event
);
2292 static void intel_pmu_reset(void)
2294 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
2295 unsigned long flags
;
2298 if (!x86_pmu
.num_counters
)
2301 local_irq_save(flags
);
2303 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2305 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
2306 wrmsrl_safe(x86_pmu_config_addr(idx
), 0ull);
2307 wrmsrl_safe(x86_pmu_event_addr(idx
), 0ull);
2309 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++)
2310 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
2313 ds
->bts_index
= ds
->bts_buffer_base
;
2315 /* Ack all overflows and disable fixed counters */
2316 if (x86_pmu
.version
>= 2) {
2317 intel_pmu_ack_status(intel_pmu_get_status());
2318 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2321 /* Reset LBRs and LBR freezing */
2322 if (x86_pmu
.lbr_nr
) {
2323 update_debugctlmsr(get_debugctlmsr() &
2324 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
|DEBUGCTLMSR_LBR
));
2327 local_irq_restore(flags
);
2330 static int handle_pmi_common(struct pt_regs
*regs
, u64 status
)
2332 struct perf_sample_data data
;
2333 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2337 inc_irq_stat(apic_perf_irqs
);
2340 * Ignore a range of extra bits in status that do not indicate
2341 * overflow by themselves.
2343 status
&= ~(GLOBAL_STATUS_COND_CHG
|
2344 GLOBAL_STATUS_ASIF
|
2345 GLOBAL_STATUS_LBRS_FROZEN
);
2349 * In case multiple PEBS events are sampled at the same time,
2350 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2351 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2352 * having their bits set in the status register. This is a sign
2353 * that there was at least one PEBS record pending at the time
2354 * of the PMU interrupt. PEBS counters must only be processed
2355 * via the drain_pebs() calls and not via the regular sample
2356 * processing loop coming after that the function, otherwise
2357 * phony regular samples may be generated in the sampling buffer
2358 * not marked with the EXACT tag. Another possibility is to have
2359 * one PEBS event and at least one non-PEBS event whic hoverflows
2360 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2361 * not be set, yet the overflow status bit for the PEBS counter will
2364 * To avoid this problem, we systematically ignore the PEBS-enabled
2365 * counters from the GLOBAL_STATUS mask and we always process PEBS
2366 * events via drain_pebs().
2368 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
)
2369 status
&= ~cpuc
->pebs_enabled
;
2371 status
&= ~(cpuc
->pebs_enabled
& PEBS_COUNTER_MASK
);
2374 * PEBS overflow sets bit 62 in the global status register
2376 if (__test_and_clear_bit(62, (unsigned long *)&status
)) {
2378 x86_pmu
.drain_pebs(regs
);
2379 status
&= x86_pmu
.intel_ctrl
| GLOBAL_STATUS_TRACE_TOPAPMI
;
2385 if (__test_and_clear_bit(55, (unsigned long *)&status
)) {
2387 if (unlikely(perf_guest_cbs
&& perf_guest_cbs
->is_in_guest() &&
2388 perf_guest_cbs
->handle_intel_pt_intr
))
2389 perf_guest_cbs
->handle_intel_pt_intr();
2391 intel_pt_interrupt();
2395 * Checkpointed counters can lead to 'spurious' PMIs because the
2396 * rollback caused by the PMI will have cleared the overflow status
2397 * bit. Therefore always force probe these counters.
2399 status
|= cpuc
->intel_cp_status
;
2401 for_each_set_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
2402 struct perf_event
*event
= cpuc
->events
[bit
];
2406 if (!test_bit(bit
, cpuc
->active_mask
))
2409 if (!intel_pmu_save_and_restart(event
))
2412 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
2414 if (has_branch_stack(event
))
2415 data
.br_stack
= &cpuc
->lbr_stack
;
2417 if (perf_event_overflow(event
, &data
, regs
))
2418 x86_pmu_stop(event
, 0);
2424 static bool disable_counter_freezing
= true;
2425 static int __init
intel_perf_counter_freezing_setup(char *s
)
2429 if (kstrtobool(s
, &res
))
2432 disable_counter_freezing
= !res
;
2435 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup
);
2438 * Simplified handler for Arch Perfmon v4:
2439 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2440 * This is done automatically on PMU ack.
2441 * - Ack the PMU only after the APIC.
2444 static int intel_pmu_handle_irq_v4(struct pt_regs
*regs
)
2446 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2450 int pmu_enabled
= cpuc
->enabled
;
2453 /* PMU has been disabled because of counter freezing */
2455 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
2457 intel_bts_disable_local();
2458 handled
= intel_pmu_drain_bts_buffer();
2459 handled
+= intel_bts_interrupt();
2461 status
= intel_pmu_get_status();
2465 intel_pmu_lbr_read();
2466 if (++loops
> 100) {
2470 WARN(1, "perfevents: irq loop stuck!\n");
2471 perf_event_print_debug();
2479 handled
+= handle_pmi_common(regs
, status
);
2481 /* Ack the PMI in the APIC */
2482 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2485 * The counters start counting immediately while ack the status.
2486 * Make it as close as possible to IRET. This avoids bogus
2487 * freezing on Skylake CPUs.
2490 intel_pmu_ack_status(status
);
2493 * CPU may issues two PMIs very close to each other.
2494 * When the PMI handler services the first one, the
2495 * GLOBAL_STATUS is already updated to reflect both.
2496 * When it IRETs, the second PMI is immediately
2497 * handled and it sees clear status. At the meantime,
2498 * there may be a third PMI, because the freezing bit
2499 * isn't set since the ack in first PMI handlers.
2500 * Double check if there is more work to be done.
2502 status
= intel_pmu_get_status();
2508 intel_bts_enable_local();
2509 cpuc
->enabled
= pmu_enabled
;
2514 * This handler is triggered by the local APIC, so the APIC IRQ handling
2517 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
2519 struct cpu_hw_events
*cpuc
;
2525 cpuc
= this_cpu_ptr(&cpu_hw_events
);
2528 * Save the PMU state.
2529 * It needs to be restored when leaving the handler.
2531 pmu_enabled
= cpuc
->enabled
;
2533 * No known reason to not always do late ACK,
2534 * but just in case do it opt-in.
2536 if (!x86_pmu
.late_ack
)
2537 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2538 intel_bts_disable_local();
2540 __intel_pmu_disable_all();
2541 handled
= intel_pmu_drain_bts_buffer();
2542 handled
+= intel_bts_interrupt();
2543 status
= intel_pmu_get_status();
2549 intel_pmu_lbr_read();
2550 intel_pmu_ack_status(status
);
2551 if (++loops
> 100) {
2555 WARN(1, "perfevents: irq loop stuck!\n");
2556 perf_event_print_debug();
2563 handled
+= handle_pmi_common(regs
, status
);
2566 * Repeat if there is more work to be done:
2568 status
= intel_pmu_get_status();
2573 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2574 cpuc
->enabled
= pmu_enabled
;
2576 __intel_pmu_enable_all(0, true);
2577 intel_bts_enable_local();
2580 * Only unmask the NMI after the overflow counters
2581 * have been reset. This avoids spurious NMIs on
2584 if (x86_pmu
.late_ack
)
2585 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2589 static struct event_constraint
*
2590 intel_bts_constraints(struct perf_event
*event
)
2592 if (unlikely(intel_pmu_has_bts(event
)))
2593 return &bts_constraint
;
2598 static int intel_alt_er(int idx
, u64 config
)
2602 if (!(x86_pmu
.flags
& PMU_FL_HAS_RSP_1
))
2605 if (idx
== EXTRA_REG_RSP_0
)
2606 alt_idx
= EXTRA_REG_RSP_1
;
2608 if (idx
== EXTRA_REG_RSP_1
)
2609 alt_idx
= EXTRA_REG_RSP_0
;
2611 if (config
& ~x86_pmu
.extra_regs
[alt_idx
].valid_mask
)
2617 static void intel_fixup_er(struct perf_event
*event
, int idx
)
2619 event
->hw
.extra_reg
.idx
= idx
;
2621 if (idx
== EXTRA_REG_RSP_0
) {
2622 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2623 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_0
].event
;
2624 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_0
;
2625 } else if (idx
== EXTRA_REG_RSP_1
) {
2626 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2627 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_1
].event
;
2628 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_1
;
2633 * manage allocation of shared extra msr for certain events
2636 * per-cpu: to be shared between the various events on a single PMU
2637 * per-core: per-cpu + shared by HT threads
2639 static struct event_constraint
*
2640 __intel_shared_reg_get_constraints(struct cpu_hw_events
*cpuc
,
2641 struct perf_event
*event
,
2642 struct hw_perf_event_extra
*reg
)
2644 struct event_constraint
*c
= &emptyconstraint
;
2645 struct er_account
*era
;
2646 unsigned long flags
;
2650 * reg->alloc can be set due to existing state, so for fake cpuc we
2651 * need to ignore this, otherwise we might fail to allocate proper fake
2652 * state for this extra reg constraint. Also see the comment below.
2654 if (reg
->alloc
&& !cpuc
->is_fake
)
2655 return NULL
; /* call x86_get_event_constraint() */
2658 era
= &cpuc
->shared_regs
->regs
[idx
];
2660 * we use spin_lock_irqsave() to avoid lockdep issues when
2661 * passing a fake cpuc
2663 raw_spin_lock_irqsave(&era
->lock
, flags
);
2665 if (!atomic_read(&era
->ref
) || era
->config
== reg
->config
) {
2668 * If its a fake cpuc -- as per validate_{group,event}() we
2669 * shouldn't touch event state and we can avoid doing so
2670 * since both will only call get_event_constraints() once
2671 * on each event, this avoids the need for reg->alloc.
2673 * Not doing the ER fixup will only result in era->reg being
2674 * wrong, but since we won't actually try and program hardware
2675 * this isn't a problem either.
2677 if (!cpuc
->is_fake
) {
2678 if (idx
!= reg
->idx
)
2679 intel_fixup_er(event
, idx
);
2682 * x86_schedule_events() can call get_event_constraints()
2683 * multiple times on events in the case of incremental
2684 * scheduling(). reg->alloc ensures we only do the ER
2690 /* lock in msr value */
2691 era
->config
= reg
->config
;
2692 era
->reg
= reg
->reg
;
2695 atomic_inc(&era
->ref
);
2698 * need to call x86_get_event_constraint()
2699 * to check if associated event has constraints
2703 idx
= intel_alt_er(idx
, reg
->config
);
2704 if (idx
!= reg
->idx
) {
2705 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2709 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2715 __intel_shared_reg_put_constraints(struct cpu_hw_events
*cpuc
,
2716 struct hw_perf_event_extra
*reg
)
2718 struct er_account
*era
;
2721 * Only put constraint if extra reg was actually allocated. Also takes
2722 * care of event which do not use an extra shared reg.
2724 * Also, if this is a fake cpuc we shouldn't touch any event state
2725 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2726 * either since it'll be thrown out.
2728 if (!reg
->alloc
|| cpuc
->is_fake
)
2731 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
2733 /* one fewer user */
2734 atomic_dec(&era
->ref
);
2736 /* allocate again next time */
2740 static struct event_constraint
*
2741 intel_shared_regs_constraints(struct cpu_hw_events
*cpuc
,
2742 struct perf_event
*event
)
2744 struct event_constraint
*c
= NULL
, *d
;
2745 struct hw_perf_event_extra
*xreg
, *breg
;
2747 xreg
= &event
->hw
.extra_reg
;
2748 if (xreg
->idx
!= EXTRA_REG_NONE
) {
2749 c
= __intel_shared_reg_get_constraints(cpuc
, event
, xreg
);
2750 if (c
== &emptyconstraint
)
2753 breg
= &event
->hw
.branch_reg
;
2754 if (breg
->idx
!= EXTRA_REG_NONE
) {
2755 d
= __intel_shared_reg_get_constraints(cpuc
, event
, breg
);
2756 if (d
== &emptyconstraint
) {
2757 __intel_shared_reg_put_constraints(cpuc
, xreg
);
2764 struct event_constraint
*
2765 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2766 struct perf_event
*event
)
2768 struct event_constraint
*c
;
2770 if (x86_pmu
.event_constraints
) {
2771 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
2772 if (constraint_match(c
, event
->hw
.config
)) {
2773 event
->hw
.flags
|= c
->flags
;
2779 return &unconstrained
;
2782 static struct event_constraint
*
2783 __intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2784 struct perf_event
*event
)
2786 struct event_constraint
*c
;
2788 c
= intel_bts_constraints(event
);
2792 c
= intel_shared_regs_constraints(cpuc
, event
);
2796 c
= intel_pebs_constraints(event
);
2800 return x86_get_event_constraints(cpuc
, idx
, event
);
2804 intel_start_scheduling(struct cpu_hw_events
*cpuc
)
2806 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2807 struct intel_excl_states
*xl
;
2808 int tid
= cpuc
->excl_thread_id
;
2811 * nothing needed if in group validation mode
2813 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2817 * no exclusion needed
2819 if (WARN_ON_ONCE(!excl_cntrs
))
2822 xl
= &excl_cntrs
->states
[tid
];
2824 xl
->sched_started
= true;
2826 * lock shared state until we are done scheduling
2827 * in stop_event_scheduling()
2828 * makes scheduling appear as a transaction
2830 raw_spin_lock(&excl_cntrs
->lock
);
2833 static void intel_commit_scheduling(struct cpu_hw_events
*cpuc
, int idx
, int cntr
)
2835 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2836 struct event_constraint
*c
= cpuc
->event_constraint
[idx
];
2837 struct intel_excl_states
*xl
;
2838 int tid
= cpuc
->excl_thread_id
;
2840 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2843 if (WARN_ON_ONCE(!excl_cntrs
))
2846 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
))
2849 xl
= &excl_cntrs
->states
[tid
];
2851 lockdep_assert_held(&excl_cntrs
->lock
);
2853 if (c
->flags
& PERF_X86_EVENT_EXCL
)
2854 xl
->state
[cntr
] = INTEL_EXCL_EXCLUSIVE
;
2856 xl
->state
[cntr
] = INTEL_EXCL_SHARED
;
2860 intel_stop_scheduling(struct cpu_hw_events
*cpuc
)
2862 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2863 struct intel_excl_states
*xl
;
2864 int tid
= cpuc
->excl_thread_id
;
2867 * nothing needed if in group validation mode
2869 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2872 * no exclusion needed
2874 if (WARN_ON_ONCE(!excl_cntrs
))
2877 xl
= &excl_cntrs
->states
[tid
];
2879 xl
->sched_started
= false;
2881 * release shared state lock (acquired in intel_start_scheduling())
2883 raw_spin_unlock(&excl_cntrs
->lock
);
2886 static struct event_constraint
*
2887 dyn_constraint(struct cpu_hw_events
*cpuc
, struct event_constraint
*c
, int idx
)
2889 WARN_ON_ONCE(!cpuc
->constraint_list
);
2891 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
2892 struct event_constraint
*cx
;
2895 * grab pre-allocated constraint entry
2897 cx
= &cpuc
->constraint_list
[idx
];
2900 * initialize dynamic constraint
2901 * with static constraint
2906 * mark constraint as dynamic
2908 cx
->flags
|= PERF_X86_EVENT_DYNAMIC
;
2915 static struct event_constraint
*
2916 intel_get_excl_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
,
2917 int idx
, struct event_constraint
*c
)
2919 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2920 struct intel_excl_states
*xlo
;
2921 int tid
= cpuc
->excl_thread_id
;
2925 * validating a group does not require
2926 * enforcing cross-thread exclusion
2928 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2932 * no exclusion needed
2934 if (WARN_ON_ONCE(!excl_cntrs
))
2938 * because we modify the constraint, we need
2939 * to make a copy. Static constraints come
2940 * from static const tables.
2942 * only needed when constraint has not yet
2943 * been cloned (marked dynamic)
2945 c
= dyn_constraint(cpuc
, c
, idx
);
2948 * From here on, the constraint is dynamic.
2949 * Either it was just allocated above, or it
2950 * was allocated during a earlier invocation
2955 * state of sibling HT
2957 xlo
= &excl_cntrs
->states
[tid
^ 1];
2960 * event requires exclusive counter access
2963 is_excl
= c
->flags
& PERF_X86_EVENT_EXCL
;
2964 if (is_excl
&& !(event
->hw
.flags
& PERF_X86_EVENT_EXCL_ACCT
)) {
2965 event
->hw
.flags
|= PERF_X86_EVENT_EXCL_ACCT
;
2966 if (!cpuc
->n_excl
++)
2967 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 1);
2971 * Modify static constraint with current dynamic
2974 * EXCLUSIVE: sibling counter measuring exclusive event
2975 * SHARED : sibling counter measuring non-exclusive event
2976 * UNUSED : sibling counter unused
2979 for_each_set_bit(i
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
2981 * exclusive event in sibling counter
2982 * our corresponding counter cannot be used
2983 * regardless of our event
2985 if (xlo
->state
[i
] == INTEL_EXCL_EXCLUSIVE
) {
2986 __clear_bit(i
, c
->idxmsk
);
2991 * if measuring an exclusive event, sibling
2992 * measuring non-exclusive, then counter cannot
2995 if (is_excl
&& xlo
->state
[i
] == INTEL_EXCL_SHARED
) {
2996 __clear_bit(i
, c
->idxmsk
);
3003 * if we return an empty mask, then switch
3004 * back to static empty constraint to avoid
3005 * the cost of freeing later on
3008 c
= &emptyconstraint
;
3015 static struct event_constraint
*
3016 intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3017 struct perf_event
*event
)
3019 struct event_constraint
*c1
, *c2
;
3021 c1
= cpuc
->event_constraint
[idx
];
3025 * - static constraint: no change across incremental scheduling calls
3026 * - dynamic constraint: handled by intel_get_excl_constraints()
3028 c2
= __intel_get_event_constraints(cpuc
, idx
, event
);
3030 WARN_ON_ONCE(!(c1
->flags
& PERF_X86_EVENT_DYNAMIC
));
3031 bitmap_copy(c1
->idxmsk
, c2
->idxmsk
, X86_PMC_IDX_MAX
);
3032 c1
->weight
= c2
->weight
;
3036 if (cpuc
->excl_cntrs
)
3037 return intel_get_excl_constraints(cpuc
, event
, idx
, c2
);
3042 static void intel_put_excl_constraints(struct cpu_hw_events
*cpuc
,
3043 struct perf_event
*event
)
3045 struct hw_perf_event
*hwc
= &event
->hw
;
3046 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
3047 int tid
= cpuc
->excl_thread_id
;
3048 struct intel_excl_states
*xl
;
3051 * nothing needed if in group validation mode
3056 if (WARN_ON_ONCE(!excl_cntrs
))
3059 if (hwc
->flags
& PERF_X86_EVENT_EXCL_ACCT
) {
3060 hwc
->flags
&= ~PERF_X86_EVENT_EXCL_ACCT
;
3061 if (!--cpuc
->n_excl
)
3062 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 0);
3066 * If event was actually assigned, then mark the counter state as
3069 if (hwc
->idx
>= 0) {
3070 xl
= &excl_cntrs
->states
[tid
];
3073 * put_constraint may be called from x86_schedule_events()
3074 * which already has the lock held so here make locking
3077 if (!xl
->sched_started
)
3078 raw_spin_lock(&excl_cntrs
->lock
);
3080 xl
->state
[hwc
->idx
] = INTEL_EXCL_UNUSED
;
3082 if (!xl
->sched_started
)
3083 raw_spin_unlock(&excl_cntrs
->lock
);
3088 intel_put_shared_regs_event_constraints(struct cpu_hw_events
*cpuc
,
3089 struct perf_event
*event
)
3091 struct hw_perf_event_extra
*reg
;
3093 reg
= &event
->hw
.extra_reg
;
3094 if (reg
->idx
!= EXTRA_REG_NONE
)
3095 __intel_shared_reg_put_constraints(cpuc
, reg
);
3097 reg
= &event
->hw
.branch_reg
;
3098 if (reg
->idx
!= EXTRA_REG_NONE
)
3099 __intel_shared_reg_put_constraints(cpuc
, reg
);
3102 static void intel_put_event_constraints(struct cpu_hw_events
*cpuc
,
3103 struct perf_event
*event
)
3105 intel_put_shared_regs_event_constraints(cpuc
, event
);
3108 * is PMU has exclusive counter restrictions, then
3109 * all events are subject to and must call the
3110 * put_excl_constraints() routine
3112 if (cpuc
->excl_cntrs
)
3113 intel_put_excl_constraints(cpuc
, event
);
3116 static void intel_pebs_aliases_core2(struct perf_event
*event
)
3118 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3120 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3121 * (0x003c) so that we can use it with PEBS.
3123 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3124 * PEBS capable. However we can use INST_RETIRED.ANY_P
3125 * (0x00c0), which is a PEBS capable event, to get the same
3128 * INST_RETIRED.ANY_P counts the number of cycles that retires
3129 * CNTMASK instructions. By setting CNTMASK to a value (16)
3130 * larger than the maximum number of instructions that can be
3131 * retired per cycle (4) and then inverting the condition, we
3132 * count all cycles that retire 16 or less instructions, which
3135 * Thereby we gain a PEBS capable cycle counter.
3137 u64 alt_config
= X86_CONFIG(.event
=0xc0, .inv
=1, .cmask
=16);
3139 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3140 event
->hw
.config
= alt_config
;
3144 static void intel_pebs_aliases_snb(struct perf_event
*event
)
3146 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3148 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3149 * (0x003c) so that we can use it with PEBS.
3151 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3152 * PEBS capable. However we can use UOPS_RETIRED.ALL
3153 * (0x01c2), which is a PEBS capable event, to get the same
3156 * UOPS_RETIRED.ALL counts the number of cycles that retires
3157 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3158 * larger than the maximum number of micro-ops that can be
3159 * retired per cycle (4) and then inverting the condition, we
3160 * count all cycles that retire 16 or less micro-ops, which
3163 * Thereby we gain a PEBS capable cycle counter.
3165 u64 alt_config
= X86_CONFIG(.event
=0xc2, .umask
=0x01, .inv
=1, .cmask
=16);
3167 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3168 event
->hw
.config
= alt_config
;
3172 static void intel_pebs_aliases_precdist(struct perf_event
*event
)
3174 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
3176 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3177 * (0x003c) so that we can use it with PEBS.
3179 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3180 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3181 * (0x01c0), which is a PEBS capable event, to get the same
3184 * The PREC_DIST event has special support to minimize sample
3185 * shadowing effects. One drawback is that it can be
3186 * only programmed on counter 1, but that seems like an
3187 * acceptable trade off.
3189 u64 alt_config
= X86_CONFIG(.event
=0xc0, .umask
=0x01, .inv
=1, .cmask
=16);
3191 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
3192 event
->hw
.config
= alt_config
;
3196 static void intel_pebs_aliases_ivb(struct perf_event
*event
)
3198 if (event
->attr
.precise_ip
< 3)
3199 return intel_pebs_aliases_snb(event
);
3200 return intel_pebs_aliases_precdist(event
);
3203 static void intel_pebs_aliases_skl(struct perf_event
*event
)
3205 if (event
->attr
.precise_ip
< 3)
3206 return intel_pebs_aliases_core2(event
);
3207 return intel_pebs_aliases_precdist(event
);
3210 static unsigned long intel_pmu_large_pebs_flags(struct perf_event
*event
)
3212 unsigned long flags
= x86_pmu
.large_pebs_flags
;
3214 if (event
->attr
.use_clockid
)
3215 flags
&= ~PERF_SAMPLE_TIME
;
3216 if (!event
->attr
.exclude_kernel
)
3217 flags
&= ~PERF_SAMPLE_REGS_USER
;
3218 if (event
->attr
.sample_regs_user
& ~PEBS_GP_REGS
)
3219 flags
&= ~(PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_REGS_INTR
);
3223 static int intel_pmu_bts_config(struct perf_event
*event
)
3225 struct perf_event_attr
*attr
= &event
->attr
;
3227 if (unlikely(intel_pmu_has_bts(event
))) {
3228 /* BTS is not supported by this architecture. */
3229 if (!x86_pmu
.bts_active
)
3232 /* BTS is currently only allowed for user-mode. */
3233 if (!attr
->exclude_kernel
)
3236 /* BTS is not allowed for precise events. */
3237 if (attr
->precise_ip
)
3240 /* disallow bts if conflicting events are present */
3241 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
3244 event
->destroy
= hw_perf_lbr_event_destroy
;
3250 static int core_pmu_hw_config(struct perf_event
*event
)
3252 int ret
= x86_pmu_hw_config(event
);
3257 return intel_pmu_bts_config(event
);
3260 static int intel_pmu_hw_config(struct perf_event
*event
)
3262 int ret
= x86_pmu_hw_config(event
);
3267 ret
= intel_pmu_bts_config(event
);
3271 if (event
->attr
.precise_ip
) {
3272 if (!(event
->attr
.freq
|| (event
->attr
.wakeup_events
&& !event
->attr
.watermark
))) {
3273 event
->hw
.flags
|= PERF_X86_EVENT_AUTO_RELOAD
;
3274 if (!(event
->attr
.sample_type
&
3275 ~intel_pmu_large_pebs_flags(event
)))
3276 event
->hw
.flags
|= PERF_X86_EVENT_LARGE_PEBS
;
3278 if (x86_pmu
.pebs_aliases
)
3279 x86_pmu
.pebs_aliases(event
);
3281 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3282 event
->attr
.sample_type
|= __PERF_SAMPLE_CALLCHAIN_EARLY
;
3285 if (needs_branch_stack(event
)) {
3286 ret
= intel_pmu_setup_lbr_filter(event
);
3291 * BTS is set up earlier in this path, so don't account twice
3293 if (!unlikely(intel_pmu_has_bts(event
))) {
3294 /* disallow lbr if conflicting events are present */
3295 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
3298 event
->destroy
= hw_perf_lbr_event_destroy
;
3302 if (event
->attr
.aux_output
) {
3303 if (!event
->attr
.precise_ip
)
3306 event
->hw
.flags
|= PERF_X86_EVENT_PEBS_VIA_PT
;
3309 if (event
->attr
.type
!= PERF_TYPE_RAW
)
3312 if (!(event
->attr
.config
& ARCH_PERFMON_EVENTSEL_ANY
))
3315 if (x86_pmu
.version
< 3)
3318 ret
= perf_allow_cpu(&event
->attr
);
3322 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_ANY
;
3327 #ifdef CONFIG_RETPOLINE
3328 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
);
3329 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
);
3332 struct perf_guest_switch_msr
*perf_guest_get_msrs(int *nr
)
3334 #ifdef CONFIG_RETPOLINE
3335 if (x86_pmu
.guest_get_msrs
== intel_guest_get_msrs
)
3336 return intel_guest_get_msrs(nr
);
3337 else if (x86_pmu
.guest_get_msrs
== core_guest_get_msrs
)
3338 return core_guest_get_msrs(nr
);
3340 if (x86_pmu
.guest_get_msrs
)
3341 return x86_pmu
.guest_get_msrs(nr
);
3345 EXPORT_SYMBOL_GPL(perf_guest_get_msrs
);
3347 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
)
3349 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3350 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3352 arr
[0].msr
= MSR_CORE_PERF_GLOBAL_CTRL
;
3353 arr
[0].host
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
;
3354 arr
[0].guest
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_host_mask
;
3355 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
)
3356 arr
[0].guest
&= ~cpuc
->pebs_enabled
;
3358 arr
[0].guest
&= ~(cpuc
->pebs_enabled
& PEBS_COUNTER_MASK
);
3361 if (x86_pmu
.pebs
&& x86_pmu
.pebs_no_isolation
) {
3363 * If PMU counter has PEBS enabled it is not enough to
3364 * disable counter on a guest entry since PEBS memory
3365 * write can overshoot guest entry and corrupt guest
3366 * memory. Disabling PEBS solves the problem.
3368 * Don't do this if the CPU already enforces it.
3370 arr
[1].msr
= MSR_IA32_PEBS_ENABLE
;
3371 arr
[1].host
= cpuc
->pebs_enabled
;
3379 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
)
3381 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3382 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3385 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3386 struct perf_event
*event
= cpuc
->events
[idx
];
3388 arr
[idx
].msr
= x86_pmu_config_addr(idx
);
3389 arr
[idx
].host
= arr
[idx
].guest
= 0;
3391 if (!test_bit(idx
, cpuc
->active_mask
))
3394 arr
[idx
].host
= arr
[idx
].guest
=
3395 event
->hw
.config
| ARCH_PERFMON_EVENTSEL_ENABLE
;
3397 if (event
->attr
.exclude_host
)
3398 arr
[idx
].host
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3399 else if (event
->attr
.exclude_guest
)
3400 arr
[idx
].guest
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3403 *nr
= x86_pmu
.num_counters
;
3407 static void core_pmu_enable_event(struct perf_event
*event
)
3409 if (!event
->attr
.exclude_host
)
3410 x86_pmu_enable_event(event
);
3413 static void core_pmu_enable_all(int added
)
3415 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3418 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3419 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
3421 if (!test_bit(idx
, cpuc
->active_mask
) ||
3422 cpuc
->events
[idx
]->attr
.exclude_host
)
3425 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
3429 static int hsw_hw_config(struct perf_event
*event
)
3431 int ret
= intel_pmu_hw_config(event
);
3435 if (!boot_cpu_has(X86_FEATURE_RTM
) && !boot_cpu_has(X86_FEATURE_HLE
))
3437 event
->hw
.config
|= event
->attr
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
);
3440 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3441 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3444 if ((event
->hw
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
)) &&
3445 ((event
->hw
.config
& ARCH_PERFMON_EVENTSEL_ANY
) ||
3446 event
->attr
.precise_ip
> 0))
3449 if (event_is_checkpointed(event
)) {
3451 * Sampling of checkpointed events can cause situations where
3452 * the CPU constantly aborts because of a overflow, which is
3453 * then checkpointed back and ignored. Forbid checkpointing
3456 * But still allow a long sampling period, so that perf stat
3459 if (event
->attr
.sample_period
> 0 &&
3460 event
->attr
.sample_period
< 0x7fffffff)
3466 static struct event_constraint counter0_constraint
=
3467 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3469 static struct event_constraint counter2_constraint
=
3470 EVENT_CONSTRAINT(0, 0x4, 0);
3472 static struct event_constraint fixed0_constraint
=
3473 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3475 static struct event_constraint fixed0_counter0_constraint
=
3476 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL
);
3478 static struct event_constraint
*
3479 hsw_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3480 struct perf_event
*event
)
3482 struct event_constraint
*c
;
3484 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3486 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3487 if (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) {
3488 if (c
->idxmsk64
& (1U << 2))
3489 return &counter2_constraint
;
3490 return &emptyconstraint
;
3496 static struct event_constraint
*
3497 icl_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3498 struct perf_event
*event
)
3501 * Fixed counter 0 has less skid.
3502 * Force instruction:ppp in Fixed counter 0
3504 if ((event
->attr
.precise_ip
== 3) &&
3505 constraint_match(&fixed0_constraint
, event
->hw
.config
))
3506 return &fixed0_constraint
;
3508 return hsw_get_event_constraints(cpuc
, idx
, event
);
3511 static struct event_constraint
*
3512 glp_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3513 struct perf_event
*event
)
3515 struct event_constraint
*c
;
3517 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3518 if (event
->attr
.precise_ip
== 3)
3519 return &counter0_constraint
;
3521 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3526 static struct event_constraint
*
3527 tnt_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3528 struct perf_event
*event
)
3530 struct event_constraint
*c
;
3533 * :ppp means to do reduced skid PEBS,
3534 * which is available on PMC0 and fixed counter 0.
3536 if (event
->attr
.precise_ip
== 3) {
3537 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3538 if (constraint_match(&fixed0_constraint
, event
->hw
.config
))
3539 return &fixed0_counter0_constraint
;
3541 return &counter0_constraint
;
3544 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3549 static bool allow_tsx_force_abort
= true;
3551 static struct event_constraint
*
3552 tfa_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3553 struct perf_event
*event
)
3555 struct event_constraint
*c
= hsw_get_event_constraints(cpuc
, idx
, event
);
3558 * Without TFA we must not use PMC3.
3560 if (!allow_tsx_force_abort
&& test_bit(3, c
->idxmsk
)) {
3561 c
= dyn_constraint(cpuc
, c
, idx
);
3562 c
->idxmsk64
&= ~(1ULL << 3);
3572 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3573 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3574 * the two to enforce a minimum period of 128 (the smallest value that has bits
3575 * 0-5 cleared and >= 100).
3577 * Because of how the code in x86_perf_event_set_period() works, the truncation
3578 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3579 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3581 * Therefore the effective (average) period matches the requested period,
3582 * despite coarser hardware granularity.
3584 static u64
bdw_limit_period(struct perf_event
*event
, u64 left
)
3586 if ((event
->hw
.config
& INTEL_ARCH_EVENT_MASK
) ==
3587 X86_CONFIG(.event
=0xc0, .umask
=0x01)) {
3595 static u64
nhm_limit_period(struct perf_event
*event
, u64 left
)
3597 return max(left
, 32ULL);
3600 PMU_FORMAT_ATTR(event
, "config:0-7" );
3601 PMU_FORMAT_ATTR(umask
, "config:8-15" );
3602 PMU_FORMAT_ATTR(edge
, "config:18" );
3603 PMU_FORMAT_ATTR(pc
, "config:19" );
3604 PMU_FORMAT_ATTR(any
, "config:21" ); /* v3 + */
3605 PMU_FORMAT_ATTR(inv
, "config:23" );
3606 PMU_FORMAT_ATTR(cmask
, "config:24-31" );
3607 PMU_FORMAT_ATTR(in_tx
, "config:32");
3608 PMU_FORMAT_ATTR(in_tx_cp
, "config:33");
3610 static struct attribute
*intel_arch_formats_attr
[] = {
3611 &format_attr_event
.attr
,
3612 &format_attr_umask
.attr
,
3613 &format_attr_edge
.attr
,
3614 &format_attr_pc
.attr
,
3615 &format_attr_inv
.attr
,
3616 &format_attr_cmask
.attr
,
3620 ssize_t
intel_event_sysfs_show(char *page
, u64 config
)
3622 u64 event
= (config
& ARCH_PERFMON_EVENTSEL_EVENT
);
3624 return x86_event_sysfs_show(page
, config
, event
);
3627 static struct intel_shared_regs
*allocate_shared_regs(int cpu
)
3629 struct intel_shared_regs
*regs
;
3632 regs
= kzalloc_node(sizeof(struct intel_shared_regs
),
3633 GFP_KERNEL
, cpu_to_node(cpu
));
3636 * initialize the locks to keep lockdep happy
3638 for (i
= 0; i
< EXTRA_REG_MAX
; i
++)
3639 raw_spin_lock_init(®s
->regs
[i
].lock
);
3646 static struct intel_excl_cntrs
*allocate_excl_cntrs(int cpu
)
3648 struct intel_excl_cntrs
*c
;
3650 c
= kzalloc_node(sizeof(struct intel_excl_cntrs
),
3651 GFP_KERNEL
, cpu_to_node(cpu
));
3653 raw_spin_lock_init(&c
->lock
);
3660 int intel_cpuc_prepare(struct cpu_hw_events
*cpuc
, int cpu
)
3662 cpuc
->pebs_record_size
= x86_pmu
.pebs_record_size
;
3664 if (x86_pmu
.extra_regs
|| x86_pmu
.lbr_sel_map
) {
3665 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
3666 if (!cpuc
->shared_regs
)
3670 if (x86_pmu
.flags
& (PMU_FL_EXCL_CNTRS
| PMU_FL_TFA
)) {
3671 size_t sz
= X86_PMC_IDX_MAX
* sizeof(struct event_constraint
);
3673 cpuc
->constraint_list
= kzalloc_node(sz
, GFP_KERNEL
, cpu_to_node(cpu
));
3674 if (!cpuc
->constraint_list
)
3675 goto err_shared_regs
;
3678 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
3679 cpuc
->excl_cntrs
= allocate_excl_cntrs(cpu
);
3680 if (!cpuc
->excl_cntrs
)
3681 goto err_constraint_list
;
3683 cpuc
->excl_thread_id
= 0;
3688 err_constraint_list
:
3689 kfree(cpuc
->constraint_list
);
3690 cpuc
->constraint_list
= NULL
;
3693 kfree(cpuc
->shared_regs
);
3694 cpuc
->shared_regs
= NULL
;
3700 static int intel_pmu_cpu_prepare(int cpu
)
3702 return intel_cpuc_prepare(&per_cpu(cpu_hw_events
, cpu
), cpu
);
3705 static void flip_smm_bit(void *data
)
3707 unsigned long set
= *(unsigned long *)data
;
3710 msr_set_bit(MSR_IA32_DEBUGCTLMSR
,
3711 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
3713 msr_clear_bit(MSR_IA32_DEBUGCTLMSR
,
3714 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
3718 static void intel_pmu_cpu_starting(int cpu
)
3720 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3721 int core_id
= topology_core_id(cpu
);
3724 init_debug_store_on_cpu(cpu
);
3726 * Deal with CPUs that don't clear their LBRs on power-up.
3728 intel_pmu_lbr_reset();
3730 cpuc
->lbr_sel
= NULL
;
3732 if (x86_pmu
.flags
& PMU_FL_TFA
) {
3733 WARN_ON_ONCE(cpuc
->tfa_shadow
);
3734 cpuc
->tfa_shadow
= ~0ULL;
3735 intel_set_tfa(cpuc
, false);
3738 if (x86_pmu
.version
> 1)
3739 flip_smm_bit(&x86_pmu
.attr_freeze_on_smi
);
3741 if (x86_pmu
.counter_freezing
)
3742 enable_counter_freeze();
3744 if (!cpuc
->shared_regs
)
3747 if (!(x86_pmu
.flags
& PMU_FL_NO_HT_SHARING
)) {
3748 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
3749 struct intel_shared_regs
*pc
;
3751 pc
= per_cpu(cpu_hw_events
, i
).shared_regs
;
3752 if (pc
&& pc
->core_id
== core_id
) {
3753 cpuc
->kfree_on_online
[0] = cpuc
->shared_regs
;
3754 cpuc
->shared_regs
= pc
;
3758 cpuc
->shared_regs
->core_id
= core_id
;
3759 cpuc
->shared_regs
->refcnt
++;
3762 if (x86_pmu
.lbr_sel_map
)
3763 cpuc
->lbr_sel
= &cpuc
->shared_regs
->regs
[EXTRA_REG_LBR
];
3765 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
3766 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
3767 struct cpu_hw_events
*sibling
;
3768 struct intel_excl_cntrs
*c
;
3770 sibling
= &per_cpu(cpu_hw_events
, i
);
3771 c
= sibling
->excl_cntrs
;
3772 if (c
&& c
->core_id
== core_id
) {
3773 cpuc
->kfree_on_online
[1] = cpuc
->excl_cntrs
;
3774 cpuc
->excl_cntrs
= c
;
3775 if (!sibling
->excl_thread_id
)
3776 cpuc
->excl_thread_id
= 1;
3780 cpuc
->excl_cntrs
->core_id
= core_id
;
3781 cpuc
->excl_cntrs
->refcnt
++;
3785 static void free_excl_cntrs(struct cpu_hw_events
*cpuc
)
3787 struct intel_excl_cntrs
*c
;
3789 c
= cpuc
->excl_cntrs
;
3791 if (c
->core_id
== -1 || --c
->refcnt
== 0)
3793 cpuc
->excl_cntrs
= NULL
;
3796 kfree(cpuc
->constraint_list
);
3797 cpuc
->constraint_list
= NULL
;
3800 static void intel_pmu_cpu_dying(int cpu
)
3802 fini_debug_store_on_cpu(cpu
);
3804 if (x86_pmu
.counter_freezing
)
3805 disable_counter_freeze();
3808 void intel_cpuc_finish(struct cpu_hw_events
*cpuc
)
3810 struct intel_shared_regs
*pc
;
3812 pc
= cpuc
->shared_regs
;
3814 if (pc
->core_id
== -1 || --pc
->refcnt
== 0)
3816 cpuc
->shared_regs
= NULL
;
3819 free_excl_cntrs(cpuc
);
3822 static void intel_pmu_cpu_dead(int cpu
)
3824 intel_cpuc_finish(&per_cpu(cpu_hw_events
, cpu
));
3827 static void intel_pmu_sched_task(struct perf_event_context
*ctx
,
3830 intel_pmu_pebs_sched_task(ctx
, sched_in
);
3831 intel_pmu_lbr_sched_task(ctx
, sched_in
);
3834 static void intel_pmu_swap_task_ctx(struct perf_event_context
*prev
,
3835 struct perf_event_context
*next
)
3837 intel_pmu_lbr_swap_task_ctx(prev
, next
);
3840 static int intel_pmu_check_period(struct perf_event
*event
, u64 value
)
3842 return intel_pmu_has_bts_period(event
, value
) ? -EINVAL
: 0;
3845 static int intel_pmu_aux_output_match(struct perf_event
*event
)
3847 if (!x86_pmu
.intel_cap
.pebs_output_pt_available
)
3850 return is_intel_pt_event(event
);
3853 PMU_FORMAT_ATTR(offcore_rsp
, "config1:0-63");
3855 PMU_FORMAT_ATTR(ldlat
, "config1:0-15");
3857 PMU_FORMAT_ATTR(frontend
, "config1:0-23");
3859 static struct attribute
*intel_arch3_formats_attr
[] = {
3860 &format_attr_event
.attr
,
3861 &format_attr_umask
.attr
,
3862 &format_attr_edge
.attr
,
3863 &format_attr_pc
.attr
,
3864 &format_attr_any
.attr
,
3865 &format_attr_inv
.attr
,
3866 &format_attr_cmask
.attr
,
3870 static struct attribute
*hsw_format_attr
[] = {
3871 &format_attr_in_tx
.attr
,
3872 &format_attr_in_tx_cp
.attr
,
3873 &format_attr_offcore_rsp
.attr
,
3874 &format_attr_ldlat
.attr
,
3878 static struct attribute
*nhm_format_attr
[] = {
3879 &format_attr_offcore_rsp
.attr
,
3880 &format_attr_ldlat
.attr
,
3884 static struct attribute
*slm_format_attr
[] = {
3885 &format_attr_offcore_rsp
.attr
,
3889 static struct attribute
*skl_format_attr
[] = {
3890 &format_attr_frontend
.attr
,
3894 static __initconst
const struct x86_pmu core_pmu
= {
3896 .handle_irq
= x86_pmu_handle_irq
,
3897 .disable_all
= x86_pmu_disable_all
,
3898 .enable_all
= core_pmu_enable_all
,
3899 .enable
= core_pmu_enable_event
,
3900 .disable
= x86_pmu_disable_event
,
3901 .hw_config
= core_pmu_hw_config
,
3902 .schedule_events
= x86_schedule_events
,
3903 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3904 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3905 .event_map
= intel_pmu_event_map
,
3906 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3908 .large_pebs_flags
= LARGE_PEBS_FLAGS
,
3911 * Intel PMCs cannot be accessed sanely above 32-bit width,
3912 * so we install an artificial 1<<31 period regardless of
3913 * the generic event period:
3915 .max_period
= (1ULL<<31) - 1,
3916 .get_event_constraints
= intel_get_event_constraints
,
3917 .put_event_constraints
= intel_put_event_constraints
,
3918 .event_constraints
= intel_core_event_constraints
,
3919 .guest_get_msrs
= core_guest_get_msrs
,
3920 .format_attrs
= intel_arch_formats_attr
,
3921 .events_sysfs_show
= intel_event_sysfs_show
,
3924 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3925 * together with PMU version 1 and thus be using core_pmu with
3926 * shared_regs. We need following callbacks here to allocate
3929 .cpu_prepare
= intel_pmu_cpu_prepare
,
3930 .cpu_starting
= intel_pmu_cpu_starting
,
3931 .cpu_dying
= intel_pmu_cpu_dying
,
3932 .cpu_dead
= intel_pmu_cpu_dead
,
3934 .check_period
= intel_pmu_check_period
,
3937 static __initconst
const struct x86_pmu intel_pmu
= {
3939 .handle_irq
= intel_pmu_handle_irq
,
3940 .disable_all
= intel_pmu_disable_all
,
3941 .enable_all
= intel_pmu_enable_all
,
3942 .enable
= intel_pmu_enable_event
,
3943 .disable
= intel_pmu_disable_event
,
3944 .add
= intel_pmu_add_event
,
3945 .del
= intel_pmu_del_event
,
3946 .read
= intel_pmu_read_event
,
3947 .hw_config
= intel_pmu_hw_config
,
3948 .schedule_events
= x86_schedule_events
,
3949 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3950 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3951 .event_map
= intel_pmu_event_map
,
3952 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3954 .large_pebs_flags
= LARGE_PEBS_FLAGS
,
3956 * Intel PMCs cannot be accessed sanely above 32 bit width,
3957 * so we install an artificial 1<<31 period regardless of
3958 * the generic event period:
3960 .max_period
= (1ULL << 31) - 1,
3961 .get_event_constraints
= intel_get_event_constraints
,
3962 .put_event_constraints
= intel_put_event_constraints
,
3963 .pebs_aliases
= intel_pebs_aliases_core2
,
3965 .format_attrs
= intel_arch3_formats_attr
,
3966 .events_sysfs_show
= intel_event_sysfs_show
,
3968 .cpu_prepare
= intel_pmu_cpu_prepare
,
3969 .cpu_starting
= intel_pmu_cpu_starting
,
3970 .cpu_dying
= intel_pmu_cpu_dying
,
3971 .cpu_dead
= intel_pmu_cpu_dead
,
3973 .guest_get_msrs
= intel_guest_get_msrs
,
3974 .sched_task
= intel_pmu_sched_task
,
3975 .swap_task_ctx
= intel_pmu_swap_task_ctx
,
3977 .check_period
= intel_pmu_check_period
,
3979 .aux_output_match
= intel_pmu_aux_output_match
,
3982 static __init
void intel_clovertown_quirk(void)
3985 * PEBS is unreliable due to:
3987 * AJ67 - PEBS may experience CPL leaks
3988 * AJ68 - PEBS PMI may be delayed by one event
3989 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3990 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3992 * AJ67 could be worked around by restricting the OS/USR flags.
3993 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3995 * AJ106 could possibly be worked around by not allowing LBR
3996 * usage from PEBS, including the fixup.
3997 * AJ68 could possibly be worked around by always programming
3998 * a pebs_event_reset[0] value and coping with the lost events.
4000 * But taken together it might just make sense to not enable PEBS on
4003 pr_warn("PEBS disabled due to CPU errata\n");
4005 x86_pmu
.pebs_constraints
= NULL
;
4008 static const struct x86_cpu_desc isolation_ucodes
[] = {
4009 INTEL_CPU_DESC(INTEL_FAM6_HASWELL
, 3, 0x0000001f),
4010 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L
, 1, 0x0000001e),
4011 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G
, 1, 0x00000015),
4012 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X
, 2, 0x00000037),
4013 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X
, 4, 0x0000000a),
4014 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL
, 4, 0x00000023),
4015 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G
, 1, 0x00000014),
4016 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 2, 0x00000010),
4017 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 3, 0x07000009),
4018 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 4, 0x0f000009),
4019 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D
, 5, 0x0e000002),
4020 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X
, 2, 0x0b000014),
4021 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X
, 3, 0x00000021),
4022 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X
, 4, 0x00000000),
4023 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L
, 3, 0x0000007c),
4024 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE
, 3, 0x0000007c),
4025 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 9, 0x0000004e),
4026 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 9, 0x0000004e),
4027 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 10, 0x0000004e),
4028 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 11, 0x0000004e),
4029 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L
, 12, 0x0000004e),
4030 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 10, 0x0000004e),
4031 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 11, 0x0000004e),
4032 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 12, 0x0000004e),
4033 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE
, 13, 0x0000004e),
4037 static void intel_check_pebs_isolation(void)
4039 x86_pmu
.pebs_no_isolation
= !x86_cpu_has_min_microcode_rev(isolation_ucodes
);
4042 static __init
void intel_pebs_isolation_quirk(void)
4044 WARN_ON_ONCE(x86_pmu
.check_microcode
);
4045 x86_pmu
.check_microcode
= intel_check_pebs_isolation
;
4046 intel_check_pebs_isolation();
4049 static const struct x86_cpu_desc pebs_ucodes
[] = {
4050 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE
, 7, 0x00000028),
4051 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X
, 6, 0x00000618),
4052 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X
, 7, 0x0000070c),
4056 static bool intel_snb_pebs_broken(void)
4058 return !x86_cpu_has_min_microcode_rev(pebs_ucodes
);
4061 static void intel_snb_check_microcode(void)
4063 if (intel_snb_pebs_broken() == x86_pmu
.pebs_broken
)
4067 * Serialized by the microcode lock..
4069 if (x86_pmu
.pebs_broken
) {
4070 pr_info("PEBS enabled due to microcode update\n");
4071 x86_pmu
.pebs_broken
= 0;
4073 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4074 x86_pmu
.pebs_broken
= 1;
4078 static bool is_lbr_from(unsigned long msr
)
4080 unsigned long lbr_from_nr
= x86_pmu
.lbr_from
+ x86_pmu
.lbr_nr
;
4082 return x86_pmu
.lbr_from
<= msr
&& msr
< lbr_from_nr
;
4086 * Under certain circumstances, access certain MSR may cause #GP.
4087 * The function tests if the input MSR can be safely accessed.
4089 static bool check_msr(unsigned long msr
, u64 mask
)
4091 u64 val_old
, val_new
, val_tmp
;
4094 * Disable the check for real HW, so we don't
4095 * mess with potentionaly enabled registers:
4097 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR
))
4101 * Read the current value, change it and read it back to see if it
4102 * matches, this is needed to detect certain hardware emulators
4103 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4105 if (rdmsrl_safe(msr
, &val_old
))
4109 * Only change the bits which can be updated by wrmsrl.
4111 val_tmp
= val_old
^ mask
;
4113 if (is_lbr_from(msr
))
4114 val_tmp
= lbr_from_signext_quirk_wr(val_tmp
);
4116 if (wrmsrl_safe(msr
, val_tmp
) ||
4117 rdmsrl_safe(msr
, &val_new
))
4121 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4122 * should equal rdmsrl()'s even with the quirk.
4124 if (val_new
!= val_tmp
)
4127 if (is_lbr_from(msr
))
4128 val_old
= lbr_from_signext_quirk_wr(val_old
);
4130 /* Here it's sure that the MSR can be safely accessed.
4131 * Restore the old value and return.
4133 wrmsrl(msr
, val_old
);
4138 static __init
void intel_sandybridge_quirk(void)
4140 x86_pmu
.check_microcode
= intel_snb_check_microcode
;
4142 intel_snb_check_microcode();
4146 static const struct { int id
; char *name
; } intel_arch_events_map
[] __initconst
= {
4147 { PERF_COUNT_HW_CPU_CYCLES
, "cpu cycles" },
4148 { PERF_COUNT_HW_INSTRUCTIONS
, "instructions" },
4149 { PERF_COUNT_HW_BUS_CYCLES
, "bus cycles" },
4150 { PERF_COUNT_HW_CACHE_REFERENCES
, "cache references" },
4151 { PERF_COUNT_HW_CACHE_MISSES
, "cache misses" },
4152 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS
, "branch instructions" },
4153 { PERF_COUNT_HW_BRANCH_MISSES
, "branch misses" },
4156 static __init
void intel_arch_events_quirk(void)
4160 /* disable event that reported as not presend by cpuid */
4161 for_each_set_bit(bit
, x86_pmu
.events_mask
, ARRAY_SIZE(intel_arch_events_map
)) {
4162 intel_perfmon_event_map
[intel_arch_events_map
[bit
].id
] = 0;
4163 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4164 intel_arch_events_map
[bit
].name
);
4168 static __init
void intel_nehalem_quirk(void)
4170 union cpuid10_ebx ebx
;
4172 ebx
.full
= x86_pmu
.events_maskl
;
4173 if (ebx
.split
.no_branch_misses_retired
) {
4175 * Erratum AAJ80 detected, we work it around by using
4176 * the BR_MISP_EXEC.ANY event. This will over-count
4177 * branch-misses, but it's still much better than the
4178 * architectural event which is often completely bogus:
4180 intel_perfmon_event_map
[PERF_COUNT_HW_BRANCH_MISSES
] = 0x7f89;
4181 ebx
.split
.no_branch_misses_retired
= 0;
4182 x86_pmu
.events_maskl
= ebx
.full
;
4183 pr_info("CPU erratum AAJ80 worked around\n");
4187 static const struct x86_cpu_desc counter_freezing_ucodes
[] = {
4188 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT
, 2, 0x0000000e),
4189 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT
, 9, 0x0000002e),
4190 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT
, 10, 0x00000008),
4191 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D
, 1, 0x00000028),
4192 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS
, 1, 0x00000028),
4193 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS
, 8, 0x00000006),
4197 static bool intel_counter_freezing_broken(void)
4199 return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes
);
4202 static __init
void intel_counter_freezing_quirk(void)
4204 /* Check if it's already disabled */
4205 if (disable_counter_freezing
)
4209 * If the system starts with the wrong ucode, leave the
4210 * counter-freezing feature permanently disabled.
4212 if (intel_counter_freezing_broken()) {
4213 pr_info("PMU counter freezing disabled due to CPU errata,"
4214 "please upgrade microcode\n");
4215 x86_pmu
.counter_freezing
= false;
4216 x86_pmu
.handle_irq
= intel_pmu_handle_irq
;
4221 * enable software workaround for errata:
4226 * Only needed when HT is enabled. However detecting
4227 * if HT is enabled is difficult (model specific). So instead,
4228 * we enable the workaround in the early boot, and verify if
4229 * it is needed in a later initcall phase once we have valid
4230 * topology information to check if HT is actually enabled
4232 static __init
void intel_ht_bug(void)
4234 x86_pmu
.flags
|= PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
;
4236 x86_pmu
.start_scheduling
= intel_start_scheduling
;
4237 x86_pmu
.commit_scheduling
= intel_commit_scheduling
;
4238 x86_pmu
.stop_scheduling
= intel_stop_scheduling
;
4241 EVENT_ATTR_STR(mem
-loads
, mem_ld_hsw
, "event=0xcd,umask=0x1,ldlat=3");
4242 EVENT_ATTR_STR(mem
-stores
, mem_st_hsw
, "event=0xd0,umask=0x82")
4244 /* Haswell special events */
4245 EVENT_ATTR_STR(tx
-start
, tx_start
, "event=0xc9,umask=0x1");
4246 EVENT_ATTR_STR(tx
-commit
, tx_commit
, "event=0xc9,umask=0x2");
4247 EVENT_ATTR_STR(tx
-abort
, tx_abort
, "event=0xc9,umask=0x4");
4248 EVENT_ATTR_STR(tx
-capacity
, tx_capacity
, "event=0x54,umask=0x2");
4249 EVENT_ATTR_STR(tx
-conflict
, tx_conflict
, "event=0x54,umask=0x1");
4250 EVENT_ATTR_STR(el
-start
, el_start
, "event=0xc8,umask=0x1");
4251 EVENT_ATTR_STR(el
-commit
, el_commit
, "event=0xc8,umask=0x2");
4252 EVENT_ATTR_STR(el
-abort
, el_abort
, "event=0xc8,umask=0x4");
4253 EVENT_ATTR_STR(el
-capacity
, el_capacity
, "event=0x54,umask=0x2");
4254 EVENT_ATTR_STR(el
-conflict
, el_conflict
, "event=0x54,umask=0x1");
4255 EVENT_ATTR_STR(cycles
-t
, cycles_t
, "event=0x3c,in_tx=1");
4256 EVENT_ATTR_STR(cycles
-ct
, cycles_ct
, "event=0x3c,in_tx=1,in_tx_cp=1");
4258 static struct attribute
*hsw_events_attrs
[] = {
4259 EVENT_PTR(td_slots_issued
),
4260 EVENT_PTR(td_slots_retired
),
4261 EVENT_PTR(td_fetch_bubbles
),
4262 EVENT_PTR(td_total_slots
),
4263 EVENT_PTR(td_total_slots_scale
),
4264 EVENT_PTR(td_recovery_bubbles
),
4265 EVENT_PTR(td_recovery_bubbles_scale
),
4269 static struct attribute
*hsw_mem_events_attrs
[] = {
4270 EVENT_PTR(mem_ld_hsw
),
4271 EVENT_PTR(mem_st_hsw
),
4275 static struct attribute
*hsw_tsx_events_attrs
[] = {
4276 EVENT_PTR(tx_start
),
4277 EVENT_PTR(tx_commit
),
4278 EVENT_PTR(tx_abort
),
4279 EVENT_PTR(tx_capacity
),
4280 EVENT_PTR(tx_conflict
),
4281 EVENT_PTR(el_start
),
4282 EVENT_PTR(el_commit
),
4283 EVENT_PTR(el_abort
),
4284 EVENT_PTR(el_capacity
),
4285 EVENT_PTR(el_conflict
),
4286 EVENT_PTR(cycles_t
),
4287 EVENT_PTR(cycles_ct
),
4291 EVENT_ATTR_STR(tx
-capacity
-read
, tx_capacity_read
, "event=0x54,umask=0x80");
4292 EVENT_ATTR_STR(tx
-capacity
-write
, tx_capacity_write
, "event=0x54,umask=0x2");
4293 EVENT_ATTR_STR(el
-capacity
-read
, el_capacity_read
, "event=0x54,umask=0x80");
4294 EVENT_ATTR_STR(el
-capacity
-write
, el_capacity_write
, "event=0x54,umask=0x2");
4296 static struct attribute
*icl_events_attrs
[] = {
4297 EVENT_PTR(mem_ld_hsw
),
4298 EVENT_PTR(mem_st_hsw
),
4302 static struct attribute
*icl_tsx_events_attrs
[] = {
4303 EVENT_PTR(tx_start
),
4304 EVENT_PTR(tx_abort
),
4305 EVENT_PTR(tx_commit
),
4306 EVENT_PTR(tx_capacity_read
),
4307 EVENT_PTR(tx_capacity_write
),
4308 EVENT_PTR(tx_conflict
),
4309 EVENT_PTR(el_start
),
4310 EVENT_PTR(el_abort
),
4311 EVENT_PTR(el_commit
),
4312 EVENT_PTR(el_capacity_read
),
4313 EVENT_PTR(el_capacity_write
),
4314 EVENT_PTR(el_conflict
),
4315 EVENT_PTR(cycles_t
),
4316 EVENT_PTR(cycles_ct
),
4320 static ssize_t
freeze_on_smi_show(struct device
*cdev
,
4321 struct device_attribute
*attr
,
4324 return sprintf(buf
, "%lu\n", x86_pmu
.attr_freeze_on_smi
);
4327 static DEFINE_MUTEX(freeze_on_smi_mutex
);
4329 static ssize_t
freeze_on_smi_store(struct device
*cdev
,
4330 struct device_attribute
*attr
,
4331 const char *buf
, size_t count
)
4336 ret
= kstrtoul(buf
, 0, &val
);
4343 mutex_lock(&freeze_on_smi_mutex
);
4345 if (x86_pmu
.attr_freeze_on_smi
== val
)
4348 x86_pmu
.attr_freeze_on_smi
= val
;
4351 on_each_cpu(flip_smm_bit
, &val
, 1);
4354 mutex_unlock(&freeze_on_smi_mutex
);
4359 static void update_tfa_sched(void *ignored
)
4361 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
4364 * check if PMC3 is used
4365 * and if so force schedule out for all event types all contexts
4367 if (test_bit(3, cpuc
->active_mask
))
4368 perf_pmu_resched(x86_get_pmu());
4371 static ssize_t
show_sysctl_tfa(struct device
*cdev
,
4372 struct device_attribute
*attr
,
4375 return snprintf(buf
, 40, "%d\n", allow_tsx_force_abort
);
4378 static ssize_t
set_sysctl_tfa(struct device
*cdev
,
4379 struct device_attribute
*attr
,
4380 const char *buf
, size_t count
)
4385 ret
= kstrtobool(buf
, &val
);
4390 if (val
== allow_tsx_force_abort
)
4393 allow_tsx_force_abort
= val
;
4396 on_each_cpu(update_tfa_sched
, NULL
, 1);
4403 static DEVICE_ATTR_RW(freeze_on_smi
);
4405 static ssize_t
branches_show(struct device
*cdev
,
4406 struct device_attribute
*attr
,
4409 return snprintf(buf
, PAGE_SIZE
, "%d\n", x86_pmu
.lbr_nr
);
4412 static DEVICE_ATTR_RO(branches
);
4414 static struct attribute
*lbr_attrs
[] = {
4415 &dev_attr_branches
.attr
,
4419 static char pmu_name_str
[30];
4421 static ssize_t
pmu_name_show(struct device
*cdev
,
4422 struct device_attribute
*attr
,
4425 return snprintf(buf
, PAGE_SIZE
, "%s\n", pmu_name_str
);
4428 static DEVICE_ATTR_RO(pmu_name
);
4430 static struct attribute
*intel_pmu_caps_attrs
[] = {
4431 &dev_attr_pmu_name
.attr
,
4435 static DEVICE_ATTR(allow_tsx_force_abort
, 0644,
4439 static struct attribute
*intel_pmu_attrs
[] = {
4440 &dev_attr_freeze_on_smi
.attr
,
4441 &dev_attr_allow_tsx_force_abort
.attr
,
4446 tsx_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4448 return boot_cpu_has(X86_FEATURE_RTM
) ? attr
->mode
: 0;
4452 pebs_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4454 return x86_pmu
.pebs
? attr
->mode
: 0;
4458 lbr_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4460 return x86_pmu
.lbr_nr
? attr
->mode
: 0;
4464 exra_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4466 return x86_pmu
.version
>= 2 ? attr
->mode
: 0;
4470 default_is_visible(struct kobject
*kobj
, struct attribute
*attr
, int i
)
4472 if (attr
== &dev_attr_allow_tsx_force_abort
.attr
)
4473 return x86_pmu
.flags
& PMU_FL_TFA
? attr
->mode
: 0;
4478 static struct attribute_group group_events_td
= {
4482 static struct attribute_group group_events_mem
= {
4484 .is_visible
= pebs_is_visible
,
4487 static struct attribute_group group_events_tsx
= {
4489 .is_visible
= tsx_is_visible
,
4492 static struct attribute_group group_caps_gen
= {
4494 .attrs
= intel_pmu_caps_attrs
,
4497 static struct attribute_group group_caps_lbr
= {
4500 .is_visible
= lbr_is_visible
,
4503 static struct attribute_group group_format_extra
= {
4505 .is_visible
= exra_is_visible
,
4508 static struct attribute_group group_format_extra_skl
= {
4510 .is_visible
= exra_is_visible
,
4513 static struct attribute_group group_default
= {
4514 .attrs
= intel_pmu_attrs
,
4515 .is_visible
= default_is_visible
,
4518 static const struct attribute_group
*attr_update
[] = {
4524 &group_format_extra
,
4525 &group_format_extra_skl
,
4530 static struct attribute
*empty_attrs
;
4532 __init
int intel_pmu_init(void)
4534 struct attribute
**extra_skl_attr
= &empty_attrs
;
4535 struct attribute
**extra_attr
= &empty_attrs
;
4536 struct attribute
**td_attr
= &empty_attrs
;
4537 struct attribute
**mem_attr
= &empty_attrs
;
4538 struct attribute
**tsx_attr
= &empty_attrs
;
4539 union cpuid10_edx edx
;
4540 union cpuid10_eax eax
;
4541 union cpuid10_ebx ebx
;
4542 struct event_constraint
*c
;
4543 unsigned int unused
;
4544 struct extra_reg
*er
;
4549 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
4550 switch (boot_cpu_data
.x86
) {
4552 return p6_pmu_init();
4554 return knc_pmu_init();
4556 return p4_pmu_init();
4562 * Check whether the Architectural PerfMon supports
4563 * Branch Misses Retired hw_event or not.
4565 cpuid(10, &eax
.full
, &ebx
.full
, &unused
, &edx
.full
);
4566 if (eax
.split
.mask_length
< ARCH_PERFMON_EVENTS_COUNT
)
4569 version
= eax
.split
.version_id
;
4573 x86_pmu
= intel_pmu
;
4575 x86_pmu
.version
= version
;
4576 x86_pmu
.num_counters
= eax
.split
.num_counters
;
4577 x86_pmu
.cntval_bits
= eax
.split
.bit_width
;
4578 x86_pmu
.cntval_mask
= (1ULL << eax
.split
.bit_width
) - 1;
4580 x86_pmu
.events_maskl
= ebx
.full
;
4581 x86_pmu
.events_mask_len
= eax
.split
.mask_length
;
4583 x86_pmu
.max_pebs_events
= min_t(unsigned, MAX_PEBS_EVENTS
, x86_pmu
.num_counters
);
4586 * Quirk: v2 perfmon does not report fixed-purpose events, so
4587 * assume at least 3 events, when not running in a hypervisor:
4590 int assume
= 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR
);
4592 x86_pmu
.num_counters_fixed
=
4593 max((int)edx
.split
.num_counters_fixed
, assume
);
4597 x86_pmu
.counter_freezing
= !disable_counter_freezing
;
4599 if (boot_cpu_has(X86_FEATURE_PDCM
)) {
4602 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, capabilities
);
4603 x86_pmu
.intel_cap
.capabilities
= capabilities
;
4608 x86_add_quirk(intel_arch_events_quirk
); /* Install first, so it runs last */
4611 * Install the hw-cache-events table:
4613 switch (boot_cpu_data
.x86_model
) {
4614 case INTEL_FAM6_CORE_YONAH
:
4615 pr_cont("Core events, ");
4619 case INTEL_FAM6_CORE2_MEROM
:
4620 x86_add_quirk(intel_clovertown_quirk
);
4623 case INTEL_FAM6_CORE2_MEROM_L
:
4624 case INTEL_FAM6_CORE2_PENRYN
:
4625 case INTEL_FAM6_CORE2_DUNNINGTON
:
4626 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
4627 sizeof(hw_cache_event_ids
));
4629 intel_pmu_lbr_init_core();
4631 x86_pmu
.event_constraints
= intel_core2_event_constraints
;
4632 x86_pmu
.pebs_constraints
= intel_core2_pebs_event_constraints
;
4633 pr_cont("Core2 events, ");
4637 case INTEL_FAM6_NEHALEM
:
4638 case INTEL_FAM6_NEHALEM_EP
:
4639 case INTEL_FAM6_NEHALEM_EX
:
4640 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
4641 sizeof(hw_cache_event_ids
));
4642 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
4643 sizeof(hw_cache_extra_regs
));
4645 intel_pmu_lbr_init_nhm();
4647 x86_pmu
.event_constraints
= intel_nehalem_event_constraints
;
4648 x86_pmu
.pebs_constraints
= intel_nehalem_pebs_event_constraints
;
4649 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
4650 x86_pmu
.extra_regs
= intel_nehalem_extra_regs
;
4651 x86_pmu
.limit_period
= nhm_limit_period
;
4653 mem_attr
= nhm_mem_events_attrs
;
4655 /* UOPS_ISSUED.STALLED_CYCLES */
4656 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4657 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4658 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4659 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4660 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
4662 intel_pmu_pebs_data_source_nhm();
4663 x86_add_quirk(intel_nehalem_quirk
);
4664 x86_pmu
.pebs_no_tlb
= 1;
4665 extra_attr
= nhm_format_attr
;
4667 pr_cont("Nehalem events, ");
4671 case INTEL_FAM6_ATOM_BONNELL
:
4672 case INTEL_FAM6_ATOM_BONNELL_MID
:
4673 case INTEL_FAM6_ATOM_SALTWELL
:
4674 case INTEL_FAM6_ATOM_SALTWELL_MID
:
4675 case INTEL_FAM6_ATOM_SALTWELL_TABLET
:
4676 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
4677 sizeof(hw_cache_event_ids
));
4679 intel_pmu_lbr_init_atom();
4681 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
4682 x86_pmu
.pebs_constraints
= intel_atom_pebs_event_constraints
;
4683 x86_pmu
.pebs_aliases
= intel_pebs_aliases_core2
;
4684 pr_cont("Atom events, ");
4688 case INTEL_FAM6_ATOM_SILVERMONT
:
4689 case INTEL_FAM6_ATOM_SILVERMONT_D
:
4690 case INTEL_FAM6_ATOM_SILVERMONT_MID
:
4691 case INTEL_FAM6_ATOM_AIRMONT
:
4692 case INTEL_FAM6_ATOM_AIRMONT_MID
:
4693 memcpy(hw_cache_event_ids
, slm_hw_cache_event_ids
,
4694 sizeof(hw_cache_event_ids
));
4695 memcpy(hw_cache_extra_regs
, slm_hw_cache_extra_regs
,
4696 sizeof(hw_cache_extra_regs
));
4698 intel_pmu_lbr_init_slm();
4700 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4701 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
4702 x86_pmu
.extra_regs
= intel_slm_extra_regs
;
4703 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4704 td_attr
= slm_events_attrs
;
4705 extra_attr
= slm_format_attr
;
4706 pr_cont("Silvermont events, ");
4707 name
= "silvermont";
4710 case INTEL_FAM6_ATOM_GOLDMONT
:
4711 case INTEL_FAM6_ATOM_GOLDMONT_D
:
4712 x86_add_quirk(intel_counter_freezing_quirk
);
4713 memcpy(hw_cache_event_ids
, glm_hw_cache_event_ids
,
4714 sizeof(hw_cache_event_ids
));
4715 memcpy(hw_cache_extra_regs
, glm_hw_cache_extra_regs
,
4716 sizeof(hw_cache_extra_regs
));
4718 intel_pmu_lbr_init_skl();
4720 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4721 x86_pmu
.pebs_constraints
= intel_glm_pebs_event_constraints
;
4722 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
4724 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4725 * for precise cycles.
4726 * :pp is identical to :ppp
4728 x86_pmu
.pebs_aliases
= NULL
;
4729 x86_pmu
.pebs_prec_dist
= true;
4730 x86_pmu
.lbr_pt_coexist
= true;
4731 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4732 td_attr
= glm_events_attrs
;
4733 extra_attr
= slm_format_attr
;
4734 pr_cont("Goldmont events, ");
4738 case INTEL_FAM6_ATOM_GOLDMONT_PLUS
:
4739 x86_add_quirk(intel_counter_freezing_quirk
);
4740 memcpy(hw_cache_event_ids
, glp_hw_cache_event_ids
,
4741 sizeof(hw_cache_event_ids
));
4742 memcpy(hw_cache_extra_regs
, glp_hw_cache_extra_regs
,
4743 sizeof(hw_cache_extra_regs
));
4745 intel_pmu_lbr_init_skl();
4747 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4748 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
4750 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4751 * for precise cycles.
4753 x86_pmu
.pebs_aliases
= NULL
;
4754 x86_pmu
.pebs_prec_dist
= true;
4755 x86_pmu
.lbr_pt_coexist
= true;
4756 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4757 x86_pmu
.flags
|= PMU_FL_PEBS_ALL
;
4758 x86_pmu
.get_event_constraints
= glp_get_event_constraints
;
4759 td_attr
= glm_events_attrs
;
4760 /* Goldmont Plus has 4-wide pipeline */
4761 event_attr_td_total_slots_scale_glm
.event_str
= "4";
4762 extra_attr
= slm_format_attr
;
4763 pr_cont("Goldmont plus events, ");
4764 name
= "goldmont_plus";
4767 case INTEL_FAM6_ATOM_TREMONT_D
:
4768 x86_pmu
.late_ack
= true;
4769 memcpy(hw_cache_event_ids
, glp_hw_cache_event_ids
,
4770 sizeof(hw_cache_event_ids
));
4771 memcpy(hw_cache_extra_regs
, tnt_hw_cache_extra_regs
,
4772 sizeof(hw_cache_extra_regs
));
4773 hw_cache_event_ids
[C(ITLB
)][C(OP_READ
)][C(RESULT_ACCESS
)] = -1;
4775 intel_pmu_lbr_init_skl();
4777 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4778 x86_pmu
.extra_regs
= intel_tnt_extra_regs
;
4780 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4781 * for precise cycles.
4783 x86_pmu
.pebs_aliases
= NULL
;
4784 x86_pmu
.pebs_prec_dist
= true;
4785 x86_pmu
.lbr_pt_coexist
= true;
4786 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4787 x86_pmu
.get_event_constraints
= tnt_get_event_constraints
;
4788 extra_attr
= slm_format_attr
;
4789 pr_cont("Tremont events, ");
4793 case INTEL_FAM6_WESTMERE
:
4794 case INTEL_FAM6_WESTMERE_EP
:
4795 case INTEL_FAM6_WESTMERE_EX
:
4796 memcpy(hw_cache_event_ids
, westmere_hw_cache_event_ids
,
4797 sizeof(hw_cache_event_ids
));
4798 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
4799 sizeof(hw_cache_extra_regs
));
4801 intel_pmu_lbr_init_nhm();
4803 x86_pmu
.event_constraints
= intel_westmere_event_constraints
;
4804 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
4805 x86_pmu
.pebs_constraints
= intel_westmere_pebs_event_constraints
;
4806 x86_pmu
.extra_regs
= intel_westmere_extra_regs
;
4807 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4809 mem_attr
= nhm_mem_events_attrs
;
4811 /* UOPS_ISSUED.STALLED_CYCLES */
4812 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4813 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4814 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4815 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4816 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
4818 intel_pmu_pebs_data_source_nhm();
4819 extra_attr
= nhm_format_attr
;
4820 pr_cont("Westmere events, ");
4824 case INTEL_FAM6_SANDYBRIDGE
:
4825 case INTEL_FAM6_SANDYBRIDGE_X
:
4826 x86_add_quirk(intel_sandybridge_quirk
);
4827 x86_add_quirk(intel_ht_bug
);
4828 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
4829 sizeof(hw_cache_event_ids
));
4830 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
4831 sizeof(hw_cache_extra_regs
));
4833 intel_pmu_lbr_init_snb();
4835 x86_pmu
.event_constraints
= intel_snb_event_constraints
;
4836 x86_pmu
.pebs_constraints
= intel_snb_pebs_event_constraints
;
4837 x86_pmu
.pebs_aliases
= intel_pebs_aliases_snb
;
4838 if (boot_cpu_data
.x86_model
== INTEL_FAM6_SANDYBRIDGE_X
)
4839 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4841 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
4844 /* all extra regs are per-cpu when HT is on */
4845 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4846 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4848 td_attr
= snb_events_attrs
;
4849 mem_attr
= snb_mem_events_attrs
;
4851 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4852 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4853 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4854 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4855 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4856 X86_CONFIG(.event
=0xb1, .umask
=0x01, .inv
=1, .cmask
=1);
4858 extra_attr
= nhm_format_attr
;
4860 pr_cont("SandyBridge events, ");
4861 name
= "sandybridge";
4864 case INTEL_FAM6_IVYBRIDGE
:
4865 case INTEL_FAM6_IVYBRIDGE_X
:
4866 x86_add_quirk(intel_ht_bug
);
4867 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
4868 sizeof(hw_cache_event_ids
));
4869 /* dTLB-load-misses on IVB is different than SNB */
4870 hw_cache_event_ids
[C(DTLB
)][C(OP_READ
)][C(RESULT_MISS
)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4872 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
4873 sizeof(hw_cache_extra_regs
));
4875 intel_pmu_lbr_init_snb();
4877 x86_pmu
.event_constraints
= intel_ivb_event_constraints
;
4878 x86_pmu
.pebs_constraints
= intel_ivb_pebs_event_constraints
;
4879 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4880 x86_pmu
.pebs_prec_dist
= true;
4881 if (boot_cpu_data
.x86_model
== INTEL_FAM6_IVYBRIDGE_X
)
4882 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4884 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
4885 /* all extra regs are per-cpu when HT is on */
4886 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4887 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4889 td_attr
= snb_events_attrs
;
4890 mem_attr
= snb_mem_events_attrs
;
4892 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4893 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4894 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4896 extra_attr
= nhm_format_attr
;
4898 pr_cont("IvyBridge events, ");
4903 case INTEL_FAM6_HASWELL
:
4904 case INTEL_FAM6_HASWELL_X
:
4905 case INTEL_FAM6_HASWELL_L
:
4906 case INTEL_FAM6_HASWELL_G
:
4907 x86_add_quirk(intel_ht_bug
);
4908 x86_add_quirk(intel_pebs_isolation_quirk
);
4909 x86_pmu
.late_ack
= true;
4910 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4911 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4913 intel_pmu_lbr_init_hsw();
4915 x86_pmu
.event_constraints
= intel_hsw_event_constraints
;
4916 x86_pmu
.pebs_constraints
= intel_hsw_pebs_event_constraints
;
4917 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4918 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4919 x86_pmu
.pebs_prec_dist
= true;
4920 /* all extra regs are per-cpu when HT is on */
4921 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4922 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4924 x86_pmu
.hw_config
= hsw_hw_config
;
4925 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4926 x86_pmu
.lbr_double_abort
= true;
4927 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4928 hsw_format_attr
: nhm_format_attr
;
4929 td_attr
= hsw_events_attrs
;
4930 mem_attr
= hsw_mem_events_attrs
;
4931 tsx_attr
= hsw_tsx_events_attrs
;
4932 pr_cont("Haswell events, ");
4936 case INTEL_FAM6_BROADWELL
:
4937 case INTEL_FAM6_BROADWELL_D
:
4938 case INTEL_FAM6_BROADWELL_G
:
4939 case INTEL_FAM6_BROADWELL_X
:
4940 x86_add_quirk(intel_pebs_isolation_quirk
);
4941 x86_pmu
.late_ack
= true;
4942 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4943 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4945 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4946 hw_cache_extra_regs
[C(LL
)][C(OP_READ
)][C(RESULT_MISS
)] = HSW_DEMAND_READ
|
4947 BDW_L3_MISS
|HSW_SNOOP_DRAM
;
4948 hw_cache_extra_regs
[C(LL
)][C(OP_WRITE
)][C(RESULT_MISS
)] = HSW_DEMAND_WRITE
|BDW_L3_MISS
|
4950 hw_cache_extra_regs
[C(NODE
)][C(OP_READ
)][C(RESULT_ACCESS
)] = HSW_DEMAND_READ
|
4951 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
4952 hw_cache_extra_regs
[C(NODE
)][C(OP_WRITE
)][C(RESULT_ACCESS
)] = HSW_DEMAND_WRITE
|
4953 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
4955 intel_pmu_lbr_init_hsw();
4957 x86_pmu
.event_constraints
= intel_bdw_event_constraints
;
4958 x86_pmu
.pebs_constraints
= intel_bdw_pebs_event_constraints
;
4959 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4960 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4961 x86_pmu
.pebs_prec_dist
= true;
4962 /* all extra regs are per-cpu when HT is on */
4963 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4964 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4966 x86_pmu
.hw_config
= hsw_hw_config
;
4967 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4968 x86_pmu
.limit_period
= bdw_limit_period
;
4969 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4970 hsw_format_attr
: nhm_format_attr
;
4971 td_attr
= hsw_events_attrs
;
4972 mem_attr
= hsw_mem_events_attrs
;
4973 tsx_attr
= hsw_tsx_events_attrs
;
4974 pr_cont("Broadwell events, ");
4978 case INTEL_FAM6_XEON_PHI_KNL
:
4979 case INTEL_FAM6_XEON_PHI_KNM
:
4980 memcpy(hw_cache_event_ids
,
4981 slm_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4982 memcpy(hw_cache_extra_regs
,
4983 knl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4984 intel_pmu_lbr_init_knl();
4986 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4987 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
4988 x86_pmu
.extra_regs
= intel_knl_extra_regs
;
4990 /* all extra regs are per-cpu when HT is on */
4991 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4992 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4993 extra_attr
= slm_format_attr
;
4994 pr_cont("Knights Landing/Mill events, ");
4995 name
= "knights-landing";
4998 case INTEL_FAM6_SKYLAKE_X
:
5001 case INTEL_FAM6_SKYLAKE_L
:
5002 case INTEL_FAM6_SKYLAKE
:
5003 case INTEL_FAM6_KABYLAKE_L
:
5004 case INTEL_FAM6_KABYLAKE
:
5005 case INTEL_FAM6_COMETLAKE_L
:
5006 case INTEL_FAM6_COMETLAKE
:
5007 x86_add_quirk(intel_pebs_isolation_quirk
);
5008 x86_pmu
.late_ack
= true;
5009 memcpy(hw_cache_event_ids
, skl_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
5010 memcpy(hw_cache_extra_regs
, skl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
5011 intel_pmu_lbr_init_skl();
5013 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5014 event_attr_td_recovery_bubbles
.event_str_noht
=
5015 "event=0xd,umask=0x1,cmask=1";
5016 event_attr_td_recovery_bubbles
.event_str_ht
=
5017 "event=0xd,umask=0x1,cmask=1,any=1";
5019 x86_pmu
.event_constraints
= intel_skl_event_constraints
;
5020 x86_pmu
.pebs_constraints
= intel_skl_pebs_event_constraints
;
5021 x86_pmu
.extra_regs
= intel_skl_extra_regs
;
5022 x86_pmu
.pebs_aliases
= intel_pebs_aliases_skl
;
5023 x86_pmu
.pebs_prec_dist
= true;
5024 /* all extra regs are per-cpu when HT is on */
5025 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5026 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5028 x86_pmu
.hw_config
= hsw_hw_config
;
5029 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
5030 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
5031 hsw_format_attr
: nhm_format_attr
;
5032 extra_skl_attr
= skl_format_attr
;
5033 td_attr
= hsw_events_attrs
;
5034 mem_attr
= hsw_mem_events_attrs
;
5035 tsx_attr
= hsw_tsx_events_attrs
;
5036 intel_pmu_pebs_data_source_skl(pmem
);
5038 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT
)) {
5039 x86_pmu
.flags
|= PMU_FL_TFA
;
5040 x86_pmu
.get_event_constraints
= tfa_get_event_constraints
;
5041 x86_pmu
.enable_all
= intel_tfa_pmu_enable_all
;
5042 x86_pmu
.commit_scheduling
= intel_tfa_commit_scheduling
;
5045 pr_cont("Skylake events, ");
5049 case INTEL_FAM6_ICELAKE_X
:
5050 case INTEL_FAM6_ICELAKE_D
:
5053 case INTEL_FAM6_ICELAKE_L
:
5054 case INTEL_FAM6_ICELAKE
:
5055 case INTEL_FAM6_TIGERLAKE_L
:
5056 case INTEL_FAM6_TIGERLAKE
:
5057 x86_pmu
.late_ack
= true;
5058 memcpy(hw_cache_event_ids
, skl_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
5059 memcpy(hw_cache_extra_regs
, skl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
5060 hw_cache_event_ids
[C(ITLB
)][C(OP_READ
)][C(RESULT_ACCESS
)] = -1;
5061 intel_pmu_lbr_init_skl();
5063 x86_pmu
.event_constraints
= intel_icl_event_constraints
;
5064 x86_pmu
.pebs_constraints
= intel_icl_pebs_event_constraints
;
5065 x86_pmu
.extra_regs
= intel_icl_extra_regs
;
5066 x86_pmu
.pebs_aliases
= NULL
;
5067 x86_pmu
.pebs_prec_dist
= true;
5068 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
5069 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
5071 x86_pmu
.hw_config
= hsw_hw_config
;
5072 x86_pmu
.get_event_constraints
= icl_get_event_constraints
;
5073 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
5074 hsw_format_attr
: nhm_format_attr
;
5075 extra_skl_attr
= skl_format_attr
;
5076 mem_attr
= icl_events_attrs
;
5077 tsx_attr
= icl_tsx_events_attrs
;
5078 x86_pmu
.rtm_abort_event
= X86_CONFIG(.event
=0xca, .umask
=0x02);
5079 x86_pmu
.lbr_pt_coexist
= true;
5080 intel_pmu_pebs_data_source_skl(pmem
);
5081 pr_cont("Icelake events, ");
5086 switch (x86_pmu
.version
) {
5088 x86_pmu
.event_constraints
= intel_v1_event_constraints
;
5089 pr_cont("generic architected perfmon v1, ");
5090 name
= "generic_arch_v1";
5094 * default constraints for v2 and up
5096 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
5097 pr_cont("generic architected perfmon, ");
5098 name
= "generic_arch_v2+";
5103 snprintf(pmu_name_str
, sizeof(pmu_name_str
), "%s", name
);
5106 group_events_td
.attrs
= td_attr
;
5107 group_events_mem
.attrs
= mem_attr
;
5108 group_events_tsx
.attrs
= tsx_attr
;
5109 group_format_extra
.attrs
= extra_attr
;
5110 group_format_extra_skl
.attrs
= extra_skl_attr
;
5112 x86_pmu
.attr_update
= attr_update
;
5114 if (x86_pmu
.num_counters
> INTEL_PMC_MAX_GENERIC
) {
5115 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
5116 x86_pmu
.num_counters
, INTEL_PMC_MAX_GENERIC
);
5117 x86_pmu
.num_counters
= INTEL_PMC_MAX_GENERIC
;
5119 x86_pmu
.intel_ctrl
= (1ULL << x86_pmu
.num_counters
) - 1;
5121 if (x86_pmu
.num_counters_fixed
> INTEL_PMC_MAX_FIXED
) {
5122 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
5123 x86_pmu
.num_counters_fixed
, INTEL_PMC_MAX_FIXED
);
5124 x86_pmu
.num_counters_fixed
= INTEL_PMC_MAX_FIXED
;
5127 x86_pmu
.intel_ctrl
|=
5128 ((1LL << x86_pmu
.num_counters_fixed
)-1) << INTEL_PMC_IDX_FIXED
;
5130 if (x86_pmu
.event_constraints
) {
5132 * event on fixed counter2 (REF_CYCLES) only works on this
5133 * counter, so do not extend mask to generic counters
5135 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
5136 if (c
->cmask
== FIXED_EVENT_FLAGS
5137 && c
->idxmsk64
!= INTEL_PMC_MSK_FIXED_REF_CYCLES
) {
5138 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
5141 ~(~0ULL << (INTEL_PMC_IDX_FIXED
+ x86_pmu
.num_counters_fixed
));
5142 c
->weight
= hweight64(c
->idxmsk64
);
5147 * Access LBR MSR may cause #GP under certain circumstances.
5148 * E.g. KVM doesn't support LBR MSR
5149 * Check all LBT MSR here.
5150 * Disable LBR access if any LBR MSRs can not be accessed.
5152 if (x86_pmu
.lbr_nr
&& !check_msr(x86_pmu
.lbr_tos
, 0x3UL
))
5154 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
5155 if (!(check_msr(x86_pmu
.lbr_from
+ i
, 0xffffUL
) &&
5156 check_msr(x86_pmu
.lbr_to
+ i
, 0xffffUL
)))
5161 pr_cont("%d-deep LBR, ", x86_pmu
.lbr_nr
);
5164 * Access extra MSR may cause #GP under certain circumstances.
5165 * E.g. KVM doesn't support offcore event
5166 * Check all extra_regs here.
5168 if (x86_pmu
.extra_regs
) {
5169 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
5170 er
->extra_msr_access
= check_msr(er
->msr
, 0x11UL
);
5171 /* Disable LBR select mapping */
5172 if ((er
->idx
== EXTRA_REG_LBR
) && !er
->extra_msr_access
)
5173 x86_pmu
.lbr_sel_map
= NULL
;
5177 /* Support full width counters using alternative MSR range */
5178 if (x86_pmu
.intel_cap
.full_width_write
) {
5179 x86_pmu
.max_period
= x86_pmu
.cntval_mask
>> 1;
5180 x86_pmu
.perfctr
= MSR_IA32_PMC0
;
5181 pr_cont("full-width counters, ");
5185 * For arch perfmon 4 use counter freezing to avoid
5186 * several MSR accesses in the PMI.
5188 if (x86_pmu
.counter_freezing
)
5189 x86_pmu
.handle_irq
= intel_pmu_handle_irq_v4
;
5195 * HT bug: phase 2 init
5196 * Called once we have valid topology information to check
5197 * whether or not HT is enabled
5198 * If HT is off, then we disable the workaround
5200 static __init
int fixup_ht_bug(void)
5204 * problem not present on this CPU model, nothing to do
5206 if (!(x86_pmu
.flags
& PMU_FL_EXCL_ENABLED
))
5209 if (topology_max_smt_threads() > 1) {
5210 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5216 hardlockup_detector_perf_stop();
5218 x86_pmu
.flags
&= ~(PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
);
5220 x86_pmu
.start_scheduling
= NULL
;
5221 x86_pmu
.commit_scheduling
= NULL
;
5222 x86_pmu
.stop_scheduling
= NULL
;
5224 hardlockup_detector_perf_restart();
5226 for_each_online_cpu(c
)
5227 free_excl_cntrs(&per_cpu(cpu_hw_events
, c
));
5230 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5233 subsys_initcall(fixup_ht_bug
)